DEVELOPMENT OF A USER-FRIENDLY
MOLECULAR DYNAMICS (MD)
SIMULATION SYSTEM FOR
NANOMETRIC CUTTING

AND TRIBOLOGY

By
MATHEW S. LEE
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

2000

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2002

DEVELOPMENT OF A USER-FRIENDLY
MOLECULAR DYNAMICS (MD)
SIMULATION SYSTEM FOR
NANOMETRIC CUTTING

AND TRIBOLOGY

Thesis Approved:

Thesis Advisor

ACKNOWLEDGEMENTS

First and foremost, | would like to thank God for giving me the ability to do this
work. My family deserves my sincere thanks for the help and support they have provided
and continue to provide throughout my career. I would like to give a special shout out to
my girlfriend, Erika Nevin. God bless our relationship.

A special thanks also goes to my graduate advisor and mentor, Dr. Ranga
Komanduri. His friendship, encouragement, and discussions have helped guide my work
to be the best of my abilities. Thanks are also due to Dr. Lionel Raff for thc many
meetings and ideas for solving problems. His expertise has been invaluable to my
understanding of MD. Thanks also to Dr. Young for serving on my committee.

Much of the work for this project was completed using the [recly available
operating system, Linux, initiated in 1994 by Linus Torvalds. Thanks arc due to his
original work and the continuing work of open source developers around the world who
are rarcly given credit for the powerful tools they have created.

Thanks are also due to my fellow research colleagues who have provided useful
discussions with different perspectives on various problems: Milind Malshe, Rutuparna
Narulkar, and David Stokes. My humblest gratitude goes to Joe Hershberger, master
programmer and friend, for his programming help, expertise, and masterminding the

MDbinfmt library.

TABLE OF CONTENTS

Chapter

[. INTRODUCTION

1.1. Exploring Manufacturing Processes in the Nano Region
1.2. Molecular Dynamics (MD) Simulations............ccocveevnenn.
1.2.1. Potential Brerny PUBCHONE. cswssmmmimm saisammmesssmsivs
1.2.2. Moving, Boundary, and Peripheral Atoms..................
123, Nunterical SInmIations. owivismssosmsmmiassisii s
1.3. Parallel Processing Approach to Solving MD Simulations
1.4. Background Information and Review of MD at OSU

1.5. Thesis Outline

II. PROBLEM STATEMENT

2.1, User-Friendly System.........cooooveiiiiiiiiiiiiiiiiiiiennnn,

2.2. Justification

1. PARALLEL COMPUTING VIA BEOWULF CLUSTERS

3.1, Introduction

[V. PROGRAMMING APPROACH FOR MD SIMULATION

41. Introduction

2.3: /Seolutiofnt APProachi .cissaivsussimmssiiiinmiesimissaiaiar e
2.3.1. Administrator’s Perspective..........cccoouvuiiieiiininann.
23.2. Programmer’ s PerspectiVe . oo o
233 | Bndiuser’s PErspleliVe. cowmmnsmmsiisiansyimsascssiimies

32 SECUCIRIBEIEE sy sy m s o s By S ST
L T 52 T R SO
3.4, CONSIIUCHON. . ..uvtet ettt eee e earaes
3:5. lnstallation 460 ConAgITERON. s snummmmssssyis cavass

4.2, MDDt TAbRAN: uiismim s S S S g
43, Parallel Simulations. . .ooooe oo

Chapter Page

V. IMPLEMENTATION OF USER-FRIENDLY SOFTWARE............c..cooiviinin 47
Ble TOIEOdMECION . i sevamusmmmiimsmi o oo S S S S RS RS R TR 47
5.2, Overview of Software Operation.........o.ovivveriiiiiiiiiiiieiiieiieienennn 48
53. Pre-Processing Software Implementation.uviimviannssmssiahivs: 50
54. Simulaion Software Tmplementabion. .o emovecssansmsvasmms s 51
5.5. Post-Processing Software Implementation.............ccooveeivivinninnennn. 52

VI. APPLICATION OF USER-FRIENDLY SYSTEM TO NANOMETRIC

ELITTING s s e R e e R e e e S S S S R DS S 55
(670 I 1 wo e A o1 [) s D 55
6.2. SO0 PrOCESS . isamimbasonoi i i i sy S i e s rasaeas 57
[T S (=1 1 £ O U 59
VIL CONCLUSTON S oo s s s s o S s s 51 s S Sas arsrisie S 65
Tl ' Ceneral CoNChiSIONS: s s Y s e L N e s e e 65
T2 SPECIEE CODRIIEIONG o cswa v s s e v s H e S S 67
T3, FUIUIE WK . oot e e e e e 68
RE R E R ENCES . . oottt ittt et ettt e e e e e e e e e e e e e e e e e e 70
APPENDII A s ssmsm s s s s e s e v T 75
AP P EN DX Bt e 106
A P P EN D IX oo e 118

Table

6.1

6.2

LIST OF TABLES

Parameters used in the oblique simulation investigation

Computational parameters used within the simulation software..................

vi

Figure
1.1
2.1
2.2
3.1
3.2
33
3.4
3.5
3.6
4.1
5.1
5.2
5.3
5.4
5.5
6.1
6.2

6.3

LIST OF FIGURES

Page
Typical nanometric cutting simulation with atom types labeled.................... 6
MDbinfmt library file operations USage.couvvriuiiieiiiieiiiiiieeaniann 17
End-user perspective of sStmulation SOWATE. . . c....cecisimsisasanssisnvas sws s 19
Clock time versus number of processors @ 1.7 GHz............ccoovviiiiinan.., 24
Schematic of how packets travel iptables chains................ocovviiiiennnn. 28
Overview:of MDbeta parallel enyironmient. oo corssmmmmms o sssmsmms s s 31
Pictiiie of MDhbeta eofiputational nade .. oo asamninmss s s 33
Assembled file-server node.ooveiiniiiii 35
Assembled nodes and mounted inrack...........cooiiiiiii e 36
MDbithnt HBEATY OVEIVEEW. v it s s dvas s s s g 42
End-user view of simiulalion SOMWEALS. . siwiricsnisss ins varnsesssmrnyisnsanss 48
Diagram of pre-processing Operation.o.euueuiieineeuinreiteeinieeanaanen 49
Diagran of simulation operation. v wsssasissasimismisasssssissinsamisisomss 49
Screenshof of MPii pre-processing Solware.......couviseicinsimsmisasi s 51
Screenshot of the MDui animation software showing nanometric cutting....... 54
Orientation of the tool creating the inclination angle...................oooini 55
Diagram of the oblique machining operation...............c.coovivviiiiviiieninennn 50
Snapshots showing various stages of oblique nanometric cutling................. 60

Vil

6.4

6.5

6.6

Various orientations of the simulation that can be animated using MDui.......
Chip flow angle vs. angle of inclination..............coooeiiiiiiiiiiiiiiiiiiann

Variation of the chip flow angle with the angle of inclination.....................

Vil

NOMENCLATURE

AMD-Advanced Micro Devices, manufacturer of the MDbeta processors
Al-Artificial intelligence

API-Application programming interface, library used for accessing prebuilt user
interfaces

Beowulf cluster-Supercomputer built from commodity hardware components
Bpbatch-Application used to remotely boot the nodes in the MDbeta cluster
CAT-5-Twisted pair cable standard used to connect nodes to the network switch
CISC-Complex instruction set computer

COTS-Commodity-off-the-shelf

Communication-Message passing from one node to the next

CVD-Chemical vapor deposition

CPU-Central processing unit, also known as a processor

Data structure-Term used in programming Lo describe variable layout
DEC-Digital Equipment Corporation, purchased by Compagq and now Hewlett Packard
DHCP-Dynamics host configuration protocol, used (o assign network addresses
DirectX-Graphics library used for windows

DVD-Optical disk format capable of handling 4.7 Gb per side

EAM-Embedded atom model

ECC-Error correction control, used to double check errors in memory

1a32-32-bit Intel based processor

1a64-64-bit based processor
FCC-Face centered cubic
FDM-Finite difference method
FEM-Finite element modeling

Function-Term used in programming to describe a piece of code that can be compiled
that has defined inputs and outputs

Glui-OpenGL user interface, cross platform API for OpenGL
Glut-OpenGL utility toolkit, API for common OpenGL functions
HP-Hewlett Packard

Kernel-basic piece of code that allows software to interface with hardware
Load Balancing-Distributing of the computational work between nodes

Linux-Freely available operating system used as the operating system of the Beowulf
cluster

Library-Term used in programming to describe a precompiled piece of code that can be
accessed during runtime

LLNL-Lawrence Livermore National Labs

Mbit-Million bits per second

MC-Monte Carlo

MEAM-Modified embedded atom model

MD-Molecular dynamics

MDalpha-First Beowulf class supercomputer constructed using ia-64 processors
MDbeta-Second Beowulf class supercomputer constructed using ia-32 processors
MDbinfmt-Library created to help with atomistic simulations

MDii-Molecular dynamics input interface, created in this study for pre-processing

MDiso-Custom installation disk created for installing the Slackware Linux distribution

MDui-Molecular dynamics user interface, created in this study for post-processing
MDsetupc-Console version of MDii that works in Linux operating system
MFLOPS-mMIlion floating point operations per second

MIMD-Multiple instruction, multiple data

MPI-Message passing interface standard

MPICH-Library implementing MPI standard

NFS-Network file system, provides a common remote file system
OpenGL-Graphics library that allows for simulation animation

PCI-Peripheral component interconnect

PVFS-Parallel virtual file system, uses NES across multiple nodes to increase file
throughput and decrease file access

PXE-Pre execution environment used for booting the machines from the network
RISC-Reduced instruction set computer

Scaling-Increasing parallel simulation size without noticing effects from the
communication

SSH-Secure shell protocol used for communications with remote machines
SIMD-Single instruction, multiple data
Tribology-Study of friction, wear, and lubrication

Tru64-Unix operating system, created by DEC

X1

CHAPTER 1
INTRODUCTION

1.1. Exploring Manufacturing Processes in the Nano Region

As technology advances from micro to nano scale, there will be an increase in the
need for the dt;,velopment of new manufacturing techniques for ultra small devices. In
order to create new manufacturing techniques, an understanding of material properties at
the nano level is needed. Two approaches can be used to explore these important areas,
namely, experimental and theoretical.

Equipment limitations exist with current experimental techniques at the scale
future technology demands. In many cases, cxpcriments performed are difficult to
recrcate because geometries and crystallographic oricntations of the specimen used
cannot be replicated easily without orientation characterization by x-ray diffraction
measurements. In addition to the difficulties encountered during setup, the specimens
used in these tests are expensive and not reusable.

Theoretical approaches to simulating micro, macro, and full-scale phenomenon
can be accomplished by continuum methods such as the Finite Element Modeling (FEM)
and Finite Difference Methods (FDM). The basics of FEM were developed by Hreniko[f
[1] and Courant [2] in the early 1940’s. However, the FEM method was not formally

proposed until the late 1950’s by Argyris and Kelsey [3] and Tumer et al. [4].

As the scale of the simulation approaches the nano scale, materials must be
modeled as discrete points rather than a continuum. A technique, called molecular
dynamics (MD) [5,6] is capable of modeling the molecular interactions so that
simulations can be performed at the nanometer scale. MD provides a mechanism for
studying the molecular interactions by numerically modeling and simulating material
interactions. MD provides a tool that can be used to explore areas that are physically
difficult, if not impossible with current experimental technologies.

MD simulation techniques can be applied to a large number of engineering
problems. The downside to the technique is the computational power required to perform
a simulation and overcoming the difficulties associated with the development and
software coding of interaction potentials. Also, software created for the end user should
be easy to use. To distribute the large computational overhead, Beowulf clusters, the
supercomputers of the future, can be implemented to rapidly conduct large-scale

simulations, yet allow multiple small simulations to be run simultaneously.

1.2. Molecular Dynamics (MD) Simulations

Molecular Dynamics (MD) simulations are highly coupled systems that follow
Newton’s equations of motion. Simulations range in size from a few hundred to several
thousand atoms. Each atom is described by 6 coupled equations, 3 coordinate and 3
momenta [7]. To calculate new positions of atoms with respect to time, a Runge-Kultta
differential integration [8] routine is used. Forces of the interactions on the atoms are
needed several times during the differential integration process and are computed as the

derivative of the interatomic potential.

1.2.1. Potential Energy Functions

The interatomic potential embodies the governing mathematical model for MD
simulations. It aims to mimic or represent the physical and chemical interactions of the
atoms such as lattice spacing, thermodynamic properties, bond interactions, moiecular
weight, equilibrium position, and more. Complexity of the potential ranges from simple
pair-wise interactions to complex multiple body interactions with electron embedding
energies. These empirical interatomic potentials are implemented to provide a
mechanism for calculating an ensemble of atom trajectories in a reasonable amount of
time. The accuracy, usually related to the complexity of the potential, dictates the quality
of the final simulation. The alternative to the empirical potential is to solve the
theoretical interactions, which are extremely complex but have been approximated by
means of ab initio, or first principle calculations [9]. Unfortunately they are extremely
time-consuming to calculate even with the fastest supercomputers to date.

Many empirical interaction potentials have been developed. One common pair-
wise potential used in MD simulations is the Morse potential. This potential was
originally derived for dimers but has been shown to adequately model the interactions

between atoms in some face centered cubic (FCC) systems [10)]. The functional form of

the Morse potential is ¥, = De """’ —2De """ where the parameters D, « , and 8

are defined by fitting physical and chemical properties of the material. Another simple
pair-wise potential is the Leonard-Jones potential, originally defined for inert gasses with

van der Waals-type cohesion forces [11, 12]. The functional form of this potential is

12

P = 45((‘%] (%)j where the adjustable parameters are¢ and o .

The limitation of the pair-wise potential is that it models the interaction between
two distinct atoms and neglects to account for contributions of the remaining atoms. In
other words, each pair of atoms is considered to be in isolation from the entire system for
each calculation. Tersoff [13] developed a potential aimed at considering local
interactions and handling angular effects on neighboring atoms.

Other advanced potentials, described below, can be used to account for and
approximate the complexities of nature. Nonetheless, these atomic interactions will still
be empirical. The embedded atom model (EAM) and modified embedded atom model
(MEAM) are two empirical potentials that have been developed and show promise for
more accurately replicating the behavior of atoms in the nature. However, these
potentials are extremely complicated in comparison to the pair-wise potentials and
require significantly more computational time. For a detailed synopsis of the EAM and
MEAM potentials refer to the literature [14-16].

Replacing the trajectory calculation with other methods to speed up the simulation
process is a viable alternative. One such method, shown to give good results, is Monte
Carlo (MC) simulations [17]. This method neglects the calculation of atom trajectorics
by randomly moving atoms until the minimum potential has been acquired. These
random moves are monitored by criteria such as the number of accepted to rejected
random moves. Artificial Intelligence (Al) is another promising alternative to calculating
the atomistic interactions during a simulation. This method employs training a neural
network [18] from first principle calculations or MD potential calculations, and then

using the neural network to predict interactions.

1.2.2. Moving, Boundary, and Peripheral Atoms

In MD simulations of nanometric cutting and tribology, there are three types of
atoms [19]. The first is, boundary atoms, which helps to provide stability to the atomic
structure of the system by simulating the surrounding bulk structure. Interactions of
boundary atoms with other boundary atoms are neglected while interactions between
different atom types are computed. The boundary atom layer should be thick enough so
that interactions of the second nearest neighbor atoms are not neglected. The second type
is the moving atom upon which no restrictions are placed. It is free to move in any
direction with any velocity as long as it satisfies the trajectory calculation from the
Runge-Kutta differential integration. The third type is the peripheral atom, also called
thermostat atom, which facilitates simulating the properties of the bulk material by
providing a mechanism for transferring heat generated from the moving atoms in the
simulation to the bulk.

These three types of atoms are used to classify and identify different regions
within the simulation. When performing MD simulations, there are many energy related
calculations for a given atom per integration step. This means that, as the number of
atoms involved in the simulation increases, the processing time required increases
immensely. Atoms that are not essential to the simulation, such as those lying in the
bulk, should be removed or their effect not considered decreasing computational time.
However, effects from these removed atoms must not be neglected. In many nanometric
cutting and tribology simulations, large crystal deformations occur, which generates large

amounts of heat that must be transferred to the bulk and removed away from the process

interaction region. Figure 1.1 shows a typical MD simulation scheme for nanometric

cutting.

Rake angle

Direction of cutting

000,

9[0,0,
3 OO0000KH
8009 199999,

1010/000/00/000/08'0'08/000'00
B < it ot i on e e
cop00eelees0los000;

Clearance

f angle

Depth of Cut

- Boundary aloms

@
G - Peripheral atoms
)

- Muoving atoms Y

Figure 1.1 — Typical nanometric cutting simulation with atom types labeled

1.2.3. Numerical Simulations

A powerful feature of numerical simulations is the ability of the programmer or
user to control every aspect of the simulation. Information can be collected during and
after the simulation to help the researcher identify important phenomenon., Modification
of Input parameters, materials, geometries, velocities, and other important input
parameters can be accomplished by using specially designed pre-processing software that
is used to generate the input files for the desired MD simulation of nanometric cutting
and tribology.

Another powerful feature of numerical simulations is the ability to interpret the
results by viewing, rotating, animating, and analyzing the simulation after it has been
completed. This post-processing is accomplished by storing simulation information, such

as coordinate data, forces, and energies, into a file that can be used by post-processing

software. The animations created by the simulation output files give the researcher a
glimpse into areas of molecular interactions that are virtually impossible to explore using

experimental techniques.

1.3. Parallel Processing Approach to Solving MD Simulations

One of the drawbacks to MD simulation relates to the time required to compute a
simulation. Real time simulation durations currently being performed are on the order of
a few pico seconds. This requires simulation speeds to be many orders of magnitude
greater than what is commonly used at the macro level. There are several ways o
decrease the computational overhead when performing MD simulations of nanometric
cutting and tribology. The first is to use parallel processing or distributed computing.
The second is to employ new techniques and algorithms for solving problems that operate
faster than the current algorithms employed. These new techniques include
implementing algorithms based on the linked cell method [20], optimized integration
routines [§], and multi-step time based regions [21, 22].

Researchers have demonstrated that the use of parallel processing decreases the
amount of time spent solving complex mathematical problems, such as MD simulations
[23, 24]. Parallel processing provides a mechanism for distributing different parts of the
simulation between multiple processors. However, implementing a code for performing
parallel simulations requires an enormous investment of time for developing and testing.
The programmer must be knowledgeable with hardware, operating systems, coding, and
MD. Implementations that decrease the programming overhead, such as the adhara

library [25], should be explored before effort is spent creating parallel versions of MD.

Beowulf clustering [26] employs one form of the parallel processing paradigm and allows
for the construction of rather inexpensive massively parallel supercomputer that fits
budgets for some research groups, universities, colleges, and even some small businesses.
This clustering technique can be constructed or purchased from a growing number of
computer vendors. Other alternatives to the parallel possessing paradigm can be explored
by purchasing supercomputers that are extremely expensive and are rapidly becoming

obsolete by the Beowulf clustering technique.

1.4. Background Information and Review of MD at OSU

The initial work on nanometric cutting by means of MD came from the
pioneering work of Belak et al. [27] at Lawrence Livermore National Labs (LLNL).
They simulated the orthogonal metal cutting process of a copper workpiece using a
diamond tool. Soon thereafter, Dr. Ranga Komanduri and Dr. Lionel Raff created a
cross-disciplinary collaborative research group at Oklahoma State University aimed at
studying nanometric cutting and tribology.

The original collaborative work started with attempting to model the formation of
diamond coatings by chemical vapor deposition (CVD). Since that time, the MD
research group has coded the Morse, Tersoff, EAM, and MEAM potentials while
simulating a number of different processes. Some of these processes include the study of
atomic scale friction [28], tension [29], indentation and scratching [30], orthogonal
cutting of Si [31], length restricted molecular dynamics [32], effect of tool geometry in
orthogonal cutting [33], exit failure [34], cutting through grain boundaries [35], crystal

orientation and direction of cutting in orthogonal cutting [36], extrusion, grinding, and

milling using multipoint tools. All of these previous studies were conducted in 2D under
plain strain conditions. Recently, 3D animation capabilities have been introduced and
work is continuing to explore these areas.

Another area of interest is to expand current simulation techniques to new
methods of simulation, such as MC and neural networks trained by ab initio data to
develop potentials. These recent explorations are aimed at decreasing the computational
time required to perform a simulation in the former case and develop more accurate
potentials in the latter. The MC method replaces the calculation of the trajectories by
using random numbers along with minimum potential criterion to calculate the next
position of the atoms. With this method, simulating a cutting speed is not intuitive.
Thermal gradients or other means must be used to relate the cutting speed to the current
simulation. The MC method has been programmed using the recently developed user-

friendly system and helped to show the usefulness of the designed system.

1.5. Thesis Outline

To facilitate in the creation of a serial or parallel computational simulation
software, a user-friendly system must be created. It should provide the computational
backbone, hardware, operating system, user interface (for end-user simulation), and a
reference for the simulation software. This implies that the term user-friendly extends
beyond the exterior interface that the users utilize for creating and running simulations.

A user-friendly system for MD can be defined at several distinct levels. The most
obvious one is that which the user of the software encounters, namely, the end-user tier.

This tier encompasses the visible interface and usage of the applications. The

applications should be easy to use and provide for the creation, simulation, and animation
of nanometric cutting and tribology MD simulations. Another important level 1s the
software programming tier. This level provides a mechanism for creating and modifying
simulation software. The last level is the administration tier. This provides the hardware
and computational capabilities that the programmer needs to solve MD simulations in
both serial and parallel modes.

In this chapter, a general introduction to MD is given. Various simulation
approaches for nanometric cutting and tribology simulations are discussed. Simulation
potential selection, alternative simulation methods, and improvements to simulation
processes are covered. Introduction to parallel processing, Beowulf clustering, and the
need for these tools at decreasing the required simulation clock time are given. A brief
discussion on the origin of MD as well as the history of MD simulations within the
collaborative research group here at Oklahoma State University is given so that future
researcher will have an understanding of the background of the available knowledge as
well as a baseline for the previously written software.

In Chapter 2, the problem statement is given. The approach to this thesis is
different than the traditional document in that the aim is to transfer working knowledge to
the reader. This allows the researchers interested to grasp important issues while
providing a manual on using the system, performing MD simulations, and creating new
MD simulations of nanometric cutting and tribology. Identification of the problem is
given as well as some background information on the multiple approaches used to create

the solution.

Chapter 3 approaches the solution from the administrator’s perspective and gives
an overview of the hardware aspects of parallel processing. Details include information
on the different hardware architecture options to the operating system. The goal of this
section of the user-friendly system is to provide the parallel processing and hardware
capabilities needed to develop and run simulations. Issues involved with implementing
the parallel processing as the basis for the hardware aspects of the user-friendly system
such as the security issues are discussed. Past implementations are discussed with a
focus on the construction of a powerful Beowulf cluster.

Chapter 4 approaches the solution from the programmer’s perspective by giving
information on the tools created to supplement some of the programming overhead.
Further discussion on parallel processing options and techniques are given. The goal of
this section of the user-friendly system is to develop the necessary tools for the
development of future simulations. The tools, library functions and structures, and
functionality provided by the user-friendly system arc discussed in a context of furthering
the development of nanometric cutting and tribology simulations in the future.

Chapter 5 approaches the solution from the end user’s perspective. Overview of
the user-friendly system operation is provided. Implementations of the pre-processing
and post-processing software are discussed.

Chapter 6 extends the depth of the end-uscrs view of the system by providing an
example on the nanometric simulation of oblique machining. Discussion of important
phenomenon relating to oblique machining is discusses, namely the variation between the

inclination angle and the chip flow angle.

Chapter 3 approaches the solution from the administrator’s perspective and gives
an overview of the hardware aspects of parallel processing. Details include information
on the different hardware architecture options to the operating system. The goal of this
section of the user-friendly system is to provide the parallel processing and hardware
capabilities needed to develop and run simulations. Issues involved with implementing
the parallel processing as the basis for the hardware aspects of the user-friendly system
such as the security issues are discussed. Past implementations are discussed with a
focus on the construction of a powerful Beowulf cluster.

Chapter 4 approaches the solution from the programmer’s perspective by giving
information on the tools created to supplement some of the programming overhead.
Further discussion on parallel processing options and techniques are given. The goal of
this section of the user-friendly system is to develop the necessary tools for the
development of future simulations. The tools, library functions and structures, and
functionality provided by the user-friendly system are discussed in a context of furthering
the development of nanometric cutting and tribology simulations in the future.

Chapter 5 approaches the solution from the end user’s perspective. Overview of
the user-friendly system operation is provided. Implementations of the pre-processing
and post-processing software are discussed.

Chapter 6 extends the depth of the end-users view of the system by providing an
example on the nanometric simulation of oblique machining. Discussion of important
phenomenon relating to oblique machining is discusses, namely the variation between the

inclination angle and the chip flow angle.

11

Documentation, in the form of a manual for the installation and configuration of
the Beowulf cluster, is given in Appendix A. For researchers unfamiliar with the use of
the Linux operating system, information is provided in Appendix B. Appendix C gives

details of the structures and functions that are provided in the programming library.

CHAPTER 2

PROBLEM STATEMENT

2.1. User-Friendly System

The purpose of this study is to develop a user-friendly molecular dynamics (MD)
simulation system for nanometric cutting and tribology. To create and utilize the system
developed in this study, the following two objectives are given:

Objective 1:

To design and implement a system that can be used to develop and perform
computational simulations of nanometric cutting and tribology. This system should
encompass the computational simulation process from hardware to software while being
user-friendly. Documentation should be provided so that as new users are introduced to
the system, information is available for guidance on topics that include running
simulations, creating simulation software, and maintaining the computational
environment.

Objective 2:

To utilize the system developed to meet objective |1 and implement the software

needed for an example of nanometric simulation (oblique machining). The software

should be designed so that it can be easily modified and expanded as needed.

2.2. Justification

What if knowledge transfer on creating and performing computational nanometric
cutting and tribology simulations ceased to occur between successive generations of
researchers? This would be disastrous at advancing the technology on simulating these
processes. Would the rate of technology advancement in the field of MD slow 1o a
crawl? Researchers creating and performing numerical simulations of nanometric cutting
and tribology spend an enormous amount of time recreating softwarc that has bcen
previously written by other researchers. What happens when a previous rescarcher leaves
after completing work? The researcher effectively retains all the information and
knowledge that had been acquired while working on the project. In many cases, multiple
versions of source code with sparse explanations are found. This requires new
researchers to effectively start from the ground up because of difficulties encountered
continuing where the previous researcher left off.

These are important questions and ultimately problems to tackle as this research
begins to encompass more complex potentials and more powerful computers. The
solution to these problems is to implement a system, user-friendly in nature, aimed to
help researchers create useful and portable code that can be used for perpetuating the
transfer of knowledge from one generation of researchers to the next while advancing the
complexities of the simulation software for nanometric cutting and tribology. The
ultimate goal of this user-friendly system is to provide an easy to use system that students
with different backgrounds can use for creating and performing simulations. Further
advancement, using this user-friendly system, allows researchers to focus on the defined

problem, rather than duplicating what previous students have accomplished in the past.

With the use of a user-friendly system, the time taken to conduct specific research on

nanometric cutting and tribological processes using MD will increase.

2.3. Solution Approach

An approach to the solution requires addressing three perspectives. A clear
understanding is needed on how the end-user, programmer, and administrator of the user-
friendly system utilize the resources available to create a system that can encompass the
needs of the different types of users. Using these three perspectives, tools and
information to help each accomplish their goals are provided. The following subsections
provide each of these important perspectives so that the reader can grasp the importance

of approaching this problem with multiple perspectives.

2.3.1. Administrator’s Perspective

Looking at the user-friendly system from the administrator’s perspective is often
overlooked. The administrator acts as the central head and controls the usage,
maintenance, and solves problems when they occur. Without a central head for
managing the systems and resources, chaos erupts. Users run multiple simulations
effectively creating an expensive paperweight out of the computational resources.
Managing the available resources for resecarchers can create some ill feeling between co-
workers. Care must be taken so that end-users and programmers that use the
computational resources for developing and executing of software have the resources
available. The administrator of the machine should be the only person that handles abuse

and security of the computational resources. This is required to maintain the overall

integrity of the system. Batch systems should also be explored as the number of
researchers utilizing the cluster increases.

Chapter 3, regarding the parallel computing via Beowulf clusters is aimed at
covering the implementation of the user-friendly system from the administrator’s
perspective. In most cases, the administrator of the system will also be one of the

principal researchers on the nanometric cutting and tribology projects.

2.3.2. Programmer’s perspective

Looking at the user-friendly system from the programmer’s perspective requires
an understanding of complex programming, software development, and basics of MD
simulations. A programmer utilizing the system creates software that must be
expandable yet easy enough for the end-user to operate without requiring the user to
understand every detail on how the software is written to perform MD simulations. User-
friendly features of the system must not be neglected for the programmer. II the
programmer is to create efficient and easy to use software, he/she should have a basic
idea of how MD simulations are performed, but not be required to understand every
aspect of each piece of software created for MD simulations. A basic understanding of
the overall scheme is needed, but easy creation and modilication of simulation
applications is a necessity to ease software creation and reduce development time. To
handle these needs, a special library named MDbinfmt was created. This library helps
make the programmer’s job easier by taking some of the complexities out of the
programming. The library contains functions and structures for accessing atom

information during the simulation. Structures are also designed to help the programmer

i

access large amounts of complex data with simplicity. As multiple code contributions
from multiple sources are introduced into the current MD software suite, care must be
taken so that multiple students may benefit and utilize code written by other students.
Using the MDbinfmt library can make this a reality. The basic functionality of the
created library is to give an easy to use programming interface for the data and
information store in the data file. Figure 2.1 shows the coding scheme used in

conjunction with the special library format.

. Datafile S
:

» Y A
MDbinfmt MDbinfmt MDbinfmt
Pre Processing Simulation Post Processing
Software Software Software

Figure 2.1 — MDbinfmt library file operations usage

To elaborate more on the details that the programmer utilizing the user-[riendly
system, Chapter 4 has been provided with details on the overall programming scheme for
the MD software suite. Chapter 3 gives some discussion on the parallel processing the
Beowulf cluster provides. Continuing in further detail, Appendix C provides the
programming details such as programming structures, functions, and examples on how to

perform some common tasks using the MD library.

2.3.3. End-user’s perspective

Most users of the system fall into the end-user category. For this reason, it is easy
to identify the important aspects that these users will desire. The first and foremost issue
for the end-users is to provide software that is simple to use. Graphics applications
should be employed whenever possible. Documentation should be provided on the
operation and details of the particular piece of software.

Therefore, software created should provide end-users an application that is
capable of completing a multitude of nanometric cutting and tribology MD simulations
without requiring them to understand the mathematics behind the simulation. Options for
different simulation geometries as well as processes should be provided. The focus of the
users should be on creating and exploring desired simulation, performing the simulation,
and viewing or analyzing the simulation.

To provide a mechanism for easily creating, performing, and viewing the
nanometric cutting and tribology simulations, three applications groups were identified.
They are defined as the pre-processing, simulation software, and post-processing groups.
Each group provides a separate but powerful piece of software that is capable of
performing the desired task. Both the pre-processing and post-processing software runs
in the easy to use Windows® environment. The simulation software, because of the necd
for stability during long simulation durations, runs on the Linux operating system.
Fortunately, because these three applications are written using the C programming
language, the applications are portable. This means that the applications can be ported to

different operating systems so that they will operate in both Linux and Windows.

18

Nonetheless, users will find the software scheme similar to those found in other
computational research software such as a number of FEM and CAD packages. Figure 2-

2 shows the MD simulations software suite from the end-users perspective.

End User

Simulation
Pre-Processor Software Post-Processor

Figure 2.2 — End-user perspective of simulation software

The separation of the applications into three groups allows the programs to exploit
the power of either the graphical operating system or the stability of Linux. The pre-
processing and post-processing applications were created to run on a graphical operating
system. Graphics enhance the user-friendly aspect of the pre-processing application by
providing dialog boxes where values can be easily entered and modified for the specific
simulation. Graphics also enhance the post-processing application by allowing the user
to see the movement of the individual atoms at any given time during the simulation
through animation, video creation, and still images. This was accomplished by utilizing
the OpenGL graphics library. The simulation software can be exploited to harness the

stability of Linux and allow the user to run simulations on multiple computers remotely

A 125 a7 s L raes sis mzr srn cas

without burdening the local computer with large amounts of computational work, which
ultimately decreases productivity for the researcher.

Performing MD simulations involves several steps. The first step requires that the
simulation parameters be selected, or pre-processing. The second step takes the input
parameters and performs the MD simulation. The final step is to view the output of the
simulation or do any other necessary types of calculations based on atom positions and
other information provided during the simulation process, or post-processing. These are
the only steps that the end-user of the software should be required to understand.

The end-user perspective is identified, but the best way to reveal its importance is
to provide examples. Chapter 5 provides details on the operating and functionality of the
software provided in this study. An example implementation of an oblique machining
simulation is also provided to clarify any misconceptions on the operation of the

software.

20

CHAPTER 3

PARALLEL COMPUTING VIA BEOWULF CLUSTERS

3.1 Introduction

MD simulations are inherently computationally intensive. This is because of
the small integration time step (~10"* seconds) and large number ol equations (N(N-
1)/2) where N is the number of atoms, roughly in the thousands, that must be
simultaneously solved during each time step. Finding adequate computational
resources for solving MD simulations is a difficult task. Supercomputers cost per
clock time and gaining access to one may be difficult. Unlimited use to such a
system for development and testing of software can surmount astronomical costs. A
cost effective alternative to the supercomputer is to implement a massively parallel
Beowulf cluster that utilizes the commodity-off-the-shelf (COTS) philosophy.

In computer systems, the processors are characlerized by the instruction set
that the chip implements. There are two common types of instruction sets, the
reduced instruction set computer (RISC) and the complex instruction set computer
(CISC). The alpha based processors are 64-bit and implement a RISC instruction set.
The Intel or ia32 based systems implement CISC instruction sets. The RISC
processor has been glorified as the faster of the two chips. However, recent advancces

with the CISC chips have surpassed the operating frequency of the RISC processors

21

and are therefore much faster. While both of these processor types have been used in
clustering environments, the CISC processors commonly found in ia32 systems are
continually increasing in speed while decreasing in cost. This makes the selection of
the 1a32 processor an easy task.

There are several types of distributed architectures. The single instruction,
multiple data (SIMD) architecture allows for multiple data items to be manipulated
during a single instruction cycle in a single processing core. Mulltiple instructions,
multiple data (MIMD) allows for multiple instructions to occur on multiple data
during a single instruction cycle in multiple processing cores. MIMD embodies the
most promise for MD simulations.

An alternative to the traditional supercomputer is Beowulf clustering. In the
Beowulf cluster, each computer is considered a node consisting of one or more
processors while the cluster as a whole adheres to the MIMD architecture. This
clustering technique utilizes the COTS philosophy to implement a massive
multiprocessor machine that uses a commonly available Fast Ethernet network as the
mechanism for communication between each node. Each node is comprised of a
standard workstation that is used strictly for computational work or server style
computer that runs services. Libraries employing the message passing interface
(MPT) standard give the programmer access to the remote processors while hiding the
complexities of the specific network communication [36-39]. One important
advantage to using a library that implements MPI is the software written is
independent of the hardware that makes up the cluster. This feature helps provide

portable software capable of running on various MPI enabled clusters.

22

fiﬂwr‘r . e o e o

MD software developed to run on a serial node is limited to run at the
maximum speed of a single processor. Using a Beowulf cluster or parallel
environment, MD simulation size can be increased dramatically where the limitation
1s moved from processor speed to the bandwidth and latency of communication
between the processors in the cluster. The bandwidth is defined as the maximum
amount of information (bits/second) that can be transmitted from one node to the
next. The latency of the communication is the duration of time it takes to send the
information out the network interface and for the destination node to receive the data.

One drawback in utilizing a Beowulf cluster, as apposed to a commercially
available supercomputer, is they are not available with compilers that automatically
compile code to utilize the parallel environment. Many hours are required to write
and tune software capable of utilizing the constructed clustering hardware. A sample
parallel application, employing self-scheduling, to solve the moving heat source
problem was performed and shows that using a Beowull cluster can dramatically
increate the computational power available. Figure 3.1 shows the decrease in
simulation time as the number of processors increases by using the MDbeta parallel
computing system for solving the moving heat source problem with 2000 nodal

calculations.

23

4000

3000

Simulation
Time (Seconds)
8
3

1000 -

0 T L] T T
0 4 8 12 16 20 24

Number of Processors

Figure 3.1 — Clock time versus number of processors @ 1.7 GHz

The goal of using the parallel environment is to distribute the computational
load of a given simulation across multiple processors to acquire the solution in a
decreased amount of wall clock time. The Beowull cluster may also be used to run
multiple serial simulations, simultaneously. Development of parallel enabled
applications provides a method to simulate an increased number of atoms allowing
for larger, approaching the macro size, systems to be explored. Recent advancements
in Beowulf clustering have provided the necessary tools to implement a custom
cluster aimed at solving specific problems that the programmer and user encounter.
Problems may include difficulties in profiling the parallel enabled software,
organizing data during the simulation, and scheduling multiple parallel simulations on

a single cluster.

24

Several operating systems are available for operating a Beowulf cluster.
Stability along with minimal software expenses should be sought to get the highest
performance-to-cost ratio. The operating system should also be secure and allow for
users to access the resources remotely. This allows many users to spawn multiple
terminals that access the resources of the cluster. Because of these important
features, the Linux operating system along with the freely available message passing
interface library (MPICH) was selected. However, any message-passing library
designed to operate with the selected hardware or even custom software capable of
communicating with the cluster nodes directly through the network interface may be
used. Multiple libraries can be installed and selected by the programmer at
application compile time. This gives flexibility to the programmer when
implementing different parallel algorithms. The main advantage to selecting Linux,
as the cluster operating system, is that all of the money associated with the cluster
operating system can be used to purchase hardware and not on licensing fees as it is
freely available on the Internet. The future administrator of the workstations should
use the information provided in this chapter as well as in Appendix A to install,

configure, and maintain the hardware aspects of the user-friendly system.

3.2 Security Issues

In order to utilize a Beowulf cluster for effectively simulating large-scale MD
simulations, the previous strategies and concerns should be addressed. However, the
construction phase of a Beowulf cluster takes an approach that requires an

understanding of Linux kernel level sofiware and hardware construction. Security,

25

both local and remote, is one of the most important areas that require critical
attention. This is extremely important because a compromised machine may create
an enormous loss of clock time to repair if a malicious attacker destroys important
data and software.

Keep in mind that all of the information provided here about security is
constantly evolving. It is important to keep up to date with vulnerabilities that are
identified. Use of an information system such as Security Focus website

(www.securitvfocus.com) can become an invaluable resource at identifying weak

points in the security of the Beowulf cluster and serial standalone workstations. Any
of the information discussed on security can be applied to both the gateway node in
the Beowulf cluster as well as serial workstations. There are two types of security to
focus on when securing a Linux machine: local security and remote security.

Local security can be enhanced by locating the computer in a safe room while
keeping the area secured under lock and key. The reason local access to the machines
should be restricted is because information stored on hard drives is not encrypted.
Basically a hard disk drive could be removed from the cluster and transplanted into
another Linux machine where the root password could be extracted or changed. A
malicious user can also wreak havoc by gaining access locally and causing unneeded
problems such as rebooting the machines. This could cause a loss in the current
simulation running as well as corrupt data stored on the machines.

There are several effective methods that can be used to enhance remote
security for Linux machines. One is to identify and eliminate any clear text password

authentications. All password authentications and exchanges should be completed

26

via encrypted communications. This can be accomplished by utilizing the secure
shell (SSH) protocol. Several different implementations are available. It is important
to note that encryption is not needed within the cluster and can actually hinder the
performance by increasing communication latency.

In addition to utilizing communication encryption, a firewall should be
implemented to restrict ports that are available to remote users. Since the
development of the Linux 2.4 kernel series, a kernel level firewall via iptables should
be implemented that filters network communications defined by rules that the
administrator can set. Using the kernel level firewall, all incoming ports should be
blocked except for the port on which SSH runs (port 22). SSH allows for both
terminal access as well as file transfers to and from the machines.

Within the kernel level firewall, a given packet is received from any
communication device (such as eth0, ethl, lo, and others) and is passed to the kernel
where a routing decision is made to move the packet along a chain where rules are
defined that determines the fate of that packet. The rules defined for the input chain
are the most important for securing the machine on which the firewall resides. The
input chain gives remote users access to local processes and services such as SSH.
Using strict rules, all packets except those coming from desirable hosts can be
dropped. The same types of rules can be set for the output chain and forwarding

chain. Figure 3.2 shows a schematic of how packets traverse the iptables firewall.

27

/ A

—=>[Routing]--->|FORWARD| -==-=—-—= >
[Decision] Y / ®
| |
v
L / !
/ y | OUTPUT|
| INPUT| \ /
N\ / *

———-> Local Process ----

Figure 3.2. Schematic of how packets travel iptables chains

3.3 Hardware Overview

One of the important phases in constructing a Beowulf cluster is the hardware
selection. In some cases, such as the MDalpha cluster, the hardware was available
prior to cluster assembly. However, when constructing a new cluster, such as
MDbeta, care must be exercised in selecting hardware that is both supported by the
selected operating system and adequate to perform the desired calculations. Selection
of the improper hardware can cause a large amount of increased administration and
troubleshooting time.

Selecting hardware to construct a Beowulf cluster can be a daunting task for
someone who is unfamiliar with computer hardware. The goal is to build the fastest
possible machine while trying to save the most money, which increases the
performance-to-cost ratio. This way, more nodes can be purchased. It is possible to
purchase a cluster pre-assembled and installed. Howcver, the cost of such clusters is
inflated.

The formulation and selection of the cluster was accomplished by considering

experience, discussing capabilities with computer parts vendors, and price

28

comparisons. Price comparisons as a function of computational power were
identified for several different machines. After selecting the most powerful machine
for the least cost, a test node was purchased to ensure that the available hardware
would operate properly on the selected operating system and with the selected
MPICH libraries.

Thought of the overall physical layout for the newest MDbeta cluster was a
driving factor in the selection of some hardware. Identification of rack mountable
hardware was identified as a viable alternative for the ultimate setup for harboring
large numbers of nodes. The goal is to increase the size of the cluster to 128 nodes,
which would consume an enormous amount of floor space. Rack mountable
hardware provides a large density assembly. The Rack mountable hardware also
provides an easy way for accessing the nodes for maintenance and repair. Selection
of all the hardware and computer parts was done in consideration of the mounting
style selected. Two CPUs were selected in order to increase the computational power
per node while not increasing the price as much as two separate nodes. Motherboards
were selected to have pre execution environment (PXE) while retaining the capability
of mounting in the smallest rack mount cases available. Backup power supplies were
also implemented to increase the reliability of the machines if brown or black outs
occur. For more information regarding the hardware selection process, review the
reference provided [26].

Before describing the actual construction phase, background information on
the current computational capabilities of the hardware selected is provided. The first,

MDalpha, is a DEC alpha 64-bit based Beowulf cluster. Each node in the MDalpha

29

cluster is running at 500 MHz with access to 512 MB of ECC memory. MDalpha
contains 8 processors where each node is capable of 565.88 MFLOPS. These nodes
were constructed from Digital Alpha 500au Personal Workstations. The units were
originally purchased to run simulations as serial workstations. The original operating
system was Tru64 Unix but was moved to Linux as soon as the idea of clustering was
explored. The network interconnect is provided by a 24 port HP switch capable of
running each port at 100 Mbit full duplex.

The second cluster constructed aimed at fulfilling the user-friendly hardware
aspects of this study, MDbeta, is the AMD Athlon based Beowulf cluster with each
node running two processors at 1.7 GHz each with access to 1 GB of ECC memory.
Each node in the MDbeta cluster is capable of 2108.95 MFLOPS. MDbeta was
designed, purchased, and constructed from individual parts that were assembled to
form the cluster. Before selecting hardware for the MDbeta cluster, a test machine
was purchased and configured to help identify problems with hardware level drivers.
All issues with the hardware were worked out and a custom kernel configuration is
provided and discussed in the installation section. The network interconnect is
provided by a 24 port HP switch capable of running each port at 100 Mbit full duplex.

In both clusters, only one gateway is externally accessible whereas multiple
computational nodes, server nodes, and network switches may exist. Note in Figure
3.3, only one computational node, server node, and Intranet switch is shown.
However, in the implemented MDbeta cluster, there are multiple computational and
server nodes. Another important feature that is shown in the diagram is the console

switch. This piece of hardware allows remote logins via the network to any local

30

console of any device that accepts serial communication. This is extremely useful for

remotely troubleshooting problems that occur on the cluster.

e Network Router
Internet = Master Node

¥

Console [™® Intranet Switch

Switch

i A

Computational Server
Node Node

Y

Figure 3.3 — Overview of MDbeta parallel environment

As MDbeta is scaled to include more computational nodes, latency will
become an issue. However, preparations have been made to ensure that the 1U cases
are capable of accepting an additional 32 or 64-bit PCI card for a fiber or gigabit
network upgrade. Interconnection networks may also be explored in conjunction with
the current Fast Ethernet network hardware to decrease the network latency between
nodes in the cluster.

Another important feature of the MDbeta cluster is that local hard disk drives
have been eliminated from each of the computational nodes. This decreases the cost
per node as well as facilitates in easing of the administration and configuration.

Utilizing this scheme, additional computational nodes can be inserted into the cluster

31

by simply plugging them into the network switch and editing a few configuration
files. This is an extremely important feature that provides scalability to the design.
Booting diskless nodes is accomplished by utilizing PXE, remote-boot
application (bpbatch), and a Dynamic Host Configuration Protocol (DHCP) server.
The nodes are configured to boot up without intervention and mount remote network
file system (NFS) shares across the network switch from the file server node. As the
number of computational nodes increase, implementing the parallel virtual file system
(PVFS) across multiple file-servers may become a requirement to help distribute the
network saturation to the file serving node and help increase the file /O capabilities

and decrease file I/O latency.

3.4 Construction

There are two ways of acquiring a Beowulf cluster. The first is to find a
vendor and purchase the unit fully assembled with operating system pre-configured.
The second option is to assemble the pieces from separate vendors. The second
method was chosen because the increased understanding of the inner workings of the
cluster coupled with the large savings in the overall cost. Although assembling the
cluster from pieces is more difficult and takes more time, details are learned that
become pertinent to maintaining and optimizing the cluster at a later date. In addition
to the educational experience, the Beowulf cluster designer has complete control over
each and every aspect of the cluster nodes.

Assembly of the Beowulf cluster is a repetitive task. All computational nodes

are assembled in the same manner and therefore can be done in an assembly line

32

format. The following outlines the assembly of the cluster nodes. First, all the cases
were inspected and motherboards were placed into the cases. CPUs and memory
were then placed into the motherboards. Power cables and fans were then connected
to the motherboard. Wires were then neatly fastened with zip-ties and organized to
allow for easy maintenance and access to the hardware at a later date. Figure 3.4
shows a single computational node assembled. As the picture shows, the
computational nodes assembled contained the fewest possible parts. Note that there
is no hard disk or floppy drive. This helps to decrease the amount of hardware

failures and alleviates hardware maintenance. The height of each computational node

is 1U, which is a standard rack size.

Mother

Figure 3.4 — Picture of MDbeta computational node

33

After assembling the twelve computational nodes, the file-serving node was
assembled. This node is identical to a computational node except a 64-bit raid
controller card was added along with 800 GB of user drive space. A DVD burner
was also installed to provide a cost effective way to archive large simulation files. To
accommodate the extra hardware that was installed, a 2U case was selected for this
server node. Figure 3.5 is a photograph of a file server node showing the orientation
of the motherboard, CPUs, case, raid controller card, hard disk drives, and DVD-

R/RW drive in the server node.

34

Méjan ﬁ’fglﬁﬂﬁf T3 FITIOTE™ F AT I oot as &

. &
—
q)
O
0
rl
)
o
-
O.
=

il nv
5
| L
i 3 < N
4 . 5
) I i 2 {
-y - '-;l
[{
[r
- %
) Al '
: r sy L
" - \
i
. *3 Vo 1
|
|

™ DVD-R/RW

Figure 3.5 — Assembled file-server node

35

After assembling the hardware in the cases, each of the nodes was then
mounted into the rack. The total rack space for the installed nodes and backup power
supplies is 20U. All hardware mounted in the rack is fastened to the rack rails with
12-24x1/2 hex cap screws for quick and easy removal of the nodes. Figure 3.6 shows
the nodes placed into the 45U rack. The network switch was then centrally mounted
in the rack to decrease the average length of the patch cables from the nodes to the

switch.

Figure 3.6 — Assembled nodes and mounted in rack

After assembling the computational hardware and placing them into the racks,
the back-up power supplies should be installed. Twisted pair, CAT-5 cables were

then assembled and each node was connected to the switch. An additional cable was

36

placed into the second Ethernet port of the gateway node, which doubles as the file
serving and DHCP server node. This second network cable is then plugged into the
building network jack. The cluster is now completely assembled but is useless until

the operating system and libraries are installed.

3.5 Installation and Configuration

Many engineering students are knowledgeable with graphics based
applications and operating systems. However, many are unfamiliar with text-based
operating systems, such as Linux. All of the computational power that is harnessed in
the MDbeta cluster is harnessed via the Linux operating system. Because of the
selection of this operating system, Appendix A is provided to help in the installation,
configuration, and ultimately the maintenance of the MDbeta cluster. The goal of
Appendix A is to give the reader an overview for the main services needed by each of
the different types of nodes in the cluster.

In order to facilitate configuration of the MDbeta cluster, a custom installation
and maintenance CD was created, nhamed MDiso. MDiso can be found on both the
web server and file server. Furthermore, describing the operations for configuring the
nodes can be difficult if the reader does not have a basic working knowledge of
Linux. Because the reader’s knowledge about this subject may vary, a series of
screenshots with captions have been provided to guide the reader through the
installation process. Appendix A provides a detailed cluster installation and

configuration manual.

37

T P S

CHAPTER 4

PROGRAMMING APPROACH FOR MD SIMULATION

4.1. Introduction

Approaching a problem such as creating the software used for the pre-processing,
simulations, and post-processing of nanometric cutting and tribology requires careful
thought to the needed data structures, format, and operation of the software. A large
programming effort is required to undertake even small changes to software that is poorly
designed. Therefore a mechanism for maintaining simulation data should be provided.
Testing and verification of each piece of software created must be performed in order to
ensure that simulations created from the software are valid. Actual development time for
the software programming of MD requires many hours of planning, programming, and
troubleshooting.

To distribute the programming load over time through different projects and
between multiple programmers, modular software should be employed. This approach
allows for simple tasks to be organized in a way such that more complicated tasks can be
performed. The modular pieces of the MD software suite are divided into three distinct
groups: pre-processing, simulation, and post-processing applications. Linking the
different modular pieces of code is accomplished through the use of a common file

format and functions library, MDbinfmt. The l!ibrary format provides a means that

38

standardized the access, creation, and manipulation of simulation data between the three
applications.

To distribute the computational load of MD simulations, the programmer should
explore parallel processing. Implementation of different algorithms and schemes are
needed to identify the most efficient and optimized method for MD simulations. In order
to attempt parallel formulation of MD simulation software, key features of the operation
and methods for performing parallel MD, also known as N-body simulations, have been
identified. These include an overview of the different approaches for organizing the
programming of parallel versions of MD software. As discussed before, the user-friendly
system must extend beyond the hardware and end-user needs to encompass the
programming and implementation of software. This is where the MDbinfimt library can
be utilized along with the different algorithms and formulations of parallel MD
simulations to help the programmer develop, test, and implement complex parallel
versions of MD simulations.

Integrating parallel simulations into the current programming scheme is extremely
important to producing code that can be modified by future programmers. The user-
friendly system provides the mechanism for running and creating any type of MD
simulation software, however, it does not magically create the software. Current
compilers are unable to automatically produce parallel code. Even if such a compiler
were available, it would most likely be inefficient because of the compilers inability to
understand the operational scheme of the designed software much less find an optimized
solution. Creating optimized parallel formulation of MD becomes an extremely

complicated process when simulation time load balancing and profiling is used to identify

39

areas of the code or hardware that can be optimized. This optimization must be done
manually by the programmer and cannot be accomplished by any current compiling
software.

Parallel versions of MD will be similar to the serial versions that currently
function within the system. Calculation of the potential, forces, and energies will be
unaffected by the fact that the simulation software is running in parallel. More advanced
potentials can be employed and implemented into a framework that allows for closer
approximations to the actual phenomenon. Extensions to other methods will be possible.
Once the parallel framework is complete, modification and addition of new potentials
will be trivial once the mathematics for the particular potential have been identified.
Implementation and exploration into the different simulation approaches and techniques
i1s needed to allow for atom numbers to be increased to the point where nano scale

simulations approach the micro scale.

4.2. MDbinfmt Library

Previously written MD simulation software output multiple files containing
coordinate data for different snapshots in time. This output methodology creates a large
amount of extra bookkeeping when managing multiple simulations. In addition to this
inefficient format, each researcher developed a proprietary version of the outputl format
and animators had to be modified to display specific simulations. Another problem
encountered from work completed in the past was that simulations were coded using
arrays with static memory allocation. This method uses set amount of memory for every

simulation whether large or small. Increasing the simulation size beyond the array limits

40

called for a change in the software as well as a recompile. Static memory allocation
limits simulation size and causes the code to become relatively worthless when
expanding the code to handle more advanced simulations. Static memory allocation
along with other poor coding techniques has created a large amount of rather useless
code.

To help alleviate these problems and provide a mechanism for researchers to
create useful and portable code, a library named MDbinfimt was developed. The
MDbinfmt library is a powerful tool that aims to hide some of the complexities of the
simulation data while giving the programmer access to a defined data structure, described
in detail in Appendix C, which can be used for easy manipulation of simulation runtime
data. The library will be an essential piece if the MD software suite is ever sold
commercially. Using a library format gives the programmer or customer access to
important functions without revealing the actual source code.

The MDbinfmt library provides a set format for accessing and storing important
information during and after the simulation process. This format consists of packing
consecutive binary data that can be accessed later by reading the data in the same way it
was written. Another advantage of the single formatted file is that the file can be shared
between different applications and accessed by merely calling functions that are available
via the library. This ensures that the data is stored and retrieved in the same manner
regardless of the specific application. Using the MDbinfmt library, customizable
modular software such as the preprocessing software, simulation software, and post
processing software can be written without worrying about the complexities of the data

storage mechanism for the file format. Simulation software can be designed to work with

41

the MDbinfmt library regardless of the processing hardware that is available. The library
is portable to different operating systems as well as different architectures such as the 32-
bit and 64-bit architectures. The library has been implemented in both the 32-bit and 64-
bit systems. Details on use of the MDbinfmt library are given in Appendix C. Figure 4.1

1s a schematic illustrating how different applications utilize the MDbinfmt library.

7 Datafile N
’ i
» , \ A
MDbinfmt MDbinfmt MDbinfmt
Pre Processing Simulation Post Processing
Software Software Software
|

Figure 4.1 — MDbinfmt library overview

The MDbinfmt library allows researchers to interface with simulation data and
implement software at a much faster rate than previously observed. Using the old
technique for creating simulation software, a researcher developed a complete nanometric
cutting code for MC in 4 months. The code was ported over in a fraction of the time.
The ported version is compatible with versions of the pre and post processing software
which eliminate the need for the particular researcher to maintain the pre and post

processing applications for the given simulation software implementation. This idea

42

extends the programming capabilities by requiring less time dissecting code before
implementing and testing different algorithms for solving MD simulations.

One problem exists with this scheme and relates to the different structures that are
needed to handle different interatomic potentials within the library format. As new
potentials are added, modifications to the MDbinfmt library materials structures will be
needed. Modifications will also be required for the structures holding the potential
parameters. With the current MDbinfmt, the post-processing applications and animation
software is oblivious to these types of changes. However, the pre-processing and
simulation software will need to be modified or updated with the newest library when

modifications are made.

4.3. Parallel Simulations

There are three important features to be considered when developing parallel MD
simulations [26]. These features are communication, load balancing, and scaling.
Communication is the phenomenon that occurs when messages are passed from one
processor to another within the cluster. The communication is delayed by latency in the
initiation and acceptance of the communications as well as the throughput speeds.
Options for improving communications include channel bonding of multiple network
devices as well as faster network implementations, both of which are relatively simple to
implement in the MDbeta cluster [40]. The load balancing refers to how the simulation
is broken up and farmed out to different processors. If the computational work of one
computer increases while another node decreases, a part of the simulation should be

redistributed in order to optimize the rate at which simulations can be performed. The

43

ideal parallel simulation case would be to have all of the processors continually working
while keeping communication to a minimum. Finally, the scaling refers to how well the
written code expands when more atoms are used in a simulation and computational nodes
are added to the cluster. Many N-body simulations scale as a function of N°.

It is important to identify the barriers, such as time step size and geometry, to
overcome when programming parallel MD simulations. There are 5 basic stratcgies for
solving MD simulations in parallel [41]. They are cloning, master-salve, replicated data,
systolic loops, and domain decomposition. Other techniques have been proposed but can
ultimately be derived from one or more of these 5 strategies.

The cloning strategy is useful when multiple runs of the same simulation with
different conditions need to be executed. This strategy basically starts N independent
simulations on N processors. This allows for multiple simulations to be spun off on
different processors. This type of usage for the cluster is excellent for small simulations
in which many runs with slight variations are desired. Communication between the
nodes in this strategy is exclusively between the node and the fileserver.

The master-slave strategy uses a master node to allocate and control what the
slave nodes compute. One major problem in this strategy is that the master node must
communicate and distribute the appropriate information to each of the nodes. This
creates a massive communication overhead and requires the master node to store all
information for each atom. In some cases, the actual time to compute the specific task on
a node processor compared to the time associated with latency in the data communication
causes this method to be slower than running the simulation on a single processor. This

type of strategy works excellent for systems where shared memory is found such as the

44

multiprocessor variety. When simulation size approaches the sub micron to micro size,
the communication overhead swamps the master node’s ability to perform the simulation.

The replicated data strategy operates by distributing all atom information to each
processor prior to each time step calculation. However, a single processor only performs
a certain portion of the calculation. After each time step, a global summation is
performed and atom information is again distributed Lo each of the processors. A major
drawback to this method is that memory usage is large because each node in the cluster
contains all information for all atoms. For simulations approaching sub micron to micro
size, this is unacceptable. However, this method allows the use of complicated functions,
such as EAM and MEAM potentials, to be employed for the determining the forces of
molecular interactions.

Another strategy called systolic loops distributes the atoms evenly and allows the
nodes to pass information between the specific nodes. This method can be used with pair
potentials but becomes complex when using more complicated potentials, such as the
MEAM or EAM potentials.

The final and most promising strategy for use in parallel MD simulations is
domain decomposition. In this strategy, different gcometric spaces are assigned to unique
processors. If an atom enters or leaves a geometric region, the atom is moved to the
appropriate processor. This is similar to the linked cell method used for the calculation of
the bond list, which is implemented into the current simulation software and decreases
the computational time for the calculation of the bond list. Domain decomposition shows
the most promise for conducting large-scale MD simulations because scaling and

compound communication latency is minimized [42].

45

Developing parallel versions of MD code can be difficult and time consuming.
However utilizing the domain decomposition strategy, different geometric areas of the
system can be distributed prior to any set of potential calculations. This allows any type

of potential to be used, such as the Tersoff, Morse, EAM and MEAM.

46

CHAPTER 5

IMPLEMENTATION OF USER-FRIENLDY SOFTWARE

5.1. Introduction

Simulation of nanometric cutting and tribology using MD, MC or other equivalent
method is a complex operation. However, utilizing tools and software to perform the
simulations, those unfamiliar with the mathematics and theory behind the simulation may
benefit from performing simulation. Commercially available FEM and FDM software
packages do not require that the end user understand the inner workings of the software.
Nonetheless, results from these tests allow a large range of end users to study a multitude
of areas with the help of a user-friendly interface.

The system implemented in this study aims to provide each user the tools thal are
needed to create, perform, and analyze nanometric cutting and tribology simulations at
the nano level. The software discussed in this chapter was designed to be uscr-friendly,
and easy to use. Each piece of software is classified in one of the thrce groups: pre-
processing, simulation, and post-processing software.

The pre-processing application provides the means for the creation and setup of
atomistic style simulations. A graphical application was created to ease the modification
of simulation parameters. The simulation software is used to take the input file, perform

the simulation, and create the output file. This application is designed to run using the

47

Linux operating system. This was selected because of the stability it provides as well as
the computational clustering that can be built by the Beowulf cluster. The post-
processing group provides the means for animating and analyzing results that the
simulation software provides. Two important applications were developed for 3D
animation and the calculation of the chip flow for the post-processing group. Figure 5.1
shows how the end-user accesses and utilizes the user-friendly system for the simulation

of nanometric cutting and tribology.

End User

Simulation
Pre-Processor Software Post-Processor

Figure 5.1 — End-user view of simulation software

5.2. Overview of Software Operation

There are three types of applications that are to be used for the simulation of
nanometric cutting and tribology processes. They are the pre-processing, simulation, and
post-processing software. Each of these three pieces of software is aimed to complete a
specific task. They have been separated into three applications to help decrease the
programming load and increase the efficiency of the user. The separation of the software

into the three groups also helps ease the programming overhcad when creating and

48

modifying aspects of the software applications. In order for the end user to properly
operate the sofiware aspects of the user-friendly system, the system operation is
described.

The pre-processing application takes the simulation parameters and stores them in
a special binary formatted file “.md” that only the simulation and animation software can

read. Figure 5.2 shows a diagram of the operation of the MDii pre-processing software.

Simulation
Parameters

Y

u,md”

Figure 5.2 — Diagram of pre-processing operation

Figure 5.3 shows a diagram of the operation of the simulation sofiware. The
“.md” block to the left of the arrow is the input file. After starting the simulation,
additional frame information containing runtime simulation is appended to the original
“.md” file. This allows the simulation files to be animated by the post-processing
animations software. The additional frames are denoled in the diagram as the small

boxes attached to the original “.md” file.

m

Figure 5.3 — Diagram of simulation operation

The final step is to take the assimilated “.md” file from the simulation software

and perform post-processing operations by reading the simulation runtime information.

49

These operations range from animating to creating videos and snapshots of the simulation

process.

5.3. Pre-Processing Software Implementation

The goal of the pre-processing software is to provide an easy-to-use interface that
can be used to create input files for new simulations. The simulation then uses these
newly created files to store and append important runtime information of the simulation.
The actual operations performed when running the pre-processing software, MD input
interface (MDii), is to take simulation parameters such as workpiece size, workpiece
location, tool size, tool location, crystallographic orientation, various tool angles, material
properties, and more.

Several approaches for the input creation software were explored. The first is a
console program that is capable of reading an input file with a specific format. This
application was named mdsetupc and can be found in the MD software suite. The second
application that was created was a graphical application that has dialog boxes that can be
used to modify the desired parameters for the simulation. After the desired input
parameters are selected, click on the Create button and the simulation can be saved in any
directory. To make the application backwards compatible with simulations crealed using
the mdseutpc application, old-style mdsetupc input files can be opened. This allows
simulations created using the console setup program to be opened and for simulation
input files to be created. Simulations such as oblique and orthogonal cutting can be

created using this input interface. Figure 5.4 shows a snapshot of the main dialog box.

| MDii - Molecular Dynamics Input Interfface

Figure 5.4 — Screenshot of MDii pre-processing software

5.4. Simulation Software Implementation

The current simulation software created runs the desired MD simulations using
the Morse potential. Additional potentials and methods can be coded with the use of the
MDbinfmt library. Nonetheless, performing the desired simulation is as simple as
executing the application with the correct input file created using mdsetupc or MDii.

Refer to Appendix B for more information on executing the simulation in Linux.

51

EAFT Erad iTAT ie

5.5. Post-Processing Software Implementation

The goal of the post-processing software is to provide an easy-to-use application
that can be used to view, animate, or perform any other calculation after the simulation
has been completed. Several post-processing applications were created using the
MDbinfmt library implementation. The most important of these newly created
applications is a cross-platform graphical animator capable of displaying simulations in
3D. This provides a needed advancement from the previous animation software because
it allows the model to be rotated while the simulation is being animated. The remaining
applications were coded without graphics and were designed to access stored information
in the binary “.md” file for the identification of important phenomenon such as chip flow
angle.

Previously written MD simulation software was formatted to animate coordinate
data spanning a limited number of snapshots in time, also called frames. When the
animation software generated an animation, each frame, stored in a separate ASCII
formatted text file, was loaded into memory and a cubic splinc interpolation curve with
respect to time was calculated for each atom. The maximum number of frames that this
old style animator was capable of displaying was approximately 20 frames. DirectX was
then used to draw a planar representation of the spherical atoms on the screen for
different frames to give the appearance that the simulation is animated. This
interpolation technique unfortunately hides vibrational and other small movements of the
atom trajectories.

The new animator, named MDui, is capable of displaying atom movements with a

frame resolution matching that of the differential integration routine in the simulation

52

software. As the frequency of atom coordinates stored in the “.md” file increases, the
smoother the post-processing animation. However, an infinite number of frames cannot
be saved because of file size considerations. MDui utilizes OpenGL [43, 44], glui [45],
and glut [46, 47] for the graphics and application programming interface (APl). OpenGL
and glut libraries provide the graphics animation, such as the drawing of atoms and
rotations. The glui library provides the cross platform API to control the parameters in
the graphics scene.

MDui is capable of displaying multiple crystal information for multiple frames.
When the animation file is loaded crystal parameter panels are loaded into the menus of
the animation software. Each crystal that is loaded for each frame can be adjusted several
different ways. Colors can be applied to each crystal for easy identification of different
parts of the simulation. The orientation of the scene within the view port of the animator
can then be manipulated to see different phenomenon that occurred during the simulation
process.

Controls over the animation are provided on the right hand side of the application
and can be used to manipulate the scene. A viewing panel provides a mechanism for
advancing the simulation that displays the atom movements. A feature for taking a
screenshot of the current animation view port is also provided. Videos, in the form of
“.avi” can also be created from a user selected start and end frame. The user can adjust
the frame rate of the animation. These output options provides the researcher an easy
interface for creating simulations that can be viewed easily in any graphical operating
system. Figure 5.5 shows a screenshot of the animator with an nanometric oblique

cutting simulation loaded.

53

- R e - = -
S ESErat . ar & S8 f8 N gPWLLEY EF T ST oIl T CAFT EFRF ST FoS

r s

xs

e~ 3a

B Muleculm Dynamics Urer Inleiflace

Frome Numoer. [272 2] |

|

[fode Marks

wpun +f

_ea |

Figure 5.5 — Screenshot of the MDui animation software showing nanometric cutting

54

CHAPTER 6

APPLICATION OF USER-FRIENDLY SYSTEM TO NANOMETRIC CUTTING

6.1. Introduction

Documentation of key applications and instructions on the operation of the MD
software suite has been provided in the preceding chapters to show the construction and
operation of the user-friendly system. However, without an actual example
implementation, the power of the overall user-friendly system may be overlooked. The
example selected for this study was the MD simulation of oblique machining. The
process 1s described by several angles, namely inclination, rake, and the clearance angles.
The inclination angle is the angle the tool has been rotated from the velocity vector.
Figure 6.1 shows the inclination angle that is created when the tool is rotated with respect

to the motion of the workpiece.

Figure 6.1 — Orientation of the tool creating the inclination angle

55

MD simulations of nanometric oblique machining using the Morse pair-wise
potential were conducted and analyzed. This work, on nanometric cutting of the oblique
cutting process, extends the work on orthogonal cutting experiments conducted by
previous researchers. In order to analyze the simulations of oblique machining, the post-
processing software is required to animate the simulation in 3D. Figure 6.2 shows a
diagram of the oblique machining operation, where i is the inclination angle, ¢, is the

rake angle and ¢ is the chip flow angle.

Z 4

Workpiece

Figure 6.2 — Diagram of the oblique machining operation

Modeling of additional systems requires no effort from the user in terms of

creating simulation software. Users only need to utilize the pre-processing applications

created within the system by modifying the input files to model additional simulations.

56

6.2. Simulation Process

Nanometric simulations of oblique machining are performed with conditions
given in Table 6.1. Internal computational parameters of the simulation are given in
Table 6.2. Setup of the simulations was accomplished by using the MDii pre-processing
application described in Chapter 5. Parameter selection of workpiece, tool, velocities of
the tool, and frame output information were entered into MDii. Altogether, 35
simulations were setup varying the inclination angle from 0° to 45° while varying the
rake angle from -45° to 45°. After organizing the simulation parameters into MDii,
clicking on the Create button creates the simulation input file, which was then copied to
the Linux workstations to run the simulation. Information on copying the files to the

Linux workstation is provided in Appendix B.

Table 6.1 - Parameters used in the oblique simulation investigation

Material

Workpiece Al

Tool (Infinitely hard) W
Cutting Speed 500 m/s
Depth of Cut 4 A
Bulk Temperature 298 K
Workpiece Geometry 810 Ax182Ax 1824
Tool Geometry

Rake -45°, -30°, -15°, 0°, 15°, 30°, and 45°

Clearance 6°

Inclination 0°, 15°, 30°, and 45°
Number of Atoms

Workpiece 23,958 atoms

Tool (range) 4,729 - 22,165 atoms

57

EXFI A iTIE

7 AHlESEL Y

rRaL2AlE: @ FRIER FTHANEY 38

Table 6.2 — Computational parameters used within the Morse simulation software

Workpiece-Workpiece Potential Morse
Alpha 1.1646 /A
D 0.2703 eV
Teq 3253 A
Workpiece-Tool Potential Morse
Alpha 5.14 /A
D 0.087 eV
Teq 2.05 A
o (velocity reset parameter) 0.1047

After creation of the simulation input file is complete, the simulation process
begins. The simulation process consists of taking the simulation input parameters entered
in the previous step and performing the simulation. Calculation of successive atom
positions with respect to time is accomplished with the use of a Runge-Kutta differential
integration routine. Values from the forces are used multiple times during this
differential integration step to simultaneously calculate the new position of all atoms in
the simulation. After a given number of steps, denoted by the output frame resolution in
the MDii application, a snapshot of atoms positions are saved into the “.md” file.

Such a simulation, using the input parameters entered for the oblique machining
simulations from Table 6.1, takes ~20 hours to completc. This corresponds to a total
computational time requirement of ~700 hours or about 29 days for the entire ensemble
of simulations. For more information regarding the actual commands executed for this
section, refer to Appendix B.

Output files created by the simulation software consists of information containing
system Kkinetic energy, potential energy, total energy, and forces for each differential

integration time step and are stored in appropriately named comma separated value “.csv”

58

LAFF IS iTYet e
Clidijiirini J

£

*

X

text files. Atom positions are stored after a given number of differential integrations and
appended to the end of the input “.md” file after the specified number of differential
integration time steps from the input file to help decrease the file size of the coordinate
information per simulation. Completed simulations, in addition to those in the process of

being completed, can be animated utilizing the post-processing animation software.

6.3. Results

The output files created by the simulation software yields interesting results about
the behavior of oblique machining of aluminum at the nano level. Simulations of varying
rake and inclination are given as described in Table 6.1. Figure 6.3 shows the various
stages of nanometric oblique cutting of single crystal aluminum. Figure 6.4 shows three
various important angles that the simulation can be oriented when using the post-
processing animation software. Simulations are not limited to these angles but can be

rotated in any orientation while in the animation sofiware.

59

$ir id

vy

P LS AL o FIIL N AT

R

a). frame 20

R

b). frame 40

I

¢). frame 60

e

d). frame 123

Figure 6.3 — Snapshots showing various stages of oblique nanometric cutting

60

a). Side view

b). Front view

¢). Plan view

Figure 6.4 — Various orientations of the simulation that can be animated using MDui

Chip flow angles were calculated with the help of an additional post-processing
application. The chip flow angle is defined as the angle normal to the cutting edge that
the chip makes as it moves across the face of the tool [48]. An approximate relationship
between the chip flow angle and inclination angle was proposed by Stabler, known as
Stabler’s rule [49], and is plotted in Figure 6.5 along with the values calculated from MD.
Stabler’s rule states that the chip flow angle is approximately equal to the angle of
inclination. For the values computed by MD, the direction of all atoms in the chip is

taken into account when calculating the chip flow angle in an MD simulation.

45 | .
| Stablers Rule s
Rake=0
- 30 +
@
o
3 |
b Rake=-15 -
@
=) i ‘]\
-5 ‘ ~Rake=45
g
T Rake=-30 —_|
a2 | >
£ | =
O Rake 3i
15 - |
Rake=-45-__
[-Rake=15
|
O T Ll
0 15 30 45

Angle of Inclination, deg

Figure 6.5 — Chip flow angle vs. angle of inclination

62

Chip flow angle values computed from the MD simulation of oblique machining
coincide with those values reported by experimental work conducted by Kececioglu [50]
and Brown and Armarego [51]. Furthermore, the values calculated by the simulations are
approximated nicely by Stabler’s rule up to about 30°. An interesting phenomenon
observed is that as the rake angle is decreased from positive to negative at a given angle
of inclination, a higher chip flow angle occurs.

Snapshots of the chip flow angle are given by using the MDui post-processing
animation application. The pictures were taken by orienting the camera with the normal
to the tool face. This helps in the identification of the chip flow angle and is defined as
the angle created by a perpendicular to the tool edge and the chip flow direction. Figure
6.6 shows a sample series of snapshots with a constant rake of 15°, varying the

inclination angle from 0° to 45°.

a) inclination=0, rake=15

63

b) inclination=15, rake=15

c¢) inclination=30, rake=15

d) inclination=45, rake=15

Figure 6.6 — Variation of the chip flow angle with the angle of inclination

64

CHAPTER 7

CONCLUSIONS

7.1. General Conclusions

MD simulation of nanometric cutting and tribology provides an important insight
into the behavioral phenomenon found in engineering materials that is impossible to
acquire by using experimental techniques. Information is provided in this study that
ranges from an introduction of MD simulations to the implementation of the software
coding of MD simulations. The purpose of this study is to develop a user-friendly MD
simulation system for nanometric cutting and tribology. Such an approach helps
propagate knowledge transfer from one generation of researchers to the next. This is
accomplished by providing instruction and documentation from three perspectives,
namely the end-user, programmer, and administrator of the system, on creating,
programming, and executing MD simulations.

A user-friendly system was designed and implemented, taking into account the
perspectives from the administrator of the system, programmer of the MD software, and
end user of the simulation packages and cluster. These three perspectives allow the
system to accommodate a larger range of users as well as provide a mechanism for

increasing the rate at which simulations can be performed.

65

From the administrator’s point of view, information on construction and
maintenance of the Beowulf clustering system is given. Complete documentation is
provided to help relieve some of the overhead in maintenance as well as provide an
overview of the operation of the hardware, operating system, and simulation software.
Identification of the important aspects of enhancing parallel processing is given, as it is
the administrator’s job to ensure that latency and communication overhead does not
increase to the point where the system is inefficient.

For the programmer, information on the MDbinfmt library implementation as
well as different approaches of parallel programming are identified. Information
regarding the details of the functions and structures provided by the library are discussed.
Software programming examples are also given to show the implementation and
operation of the MDbinfmt library. Parallel processing algorithms and approaches are
discussed but the focus of future parallel software implementations should utilize the
domain decomposition method.

The end users of the user-friendly system benefit from the discussion of the
applications that are provided in the MD software suite. A set of nanometric oblique
machining simulations are given which provide the end user with an example of the
usability of the system as well as an overview of the implementation provided. Results
from the MD simulation of nanometric oblique machining yields useful insight into the
phenomenon of the chip flow during cutting.

Beyond the different aspects to the user-friendly system, several chapters and

appendices are devoted to details on utilizing each of the discussed topics. This provides

66

an available set of procedures and documentation for propagating the transfer of

knowledge from one generation of researchers to the next.

7.2. Specific Conclusions

The following is a list of specific conclusions that were obtained in this study. As
previously mentioned, the purpose of this study is to create a user-friendly system for
MD simulation nanometric cutting and tribology. This was accomplished directly by the
identification and implementation of the following list. One important outcome to this
study is that is provides a means for developing, performing, creating, and running MD
simulations in serial and parallel.

1). Two Beowulf class supercomputers were constructed: MDalpha and MDbeta.
Both of these clusters were used in the nanometric simulation of oblique cutting.
In addition to the power that these clusters harness, each provides a separate
implementation and platform for the development of future simulation codes that
utilize parallel processing.

3). A cross-platform animation software was created to fill the post-processing
application need found in this study. This application helps the user to analyze
and visualize 3D simulations.

4). Post-processing software for the measurement of the chip flow angle was created
to measure the average direction of the atom flow within the chip for the oblique
nanometric cutting simulations.

5). Pre-processing software was created for this study in order to provide an easy to

use graphical interface for creating MD simulations.

67

6). A special C programming library was created, named MDbinfmt. This library
provides access to data structures and functions that help alleviate some of the
headaches when programming atomistic simulations. The library also handles all

file operations, which encompasses writing simulation data to the output file.

7.3. Future Work

Application of MD simulations to nanometric cutting and tribology is a relatively
new field. Future advances for MD simulations applied to engineering and materials
research require diligent exploration by researchers. Several areas have been identified
that should be explored in more detail as part of future work.

The creation of a parallel framework is needed that allows any programmed serial
interatomic potential to be placed into the simulation software without adjusting the core
algorithm. This method may not provide the most optimized parallel code but would be
adequate if domain decomposition is employed. Nonetheless, a parallel framework will
allow the users to harness the power of the massively parallel Beowulf cluster created in
this study to perform MD simulations at a faster rate.

Once the creation of the parallel framework is complete, expansion of the current
MDbeta cluster should be considered. Testing should be performed to determine network
interface latency and saturation issues. When saturation occurs, upgrade of the
communications interconnect should be performed. Channel bonding of the multiple
onboard network cards should be explored. Once the cluster size outgrows the channel

bonding method of reducing network latency and increasing throughput, new

68

interconnect technologies such as 10Gb Ethernet, Gigabit Ethernet, Myrinet, and other
fiber interconnects should be explored.

Implementation of additional potentials using the MDbinfmt library structure
should be performed. At the moment, the only potential that has been coded and tested
with the new structure is the Morse potential. Coding and implementation of the MEAM,
EAM, Tersoff, MC, and potential using neural networks should be implemented. Also,
an extension of MD simulation to include a combined MD/MD method should also be
explored to exploit the accuracy of MD with the speed of MC.

Application of the MD software suite should be utilized for studies on other
processes such as milling, grinding, tension, and shear. Indentation and scratching should
also be explored for frictional studies. MD simulation of each of these processes will
provide insight into the behavior and phenomenon of materials at the nano level.

These are just a few of the future goals and research areas that should be focused
upon for the advancement of molecular dynamics simulations of nanometric cutting and
tribology. Implementation of different algorithms, potentials, and cluster technologies
should always be explored to identify new and improved ways to utilize technology to

advance the rate at which computational simulations can be performed.

69

(1]

[3]

(4]

(5]

[6]

(7]

(8]

[9]

REFERENCES

Hrenikoff, A., “Solution of the problems in elasticity by the framework method,”
Transactions of ASME: Journal of Applied Mechanics, 8 (1941) 169-175.

Courant, R., “Variational methods for the solution of problems of equilibrium and
vibration,” Bulletin of the American Mathematical Society, 49 (1943) 1-43.

Argyris, J. H. and S. Kelsey, “Energy theorems and structural analysis,” London,
Aircraft Engineering, (1955).

Turner, M. J., R.-W Clough, H.C. Martin, and L. J. Topp, “Stiffness and deflection
analysis of complex structures,” Journal of Aeronautical Science, 23 (1956) 805-
824,

Alder, B., and T. Wainwright, "Studies in molecular dynamics I: general method,"
Journal of Chemical Physics, 31 (1959) 459.

Alder, B., T. Wainwright, "Studies in molecular dynamics II: behavior of a small
number of elastic spheres,” Journal of Chemical Physics, 33 (1960) 1439.

Raff, L. M., “Molecular dynamics modeling,” Lecture Notes, Oklahoma State
University, Stillwater, OK, (2001).

Chapra, S. C. and R. P. Canale, Numerical Mcthods for Engineers, 3" Ed, Mass.
(1998) 695-715.

Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C.
Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O.
Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.
Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, L.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, €Y
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S.
Replogle, and J. A. Pople, “Gaussian 98, Revision A.6,” Gaussian, Inc., Pittsburgh
PA, (1998).

70

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

(22]

(23]

Morse, P. M. “Diatomic molecules according to the wave mechanics II vibrational
levels,” Physics Review, 34 (1929) 54-57.

Lennard-Jones, J. E. “Forces between atoms and ions,” Proceedings of the Royal
Society, 109 (1925) 584.

Lennard-Jones, J. E. and B. M. Dent, “Forces between atoms and ions,”
Proceedings of the Royal Society. 112 (1926) 230-234,

Tersoff, J. “New empirical approach for the structure and energy of covalent
systems,” Physical Review B. (1988) 6991-7000.

Daw, M.S. and M. 1. Baskes, “Embedded atom method: derivation and application
to impurities, surfaces, and other defects in metals,” Physics Review B, 29 (1983)
6443.

Baskes, M. 1., J. S. Nelson, and A. F. Wright, “Semiempirical modified embedded
atom potentials for silicon and germanium,” Physics Review B, 40 (1989) 6085.

Baskes, M. I., “Modified embedded atom potentials for cubic materials and
impurities,” Physics Review B, 46 (1990) 2727.

Sobol, L. A Primer for the Monte Carlo Method, CRC Press, (1994).

Hagan, M. T. and H. B. Demuth, Neural network design, PWS Publishing
Company, (1996).

Riley, M. E., M. E. Coltrin, D. J. Diestler, “A velocity resct method of simulating
thermal motion and damping in gas- solid collisions,” Journal of Chemical
Physics, 88 (1988) 5934-5942.

Frenkel, D. and B. Smit. Understanding Molecular Simulation, Academic Press,
Amsterdam, (1996).

Streett, W. B. and D. J. Tildesley, “Multiple time-step methods in molecular
dynamics,” Molecular Physics, 35 (1978) 639-648.

Nakano, A., P. Vashishta, and R. K. Kalia, “Parallel multiple-time-step molecular
dynamics with three-body interaction,” Computer Physics Communicaion, 77
(1993) 303-312.

Slaets, F. W. and G. Travieso, “Parallel computing: a case study,” Computer
Physics Communication, 56 (1989) 63.

71

(24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

Stokes, D Parallel Processing of Molecular Dynamics Simulation in a Distributed
Computing Environment and Application to the Modified Embedded Atom

Method and Nanoindentation, Oklahoma State University, Masters Thesis, Dec.
2000.

Srinivasan, S. G., I. Ashok, H. Jonsson, G. Kalonji, and J. Zahorjan, “Parallel
short-range molecular dynamics using the adhara runtime system,” Computer
Physics Communication, 102 (1997) 28.

Sterling T. L., J. Salmon, D. J. Becker, and D. F. Savarese, How to Build a

Beowulf: A Guide to the Implementation and Application of PC Clusters, 2™ Ed.
MIT Press, (1999).

Belak, J. and L. F. Stower, “A molecular dynamics model of the orthogonal cutting
process,” ASPE Annual Conference, (1990) 76.

Komanduri, R., N. Chandrasekaran, and L. M. Raff, “Molecular dynamics (MD)
simulation of atomic scale friction,” Physics Review B, 61 (2000) 14007-14019.

Komanduri, R., N. Chandrasekaran, and L. M. Raff, “Molecular dynamics (MD)
simulation of uniaxial tension of some single crystal cubic metals at nanolevel,”
International Journal of Mechanical Science, 43 (2001) 2237-2260.

Komanduri, R., N. Chandrasekaran, and L. M. Raff, “MD simulation of
indentation and scratching of single crystal aluminum,” Wear, 240 (2000) 113-143.

Komanduri, R., Chandrasekaran, N. and Raff, L. M. MD Simulation of
Nanometric Cutting of Silicon. Philosophical Magazine. 2001.

Chandrasekaran, N. Length Restricted Molecular Dynamics (LRMD) Simulation
of Nanometric Cutting, Masters Thesis, Oklahoma State University, (1997).

Komanduri, R., N. Chandrasekaran, and L. M. Raff, “Effect of tool geometry in
nanometric cutting: a molecular dynamics simulation approach,” 219 (1998) 84-
97.

Komanduri, R., N. Chandrasekaran, and L. M. Raff, “MD simulation of exit failure
in nanometric cutting,” Material Science Engineering A. 311 (2001) 1-12.

Komanduri, R., and R. Stewart, “MD simulation of the modeling of grain
boundaries in nanometric cutting,” unpublished work, (1998).

Komanduri, R., N. Chandrasekaran, and L. M. Raff, “MD simulation of
nanometric cutting of single crystal aluminum: effect of crystal orientation and
direction of cutting,” Wear, 242 (2000) 60-88.

72

[37] Gropp, W., E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message Passing Interface, 2" Ed, MIT Press, (1999).

[38] Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI — The
Complete Reference: Volume 1, The MPI Core, 2™ Ed, MIT Press, (1999).

[39] Gropp, W., S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir, MPI — The Complete Reference: Volume 2, The MPI Extensions, 1%
Ed. MIT Press (1999).

[40] Becker, D. http://www.beowulf.org/software/bonding.html, Beowulf Ethernet
Channel Bonding

[41] Smith, B. “Molecular dynamics on parallel computers,” HPCI Seminar in MD
Techniques on MPP Platforms, (1996).

[42] Srinivasan, S. G., I. Ashok, H. Jonsson, G. Kalonji, and J. Zahorjan, “Dynamic
domain decomposition parallel molecular dynamics,” Computer Physics
Communications, 102 (1997) 44.

[43] Woo, M., N. Jackie, T. Davis, and D. Schreiner, OpenGL Programming Guide:
Redbook, 3" Ed, Addison-Wesley, (1997).

[44] Wright, R. S., and M. Sweet, OpenGL Super Bible 2" Ed, Waite Group Press,
(1999).

[45] Rademacher, P. http://www.cs.unc.edu/~rademach/glui/, Glui User Interface
Library v2.1.

[46] Kilgard, M. Original implementation of the Glut Library.

[47] Robbins, N. hitp://www.xmission.com/~nate/glut.html, Glut for Windows Library.

[48] Shaw, M. C. Metal Cutting Principles, Oxford Science Publications. (1997) 429.

[49] Stabler, G. V. “The fundamental geometry of cutting tools,” Proceedings of the
[nstitutional Mechanical Engineers, 165 (1951) 14.

[50] Kececioglu, D. “Force components, chip geometry, and specific cutting energy in
orthogonal and oblique machining of SAE 1015 steel,” Transactions of the ASME,
Janurary, (1958) 149-157.

[51] Brown, R.H. and E. J. A. Armarego, “Oblique machining with a single cutting
edge,” (1964).

73

74

APPENDIX A

CLUSTER INSTALLATION AND CONFIGURATION MANUAL

Al. Introduction

Many engineering students are knowledgeable with graphics-based
applications and operating systems. However, some are unfamiliar with text-based
operating systems, such as Linux. In this investigation, the computational power that
is harmessed in the MDbeta is accessed via the Linux operating system. Because of
the selection of this operating system, this appendix is prepared to facilitate in the
installation, configuration, and ultimately the maintenance of the MDbeta cluster.
The goal is to provide the reader with an overview for the main services needed for
each of the different types of nodes in the cluster.

To facilitate configuration of the MDbeta cluster, a custom installation and
maintenance CD was created, named MDiso. MDiso can be found on both the md
web server and mdf.mae file server. Furthermore, describing the operations for
configuring the nodes can be difficult if the reader does not have a basic working
knowledge of Linux. A series of screenshots with captions have been provided to
guide the reader through the installation process. Keep in mind that each node in the

cluster can be custom configured. This means that as the cluster scales in size, cluster

75

ervices may be moved to dedicated nodes in order to handle the added increase in
usage from the additional nodes.

As described in Chapter 4 of this document, there are 2 types of nodes:
computational nodes and server nodes. This section of the document is organized by
basic services needed instead of explicitly discussing about computational nodes and
server nodes. This allows the reader to further expand the cluster and distribute the
core server services over multiple nodes.

All nodes in the cluster should be running the following mandatory cluster
communication services via inetd:

o rlogin (port 513) for remote login capabilities

o rsh (port 514) for remote execution of commands

Each additional server node added to the cluster should be booted with hard
disk drives. Information in Section A3 has been provided to help with the base Linux
installation for nodes booted from local hard disks. Additional services run via the
server node include the following:

o ssh (port 22) on the gateway node along with iptables
o dhepd (port 67) to assign IP address to each node in the cluster
o etfipd (port 69) to transfer the kernel for the remote node to boot

o nfsd (port 2049) allows for drives to be mounted remotely

More information on the services as well as further details for the

configuration of the Linux operating system can be found on the www.linuxdoc.org

76

website. There is a plethora of information located at this large archive and should be

used whenever questions arise that are not answered in this investigation.

A2. Enabling Mandatory Clustering Services

Each node in the cluster must be running core services that allow for logins
and commands to be executed remotely. If Section A4 is followed carefully, no
external connections from outside the cluster can be made to these insecure services.
These services, provided by rlogin and rsh, are run from the inetd super daemon
server on all nodes. To enable these services, add the correct lines in the inetd.conf
and rehash the daemon by executing kill -HUP "pidof inetd’. By default, this server
will be started through the startup scripts at boot on all nodes in the cluster. The
inetd.conf file must be edited and two lines should be modified. The following lines
are required in the inetd.conf on every node:

shell stream tcp nowait root /usr/sbin/tcpd in.rshd -L -h -a

login stream tcp nowait root /usr/sbin/tcpd in.rlogind -a -L

A3. Slackware Distribution Base Installation

When performing an installation, there are a series of screens that require
input. Many of the screens are generally self-explanatory. However, an explanation
has been provided for each screen that requires input during the installation. Bold
typeset words are commands that can be executed at the prompt, if available, or by
opening a new console and swapping to that console via alt-f1 to alt-fS. Also, any

standard commands can be executed while in the virtual terminals. During the

77

installation, the desired selection along with the desired action should be highlighted

before pressing enter. Be careful when making selection during the installation. Any

errors at this point require termination of the startup script by executing ctrl-c. Figure

Al is the first screen that appears when the installation CD is booted at startup. Press

enter to begin the installation process.

{You may now login as 'root’.

‘Custon serial slackware install login: root

Helcome to the Slackware Linux installation disk! (version 8.1.0)

HHHHHH IMPORTANTY! READ THE INFORMATION BELOW CAREFULLY. HHHHHM

You will need one or more partitions of type 'Linux native' prepared It is
also recommended that vou create a swap partltlon {typp "Linux suap’) prior
to installation. For more information, run 'setup’ and read the help file.

If you're having problems that you think might be related to low memory (this
is possible on machines with 16 or less megabytes of syslem memory), you can
try activating a swap partition before you run setup. RAfter making a swap
partition (type 82) with cfdisk or fdisk, aclivate it like lhis:

mkswap /dev/<partilion> ; swapon !deu/(parl:tion>

Once vou have prepared the disk partitions for Linux, type ‘setup’ lo begin 1
the installation process.

If you do not have a color monitor. type: TERM=vt100
before vou start “setup’.

— e e — = e e e e 3

Figure A1 — Installation CD login screen

Login and execute fdisk to set up the partition table on the hard disk drives.

Figure A2 shows a sample partition table. After the partition tables have been set up

on the hard disk drives, the setup script should be executed. Select swap space=ram.

78

—— e e ———

{root@slackware: "# Fd;;k /deu/hda — : =

The number of cylinders for this disk is set to 2495.
There is nothing wrong with that, but this is larger than 1024
Jand could in certain setups cause problems with:
|1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other 0Ss

{e.g., DOS FDISK, 0S/2 FDISK) '

[
{Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 2495 cylinders
{Units = cylinders of 16065 = 512 bytes

| Device Boot Start End Blocks Id System
i|/dev/hdal 1 192 1542239+« 83 Linux
{/dev/hda2 193 J23 1052257+ 82 Linux swap
{/dev/hdald 324 24595 17446590 83 Linux

?Command [m for help): a

Hroot®slackware: # setup_

* = —— ———— _J

Figure A2 — Sample partition table and setup script execution
Highlight the addswap option and continue as shown in Figure A3. It is a
good idea that this swap space be enabled when performing the installation. If a swap

partition is found, a dialog box appears, such as Figure A4 shows.

R R R R R RRERRRRRROEERRRRRI™™R R ——— e —

——— Slackware Linux Setup {version 8.1.8) —m————
Welcome to Slackware Linux Setup. . (o
Select an option belew using the UP/DOHN keys and SPRACE or ENTER. |

Alternate keys may also be used: '+’, ="', and TAB.

WELP Read the Slackware Setup HELP file ‘

4EYHAP Remap vour kevhoard if vou’re not using a US one

; §I0DSHAP iti

| JIARGET Set up vour target partitions |
| SOURCE Select source media

SELECT Selecl categories of software to install '
i NSTALL Install selected software
i MONFIGURE Reconfigure your Linux syslem ‘
§ E Exit Slackware Linux Setup

=se

F.a“L
|'
1
|
I
|
|
i

=T e — =

Figure A3 — Setup screen with swap option highlighted

79

SHAP SPACE DETECTED ——

Slackware Setup has detected a swap partition:

Device Boot Start End Blocks Id System
/dev/hda2 193 323 1052257+ 82 Linux swap

Do vou wish to install this as vour swap partition?

TR e e S S SasS

Figure A4 — Swap space detected dialog box

After enabling the selected swap space, as shown in Figure AS, the partitions

defined in the partition table need to be formatted. The first partition is usually

selected and mounted as the °/” or root partition, as shown in Figure A6.

FORMATTING SWAP PARTITION ——
Formatting /dev/hda2 as a Linux swap partition

(and checking for bad blocks]...

HActivating swap partition /dev/hda2:
swapon /dev/hda2

Figure A5 — Activation of the swap space dialog

80

—_— e e AT

_—

! Selec? l'.inu.'v: installation paEtihion
Please select a partition from the following list to use for your
root (/) Linux partition.

Eﬂeu/hdal inux 1542239K

dev/hda3 Linux 17446590K

-- {done adding partitions, continue with setup)
{done adding partitions, continue wilh setup)
{done adding partitions, continue with setup)

1 "
| | !

e ——— - : —— |

Figure A6 — Root partition selection dialog
Before mounting the selected partition, it must be formatted. Figure A7
shows the dialog box for the partition formatting. If you are unsure of the integrity of
the drive, select the check option; otherwise, the format option will suffice. Figure

A8 shows the inode options. Select the default of 4096 bytes.

FORMAT PARTITION /dev/hdal ————— -
If this partition has not been formatted, you should format it. ;
NOTE: This will erase all data on it. Would you like to format :
this partition?

uick format with no bad block checking
Slow format that checks for bad blocks
Mo, do not format this partition |

<{Cancel> j

Figure A7 — Partition formatting selection dialog

8l

Partition /dev/hdal will be formatted.

SELECT INODE DENSITY FOR /dev/hdal ———
If you're going to have many small files on your drive, then you
may need more inodes than the default {one is used for each file
entry). You can change the density to one inode per 2048 bytes,
or even per 1024 bytes. Select '2048° or '1024', or just hit
enter to accept the default of 4096 bytes.

048 1 inode per 2048 bytes.

g[}% 1 inode per 4896 butes. (default
024 1 inode per 1026 bytes.

Figure A8 — Inode density selection dialog
After formatting the root partition, the remaining partitions need to be
formatted and mounted in the appropriate locations. For the example given, the home
drive space needs to be formatted. Figure A9 shows the remaining options in the
Linux partition menu. All server nodes should still mount the home partitions via the
nfs server. If the node that is being configured is the nfs server, then mounting a

large partition for the user directorics is needed.

82

———————— Select other Linux partitions for /etc/fstab

You secem to have more than one partition tagged as type Linux.
You may use these to distribute your Linux

than one partition. Currently, vou have /dev/hdal mounted as vour
/ partition. You might want to mount directories such as /home or
fusr/local on separate partitions. You should not try to mount
fetc, /sbin, or /bin on their own partitions since they contain
utilities needed to bring the svstem up and mount partitions.
Also, do not reuse a partition that you've already entered
before. Please select one of the Linux partitions listed below,
or if you're done, hit <Continue>.

[JIN USE) /Zdew/hdal on / Linux 1542239K
/G I i nux 17446590K]

0 {done adding partitions, continue with setup)
!E') {done adding partitions, continue with setup)
vi+ Y :

<Continue>

Figure A9 — Remaining options in the Linux partition menu dialog

After formatting and mounting the partitions, the file system tab file (fstab)
will be displayed on the screen. Figure A10 shows a sample dialog. Review it to
make sure that the partitions you selected were mounted at the correct location. After
reviewing the fstab, continue the install from the Slackware CD-ROM, as shown in

Figure All.

83

DONE ADDING LINUX PARTITIONS 10 /etc/fstab :
; Adding this information to your Zetc/fstab:

H /dev/hdal ! extd defaults
f /dev/hdad /home extd defaulis

—(100%)

Figure A10 —File system tab file displayed for review dialog

SOURCE MEDIA SELECTION !
Hhere do you want to install S$lackware Linux from? ‘

IMInstall from a Slackware CD-ROM

A Install from a hard drive partition

' Install via NFS)
A Install from a pre-mounted directory

|
i |'
|

Figure A11 — Source media selection dialog

To install from the CD, you must know the device name. If you are unsure of

the device name, you may determine this by the dmesg in a virtual console.

84

Otherwise select the auto option to search for the CD-ROM, as Figure A12 shows. If

a dnive 1s 1dentified, it is mounted, as shown in Figure A13.

s Z

fi SCAN FOR CD-ROM DRIVE?

i Would vou like to have Setup scan for your drive automatically

(recommended), or would you like to choose your CD-ROM drive
manually from a list of devices? : :

Buto Scan for the CD-ROM drive automaticall | '
Canual Manually select CD-ROM device |

!

|

[DI i, _|
Figure A12 — Automatic CD-ROM detection dialog

- |

i

'[.

f

}

t

I

i

e — - e e e e

Figure A13 — Automatic mounting of CD-ROM dialog

85

Continuing with the installation process requires that the separate Linux

packages be selected. To alleviate this repetitive task for multiple configurations,

custom tagfiles were created. You may select all the package series or leave the

defaults active as shown in Figure A14. However, do not exclude any default series.

R —

== P e e PP

——ee PACKAGE SERILS SELLCTION — - —
Now it's time to SLlcri which general categories of softluaro to '
install on your system. Use the spacebar to select or unselect the
sof tware you wish to install. VYou can use the up and doun arrows to
see all the possible choices. Recommended choices have been
preselected. Press the ENTER key when you are finished.

Base Linux susten

Various Applications that do not need X, etc.)
Program Development (C, eeded by both KDE and GNOME)
GHU Emacs , Hail, News)

FAQ lists, HOWTO documentation 1
Linux kernel source]
Sustem Libraries (some needed by both KDE and GNOME)

Networking (TCP/IP, UUCP, Mail, News)

TeX typesetting software l

<Cancel>

—_— = e e ——— —— ———— —_

The A (bavel series cuntalns the kernel and main systenm u11]1t1es

Figure A14 — Package series selection dialog

EOMEIWE} ——————
Now that vou’ve decided what you want to install vou may begin
the installation process by moving to the INSTALL section.
Please note that if vou have not completed all the prerequisites

you will be informed of this and returned to the main menu, i
Hould vou like to go on to the INSTALL section? I

—— — R ———— —il

Figure A15 — Installation continuation dialog

86

Custom tagfiles were created in order to automate the package selection step,
which can be a daunting task for someone who is unfamiliar with the different
software packages. Select custom as shown in Figure A16. If MDiso is used for the

installation process, enter in ‘.sa’ as shown in Figure A17.

P —
I

I —es. SELECGT PROMPLING MODE ——————— :
i Now vou must select the type of prompts vou'd like to see during
i the installation process. If you have the drive space, the

I ‘full® option is quick, easy, and by far the most foolproof

| choice. The "newbie’ mode provides the most information but is
i much more time-consuming (presenting the packages one by one)
than the menu-based choices. Otherwise, you can pick packages
from menus using "expert’ or 'menu’ mode, lhich type of
prompting would vou like to use?

)
1 ull Install everything (almost 2 GB of software)
| ewbie Use verbose prompting (and follow tagfiles)
enu Choose garoups of packages from interactive menus
§ xper i Choose individual packaages from interactive menus

. TSULEUse cuslom tagfiles in the package directories
i agpath Use tagfiles in the subdireclories of a custom path
elp Read the prompt mode help file

Figure A16 -- Custom tagfile install dialog

P ———— e e e e t—— — . — -—

T ENTER CUSTOM EXTENSION ———
Hou, enter the custom extension you have used for your
tagfiles. This must be a valid HS-DOS format file
extension consisting of a period followed by three
characters. For example, I use ".pat’. VYou might see

| my tagfiles on vour disks. :7)

Figure A17 — Custom tagfile extension dialog

87

The next part of the installation process is automated. A series of screens will
flash as the different software packages install. Figure A18 shows the initial screen.
After the software installation is complete, custom kernel installation can be

completed. Select the kernel from the CD as shown in Figure A19.

i == e — i
|
i |
{ |
L
f
f 'custom’ prompt mode selected, ;1Y
f prompting defaults found in custom tagfiles.
!
g |
|.
i
i}
i
Figure A18 — Automatic installation dialog
——— INSIALL LINUX KERNEL —————————————————
i In order for vour system to boot correctly, a kernel must be
: installed. If you've made it this far using the installation
bootdisk's kernel, you should probably install it as your system
i kernel {fbont/vml:nu7] If you’re sure you know what you're doing,
! vou can also install your choice of kernels from the Slackuare
f or a kernel from a floppy disk. You can nl‘O skip this menu, .
i whatever kernel has been installed already (such as a goner:: :
) kernel from the A series.) WHhich option would you like? I
ooldisk Use the kernel from the installation bootdisk
g drom Uae a kernel from the Slackware LD
{ loppy Install a zimage or bzimage file from a DOS floppy
i kip Skip this menu (use the default /beot/vmlinuz) '
.; |
i |
| i
{
i

Figure A19 — Kemel installation dialog

88

The next menu, Figure A20, shows the different kernels that can be used to
boot the system. Figure A21 shows the boot disk creation menu. Skip this menu if
you booted from CD since MDiso can be used to jumpstart the system and act as the

boot disk. The kernel used to boot the system will be highlighted.

e T

—— CHOOSE LINUX KERWEL —
Which of the followlnq kernels would you like to install? NOTE:
f you have a SCSI controller, choose a kernel that supports
that. You can support your CD-ROM drive and network card later
with installable kernel modules.

cdrom/kernels/adaptec.s/bzImage
cdrom/kernels/bare.i/bzImage

3/ 1bmnca . s/hzImage
cdrom/kernels/jfs. i/bzInage
cdrom/kernels/lounen. i/zImage
cdrom/kernels/old_cd. i/bzImage
cdrom/kernels/pportide. 1/bzInage
Td;om/kernclu/ruid.sszImage

\JI -

TR ey y— — P e —p——— = 5 ————

Figure A20 — Kernel selection dialog

—————————————————— MAKE BOOIDISK —— !
It is highly recommended that vou make a bootdisk {or two) for

your system at this time. Please insert a floppy disk (formatted i
or unformatted) and press ENTER to create a bootdisk.

f The existing contents of the floppy disk will be erased.

Freate Make a Linux bootdis sk in Jdev/fdB
Eklp ip making a bootdisk

f i

|

|

i

iJ o
———— — — ~ — =._ __-;'__'———'___".

Figure A21 — Boot disk creation dialog

89

Figure A22 shows the modem configuration dialog. Since an Ethernet
network adapter is used for remote access, there is no need to use or install a modem.
Because of this, select no modem. Figure A23 shows the initial Linux Loader (LILO)

installation menu. Select expert lilo.conf setup and proceed with the install.

HUULH LUHFlGUhHllUN

i lhlS parl of 1hc conilguratlnn process will create a /dev/moden

i link pointing to the callout device (ttySO, ttyS1, #tyS2,

d t1yS3) representing your default modem. You can change this

H link later if you move vour modem to a ‘different port. If your
moden is a PCI card, it will probably use /dev/ttyS4 or higher.

Please select the callout device which vou would like to use

for your modem:

Fu moden
#deu/lin@ (COM1: under DOS |
dev/ttyS1 (COM2: under DOS) .

#dev!linE (COM3: under DODS)
’Mev/tly33 {COM&: under DOS)
fdev!tlySﬁ PCI moden
’devittySS PCI modem
*dev/tlySG PCI modem
fdev/ttyS? PCI modem |

Figure A22 — Modem configuration dialog

T —— . _ —_—

l“SIHLL LI — I —
LILD (Linux Loader} is a generic boot loader. Ihere < a

I simple installation which tries to automatically set up LILD |
g to boot Linux (alse DO0S, Windows, and 08/2 if found). For !
more advanced users, the expert ODth" of fers more rontrol

over the installation process. Since LILO does not work in

all cases (and can damage partitions if incorrectly

I installed), there's the third (safe) option, which is to skip

1 1n°talllnu LILO for now. You can always install it later with

L the "liloconfig’” command. Which option would you like?

imple Try to install LILO aulomatlrully
Sl mBlUse expert lilo.conf setup me
=kip Do not install LILO

'

-\.-.,._,_,r__

Figure A23 — LILO installation menu

90

Start the LILO configuration process by selecting ‘begin’ in the expert LILO
installation menu, as shown in Figure A24. Additional parameters can be passed to
the kernel at boot time by filling in the appropriate information as shown in Figure

A2S5 or by editing the lilo.conf file and executing lilo.

z : —————— EKPERT LILO INSTALLATION -)
This menu directs the creation of the LILO config file. lilo.conf. ’
To install, vou make a new LILO configuration file by creating a ncw
header and then adding one or more bootable partitions to the file.
Once you’ve done this, you can select the install option.

Rlternately, if you already have an fetc/lilo.conf, vou may
reinstall using that. If vou make a mistake, vou can always start
over by choosing 'Begin'. Which option would vou like?

tart LILO configuration with a new LILOD header
Add a Linux partition to the LILD config file
fidd an 05/2 partition to the LILO config file
fidd a DOS partition to the LILO config file
Install LILO . \
Reinstall LILO using the existing lilo.coni
Skip LILO installation and exit this menu
View vour current Fetc/lilo.conf
Read the Linux Loader HELP file

OPTIONAL LILO append="<kerncl perameters>™ LINE —————————
Some systems might require extra parameters to be passed to the
kernel. For example, you might need to tell the kernel to use SCSI
emulation mode for an IDE/ATAPI CD-RY drive on fdev/hdc, like this:

hdc=ide-scsi
If vou needed to pass parameters to the kernel when vou booted the
Slackware bootdisk, vou’ll probably want to enter the same ones

here. Most systems won't require any extra parameters. If you
don’t need any, just hit ENTER to continue.

Figure A25 — LILO append line options dialog

91

After the boot time configuration information has been placed in the append
line, select the standard non-frame buffer console, as shown in Figure A26. Figure
A27 shows the target location for the LILO installation. Select MBR for the Master

Boot Record and continue.

= LUNFIGUHL LlLU IU USL }hHHL R CONSOLE? -

LOOkan at /procfdﬂulLOh it seems vour kernel has support for the
Linux frame buffer console. If we cnable this in fetc/lilo.conf. it
will allow more rows and columns of text on the screen and give you a
cool penguin logo at boot time. However, the frame buffer text
console 1s slower than a standard text console. In addition, not
every video card or moni tor supports all of these video modes. Would

vou like to use the frame buffer conxnle, or the standard Linux
console?

E andard
140x480x256
B 00x600x256
ﬂuzfm?ﬁm 56
-&Gx&ﬁﬂx&?k
H00x600x32k
026x168x32k
’Uxﬂoﬂxﬂﬁk

se the standard Linux console

Frame buffer
Frame buffer
Frame buffer
Frame buffer
Frame buffer
Frame buffer
Frame buffer
Prame bulfer

console
console,
console.
console,
console,
console,
console,

hﬁU«éde2a
800x600%256
1024x768x256
640x480x32k
800x600x32k
1024x768x32k
640x430x66k

anaOIC 8003600H6ﬁk

aUUxGUUub&k

(Cancel)

— SELECT LILO THRGET LOCATION —— -
LILO can be installed to a variety of places: the master
boot record of your first hard drive, the superblock of your
root Linux partition (which could then be made the bootable
partition with fdisk), a formatted floppy disk, or thp
master boot record of vour first hard drive. If vou're using |
a boot system such as 05/2°s Boot Manager, vou should use

the Root selection. Please DlLk a target location:

Install to superblock (not for use mith KFS)
Use a formatled floppy disk in lho boot drive

ool
loppy
BR

Figure A27 — LILO target installation location

92

The next step is to identify the root partition. Figure A28 shows the menu
choices. Select Linux, and press enter. Figurc A29 shows the mounted drives.
Recall from Figure 6-11 which partition you selected as root and enter it in as shown

in the following.

I — LHPLhI LlLU lNSiHLLHILUH -

j This menu dlrectb the creation of the LILO conflq file, lilo.conf.
To install, you make a new LILO configuration file by creating a neu i

header and then adding one or more bootable partitions to the file. '

Once you've done this, you can select the install option.

Rlternately, if vou aerndy have an /etc/lilo.conf, you may :

reinstall using that. If vou make a mistake, you can always start i
over by choosing "Begin’, Which option would you like? '

Start LTLO configuration with a ney LILO header

fidd an 08/2 partition to the LILO config file

fidd a DOS partition to the LILD config file

Install LILO

Reinstall LILO using the existing lilo.conf |
Skip LILO installation and exit this menu !

View your current fetc/lilo.conf il
Read the Linux Loader HELP file

e @t e ey

e P P e — T = St TEp T s cis L s owuesrso = =

Figure A28 — Expert LILO installation dialog

e e o I e —— e e e — yrvee e E

— UL PR LINUN PRRELTION —————
These are your Linux partitions:

Device Boot Begin Start End Blocks Id System
/dev/hdal 1 192 1542239+ 831 Linux
/dev/hda3 324 2495 17446598 83 Linux

Hhich one would you like LILO to boot?

Jdey/hdal_

E?"“

Figure A29 — LILO root partition selection dialog

93

Multiple kernels can be defined in the LILO configuration file (/etc/lilo.conf);
therefore a label is important. Figure A30 shows the Linux kemel partition label.
After completing all the above steps relating to installing the LILO loader, scroll to

the Install menu and then proceed to the next section as shown in Figure A31.

|
r—————————— SELECT PARTITION NAME |
Now you must select a short, unique name for thlq |
partition. You’ll use this _name if you specify a |
partition to boot _at the LILO prompt. 'Linux’ might not ||
| be a bad choice. THIS HUST BE R SINGLE WORD. |

|

KCancel> !

e e e e 8 e e K il i i A

Figure A30 — LILO partition identifier dialog

e EXPERT LILO INSTALLATION -
This menu directs the creation of the LILO config file, lilo.conf.
To install, you make a new LILO configuration file by creating a new i1
header and then adding one or more bootable partitions to the file. |
Once you've done this, you can select the install option.
Alternately, if vou already have an fetc/lilo.conf, you may
reinstall using that. If you make a mistake, you can aluays start
over by choosing "Begin'. Yhich option would you like?

- : Start LILO configuration with a new LILO header
i inL Add a Linux partition to the LILD config file

5 5 fidd an 08/2 partition to the LILD config file
fdd a DOS partition to the LILO config file

Reinstall LILO using the existing lilo.conf
Skip LILD installation and exit this menu
View vour current fetc/lilo.conf

Read ihe Linux Loader HELP file

Figure A31 — Final LILO installation dialog

94

The machines constructed have custom configured kernels, so as to increase
the stability of the systems. Configured kernels do not support modules because
drivers have been compiled directly into the kernel. Due to this, the network
configuration utility included in the installation scripts is rather useless. The network
can be configured within the kernel configuration and the network device can be
brought online during the startup process. Building a custom kernel also allows for
all of the drivers for the hardware to have support while devices options are passed
via kernel level parameters passed in during the boot process from the LILO append
option. Another reason for not enabling the network connection at this point 1s that
the machine is not secured. Figure A32 shows the network configuration dialog box.

Select no and continue to the next part of the installation process.

—Pm ——

—— CONFIGURE NETWORK? .
l Hould you like to configure your network?

;
i
i !

— _ S __||
-".:1._'- ST AT e e ey S e Sprer e AP na=: == Fr——e—

Figure A32 — Network configuration utility

95

The next step is to configure the hardware clock. If the BIOS contains the

local time, then the hardware clock is set to local time and the no option should be

selected. Figure A33 shows the hardware clock dialog box.

HARDWARE CLOCK SET TO UTC?

Is the hardware clock set to Coordinated Universal Time i
| (UTC/GHT)? If it is, select YES here. If the hardware |
| clock is set to the current local time (this is how |
i nost PCs are set up), then say NO here. If you are not |
| sure what this is, vou should answer NO here. |

[i][] Hardware clock is sel 1o local time

WES Hardware clock is set to UIC

i
? |
!
|

Figure A33 — Hardware clock dialog box

The last operation that needs to be performed before restarting the machine
and working on the configuration is to set a root password. The root password is an
extremely delicate piece of information. It should not be shared, and should never be
abused. Care must also be taken when selecting a password. The password should
have ASCII and numeric characters. The ASCII characters should be a mix of both
uppercase and lowercase letters. The best selection is to use non-dictionary based
words. Figure A34 shows the root password dialog warning. Make sure that you
select, yes. The install will move to a console where you are prompted to enter in the

password as shown in Figure A35.

96

g et e ey

' ——— WARNING: NO ROOT PASSWORD DETECTED !
There is currently no password set on the system administrator |
account (root). It is recommended that you set one now so that
it is active the first time the machine is rebooted. This is
especially important if you're using a network enabled kernel

and the machine is on an Internel connected LAN. Would vou
like to set a root password?

I ——

e — e i

PERRE e B —————— -

Figure A34 — Root password warning dialog

especially important 1? you're using a network Qnabl'd kcrnel
and the machine is on an Internet connected LAN. Would you
like to set a root password?

Changing password far rool

Enter the new password (minimum of 5, maximum of 127 characters)
Please use a combination of upper and lower case letters and numbers.
{Hew password:

Re-enter new password:

Password changed.

fress [enterl to contxnue

B P S p—r————— P E———— S = e ac—-acs

Figure A35 — Root password input from shell

After entering in the password that has been carefully selected and pressing
enter as the prompt says, the final dialog box from the setup scripts will be displayed.

Figure A36 shows the final dialog from the setup script. It instructs the user to

97

execute the ctrl-alt-delete reboot sequence. This will send run-level 6 to the Linux
init, causing the system to reboot. Be sure to remove the installation CD from drive
or change the bios boot settings to boot from the hard disk first.

f

- — e — —

|
| |
I
I
i

i : SETUP COMPLETE
K System configuration and installation is complete.
You may ERIT setup and reboot your machine with

ctrl-alt-delete,

S
s N

b= e —_—— —

Figure A36 — Setup completion dialog

If LILO was installed correctly, the machine should boot up to a login shell
prompt. At this point, the machine is ready to be configured. If all options were

correctly entered, the system should boot to a login prompt.

A4. Serial Workstation Configuration

At this point in the configuration process, it is assumed that the steps up to this
point have been completed. Mount the installation disk from the appropriate device.
The command is mount /dev/hdX /mnt/cdrom, where X is replaced by the
appropriate letter (a-z). After mounting MDiso, the custom startup scripts can be

copied to the workstation. These scripts were custom written to ensure that only the

98

specialized services needed are running. Execute the following command to copy
these custom startup scripts to the files that control the startup sequence: cp -R
/mnt/cdrom/special/saves/etc/* /ete/. The mail message can be removed by
executing rm /var/spool/mail/root.

The inet super daemon configuration file should be edited to not start the
unwanted services. This can be done by editing the /etc/inetd.conf and placing a “#’
character in front of each line that is unwanted. The files can be edited by executing
either of the following commands: vi /etc/inetd.conf or pico /etc/inetd.conf. After
modifying the configuration file, the server should be restarted by executing kill -
HUP “pidof inetd". To verify that all services have been shutdown, execute the
netstat -an command. This program is capable of showing the network connections,
routing tables, interface statistics, masquerade connections, and multicast
memberships. The “-an switch tells the application to display all listening and non-
listening sockets in numeric form. This command is extremely useful for verifying
what ports have services listening. Finally, the hostname of the machine should be
changed to the appropriate machine name by executing echo
“hostname.okstate.edu” > /etc/HOSTNAME. Figure A37 shows these commands

executed on the workstation and the output of the specific commands.

99

e e — e e e e e e e

Helcome to Linux 2.4.18 {ttySO)

hostname login: root

{Password:

{Linux 2.4.18.

{root€hostname: "N mount /devw/hdb /mnt/cdrom

Imount: block device /dev/hdb is write-protected, mounting read-only
|rooi€hostname: "N cp -R /mat/cdrom/special/saves/eic/= /elc/.
roo{@haslnane: Hrm fetc/rc.d/rc.serial Zelc/re.dfrc.inell Zelc/re.dfre. inel?
{rooi@hostname: " rm /var/spool/mail/root

{rool€hostname: " kill -HUP ‘pidof inetd’

Irool@hostname: “H netstat -an

fictive Internet connections (servers and eslablished)

Prote Recv-0 Send-Q Local Nddress Foreign Address Slate
Nclive UHIX domain sockels {servers and estlablished)

Prolo RefCnt Flags Type State I-Node Path

unix 3 [] DGRAK 38 /dev/log

unix 2 [1 DGRAM 41 i
Hrool@hostname: " # echo "hostname.okstate.edu™ > Zetc/HOSTNARHE

roo l8hos Iname : “H

S S -——= - e e T I zi =TT ST e

Figure A37 — Locking down a serial workstation or server node

All the remote services have been disabled at this point. A new kernel should
be configured so that the network device is activated. It is possible to use a pre-
configured kemel, however because hardware is evolving and improvements are
constantly implemented into new versions of the kernel, a sample configuration file is
provided and it is recommended that the newest kerncl be configured with this file. [f
the reader is unable to compile a kernel correctly, a reconfigured kernel may be used
and can be found in the /special directory of the MDiso. It can also be obtained from

fip://fip.kernel.ore/pub/linux/kemel/v2.4/. At the time MDiso was created, the

current kernel was provided. Copy the kernel source file to the source directory: cp
/mnt/cdrom/special/linux-2.4.18.tar.gz /usr/src/. CD to the /usr/src directory and
extract the kernel source distribution in the current directory and create a link to
access the directory: ed /usr/sre and then tar zxvf linux-2.4.18.tar.gz. To use the

configuration provided on MDiso: In —s linux-2.4.18 linux; cd /usr/src/linux; cp

100

/mnt/cdrom/special/saves/kernel.conf .config;. Figure A38 shows the setup of the

kernel source tree.

|root@hostname: "# mount /dev/hdb /mnt/cdrom
|mount: block device /dev/hdb is write-protected. mounting read-only
|rootBhostname: H cp /mnt/cdrom/special/linux-2.4.18 tar.gz /usr/src/. -
|rootBhostname: ¥ cd /usr/src |
droot®hostname: /usr/srcH tar zxf linux-2.4.18B. tar.gz |
(rootBhostname: /usr/srch mv linux linux-2.4.18

root@hostname: /usr/srcl In -5 linux-2.4.18 linux

{root@hostname: /usr/srch cd linux

root@hostname: /usr/src/linuxkt make menuconfig_

I

|

Figure A38 — Kernel source tree setup

To compile and install the kernel, execute the following commands: make
dep; make clean; make bzlilo. After the kernel has been compiled, reboot the

machine by executing a ctrl-alt-del or the command shutdown —r now.

AS5. SSH Configuration for Gateway Node

The configuration of the gateway node is extremely important. This node
controls all connections to and from the cluster. The only service that should be
allowed from the outside is the secure shell service running on port 22. Many
services may be running on the gateway node. Using iptables as mentioned in the
hardware section allows for connections to be controlled. To configure secure shell

services, download the latest version of SSH from ftp.ssh.com/ssh/. This application

101

provides the encrypted communications for using the cluster remotely. Make sure
that the latest version of the SSH distribution is downloaded because known bugs and
vulnerabilities are usually fixed in current releases of software.

After obtaining the source distribution, extract the source by executing the
following command: tar zxvf ssh-x.x.x.tar.gz where x.x.x is replaced by the most
recent version. After extracting the source distribution, cd into the source directory:
cd ssh-x.x.x. At this point, as with any source distribution, view the README and
INSTALL files. These files give the reader proper information and warnings for
configuring the software. Read carefully and follow the directions provided with the
source installation.

After finishing the installation process for the SSH service, the firewall needs
to be configured. Setting up access to the cluster through the firewall is a powerful
tool to control access to the cluster.

The firewall script, Figure A39, populates the input and output chain that
controls connections to the services. The important feature to understand about the
script is not how it works or what it does, but how to configure it. By default all the
services are blocked. This means that if external services or access is needed, the
iptables firewall must be altered. After completing modifications, the firewall can be
tested by executing the firewall script with the following command.

letc/rc.d/rc.firewall

102

#!/bin/bash

Set these variables
INET_IP="139.78.xx.xx"
INET_IFACE="eth1"
LAN_IP="192.168.0.254"
LAN_BCAST_ADRESS="192.168.0.255"
LAN_IFACE="eth0"

LO_IP="127.0.0.1"

IPTABLES="/usr/sbinfiptables"

Bring up the lan interface
Isbin/ifconfig SLAN_IFACE $LAN_IP
Isbin/ifconfig SLAN_IFACE netmask 255.255.255.0 broadcast 192.168.0.255

Flush the original chains
$IPTABLES -F FORWARD
$IPTABLES -F OUTPUT
SIPTABLES -F INPUT

Set the default policies
$SIPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$SIPTABLES -P FORWARD DROP

Set the rules for the INPUT chain

$IPTABLES -A INPUT -p ALL -m state --state INVALID -j DROP

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

$IPTABLES -A INPUT -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT

Allow cluster to return external ping requests

SIPTABLES -A INPUT -p ICMP -s 0/0 --icmp-type 0 -j ACCEPT
SIPTABLES -A INPUT -p ICMP -s 0/0 --icmp-type 3 - ACCEPT
$SIPTABLES -A INPUT -p ICMP -s 0/0 --icmp-type 5 -j ACCEPT
SIPTABLES -A INPUT -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A INPUT -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

External services (add access to ssh here)

$IPTABLES -A INPUT -p TCP -s 139.78.xx.xx --dport 22 -jf ACCEPT

SIPTABLES -A INPUT -p TCP -s 0/0 --dport 22 -j ULOG # log ssh attempts
SIPTABLES -A INPUT -p UDP -s 0/0 --sport 53 - ACCEPT # allow dns queries

Set the rules for the cluster side, lo interface, and OUTPUT chain (no need to touch)
$IPTABLES -A INPUT -p ALL -i SLAN_IFACE -d $LAN_BCAST_ADRESS -] ACCEPT
$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -j ACCEPT

$IPTABLES -A INPUT -p ALL -d $LAN_IP -j ACCEPT

$IPTABLES -A INPUT -p ALL -d $LO_IP -s $LO_IP -j ACCEPT

$IPTABLES -A OUTPUT -p ICMP -m state --state INVALID -j DROP

$IPTABLES -A OUTPUT -p tcp ! --syn -m state --state NEW -j DROP

SIPTABLES -A OUTPUT -p ALL -s SINET_IP -j ACCEPT

SIPTABLES -A OUTPUT -p ALL -s SLAN_IP -j ACCEPT

SIPTABLES -A QUTPUT -p ALL -s $LO_IP -d $LO_IP -j ACCEPT

Figure A39 — Firewall boot script

103

A6. Computational Slave Node Configuration

The last important area to focus on for administration and maintenance is the
addition of a computational node. When more nodes are added, the following steps
will be mandatory to give the node access to the services running on the server nodes.

The easiest way to explain how to add an additional node to the cluster is by
way of example. At this point, 12 computational nodes are currently in the cluster.
The following dialog is given for adding the 13" computational node.

The first step to adding an additional computational node into the MDbeta
cluster is to connect to the file server node. After logging in as root into the file
server node, cd /tftpboot to the nfsroot directory shares. This location stores all of
the nfsroot mount points that are shared through the network file system. Next, make
a copy of the base computational nodes directory IP by executing the following
command: cp —R 192.168.0.1 192.168.0.13 where ‘13’ indicates the node number.
Create a copy of the PXE batch file by executing the following command: ¢cp
192.168.0.1.bpb 192.168.0.13.bpb where ‘13’ indicates the node number. Edit the
newly created file to reflect the new mount point that was just added: LinuxBoot
"linux.slave.krn" "root=/dev/nfs nfsroot=192.168.0.254:/tftpboot/192.168.0.13
ip=bootp" where ‘13’ again indicates the node number. Edit the /etc/exports file and
add the appropriate line as follows: /tftpboot/192.168.0.13
192.168.0.13(rw,no_root_squash) where both ‘13’s indicate the node number.
Execute a /ete/re.d/re.nfsd restart to rehash network file server and allow for the

node to attach to the newly created mount points.

104

Finally, the IP address needs to be assigned in the /etc/dhepd.conf file. The
DHCP server uses the hardware address of the newly added node in order to assign
the correct address to the correct node. This is only done for bookkceping measures
in case nodal failure occurs. To determine the hardware address of the new node,
power the machine and wait for the hardware address to be displayed. Once the
hardware address is gathered, add the following series of lines in the DHCP
configuration file in order to give the DHCP server permission to assign an IP address
and host to the newly created node:
host md13 {

hardware ethernet X2 XXX XX XXX

fixed-address 192.168.0.13;

option bpbatch-option "192.168.0.13";

option host-name "md13";

}

The DHCP server must now be restarted. Unfortunately, the server does not
support rehashing. Therefore, execute killall “pidof dhepd® and then dhepd to restart
the server. At this point, the node is ready to be booted and will automatically be
entered into the cluster. The final remaining step is to add the correct nodal name and
number of processors into the mpich configuration file located /tftpboot/usr-
common/mpich/share/machines.LINUX. Open this file and add the newly installed
node using the same format as the existing entries. After completing all of the above

steps, an additional node should be operational in the MDbeta cluster.

105

APPENDIX B

INTRODUCTION TO USING LINUX WITH SECURE COMMUNICATIONS

B1. Introduction

Many students are familiar with the term Linux, but some have little or no
experience using this powerful operating system. For those who are not familiar, this
document will be a valuable tool. Those who are familiar with Linux can use this
document as a quick reference. Information provided here is aimed at the systems (and
their configuration) that are used in our lab. Each user is given what is called a shell.
This shell provides the environment for creating and running simulations. Common
shells available are Bourne Again Shell (bash), Korn Shell (ksh), and C Shell (csh).

Manuals for all commands on the Linux workstations can be viewed by using the
man command. This command is one of the single most important tools that can be
found on the Linux machines. If in doubt as to what a specific program does, or how to
execute the specific command in question, check man <command>. With the use of

man, your question will be answered in most instances.

B2. Logging Into Workstations with Putty/SSH
All of the machines running in the MD laboratory at OSU are running a secure

version of telnet called Secure Shell (ssh). Ssh provides a means for encrypting the

106

communications, including usernames and passwords, between two connected hosts.
Connections can be made between Linux hosts or from Windows based machines to
Linux hosts. To connect to the Linux workstation from a Windows machine, use putty.

This application may be downloaded from http:/md.okstate.edu/tools/putty.exe. To

connect to the machines in the lab, open putty, and type in the host name of the machine
that you to which you wish to connect. Please note that it is a requirement to select the
ssh protocol below the host name. After selecting the machine to which you wish to
connect, click on the open button at the bottom. Options for saving sessions and other
features can be found by browsing the application menu on the left. Figure B1 shows the

putty configuration dialog.

* PuTTY Configuration

Figure B1 — Putty configuration dialog

107

Enter your assigned username and password. Keep in mind that all dialog and
communications entered into the putty window are encrypted. Figure B2 shows the putty

communications window,

: "" md.mae.okstate.edu - PuTTY

Figure B2 — Putty communications window

The above communications window provides the mechanism for running
simulations and doing other important tasks on the lab machines running Linux. Once
you have logged into the desired workstation, you will be placed into your user directory.
Each unique user logged into the workstation has his/her own directory that other users
cannot modify.

If a user on a Linux machine desires to connect to another Linux machine,

execute the ssh <usermame>@<host>. This can be useful for quickly checking the

108

status of another application or any other minor task. Note that all communications to the
second host is encrypted, sent to the first host, decrypted, re-encrypted and sent to the

second. Figure B3 shows the execution of ssh within an existing putty terminal.

* md.mae.okstate.edu - PulTY SR sy ' ERSCULE (i i]_‘m_qmg
1 -

b-kyryl-nenys-pypaf-maxax |

CUnning '

gital.mae.okstate.edu.p

name Hon Sep 16 Z002 22:09

usernamefdigical:~§ l

Figure B3 — Connecting between shells

B3. Utilizing the Shell

The shell is an important application on the Linux machine. It is the interface to
the kemnel and allows for applications to be run. The shell is much like the command
prompt in the DOS or Windows environment. The default shell on the Linux machines 1s
bash.

Directory structures are similar to those found in the DOS/Windows environment.
Binary files in the current directory, but not in the user path, (viewable by executing echo

$PATH) require a ./ in front of the binary name in order to be executed. Linux does not

109

use file extension associations for execution. The period “.” is an ASCII character just as
the letter “p” 1s. This means that a file called file.1.2.23 is just as valid as a file named
data.dat. This implies that Linux regards the filename as unimportant. However, binary
files must have “execute” access permissions enabled in order to execute the file. For
more information, type man chmod. Use file extensions that describe the information
that is contained in the file for identification purposes only. For example, a file named
test.c would most likely be C source code.

A list of some of the basic commands that the reader should be familiar with is
shown in Table Bl. Keep in mind that the following list is not exhaustive, but merely

aims to touch on the surface of the commands available on the Linux machines.

Table B1 — List of commonly used Linux commands

cd change working directory

ciear clear the terminal screen

cp copy files or directories

df report filesystem disk space usage
du estimate file space usage

exit terminate the current process

grep print lines matching pattern

Is list directory contents

man format and display the on-line manual pages
mkdir make directories

mv move (rename) files

ping send ICMP ECHO_REQUEST packets to network hosts
ps report process status

pstree display a tree of processes

rm remove files or directories

screen screen manager with VT100/ANSI terminal emulation
tar tar archiving utility

uname print system information

Vi vi text editor (man elvis)

Zip package and compress (archive) files

110

Remember that wildcards may also be used as parameters when executing many
of these commands. The * matches text of any length whereas the ? matches a single
ASCII character. Keep in mind that any of the commands can be reviewed in detail by

executing man <command>,

B4. Transferring Files Under Windows Using psftp

Utilizing the workstation from the shell is an important aspect to master.
However, one function that putty/ssh does not handle is transferring files to and from the
workstations. The file transfer protocol (ftp), much like telnet, is not a viable method of
transferring files because data and passwords are sent in clear text. An alternative to this
method is to use the secure fip protocol, provided by the ssh software suite. A graphical
implementation of sftp, called Cute FTP Pro, has been developed and can be downloaded
from the web. However, this piece of software requires a license and is therefore not
recommended. The recommended software for transferring files is psflp. Psflp is
freeware or free software and can be downloaded from

http://md.okstate.edu/tools/psftp.exe. After downloading and executing this

application, type open <username>@<host> o initiate the connection. Once connected,
regular ftp commands like get and put can be used. If you are unsure what commands to
execute, enter help once login has been granted. Figure B4 shows an example of

transferring a file from a remote workstation to the local machine.

111

aha [
1999

ting to 139.
er ve 3 . & . H Secure 11 {non-commerciald
e clain ve 5 napshot 2-82-21

- -0 du
llemote working dirvectory home/usernane
psftp> 1s
Listing directory Zhonesusernansg

3 usernane user 4896
489¢

rce.filename F
:Zhonesusername/source .filename =2 local:source.filenane

Figure B4 — Transferring files using sfip

BS5. Transferring Files Under Linux Using sftp and scp

To transfer files between different Linux workstations, sftp or scp can be used.
Sftp on the Linux workstations operates in the same manner as psfip. Another alternative
is to use scp. Scp requires less input from the user and just copies the file to the desired
workstation via encrypted communications. Execute scp <source.filename>
<username>@<host>:<destination.filename>. Figure B5 shows an example of a file

transfer between two Linux machines.

112

- md.mae.okstate.edu - PuTTY

ligital.mae.okstate ., ad

10E | 0.0 kB/= TOC: 00:00:01 | 100%

Figure B5 — Transferring files with scp between Linux workstations

B6. Using the Text Editor

There are several different text editors available on the MD workstations. The
two most commonly used text editors on the Linux workstations are vi and pico. Pico,
found in the pine mail distribution, allows for editing of files in a user-friendly format,
similar to the notepad text editor. To open a file in pico, execute pico filename.

&

Instructions are given once the editor has been executed. ‘vi’ is the recommended text
editor for users that plan on spending large amounts of time working in Linux. It was
originally designed to operate smoothly without using large amounts of bandwidth by
employing shortcut keys to help speed up editing text files.

Because pico is simple to use, the usage of this program will not be given. For

those interested in becoming proficient with ‘vi’, download a detailed manual from any

one of the many ‘vi’ text editor web pages.

113

B7. Using Makefiles and Compiling Source Code

Maintaining large and even small source distributions on a Linux machine can be
a daunting task. S.I. Feldman at AT&T Bell Labs designed make in 1975 to automate
and optimize the construction of programs. When building projects, the make application
keeps track of what files have been modified since the last build. This helps to minimize
time spent in compiling source code. Default macros are provided within make to help
manage projects. To display a list of the default macros execute make —p. Figure B6
shows a sample makefile. In the sample makefile, make clean removes all object and
binary files. Executing make builds the project and creates the binary. These scripts can

be modified to suit custom compilation needs.

OBJECTS = main.o
EXEC = EXEFILE

COMPILER = gee
FLAGS =-03
LIBS =

$(EXEC): $(OBJECTS)
$(COMPILER) $(FLAGS) -0 $(EXEC) $(OBJECTS) $(LIBS)

.0
$(COMPILER) -c $(FLAGS) $<

clean:
m *.0
rm $(EXEC)

L

Figure B6 — Sample makefile

114

B8. Running Applications

Running multiple applications or simulations on various machines can be a
cumbersome process. To help alleviate the difficulties encountered during this process, a
series of commonly asked questions and answers have been provided to help the reader

with spawning processes.

How do I run an application?

MD simulations are computationally intensive. Some simulations can take
several hours, if not days, to complete. For this reason, it’s a good idea to run binary files
using the following syntax:

nohup ./<binary> <inputfile> > <outputfile> &

Can [log out after startine an application?

Unless you plan to sit in front of the simulation until it has completed, you need to
log out. The command nohup starts the process and tells it to ignore hang-up signals (or
logout signals). This allows the user to log out of the system without the application
terminating. It is important to logout after you have finished using the workstation so

that the systems are left in a secure mode.

Why do [need the ./?

<binary> is, of course, the name of the simulation application’s binary. The ./
simply refers to the current directory (just like DOS/Win). When you enter the name of

an executable, the operating system looks for the program only in the path described by

115

your $PATH environment variable, which may not include the current directory.

Therefore, when executing a program, it may be necessary to preface the exccutable

name with ./

What is the name of the input file and what should I name it?

Most simulations require an input file. These input files should be labeled with
some type of sequence or with an identifier. In the sample case, the input file was named
<inputfile>. Any name may be selected but care should be taken to help organize the

different simulations that have been constructed and completed.

How can I capture standard output to a file?

You can capture the standard output (stdout) of any program by appending >
<outputfile> to the end of the command you type in. This redirects the output from the
screen to a text file called <outputfile>. All the data written to standard output will go to

this file except for errors, which are still displayed to stdout.

How can I return to the shell after executing an application?

Appending & to the end of an executed command run the command as a
background process. This means that the command prompt is returned so that the user
can issue additional commands, such as viewing the output of the file tail —f

<outputfile> or checking on the status of the process.

116

How do I know if my simulation is still running?

You can check the status of your program (and other programs) using ps aux.
This will display all processes currently running on the system along with other
information. Other useful applications for listing the current processes are pstree and

top.

What if I want to stop or terminate my simulation?

To stop or terminate a running application, use the kill command. To
successfully use the kill command, the process id is needed. To identify the process id,
execute ps aux, top, or pstree. Another alternative to identifying the process id is to
execute pidof <binary>. Keep in mind that you are only allowed to kill processes that

you own.

117

APPENDIX C

USING MDBINFMT LIBRARY VERSION 1.0.0

C1. Introduction

The purpose of this library is to give the programmer an easy to use, user-friendly,
interface to MD data structures and functions for rapid development of MD simulations.
In order to hamess the power of the library, descriptions on the data structures and
functions implemented are given. Source code for the library is available to researchers
interested in expanding the library to include other data structures for different potentials,
but has not been included here in case the code is moved to a commercial state.

The library itself provides a mechanism to easily access, store, and read MD
simulation information during and after the simulation. The data structures can be used
in two ways: as a dynamically allocated array or as a linked list. Files created and
accessed using this library should be named with the extension .md for identification
purposes. There are two important parts to the MDbinfint library, the data structures and
functions. The next two sections explain the data structures and functions, respectively.
The last section in this document gives examples on how to perform common tasks that
are needed during an MD simulation. To implement the library into code, download the

distribution from the MD web or fileserver and make sure the library is linked during

118

compilation and the appropriate header files are included. All code written in the rest of

this document is in italics while examples are bolded to stand out.

C2. MDbinfmt Structures

The structures defined for the MDbinfmt library are made available to help
decrease the overhead while programming molecular dynamics simulations. They can be
used in conjunction with the functions discussed in the next section or without. The

following is a list of the defined structures available in the MDbinfmt library.

Table C1 — Table of available structures in the MDbinfmt library

Structure Name Use of Structure
material t Contains material information
velocity t Contains velocity information
atom _t Contains atom information
atom 11 t Contains atom information in linked list
grain t Contains grain information on atoms in array form
grain 1l t Contains grain information on atoms in linked list form
crystal t Contains crystal information on grains in array form
crystal 1l t Contains crystal information on grains in linked list form
bond 11 t Contains atom bonds information in linked list form
rk_interm_t Temporary information used for Runge-Kutta integration

119

The following pages outline the structures that are defined in the MDbinfmt
library. Information regarding the variable types as well as a description of what they are

used for in the Morse version of the code has been provided.

120

1Z1

MName:

material_t

Synopsis:

struct material _t {

)‘:

Description:

int id;

int poi_type;

int crystal_type:

[loat latiice_constant;
Sfloat atomic_weight;
fleat r_o;

floar d:

Sfloar alpha;

floar cutoff_radius;
float temp_reset_interval;
float next_temp_reset:

This structure contains all relevant data about a material in the Morse
potential as well as runtime data needed for the reset velocities
functionality.

Details:

int id 1s a unique id given to each material.
int pot_type specifies the type of potential used.

0=Morse

int crystal_type specifies the type of crystal structure.

0=Body Centered Cubic. 1=Face Centered Cubic. 2=Hexagonal

Close Packed.
Jloat latice_constant is the constant that specifies the crystal structure

spacing (A).

float atomic_weight is the atomic weight of the element specified (AMLU).
float d is the well depth in the Morse curve or minimum potential (eV).
Jloat r_o is the location of the well depth (A).

float alpha is the parameter that helps to simulate the atom vibration-
related to the debye freq.

floar cutaff_radius specifies the distance for which atom interactions are
considered (A).

float temp_reset_interval specifies the rate the velocities should be reset

float next_temp_reset is a runtime variable that specifies the next time that

the atoms of this type should have their velocities reset (TU).

Name:

velocity_t

Synopsis:

struct velocity_t {

)

Description:

int crystal_id;
int ype:

Sloat siart;
float stop;
floatx, y, z;
float xa, ya, za;
foat xc, ye, z¢;

This structure contains all the information necessary 1o move a crystal
during a simulation.

Details:

int erystal_id is the id of crystal the velocity will be applied.
int type specifies the type of movement that will be applied to the crystal.

|=Linear.
2=Rotational.
3=Linear and Rotational.

float start is the simulation time that the movement will start (TU).
float stop is the simulation time that the movement will stop (TU).
Jfloat x,y,z are vector speeds to move the crystal in a linear type (A/TU).
float xa, ya, za are the angular speed to move the crystal in a rotational

type (rad/TU).
float xc. ye. zc specify the point about which to rotate in a rotational type

(A).

Name:

atom_t

Synopsis:

(44

atom.

struct atom_t {
int crystal_id:
int grain_id;
int material_id;
struct material_t *material:
int type;
double x, v, z;
double dx, dy d=,
double pe;
double px, py, pz:
strucr vk_interm_t *rk_interm,

P

Description:

This structure contains all the information about a single atom and a
pointer to a structure that stores data needed during integration.

Deails:

int crystal_id is the crystal id for the atom.

int grain_id is the grain id for the atom.

int material_id is the material id for the atom.

struct material_t *material is a pointer to the materials structure for this

int type specifies the type of atom.

0O=Boundary Atom

|=Peripheral Atom.

2=Moving Atom.
double x. y, = is the current atom position (A).
double dx, dy dz is the current force on the atom (eV/angstrom).
double pe is the magnitude of the potential energy of this atom (eV).
double px, py. pz is the potential energy of this atom (eV).
struct rk_interm_t *rk_interm is a pointer to a structure that stores
temporary values needed for integration (defined below)

Name:

atom_Il_t

Synopsis:

struct arom_1l_t {
struct atom_Il_t *nexi;
struct atom_[l_t *prev;
struct atom_{l_t *next_in_cell;
int crystal_id;
int grain_id;
int material_id;
struct material_t *material;
int type;
doublex, y, z;
double dx, dy, dz;
double pe;
double px, py, pe;
struct rk_interm_t *rk_interm,

1

Description:

This structure contains all the information about a single atom, as in the
atom_{ but includes additional pointers to handle the linked cell
formulation.

Details:

atom.

struct atom_{l_¢ *next is a pointer to the next atom in the lisL.

struct atom_|l_t *prev is a pointer to the previous atom in the list.

struct atom_|l_t *next_in_cell is a pointer to the next atom in the cell.
Used in cell cutoff

int erystal_id is the crystal id for the atom.

int grain_id 1s the grain id for the atom.

int marerial_id is the matenial id for the atom.

struct material_t *material is a pointer to the materials structure for this

int type specifies the type of atom.
0=Boundary Atom.
|=Peripheral Atom.
2=Moving Alom.
double x, y, z is the current atom position (A).
double dx, dy ,dz is the current force on the atom (eV/angstrom).
double pe is the magnitude of the potential energy of this atom (eV).
double px, py, pz is the potential energy of this atom (eV).
struct rk_interm_t *rk_interm is a pointer to a structure thal stores
temporary values needed for integration.

£l

Name:
grain_{

Synopsis:
struct grain_t {
int id;
int atom_couni,
struct atom_t *atoms;

¥

Description:
This structure is used to organize the atoms within a crystal into separate
grains.

Details:
int id is the unique id for the grain.
int atom_count is the number of atoms in the grain.
struct atom_t *atoms is a pointer to the array of atoms.

Name:
grain_[l_t

Synopsis:
struct grain_{l ¢ {
struct grain_Il_t *next;
struct grain_[l_t *prev;
int id;
struct atom_Il_t *atoms;

1.
F il

Description:
This structure is used to organize the atoms within a crystal into separate

grains. Itis the same as grain_t except that it contains the necessary list
variables.

Details:
struct grain_Il_t *next is a pointer to the next grain in the list.
struct grain_{l_t *prev is a pointer to the previous grain in the list.
int id is the unique id for the grain.
struct atom_Il_t *atoms is a pointer to the list of atoms.

crysial_t

Synopsis:

struct crystal_t {
int size;
double total_pe:
double total_ke;
intid;
inf frame;
int grain_count;
struct grain_t *grains;

b

Description:

Structure used to organize and categonze atoms in the simulation.

e

- Crystal_li_t

Synopsis:

struct crystal_Hl_t{
struct crystal_ll_t *next;
struct crystal_ll_t *prev;
double 1otal_pe;
double total_ke;
int id:
int frame;
struct grain_il 1 *grains;

}

Description:

Structure used to organize and categorize atoms in the simulation. It is the
same as crystal_t except that it contains the necessary list variables.

Details:
int size is the size in bytes that this entire crystal will use in the binary file Details:

vTl

double total_pe is the total potential energy of the atoms in the crystal.
NOTE: This 15 not populated by MDbinfmt

double total_ke is the total kinetic energy of the atoms in the crystal
NOTE: This 1s not populated by MDbinfmt

int id is the unique id for the crystal.

int frame is current frame number the crystal is in.

int grain_count is the number of grains in the array.

struct grain_t *grains is a pointer to the array of grains.

format. struct erystal_{l_t *next is a pointer o the next crystal in the lis.

struct crystal_Il_t *prev is a pointer to the previous crystal in the list.

double total_pe is the total potential energy of the atoms in the crystal.
NOTE: This is not guaranteed 1o be populated

double total_ke is the 1o0tal kinetic energy of the atoms in the crystal
NOTE: This is not guaranteed to be populated.

int id is the unique id for the crystal.

int frame is the frame number that this crystal is in.

struct grain_Il_t *grains is a pointer the the list of grains.

STl

. bond Il 1

Synopsis:
struct bond I _t {
struct bond _ll_t *next;
struct atom_Il_t *atom |,
struct atom_Il_t *atom2;
}I.
Desceription:
This structure defines a list of pair wise bonds between atoms.

Details:
struct bond _ll_t *next is a pointer to the next bond in the list.
struct atom_ll_t *atom/ is a pointer to one atom in the bond.

struct atom_Il_t *atom2 is a pointer to the other atom in the bond.

Name:

rk_tnterm_t

Synopsis:
struct rk_interm_t |
double x0,y0,z0;
double px0,py0,pz0:
double ricx,rky,rkz;
double drix.drky.driz,
Iy
Description:

This structure simply stores temporary data needed during integration. It
is used inside each atom.

Details:
double x0,y0,z0 is the initial position of the atom before integration begins.
double px0,py0,pz0is the initial potennal of the atom before integration
begins.
double rix.rky,rkz are intermediate Runge-Kutta variables.
double drkx,drky,drkz are inlermediate Runge-Kutla variables.

C3. MDbinfmt Functions

In order to populate the structures with atom information stored in the data file,
several functions were created. The following table gives a list of the available functions
in the MDbinfmt library. Following the table, detailed explanations have been given so
that the programmer will be able to implement the functions to help decrease some of the

programming overhead.

Table C2 — Table of available functions in MDbinfmt library

Function Name

Use of Function

get _size of crystal
get size of crystal 1l
binfmt_read header
binfmt read id
binfmt next id
binfmt read frame
binfmt get frame max
binfmt read materials
binfmt_read velocities
binfmt read crystal
binfmt_read crystal Il

binfmt_read cells

binfmt write header
binfmt write materials
binfmt_write velocities
binfmt write crystal
binfmt_write_crystal 11
binfmt write cells
binfmt append crystal
binfmt append crystal [l
binfmt_close

Used internally for MDbinfmt
Used internally for MDbinfmt

Read header information from file
Read crystal id
Read next crystal id
Read current frame into structure
Get max number of frames
Reads and populates structure
Reads and populates structure
Reads and populates structure
Reads and populates into linked list
Reads cell cutoff information into cell structure
Writes header information to data file
Writes materials structure to data file
Writes velocities structure to data file
Writes crystal structure to data file
Writes crystal linked list structure to data file
Writes cell cutoff information into cell structure
Writes crystal to end of data file

Writes crystal to end of data file
Closes the binary data file

126

LT1

Name:

get_size_of crystal

Synopsis:
int get_size_of crystal (struct crystal_t crystal);

Description:
The purpose of this function is to calculate the size of the crystal o be
used in aligning the data for wniting the file. This function is used
internally to MDbinfmt.

Details:
struct crystal _t crysials is a pointer to the crystal.

Retum Value:
Crystal size is returned.

Name:

get_size_of _crystal_ll

Synopsis:
int get_size_of crystal Il (struct crystal_ll_t *crystal),

Description:
The purpose of this function is to calculate the size of the crystal to be
used in aligning the data for writing the file. This function is used
internally to MDbinfmt.

Details:
struct crystal_ll_t *crystal is a pointer to the crystal.

Return Value:
Crystal size is returned

Name:
binfmt_read_header

Synopsis:
int binfmi_read_header (char *fname, floar "1otal_runtime, floar *rk_res.
Jloat *output_res, int *relax_iterations).
Description:

The purpose of this function is to open the simulation file and read the
header information from the file. This is also the function that verifies that
the simulation file was created with the same version of the library.

Details:

char *fname is null terminated string of the file 1o read.

Sloat *total_runtime is the total uime for the simulation o run (TU).

Sfloar *rk_res is the integration resolution to use during the simulation
(TU)

Sfloat *output_res is the frequency at which to output frames during the
simulation (TU).

int *relax_iterations is the number of iteration to run the relaxation before
beginning the simulation.

Retum Value:
0 1f successful.
BINFMT_ERROR_FILE_NOT_FOUND if the file was not found.
BINFMT_ERROR_INVALID_FILE if the file was not created using the
correct version.
BINFMT_ERROR_FILE_OPEN if the file was already open.

871

Name:
binfmi_read_id

Synopsis:
int binfmt_read_id (int *id);

Description:
This function will read the ID of the next block of data in the file format
and return it in id. The file must be aligned to an 1D for this function to
work properly.

Details:
int *id is the address of the variable that will contain the [D of the next
block of data in the file.

Retum Value:
0 if sucessful.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an ID
BINFMT_ERROR_FILE_NOT_QPEN if the file is not open.

6cl1

Name:
binfint_next_id

Synopsis:
int binfmt_next_id {int *id).

Description:
This function will skip over the current block of data and read the ID of
the next block of data and return it in id. The file must be aligned to a
block for this function to work properly.

Details:
int *id is the address of the variable that will contain the ID of the next
block of data in the file.

Retum Value:
0 if sucessful.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to a block
BINFMT_ERROR_FILE_NOT OPEN if the file is not open.

Name:

binfmt_read_frame

Synopsis:
int binfini_read_frame (int *count, struct crystal_t **crystals, int

Sframe_id);

Description:
This function will read all the crystals associated with the specified frame
into a dynamically allocated array of crystals and retum the number of
them in count. Itis suggested that this function be called immediately
after opening the file to be sure that all the crystals associated with the
specified frame are read. This function will read to the end of the file and
therefore the file should be closed after this call.

Details:
int *count is a pointer to the number of crystals read from the file.
struct crystal_{ **crystals is a pointer to the array of crystals read from the
file.
int frame_id is the id of the frame for which to read all the crysials.

Return Value:
0 if successful.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an ID.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

0tl1

Name

Fal 801-5

binfmt_get_fram_max

Synopsis:
int binfmt_get_frame_max (int *max);

Description:
This function is useful for the post processing applications where the final
frame returned is the max frame number. Keep in mind that the relaxed
crystal is found at 0 and the non-relaxed crystal resides at frame 1.

Details:
int *max is a pointer to an integer where the maximum frame will be
retumed

Return Value:
0 if successful.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an 1D
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open

binfmt_read_materials

Synopsis:
int binfmi_read_matcrials (int *count, struct material_t **mais);

Description:
This function will read an array of material definitions into a dynamically
allocated array of materials and return the number of them in counr.

Details:
int *count is a pointer 1o the number of matenial definitions read from the
file.
struct marerial_t **mats is a pointer to the array of material definitions
read from the file.

Return Value:
0 if successful.
BINFMT_ERROR_WRONG_BLOCK_TYPE if this function was called
when the last block ID read was not BLOCK_MATERIALS,
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an [D.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open,

I€1

Name:
binfmt_read_velocities

Synopsis:
int binfmt_read_velocities (int *count, struct velocity _t **vels);

Description:
This function will read an array of velocity definitions into a dynamically
allocated amray of velocities and return the number of them in count.

Details:
int *count is a pointer to the number of velocity definitions read from the
file.
struct velocities_t **vels is a pointer to the amay of velocity definitions
read from the file.

Return Value:
0 1f successful.
BINFMT_ERROR_WRONG_BI.OCK_TYPE if this function was called
when the last block ID read was not BLOCK_VELOCITIES.
BINFMT_ERROR_NOT_ALIGNED if the file 1s not aligned 10 an ID.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

binfmt_read_crystal

Synopsis:
int binfint_read_crystal (struct crystal_t *crystal),

Description:
This function reads the next crystal from the file and returns the
information in the crystal structure.

Details:
struct crystal_t *crystal is a pointer to the crystal amray definitions read
from the file.

Return Value:
0 if successful.
BINFMT_ERROR_WRONG_BLOCK_TYPE if this function was called
when the last block ID read was not BLOCK_CRYSTAL.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned 1o an ID.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

Tel

Name:
binfmt_read_crystal_ll

Synopsis:
int binfmt_read_crystal_ll (struct crystal_li_t *crystal);

Description:
This function reads the next crystal from the file into a linked list structure
and returns the information in the crystal structure.

Details:
struct crystal_t *crystal is a pointer Lo the crystal array definitions read
from the file.

Retum Value:
0 1f successlul.
BINFMT_ERROR_WRONG_BLOCK_TYPE if this function was called
when the last block ID read was not BLOCK_CRYSTAL.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an [D.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

Name:
binfmt_read_cells

Synopsis:
int binfmi_read_cells (int *count, struct cell_t **cells);

Description:
This function will read an aray of cell definitions into a dynamically
allocated array of cells and return the number of them in count

Details:
struct cell_t **cell is a pointer to the cell array definitions read from the
file.

Return Value:
0 if successful.
BINFMT_ERROR_WRONG_BLOCK_TYPE if this function was called
when the last block 1D read was not BLOCK_CELL.
BINFMT_ERROR_NOT_ALIGNED if the file is nol aligned to an ID.
BINFMT _ERROR_FILE_NOT_OPEN if the file is not open,

£el

Name:
binfmt_write_header

Synopsis:

int binfmi_write_header (char *fname, float total_runtime, float rk_res,
foat output_res. int relax_iterations);

Description:
The purpose of this function is to open the simulation file, or create it if it
is not already created, and write the header information to the file. This
function also writes the correct header so that the version of the library
will be identified for this file.

Details:
char *faame is null terminated stning of the file to read.
float total_runtime 1s the total time for the simulation to run (TU).

float rk_res is the integration resolution to use during the simulation (TU).

flear ouipui_res is the frequency at which to output frames during the
simulation (TU).

int relax_iterations is the number of iteration to run the relaxation before
beginning the simulation.

Return Value:
0 if successful.
BINFMT_ERROR_FILE_OPEN if the file was already open.
BINFMT_ERROR_FILE_NOT_FOUND if the file could not be created.

binfint_write_materials

Synopsis:
int binfmi_write_materials (int count, struct material_t *mais);

Description:
This function will write the number of amays passed in by count of
material definitions into the data file.

Details:
int count is the number of material definitions read from the file.
struct material_t *mats is a pointer to the array of material definitions to
be written to the file.

Retum Value:
0if successful.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

vEl

binfmt_write_velocities

Synopsis:
int binfimt_write_velocities (int count, struct velocity_t *vels);

Description:
This function will write the number of arrays passed in by count of
velocity definitions into the data file.

Details:
int count is the number of material definitions read from the file.
struct velocities_t *vels is a pointer to the array of velocity definitions to
be written to the file.

Return Value:
0 i successful,
BINFMT_ERROR_FILE_NOT_OPEN if the filc is not open.

Name:
binfmt_write_crystal

Synopsis:
int binfmt_write_crystal (struct crystal_t crvstal);

Description:
This function writes the crystal to the file.

Details:
struct crystal_t crystal is a pointer to the crystal array definitions to be
written to the file.

Return Value:
0 if successful.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

=

Sel

Name:
binfini_write_crystal_Il

Synopsis:
int binfmt_write_crystal_ll (struct crystal_{l_t *crystal):

Description:
This function writes the crystal to the file from a linked list structure,

Details:
struct crystal_t *crystal is a pointer to the crystal array definitions to be
written to the file.

Return Value:
0 if successful.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

Name:
binfint_write_cells

Synopsis:
int binfmt_write_cells (int count, struct cell_t *cells);

Description:
This function writes the number of cells passed in by count from the
dynamically allocated array of cells to the data file

Details:

struct cell_t *cell is a pointer to the cell array definitions to be written to
the file.

Return Value:
0 if successful.
BINFMT_ERROR_FILE NOT_OPEN if the file is not open.

91

Name:
binfmi_append_crystal

Synopsis:
int binfme_append_crystal (char *fname, struct crystal_t crystall;

Description:

This function should be used to append a crystal to the end of the data file.

Details:

char *fname is a null terminated string containing the file name to append
data.

struct crystal_t crystal contains the crystal to append to the file.

Return Value:
01f successful.
BINFMT_ERROR_FILE NOT_OPEN if the file is not open.

MName:
binfmt_append_crystal_l

Synopsis:
int binfmi_append_crystal_ll (char *fname, struct crystal Il _t *crystal);

Description:
This function should be used to append a crystal in linked list form to the
end of the data file.

Details:
char *fname is a null terminated string containing the file name to append
data.
struct ervstal_{l_t *crystal contains a pointer in linked list form of the
crystal to append to the file.

Return Value:
0 if successful.
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

LEd

binfmt_close

Synopsis:
int binfmt_close ().

Description:
This function should be used to close the file after every write operation.
This will ensure that the data file is not corrupted.

Return Value:
0 1f successful,
BINFMT_ERROR_FILE_NOT_OPEN if the file is not open.

C4. Using the MDbinfmt Library
Details on the operation and usage of the MDbinfmt library may not be
completely clear after outlining the structures and functions. Examples on how to

accomplish some important tasks have been provided.

How can the crystals be read into a linked list?

There are 4 important steps to performing this operation

1. Open the file and read in the header data. If you don’t want the header data, simply
pass a temporary variable to accept the value then discard it.
binfmt read header(filename, &runtime, &rk_res, &out res,
&relax_iterations);
binfmt close();

2. Find a crystal in the simulation file. A simple test using the block constants can be
used to determine this. You may want to continue the search if your simulation
contains more than one crystal.

binfmt_read header(filename, &runtime, &k _res, &out_res,
&relax_iterations),
binfint_read id(&id);
while (id!=BLOCK_EOF) {
if id=—=BLOCK _CRYSTAL) {
binfmt read _id(&id);
Jelse binfmt_next _id(&id);
/
binfmt_close();

3. Allocate memory for the crystal. This needs to be done for each crystal that you read.

struct crystal_ll t *cur_crystal=NULL;
crystals=(struct crystal_ll_t) malloc(sizeof(struct crystal_ll_t));
((struct crystal_Il_t*)*crystals)->next=NULL;
((struct crystal Il t*)*crystals)->prev=NULL;
binfmt_read_header(filename, &runtime, &rk res, &out res,
&relax_iterations);
binfmt read id(&id);
while (id!=BLOCK _EOF) {
if (id==BLOCK_CRYSTAL) {
if (cur_crystal) {
cur_crystal->next=(struct crystal_ll_t*)

138

malloc(sizeofistruct crystal_ll t));
cur_crystal->next->prev=cur_crystal;
cur_crystal=cur_crystal->next;
cur_crystal->next=NULL;

Jelse {
cur_crystal=*crystals;

/
binfmt_read_id(&id),;
} else binfmt_next_id(&id);

}
binfint_close();

4. Call the library function to actually read the data.
struct crystal_ll_t *cur_crystal=NULL;
erystals=(struct crystal Il t) malloc(sizeof(struct crystal Il _t));
((struct crystal_ll_t*)*crystals)->next=NULL;
((struct crystal_ll_t*)*crystals)->prev=NULL;
binfimt_read_header(filename, &runtime, &rk_res, &out_res,
&relax_iterations),
binfmt _read id(&id);
while (id!=BLOCK EOF) {
if (id==BLOCK _CRYSTAL) {
if (cur_crystal) {
cur_crystal->next=(struct crystal Il t¥*)
malloc(sizeof(struct crystal Il t));
cur_crystal->next->prev=cur_crystal;
cur_crystal=cur_crystal->next;
cur_crystal->next=NULL;
}else{
cur_crystal=*crystals,
/

binfmt_read_crystal_ll(cur _crystal);
binfmt_read id(&id);
} else binfmt_next_id(&id);
/
binfmt_close(),

How can the atoms be traversed once they have been loaded into a linked list?

1. Define traversal variables. You need some pointers to keep track of there you are in
the list.
struct crystal Il t *cur_crystal;
struct grain_Il_t *cur _grain;
struct atom_ll_t *cur_atom;

139

2. Traverse through every crystal.
cur_crystal to the crystal of interest.
struct crystal Il t *cur crystal;
struct grain_Il_t *cur_grain;
struct atom Il _t *cur_atom;
cur_crystal=*crystals;
while (cur_crystal) {
cur_crystal=cur_crystal->next;

/

3. Traverse through every grain in each crystal.

struct crystal_ll_t *cur_crystal;

struct grain_ll_t *cur _grain;

struct atom Il t *cur_atom,

cur_crystal=*crystals;

while (cur_crystal) {
cur_grain=cur_crystal->grains;
while (cur_grain) {

cur_grain=cur_grain->next;

/

cur_crystal=cur crystal->next;

/

4. Traverse through every atom in each grain of each crystal.
struct crystal Il t *cur crystal;
struct grain_Il t *cur_grain;
struct atom_Il_t *cur_atom;
cur_crystal=%*crystals;
while (cur_crystal) {
cur_grain=cur_crystal->grains,
while (cur_grain) {
cur_atom=cur_grain->atoms;
while (cur_atom) {
cur_atom=cur_atom->next;
/
cur_grain=cur_grain->nexit;
7,

cur_crystal=cur_crystal->next;

/

5. Perform whatever operation you need to on each atom. In this example the potential
energy variable of each atom is set to 0.
struct crystal_Ill_t *cur crystal;
struct grain_Il t *cur_grain;
struct atom_Il_t *cur atom;
cur_crystal=*crystals;

140

VITA gu
Mathew S. Lee
Candidate for the Degree of
Master of Science

Thesis: DEVELOPMENT OF A USER-FRIENDLY MOLECULAR DYNAMICS (MD)
SIMULATION SYSTEM FOR NANOMETRIC CUTTING AND TRIBOLOGY

Major Field: Mechanical Engineering
Biographical:

Education: Graduated from Putnam City North High School in 1996;
received Bachelor of Science degree in Mechanical Engineering from
Oklahoma State University in December 2000; completed the requirements
for the Master of Science degree in Mechanical Engineering at Oklahoma
State University in December 2002.

Experience: Research Assistant for Dr. Ranga Komanduri at Oklahoma State
University from January 1999 - December 2002.

Teaching Assistant for Dr. Gary Young at Oklahoma State University from
January 2002-December 2002.

