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CHAPTER 1

INTRODUCTION

1.J. Exploring Manufacturing Processes in the Nano Region

As technology advances from micro to nano scale, there will be an increase in the

need for the development of new manufacturing techniques for ultra small devices. In

order to create new manufacturing techniques, an understanding of material properties at

the nano level is needed. Two approaches can be used to explore these important areas,

namely, experimental and theoretical.

Equipment limitations exist with current experimental techniques at thc scale

future technology demands. In many cases, expcri ments perfOJ1l1ed are di fricu ~t to

recreate because geometries and crystaJlographic orientations of the specimen used

carmot be replicated easily without orientation characterization by x-ray di ffraction

measurements. In addition to the difficulties encountered during setup, the specimens

used in these tests are expensive and not reusable.

Theoretical approaches to simulating micro, macro, and full-scale phenomenon

can be accomplished by cont~nuum methods such as the Finite Element Modeling (FEM)

and Finite Difference Methods (FDM). The basics of FEM were developed by HrcnLkoff

[1] and Courant [2] in the early 1940's. However, the FEM method was not formally

proposed until the late ]950's by Argyris and Kelsey [3] and Turner et al. [4].



As the scale of the simulation approaches the nano scale, materials must be

modeled as discrete points rather than a continuum. A technique, called molecular

dynamics (MD) [5,6] is capable of modeling the molecular interactions so that

simulations can be perfonned at the nanometer scale. MD provides a mechanism for

studying the molecular interactions by numerically modeling and simulating material

interactions. MD provides a tool that can be used to explore areas that are physically

difficult, i[not impossible with current experimental teclmologies.

MD simulation techniques can be applied to a large number of engineering

problems. The downside to the teclmique is the computational power required to perfonn

a simulation and overcoming the difficulties associated with the development and

software coding of interaction potentials. Also, software created for the end user should

be easy to use. To distribute the large computational overhead, Beowulf clusters, the

supercomputers of the future, can be implemented to rapidly conduct large-scale

simulations, yet aHow multiple small simulations to be run simultaneously.

1.2. Molecular Dynamics (MD) Simulations

Molecular Dynamics (MD) simulations are highly coupled systems that foHow

Newton's equations of motion. Simulations range in size from a few hundred to several

thousand atoms. Each atom is described by 6 coupled equations, 3 coordinate and 3

momenta [7]. To calculate new positions of atoms with respect to time, a Runge-Kutta

differential integration [8] routine is used. Forces of the interactions on the atoms are

needed several times during the differential integration process and arc computed as the

derivative of the interatomic potential.
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1.2.1. Potential Energy Functions

The interatomic potential embodies the governing mathematical model for MD

simulations. It aims to mimic or represent the physical and chemical interactions of the

atoms such as lattice spacing" themlOdynamic properties, bond interactions, molecular

weight, equilibrium position, and more. Complexity of the potential ranges from simple

pair-wise interactions to complex multiple body interactions with electron embedding

energIes. These empirical interatomic potentials are implemented to provide a

mechanism for calculating an ensemble of atom trajectories in a reasonable amount of

time. The accuracy, usually related to the complexity of the potential, dictates the quality

of the final simulation. The alternative to the empirical potential is to solve the

theoretical interactions, which are extremely complex but have been approximated by

means of ab initio, or first principle calculations [9]. Unfortunately they are extremely

time-consuming to calculate even with the fastest supercomputers to date.

Many empirical interaction potentials have been developed. One common pair

WIse potential used in MD simulations is the Morse potential. This potential was

originally derived for dimers but has been shown to adequately model the interactions

between atoms in some face centered cubic (FCC) systems [l 0]. The functional form of

the Morse potential is VI' = De -2a(r-'cq) - 2De··u
(r-,,,,) where the parameters D, a, and r

Clf

are defined by fitting physical and chemical properties of the material. Another simple

pair-wise potential is the Leonard-Jones potential, originally defined for inert gasses with

van der Waals-type cohesion forces [11, 12]. The functional form of this potential IS

Vr = 4&((%'r -(%,y) where the adjustable parameters are £ and CJ".
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The limitation of the pair-wise potential is that it models the interaction between

two distinct atoms and neglects to account for contributions of the remaining atoms. In

other words, each pair of atoms is considered to be in isolation from the entire system for

each calculation. Tersoff [13] developed a potential aimed at considering local

interactions and handling angular effects on neighboring atoms.

Other advanced potentials, described below, can be used to account for and

approximate the complexities of nature. Nonetheless, these atomic interactions will sti 11

be empirical. The embedded atom model (EAM) and modified embedded atom model

(MEAM) are two empirical potentials that have been developed and show promise for

more accurately replicating the behavior of atoms in the nature. However, these

potentials are extremely complicated in comparison to the pair-wise potentials and

require significantly more computational time. For a detailed synopsis of the EAM and

MEAM potentials refer to the Ii terature [14-16].

Replacing the trajectory calculation with other methods to speed up the simulation

process is a viable altemative. One such method, shown to give good results, is Monte

Carlo (MC) simulations [17]. This method neglects the calculation of atom trajectories

by randomly moving atoms until the minimum potential has been acquired. These

random moves are monitored by criteria such as the number of accepted to rejected

random moves. Artificial Intelligence (AI) is another promising alternative to calculating

the atomistic interactions during a simulation. This method employs training a neural

network [18] from first principle calculations or MD potential calculations, and then

using the neural network to predict interactions.
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1.2.2. Moving, Boundary, and Peripheral Atoms

In MD simulations of nanometric cutting and tribology, there are three types of

atoms (19]. The first is, boundary atoms, which helps to provide stability to the atomic

structure of the system by simulating the surrounding bulk structure. Interactions of

boundary atoms with other boundary atoms are neglected while interactions between

different atom types are computed. The boundary atom layer should be thick enough so

that interactions of the second nearest neighbor atoms are not neglected. The second type

is the moving atom upon which no restrictions are placed. It is fTee to move in any

direction with any velocity as long as it satisfies the trajectory calculation from the

Runge-Kutta dilfferential integration. The third type is the peripheral atom, also called

thennostat atom, which facilitates simulating the properties of the bulk material by

providing a mechanism for transferring heat generated from the moving atoms in the

simulation to the bulk.

These three types of atoms are used to classify and identify different regions

within the simulation. When perfonning MD simulations, there are many energy related

calculations for a given atom per integration step. This means that, as the number of

atoms involved in the simulation increases, the processing time required increases

immensely. Atoms that are not essential to the simulation, such as those lying in the

bulk, should be removed or their effect not considered decreasing computational time.

However, effects from these removed atoms must not be neglected. In many nanometric

cutting and tribology simulations, large crystal deformations occur, which generates large

amounts of heat that must be transfeITed to the bulk and removed away from the process
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interaction region. Figure 1.1 shows a typical MD simulation scheme for nanometric

cutting.

Dir~ction of clItting
...

"

.. ,

• - Boundary aloms

e·I'miph~t.l1 atoms
o -M•.1vinF; ,lrOIllR

x

7.

CleilC<U) e
i1n.Sl~

)---i~ Y

Figure 1.1 - Typical nanometric cutting simulation with atom types labeled

1.2.3. Numerical Simulations

A powerful feature of numerical simulations is tbe ability of tbe programmer or

user to control every aspect of the simulation. Information can be collected during and

after the simulation to help the researcher identify important phenomenon. Modification

of input parameters, materials, geometries, velocities, and other important input

parameters can be accomplished by using specially designed pre-processing software that

is used to generate the input files for the desired MD simulation of nanometric cutting

and tribology.

Another powerful feature of numerical simulations is the abil.ity to interpret the

results by viewing, rotating, animating, and analyzing the simulation after it has been

completed. This post-processing is accomplished by storing simulation infonnation, such

as coordinate data, forces, and energies, into a file that can be used by post-processing
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software. The animations created by the simulation output files give the researcher a

glimpse into areas of molecular interactions that are virtually impossible to explore using

experimental techniques.

1.3. Paranel Processing Approach to Solving MD Simulations

One of the drawbacks to MD simulation relates to the time required to compute a

simulation. Real time simulation durations currently being performed are on the order of

a few pica seconds. This requires simulation speeds to be many orders of magnitude

greater than what is commonly used at the macro level. There are several ways to

decrease the computational overhead when perfonning MD simulations of nanometric

cutting and tribology. The first is to use parallel processing or distributed computing.

The second is to employ new techniques and algorithms for solving problems that operate

faster than the current algorithms employed. These new techniques include

implementing algorithms based on the linked cell method (20], optimized integration

routines [8], and multi-step time based regions [21,22].

Researchers have demonstrated that the use of parallel processing decreases the

amount of time spent solving complex mathematical problems, such as MD simulatjons

[23, 24]. Parallel processing provides a mechanism for distributing different parts of the

simulation between multiple processors. However, implementing a code for perfonning

parallel simulations requires an enonnous investment of time for developing and testing.

The programmer must be knowledgeable with hardware, operating systems, coding, and

MD. Implementations that decrease the programming overhead, such as the adhara

library [25], should be explored before effort is spent creating parallel versions of MD.
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Beowulf clustering [26] employs one fonn of the parallel processing paradigm and allows

for the construction of rather inexpensive massively parallel supercomputer that fits

budgets for some research groups, universities, colleges, and even some small businesses.

This clustering technique can be constructed or purchased from a growing number of

computer vendors. Other altematives to the parallel possessing paradigm can be explored

by purchasing supercomputers that are extremely expensive and are rapidly becoming

obsolete by the Beowulf clustering technique.

1.4. Background Information and Review of MD at OSU

The initial work on nanometric cutting by means of MD came from the

pioneering work of Belak et al. [27] at Lawrence Livennore National Labs (LLNL).

They simulated the orthogonal metal cutting process of a copper workpiece using a

diamond tool. Soon thereafter, Dr. Ranga Komanduri and Dr. Llonel Raff created a

cross-disciplinary collaborative research group at Oklahoma State University aimed at

studying nanornetric cutting and tribology.

The original collaborative work started with attempting to model the formation of

diamond coatings by chemical. vapor deposition (CVD). Since that time, the MD

research group has coded the Morse, Tersoff, EAM, and MEAM potentials whi Ie

simulating a number of different processes. Some of these processes include the study of

atomic scale friction [28], tension [29], indentation and scratching [30], orthogonal

clltting of Si [31], length restricted molecular dynanlics [32], effect of tool geometry in

Olthogonal cutting [33], exit failure [34], cutting through grain boundaries [35], crystal

orientation and direction of cutting in orthogonal cutting [36], extrusion, grinding, and
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milling using multipoint tools. All of these previous studies were conducted in 20 under

plain strain conditions. Recently, 3D animation capabilities have been introduced and

work is continuing to explore these areas.

Another area of interest is to expand current simulation techniques to new

methods of simulation, such as MC and neural networks trained by ab initio data to

develop potentials. These recent explorations are aimed at decreasing the computational

time required to perfom1 a simulation in the fonner case and develop more accurate

potentials in the latter. The MC method replaces the calculation of the trajectories by

using random numbers along with minimum potential criterion to calculate the next

position of the atoms. With this method, simulating a cutting speed is not intuitive.

Thennal gradients or other means must be used to relate the cutting speed to the cun~ent

simulation. The MC method has been programmed using the recently developed llser

friendly system and helped to show the usefulness of the designed system.

1.5. Thesis Outline

To facilitate m the creation of a serial or parallel computational simulation

software, a user-friendly system must be created. 11 should provide the computational

backbone, hardware, operating system, user interface (for end-user simulation), and a

reference for the simulation software. This implies that the tenn user-friendly extends

beyond the exterior interface that the users utilize for creating and running simulations.

A user-friendly system for MD can be defined at several distinct levels. The most

obvious one is that which the user of the software encounters, namely, the end-user tier.

This tier encompasses the visible interface and usage of the applications. The
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applications should be easy to use and provide for the creation, simulation, and animation

of nanometric cutting and tribology MD simulations. Another important level is the

software programming tier. This level provides a mechanism for creating and modifying

simulation software. The last level is the administration tier. This provides the hardware

and computational capabilities that the programmer needs to solve MD simulations in

both serial and parallel modes.

In this chapter, a general introduction to MD is given. Various simulation

approaches for nanometric cutting and tribology simulations are discussed. Simulation

potential selection, alternative simulation methods, and improvements to simulation

processes are covered. Introduction to parallel processing, Beowulf clustering, and the

need for these tools at decreasing the required simulation clock time are given. A brief

discussion on the origin of MD as well as the history of MD simulations within the

coLlaborative research group here at Oklahoma State University is given so that future

researcher will have an understanding of the background of the available knowledge as

well as a baseline for the previoLlsly written software.

In Chapter 2, the problem statement is given. The approach Lo this thesis is

different than the traditional document in that the aim is to transfer working knowledge to

the reader. This allows the researchers interested to grasp impoltant issues whi Ie

providing a manual on using the system, performing MD simulations, and creating new

MD simulations of nanometric cutting and tribology. Identification of the problem is

given as well as some background information on the multiple approaches used to create

the solution.
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Chapter 3 approaches the solution from the administrator's perspective and gives

an overview of the hardware aspects of parallel processing. Details include infonnat!on

on the different hardware architecture options to the operating system. The goal of this

section of the user-friendly system is to provide the parallel processing and hardware

capabilities needed to develop and run simulations. Issues involved with implementing

the parallel processing as the basis for the hardware aspects of the user-friendly system

such as the security issues are discussed. Past implementations are discussed with a

focus on the construction of a powerful Beowulf cluster.

Chapter 4 approaches the solution from the programmer's perspective by giving

information on the tools created to supplement some of the programming overhead.

Further discussion on parallel processing options and techniques are given. The goal of

this section of the user-friendly system is to develop the necessary tools for the

development of future simulations. The tools, library functions and structures, and

functionality provided by the user-friendly system arc discussed in a context of furthering

the development of nanometric cutting and tribology simulations in the future.

Chapter 5 approaches the solution from the end user's perspective. Overview of

the user-friendly system operation is provided. Implementations of the pre-processing

and post-processing software are discllssed.

Chapter 6 extends the depth of the end-users view of the system by providing an

example on the nanometric simulation of oblique machining. Discussion of important

phenomenon relating to oblique machining is discusses, namely the variation between the

inclination angle and the chip flow angle.
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Documentation, in the fonn of a manual for the installation and configuration of

the Beowulf cluster, is given in Appendix A. For researchers unfamiliar with the use of

the Linux operating system, information is provided in Appendix B. Appendix C gives

details of the structures and functions that are provided in the programming library.
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CHAPTER 2

PROBLEM STATEMENT

2.1. User-Friendly System

The purpose of this study is to develop a user-friendly molecular dynamics (MD)

simulation system for nanometric cutting and tIibology. To create and utilize the system

developed in this study, the following two objectives are given:

Objective 1:

To design and implement a system that can be used to develop and perfoml

computational simulations of nanometric cutting and tribology. This system should

encompass the computational simulation process from hardware to software while being

user-friendly. Documentation should be provided so that as new users are introduced to

the system, information is available for guidance on topics that include running

simulations, creating simulation software, and maintaining the computational

environment.

Objective 2:

To utilize the system developed to meet objective I and implement the software

needed for an example of nanometric simulation (oblique machining). The software

should be designed so that it can be easily modified and expanded as needed.

13



2.2. Justi.fication

What if knowledge transfer on creating and perf0n11ing computational nanometric

cutting and tribology simulations ceased to occur between successive generations of

researchers? This would be disastrous at advancing the technology on simulating these

processes. Would the rate of technology advancement in the fieid of MD slow to a

crawl? Researchers creating and performing numerical simulations of nanometric cutting

and tribology spend an enormous amount of time recreating software tbat has been

previously written by other researchers. What happens when a previous researcher leaves

after completing work? The researcher effectively retains all the information and

knowledge that had been acquired while working on the project. In many cases, multiple

versions of source code with sparse explanations are found. This requires new

researchers to effectively stmi from the ground up because of difficulties encountered

continuing where the previous researcher left off.

These are important questions and ultimately problems to tackle as this research

begins to encompass more complex potentials and more powerful computers. The

solution to these problems is to implement a system, user-friendly in nature, aimed to

help researchers create useful and portable code that can be used for perpetuating the

transfer of knowledge from one generation of researchers to the next while advancing tbe

complexities of the simulation software for nanometric cutting and tribology. The

ultimate goal of this user-friendly system is to provide an easy to use system that students

with different backgrounds can use for creating and performing simulations. Further

advancement, using this user-friendly system, allows researchers to focus on the defined

problem, rather than duplicating what previous students have accomplished in the past.

14



With the use of a user-friendly system, the time taken to conduct specific research on

nanometric cutting and tribological processes using MD will increase.

2.3. Solution Approach

An approach to the solution reqUIres addressing three perspectives. A clear

understanding is needed on how the end-user, programmer, and administrator of the llser

friendly system utilize the resources available to create a system that can encompass the

needs of the different types of users. Using these three perspectives, tools and

infonnation to help each accomplish their goals are provided. The following subsections

provide each of these important perspectives so that the reader can grasp the importance

of approaching this problem with multiple perspectives.

2.3.1. Administrator's Perspective

Looking at the user-friendly system from the administrator's perspective is often

overlooked. The administrator acts as the central head and controls the usage,

maintenance, and solves prohlems when they occur. Without a central head for

managing the systems and resources, chaos erupts. Users run multiple simulations

effectively creating an expensive paperweight out of the computational resources.

Managing the available resources for researchers can create some ill feeling between co

workers. Care must be taken so that end-users and programmers that use the

computational resources for developing and executing of software have the resources

available. The administrator of the machine should be the only person that handles abuse

and security of the computational resources. This is required to maintain the overall

15



integrity of the system. Batch systems should also be explored as the number of

researchers utilizing the cluster increases.

Chapter 3, regarding the parallel computing via Beowulf clusters is aimed at

covering the implementation of the user-friendly system from the adminjstrator's

perspective. In most cases, the administrator of the system will also be one of the

principal researchers on the nanometric cutting and tribology projects.

2.3.2. Programmer's perspective

Looking at the user-friendly system from the programmer's perspective requires

an understanding of complex programming, software development, and basics of MD

simulations. A programmer utilizing the system creates software that must be

expandable yet easy enough for the end-user to operate without requiring the user to

understand every detail on how the software is wriHen to perform MD simulations. User

friendly features of the system must not bc neglected for the programmer. If the

programmer is to create efficient and easy to use software, he/she should have a basic

idea of how MD simulations are performed, but not be required to understand every

aspect of each piece of software created for MD simulations. A basic understanding of

the overall scheme is needed, but easy creation and modi fication of simulati 011

applications is a necessity to ease software creation and reduce development time. To

handle these needs, a special library named MDbinfmt was created. This library helps

make the programmer's job easier by taking some of the complexities out of the

programm lI1g. The library contains functions and structures for accessing atom

information during the simulation. Structures are also designed to help the programmer
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access large amounts of complex data with simplicity. As multiple code contributions

from multiple sources are introduced into the current MD software suite, care must be

taken so that multiple students may benefit and utilize code written by other students.

Using the MDbinfmt library can make this a reality. The basic functionality of the

created library is to give an easy to use programming interface for the data and

information store In the data file. Figure 2.1 shows the coding scheme used in

conjunction with the special library fOffiut.
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Figure 2.1 - MDbinfmt library file operations usage

To elaborate more on the details that the programmer utilizing the user-friendly

system, Chapter 4 has been provided with details on the overall programming scheme for

the MD software suite. Chapter 3 gives some discussion on the parallel processing the

Beowulf cluster provides. Continuing in further detail, Appendix C provides the

programming details such as programming structures, functions, and examples on how to

perform some common tasks using the MD library.
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2.3.3. End-user's perspective

Most users of the system fall into the end-user category. For this reason. it is easy

to identify the important aspects that these users will desire. The first and foremost issue

for the end-users is to provide software that is simple to use. Graphics applications

should be employed whenever possible. Documentation should be provided on the

operation and detai Is of the particular piece of software.

Therefore, software created should provide end-users an application that is

capable of completing a multitude of nanometric cutting and tribology MD simulations

without requiring them to understand the mathematics behind the simulation. Options for

different simulation geometries as well as processes should be provided. The focus of the

users should be on creating and exploring desired simulation, performing the simulation,

and viewing or analyzing the simulation.

To provide a mechanism for easi ly creating, pcrfOlming, and vlewmg the

nanometric cutting and tribology simulations, three applications groups were identified.

They are defined as the pre-processing, simulation software, and post-processing groups.

Each group provides a separate but powerful piece of software that is capable of

perfoIDling the desired task. Both the pre-processing and post-processing software runs

in the easy to use Windows® environment. The simulation software, because of the need

for stability during long simulation durations, runs on the Linux operating system.

Fortunately, because these three applications are wriuen using the C programming

language, the applications are portable. This means that the applications can be ported to

different operating systems so that they will operate in both Linux and Windows.
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Nonetheless, users will find the software scheme similar to those found in other

computational research software such as a number of FEM and CAD packages. Figure 2-

2 shows the MD simu~ationssoftware suite from the end-users perspective.

End User

Pre-Processor
Simulation
Software Post-Processor

Figure 2.2 - End-user perspective of simulation software

The separation of the applications into three groups allows the programs to exploit

the power of either the graphical operating system or the stability of Linux. The pre-

processing and post-processing applications were created to run on a graphical operating

system. Graphics enhance the user-friendly aspect of the pre-processing application by

providing dialog boxes where values can be easily entered and modified for the specific

simulation. Graphics also enhance the post-processing application by allowing the user

to see the movement of the individual atoms at any given time during the simulation

through animation, video creation, and still images. This was accomplished by utilizing

the OpenGL graphics library. The simulation software can be exploited to harness the

stability of Linux and allow the user to run simulations on multiple computers remotely
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without burdening the local computer with large amounts of computational work, which

ultimately decreases productivity for the researcher.

Performing MD simulations involves several steps. The first step requires that the

simulation parameters be selected, or pre-processing. The second step takes the input

parameters and performs the MD simulation. The final step is to view the output of the

simulation or do any other necessary types of calculations based on atom positions and

other infoffi1ation provided during the simulation process, or post-processing. These are

the only steps that the end-user of tile software should be required to understand.

The end-user perspective is identified, but the best way to reveal its importance is

to provide examples. Chapter 5 provides details on the operating and functionality of the

software provided in this study. An example implementation of an oblique machining

simulation is also provided to clarify any misconceptions on the operation of the

software.
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CHAPTER 3

PARALLEL COMPUTING VIA BEOWULF CLUSTERS

3.1 Introduction

MD simulations are inherently computationally intensive. This is because of

the sma]] integration time step (~1O-14 seconds) and large number of equations (N(N

I)/2) where N is the number of atoms, roughly in the thousands, that must be

simultaneously solved during each time step. Finding adequate computational

resources for solving MD simulations is a difficult task. Supercomputers cost per

clock time and gaining access to one may be di fficult. Unlimited use to such a

system for development and testing of software can surmount astronomical costs. A

cost effective alternative to the supercomputer is to implement a massively para]]el

Beowulf cluster that utilizes the commodity-off-the-shelf (COTS) philosophy.

In computer systems, the processors are characterized by the instruction set

that the chip implements. There are two common types of instruction sets, the

reduced instruction set computer (RISe) and the complex instruction sel computer

(ClSC). The alpha based processors are 64-bit and implement a RISC instruction set.

The Intel or ia32 based systems implement ClSC instruction sets. The RISe

processor has been glorified as the faster of the two chips. However, recent advances

with the CISC chips have surpassed the operating frequency of the RISe processors
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and are therefore much faster. While both of these processor types have been used in

clustering environments, the elSe processors commonly found in ia32 systems are

continually increasing in speed while decreasing in cost. This makes the selection of

the ia32 processor an easy task.

There are several types of distributed architectures. The single instruction,

multiple data (SIMD) architecture allows for multiple data items to be manipulated

during a single instruction cycle in a single processing core. Multiple instructions.

multiple data (MIMD) allows for multiple instructions to occur on multiple data

during a single instruction cycle in multiple processing cores. MIMD embodies the

most promise for MD simulations.

An altemative to the traditional supercomputer is Beowulf clustering. In the

Beowulf cluster, each computer is considered a node consisting of one or more

processors while the cluster as a whole adheres to the MIMD architecture. This

clustering technique utilizes the COTS philosophy to implement a massive

multiprocessor machine that uses a commonly available Fast Ethemet network as the

mechanism for communication between each node. Each node is comprised of a

standard workstation that is used strictly for computational work or server style

computer that runs services. Libraries employing the message passing interface

(MPI) standard give the programmer access to the remote processors while hiding the

complexities of the specific network communication [36-39]. One important

advantage to using a library that implements MPI is the software written is

independent of the hardware that makes up the cluster. This feature helps provide

portable software capable of running on various MPI enabled clusters.
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MD software developed to nUl on a serial node is limited to run at the

maximum speed of a single processor. Using a Beowulf cluster or parallel

environment, MD simulation size can be increased dramatically where the limitation

is moved from processor speed to the bandwidth and latency of communication

between the processors in the cluster. The bandwidth is defined as the maximW11

amount of infonuation (bits/second) that can be transmitted from one node to the

next. The latency of the communication is the duration of time it takes to send the

information out the network interface and for the destination node to receive the data.

One drawback in utilizing a Beowulf cluster, as apposed to a commercially

available supercomputer, is they are not available with compilers that automatically

compile code to utilize the parallel environment. Many hours are required to write

and tune sofiware capable of utilizing the constructed clustering hardware. A sample

parallel application, employing self-scheduling, to solve the moving heat source

problem was performed and shows that using a Beowulf cluster can dramatically

increate the computational power available. Figure 3.1 shows the decrease in

simulation time as the number of processors increases by using the MDbeta parallel

computing system for solving the moving heat source problem with 2000 nodal

calculations.
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Figure 3.1 - Clock time versus number ofprocessors @ 1.7 GHz

The goal of using the parallel envirorunent is to distribute the computational

load of a given simulation across multiple processors to acquire the solution in a

decreased amount of wall clock time. The Beowulf cluster may also be used to run

multiple serial simulations, simultaneously. Development of parallel enabled

apphcations provides a method to simulate an increased number of atoms allowing

for larger, approaching the macro size, systems to be explored. Recent advancements

in Beowulf clustering have provided the necessary tools to implement a custom

cluster aimed at solving specific problems that the programmer and user encounter.

Problems may include difficulties in profiling the parallel enabled software,

organizing data during the simulation, and scheduling multiple parallel simulations on

a single cluster.
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Several operatimg systems are availabie for operating a Beowulf cluster.

Stability along with minimal software expenses should be sought to get the highest

performance-to-cost ratio. The operating system should also be secure and allow for

users to access the resources remotely. This allows many users to spawn multiple

temlinals that access the resources of the cluster. Because of these important

features, the Linux operating system along with the freely available message passing

interface library (MPICH) was selected. However, any message-passing library

designed to operate with the selected hardware or even custom software capable of

communicating with the cluster nodes directly through the network interface may be

used. Multiple libraries can be installed and selected by the programmer at

application compile time. This gives flexibility to the programmer when

implementing different parallel algorithms. The main advantage to selecting Linux,

as the cluster operating system, is that all of the money associated with the cluster

operating system can be used to purchase hardware and not on Iicensing fees as it is

freely available on the Internet. The future administrator of the workstations should

use the information provided in this chapter as well as in Appendix A to instaB,

configure, and maintain the hardware aspects of the user-friendly system.

3.2 Security Issues

In order to utilize a Beowulf cluster for effectively simulating large-scale MD

simulations, the previous strategies and concerns should be addressed. However, the

construction phase of a Beowulf cluster takes an approach that requires an

understanding of Linux kernel level software and hardware construction. Security,
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both local and remote, is one of the most important areas that reqUire critical

attention. This is extremely important because a compromised machine may create

an enoffil0us loss of clock time to repair if a malicious attacker destroys important

data and software.

Keep in mind that all of the infonnation provided here abollt security IS

constantly evolving. It is important to keep up to date with vulnerabilities that are

identified. Use of an information system such as Security Focus website

(www.securitvfocus.com) can become an invaluable resource at identifying weak

points in the security of the Beowulf cluster and serial standalone workstations. Any

of the information discussed on security can be applied to both the gateway node in

the Beowulf cluster as well as serial workstations. There are two types of security to

focus on when securing a Linux machine: local security and remote security.

Local security can be enhanced by locating the computer in a safe room while

keeping the area secured under lock and key. The reason local access to the machines

should be restricted is because information stored on hard drives is not encrypted.

Basically a hard disk drive could be removed from the cluster and transplanted into

another Linux machine where the root password could be extracted or changed. A

malicious user can also wreak havoc by gaining access locally and causing ullneeded

problems such as rebooting the machines. This could cause a loss in the current

simulation running as we]] as corrupt data stored on the machines.

There are severa] effective methods that can be used to enhance remote

security for Linux machines. One is to identify and eliminate any clear text password

authentications. All password authentications and exchanges should be completed
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via encrypted communications. This can be accomplished by utilizing the secure

shell (SSH) protocoL Several different implementations are available. It is important

to note that encryption is not needed within the cluster and can actually hinder the

performance by increasing communication latency.

In addition to utilizing communication encryption, a firewaU should be

implemented to restrict ports that are available to remote users. Since the

development of the Linux 2.4 kernel series, a kernel level firewall via iptables should

be implemented that filters network communications defined by rules that the

administrator can set. Using the kernel level firewall, all incoming ports should be

blocked except for the port on which SSH runs (port 22). SSH allows for both

terminal access as well as file transfers to and from the machines.

Within the kernel level firewall, a given packet is received from any

communication device (such as ethO, ethl, 10, and others) and is passed to the kemel

where a routing decision is made to move the packet along a chain where rules are

defined that determines the fate of that packet. The mles defined for the input chain

are the most important for securing the machine on which the firewall resides. The

input chain gives remote users access to local processes and services such as SSH.

Using strict rules, aU packets except those coming from desirable hosts can be

dropped. The same types of rules can be set for the output chain and forwarding

chain. Figure 3.2 shows a schematic of how packets traverse the iptables firewall.
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Figure 3.2. Schematic of how packets travel iptables chains

3.3 Hardware Overview

One of the important phases in constructing a Beowulf cluster is the hardware

selection. In some cases, such as the MDalpha cluster, the hardware was available

prior to cluster assembly. However, when constructing a new cluster, such as

MDbeta, care must be exercised in selecting hardware that is both supported by the

selected operating system and adequate to perform the desired calculations. Selection

of the improper hardware can cause a large amount of increased administration and

troubleshooting time.

Selecting hardware to construct a Beowulf cluster can be a daunting task for

someone who is unfamiliar with computer hardware. The goal is to huild the fastest

possible machine while trying to save the most money, which increases the

performance-to-cost ratio. This way, more nodes can be purchased. It is possible to

purchase a cluster pre-assembled and installed. However, the cost of such clusters is

inflated.

The formulation and selection of the cluster was accomplished by considering

experience, discussing capabilities with computer parts vendors, and price
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compansons. Price compansons as a function of computational power were

identified for several different machines. After selecting the most powerful machine

for the least cost, a test node was purchased to ensure that the available hardware

would operate properly on the selected operating system and with the selected

MPICH libraries.

Thought of the overall physical layout for the newest MDbeta cluster was a

driving factor in the selection of some hardware. Identification of rack mountable

hardware was identified as a viable alternative for the ultimate setup for harbo.ring

large numbers of nodes. The goal is to increase the size of the cluster to 128 nodes,

which would consume an enOffilOUS amount of floor space. Rack mountable

hardware provides a large density assembly. The Rack mOllntable hardware also

provides an easy way for accessing the nodes for maintenance and repair. Selection

of all the hardware and computer parts was done in consideration of the mounting

style selected. Two CPUs were selected in order to increase the computational power

per node while not increasing the price as much as two separate nodes. Motherboards

were selected to have pre execution environment (PXE) while retaining the capability

of mounting in the smallest rack mount cases available. Backup power supplies were

also implemented to increase the reliability of the machines jf brown or black outs

occur. For more information regarding the hardware selection process, review the

reference provided [26].

Before describing the actual construction phase, background information on

the current computational. capabilities of the hardware selected is provided. The first,

MDalpha, is a DEC alpha 64-bit based Beowulf cluster. Each node in the MDalpha
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cluster is running at 500 MHz with access to 512 MB of ECC memory. MDalpha

contains 8 processors where each node is capable of 565.88 MFLOPS. These nodes

were constructed from Digital Alpha 500au Persona1 Workstations. 'fhe units were

originally purchased to nm simulations as serial workstations. The original operating

system was Tru64 Unix but was moved to Linux as soon as the idea of clustering was

explored. The network interconnect is provided by a 24 port HP switch capable of

running each port at 100 Mbit full duplex.

The second cluster constructed aimed at fulfilling the user-friendly hardware

aspects of this study, MDbeta, is the AMD Athlon based Beowulf cluster with each

node rmming two processors at 1.7 GHz each with access to 1 GB of ECC memory.

Each node in the MDbeta cluster is capable of 2108.95 MFLOPS. MDbeta was

designed, purchased, and constructed from individual parts that were assembled to

form the cluster. Before selecting hardware for the MDbeta cluster, a test machine

was purchased and configured to help identify problems with hardware level drivers.

All issues with the hardware were worked out and a custom kemel configuration is

provided and discussed in the installation section. The network interconnect is

provided by a 24 port HP switch capable of running each port at 100 Mbit full duplex.

In both clusters, only one gateway is externally accessible whereas multiple

compu~ational nodes, server nodes, and network switches may exist. Note in Figure

3.3, only one computational node, server node, and Intranet switch is shown.

However, in the implemented MDbeta cluster, there are multiple computational and

server nodes. Another important feature that is shown in the diagram is the console

switch. This piece of hardware allows remote logins via the network to any local
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console of any device that accepts serial communication. This is extremely useful for

remotely troubleshooting problems that occur on the cluster.

Internet

Console
Switch

Network Router
Master Node

Intranet SWitch

Computational
Node

Figure 3.3 - Overview ofMDbeta parallel environment

Server
Node

As MDbeta is scaled to include more computational nodes, latency will

become an issue. However, preparations have been made to ensure that the 1U cases

are capable of accepting an additional 32 or 64-bit PCl card for a fiber or gigabit

network upgrade. Interconnection networks may also be explored in conjunction with

the current Fast Ethernet network hardware to decrease the network latency between

nodes in the cluster.

Another important feature of the MDbeta cluster is that local hard disk drives

have been eliminated from each of the computational nodes. This decreases the cost

per node as well as facilitates in easing of the administration and configuration.

Utilizing this scheme, additional computational nodes can be inserted into the cluster
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by simply plugging them into the network switch and editing a few configuration

files. This is an extremely important feature that provides scalability to the design.

Booting diskless nodes is accomplished by utilizing PXE, remote-boot

application (bpbatch), and a Dynamic Host Configuration Protocol (DHCP) server.

The nodes are configured to boot up without intervention and. mount remote network

file system (NFS) shares across the network switch from the file server node. As the

number of computational nodes increase, implementing the parallel virtual file system

(PVFS) across multiple file-servers may become a requirement to help distribute the

network saturation to the file serving node and help increase the file I/O capabilities

and decrease file I/O latency.

3.4 Construction

There are two ways of acquiring a Beowulf cluster. The frrst is to find a

vendor and purchase the unit fully assembled with operating system pre-configured.

The second option is to assemble the pieces from separate vendors. The second

method was chosen because the increased understanding of the inner workings of the

cluster coupled with the large savings in the overall cost. Although assembling the

cluster from pieces is more difficult and takes more time, details are learned that

become pertinent to maintaining and optimizing the cluster at a later date. In ad.dition

to the educational experience, the Beowulf cluster designer has complete control over

each and every aspect of the cluster nodes.

Assembly of the Beowulf cluster is a repetitive task. All computational nodes

are assembled in the same manner and therefore can be done in an assembly line
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format. The following outlines the assembly of the cluster nodes. First, all the cases

were inspect,ed and motherboards were placed into the cases. CPUs and memory

were then placed into the motherboards. Power cables and fans were then connected

to the motherboard. Wires were then neatly fastened with zip-ties and organized to

allow for easy maintenance and access to the hardware at a later date. Figure 3.4

shows a single oomputational node assembled. As the picture shows, the

computational nodes assembled contained the fewest possible parts. Note that there

is no hard disk or floppy drive. This helps to decrease the amount of hardware

failures and alleviates hardware maintenance. The height of each computational node

is 1U, which is a standard rack size.

Figure 3.4 - Picture ofMDbeta computational node
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After assembling the twelve computational nodes, the file-serving node was

assembled. This node is identical to a computational node except a 64-bit raid

controller card was added along with 800 GB of user drive space. A DVD burner

was also installed to provide a cost effective way to archive large simulation files. To

accommodate the extra hardware that was installed, a 2U case was selected for this

server node. Figure 3.5 is a photograph of a file server node showing the orientation

of the motherboard, CPUs, case, raid controller card, hard disk dlives, and DVD-

RJRW drive in the server node.
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Figure 3.5 - Assembled fJJe-server node
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After assembling the hardware in the cases, each of the nodes was then

mounted into the rack. The total rack space for the installed nodes and backup power

supplies is 20U. All hardware mounted in the rack is fastened to the rack rails with

12-24xl/2 hex cap screws for quick and easy removal of the nodes. Figure 3.6 shows

the nodes placed into the 45U rack. The network switch was then centrally mounted

in the rack to decrease the average length of the patch cables from the nodes to the

switch.

Figure 3.6 - Assembled nodes and mounted in rack

After assembling the computational hardware and placing them into the racks,

the back-up power supplies should be installed. Twisted pair, CAT-5 cables were

then assembled and each node was connected to the switch. An additional cable was
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placed into the second Ethemet port of the gateway node, which doubles as the file

serving and DHCP server node. This second network cable is then plugged into the

building network jack. The cluster is now completely assembled but is useless until

the operating system and libraries are installed.

3.5 Installation and Configuration

Many engineering students are knowledgeable with graphics based

applications and operating systems. However, many are unfamiliar with text-based

operating systems, such as Linux. All of the computational power that is harnessed in

the MDbeta cluster is harnessed via the Linux operating system. Because of the

selection of this operating system, Appendix A is provided to help in the installation,

configuration, and ultimately the maintenance of the MDbeta cluster. The goal of

Appendix A is to give the reader an overview for the main services needed by each of

the different types of nodes in the cluster.

In order to facili tate configuration of the MDbeta cluster, a custom installation

and maintenance CD was created, named MDiso. MDiso can be found on both the

web server and file server. Furthermore, describing the operations for configuring the

nodes can be di fficult if the reader does not have a basic working knowledge of

Linux. Because the reader's knowledge about this subject may vary, a series of

screenshots with captions have been provided to guide the reader through the

installation process. Appendix A provides a detailed cluster installation and

configuration manual.
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CHAPTER 4

PROGRAMMING APPROACH FOR MD SIMULATION

4.1. Introduction

Approaching a problem such as creating the software used for the pre-processing,

simulations, and post-processing of nanometric cutting and tribology requires careful

thought to the needed data structures, fonnat, and operation of the software. A large

programming effort is required to unde11ake even small changes to software that is poorly

designed. Therefore a mechanism for maintaining simulation data should be provided.

Testing and verification of each piece of software created must be performed in order to

ensure that simulations created from the software are valid. Actual development time for

the software programming of MD requires many hours of planning, programming, and

troubleshooting.

To distribute the programmmg load over time through different projects and

between multiple programmers, modular software should be employed. This approach

allows for simple tasks to be organized in a way such that more complicated tasks can be

performed. The modular pieces of the MD software suite are divided into three distinct

groups: pre-processing, simulation, and post-processing applications. Linking the

different modular pieces of code is accomplished through the use of a common file

format and functions library, MDbinfmt. The library format provides a means that
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standardized the access, creation, and mani.pulation of simulation data between the three

applications.

To distribute the computational load of MD simulations, the programmer should

explore parallel processing. Implementation of different algorithms and schemes are

needed to identify the most efficient and optimized method for MD simulations. In order

to attempt parallel fonnulation of MD simulation software, key features of the operation

and methods for perfonning parallel MD, also known as N-body simulations, have been

identified. These include an overview of the different approaches for organizing the

programming of parallel versi.ons of MD software. As discussed before, the user-friendly

system must extend beyond the hardware and end-user needs to encompass the

programming and implementation of software. This is where the MDbinfmt library can

be utilized along with the different algorithms and formulations of parallel MD

simulations to help the progranUl1er develop, test, and implement complex parallel

versions of MD simulations.

Integrating parallel simulations into the cunent programming scheme is extremely

important to producing code that can be modified by future programmers. The user

friendly system provides the mechanism for running and creating any type of MD

simulation software, however, it does not magically create the software. Current

compilers are unable to automatically produce parallel code. Even if such a compiler

were available, it would most likely be inefficient because of the compilers inability to

understand the operational scheme of the designed software much less find an optimized

solution. Creating optimized parallel fOlmu]ation of MD becomes an extremely

complicated process when simulation time load balancing and profiling is Llsed to identify
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areas of the code or hardwaID"e that can be optimized. This optimization must be done

manually by the programmer and cannot be accomplished by any current compiling

software.

Parallel verSlOns of MD will be similar to the serial verSions that currently

function within the system. Calculation of the potential, forces, and energies will be

unaffected by the fact that the simulation software is rUlming in parallel. More advanced

potentials can be employed and implemented into a framework that allows for closer

approximations to the actual phenomenon. Extensions to other methods will be possible.

Once the parallel .fi~amework is complete, modIfication and addition of new potentials

will be trivial once the mathematics for the particular potential have been identified.

Implementation and exploration into the different simulation approaches and techniques

is needed to allow for atom numbers to be increased to the point where nano scale

simulations approach the micro scale.

4.2. MDbinfmt Library

Previollsly written MD simulation software output multiple files containing

coordinate data for different snapshots in time. This output methodology creates a large

amount of extra bookkeeping when managing multiple simulations. In addition Lo this

inefficient format, each researcher developed a proprietary version of the output format

and animators had to be modified to display specific simulations. Another problem

encountered from work completed in the past was that simulations were coded using

arrays with static memory allocation. This method uses set amount of memory for every

simulation whether large or small. Increasing the simulation size beyond the alTay limits
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called for a change in the software as well as a recompile. Static memory aHocation

limits simulation size and causes the code to become relatively worthless when

expanding the code to handle more advanced simulations. Static memory allocation

along with other poor coding techniques has created a large amount of rather useless

code.

To help alleviate these problems and provide a mechanism for researchers to

create useful and portable code, a library named MDbinfmt was developed. The

MDbinfmt library is a powerful tool that aims to hide some of the complexities of the

simulation data while giving the programmer access to a defined data structure, described

in detail in Appendix C, which can be used for easy manipulation of simulation runtime

data. The library will be an essential piece if the MD software suite is ever sold

commercially. Using a library format gives the programmer or customer access to

important functions without revealing the actual source code.

The MDbinfmt library provides a set fOl111at for accessing and storing important

infom1ation during and after the simulation process. This format consists of packing

consecutive binary data that can be accessed later by reading the data in the same way it

was written. Another advantage of the single fonnatted file is that the file can be shared

between different applications and accessed by merely calling functions that are available

via the library. This ensures that the data is stored and retrieved in the same manner

regardless of the specific application. Using the MDbinfmt library, customizable

modular software such as the preprocessing software, simulation software, and post

processing software can be written without worrying about the complexities of the data

storage mechanism for the file fomlat. Simulation software can be designed to work with
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the MDbinfmt library regardless of the processing hardware that is available. The library

is portable to different operating systems as well as different architectures such as the 32-

bit and 64-bit architectures. The library has been implemented in both the 32-bit and 64-

bit systems. Details on use of the MDbinfmt library are given in Appendix C. Figure 4.1

is a schematic illustrating how different applications utilize the MDbinfmt library.

MDbinfmt

Pre Processing
Software

..~,---_D_ata_fil_e__I~..
I

,
MDbinfmt

Simulation
Software

,
,

,

MDbinfmt

Post Processing
Software

Figure 4.1 - MDbinfmt library overview

The MDbi.nfmt library allows researchers to interface with simulation data and

implement software at a much Easler rate than previously observed. Using the old

technique for creating simulation software, a researcher developed a complete nanometric

cutting code for Me in 4 months. The code was ported over in a fraction of the time.

The ported version is compatible with versions of the pre and post processing software

which eliminate the need for the particular researcher to maintain the pre and post

processing applications for the given simulation software implementation. This idea
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extends the programmmg capabilities by requmng less time dissecting code before

implementing and testing different algorithms for solving MD simulations.

One problem ex]sts with this scheme and relates to the different stmctures that arc

needed to handle different interatomic potentials within the library format. As new

potentials are added, modi fications to the MDbinfrnt library materials structures will be

needed. Modifications will also be required for the stmctures holding the potential

parameters. With the current MDbinfmt, the post-processing applications and animation

software is oblivious to these types of changes. However, the pre-processing and

simulation software will need to be modified or updated with the newest library when

modifications are made.

4.3. Parallel Simulations

There are three important features to be considered when developing parallel MD

simulations [26]. These features are communication, load balancing, and scaling.

Communication is the phenomenon that occurs when messages are passed from one

processor to another within the cluster. The communication is delayed by latency in the

initiation and acceptance of the communications as well as the throughput speeds.

Options for improving communications include channel bonding of multiple network

devices as well as faster network implementations, both of which are relatively simple to

implement in the MDbeta cluster [40]. The load balancing refers to how the simulation

is broken up and farmed out to different processors. If the computational work of one

computer increases while another node decreases, a part of the simulation should be

redi.stributed in order to optimize the rate at which simulations can be performed. The
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ideal parallel simulation Gase would be to have all of the processors continually working

while keeping communication to a minimum. Finally, the scaling refers to how well the

written code expands when more atoms are used in a simulation and computational nodes

are added to the cluster. Many N-body simulations scale as a function ofN2
.

It is important to identify the barriers, such as time step size and geometry, to

overcome when programming parallel MD simulations. There are 5 basic strategies for

solving MD simulations in parallel [41]. They are cloning, master-salve, replicated data,

systolic loops, and domain decomposition. Other techniques have been proposed but can

ultimately be derived from one or more of these 5 strategies.

The cloning strategy is useful when multiple runs of the same simulation with

different conditions need to be executed. This strategy basically starts N independent

simulations on N processors. This allows for multiple simulations to be spun off on

different processors. This type of usage for the cluster is excellent for small simulations

in which many runs with slight variations are desired. Communication between the

nodes in this strategy is exclusively between the node and the fileserver.

The master-slave strategy uses a master node to allocate and control what the

slave nodes compute. One major problem in this strategy is that the master node must

communicate and distribute the appropriate information to each of the nodes. This

creates a massive communication overhead and requires the master node to store all

information for each atom. In some cases, the actual time to compute the specific task on

a node processor compared to the time associated with latency in the data communicatlon

causes this method to be slower than running the simulation on a single processor. This

type of strategy works excellent for systems where shared memory is found such as the
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multiprocessor variety. When simulation size approaches the sub micron to micro size,

the communication overhead swamps the master node's ability to perfonn the simulation.

The replicated data strategy operates by distributing all atom information to each

processor prior to each time step calculation. However, a single processor only perfonns

a certain portion of the calculation. After each time step, a global summation is

performed and atom information is again distributed to each of the processors. A major

drawback to this method is that memory usage is large because each node in the cluster

contains all infomlation for all atoms. For simulations approaching sub micron to micro

size, this is unacceptable. However, this method allows the use of complicated functions,

such as EAM and MEAM potentials, to be employed for the determining the forces of

molecular interactions.

Another strategy caLled systolic loops distributes the atoms evenly and allows the

nodes to pass infomlation between the specific nodes. This method can be used with pair

potentials but becomes complex when using more complicated potentials, such as the

MEAM or EAM potentials.

The final and most promIsing strategy for use in parallel MD simulations is

domain decomposition. In this strategy, di fferent geometric spaces are assigned to unique

processors. If an atom enters or leaves a geometric region, the atom is moved to the

appropriate processor. This is similar to the linked cell method used for the ca1cul.ation of

the bond list, which is implemented into the current simulation software and decreases

the computational time for the calcu lation of thc bond list. Domain decomposition shows

the most promise for conducting large-scale MD simulations because scaling and

compound communication latency is minimized [42].
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Developing parallel versions of MD code can be difficult and time consuming.

However utilizing the domain decomposition strategy, different geometric areas of the

system can be distributed prior to any set of potential calculations. This allows any type

of potential to be used, such as the Tersoff, Morse, EAM and MEAM.
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CHAPTERS

IMPLEMENTATION OF USER-FRlENLDY SOFTWARE

5.1. Introduction

Simulation ofnanometric cutting and tribology using MD, Me or other equivalent

method is a complex operation. However, utilizing tools and software to perform the

simulations, those unfamiliar with the mathematics and theory behind the simulation may

benefit [Tom performing simulation. Commercially available FEM and FDM software

packages do not require that the end user understand the inner workings of the software.

Nonetheless, results from these tests allow a large range of end users to study a multitude

of areas with the help of a user-friendly interface.

The system implemented in this study aims to provide each user the tools that are

needed to create, perfonn, and analyze nanometric cutting and tribology simulations at

the nano level. The software discussed in this chapter was designed to be user-friendly,

and easy to use. Each piece of software is classified in one of the three groups: pre

processing, simulation, and post-processing software.

The pre-processing application provides the means for the creation and setup of

atomistic style simulations. A graphical application was created to ease the modification

of simulation parameters. The simulation software is used to take the input file, perfoml

the simulation, and create the output file. This application is designed to run using the
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Linux operating system. This was selected because of the stability it provides as well as

the computational clustering that can be built by the Beowulf cluster. The post-

processmg group provides the means for animating and analyzing results that the

simulation software provides. Two important applications were developed for 3D

animation and the calculation of the chip flow for the post-processing group. Figure 5.]

shows how the end-user accesses and utilizes the user-friendly system for the simulation

ofnanometric cutting and tribology.

End User

Pre-Processor
Simulation
Software Post-Processor

Figure 5.1 - End-user view of simulation software

5.2. Overview of Software Operation

There are three types of applications that are to be used for the simulation of

nanometric cutting and tribology processes. They are the pre-processing, simulation, and

post-processing software. Each of these three pieces of software is aimed to complete a

speci fic task. They have been separated into three applications to help decrease the

programming load and increase the efficiency of the user. The separation of the software

into the three groups also helps ease the programming overhead when creating and
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modifying aspects of the software applications. In order for the end user to properly

operate the software aspects of the user-friendly system, the system operation i.s

described.

The pre-processing application takes the simulation parameters and stores them in

a special binary fonnatted file ".md" that only the simulation and animation software can

read. Figure 5.2 shows a diagram of the operation of the MDii pre-processing software.

Simulation
Parameters

r-----___.oo-i: ". md" I

Figure 5.2 - Diagram of pre-processing operation

Figure 5.3 shows a diagram of the operation of the simulation software. The

".md" block to the left of the arrow is the input file. After starting the si.mulation,

additional frame infonnation containing nmtime simulation is appended to the original

".md" file. This allows the simulation files to be animated by the post-processing

animations software. The additional frames are denoted in the diagram as the small

boxes attached to the original ".md" file.

I "rod" j----~, "rod" OIIIIIIIIJJII]

Fi gure 5.3 - Diagram of simulation operation

The final step is to take the assimilated ".md" file from the simulation software

and perfonn post-processing operations by reading tbe simulation runtime infonnation.
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These operations range from animating to creating videos and snapshots of the simulation

process.

5.3. Pre-Processing Software Implementation

The goal of the pre-processing software is to provide an easy-to-use interface that

can be used to create input files for new simulations. The simulation then uses these

newly created files to store and append important runtime information of the simulation.

The actual operations performed when running the pre-processing software, MD input

interface (MDii), is to take simulation parameters such as workpiece size, workpiece

location, tool size, tool location, crystallographic orientation, various tool angles, material

properties, and more.

Several approaches for the input creation software were explored. The first is a

console program that is capable of reading an input file with a specific for111a1. This

application was named mdsetupc and can be found in the MD software suite. The second

application that was created was a graphical application that has dialog boxes that can be

used to modify the desired parameters for the simulation. After the desired input

parameters are selected, click on the Create button and the simulation can be saved ill any

directory. To make the application backwards compatible with simulations created using

the mdseutpc application, old-style mdsetupc input files can be opened. This allows

simulations created using the console setup program to be opened and for simulation

input files to be created. Simulations such as oblique and orthogonal cutting can be

created using this input interface. Figure 5.4 shows a snapshot of the main dialog box.
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Figure 5.4 - Screenshot ofMDii pre-processing software

5.4. Simulati.on Software Implementation

The current simulation software created runs the desired MD simulations using

the Morse potential. Additional potentials and methods can be coded with the use of the

MDbinfmt library. Nonetheless, performing the desired simulation is as simple as

executing the application with the correct input file created using mdsetupc or MDii.

Refer to Appendix B for more information on executing the simulation in Linux.
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5.5. Post-Processing Software Implementation

The goal of the post-processing software is to provide an easy-to-use application

that can be used to view, animate, or perfonn any other calculation after the simulation

has been completed. Several post-processing applications were created using the

MDbinfmt library implementation. The most important of these newly created

applications is a cross-platform graphical animator capable of displaying simulations in

3D. This provides a needed advancement from the previous animation software because

it allows the model to be rotated whde the simulation is being animated. The remaining

applications were coded without graphics and were designed to access stored infonnation

in the binary ".md" fi Ie for the identification of important phenomenon such as chip flow

angle.

Previously written MD simulation software was fomlatted to animate coordinate

data spanning a limited number of snapshots in time, also called frames. When the

animation software generated an animation, each frame, stored in a separate ASClf

formatted text file, was loaded into memory and a cubic spline interpolation curve wi.th

respect to time was calculated for each atom. The maximum number of frames that this

old style animator was capable of displaying was approximately 20 frames. DirectX was

then used to draw a planar representation of the spherical atoms on the screen for

different frames to give the appearance that the simulation is animated. This

interpolation technique unfortunately hides vibrational and other small movements of the

atom trajectories.

The new animator, named MDui,is capable of displaying atom movements with a

frame resolution matching that of the differential integration routine in the simulation
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software. As the frequency of atom coordinates stored in the ".md" file increases, the

smoother the post-processing animation. However, an infinite number of frames cannot

be saved because of file size considerations. MDui utilizes OpenGL [43, 44J, glui [45],

and glut [46,47] for the graphics and application programming interface (API). OpenGL

and glut libraries provide the graphics animation, such as the drawing of atoms and

rotations. The glui library provides the cross platform API to control the parameters in

the graphics scene.

MDui is capable of displaying multiple crystal information for multiple frames.

When the animation file is loaded crystal parameter panels are loaded into the menus 0 f

the animation software. Each crystal that is loaded for each frame can be adjusted several

different ways. Colors can be applied to each crystal for easy identification of different

parts of the simulation. The orientation of the scene within the view port of the animator

can then be manipulated to see different phenomenon that occurred during the simulation

proccss.

Controls over the animation are provided on the right hand side of the application

and can be used to manipulate the scene. A viewing panel provides a mechanism for

advancing the simulation that displays the atom movements. A feature for taking a

screenshot of the current animation view port is also provided. Videos, in the fonn of

".avi" can also be created from a user selected start and end frame. The user can adjust

the frame rate of the animation. These output options provides the researcher an easy

interface for creating simulations that can be viewed easily in any graphical operating

system. Figure 5.5 shows a screenshot of the animator with an nanometric oblique

clLtting simulation loaded.
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Figure 5.5 - Screenshot of the .MDui animation software showing nanometric cutting
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CHAPTER 6

APPLICATION OF USER-FRIENDLY SYSTEM TO NANOMETRIC CUTTING

6.1. Introduction

Documentation of key applications and instructions on the operation of the MD

software suite has been provided in the preceding chapters to show the construction and

example selected for this study was the MD simulation of oblique machining. The

implementation, the power of the overall user-friendly system may be overlooked. The

process is described by several angles, namely inclination, rake, and the clearance angles.

However, without an actual exampleoperation of the user-friendly system.

The inclination angle is the angle the tool has been rotated from the velocity vector.

Figure 6.1 shows the inclination angle that is created when the tool. is rotated with respect

to the motion of the workpiece.

'ki~

'""'".~.....
~~$
:~I
,~:a

'''1......I".,

Work

Figure 6.1 - Orientation of the tool creating the inclination angle
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MD simulations of nanometric oblique machining uSll1g the Morse palr-wlse

potential were conducted and analyzed. This work, on nanometric cutting of the oblique

cutting process, extends the work on orthogonal cutting experiments conducted by

previous researchers. In order to analyze the simu~ations of oblique machining, the post

processing software is required to animate the simulation in 3D. Figure 6.2 shows a

diagram of the oblique machining operation, where i is the inclination angle, an is the

rake angle and ~ is the chip flow angle.

a

\Vol'kpiece

Figure 6.2 - Diagram orthe oblique machining operation

Modeling of additional systems reqUlres no effort from the user in terms of

creating simulation software. Users only need to utilize the pre-processing applications

created within the system by modifying the input files to model additional simulations.
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6.2. Simulation Process

Nanometric simulations of oblique machining are perfonned with conditions

given in Table 6.1. Intemal computational parameters of the simulation are given in

Table 6.2. Setup of the simulations was accomplished by using the MDii pre-processing

application described in Chapter 5. Parameter selection of workpiece, tool, velocities of

the tool, and frame output infom1ation were entered into MDii. Altogether, 35

simulations were setup varying the inclination angle fro111 0° to 45° while vaIying the

rake angle from -45° to 45°. After organizing the simulation parameters into MDii,

clicking on the Create button creates the simulation input file, which was then copied to

the Linux workstations to run the simulation. Information on copying the files to the

Linux workstation is provided in Appendix B.

Table 6.1 - Parameters used in the oblique simulation investigation

Material

Workpiece
Tool

Cutting Speed
Depth OfCLlt
Bulk Temperature
Workpiece Geometry
Tool Geometry

Rake
Clearance
Inclination

Number of Atoms
Workpiece
Tool (range)

AI
(lnfinitely ha.rd) W

500 m/s
4A

298 K
810 A x 182 A x 182 A

_45°, -30°, -15°,0°,15°,30°, and 45°
6°

0°,15°,30°, and 45°

23,958 atoms
4,729 - 22,165 atoms
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Table 6.2 - Computational parameters used within the Morse simulation software

Workpiece-Workpiece Potential
Alpha
D
req

Workpiece-Tool Potential
Alpha
D
req

CD (velocity reset parameter)

Morse
1.1646 fA

0.2703 eV
3.253 A

Morse
5.14fA

0.087 eV
2.05 A
0.1047

After creation of the simulation input :file is complete, the simulation process

begins. The simulation process consists oUaking the simulation input parameters entered

in the previous step and perfol111ing the simulation. Calculation of successive atom

positions with respect to time is accomplished with the use of a Rungc-Kutta differential

integration routine. Values from the forces are used multiple times during this

differential integration step to simultaneously calculate the new position of all atoms in

the simulation. After a given number of steps, denoted by the output frame resolution in

the MDii application, a snapshot of atoms positions are saved into the ".mel" file.

Such a simulation, using the input parameters entered for the ob] ique machining

simulations from Table 6.1, takes ~20 hours to complete. This COlTcsponds to a total

computational time requirement of ~700 hours or about 29 days for the entire ensemhle

of simulations. For more infonllation regarding the actual commands executed for tbis

section, refer to Appendix B.

Output :fiI.es created by the simulation software consists of infonllation containing

system kinetic energy, potential energy, total energy, and forces for each differential

integration time step and are stored in appropriately named conuna separated value ".csv"
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text files. Atom positions are stored after a given number of differential integrations and

appended to the end of the input ".md" file after the specified number of differential

integratmon time steps from the input file to help decrease the file size of the coordinate

infoffilation per simulation. Completed simulations, in addition to those in the process or

being completed, can be animated utilizing the post-processing animation software.

6.3. Results

The output files created by the simulation software yields interesting results about

the behavior of oblique machining of aluminum at the nano level. Simulations of varying

rake and inclination are given as described in Table 6.1. Figure 6.3 shows the various

stages of nanometric oblique cutting of single crystal aluminum. Figure 6.4 shows three

various important angles that the simulation can be oriented when using the post-

processing animation software. Simulations are not limited to these angles but can be

rotated in any orientation while in the animation software.
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a). frame 20

b). frame 40

c). frame 60

d). frame 123

Figure 6.3 - Snapshots showing various stages of oblique nanometric cutting

60



a). Side view

b). Front view

c). Plan view

Figure 6.4 - Various orientations of the simulation that can be animated using MDui
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Chip flow angles were calculated with the help of an additional post-processing

application. The chip flow angle is defined as the angle normal to the cutting edge that

the chip makes as it moves across the face of the tool [48]. An approximate relationship

between the chip flow angle and inclination angle was proposed by Stabler, known as

Stabler's rule [49], and is plotted in Figure 6.5 along with the values calcu\ated from MD.

Stabler's rule states that the chip flow angle is approximately equal to the angle of

inclination. For the values computed by MD, the direction of all atoms in the chip is

taken into account when calculating the chip flow angle in an MD simulation.
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Figure 6.5 - Chip flow angle vs. angle of inclination
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Chip flow angje values computed from the :MD simulation of oblique machining

coincide with those values reported by experimental work conducted by Kececioglu [50]

and Brown and Armarego [51], Furthermore, the values calculated by the simulations are

approximated nicely by Stabler's rule up to about 30°, An interesting phenomenon

observed is that as the rake angle is decreased from positive to negative at a given angle

of inclination, a higher chip flow angle occurs.

Snapshots of the chip flow angle are given by using the MDui post-processing

animation application. The pictures were taken by orienting the camera with the normal

to the tool face. This helps in the identification of the chip flow angle and is defined as

the angle created by a perpendicular to the tool edge and the chip flow direction. Figure

6.6 shows a sample series of snapshots with a constant rake of IS', varying the

inclination angle from 0° to 45°.

a) inclination=O, rake=15
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b) inclination=15, rake=15

c) inclination=30, rake=15

d) inclination=45, rake= 15

Figure 6.6 - Variation of the chip flow angle with the angle of inclination
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CHAPTER 7

CONCLUSIONS

7.1. 'General Couclusions

MD simulation of nanometric cutting and tribology provides an important insight

into the behavioral phenomenon found in engineering materials that is impossible to

acquire by using experimental techniques. Information is provided in this study that

ranges from an introduction of MD simulations to the implementation of the software

coding of MD simulations. The purpose of this study is to develop a user-friendly MD

simulation system for nanometric cutting and tribology. Such an approach helps

propagate knowledge transfer from one generation of researchers to the next. This is

accomplished by providing instmction and documentation from three perspectives,

namely the end-user, programmer, and administrator of the system, on creating,

programming, and executing MD simulations.

A user-friendly system was designed and implemented, taking into account the

perspectives from the administrator of the system, programmer of the MD software, and

end user of the simulation packages and cluster. These three perspectives allow the

system to accommodate a larger range of users as weB as provide a mechanism for

increasing the rate at which simulations can be perfonned.
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From the administrator's point of VIew, information on construction and

maintenance of the Beowulf clustering system is given. Complete documentation is

provided to help relieve some of the overhead in maintenance as well as provide an

overview of the operation of the hardware, operating system, and simulation software.

Identification of the important aspects of enhancing parallel processing is given, as it is

the administrator's job to ensure that latency and communication overhead does not

increase to the point where the system is inefficient

For the programmer, infonnation on the MDbinfmt library implementation as

well as different approaches of paranel programming are identified. Information

regarding the details of the functions and structures provided by the library are discllssed.

Software programming examples are also given to show the implementation and

operation of the MDbinfint library. Parallel processing algorithms and approaches are

discussed but the focus of future parallel software implementations should utilize the

domain decomposition method.

The end users of the user-friendly system benefit fr0111 the discussion of the

applications that are provided in the MD software suite. A set of nanometric oblique

machining simulations are given which provide the end user with an example of the

usability of the system as well as an overview of the implementation provided. Results

from the MD simulation of nanometric oblique machining yields useful insight into the

phenomenon of the chip flow during cutting.

Beyond the different aspects to the user-friendly system, several chapters and

appendices are devoted to details on utilizing each of the discussed topics. This provides
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an available set of procedures and documentation for propagating the transfer of

knowledge from one generation of researchers to the next.

7.2. Specific Conclusions

The folJowing is a list of specific conclusions that were obtained in this study. As

previously mentioned, the purpose of this study is to create a user-friendly system for

MD simulation nanometric cutting and tribology. This was accomplished directly by the

identification and implementation of the following list. One important outcome to this

study is that is provides a means for developing, perfOlming, creating, and running MD

simulations in serial and parallel.

I). Two Beowulf class supercomputers were constructed: MDalpha and MDbeta.

Both of these clusters were used in the nanometric simulation of oblique cutting.

In addition to the power that these clusters harness, each provides a separate

implementation and platform for the development of future simulation codes that

utilize paranel processing.

3). A cross-platfonn animation software was created to fill the post-processing

application need found in this study. This application helps the user to analyze

and visualize 3D simulations.

4). Post-processing software for the measurement of the chip flow angle was created

to measure the average direction of the atom flow within the chip for the oblique

nanometric cutting simulations.

5). Pre-processing software was created for this study in order to provide an easy to

use graphical interface for creating MD simulations.
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6). A special C programming library was created, named MDbinfmt. This library

provides access to data structures and functions that help alleviate some of the

headaches when programming atomistic simulations. The library also handles all

file operations, which encompasses writing simulation data to the output file.

7.3. Future Work

Application of MD simulations to nanometric cutting and tribology is a relatively

new field. Future advances for MD simulations applied to engineering and materials

research require diligent exploration by researchers. Several areas have been identified

that should be explored in more detail as part of future work.

The creation of a parallel framework is needed that allows any programmed serial

interatomic potential to be placed into the simulation software without adjusting the core

algorithm. This method may not provide the most optimized parallel code but would be

adequate if domain decomposition is employed. Nonetheless, a parallel framework will

allow the users to harness the power of the massively parallel Beowulf cluster created in

this study to perform MD simulations at a faster rate.

Once the creation of the parallel framework is complete, expansion of the current

MDbeta cluster should be cansi.dered. Testing should be perfonned to detennine network

interface latency and saturation issues. When saturation occurs, upgrade of the

communications interconnect should be performed. Channel bonding of the multiple

onboard network cards should be explored. Once the cluster size outgrows the channel

bonding method of reducing network latency and increasing throughput, new
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interconnect technologies such as 10Gb Ethernet, Gigabit Ethernet, Myrinet, and other

fiber interconnects should be explored.

Implementation of additional potentials using the MDbinfmt library structure

should be perfonn.ed. At the moment, the only potential that has been coded and tested

with the new structure is the Morse potential. Coding and implementation of the MEAM,

EAM, Tersoff, Me, and potential using neural networks should be implemented. Also,

an extension of MD simulation to include a combined MD/MD method should also be

explored to exploit the accuracy of MD with the speed of Me.

Application of the MD software suite should be utilized for studies on other

processes such as milling, grinding, tension, and shear. Indentation and scratching should

also be explored for frictional studies. MD simulation of each of these processes will

provide insight into the behavior and phenomenon ofmaterials at the nano level.

These are just a few of the future goals and research areas that should be focused

upon for the advancement of molecular dynamics simulations of nanometric cutting and

tribology. Implementation of different algorithms, potentials, and cluster technologies

should always be explored to identify new and improved ways to utilize technology to

advance the rate at which computational simulations can be performed.
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APPENDIX A

CLUSTER INSTALLATION AND CONFIGURATION MANUAL

Al. Introduction

Many engmeenng students are knowledgeable with graphics-based

applications and operating systems. However, some are unfamiliar with text-based

operating systems, such as Linux. In this investigation, the computational power that

is harnessed in the MDbeta is accessed via the Linux operating system. Because of

the selection of this operating system, this appendix is prepared to facilitate in the

installation, configuration, and ultimately the maintenance of the MDbeta cluster.

The goal is to provide the reader with an overview for the main services needed for

each ofthe different types of nodes in the cluster.

To facilitate configuration of the MDbeta cluster, a custom installation and

maintenance CD was created, named MDiso. MDiso can be found on both tbe md

web server and mdf.mae file server. Furthermore, describing the operations for

configuring the nodes can be difficult if the reader does not have a basic working

knowledge of Linux. A series of screenshots with captions have been provided to

guide the reader through the installation process. Keep in mind that each node in the

cluster can be custom configured. This means that as the cluster scales in size, cluster
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ervices may be moved to dedicated nodes in order to handle the added increase in

usage from the additional nodes.

As described in Chapter 4 of this document, there are 2 types of nodes:

computational nodes and server nodes. This section of the document is organized by

basic services needed instead of explicitly discussing about computational nodes and

server nodes. This allows the reader to further expand the cluster and distribute the

core server services over multiple nodes.

All nodes in the duster should be running the following mandatory cluster

communication services via inetd:

o rIogin (port 513) for remote login capabilities

o rsh (port 514) for remote execution of commands

Each additional server node added to the cluster should be booted with hard

disk drives .. Infonnation in Section A3 has been provided to help with the base Linux

installation for nodes booted from local hard disks. Additional services run via the

server node include the following:

o ssh (port 22) on the gateway node along with iptables

o dhcpd (port 67) to assign IF address to each node in the cluster

o etftpd (port 69) to transfer the kernel for the remote node to boot

o nfsd (port 2049) allows for drives to be mounted remotely

More information on the servIces as well as further details for the

configuration of the Linux operating system can be found on the www.linuxdoc.org
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website. There is a plethora of infonnation located at this large archive and should be

used whenever questions arise that are not answered in this investigation.

A2. Enabling Mandatory Clustering Services

Each node in the cluster must be running core services that allow for logins

and commands to be executed remotely. If Section A4 is followed carefully, no

external connections from outside the cluster can be made to these insecure services.

These services, provided by rlogin and Ish, are run from the inetd super daemon

server on all nodes. To enable these services, add the correct lines in the inetd.conf

and rehash the daemon by executing kill-HUP 'pidof iuetd'. By default, tbis server

will be started through the startup scripts at boot on all nodes in the cluster. The

inetd.conf file must be edited and two lines should be modified. The following lines

are required in the inetd.conf on every node:

shell stream tcp nowait root lusrlsbin/tcpd in.rshd -L -h -a

login stream tcp nowait root lusrlsbinltcpd in.rlogind -a -L

A3. Slackware Distribution Base Installation

When performing an installation, there are a series of screens that require

input. Many of the screens are generally self-explanatory. However, an explanation

has been provided for each screen that requires input during the installation. Bold

typeset words are commands that can be executed at the prompt, if available, or by

opening a new console and swapping to that console via alt-fl to alt-f5. Also, any

standard commands can be executed while in the virtual terminals. During the
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installation, the desired selection along with the desired action should be highlighted

before pressing enter. Be careful when making selection during the installation. Any

errors at this point require termination of the startup script by executing ctrl-c. Figure

Al is the fIrst screen that appears when the installation CD is booted at startup. Press

enter to begin the installation process.

Welcome to the Slackware Linux installation disk.' (vGrsion 8:.1.0)

ItlllUllt1l IMPORHINT! RER[) THE INFm~MRTION BELOW CElREFULlY. IIMUIIlI

- Y,au wi 11 need one or m.ore Ilarti hons of type 'Lifll.lX !lotive' prepared. It is
a) so recollunended that you c;n:la1e ,a SVlap par ti tion (type ' inUK s ...lap') I>rior
to installation, For more information. run 'setup' cmel read the help fHe.

- If you're having problellls thtlt you think .iQht be r,elat,ed to 10" me.ory (this
is possible on machines ~ith 16 or less megabytes of system nemory). you can
h-y activatinu a SW<l» partition before you rUn setup. After making a swap
Pilrtition (type 82) "ith cfdisk or fdisk. activote it like this:

.ksltlap Idev/<Pilr li lion> ; swapon Idev/<pilr l ilion>

- Once VOLI have prepared the disk par H tions for Linux. l.,me •selup' to begin
the installation process.

- If you do n01 have a color JIlonitor. type: TERH=vt1t00
before you start . setup' .

You .ay now login as 'root'.

CustOM serial sJackware install login: root_

Figure Al - Installation CD login screen

Login and execute fdisk to set up the partition table on the hard disk drives.

Figure A2 shows a sample partition table. After the partition tables have been set up

on the hard disk drives, the setup script should be executed. Select swap space=ram,
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root@slackll'are:-" fdisk Idev/hda

,The number of cylinders for Hlis disk is set to 2495,
Ther,e is n?thing lIl,:,ong wi th that. but tllis is larger than 102.f~
and could Incertalo setups cause probleRs with:
1) soHl'lare th(.'lt runs at boot t'lIle (~,g,., old ",er's'on of L LO)
2) boot'og ~nd partitioning 'sQft~are frQ. oiher OS

(e.g., DOS FOISt{, OS/2 FDISK)

COfJIllltmd (m for help): I>

Oisk ldev/hda: 25!S heads. 63 sec.tors, 2495 cylinders
Units: '" cvlinders of 16{l65 .. 512 bytes

Device Boot
/dev/hdal
/dev/hda2

:/dev/hda3

St rt
1

193
324

End Bloc~s Id Syste~
192 1562239· 83 Linuk
323 ·lQS22S1... 82 Ulil!JX swap

2495 17446590 83 Linux

Command Im for help): Q

root@slackwa."e: "ff setup_

Figure A2 - Sample partition table and setup script execution

Highlight the addswap option and continue as shown in Figure A3. It is a

good idea that this swap space be enabled when perfonning the installation. If a swap

partition is found, a dialog box appears, such as Figure A4 shows.

Figure A3 - Setup screen with swap option highlighted
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Figure A4 - Swap space detected dialog box

After enabling the selected swap space, as shown in Figure A5, the partitions

defined in the partition table need to be fonnatted. The first partition is usually

selected and mounted as the 'f' or root partition, as shown in Figure A6.

~ctivating s~ap partiiion Idev/hda2:
s\II-apon /dev/hc/.a2

Figure A5 - Activation of the swap space diaLog
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Figure A6 - Root partition selection dialog

Before mounting the selected partition, it must be formatted. Figure A7

shows the dialog box for the partition formatting. If you are unsure of the integrity of

the drive, select the check option; otherwise, the fonnat option will suffice. Figure

A8 shows the inode options. Select the default of 4096 bytes.

Figure A7 - Partition fonnatting selection dialog
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Partition Idev/hdal will be for~atted.

Figure A8 -lnode density selection dialog

After fonnatting the root partition, the remaining partitions need to be

formatted and mounted in the appropriate locations. For the example given, the home

drive space needs to be formatted. Figure A9 shows the remaining options in the

Linux partition menu. All server nodes should sti I mount the home partitions via the

nfs server. If the node that is being configured is the nfs server, then mounting a

large partition for the user directories is needed.
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Figure A9 - Remaining options in the Linux partition menu dialog

After fonnatting and mounting the partitions, the file system tab file (fstab)

will be displayed on the screen. Figure AID shows a sample dialog. Review it to

make sure that the partitions you selected were mounted at the correct location. After

reviewing the fstab, continue the install from the Slackware CD-ROM, as shown in

Figure All.
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Figure AIO-File system tab file displayed for review dialog

Figure A11 - Source media selection dialog

To install from the CD, you must know the device name. If you are unsure of

the device name, you may determine this by the dmesg in a virtual console.
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Otherwise select the auto option to search for the CD-ROM, as Figure A12 shows. If

a drive is identified, it is mounted, as shown in Figure AB.

Figure A12 - Automatic CD-ROM detection dialog

CD HOM OrnVE FOtJIlD I

Figure AI3 - Automatic mounting of CD-ROM dialog
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Continuing with the installation process reqmres that the separate Linux

packages be selected. To alleviate this repetitive task for multiple configurations,

custom tagfiles were created. You may select an the package series or leave the

defaults active as shown in Figure A14. However, do not exclude any default series.

The R (base) series contains the kernel and main systeMI utilities.

Figure A14 - Package series selection dialog

Figure A15 - Installation continuation dialog
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Custom tagfiles were created in order to automate the package selection step,

which can be a daunting task for someone who is unfamiliar with the different

software packages. Select custom as shown in Figure A16. IfMDiso is used for the

installation process, enter in '.sa' as shown in Figure AI7.

Figure A16 _.- Custom tagfile install dialog

Figure AI7 - Custom tagfiJe extension dialog
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The next part of the installation process is automated. A series of screens will

flash as the different software packages install. Figure A18 shows the initial screen.

After the software installation is complete, custom kernel installation can be

completed.. Select the kernel from the CD as shown in Figure A19.

Figure A18 - Automatic installation dialog

Figure A19 - Kernel installation dialog
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The next menu, Figure AlO, shows the different kernels that can be used to

boot the system. Figure All shows the boot disk creation menu. Skip this menu if

you booted from CD since MDiso can be used to jumpstart the system and act as the

boot disk. The kernel used to boot the system will be highlighted.

Figure AlO - Kernel selection dialog

Figure A21 - Boot disk creation dialog
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Figure A22 shows the modem configuration dialog. Since an Ethernet

network adapter is used for remote access, there is no need to use or install a modem.

Because of this, select no modem. Figure A23 shows the initial Linux Loader (LILO)

instaUation menu. Select expert ldo.conf setup and proceed with the install.

Figure A22 - Modem configuration dialog

Figure A23 - LILO installation menu
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Start the LILO configuration process by selecting 'begin' in the expert LILO

installation menu, as shown in Figure A24. Additional parameters can be passed to

the kernel at boot time by filling in the appropriate information as shown in Figure

A25 or by editing the Iilo.conf file and executing liIo.

Figure A24 - Initial expert LILO installation dialog

Figure A25 - LILO append line options dialog
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After the boot time configuration information has been placed in the append

line. select the standard non-frame buffer console, as shown in Figure A26. Figure

A27 shows the target location for the LILa installation. Select MBR for the Master

Boot Record and continue.

Figure A26 - Frame buffer console configuration

Figure A27 - LILa target installation location
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The next step is to identify the root partition. Figure Al8 shows the menu

choices. Select Linux~ and press enter. Figure A29 shows the mounted drives.

Recall from Figure 6-11 which partition you selected as root and enter it in as shown

in the following..

Figure A28 - Expert LILO installation dialog

Figure A29 - LILO root partition selection dialog
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Multiple kernels can be defined in the LILO configuration file (/ete/lilo.eonf);

therefore a label is important. Figure A30 shows the Linux kernel partition label.

After completing all the above steps relating to installing the LILO loader, scroll to

the Install menu and then proceed to the next section as shown in Figure A31.

Figure A30 - LILO partition identifier dialog

Figure A31 - Final LILO installation dialog
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The machines constructed have custom configured kernels, so as to increase

the stability of the systems. Configured kernels do not support modules because

drivers have been compiled directly into the kernel. Due to this, the network

configuration utility included in the installation scripts is rather useless. The network

can be configured within the kernel configuration and the network device can be

brought online during the startup process. Building a custom kernel also allows for

all of the drivers for the hardware to have support while devices options are passed

via kernel level parameters passed in during the boot process from the LlLO append

option. Another reason for not enabling the network connection at this point is that

the machine is 110t secured. Figure A32 shows the network configuration dialog box.

Select no and continue to the next part of the installation process.

CONFIGURE NETWORK?

Figure A32 - Network configuration utility
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The next step is to configure the hardware clock. If the BIOS contains the

local time, then the hardware clock is set to local time and the no option should be

selected. Figure A33 shows the hardware clock dialog box.

Figure A33 - Hardware clock dialog box

The last operation that needs to be performed before restarting the machine

and working on the configuration is to set a root password. The root password is an

extremely delicate piece of information. It should not be shared, and should never be

abused. Care must also be taken when selecting a password. The password should

have ASCII and numeric characters. The ASCII characters should be a mix of both

uppercase and lowercase letters. The best selection is to use non-dictionary based

words. Figure A34 shows the root password dialog warning. Make sure that you

select, yes. The install will move to a console where you are prompted to enter in the

password as shown in Figure A3 5.
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Figure A34 - Root password warning dialog

Changing pass~jord for root
Ent'e1" the nevI passl90rd (mi"lmullI of 5. maximulIl of 127 characters)
Please use a cOII,bination of upp'er and lOMer ca,se letter's and numbers.
tfew pass.,ord;
Re~enter neM password:
Pass",ord changed.

Press [enterl fo continue:_

Figure A35 - Root password input from shell

After entering in the password that has been carefully selected and pressing

enter as the prompt says, the final dialog box from the setup scripts wiH be displayed.

Figure A36 shows the final dialog from the setup script. It instructs the user to
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execute the ctrl-alt-delete reboot sequence. This win send run-level 6 to the Linux

init, causing the system to reboot. Be sure to remove the installation CD from drive

or change the bios boot settings to boot from the hard disk first.

Figure A36 - Setup completion dialog

If LILO was installed correctly, the machine should boot up to a login shell

prompt. At this point, the machine is ready to be configured. If all options were

correctly entered, the system should boot to a login prompt.

A4. Serial Workstation Configuration

At this point in the configuration process, it is assumed that the steps up to this

point have been completed. Mount the installation disk from the appropriate device.

The command is mount Idev/hdX Irnnt/cdrom, where X is replaced by the

appropriate letter (a-z). After mounting MDiso, the custom startup scripts can be

copied to the workstation. These scripts were custom written to ensure that only the
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specialized services needed are running. Execute the following command to copy

these custom startup scripts to the files that control the startup sequence: cp -R

/mntlcdromlspecial/savesletc/* lete/. The mail message can be removed by

executing rm Ivarlspool/mail/root.

The inet super daemon configuration file should be edited to not start the

unwanted services. This can be done by editing the letc/inetd.conf and placing a '#'

character in front of each line that is unwanted. The files can be edited by executing

either of the following commands: vi lete/inetd.conf or pieo letc/inetd.conf. After

modifying the configuration file, the server should be restarled by executing kill 

HUP 'pidof inetd'. To verify that all services have been shutdown, execute the

netstat -an command. This program is capable of showing the network cOlmections,

routing tables, interface statistics, masquerade connections, and multicast

memberships. The'-an' switch tells the application to display al1listening and non

listening sockets in numeric form. This command is extremely useful for verifying

what ports have services listening. Finally, the hostname of the machine should be

changed to the appropriate machine name by executing echo

"bostname.okstate.edu" > letc/HOSTNAME. Figure A37 shows these commands

executed on the workstation and the output of the specific commands.
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Welcome to Linux 2.4.18 (itySO)

hostname login: root
Pass"ord:
l.inux 2.4.18.
root@hostn Me:-~ mOlnt Idev/hdb l.nt/cdrOM
1II0UI)t: block clev ice Idevlhdb .S NC"i te-Drot cted••ounUn .. d-onl y
roc)iElhostrl lte::1-1 CD -R IlIIntlcdroaV peci]l ue lelda fatc/.
"ool@hostnllle: II rm,/e1c/rc.dfrc. ri J letclrc.d/rc.inel1/etcJrc.d/rc.illot2
rool@host,nne:-tjI rill /..,8r/$1)001l aU/root
rootElhostn Itc:-h kill -H P 'pidof i etd'
'-ool@ho-sll1ltc;-h nets-tat -(In
fle t iOJe In ternet contlecHons servers nd esl lished)
P,'olo Recv-Q Send-O Local IJkldre s Foreig.-- Ad ress Slate
flctive UtID< domdin sockets bervers c:lJ)desUabli hed
P"oio RefCnl Fla~J$ T,pe State I-Node PlJIth
,un~x 3 [ J [)~RnIllSB Idevllo9
urux 2 [ ] D6RR~ U

,'-QQ l@hos tn~ me: ·'ft echo "hostna:ac. dkslatc ,cdu" > letclllOSTNf.lH'E
'-QO leho:;) t,,(nlle: '"II

Figure A37 - Locking down a serlal workstation or server node

All the remote services have been disabled at this point. A new kernel should

be configured so that the network device is activated. It is possible to use a pre-

configured kernel, however because hardware is evolving and improvements are

constantly implemented into new versions of the kernel, a sample configuration file is

provided and it is recommended that the newest kernel be configured with this file. If

the reader is unable to compile a kernel correctly, a reconfigured kernel may be used

and can be found in the Ispecial directory of the MDiso. It can also be obtained from

ftp://ftp.kernel.org/pub/linux/kemel/v2.4J. At the time MDiso was created, the

current kernel was provided. Copy the kernel source file to the source directory:ep

Imntledromlspecial/linux-2.4.18.tar.gz /usr/sret. CD to the lusrlsrc directory and

extract the kernel source distribution in the current directory and create a link to

access the directory: cd lusr/src and then tar zxvf linux-2.4.18.tar.gz. To use the

configuration provided on MDiso: In -s linux-2.4.18 linux; cd /usr/srctlinux; ep
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/mnt/cdrom/speciaUsaves/kernel.conf .config;. Figure A38 shows the setup of the

kernel source tree.

root@hostna"e:-W mount /devlhdb I.ntlcdrom
lIlount: block d~lJice Idev/hdb is write-protected. mounting read-only
rootl1!hostna.e:1t CIJ hnnt/cdro./speciallhnu)(-2.4.. 18. tar. g,z lusrlsrcl.
rooUlhostna..e: -It cd lusrlsrc
rooU1hostna..e: lusrlsrclt tar 2Kf 1inux-2. 4. .18. tar. gz
rooU!hostn6..e :lusrlsrc~ 111\.1 liow( linult-2.4..18
root@hostna.e: lusrIsrc# 1.n -s hnu)(-2.4 .18 linuM
root@hostna.e:/usr!srcll cd linux
rQot@hostna..e:lusr!srcllinuxU make menucQnfig_

Figure A38 - Kernel source tree setup

To compile and install the kernel, execute the following commands: make

dep; make clean; make bzlilo. After the kemel has been compiled, reboot tlte

machine by executing a ctrl-alt-del or the command shutdown -r DOW.

AS. SSH Configuration for Gateway Node

The configuration of the gateway node 18 extremely important. This node

controls aU connections to and from the cluster. The only service that should be

allowed from the outside is the secure 8heH service running on port 22. Many

services may be running on the gateway node. Using iptables as mentioned in the

hardware section allows for connections to be controlled. To configure secure shell

services, download the latest version of SSH from ftp.ssh.com/sshl. This application
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provides the encrypted communications for using the duster remotely. Make sure

that the latest version of the SSH distribution is downloaded because known bugs and

vulnerabilities are usually fixed in current releases of software.

After obtaining the source distribution, extract the source by executing the

following command: tar zxvf ssb-x.x.x.tar.gz where x.x.x is replaced by the most

recent version. After extracting the source distribution, cd into the source directory:

cd ssJI-x.x.x. At this point, as with any source distribution, view the README and

INSTALL files. These files give the reader proper information and warnings for

configuring the software. Read carefully and follow the directions provided with the

source installation.

After finishing the installation process for the SSH service, the firewall needs

to be configured. Setting up access to the cluster through the firewall is a powerful

tool to control access to the cluster.

The firewall script, Figure A39, populates the input and output chain that

controls connections to the services. The important feature to understand about the

script is not how it works or what it does, but how to configure it. By default all the

services are blocked. This means that if external services or access is needed, the

iptables firewall must be altered. After completing modifications, the firewall can be

tested by executing the firewall script with the following command.

./etc/rc.d/rc.fjrewall
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#!Ibin/bash

# Set these variables
INET_IP="139.78.xx.xx"
INET_I FACE="eth1"
LAN_IP="192.168.0.254"
LAN_BCAST_ADRESS="192.168.0.255"
LAN_IFACE="ethO"
LO IP="127.0.0.1"
IPTABLES="/usrlsbin/iptables"

# Bring up the Ian interface
Isbin/ifconfig $LAN_IFACE $LAN_IP
Isbinhfconfig $LAN_IiFACE netmask 255.255.255.0 broadcast 192.168.0.255

# Flush the original chains
$IPTABLES -F FORWARD
$IPTABLES -F OUTPUT
$IPTABLES -F INPUT

# Set the default policies
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

# Set the rules for the INPUT chain
$IPTABLES -A INPUT -p ALL -m state --state INVALID -j DROP
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
$IPTABLES -A INPUT -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT

# Allow cluster to return external ping requests
$IPTABLES -A INPUT -p ICMP -5 010 --i,cmp-type 0 -j ACCEPT
$IPTABlES -A INPUT -p ICMP -s 0/0 --icmp-type 3 -j ACCEPT
$IPTABLES -A INPUT -p ICMP -s 010 --icmp-type 5 -j ACCEPT
$IPTABLES -A INPUT -p ICMP -s 010 --icmp-type 8 -j ACCEPT
$IPTABLES -A INPUT -p ICMP -s 010 --icmp-Iype 11 -j ACCEPT

# External services (add access to ssh here)
$IPTABLES -A INPUT -p TCP -s 139.78.xx.xx --dport 22 -j ACCEPT
$IPTABLES -A IINPUT -p TCP -s % --dpart 22 -j ULOG # log ssh attempts
$IPTABLES -A INPUT -p UDP -s % --sport 53 -j ACCEPT # allow dns queries

# Set the rules for the cluster side, 10 interface, and OUTPUT chain (no need to tOUCh)
$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -d $LAN_BCAST_ADRESS -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -j ACCEPT
$IPTABLES -A INPUT -p ALL -d $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -d $LO_IP -s $LOJ!p -j ACCEPT
$IPTABLES -A OUTPUT -p ICMP -m state --state INVALID -j DROP
$IPTABLES -A OUTPUT -p tcp ! --syn -m state --state NEW -j DROP
$IPTABlES -A OUTPUT -p ALL -s $INETJP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LO_IP -d $LO_IP -j ACCEPT

Figure A39 - Firewall boot script
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A6. Compllltational Slave Node Configuration

The last important area to focus on for administration and maintenance is the

addition of a computational node. When more nodes are added, the following steps

will be mandatory to give the node access to the services running on the server nodes.

The easiest way to explain how to add an additional node to the cluster is by

way of example. At this point, 12 computational nodes are currently in the cluster.

The following dialog is given for adding the 13 th computational node.

The first step to adding an additional computational node into the MDbeta

cluster is to connect to the file server node. After logging in as root into the file

server node, cd /tftpboot to the nfsroot directory shares. This location stores all of

the nfsroot mount points that are shared through the network file system. Next, make

a copy of the base computational nodes directory IF by executing the following

command: cp -R 192.168.0.1 192.168.0.13 where '13' indicates the node number.

Create a copy of the PXE batch file by executing the following command: cp

192.. 168.0.l.bpb 192.168.0.13.bpb where' 13' indicates the node number. Edit the

newly created file to reflect the new mount point that was just added: LinuxBoot

"linux.slave.krn" "root=/dev/nfs nfsroot=192.168.0.254:/tftpboot/192.168.0.13

ip=bootp" where' 13' again indicates the node number. Edit the /etc/exports file and

add the appropriate hne as follows: /tftpboot/192.168.0.13

192.168.0.13(rw,no_root_squasb) where both '13's indicate the node number.

Execute a /etc/rc.d/rc.nfsd restart to rehash network file server and allow for the

node to attach to the newly created mount points.

104



Finally, the IP address needs to be assigned in the letc/dhcpd.conf file. The

DHCP server uses the hardware address of the newly added node in order to assign

the correct address to the correct node. This is only done for bookkeeping measures

in case nodal failure occurs. To determine the hardware address of the new node,

power the machine and wait for the hardware address to be displayed. Once the

hardware address is gathered, add the following series of lines in the DHCP

configuration file In order to give the DHCP server permission to assign an IP address

and host to the newly created node:

host md13 {
hardware ethemet XX:XX:XX:XX:XX:XX;
fixed-address 192.168.0.13;
option bpbatch-option "192.168.0.13";
option host-name "mdB";

}

The DHCP server must now be restarted. Unfortunately, the server does not

suppOli rehashing. Therefore, execute killaU ' pidof dhcpd' and then dbcpd to restart

the server. At this point, the node is ready to be booted and will automatically be

entered into the cluster. The final remaining step is to add the correct nodal name and

number of processors into the mpich configuration file located Itftpbootlusr-

common/mpich/sbare/machines.LINUX. Open this file and add the newly installed

node using the same [annat as the existing entries. After completing all of the above

steps, an additional node should be operational in the MDbeta cluster.
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APPENDIXB

INTRODUCTION TO USING LINUX WITH SECURE COMMUNICATIONS

81. Introduction

Many students are familiar with the tenn Linux, but some have little or no

experience using this powerful operating system. For those who are not familiar, this

document wiU be a valuable tool. Those who are familiar with Linux can use this

document as a quick reference. Information provided here is aimed at the systems (and

their configuration) that are used in our lab. Each user is given what is called a shell.

This shell provides the environment for creating and running simulations. Common

shells available are Bourne Again Shell (bash), Korn Shell (ksh), and C Shell (csh).

Manuals for all commands on the Linux workstations can be viewed hy usi ng the

man command. This command is one of the single most important tools that can be

found on the Linux machines. If in doubt as to what a specific program does, or how to

execute the specific command in question, check man <command>. With the use of

man, your question will be answered in most instances.

82. Logging Into Workstations with Putty/SSH

All of the machines running in the MD laboratory at OSU are running a secure

version of teind called Secure Shell (ssh). Ssh provides a means for encrypting the
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communications, including usemames and passwords., between two connected hosts.

Connections can be made between Linux hosts or from Windows based machines to

Linux hosts. To connect to the Linux workstation from a Windows machine, use putty.

This application may be downloaded from http://md.okstate.edn/tools/pntty.exe.To

connect to the machines in the lab, open puHy, and type in the host name of the machine

that you to which you wish to connect. Please note that it is a requirement to select the

ssh protocol be]ow the host name. Ailer selecting the machine to which you wish to

connect, click on the open button at the bottom. Options for saving sessions and other

features can be found by browsing the application menu on the left. Figure B1 shows the

putty configuration dialog.

Figure B] - Putty configuration dialog
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Enter your assigned username and password. Keep in mind that all dialog and

communications entered into the putty window are encrypted. Figure B2 shows the putty

communications window.

Figure B2 - Putty communications window

The above communications window provides the mechanism for rmmmg

simulations and doing other important tasks on the lab machines running Linux. Once

you have logged into the desired workstation, you will be placed into your user directory.

Each unique user logged into the workstation has his/her own directory that other users

cannot modify.

If a user on a Linux machine desires to connect to another Linux machine,

execute the ssh <username>@<host>. This can be useful for quickly checking the
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status of another application or any other minor task. Note that all communications to the

second host is encrypted, sent to the first bost, decrypted, re-encrypted and sent to the

second. Figure B3 shows the execution of ssh within an existing putty terminal.

Figure B3 - Connecting between shells

B3. Utiliziug the Shell

The shell is an important application on the Linux machine. It is the interface to

the kernel and allows for applications to be run. The shell is much like the command

prompt in the DOS or Windows environment. The default shell on the Linux machines is

bash.

Directory structures are similar to those found in the DOS/Windows environment.

Binary files in the current directory, but not in the user path, (viewable by executing echo

$PATH) require a ./ in front of the binary name in order to be executed. Linux does not
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use file extension associations for execution. The period «." is an ASCII character just as

the letter "p" is. This means that a file caHedfile.l.2.23 is just as valid as a file named

data.dat. This implies that Linux regards the filename as unimportant. However, binary

files must have "execute" access permissions enabled in order to execute the file. For

more information, type man cbrnod. Use file extensions that describe the information

that is contained in the file for identification purposes only. For example, a file named

test.e would most likely be C source code.

A list of some of the basic commands that the reader should be familiar with is

shown in Table B 1. Keep in mind that the following list is not exhaustive, but merely

aims to touch on the surface of the commands available on the Linux machines.

Table B1 - List ofcommonly used Linux commands

cd
clear
cp
df
du
exit
grep
Is

man
mkdir
mv
ping
ps
pstree
rm
screen
tar
uname
vi
zip

change working directory
clear the terminal screen
copy files or directories
report filesystem disk space usage

estimate file space usage
terminate the current process
print lines matching pattern
list directory contents
format and display the on-line manual pages

make directories
move (rename) files
send ICMP ECHO_REQUEST packets to network hosts

report process status
display a tree of processes
remove files or directories
screen manager with VT1 aD/ANSI terminal emulation

tar archiving utility
print system information
vi text editor (man elvis)
package and compress (archive) files
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Remember that wildcards may also be used as parameters when executing many

of these commands. The * matches text of any length whereas the ? matches a single

ASCn character. Keep in mind that any of the commands can be reviewed in detail by

executing man <command>.

84. Transferring Files Under Windows Using psftp

Utilizing the workstation from the shell is an important aspect to master.

However, one function that putty/ssh does not handle is transferring files to and from the

workstations. The file transfer protocol (ftp), much like telnet, is not a viable method of

transferring files because data and passwords are sent in clear text. An altemative to this

method is to use the secure fip protocol, provided by the ssh software suite. A graphical

implementation of sftp, called Cute FTP Pro, has been developed and can be downloaded

from the web. However, this piece of software requires a license and is therefore not

recommended. The recommended software for transferring files is psftp. Psftp is

freeware or free software and can be downloaded from

http://md.okstate.edu/tools/psftp.exe. After downloading and executing this

application, type open <username>@<host> to initiate the comlection. Once connected,

regular ftp commands like get and put can he used. If you are unsure what commands to

execute, enter help once login has been granted. Figure B4 shows an example of

transferring a file fTom a remote workstation to the local machine.

111



Figure B4 - Transferring files using sftp

B5. Transferring Files Under Linux Using sftp and scp

To transfer files between different Linux workstations, sftp or scp can be used.

Sftp on the Linux workstations operates in the same manner as psftp. Another alternative

is to use scpo Scp requires less input from the user and just copies the file to the desired

workstation VIa encrypted communications. Execute scp <source.filename>

<username>@<host>:<destination.filename>. Figure BS shows an example of a file

transfer between two Linux machines.
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Figure B5 - Transferring files with scp between Linux workstations

86. Using the Text Editor

There are several different text editors available on the MD workstations. The

two most commonly used text editors on the Linux workstations are vi and pico. Pico,

found in the pine mail distribution, allows for editing of files in a user-friend,ly format,

similar to the notepad text editor. To open a file in pico, execute pico filename.

Instructions are given once the editor has been executed. 'vi' is the recommended text

editor for users that plan on spending large amounts of time working in LillUX. It was

originally designed to operate smoothly without using large amounts of bandwidth by

employing shortcut keys to help speed up editing text files.

Because pico is simple to use, the usage of this program will not be given. For

those interested in becoming proficient with 'vi', download a detailed manual from any

one of the many 'vi' text editor web pages.
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B7. Using Makefiles and Compiling Source Code

Maintaining large and even sroan source distributions on a Linux machine can be

a daunting task. S.l. Feldman at AT&T Bell Labs designed make in 1975 to automate

and optimize the construction of programs. When building projects, the make application

keeps track of what files have been modified since the last build. This helps to minimize

time spent in compiling source code. Default macros are provided within make to help

manage projects. To display a list of the default macros execute make -po Figure B6

shows a sample makefile. In the sample makefile, make clean removes all object and

binary files. Executing make builds the project and creates the binary. These scripts can

be modified to suit custom compilation needs.

OBJECTS = main.o

EXEC = EXEFILE

COMPILER = gee
FLAGS = -03
LIDS =

$(EXEC): $(OBJECTS)
$(COMPILER) $(FLAGS) -0 $(EXEC) $(OBJECTS) $(LIBS)

.c.o:
$(COMPILER) -c $(FLAGS) $<

clean:
nn *.0
rm$(EXEC)

Figure B6 - Sample makefile
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88. Running Applications

Running multiple applications or simulations on vanous machines can be a

cumbersome process. To help alleviate the difficulti,es encountered during this process, a

series of commonly asked questions and answers have been provided to help the reader

with spawning processes.

How do I run an application?

MD simulations are computationally il1tensive. Some simulations can take

several hours, if not days, to complete. For this reason, it's a good idea to run binary files

using the following syntax:

nohnp .I<binary> <inputfile> > <outputfile> &

Can I log out after starting an application?

Unless you plan to sit in front of the simulation until it has completed, you need to

log out. The command nohup starts the process and tells it to ignore hang-up signals (or

logout signals). This allows the user to log out of the system without the appl.ication

terminating. It is important to logout after you have finished using the workstation so

that the systems are left in a secure mode.

Why do I need the ./?

<binary> is, of course, the name of the simulation application's binary. The.l

simply refers to the current directory (just like DOS/Win). When you enter the name of

an executable, the operating system looks for the program only in the path described by
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your $PATH environment variable, which may not include the current directory.

Therefore, when executing a program, it may be necessary to preface the executable

name with .I

What is the name of the input file and what should I name it?

Most simulations require an input file. These input files should be labeled with

some type of sequence or with an identifier. In the sample case, the input file was named

<inputfile>. Any name may be selected but care should be taken to help organize the

different simulations that have been constructed and completed.

How can I capture standard output to a file?

You can capture the standard output (stdout) of any program by appending>

<outputfile> to the end of the command you type in. This redirects the output from the

screen to a text file called <outputfile>. All the data written to standard output will go to

this file except for errors, which are still displayed to stdout.

How can I return to the shell after executing an application?

Appending & to the end of an executed command run the command as a

background process. This means that the command prompt is returned so that the user

can issue additional commands, such as viewing the output of the file tail -f

<outputfile> or checking on the status of the process.
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How do I know ifmy simulation is still running?

You can check the status of your program (and other programs) using ps aux.

This will display aU processes currently running on the system along with other

i.nfonnation. Other useful applications for listing the Cllrrent processes are pstree and

top.

What if I want to stop or temlinale my simulation?

To stop or tenninate a running application, use the kill cOlllilland. To

successfully use the kill command, the process id is needed. To identify the process id,

execute ps aux., top, or pstree. Another alternative to identifying the process id is to

execute pidof <binary>. Keep in mind that you are only allowed to kill processes that

you own.
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APPENDIXC

USING MDBINFMT LIBRARY VERSION 1.0.0

Cl. Introduction

The purpose of this library is to give the programmer an easy to use, user-friendly,

interface to MD data structures and functions for rapid development of MD simulations.

In order to harness the power of the library, descriptions on the data structures and

functions implemented are given. Source code for the library is available to researchers

interested in expanding the library to include other data structures for different potentials,

but has not been induded here in case the code is moved to a commercial state.

The library itself provides a mechanism to easily access, store, and read MD

simulation infonnation during and after the simulation. The data structures can be used

in two ways: as a dynamically allocated array or as a linked list. Files created and

accessed using this library should be named with the extension .rod for identification

purposes. There are two important parts to the MDbinfmt library, the data structures and

functions. The next two sections explain the data structures and functions, respectively.

The last section in this document gives examples on how to perform common tasks that

are needed during an MD simulation. To implement the library into code, download the

distribution from the MD web or fileserver and make sure the library is linked during
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compilation and the appropriate header files are included. All code written in the rest of

this document is in italics while examples are bolded to stand out.

C2. MDbinfmt Structures

The structures defIned for the MDbinfmt library are made available to help

decrease the overhead while programming molecular dynamics simulations. They can be

used in conj unction with the functions discussed in the next section or without. The

following is a list of the defIned structures available in the MDbinfmt library.

Table C1 - Table of available structures in the MDbinfmt library

Structure Name

material t

velocity_t

atom t

atom 11 t

grain_t

grain_ll_t

crystal_t

crystal_ll_t

bond II t

rk interm t

Use of Structure

Contains material information

Contains velocity information

Contains atom information

Contains atom information in linked list

Contains grain information on atoms in array fonn

Contains grain infonnation on atoms in linked list form

Contains crystal information on grains in array form

Contains crystal information on grains in linked list form

Contains atom bonds information in linked list form

Temporary information used for Runge-Kutta integration

119



The following pages outline the structures that are defined in the MDbinfint

hbrary. Information regarding the variable types as well as a description of what they are

used for in the Morse version of the code has been provided.
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Name:
maieria/_t

Synopsis:
struct material_t {

intid;
illl pot_type;
int crystaCtype:
float/auice_constant;
float atomic_weight;
float r_0;
float d;
float alpha;
float cutojJjadius;
float ternpJeset_interval;
float next_temp_reset;

;.

Description:
This structure contains all relevant data about a material in the Morse
potential as well as runtime data needed tor the reset velocities
functionality.

Details:
illl id is a unique id given to each material.
int pot_type specifies the type of potential used.

O=Morse
int crystaCtype specifies the type of crystal structure.

O=Body Centered Cubic. I=Face Centered Cubic. 2=Hexagon31
Close Packed.
float/alice_constant is the constant that specifies the crystal structure

spacing (A).
float atomic_weight is the atomic weight of the element specified (AMU).
float d is the well depth in tbe Morse curve or minimum potential (eY).
flool r_0 is the location of the well depth (A).
float atpha is the parameter that helps to simulate the 310m vibration
related to the debye freq.
float clltojJjadills spedfies the distance for which atom interactions are
considered (A).
floattemp_resel_interval specifies the rate the velocities should be reset
(TV).
float next_tenlpJeset is a rllTllime variable that specifies the next time that
the atoms of this type should have their velocities reset (1U).

Name:
ve/ocity_t

Synopsis:
struct velocily_t {

inl ctystaUd;
im rype;
floot start;
float stop;
float x, y, z;
float xa, yo, za;
float xc, yc, zc;

/.
/.

Description:
This structure contains all the infonnation necessary to move a crystal
during a simulation.

Details:
im crystaUd is the id of crystal the velocity will be applied.
im type specifies the type of movement that will be applied to the crystal.

I=LineaI.
2=Rot3tional.
3=Linear and Rotational.

float start is the simulation time that the movement will stan (TV).
float SlOp is the simulation time that the movement will stop (TU).
float 1:,y,z are vector speeds to move the crystal in a linear type (ArI'U).
float J:O. yo. za are the angular speed to move tbe crystal in a rotational
type (radITU).
float xc. yc. zc specifY the point about which to rotate in a rotational type
(A).
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Name:
otom_I

Synopsis:
slrucl 010171_1 {

inl pystal_id:
inl groin_id;
illl malerial_id:
Stll1er materia'-I ·malerial;
inl type;
double x. y. z;
double dx. dy,d:,
double pe;
double px, py, pz:
SII'lICi rk_illlenll_1 ·rk_illienn.

J,

Description:
This structure comains all the infonnation about a single atom anJ a
pointer to a structure that stores data needed during integration.

Details:
inl cryslaUd is the crystal id for the atOm.
inl graill_id is the grain id for the atom.
illl materioUd is the material id tor the atom.
slruelmaleriol_1 ·malerial is a pointer to the materials structure for this

atom.
inl type specili.es the type of atom.

O=Boundary Atom.
l=Peripheral Atom,
2=Moving Atom.

double r, y, z is the current atom position (A),
double dx, dy.1iz is the current force on lhe atom (eV/angstrom),
double pe is the magnitude of the potential energy of chis alom (eV).
double pr, py, pz is the potential energy of this atom leV).
slrucr rk_illrenn_1 *rk_inlem, is a pointer to a structure that stores
temporary values needed for integration (defined below)

Name:
010171_11_1

Synopsis:
sll1ier aIom_"_I (

strucIOIolII_"_1 ·nexl;
slruel 010171_11_1 ·prev;
SlruCI alom_"_1 "Ilexl_in_cell;
illl cryslaUd;
inl graill_it/:
illl maleria'-it/;
Slrucl malerial_1 "malerial;
illt type;
double x. y, z;
double dx. dy. dz;
double pe;
double px, py, pz;
Slll1CI rk_iJllenn_1 ·rk_inlerm,

J,

Description:
nus struC[UTe contains all the infonnation about a single atom. as in the
atom_1 but includes additional pointers to handle the linked cell
fomlUlation.

Details:
slruclolom_II_1 ·nexl is a pointer to the ne~t atom in the lisl.
Sirucl alom_II_1 "prev is a pointer to the previous atom in the Jist.
siruel alom_II_1 "nexl_inJell is a pointer to the ne~t atom in the cell.

Used in cell cutoff
int erystaUd is the crystal id for the alom.
illl grain_id is the grain id for the atom.
inl maler/oUd is the material id for the atom.
sImCI malerial_1 ·mOlerial is a pointer to the materials structure for this

alom.
inl type speci lies lhe type of atom.

Q-Boundary Atom.
I=Peripheral Atom,
2=Moving Alom.

double x, y. z is the current atom position (A).
double dx, dy ,dz is the current force on the atom (eV/angstrom).
doublepe is the magnitude of the potential energy of this atom (eV).
double pr, py. pz is the potential energy of this atom (eV).
Sl'ruCI rk_imernU *rk_inrerm is a pointer to a structure that stores

temporary values needed for integration.
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Name:
grain_t

Synopsis:
Slmct graill_1 (

imid;
im alom_coullt;
stroct arom_l 'moms;

):

Description:
This structure is used to orga.nize the atoms within a crystal into separate
grnins.

Details:
inl id is the ullique id for the graill.
i1/l alom_count is the number of atoms in the grnin.
stmet alo"'_t *atoms is a pointer to the array of atoms.

!'Jj1JJ1e:
grain_lI_t

Synopsis:
SlI<Jct grain_lI_t (

stroct graill_/tt *nexl;
SIl1/cl grain_/I_t *prev;
inl id;
slroot alom_II_1 'aroms;

I·
j,

Description:
This structure is used to organize the atoms within a crystal into separate
grains. It is the same as grain_t except that it contains the necessary list
variables.

Details:
strucl graill_lI_t 'nexl is a pointer to the next grain in the list.
strocl graill_I,-1 'prev is a pointer to the previous grain in the list.
inl ill is the unique id for the grain.
SlroCt alOm_II_1 'atoms is a pointer to the list of atoms.

1
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Name:
cryslal_1

Synopsis:
sll1ICI clysta'-I {

inl size;
double 10lalye;
double IOlal_ke;
inlid;
inrframe;
inl grai/l_counl;
SI/1/cl grain_I °grains;

j,

Description:
Slructure used to organize and categorize atoms in the simulation.

Details:
i/ll size is the size in bytes that this emire crystal will use in the binary file

fOlma\.
double IOla'..pe is the total potential energy of the atoms in the crystal.

NOTE: This is not populated by MDbintTnt
double IOla,-ke is the total kinetic energy of the atoms in the crystal

NOTE: This is not populated by MDbinftnt
inl id is the unique id for the crystal.
im frame is current frame number the crystal is in.
ill/ grain_counl is the number of grains in the amy.
srruel grain_l 'grains is a pointer to the array of grains.

l:imt~:

CryslaUU

Synopsis:
strllcl clystal_lI_r {

sfmcl cryslal_lI_r "nexr;
Slrocl clyslal_I'-1 ·prev;
double IOlalye;
double loral ke;
i/llid; -
inrji"ame;
Slrl/el grai/l_II_1 "grains;

}

Description:
Structure used to organize and categorize atoms in the simulation. It is the
same as crystal_t except that it conta.ins the necessaJ)' list variables.

Details:
slroel cryslal_"_1 "nexl is a pointer to the next crystal in the list
slroer eryslaUU 'preY is a pointer to the previous crystal in the list.
double rOlalye is the total potential energy of the atoms in the crystal.

NOTE: This is not guaranteed to be populated.
double IOla,-ke is the total kinetic energy of the atoms in the crystal

NOTE: This is not guaranteed to be populated.
int id is the unique id for the crystal.
inl frame is the frame number that this crystal is in.
slroel grain_"_l "grains is a pointer the the Jist of grains.
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Name:
bond_"_'

Synopsis:
sInJCI bO/ld_/U {

slrucl bond_lI_' "/lexl:
slruel alol1l_"_' '0101111,
SlnJelolol1l_"_1 'alom2;

}:
Description;

This stnlcture defines a lisl of pair wise bond!; between atoms.

Details:
s/I'Uel bO/ld_II_' '/lexl is a pointer to the next bond in the list.
s/ruelolom_II_, "arom I is a pointer to one atom in the bond.
slruclolom_"_' "010m2 is a pointer to the other atom in the bond.

Name:
rk_ifl'erl1l_'

Synopsis:
slruel rk_inlerm_' {

double xO,)'O.zO;
double pxO,pyO,pzO:
double rkx,rky,rk:
double drkx,drky.drk.

}:

Description:
This structure simply stores temporary data needed during integration. It
is used inside each atom.

Details:
dOlible xO,yO.zO is the initial position of the atom before integration begins.
double pxO,pyO,pzO is the initial potential of the atom before integration

begins.
double rkx,rky,rkz are intermediate Runge-Kutla variables.
double drkx,drky,drlcz are intermediate RWlge-Kutta variables.



C3. MDbinfmt Functions

In order to populate the structures with atom infonnation stored in the data file,

several functions were created.. The following table gives a list of the available functions

in the MDbinfmt library. Following the table, detailed explanations have been given so

that the programmer will be able to implement the functions to help decrease some of the

programming overhead.

Table C2 - Table of available functions in MDbinfrnt library

Function Name

get_size_oCcrystal

get_size_oCcrystalJl

binfmt read header- -

binfmt read id- -
binfrnt next id

- -
binfint read frame- -

binfult_get_frame_max

binfmt read materials- -

binfmt read velocities- -

binfmt_read_crystal

binfmt_read_crysta~_ll

binfmt read cells- -

binfmt write header- -

binfmt write materials- -

binfint write velocities- -

binfmt_write_crystal

binfmt write crystal 11
- - -

binfmt write cells- -

binfmt_append_crystal

binfmt_append_crystal_U

binfmt close

Use of Function

Used internally for MDbinfmt

Used internally for MDbinfmt

Read header infonnation from file

Read crystal id

Read next crystal id

Read current frame i,nto structure

Get max number of frames

Reads and populates structure

Reads and populates structure

Reads and populates structure

Reads and populates into linked list

Reads cell cutoff infonnation into cell structure

Writes header infonnation to data file

Writes materials structure to data file

Writes velocities structure to data file

Writes crystal structure to data file

Writes crystal linked list structure to data file

Writes cell cutoff information into cell stmcture

Writes crystal to end of data file

Writes crystal to end of data file

Closes the binary data file
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Name:
get_size_oLcrystal

Synopsis:
im geljize_of-crystal (struct C1ystal_t crystal);

Description:
The purpose of this function is to calculate the size of the crystal to be
used in aligning the data for writing the file. This function is used
internally to MDbinfrnl.

Details:
sll"Ucr crysta'_1 cf)'slals is a pointer to the crystal.

Retum Value:
Crystal size is returned.

Name:
get_si:e_of_crystn'_"

Synopsis:
im get_size_ofJlystaU' (stf1<ct crystal_"_t ·crystal).

Description:
The purpose of this function is to calculate the size of the crystal to be
used in aligning the data for writing the file. This function is used
internally to MDbinfml.

Details:
struct clysta,-I'-t ·cryslal is a pointer to the crystal.

Return Value:
Crystal size is returned
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Name:
blllfmtJead_header

Synopsis:
illl binfmtJead_iJeader (char "/name.jloal ·rolal_nJlltime.j7oal *rkJ~s.

floal 'output_res, iflt 'relax_iteratiolls):
Description:

The pUfl'ose of this function is to open the simulation file and read the
header information from the file. This is also the function that verifies that
the simulation file was created with the same version of the library.

Details:
char *filQmB is null tenninated string of the file to read.
floar 'rota'-nmrime is the total time for the simulation to run (TU).
floar *rk_res is the integration resolution to use during the simulation

(TV).
j70at 'oulpuJ_res is the frequency at which to output frames during the

simulation (Tl!).
lilt *relax_iteratiofls is the number of iteration to run the relaxation before

beginning the simulation.

Retum Value:
oif successful.
BINFMT_ERRORJILE_NOTJOUND if the file was not found.
BINFMT_ERROR_INVALIDJlLE if the file was not created using the

correct version.
BINFMT_ERROR]ILE_OPEN if the file was already open.

~:

billfmt_read_id

Synopsis:
IIlI blflfmlJead_id (illl 'Id):

Description:
This function will read the ID of the next block of data in the file format
and return it in id. The file must be aligned to an ID for this function to
work properly.

Details:
im *id is the address of the variable that will contain the ID of the next

block of data in the file.

Return Value:
oif sllcessful.
BINFMT ERROR NOT ALIGNED if the file is not aligned to an lD
BINFMT=ERROR=FlLE=NOT_OPEN jfthe file is not open.

l
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Name:
binjinlJ1e.xUd

Synopsis:
inr binfmrjle.xr_id (illr tid).

Description:
Tilis function will skip over Ihe current block of data and read the ill of
the next block ofdata and retum it in id. The file must be aligned to a
block for this function to work properly.

Details:
inl 'id is the address of the variable that wi II contain the ill of the next

block of data in the file.

Return Value:
oif sucessful.
BINFMT_ERROR_NOT_ALlGNED if the file is not aligned 10 a block
BINFMT_ERROR]ILE_NOT_OPEN if the file is not open.

Name:
binfnlrJeadJrame

Synopsis:
. illl bilifmtJeadJrame (i1ll 'COI/Ilt, Slrucr crysto.l_1 "crystals, illr

frame_id);

Description:
This function will read all the cryslals associated with the specified frame
into a dynamically allocated array of crystals and return the number of
them in COUll!. It is suggested that this function be called immediately
after opening the file to be sure that all the crystals associated with the
spccit1ed frame are read. This function will read to the cnd of the file and
therefore the file should be closed after this call.

Details:
im 'COUllt is a pointer to rhe number of crystals read from the lile.
s/ruct cryslal_1 "CI)'slals is a pointer to the array of crystals read from the
file.
intframe_id is the id of the frame for which to read all the crystals.

Return Value:
oif successfu1.
BINFMT_ERROR_NOT_ALlGNED if the file is not aligned to an ro.
BINFMT_ERROR]ILE_NOT_OPEN if the file is not open.
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"arne:
biTl/ml...JJeIJram_mClx

Synopsis:
illT binfilll...JJelJi·ame_max (illl "max);

Description:
This function is useful for the post processing applications where the final
frame relurned is the max frame number. Keep in mind that the relaxed
crystal is found at 0 and the non-relaxed crystal resides al tiame -I.

Del:lils:
inl -max is a pointer to an integer where the maximum frame will be

returned

Relurn Value:
oif sllccessful.
BINFMT_ERROR_NOT_AL1GNED if the file is not aligned to an ill
BlNFMT_ERROR]ILE_NOT_OPEN if the file is not open

Name:
binfilllJead_malerials

Synopsis:
inl billjinl_read_ma1cria/s (illl "COUll I. slrucl malerial_1 **/1/als);

Description:
This function will read an array of material definitions into a dynamically
allocated array of materials and return the number of them in cOlml.

Details:
illl "COUTII is a pointer to the number of malerial definitions read from the

file.
SlT1JCI marerial_r "--mals is a pointer to lhe an'ay of material definitions

read from the file.

Return Value:
oif successful.
BfNFMT ERROR WRONG BLOCK TYPE if this function was called

when the laSt block JD-read was-not BLOCK_MATERIALS.
BfNFMT_ERROR_NOT_ALIGNED if the tile is not aligned to an fD.
BINFMT_ERROR]JLE_NOT_OPEN if the file is nol open.
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Name:
binjifl/Jead_velocilies

Synopsis:
inl binfmlJead_velocilles (Inl 'counl, SII1Jct velocily_1 ··vels);

Description:
This function will read an array of velocity definitions into a dynamically
allocated array of velocities and return the number of them in counl.

Details:
illl 'count is a pointer to the number of velociry definitions read from the

tile.
struCt velocllies_1 "vels is a pointer to the array ofvelceiry definitions

read from the fi Ie.

Return Value:
oif successful.
BINFMT_ERROR_WRONG_BLOCKJYPE if this function was called

when the last block !D read was not BLOCK_VELOCITIES.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an !D.
BINFMT_ERROR]ILE_NOT_OPEN if the file is not open.

Name:
blnfmlJeiJd_cryslai

Synopsis:
Inl binfmlJead_cryslai (strucl Clyslal_1 'cryslal),

Description:
This function reads the next crystal from the fi Ie and returns the
information in the crystal structure.

Details:
slrucl cryslal_1 'CIySlai is a pointer to the crystal array definitions read

from the file.

Retum Value:
oif successful.
BINFMT ERROR WRONG BLOCK TYPE if this function was called

when the laSt block lD-read was-not BLOCK_CRYSTAL.
BINFMT_ERROR_NOT_ALIGNED if the file is not aligned to an LD.
BfNFMT_ERROR]ILE_NOT_OPEN if the file is not open.
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Name:
billfmIJead_cryslal_"

Synopsis:
illl binfmlJet1dJIJISIOI_" (slmct CI)'StoU'-1 'crystal);

Description:
This function reads the next crystal from the file into a linked list strocture
and returns the information in the crystal structure.

Details:
struCI crySla'-l 'Clystal is a pointer to the crystal a.rray definitions read

from the fi Ie.

Return Value:
oif successl'uJ.
BINFMT ERROR WRONG BLOCK TYPE if this function was called

when the la;t block ID-read was-not BLOCK_CRYSTAL.
BfNFMT ERROR NOT ALIGNED if the file is not aligned to an ill.
BINFMT=ERROR=FLLE:NOT_OPEN if the file is not open.

~:

billfmtJeadJe//s

Synopsis:
illl binfilllJead_cells (in.1 'COUIII, strUCI cell_' "cells);

Description:
This function will read an array of cell definitions into a dynamically
allocated array of cells and return the number of them in count

Details:
sll1ICI celU "cell is a pointer to the cell array definitions read from the

file.

Return Value:
oif successful.
BfNFMT_ERROR_WRONG_BLOCK_TYPE if this function was called

when the last block [D read was not BLOCK_CELL.
BfNFMT_ERROR_NOT_ALIGNED if the file is not aligned to an !D.
BINFMT_ERRORJll.E_NOT_OPEN if the file is nol open.

1
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billflllt_lI'ri te_header

Synopsis:
illt bllijillt_wrlte_headel' (clWI' "jiwf/le.floattotaIJuntime,floal I'kJes.

float outputJes. illt relax_iterations);
Description:

The purpose of this function is to open the simulation file, or create it ifil
is not already created, and write the header information to the tile. This
function also writes the correct header so that the version of the library
will be identified for this tile.

Details:
char ~rllame is null terminated string of the tile to read.
floaf (ofalJ'Ultime is the total time for the simulation to run (TU).
flour I'kJcs is the integration resolution to use during the simulation (TU).
floar ourputJes is the frequency at which to output fumes during the

simulation (TU).
illll'elax_iferatiolls is the number of iteration to run the relaxation before

beginning the simulation.

Return Value:
oif successful.
BINFMT_ERROR]ILE_OPEN if the file was already open.
BINFMT_ERROR]lLE_NOT]OUND if the tile could not be created.

Name:
binjilll_wrlte_materials

Synopsis:
illl binfmt_lI'ritt'_materials (int cOUtI/, Sf/liet material_t "mars);

Description:
This function will write the number of arrays passed in by count of
material definitions into the data file.

Details:
Int counr is the number of material definitions read from the file.
sfruet matcl'ial_t "mats is a pointer to the array of material definitions 10

be written to the tile.

Return Value:
oif successful.
BINFMT_ERROR]ILE_NOT_OPEN if the file is not open.
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billfml_write_velocilies

Synopsis:
illl billjtll/_wrile_velocilies (ill/ coulIl, sIr1lci velocity_I 'vels);

Description:
This function will write the "lLmber of arrays passed in by count of
velocity delinitions into the data file.

Details:
inl COUIII is the number ofmaterial delinitic-.ns read from the file.
sll1/cl velocilies_I *vels is a pointer to the array of velocity definitions to

be written to the file.

Ret urn Value:
oifsu.ccessful.
BTNfMT_ERRORJILE_NOT_OPEN if the file is not open.

--------1

Name:
billjinl_wrile_cryslal

Synopsis:
ill/ billfnu_wrile_Clyslal (strUCi cr)'slol_1 crystal);

Description:
This function writes the crystal 10 the file.

Details:
slrucl CI)'slol_I crystal is a pointer to the crystal array definitions to be

written to the file.

Retum Value:
oif successful.
BlNFMT_ERRORJILE_NOT_OPEN if the file is not open.
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Name:
billfml_write_CTystal_1l

Synopsis:
illt billfml_write_crystal_1l (slruet crystaUU 'crystal);

Description:
This function writes the crystal to the file from a linked list struCture.

Derails:
SlhJct crystal_1 'crystal is a pointer to the crystal array definitions to be

written to the file.

Return Value:
oif successful.
BINFMT_ERRORJlLE_NOT_OPEN if the file is not open.

Name:
billfmt_write_cells

Synopsis:
illt billfmt_write_cells (illt COUllt, struet eell_1 'cells);

Description:
This function writes the number of cell, passed in by count from the
dynamically allocated array of cells to the data file

Details:
slmel eelU 'cell is a pointer to the cell array definitions to be written to

the file.

Return Value:
oif successful.
BINFMT_ERRORJILE_NOT_OPEl'< if the file is nOl open.
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Name:
bill[mt_appelld_crystal

Synopsis:
itll binftllf_appelld_crystal (char "[name, struct clystal_t crysta/);

Description:
This function should be used to append a crystal to the end of the data file.

Details:
char *illame is a null tenninated string containing the file name to append

data.
st/llct crystal_t cryslal contains the crystal 10 append to the file.

Return Value:
oif successful.
BfNFMT_ERRORJILE_NOT_OPE!'1 if the file is not open.

-----~

Name:
bin[mt_append_crystal_II

Synopsis:
int binjint_appelld_clyswl_1I (char *i"ame, Stl'Uct crystaCII_t ·crystal):

Description:
This function should be used to append a crystal in linked list form to the
end of the data ti Ie.

Details:
char "ftJame is a null ternlinatcd string containing the file name to append

data.
struc! crystal_"_t "clyslal contains a pointer in linked list form of the
crystal to append to the file.

Return Value:
air successful.
BlNFMT_ERROR]ILE_NOT_OPEN if the tile is not open.
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Name:
billfmt3lose

Synopsis:
illt billfmt_close O.

Description:
This function should be used to close the file after every write operation.
This ",ill ensure that the data file is not corrupted.

Return Value:
oif success fu I.
BINFMT_ERROR]ILE_NOT_OPEN if the tile is nOl open.



C4. Using the MDbinfmt Library

Details on the operation and usage of the MDbinfmt library may not be

completely clear after outlining the structures and functions. Examples on how to

accomplish some important tasks have been provided.

How can the crystals be read into a linked list?

There are 4 important steps to performing this operation

1. Open the file and read in the header data. If you don't want the header data, simply
pass a temporary variable to accept the value then discard it.

binfmt_read_header(filename, &runtime, &rk_res, &out_res,
& relax_iterations);
binfmt_close();

2. Find a crystal in the simulation file. A simple test using the block constants can be
used to determine this. You may want to continue the search if your simulation
contains more than one crystal.

binfmt_read_header(filename, &runtime, &rk_res, &outJes,
&relax_iterations);
biltfint_read_id(&id);
while (id!=BLOCK_EOF) {

if (id==BLOCK_ CR YSTAL) (
binjmt_read_id(&id);

} else binfincnext_id(&id);
}
binfmt_closeO;

3. Allocate memory for the crystal. This needs to be done for each crystal that you read.
struct crystaClCt *cur_crystal=NULL,·
*crystals=(struct crystaCICt*) malloc(sizeof(struct crystaCILt)),·
~(struct crystaCICt*) *crystals)->next=NULL,·
((struct crystaCILt*) *crystals)->prev=NULL;
binfmt_read_header(filename, &runtime, &rk_res, &out_res,
&relax_iterations);
binfmt_read_id(&id);
while (id!=BLOCK_EOF) (

ij(id==BLOCK_CRYSTAL) (
if(cur_crystal) (

cur_crystal->next=(sf:ruct crystatItt *)
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malloc(sizeo!(struct crystaCllt));
cur_ crystaI->next->prev=cur_clystal;
cur_crystal=cur_ crystal->next;
cur_crystal->next=NULL;

} else {
cur_crystal=*crystals;

}
binfmt_read_id(&id); .

} else binfmt_next_id(&id);
}
binJmt_doseO;

4. Call the library function to actually read the data.
struct crystal_ll_t *cur_crystal=NULL;
*clJlstals=(struct crystal_ll_t*) malloc(sizeoJ(struct crystal_ll_t));
((struct crystal_ll_t*) *crystals)->next=NULL;
((struct crystal_ll_t*) *crystals)->prev=NULL;
binJmt_read_header(filename. &runtime. &rk_res, &outJes,
&relax_iterations);
binfmt_read_id(&id);
while (id!=BLOCK_EOF) (

if(id==BLOCK_CRYSTAL) (
if (cur_crystal) (

cur_crystal->next= (struct crystal_ll_l*)
malloc(sizeoJ(struct clJlstal_lI_t));

cur_crystal->next->prev=cur_crystal;
cur_crystal=cur_crystal-> next;
cur_crystal->next=NULL;

} else {
cur_crystal= *crystals;

}
binfinCread_ crystalll(cur_crystal);
binfmt_read_id(&id);

} else binfmt_next_id(&id);
}
binfmt_closeO;

How can the atoms be traversed once they have been loaded into a linked list?

1. Define traversal variables. You need some pointers to keep track of there you are in
the list.

struct crystalll_t *cur_crystal;
struct graiu_ll_t *cur_grain;
struct atom_let *cur_atom;
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2. Traverse through every crystal.
cur_crystal to the crystal of interest.

struct crystal_"_t *cur_crystal;
struct grain_ll_t *curJ5rain;
struct atom_ll_t *cur_atom,'
cur_ crystal=*crystals;
while (cur~crystal) {

cur_ crystal=cur_ cIJ'stal->next;
}

3. Traverse through every grain in each crystal.
struct crystal_"_t *cur_crystal,'
slruct grain_ll_l *curJ5rain,'
struct atom_ll_t *cur_atom;
cur_crystal= *crystals;
while (cur_crystal) {

cur_graill=cur_ crystal->grains;
while (cur_grain) {

cur_graill=cur_grain->next;
}
cur_crystal=cur_crystal->next;

}

4. Traverse through every atom in each grain of each crystal.
struct crystal_ll_t *cur_crystal;
struct grain_lI_t *cur-l5rain;
struct atom_llJ *cur_atom;
cur_crystal= *crystals,'
while (cur_crystal) {

curJ5rain=cur_crystal->grains;
while (curJ5rain) {

cur_ atom=cur_grain->atoms;
while (cur_atom) {

cur_atom=cur_atom->next;
}
curJ5rain =curpain->next,'

}
cur_cl]Jstal=cur_crystal->next;

}

5. Perform whatever operation you need to on each atom. In this example the potential
energy variable of each atom is set to O.

struct clystal_"_l *cur_crystal,'
struct grain_ll_t *curJ5rain;
struct atom_ll_t *cur_atom,'
cur_crystal=*crystals;
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