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PREFACE

One of the fundamental objectives of mobile communications IS to afford

untethered seamless communications. Handover plays an important role in providing

seamless communications. However, the emerging wireless communication networks

consist of conventional voice traffic and data traffic, as well. Thus, the characteristics of

emerging traffic types are no longer homogeneous, they are heterogeneous. Compared to

conventional homogeneous voice communication network, where voice quality is a major

concern of QoS, the heterogeneous integrate communication network requires different

QoS provisions, such as minimizing the bit error rate (BER), and/or maximizing the link

capacity, etc. Therefore, the handover procedure in emerging broadband integrated

services communication networks would be improved by introducing multivariable

decision parameters for maintaining the different QoS requirements.

Meanwhile, the importance of efficient spectrum utilization cannot be

overemphasized in wireless mobile communication systems, where available frequency

spectrum is extremely scarce. Recent advance in information theory has revealed

unprecedented improvements on spectral efficiency by employing multiple antennas both

at the transmitter and the receiver sites. Although many research efforts have been

devoted to analyze the spectral efficiency of this dual array antenna system, the analysis

of handover control and QoS support for the dual array antenna systems has not been

conducted yet, and therefore it is the focus of this thesis.
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CHAPTER I

Introduction

1.1 Motivation

One of the fundamental objectives of mobile communications is to provide high

quality broadband untethered seamless communications to the mobile users. Handover

plays an important role in providing seamless communications. Conventionally, mobile

communication networks carry homogeneous traffic, e.g., voice packets, where identical

quality of service (QoS) provision is required. In such communication networks, a single

parameter, such as the signal strength, may provide sufficient infonnation to detennine

when to initiate and perform the handover operation.

However, the emerging wireless communication networks consist of voice traffic

and data traffic. Thus, the characteristics of emerging traffic types are no longer

homogeneous, but are rather heterogeneous. Compared to conventional homogeneous

voice communication networks, where voice quality was the only major concern, the

voice and data combined heterogeneous integrated traffic requires different

communication network QoS provisions, such as minimizing bit error rate (BER), and/or

maximizing link capacity, etc. Therefore, the handover procedures in emerging

broadband integrated services communication networks would be improved by

introducing multivariable decision parameters for maintaining the different QoS

requirements.

Meanwhile, the importance of efficient spectrum utilization cannot be

overemphasized in wireless mobile communication systems, where the available

frequency is extremely scarce. Recent advance in infonnation theory has revealed

unprecedented improvements on spectral efficiency by employing multiple antennas both

at the transmitter and at the receiver sites. Although many research efforts have been

devoted to analyze the spectral efficiency of this dual array antenna system, the analysis

of handover for the dual array antenna systems have not been conducted yet.
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1.2 Objective

In this thesis, we mainly focus on two fundamental problems related to handover.

First, we propose and analyze a fuzzy logic and artificial neural network algorithm for

multivariable optimization in handover decision procedures. Fuzzy logic and artificial

neural network based handover algorithms are predicted to perform better than hard

decision based algorithms, especially when multivariable optimization techniques are

applied. In our analysis, the Fuzzy logic and artificial neural network algorithm is

adopted for the handover initiation and decision procedures.

Also, we analyze the attainable capacity during handover procedures for various

system configurations. In broadband communications, a certain data rate should be

sustained to meet the QoS requirements even during handover procedures. We compare

capacity outage probabilities between conventional cellular systems and dual array

antenna systems that have gained much attention recently.

1.3 Overview

The rest of the thesis is organized as follows. In chapter 2, background

information on handover technology is explained and overviewed. First, historic mobile

communication systems and handover technologies are overviewed. And then multi-input

multi-output (MIMO) wireless technology is addressed. In Chapter 3, intelligent

handover management techniques of the third generation wireless systems are introduced.

In Chapter 4, the capacity outage performance is analyzed for various types of system

configurations. Finally, we conclude our investigation and provide a brief summary of

this thesis in Chapter 5.
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CHAPTER II

Background Research

The purpose of this chapter is to provide a common framework to help understand

the topics related to the main scope of this thesis. Section 2.1 provides an overview of

mobile and personal communication systems from the first generation wireless

communication networks to the third generation wireless communication networks.

Section 2.2 provides an introduction of handover technologies in mobile communication

systems. In addition, section 2.3 is devoted to the introduction of dual array antenna

systems employing multiple antennas both at the transmitter and the receiver sites.

2.1 The history of mobile and personal communications

Radio communications can trace their origins to the discovery of electromagnetic

waves by Hertz in 1888 and the subsequent demonstration of transatlantic radio

telegraphy by Marconi in 1901 [4]. Mobile radio systems use simplex channels.

Originally simplex channels were introduced for police and emergency services. In the

1970s, the concept of cellular was in a defining stage, which played a major role in the

development of mobile communication systems and networks around the world.

Implementation of analog and digital systems represents a change for the designing

capabilities of mobile communication systems. The requirements of future mobile

communication systems can be summarized as follows [4]:

• enlarged capacity and coverage areas

• world wide service coverage using global satellite and mobile communications

servIces

• interoperability between heterogeneous radio technologies

• enhanced reliability even under high speed roaming conditions

3



2.1.1 The first generation mobile communication systems

From the beginning of the public mobile radio systems in the United States in

1946 until the first analog cellular system went into operation in Chicago, mobile systems

were mainly based upon the trunking principle [2]. The available frequency spectrum was

divided into a suitable number of frequency channels. A high power, centralized antenna

was installed to transmit signals to mobile receivers. Large mobile receivers were also

installed in vehicles, and telephone sets were also big. Since a call from a mobile terminal

had to compete among call-requests from other users to obtain a channel from the limited

number of channels, the probability of call blocking was very high in first generation

mobile communication systems. The performance of these systems was also limited in

terms of their coverage area and capacity. In the automated mobile telephone system

(AMTS), after mobile user presses the send button, the receiver starts scanning for an idle

channel by cycling through all the channels in the system. Although these systems

provided an improvement in the quality of service, they still possessed some interesting

performance modeling problems [1].

2.1.2 The second generation mobile communication systems

Since the initial commercial introduction of the advanced mobile phone system

(AMPS) service in 1983, mobile communications has grown tremendously [2]. Besides

the frequency reusing capabilities provided by the cellular operations, advanced

technologies for wireless communications, digital signal processing, and the increased

battery capabilities have contributed to the tremendous growth of mobile communications.

While the first generation mobile communication systems were characterized as analog

cellular systems, the digital cellular, low power wireless, and personal communication

systems (PCS) are categorized as the second generation mobile communication systems

[2]. In the United States, the implementation of digital cellular standards was developed

by the Telecommunications Industry Association (TIA). These standards are mainly

based upon time division multiple access (TDMA) and code division multiple access

(CDMA) technologies. Th,e systems are originally design'ed to operate with dual mode

systems such that they support backward compatibility with the first generation mobile

communication systems, such as AMPS systems. Meanwhile, a third digital cellular
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system referred to as the personal digital cellular was developed in Japan, and the

specifications for these second generation cellular systems are being developed to satisfy

the various business applications and mandatory legal requirements of specific countries.

International Mobile Telecommunications 2000 (IMT-2000) is the standard under

development by the International Telecommunication Union (lTD) to set the stage for the

third generation of mobile communication systems. The IMT-2000 standard is expected

to ensure global mobility and consolidate different wireless environments into a single

standard [3].

2.1.3 Analog Cellular Systems

2.1.3.1 Advanced Mobile Phone System

Advanced mobile phone system (AMPS) was developed by Bell Laboratories and

the first AMPS service was tested and implemented in Chicago [4]. Cellular mobile

service licenses for an initial 40 MHz spectrum in the 800 MHz frequency band were

issued, and finally an additional 10 MHz was added. Therefore, the spectrum allocation

for current AMPS mobile radio frequency band in the United States is 50 MHz within

824-849 MHz for uplink and 869-894 MHz for downlink. AMPS standard allocates

carriers spaced 30 kHz for this 50 MHz spectrum, thereby, there are total of 832 full

duplex channels with 416 channels each for the A-band and the B-band operations in

each licensing area. Out of 416 channels, 21 channels are used as control channels and

the remaining 395 channels are used for user traffic. Each channel carries data at 10 kbps

with Manchester coding, where the bit rate can be extended up to 20 kbps [4]. Frequency

shift keying (FSK) is employed as the modulation scheme, and Bose-Chaudhary

encoding is used to combat the multipath fading errors. For the speech or voice channel, a

blank and burst technique is used, whereby the voice signal is blanked approximately 50

ms and a data burst of 10 kbps is inserted into the voiee channel [4]. This signaling is

used to alert the mobile station that the channel-transfer is about to be taken over for an

impending handover. In cellular systems, a frequency band employed at a reference cell

is reused at a distant cell located far apart. Since the same frequency is reused spatially,

the capacity of the whole cellular network is increased. However, interfering signals will

steadily come from the co-channel cells. To reduce this adverse effect of co-channel
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interference, AMPS technology divides the total available frequency band into 12 group

frequency clusters with omnidirectional antennas at the base station site, or into 7 group

cluster with three 120 degree sectors per cell.

2.1.3.2 Total Access Communication System

Total Access Communication System (TACS) developed in the United Kingdom

is an adaptation of AMPS to suit European frequency allocations [4]. It uses a 50 MHz

spectrum in the 890-915 MHz range for uplinks and the 935-960 MHz range for

downlinks. The 25 kHz channel spacing is specified and the TACS provides 1000 full

duplex channels. The speech frequency deviation is ± 9.5 kHz in peak and the data

transmission frequency deviation is ± 6.4 kHz at a 8 kbps rate. Only the first 600

channels were assigned to the two analog mobile network operators in the United

Kingdom.

2.1.3.3 The Nordic Mobile Telephone System

The Nordic Mobile Telephone (NMT) was implemented in Denmark, Norway,

Sweden, and Finland, using the 450 MHz band, named NMT-450. Later, NMT-450 was

upgraded to NMT-900 to occupy 50 MHz in the 890-915 MHz and 935-960 MHz band

[4]. The NMT-450 was designed to provide full roaming capability within the Nordic

countries. The signaling rate of this system is 1.2 kbps employing fast frequency shift

keying (FFSK) scheme with convolution forward error correcting code.

2.1.3.4 The Nippon Telegraph and Telephone System

The first Nippon Telegraph and Telephone (NTT) system in the 800 MHz band

was introduced in Japan with a 30 kHz allocation in the 925-940 MHz for uplink and

870-885 MHz for downlink bands with 25 kHz channel spacing and a control channel

signaling rate of 300 bps [4]. The frequency allocation provides for 56 MHz in the 860­

885/915-940 MHz and 843-846/898-901 MHz frequency bands with channel s,pacing of

25 kHz. The high capacity system uses a reduced channel spacing of 12.5 kHz and an

increased control channel signaling rate of 2400 bps.
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2.1.4 Digital Cellular Systems

Compare to analog cellular systems, digital cellular systems have many

advantages which are summarized below [4]:

• capacity increase over analog systems

• reduced transmission power and longer battery life

• wide area roaming capability

• better security (terminal validation and user identification)

• compatibility with ISDN, leading to a wider range of digital service

• ability to operate in small cell environments

2.1.4.1 GSM: The European TDMA Digital Cellular standard

The characteristics of the initial GSM standard include [5]:

• fully digital system utilizing the 900 MHz frequency bands

• TDMA over radio carriers

• 8 full-rate or 16 half rate TDMA channels per carrier

• user/terminal authentication for fraud control

• encryption of speech and data transmission over the radio path

• full international roaming capability

• low speed data rate (maximum 9.6 kbps)

• compatibility with ISDN for supplementary services

• supporting of short message services

The reference architecture and associated signaling interfaces for GSM are aligned with

those specified in ITU-T Recommendation Q.IOOI [5]. The GSM mobile stations are

portable units that can be used on any GSM system as a moving unit. Power levels

supported by the GSM mobile station range from 0.8 to 8.0 W, and power saving

techniques are used on the air interface to extend battery life. A subscriber identity

module (SIM) is required to activate and operate a GSM terminal. The base station

system comprises a base station controller (BSC) and one or more subtending base
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transceiver station (BTS). The base station switch (BSS) is responsible for all functions

related to the radio resource management, such as [5]:

• Radio resource control

• Frequency hopping and power control

• Handover management

• Digital signal processing

The mobile switching center for GSM can be viewed as a local ISDN switch with

additional capabilities to support mobility management functions, i.e. [5]:

• Call setup, supervision, and release

• Digit collection and translation

• Call routing

• Mobility management

• Paging and alerting

• Radio resources management during a call

• Echo elimination

The Home Location Register (HLR) represents a centralized database that has the

permanent datafill about the mobile subscribers in a large service area. Usually one HLR

is deployed for each GSM network for administration of subscriber configuration and

service. HLR maintains the following subscriber's data on a permanent basis [5]:

• international mobile subscriber identity

• service subscription information

• service restrictions

• supplementary services

• mobile terminal characteristics

• billing information

The Visiting Location Register (VLR) represents a temporary data store, and generally

there is one VLR per MSC. This information contains which subscriber is currently in the

service area covered by the MSCNLR. The VLR includes these information [5]:

• features currently activated

• temporary mobile station identity
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• current location information about the MS

The GSM uses time division multiple access (TDMA) and frequency division multiple

access (FDMA), whereby the available 25 MHz spectrum is divided into 124 carriers,

and each carrier is divided into 8 time slots. Therefore, several conversation can take

place over the same pair of transmit / receive radio frequencies [5].

System Parameters Value (GSM)

Multiple access TDMA/FDMA/FDD

Uplink frequency 890-915 MHz

Downlink frequency 935-960 MHz

Channel bandwidth 200 kHz

Number of channels 124

Channels/carrier 8 (full rate), 16 (half rate)

Frame duration 4.6ms

Interleaving duration 40ms

Modulation GMSK

Speech coding method RPE-LTE convolution

Speech coder bit rate 13 kbps (full rate)

Associated control channel Extra frame

Handover scheme Mobile-assisted

Mobile station power levels 0.8,2,5,8 W

Table 1. System Parameters of GSM.
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In the GSM system, digitized speech can be passed at 64 kbps through a transcoder,

which compresses the 64 kbps PCM speech to a 13 kbps data rate [5].

Channel
Encoder

RPE-LTE
decoder

Demo­
dulator

Desegme­
tation

Figure 2-1. Speech encoding and modulation in GSM.

The speech coding technique improves the spectral efficiency of the radio

interface. The GSM transcoder also allows the detection of silent interval in the speech

sample, during which transmit power at the mobile station can be turned off in order to

save power and extend battery life. The transcoded speech is error detected by passing it

through a channel encoder, which utilizes not only a parity code, but also a convolution

code. The channel encoding bit rate of transcoded speech can go up from 13 kbps to 22.8

kbps for the GSM full rate coder. A half rate GSM coder has also been specified. The 456

bits of the encoded data uses convolutional coding techniques. An interleaving depth of 8

is used in GSM full rate speech. There are two separable categories of logical channels in

GSM: traffic channels (TCH) and control channel (CCH). There are three types of control

channels: broadcast (BCCH), common (CCCH), and dedicated (DDCH), each of which is

further subdivided. The broadcast control channel is a unidirectional channel that is used

to broadcast information regarding the mobile serving cell and neighboring cells. A

common control channel may be used either for uplink or downlink communications. The

paging and access grant channels operate in the downlink direction. The dedicated
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control channel is used for call set up, or for measurement and handover, and is assigned

to a single mobile connection. To alleviate the effect of multipath fading when a mobile

station is stationary or moving slowly, GSM provides a frequency-hopping capability on

the radio interface. GSM utilizes voice activated transmissions or discontinuous

transmission to maximize the spectrum efficiency_ This technique is based on detecting

voice activity and switching on the transmitter only during periods when there is active

speech to transmit. The GSM signaling at the radio interface consists of LAPDm at layer

2. LAPDm is a modified version of LAPD. Layer 3 is divided into three sublayers that

deal with radio resource management (RM), Mobility management (MM), and

connection management (CM). The RR is concerned with managing logical channels,

including the assignment of paging channels, signal quality measurement reporting, and

handover. The MM provides functions necessary to support user/terminal mobility, such

as terminal registration, terminal location updating, authentication, and IMSI

detach/attach. The CM is concerned with call and connection control, establishing and

clearing connections, management of supplementary services, and support of the short

message service [5].

2.1.4.2 18-136: The North American TDMA Digital cellular standard

IS-136 supports a wide range of basic and supplementary services. IS-136

standard includes the following [6]:

• short message service (SMS) - point to point

• emergency servIce.

• lawfully authorized electronic surveillance.

• on the air activation

• sleep mode terminal operation

• rolling mask message encryption

Further, 18-136 will provide a complete range of supplementary service categories, and

these include [6]:

• Call Forwarding services

• Call termination services
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• Call origination services

• Multiple-party services

• Call restriction services

• Privacy services

System Parameters Value(GSM)

Multiple access TDMAlFDD

Uplink frequency 824-849 MHz

Downlink frequency 869-894 MHz

Channel bandwidth 30kHz

Number of channels 832

Channels/carrier 6

Frame duration 40ms

Interleaving duration 27ms

Modulation n/4 QPSK

Speech coding method VSELP convolution

Speech coder bit rate 13.2 kbps (full rate)

Associated control channel Same frame

Handover scheme Mobile-assisted

Mobile station power levels 0.8,1,2,3 W

Table 2. System Parameters of IS-136 [6].

The network reference model is the same for both the TDMA-based and CDMA

based radio systems. The reference architecture and interface reference points are almost

same as those for GSM. Nevertheless theses similarities in the reference architecture and

interface reference points, the protocols and messages deployed in the IS-136 for

intersystem operation are quite different from those of the GSM. IS-136 will utilize the

currently allocated spectrum for analog AMPS [6]. Each frequency channel is time
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multiplexed with a frame duration of 40 ms, which is separated into six time slots of 6.67

ms duration. For mobile to base communication in an IS-136 system using a full rate

codec, three mobiles transmit to a single base station radio by sharing some frequency. In

order to achieve this, each mobile station transmits periodic bursts of information to the

base station in a predetermined order.

2.1.4.3 PDC: The Japanese TDMA Digital Cellular Standard

In April 1991 the Research and Development Center for Radio Systems of Japan

finished the detailed standard for the Japanese digital cellular system, now known as PDC

(Personal Digital Cellular). The PDC radio interface has outstanding features that the

system designers believe are superior to the GSM system. These features are following

[6]:

• PDC adapts diversity reception in the mobile stations which obviates the need for

equalizers, which are an essential component of GSM.

• PDC uses a lower transmission bit rate (43 kbps vs. 270.83 kbps), which leads to better

spectrum utilization, higher capacity, and lower cost.

• The access signaling protocols in the PDC are simpler and require fewer procedures.

The signaling structure for the PDC was developed to ensure efficient spectrum

utilization, support of enhanced services, and alignment with the open system

interconnection model, and the lTV signaling recommendations. The PDC standard

essentially specifies the radio interface and leaves the individual operators to decide the

network configuration they wish to implement. The network configuration provides

connectivity to fixed networks, ensures roaming between different PDC cellular networks,

and uses a unified interface for interconnection of the PDC cellular network to the fixed

network.

2.1.4.4 IS-95: The North American CDMA Digital Cellular Standard

Some of the features and services that have been standardized as part of the lS-

95A standard include the following [7]:
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• Short Message Service will support both mobile tenninated and mobile originated short

messages of up to 255 octets on either the control channel or traffic channel.

• Slotted paging enables mobiles to wake up for one to two times slots per slotted paging

cycle to listen to incoming pages

• Over the air activation allows the mobile to be activated by the service provider without

third party intervention. It also provides potential for future remote reprogramming of

mobile terminals and for software downloadable capabilities

• Enhanced mobile station provides the use of international mobile station identities

based on the ITU-T standard thereby facilitating international roaming and separation of

mobile DNs and mobile tenninal identities

• Temporary mobile station identities allows for the allocation of TMSI by serving VLRs,

which are used on the air interface to maintain user confidentiality and to reduce overall

signaling traffic loads across the radio interface

• Asynchronous data and group 3 Fax

• Synchronous data applications for secure telephone unit

• Packetized data

• Supplementary services call waiting, call forwarding, and calling line ill

One of the most significant features of 18-95 CDMA systems is diversity. The

types of diversity that are available in a CDMA system include the following:

• Time diversity provided by symbol interleaving, error detection, and correction coding

• Frequency diversity, provided by the 1.25 MHz wideband signal

• Space diversity, provided by the dual cell site receiving antennas, multipath rake

receivers, and multiple cell sites

In a CDMA system, the mobile to base station link is subject to the near-far­

problem, which considers a mobile station which is close to the base station has much

lower path loss than a mobile that is far removed from the base [7]. If all the mobile

stations were to use the same transmission power, the mobile which is close to the base

station would effectively jam the signals from the mobiles far away from the base station.

Therefore, for the CDMA system to work effectively, RF power in the system needs to be
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controlled. The key parameters that determine the capacity of a CDMA digital cellular

system are as follows [7]:

• Processing gain

• Energy per bit to noise power ratio

• Voice activity factor

• Frequency reuse efficiency

• number of sectors in the cell site antenna

2.1.4.5 pes in North America

Allocation of frequency spectrum in the 2 GHz band by the FCC spurred the

standardization activity on personal communication service (PCS) in North America in

the early 1990s [7]. The scope of pes covers high mobility and various applications like

GSM. The frequency spectrum identified by the FCC forPCS licensed and unlicensed

operation is in the 1850-1990 MHz band. In the licensed band, it provides a total of 60

MHz each for uplink and downlink transmission in the frequency division multiplex with

80 MHz separation, and a total of 20 MHz for system operating in the unlicensed band

subject to the FCC specified spectrum rules. The PCS radio interface standards based on

these technologies (GSM, 1S-136, 1S-95, WACS/PHS, and DECT) tried to maintain

maximum commonality with the existing implementations, and main differences from the

base standards were in the lower layers, to allow efficient operation in the 1900 MHz

pes band [7].

2.1.4.6 IMT-2000 Standards

International Mobile Telecommunications-2000 (IMT-2000) [8] has extended

greatly for its service capabilities and coverage area of operating environments. One of

the most important requirements for IMT-2000 is flexibility. Flexibility is necessary for

supporting different environments with minimum changes in the systems. Some of the

performances ofIMT-2000 are [9]:

• Optimized radio channel management

• Availability of bandwidth on demand

• Dynamic channel coding
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• Optimized technique for modulation and spreading

• Optimized traffic multiplexing and compression

• Smart antennas

• Increased software control of radio characteristics

Aspects 2nd generation systems 3Td generation systems (IMT-2000)

Digital All use digital technologies for Increased use of digital

technology modulation, speech, channel technologies including

coding, and implementation of programmable radios.

control and data channels.

Commonality Optimized for specific operating A major objective is maximizing

for different environments, suchas, the optimization of radio interfaces for

operating vehicular and pedestrian multiple operating environments.

environments environments.

Frequency Operate in multiple frequency Comm~n. global frequency band

bands bands, e.g., 800 MHz, 900 MHz, for both terrestrial and satellite

and 1.5 and 1.8 GHz. components

Data services Limited less than 32 kb/s Higher transmission speed

capabilities encompassing circuit

and packet switched and

multimedia services.

Roaming Limited to the specific area. Global roaming.

Table 3. Comparison of the second and the third generation mobile communication

systems [9].

• Radio Aspects

Two major issues for any radio systems are the capacity and coverage area. For

mobile systems which are operating in an urban area, capacity is the major requirement,

while for the rural area, coverage is more important [9]. Although terrestrial based

systems provide high capacity, there are limits to the coverage area. A base station can

only cover a small fraction of the world's area. Satellite based systems provide
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tremendous global services to mobile users in all places and all the times. In view of the

geometry, the cell size is huge for satellite based systems.

• Network Aspects.

IMT-2000 radio transmission and signaling systems have to be very flexible to

efficiently handle a global range of services [10]. IMT-2000 also provides fixed wireless

access (FWA) capability with potential applications to developing countries for

introducing basic telecommunication services in a cost effective manner [11]. The goal of

the IMT-2000 is to provide identical services offered by th,e fixed wire line networks.

2.2 Handover operations in mobile communication systems

In cellular mobile communication systems, a subscriber migrates among cells. To

support seamless communications wherever a subscriber is located, a communication link

must maintain its QoS. The process of transferring a call in progress from one cell to

another cell without interruption of the call is referred to as handover. Handover

operation involves a mobile switching center (MSC) interworking with more than two

base stations. In this section, we review handover schemes [7].

2.2.1 Handover operation for the first generation systems

Handover operations are illustrated in Figure 2-2. Base station 1 is handling the

call for the mobile station (event 1). It notices the mobile station's transmission is

decreasing in power (event 2). It sends a handover measurement request message to its

MSC (event 3). The MSC can request a number of base stations to announce their

reception of the mobile station's signal. In this example, it requests that base station 2

monitor and report back its result (events 4, 5, and 6). The MSC decides that base station

2 is the best choice to take over the call, so it allocates a traffic channel (TCH) to this

station and the station acknowledges (events 7 and 8). Next, the MSC sends a handover

order message to base station 1, which sends a similar message to the mobile unit (events

9 and 10). The message in event 10 notices the mobile station of the new 'channel

assignment, as well as the power level to be used in the new cell. With the confinnations

(event 11 and 12), the mobile station receives base station 2's SAT message and
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regenerates this SAT message back to the base station (events 13 and 14). This continuity

check is sufficient for base station 2 to confirm the handover (event 15) to the MSC [7].
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Figure 2-2. Handover Operation.

2.2.2 Handover for the second generation wireless communication systems

Figure 2-3 shows an example of how a mobile user can roam from cell-ta-cell and

how the system keeps a record of the mobile user's location, a function called mobility

management. Upon the mobile station crossing a boundary, it sends a location update

request (event 1), which contains its identification, to the base station (BS). In second

generation systems, the mobile station monitors channels in other cells. In AMPS, the

mobile station does not participate or make decisions about handover. If it finds a proper

control channel in another cell that meets certain power and quality criteria, it notifies its

serving base station by sending it a location update message. This message is then routed
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to the new Visitor Location Register (VLR). The new VLR has no information about the

entry for this user because the mobile user has already moved into its area [12].

Previous
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Figure 2-3. Mobility management operations.

The new VLR sends the query message to the user's home location register (event 2).

This message includes the identity of the user as well as the identity of the new VLR that

sent the message. In event 3, the HLR stores the subscriber's new location at the new

VLR and then downline loads the user's subscription information to the new VLR. On

receiving this information, the new VLR sends the acknowledgement of the location

update through the new MSC to the MSC, and back to the originating mobile user (event

4). Finally, in event 5, the HLR sends a location cancellation message to the old VLR to

clear the subscriber's data from its database. The mobile subscriber must be known only

to one VLR at a time. In this example, when the subscriber has roamed to another area,

the HLR has had to be updated. It can be seen that the HLR is the master of the

subscriber data base and therefore coordinates changes to the VLRs as the subscriber

roams through the cells. In the Pan-European Digital Cellular Standard, a handover

margin parameter is used as the hyteresis margin [12]. The North American Personal

Access Communications System (PACS) personal communication systems services

standard combines the hysteresis margin with a dwell timer [13].

19



2.2.3 Mobile Assisted Handover (MAHO)

IS-54 B defines the mobile assisted handover, which is used to make the handover

more efficient and faster. In this situation, the mobile station measures the quality of the

forward traffic channel in relation to other channels emanating from other base stations

[4]. It executes these procedures during idle times when not involved in sending or

receiving traffic. The measurements taken by the mobile station are sent back to the base

station. In tum, the base station uses this infonnation to decide if handover is to be

implemented. This modification to the traditional AMPS operation eliminates signaling

substantially because neighboring cells do not have to measure the channel of the mobile

station. IS-54 B is designed to support analog handover or digital handover as well as

variations of analog-to-digital or digital-to-analog handovers. Even though the mobile

station participates more in handover decisions than it did in the conventional AMPS, the

operation is still controlled initially by the base station by directing the mobile station to

send measurement messages back to the network. The message tells the mobile station

which channels are to be monitored, measured, and reported upon.

2.2.3 CDMA Handover signaling

Soft handovers and hard handovers which use the same frequency assignment are

originally initiated by the mobile station. The mobile station keeps searching for pilots to

detect the existence of the CDMA channels and measure their signal strength. When the

mobile station detects a pilot signal which is strong enough that is not associated with any

of the forward traffic channels assigned to it, the following sequences will occur [14]:

• The mobile station sends a Pilot Strength Measurement Message to the base station,

which lists the pilots received by the mobile station. This message initiates the handover

process when the handover is initiated by the mobile station.

• The base station allocates a Forward Traffic Channel associated with that pilot, and then

sends a Handover Direction Message to the mobile station and directs it to perform the
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handover. For soft handovers, the Handover Direction Message lists multiple Forward

Traffic Channels, some of which are already being demodulated by the mobile station.

For hard handover, the Handover Direction Message lists one or more Forward Traffic

Channels, none of which is currently demodulated by the mobile station.

• Following the execution of the Handover Direction Message, the mobile station sends a

Handover Completion Message on the new Reverse Traffic Channel. This message

serves the base station as a positive acknowledgement, indicating that the mobile station

has successfully acquired the new Forward Traffic Channels.

2.2.4 Handover Parameters

There are three important reasons in soft handover to replace any additional base

stations that can be detected by the mobile station as soon as possible [14]:

• Improved voice quality: cell boundaries usually offer poor coverage coupled with

increased interference from other cells and therefore, forward traffic channel diversity

from additional cells will improve the quality.

• Controlled mobile station interference: while on a boundary of a cell, the mobile

station's interference to mobile stations in other cells is maximal and therefore, it is

important to be able to power control it from these cells.

• Reduce call dropping probability: handover area in which the forward link is most

vulnerable. A slow handover process coupled with a vehicle moving at high speed may

cause the call to be dropped since the mobile station might no longer be able to

demodulate the forward link transmitted from the original cell, loosing the handover

direction message.

2.2.5 Generalization of Handover

The studies of handover have taken place over a wide spectrum of scenarios.

There are many situations, such as "small" or "large" cells, hard or soft handovers~ and in

wireless telephone or data networks. The scenarios vary with the random behavior of the

propagation environment and the mobile user calls for a need to design various handover
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properties that suit different situations. Each scenario presents its challenges. These

challenges can be categorized [1]:

• Quality of service (call quality), or probability of outage

• Total number of handovers required to be performed as a mobile user moves between

two adjacent base stations

• Reduce the number of unnecessary handovers, which happens in cases where remaining

connected to the current base station is the best option in sustaining the communication

link

• Minimize the delay in making handover, which is often computed as the distance

between the cell boundary and the crossover point. The handover cross over point is

defined with regards to the reception signal power drop (normally 3 dB) or as the point

at which the probability of being assigned to the current base station drops below 0.5

[15]

These challenges are primarily based on the uses of the wireless system and the

environments that the systems operate in. Microcells are prone to handover delays,

whereas wireless voice and data networks have to consider traffic load for designing a

handover algorithm because the handovers seriously influence the network performance.

In urban situations with many antennas, high buildings are placed lower than the

surrounding skyline and the user can experience deep fades as it turns around the comer

ofa building [16].

2.2.6 Types of Handover

The mobile station supports the following two handover procedures during a call

[14]:

• Soft handover: A handover in which the mobile user commences communications with

the approaching base station without interrupting communications with the current base

station. Since mobile cellular phones typically contain a single radio, soft handovers can

only be used between CDMA channels having identical frequency assignments. The

operation is illustrated in Figure 2-4.
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• Hard Handover: A handover in which the mobile station is transitioned between disjoint

and adjacent sets of base stations, different frequency assignments, or different frame

offsets. As depicted in Figure 2-5, continuity of the radio link is not maintained during

hard handovers.
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Figure 2-4. Soft Handover: In the soft handover process, the communication link with the
mobile station is maintained at all times.

CeliA CeliA

Cell phone Cell phone

Figure 2-5. Hard handover: In the hard handover process, the communication link with

the mobile station is momentarily disrupted.
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2.2.7 Handover Scenario and Conventional Methods

The handover scenario consists of a mobile user which is moving between two

adjacent base stations. Let the mobile user be moving away from its current base station

A and towards the other base station B. These two base stations are the two from which

the mobile system is likely to have the strongest received signal and are the closest ones.

~L ~L

Cell A

i
Cell phone

Signal from A

Distance

Signal from B

Cell B

Figure 2-6. Signal strength vs. distance when user is moving from Cell A to Cell B.

The handover decision has to be made based upon a limited amount of

information which is available to the mobile user and the base station at each time instant.

This information includes signal strength measurements, mobile to base station distance

[I, 16], bit error rate, and carrier to interference (ell) ratio. Here we assume that the

received signal is filtered such that the multipath fading effects can be neglected. The

received signal power X (dB) at the kth time instant and the ith base station can be given

by [1]

(2.1)

where fL is a function of the base station transmitter power, 1] is the path loss exponent

associated with the simplified path loss model, d is the distance between the mobile user

and the base station, and Z is the variance due to shadowing.
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2.2.8. Received Signal Strength

A handover decision to the base station B is made from the current base station A

when the average received signal power from base station B is stronger than the signal

power received at base station A. Representing this is an inequality format we obtain

in which r[k] is obtained from

1 k

r[k] =- 2:~
N i=k-N+I

(2.2)

(2.3)

where P is the power [W] and N is the number of the samples. This strategy chooses the

strongest signal at a given time. The decision is mainly based upon an averaged

measurement of the received signal. This technique is to activate too many unnecessary

handovers [12].

2.2.9. Relative Signal Strength with Hysteresis

A handover decision is made from the current base station A to B when

(2.4)

where H is the hysteresis margin. This technique provides a user to do a handover if and

only if the new base station signal is sufficiently stronger than the current serving base

station signal [17]. This method prohibits excessive 'ping pong' between two base

stations [18].

2.2.10. Relative Signal Strength with Hysteresis and Threshold

A handover decision is made from the current serving station A to B when

(2.5)

where H is the hysteresis margin and 1;; is a threshold value. This technique provides a

user to conduct a handover to a new base station only if the current serving station's

signal level drops lower than a threshold and the target base station is stronger than the

current one by a predefined hysteresis threshold value [17].
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2.3 Dual array antenna system

Recently, Multi-Input Multi-Output (MIMO) technology based dual antenna array

(DAA) systems have gained much attention due to their enormous spectral efficiency.

Fochini and Gans demonstrated that DAA systems employing multiple antennas both at

the transmitter and the receiver sites can obtain linearly increased channel capacity based

on the number of antennas applied [32].

In this section, we provide an overview ofDAA systems.

2.3.1 Information channel capacity of conventional communication system

The information theory gives an upper bound of the achievable information

channel capacity, i.e., spectral efficiency. The information channel capacity over an

AWGN channel is expressed by the well-known Shannon's formula [33]:

C =log2 (1 + p), [bps/Hz] (2.6)

where p is SNR at the receiver. Many attempts have been conducted to increase the

spectral efficiency using technologies such as channel coding, diversity schemes [34].

Among these efforts to increase the spectral efficiency, diversity schemes enable one to

take advantage of the redundant infonnation in replicas of the same information

transmitted over independent fading channels to alleviate fading effects. Conventionally,

diversity schemes have been studied in frequency, temporal, and spatial domains at the

received signal. Especially, receiver diversity using multiple antennas is commonly used

at the base station during the uplink duty cycles in mobile cellular systems.

Recently, the use of DAAs employing multiple antennas at the transmitter and

receiver has been investigated in [32] and [35]. Especially, in [32], it was shown that the

information channel capacity of a DAA system is increased linearly as the number of

antenna elements at the transmitter and receiver are increased; provided that a rich

scattering environment ensures the channel path gains between the transmit antenna

elements and the receiver antenna elements such that they are uncorrelated. Although

there have been many studies of the channel capacity of multiple antennas systems, the

DAA system has the unique feature in the sense that multiple antenna elements are

employed both at the transmitter and receiver; and a number of symbols are transmitted
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in parallel through the multiple antennas at the transmitter, which enables DAA systems

to achieve a high spectral efficiency.

2.3.2 Information Channel Capacity of DAA System

Foschini and Gans investigated the information channel capacity of DAA systems

[32]. They showed that the capacity of independent fading MIMO channels is increased

linearly, while the capacity of receiver diversity system applying an optimum combining

single-input multi-output (SIMa) topology is increased logarithmically.

Shannon's formula for DAA systems can be generalized to [37]

C=BIOg2de{I+ ::2 HoH·) (2.7)

where B is the bandwidth, PT is the total transmit power at the transmit site, M is the

number of antenna at transmitter, N is the number of antenna at receiver, I is identity

matrix, the subscript * represents conjugate transpose. H is a complex channel gain

matrix, which is defined as

(2.8)

In Eq. (2.8), hi} is the complex channel path gain from thejth transmit antenna element to

the ith receive antenna element, which is expressed as:

(2.9)

where aij is the envelop of hi} , which is a Rayleigh random variable, and ¢ is the phase of

hi}' which is uniformly distributed over 0 to 21t. Note that the bold capital letter

represents a matrix.

In [32], the authors investigated the capacity of a communication link under a

scattering multipath environment, which reflects the small-scale fading phenomenon only.

However the actual received signal in a cellular environment is not only impaired by,
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multipath fading but also severely attenuated by surrounding buildings and other large

scale obstacles, known as the shadowing phenomenon. In [36], Lozano et ale analyzed the

channel capacity of DAA systems under composite Rayleigh fading and lognonnally

shadowed wireless environments. Considering shadowing, the squared-envelop of the

complex path gain between the jth transmit antenna element and the ith receiver antenna

element becomes:

(2.10)

where Q represents the squared-envelop of the complex path gain due to the shadowing

modeled by the lognormal distributed random variable. Note that the mean value of Q

depends on the distance between the transmitter and the receiver. It is well known that the

received signal power decays with a function of distance between a transmitter and a

receiver. Excluding the shadowing and fading phenomena, the received power just

considering signal attenuation which is referred to as the local-average power becomes

[37]

L == [4.10- 14
• d-3

.
5

• G] == [-134 - 3510g IO (d) + 10 log 10 (G)] dB (2.11 )

(2.12)

where d is the distance in kilometers between a transmitter and a receiver and G is

antenna gain in dBi. In (2.10), the probability density function of the squared-envelop of

the complex path gain due to shadowing is given by:

fn(n)== ; exp(- (;In(Q)2- LY )
an .n.j2"; 2an

where; == IO/lnIO = 4.3429, L is local average power given as Eq. (2.11), and a; is the

variance of the lognormal random variable Q. The correlation among the entries of the

channel gain matrix H is determined by the antenna spacing and angle spread. We

assume each antenna element is spaced far apart such that each signal propagation path is

uncorrelated to each other. Therefore, the rows ofH are always independent, whereas the

columns can be either linearly dependent or independent.
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2.3.3.1 Steered Directive Array System

Let us first consider the following steered directive array antenna system

illustrated in Figure 2-7. As shown in the figure, the M closely spaced antennas operate

coherently at the base station. Each base station antenna has a gain of 15 dBi, while the

terminal is equipped with a single omnidirectional antenna. Since the directive array

antenna synthesize narrower beam patterns as the number of antenna elements increase,

more power can be launched to the direction of the mobile user, thereby increasing the

received signal power at the receiver. Note that each antenna transmits identical

information.

r--

\"
\ 'hase Array

"~~----.-:--'--r----r--=-.

Transmitter

Multiple Antenna
Elements

Figure 2-7. Illustration of the steered directive array system.

Since each antenna element of the directive array is closely located such that they

operate coherently, the channel path gains from the individual elements are identical, i.e.,

h. = h. Therefore, the capacity of the steered directive array antenna system can be
I

obtained from (2.7)

(2.13)

where Pr is a transmit power at each element, thereby the total transmit power of

directive array is MPr. Especially, in broadband data communication systems, the peak
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data rate supported for single user is of interest. This single user data rate can be

evaluated from Eq. (2.13) assuming that the total available bandwidth B is dedicated to a

single user.

Since the complex channel gain is a random variable, the capacity value also

becomes a random variable. To evaluate the attainable capacity value for a given location,

capacity outage is used. For example, the capacity supported in 90% of locations is

plotted at a different distance, in Figure 2-8.

Range (km)

Figure 2-8. Single user data rate supported in 90% of locations vs. the range for the

steered directive array antenna system.
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2.3.3.2 Transmit diversity

In [38], Alamouti showed that the M-transmit diversity system provides the same

diversity order as in M-receiver diversity system. Usually, the physical size of current

mobile terminals tend to be smaller, while that of the base station is not relatively

constrained. Thus, the major benefit of the transmit diversity scheme is the physical

dimension of receiver is no longer a limitation to obtain diversity gain, since the gain can

be obtained by employing additional antenna elements at the transmitter site. The system

configuration is illustrated in Figure 2-9.

Transmit diversity systems employ M antenna elements at the transmitter site, as

in the steered directive array antenna system. However, the antenna element spacing

should be larger than that of steered direction array antenna system to ensure uncorrelated

channel path gains from the individual transmit elements. Also, in the transmit diversity

system the total transmit power is limited to PT , regardless of number of antenna

elements. Therefore, transmission power from each antenna elements is Pr .
M

_--------_~ Number of Antenna
~~- ,

( '7 \:7 (V',
"

...._~~~~~~

Transmitter

Figure 2-9. illustration of the transmitter diversity system.

In transmit diversity system, the channel matrix of transmit diversity system is given as

H=[~ h2 ••• hM ], (2.14)
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the capacity is now expressed from Eq. (2.7) as:

C= BIOg 2 (1+ Pr
2 fl hm 1

2
)

Ma m=l

(2.15)

with hm the complex channel gain from the rnth transmit antenna element to a receiver

antenna.

In Figure 2-10, single user data rate supported in 90% of locations is plotted

versus the distance. Compared to the directive array antenna system, the capacity

improvement is not noticeable. This is due to the fact that the total transmission power in

the transmit diversity system is constrained. In other words, the total transmission power

in a directive array antenna system is increased as the number of antenna elements

increases, while that in transmit diversity system is limited as a constant regardless of the

number of antenna elements. Although one drawback of allowing a system to increase its

transmission power is that this results in a larger amount of cochannel interference for

other systems and vice-versa, the interference experienced at this system also will

become a considerable issue to the overall performance.

Range (Km)

Figure 2-10. Single user data rate supported in 90% of locations vs. range (distance) for

M-antenna transmit diversity at the base station and single antenna at the tenninal.
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2.3.3.3 Dual array antenna system

The last system analyzed here is the dual array antenna system. This system is

illustrated in figure 2-11.

_-------- -M Number of Antenna
,.,.- ~,
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N numbe, of antenna

I
I

Transmitter

Figure 2-11. Multiple-input multiple-output (MIMO) topology.

In dual array systems, M antennas are employed at the transmitter site, while N antennas

are employed at receiver site. For the convenience of illustration in the following

equations, we set M == N herein. As in transmit diversity systems the total transmission

power is constrained to PT •

For transmit diversity system, the channel gain matrix is given as:

[
h.~IH= :

hMl

(2.16)

Since each channel gain hi) in H is uncorrelated to each other, the covariance matrix of

channel gain is diagonal matrix, i.e.:

H·H*=

* * h h*hIl ·h11 +h12 ·h12 + ... + 1M' 1M

o
o
o

o

o
o
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Therefore, by substituting (2.1 7) into (2.7) we obtain the channel capacity equation as:

(2.18)

As shown in Figure 2-12, the channel capacity of the dual array antenna system grows

linearly as the number of antenna increases. Thus, compared to the previous antenna

system, enormous channel capacity gains can be obtained in DAA systems by adding

additional antennas both at the transmitter and thereceiver sites.

Range (Km)

Figure 2-12. Single user data rate supported in 90% of locations vs. range (distance) for
the dual array antenna system.
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CHAPTER III

Intelligent Handover Control Technologies

This chapter analyzes and proposes fuzzy logic and artificial neural network

(ANN) algorithm to enable multi variable optimization in the handover decision

procedure.

The rest of this chapter is organized as follows. Section 3.1 presents the proposed

handover management algorithm for mobile communication networks and also provides

an overview of fuzzy logic and how it can be implemented to assist handover procedures.

Section 3.2 provides a review of the learning vector quantization (LVQ) ANN technology

that could be used for multivariable control of handover operations. Section 3.3 provides

the handover procedure for IMT-2000 and its specifications.

3.1 Handover Management

In mobile communication systems, the most common factor to initiate handover

is when the signal to noise ratio or received signal power is less than a predefined

threshold value [20]. The next generation communication environment will enable

different mobile network systems to interoperate with each other and provide mobile

network service.

By the seamless tracking of the subscriber's information, such as quality of

service, signal strength, bit error rate, and signal to noise ratio, an improved handover

algorithm that could utilize these different handover parameters could be developed.
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Figure 3-1. Block diagram of a proposed example Fuzzy Logic and LVQ Network

handover algorithm.

For handover initiation, four different factors could be used: signal strength, bit

error rate, network coverage, and quality of service [20]. These factors may be changed

depending on the characteristics of the system. Three basic operation stages exist. In the

first stage, the parameters of the system are fed into the fuzzier, which will transform the

parameters into fuzzy sets which make membership sets. The second stage is to apply a

fuzzy rule, which is defined as a set of If-Then function. Following this set of rul~s an

intelligent handover decision could be made.

The major objective of the handover decision algorithm is to select a decision

plane serving segment. The example control system block diagram will be explained in

the following chapters.
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3.1.1 Problem Description

'Inherent uncertainty' refers to the property of a situation such that knowing the

outcome of the situation does not allow us to make an exact decision about the situation.

A well-known example is the judgment of the person's weight. Although the weight of a

person is measured exactly, the question "Is that person heavy?" cannot be answered

without some uncertainty. A threshold could be used such that if the person's weight

exceeds a certain threshold then the person could be included into the set of heavy people,

otherwise the person is excluded. However, to choose such a threshold is not simple. In

mobile communications, the received signal strength (RSS) and MS-BS distance fall into

this category of uncertainty because it is difficult to define thresholds at which the system

can determine whether there is enough power or whether the mobile is close enough.

Conventional methods use thresholds, and at the same time try to compensate for the

sharpness of the threshold by allowing a hysteresis margin. By adapting fuzzy logic, the

threshold value is smoothed out. An output parameter HO_Factor makes an important

recommendation for a handover to the other base station depending on its value which

lies in the range between 0 and 1. The value indicates the strength of the recommendation.

If the indication is strong, the request to handover to the adjacent base station is strong,

and so HO_Factor is high.

3.1.2 Fuzzy Logic Method

Fuzzy logic uses partial membership in a set, and the degree to which elements

belongs in the set is determined by the membership function of the fuzzy set. The

membership IJA function takes in some value as an output value between 0 and 1 [16].

IJA: X ----t [0,1] (3.1)

The membership function value is known as the degree of membership or the truth value.

So if the system takes in two different kinds of inputs, a set of membership functions, the

range of input values, and the type of function are a matter of designing choice. Suppose

a measurement from each kind of input is taken, then the truth value of each kind of input

is obtained. The truth value enables the input to be mapped to the output using a set of

rules [20]. The rule is IF <input variables belong to some specific set> then <output
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variable belongs to some specific set>. An example can be if the input variable is weight

and height, and the output is size, then If weight is 'medium' and height is 'tall', then

size is 'medium.' The truth value of size 'medium' is simply the minimum of the truth

value of height in the set 'tall' and weight in the set 'medium.' That is,

J.1_size, medium=min [J.1_height, tall, J.1_weight, medium] (3.2)

In this case the 'and' operator is used, but if the lor' operator is used, then the maximum

of the truth values is taken. After the truth values of all the rules are taken, they are

plotted against the possible values of the output.

3.1.3. Fuzzy Logic Solution

In [16], the fuzzy sets are used for the RSS measurements, MS-BS distance

measurements, and the HO_Factor. The membership functions are simple triangular

functions which are similar for all three domains. For RSS measurements x, in the range

[-80, -20] dBm, the membership functions can be defined as [38]:

1, if x S -65

()
(-50-x) .

f.JRSS,weak X = 15 ,if -65<x<-50

0, if x~-50

J.iRSS ,medium (X ) =

J.iRSS ,strong (X) =

0, if X s -65

(x+65) zif -65<x<-50
15 '

(-35-x) if 50 35l - <x<-
15 '

0, if X ~ -35

0, if X::;; -50

(x+50) zif -50<x<-35
15 '

1, if x~-35
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and plots of this membership functions are illustrated in figure 3.2.
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Received Signal Strength

Figure 3.2 Fuzzy sets of the RSS.

For the MS-BS distance measurements d over the specific interval [0, 500] ill, the

membership functions could be set as [38]:

J1. Dis ,near (d) ==

1, if d ~ 125

(250-d), if 125<d<250
125

0, if d ~ 250

J1.Dis ,medium (d) =

0, if d ~ 125

(d-12S)
--'----~, if 125 < d < 250

125

(375-x) lif 250<2<375
125 '

0, if d ~ 375

,UDis,jar (d) =

0, if d ~ 250

(d - 250), if 250 < d < 375
125

1, if d ~ 375
(3.4)
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and plots of this membership functions is illustrated in Figure 3.3.

Near Medium Far

0.8
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~
ro
> 0.6
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BS-MS Distance

Figure 3.3 Fuzzy sets ofthe distance between base station and mobile station.

For the output parameter HO_Factor h over the given time interval [0, 1], the

membership functions are defined as [38]:

1, if h ~ 0.25

(h) (0.5 - h), if 0.25 < h < 0.5
Jlho,/ow = 0.25

0, if h c. 0.5

Jlho,medium (h) =

0, if h S 0.25

(h-0.25)
~--, if 0.25 < h < 0.5

0.25

(0.75 - h) zif 0.5 < h < 0.75
0.25 '

0, if h c. 0.75

0, if h ~ 0.5

f.1ho,high(h)= (h;;~5), if 0.5<h<0.75

1, if h~0.75
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and plots of these membership functions are illustrated in figure 3.4.
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Handover Factor

Figure 3.4 Fuzzy sets of Handover factor.

The following set of fuzzy rules can be used to decide the output [38]:

IF RSS is weak and MS-BS Distance is near, then HO_Factor is medium.

IF RSS is weak and MS-BS Distance is medium, then HO_Factor is high.

IF RSS is weak and MS-BS Distance is far, then HO_Factor is high.

IF RSS is medium and MS-BS Distance is near, then HO_Factor is low.

IF RSS is medium and MS-BS Distance is medium, then HO_Factor is medium.

IF RSS is medium and MS-BS Distance is far, then HO_Factor is high.

IF RSS is strong and MS-BS Distance is near, then HO_Factor is low.

IF RSS is strong and MS-BS Distance is medium, then HO_Factor is low.

IF RSS is strong and MS-BS Distance is far, then HO_Factor is medium.
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These rules can be summarized into the following Table 4.

HO Factor

Weak Medium Strong

Near Medium Low Low

Medium High Medium Low

Far High High Medium

Table 4. Rule of Fuzzy sets.

As an example, suppose that RSS indicates x == -40 dBm, and that the MS-BS distance d

== 350 m, then we obtain

J.lRSS Weak (- 40) = 0 J.lDisl near (350) = 0 (3.6)

1 1
IiRSS ,medium ( - 40) ="3 IiDisl,medium (350) =5" (3.7)

2 4
IiRSS,Slrong (- 40) ="3 IiDisl,Far (350) = 5 (3.8)

The HO_Factor can be evaluated by using the min-max equation,

Ii HO Jaelor ,medium (h) =max [ min (0,0), min(~,~). min ( ~ ,~J]=f, 0.25::; h ::; 0.75

(3.10)

This result is illustrated in Figure 3.5.
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In order to find a value for the HO_Factor output measurement, the plot of all output

values against all possible values of the output is used.

Therefore, in this case (RSS = -40 dBm, MS-BS distance = 350 m), the HO_Factor value

can be obtained by using the centroid algorithm [1].

HO Factor == 0.37425

Because the HO_Factor is lower than 0.5 [15], handover operation is not initiated.

3.2. Pattern Recognition by Artificial Neural Network

3.2.1. Basic Property of Learning Vector Quantization (LVQ)

Among the different neural network architectures the learning vector quantization

(LVQ) has been recognized for its superiority in pattern recognition to its counterparts

such as multilayer perceptron [21], and therefore LVQ is used as an example to assist the

multivariable controlled handover process. The LVQ network is a hybrid network and it

uses both supervised and unsupervised learning to form classifications [22]. In the LVQ

network, each neuron in the first layer is assigned for a class, with several neurons often

assigned to the same class. Each class is assigned to one neuron in the second layer. The

number of neurons in the first layer, SI, will therefore always be at least as large as the

number of neurons in the second layer, S2, and will usually be larger. A block diagram

of the LVQ network is illustrated in figure 3.7.
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....

S2 X 1

n 1
..... C a1

...... W2 n 2
.....
~.... ...... ....

SI X 1 SI X 1 S2 X ]

S2 xS I

R

Figure 3.7. Block diagram of LVQ network

In Fig.3.7, R indicates the number of input vector, a is the output of each layer, n is the

net input, W is the weight matrix, and C represents competition function

As with the competitive network, each neuron in the first layer of the LVQ

network learns a prototype vector, which allows it to classify a region of the input space.

However, instead of computing the proximity of the input and weight vector by using the

inner product [21], we can obtain the net input.

The net input of the first layer of the LVQ will be

Or, in vector form,

IIl
w1 -pll

IIz w1 -pll

Ils,wl-pll

The output of the first layer of the LVQ is
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The second phase, which is show in figure 3-1 e fanna,

of the MU whi, e it resides within he network boundary c 11 [23]. 'en B a

Reconfiguration Beg"n (RECO IG_beg) essage to the MU, t e fonna, tran

is initiated. T is message specifies the start of the downoad proc du e. W

ready to change to the new system, the MU retu s a econfigura'on Ready to

BS 1. When the networ is ready for the new connection, SW 1 end a erou·e eady

message to BS 1. Since the MU as activated a transmitter/receiver for eae ne or, t e

MU is able to measure and compare s·gnal strength for adjacent ba e sta ions or bot·,

systems. When handover to BS 2, which .s the target base tation is initia ed, he

sends an Intersystem Handover Required message to BS 1. BS 1 replie WI a

Reconfiguration Execu e message to the MU, which triggers the MU to switch 0 etwork

2 operations. The MU sends the Reco figuration Do e message, a d the U·s able 0

perfonn a network 2 handover to BS 2 [23].

3.3.3 Perfor ance Evaluation

The additional signaling time (r:) is the total time needed for t an mi sion and

processing of the messages of the intersystem handover protocol. r: is calc lated by

summing the signaling time req ,ired for each of the steps [23]:

(3.26)

The time to send a message (M;) is calculated as:

(3.27)

where i is the number of steps for the handover, a; is the tran mission time, Pi is t e

propagation time, and Yi is t e process"ng time for the co 01 me sage. e tra sm"ssion

time a i is comp ted by :

hi
a.=­

I R
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In [23], the mob·l con,'rol hando er ( C 0) case icon er and il

figure 3-10. When the mobile user (MU) approaches the in

mobile user can a hear beacon from e approaching ne ·or

cell base station. When the handover is initia ed the mobile user or t. e n an

intersystem handover warning (IS 0 _warn) message to base station ( S)

serving base station. The ISHO_warn message must contain the pre iou as tation and

identification of the mobile station. B sends an ackno ledgement to the mobil tat·o '.

BS 1 forwards the ISHO_warn message to sw'tch ( W) 1. 1 replies · h an

acknowledgement message to BS I and sends an in ersy em hando er rerout

to SW2, which is the adjacent switch. SW2 rep ies with an ac 0 1 dgem t and beg'

to execute the operations such as a thentication, location management om e or 1 to

network 2. Whereas, the mobile user continues to conduct handover 0 B sing t e

standard procedures. When the handover is set up BS 1 sends a transmitter/rec i er tart

(TXRCVR_start) message.

3.3.2 Handover -oto ae System

BS2 SW2

Initial

(17) MU handover to BS 2

Figure 3-12. Signal flow for Handove into the next sys em.
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thewhere hi is the size of e contro me age °n b °

message is sent.

In step 7, the control message can be en over N hop fro , to aero 0 er itch

between NWI and 2, to SW2. IfthOs is the case, hen the °gnaing om is com t d

by:

(3.29)

For steps 1, 10, and 14, we need to consider the signaling tOme for hmes ag s t a ay

be affected by losses over the wi eless link. Let nf b'e ten mber of irele Ii

failures. Then

1'; = j;1';(nf)X prob{nf failures and 1 sucess} (3.30

Let Tw be the time for waiting in order to decide hat the message was lost. The ime to

send a message when there are nf failures is calculated:

The signaing time, 1'; is then represented by:

1'; = ~o[Mj + nf x (Tw +M j) x prOb{nf failures and 1 sucess}

=M i +(Tw +Mj)x ~nfxprob{nf failures and 1 suces}

(3.3 )

(3.32)

3.3.4 Pro abe ety of I te -Sy e an 0 er ai re

We also need to co sider he probabi 'ty t at t i e 'nter-system ha dover fails

because of the mobile tenninal (MT) leaving he boundary cell before the addi °onal
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signa ing for t e y tern transfonnation can b com let . L t T

that ta es on val es o· he time '0 t e ne co eell 1 e andov r ft r the arriv

into the bo dary cell. T .en he probabiF y of the T leavi g e ou dary 11 b 0

the requ"ed time T is 23] :req

P = problT < Treq J 3.33

(3.3 )

We restrict this probability to a certain threshod, PI . If e assume at T i ex 0 en ially

distributed then (3.33) will be:

prob[T < Treq ]< PI or 1- e-),T...
q < PI

Where A is the arriving rate of MTs into the boundary c·ell.

A = VL
MT 7tS (3.35)

Where V is the expected velocity of the MT, I is the length of the perimeter 0 th

boundary cell, and S is the area of the boundary cell [28].

2V
AMT =----

ni sine1l" / 3)

The minimum boundary cell area can be defined as

I> (2VTrjq ,

1l" log. _1- sin(n- / 3)
I-PI

and based on this, the restriction boundary ce 1area can be obtained from

6/2
.

Acell > -.-sln(1l' /3).
2
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The system para e ers 'ch are app i 0 ana yze t

5. T e MT, B ,and p oces ing ti e, the me age 'ze and

ab

input parameters, c are hOWD in able 5.

Bit Rate (B) [29], [30]

WOre link

Wireless Link

Low Mobility

Medium Mobility

Vehicular Mobility

High Mobiity

Satellite Mobility

155 Mbps

2Mbps

384 Kbps

144 Kbps

64 Kbps

144 Kbps

irele s ink

Terrestrial

LEO

MO

GEO

[26]

500

2

5.2 -- 15.2 ms c

69 -- 96 c

239 -- 270 c

Processing Times (y)

Switch

Base Station

Mobi e User

0.5 msec

0.5 msec

0.5 msec

Low Mobil"ty

Medium ob"lity

High obil" ty

], [27]

3 km/hr

10 -- 00

300

tmes

Message Size (b) 50 bytes PACS 20ms c

umber of Hops 3 DECT 50 msec

Download Time 10 msec GM 1 sec

Link Failure probability 0.5

Table 5" System Parameters.
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ab 'e 6 describes t e additiona ignal' g . e, hie by he . te

system handoff protocol and calculate by (3.26). s i cal 11

sizes to be supported by MT-2000, a well a for the Low arth Orb' (0 di

Earth Orbit (MEO), and Geosta 'onary Orbit GEO a el . e ne 0

Indoor Pede trian ehicular igh pd at lli lIs

(Pico) (micro) (macro) (macro) LEO 0' G 0

V,MU

Velocity 3 3 10 ~ 100 300

(Km/hr)

[31

B,Bit

rate(bps) 2M 384k 144K 64K 144 144 144K

[29], [30]

Add'l

Signaling 49m 59m 80m 120m 0.1 -- 0.2 0.7 -- 1 2.4 --2.7

Time (sec)

Nominal

Handover 20m 50m 1 1 1 1 1

Time (sec)

[25]

Total

Handover 69m 109m 1.1 1.1 1.1 ~ 1.2 1.7 '- 2 3.6--4.1

Time (sec)

Table 6. Additional Signaling Time Required for Perfonning tersystem andover for

IMT-2000.
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3.3.5 Bo dar ce a ea

This section describes some observat·ons hich are ba ed 0 at"on 0 t

previous sections. Iso, each ifferent ne or itua ion icon id red 23]. I h

addit~onal signaling time is a factor ha increase e to al hando er time. From gure 3-

12 to figure 3-15, we can see he probability of" ter system hando er fa"lure i d"ffl r t

for each situation. To obtain these probabiliy oflSHO fail Te grap (FOg" 3-12-.. "g.3- 5

we apply the eq ation of (3.38) and (3.39). It is observed ha th sma I r the bo dary

cell area, the less time the mobile terminal needs to execute the fo at tran forma ion. In

other words, the higher the probability of . ter system handov r fao'ure. here i a

higher chance that the mobile teffi1inal may enter the next boundary cell a ea it out the

abi ity to communicate.

The research of [23 indicates tat e boundary c II thres old alue are

reasonab e based on the cell size and etwork type [23]. For exa p e, for the "ndoor

networking case the resu t8 show in figure 3- 2, a probability 0' inter system fail r

PI =2 % the mobile cell area needs to change from a pico cell to am"era eel area of

approximately Acell = 6 square meters. The minimum boundary eel' a as we·· e 0 d i

terms of the probability of handover which meets the minimum residing time req ired for

successful handover.

Indoor (pica cell)

0.1

~
.2
'ro
LL..

0
I
~

'0
0.05.0e

Ci.
0.04

0.03 ..

0.02

O.010l------l.--...-L.--3L------l.---LS--6L-----l--~~~----J10

Bondary cell Area (Sq. meters)

Figure 3-13. Probability ofISHO for Indoor network.

The probability of 2% of S 0 a lows a mobile user 0 roam from a pico cell to a
m"cro cell within a m"nimum boundary cell area of 6 sqare meters.
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Pede tr" n (micro cell)
0.11

0.1

0.08

~

-='(15 0.07

\u..
0
I 0.06
22 \
'0
.c 0.05
e
c..

0.04

0.03

0.02

Bondary cell Area (SQ. meters)

FOgure 3-14. Probability of ISHO for edestrian ne arko

The probability of 2% of ISHO allows a mobie user to roam fro a c 0 c I to
a macro cell within a mOnomum bo ndary ce I area of 8 square meters.

Vehicular (macro cell)
0.11 r----r-------r------.---.----r----...------.----,

0.1

0.09

0.08

~
~

0.07 \'(0
u. \
0 I:r: 0.06

\"~

'0 \..0 0.05
aa:

0.04

0.03

0.02

0.01 L--_--L-_-----'--_-......L...__"'----_-L-_-""--_---'-_-----'

a 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Bondary Cell Area (Sq. meters)

Figure 3- 5. Probability ofISHO for vehicular networ .

The probability of 2% of SHO a 10 s a mobile user to roam from a macro cell to
another macro cell within a minim m boundary cel area of 0.02 squa e meterso
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0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Bondary Gel Area (Sq. K me ers)

0.08

~.a
'(0 0.07
u..
0
I 0.06
~
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.c 0.05
~
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0.04

0.03

0.02

0.01
0 0.05 0.1

Figure 3- 6. Probability of18 0 for high speed network.

The probability of 2% of IS· 0 alIo s a mobile user to roam from a macro ell 0

another macro cell within a minimum boundary eel area of 0.4 quare kilo meter
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OS stem Ba e

As we discuss in c apter 2, there ha e bee many tu i a alyze th

spectra efficiency of DAA sy terns. he major concern of th

capacity improvement in wirele s communication ystems. 0 e r t e analy i

attainable capacity for DAA system during hando er ha not been conduc d ye .

chapter, we analyze the channel capacity during handov r for three differ n

configurations considered in section 2.3.

Section 4.1 provides an introd ction of outage capacity analysis and sys e

spec·fications considered herein.

Capacity outage values for steered array systems, transmi er dOve ity sy em ,

and DAA systems are analyzed in section 4.2, sec ion 4.3, and section 4.4, respectively.

Comparisons of outage capacity values for those system configuration ar al 0

provided in section 4.4.

4.1 Introd ction

In this chapter, we analyze the channel capacity supported, en he mobile user

migrate from cell A to cell B, as shown in Figure 4-1. If a oft handover scheme i

performed, the total capacity obtained at the mobile user is the urn of the capacity alue

provided by base station A (BS-A) and base station B (BS-B). hroughout his chap er,

we analyze the total capacity of three types of system configuration when a mobile user

migrates as shown in Figure 4.1, while a soft handover scheme i employed.

As we show in section 3.2, the generalized expression of channel capacity for the

dual array antenna is given as:

C=BIOg2 de{ + :~2 .H·} (4. )

o e that t e received signal power depends on he distance betwee a transmitter and a

receiver. Thus, if we denote the cannel capacity s pported by BS-A as CA and t at
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supported by BS-B as CB, he 0 al capac· y uppo ed by bo B -A -B e 10 ·ng

soft handover becomes Cr =CA + CB •

Also, each entries in the channel gain matrix in Eq. (4.1) are f' dom e capacity

value is also a random variab e, which depends on the loca ion 0 . er and

channel states between a an mitter and a receiver. capacity analy i of ir 1

communication systems, the outage capacity is of major concern, ic r p e ents he

capacity value obtained for a given ou age. The 0 tage is de med a :

Outage = r ob{C ~ CTh } , 4.2)

where CTh is a threshold capacity val e. Specifically the capacity conditioned va ue a

10% outage is the threshold value CTh that results in ou age probability 0 0.1 in q. (4.2)

Base station A

CELLA

Cell phone .--_---l.... _

:/

CELLS

Base station B

Figure 4-1. Soft handoyer situation hen user is moy·ng from Cell A to Cell B.

As we men ioned in Eq. (2.9), the random behavior of cannel gain resu ts ·n the cha e

capacity itself random variable. 0 obta·n the tatistics of t e channe capacity, we

generate complex c a el gain real·zation of 06
, w ·ch ·nc udes sma} scale fading
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mode ed by rayleigh di "bution and large

lognormal distribution. rom thi rea iza ion

Eq. (2. 0).

The 0 tage of the capacity is g" en as:

ale ado· g p no.l..l.a.~'..I..I.'J.I..I. rno

e camp than 1

Cnr

Outage = Je. de ,
-00

where c is statistics of channel capacity, and CTh is a threshold al e. our analy i e

are interested in the capacity value at the target ou age probability hi h i 10 % in our

analysis. Thus, we compute the CTh at the outage probab"lity 0 0.1 (10%). h

simulation flowchart used to obtain figure 4-4, 4-6, and 4-8 .s provided' App ndi A

and the actual program is provided in Appendix B. Fina ly we compu e he chann

capacity values at he target outage probability of each system configurations a a yz d

herein. The capacity values are illustrated in figure 4-4, 4-6 and 4-8.

4.2 Steered directive array syste

For steered directive array systems, the c osely spaced M an enna ele ents are

mounted on the base station site. The coherently operating array antenna synthesize the

narrow beam pattern such that the signal power is focused to he direction of the targeted

mobile user. Since the main-lobe of beam pattern is narrow, the directive array antenna

creates less co-channel interference than omni-directional an enna doe .

As we show in section 2.3.1, the cannel capacity is given as

C=BIOg{1+MP:~hI2) (4.3)

where M is the number of antenna elements in steered directive array· h is the complex

channel gain.
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Capacity alues supported by B -A and B -B are ho ur -2 d a a

program is pro ided in Appendi B (program ). In e figur al

outage percentage of 10 % are sho h r the dashed lin s r pr capa i om

base station A and he straight lines represent he capacity om bas ta ion Bo

, I
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Figure 4-2 Capacity outage s. distance for the phase steered dOrec i e array.
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Figure 4-3 Sing e user data rate vs.distance with the M-steered direc ive array.

The total capacity values at the ou,age of 10% are shown i Figure 4-3 and ac al

program is provided in Appendix B (program 2). The horizontal axis in the figure

represents the distance from BS-A to a mobile user. Since t e capaciy will be poor as the

distance is increased, the capacity value at the cell boundary, hich is 3 in our

analys·s, will be worst performing po·nt. Figure 4.3 sows t a capacity·s· proved a

the number of antenna elements in steered directive array are increased. A a examp e,

the capacity values at a distance of 3 kIn from BS-A are 5 Mb/s for M=l, 10 Mb/s for

M=4 and 16 Mb/s for M=8.
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Figure 4-4 Probability of capacity vs. capacity threshold wit the steered irective array.

Figure 4-4 shows the ou age probability for a capacity threshold val e CTh . Thus,

the figure shows that the attainable capacity values of an 0 tage probability for all

locations of the mobile user shown in Figure 4.1 and actual program ° provided in

Appendix B (program 3). As an example, W en M = 1, total capacity obtaO ed ate

mobile user at he 0 tage probability of O. 10%) is 10 Mbps. T is means t at 90 % of

locations over the mobile ser's migration path, a capac°ty of 0 Mb s can be provided 0

the mobile terminal. In a s'milar fashion, he capac' ty val es at the same outage

probabil"tyare 25 Mbps and 30 Mbps when M = 4 and M = 8, respect'vely. Also, the

sim lation results show tha a 3 times capacity improvement can be ob ained when

employing an 8 element directive array antenna ave single antenna sy tern. lectronoc

beam steering of directive array antenna system can be ac °eved by linear phase variation
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of each antenna e ement, provided by he p ase sifters aero an an en a array. T '

dynamic variation of phase adjustment enables e array antenna y t m 0 ange I

radiation pattern such that t e rna imum ane a gain is aligned to the 'rection of t

desired mobile user. Since this p ase variatio i perfonned corre. ponding to carri· r

frequency, the cost of electronic components for this p ae shift r circuit is u ua ly

highly expensive. Moreover, the number of phase shifters sea es wih the

antenna elements [39]. The same argument for complexity is true to compu e he pha e

shifts for whole antenna elements. Thus, the complexity and the cost of dir cfve eenng

antenna system is severely limited by the number of antenna element .

4.3 ransmit diversity system

In the transm'tter diversity system the channe capac'ty s gIven as:

(
PT ~ 2)C==Blog 2 1+--2 LJlhm I·

Ma m=)

(4,4)

As we addressed in section 2.3, the transmit diversity system 's dif erent form t e

directive array antenna system in the sense that t e antenna eement spacing is large

enough to ensure uncorrelated channel path gains, and also the to al transmi Ion power

is limited to PT , regardless of the number ofanenna elements applied.
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Figure 4-5 Capacity outage vs. distance with the M-antenna transmi dive sity.

The capacity supported in 900/0 of locations is plotted at a dif erent distance in

figure 4-5 and actual program is provided in Appendix B (program 4). The simulafon

results show that the total capacity values are 3 Mb/s for M=l, 10 Mb/s for M=4 and 5

Mb/s for M=8. Compared to the directive array antenna sys em, the capacity

improvement is not noticeable. This is de to the fact ha t e total transmis ion power in

the transmit diversity system is constrained. In other words, the total tran miss'on power

in the directive array antenna system is inc eased as the number of antenna elements are

increased, while that in the transmit diversity ystem is limited as a con tant regardless of

the number of antenna elements used.
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Figure 4-6 Probabil°ty of capacity vSo capacity threshold with the tran mit dOver ity.

The attainable capacity values for outage probability are shown in Figure 4.6 and

actual program is provided in Appendix B (program 5). It is ob erved that the total

capacity values at the outage of 10% are 10 Mb/s for M== 1, 16 Mb/ for M=4 and 17 Mb/s

for M=8. Also, "t is observed that as M increases from 1 to 8, the capacity increa es by

about a 1.7 times. A transmit diversity antenna system requires a n mber of an enna to

obtain diversity gain and each antenna requires individual modem for transmitting

different infonnation. Since the number of modems equals the number of antennas in the

transmit d"versity antenna systems, the system cost will increase as the number of

antenna grows. This same argument is also true for the DAA systems whic' combine the

transmit diversity and the rece"ver divers'ty and therefore the cos of these systems w"ll

be more expensive.
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4.4 AA s te

In the DAA systems, i depende t i anna ion is cam doer multip e an fit

antenna elements s'mu taneousy, while 'e mul iple an enna el me ,s 0 . ally co bin

the received signal components. The chann capacity ofth DAA y te g e a:

(4.5)

ote that in the following examples, the number of antenna elemen (M) at t e

transmitter is assumed to be the same as that at the receiver.

Figure 4,7 shows the capacity values at the outage probability 0 10% for a

different number of antenna elements and actual program's provided in A pend'x

(program 6). he capacity values at the cel i boundary are 60 Mb/s for M=l, 150 /s for

M=4 and 200 Mb/s for M=8.Compared to t e previous two system configu ation , the

total capacity obtained in the DAA system during handover 's ubstantially i crea ed a

M increases.

::: .: .. /
-.-- .... / /

~~.~:
M=2

M=1

2 3
Range(Km)

5 6

Figure 4-7 Capacity 0 tage v . distance with the DAA diver 'ty.
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Figure 4-8 Probability of capacity vs. capac"ty threshold with t e DAA yst m.

The attainable capacity values for outage probability are shown in F"gure 4.8 and

actual program is provided in Appendix B (program 7). It "s obs rved that the total

capacity values at the outage of 10% ae 10 Mb/s for M=I, 60 Mb/s for M=4 and 130

Mb/s for M=8. Also, it is observed that as M increases from 1 to 8, the capacity increase

by about a 13 times.

As shown in Figure 4-8, the channel capacity of the DAA ystem grows Ii early

as the number of antenna increase. Thus, compared 0 the previous ante a sy terns, an

enormous channel capacity gain can be obtained in e DAA ystems by add"ng

additional antennas both at te transmitter and at the receiver sites. Also, 0 ice tha the

extraordinary growth in data rates is obtained by the combined use of DAA ystem .
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Capacity Gain
M=l M=4 M=8 at'c able C aracteri cs

at I 0 % Outage

Directive Array

Antenna 10 Mbps 25 Mbp 30 Mbps arne .gnal informa io . Each

System antenna ran m

Transmit t

Diversity 10 Mbps 16 Mbps 17 Mbps informa, ion. Al a tennas co bin d

System toge her tran mi Pr [Watt ]

M transmit and Neceive antennas

130 transmit different infonna ion. All
DAA system OMbps 60 Mbps

Mbps as combined tran mitane

Pr [Watts]

Table 7. A comparison of the capacity gain for the three topologies.
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co C 0

In this thesis two fundamental problems rela ing to a do er echno ogy ha· e

been investigated.

The prime contribution of his thesis is based on the analysiof tea a" able

capacity during handover procedures for variou· M 0 system co 19uratio hen 0

handover is performed. A comparison of the compared capac"ty 0 tage robabilitie

between conventional cellular systems a d dual array antenna system tha have gai ed

much attention recently has been conducted.

The directive array antenna synthesis makes the beam pa em narroer ate

number of antenna elements increase, such that more power can be la nched 0 t e

direction of the mobile user, thereby increa ing signal power a the r ceiver. ote that

each antenna transmits identical information. The major benefit of e transmit dOver . y

scheme is the physical dimens·on of a reee'ver not being a Iimita ion in obtaining

diversity gain, since the capacity gain can be obtained by employing add"tiona antenna

elements at the transmitter site. Compared to the d"rective array anten a system, the

capacity improvement is not not·ceab e. This is due to the fact that te total transmi sion

power in the transmit diversity system is constrained. In other words, the total

transmission power in the directive array antenna system increases as the numb r of

antenna elements increases, while that in t e transm·t diversi y system is lim"ted as a

constant regardless of the number of antenna elements. herefo e, from a in erfere ce

po·nt of view the transmit diversity sys em w·ll have an advantage ·n the Bit Erro ate

(BER) perfonnance, athogh there is no significant capacity gain w en compared to the

directive antenna array system (small number of M). t is important to note that the

drastically growth in atta" able outage capacity for t e DAA ystem is provided by the

combined use of transmit and receiver sim I aneously.

Second a fuzzy log~c and LVQ artificial ne ral networ combined algorithm has

proposed in support of multivariable optimization in handover decision procedures have

been presented. In this proposed model, a Fuzzy logic a d LVQ artific· a: neural network
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a gori hm was adopted for the banda er · i ia ,·on and deci ·on pro

research we shall implemen the fuzzy logic and Q n or

consideration altema ive di ersity combing opologies, ch as

microscopic diversity and error control coding.
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T e flow c art of capacity for

Initia ization
Bandwid h (5M), Transmit Power (10W), oise
Spectral Density (300K), Antenna Gain (3dB")

Genera e
Number of Sta istics

( )=101\6

Generatea (Gaussian R.V.: mean 0, Variance Yt'O.5)
[1 *N] Matrix

Generateb (Gaussian R.V.: mean 0, Variance ~AO.5)

[1 *N] Matrix

Generateq (Gaussian R.V.: mean 0, Variance 8dS)
'--- 1---,*N] Ma.--tr_;x ---.J

Generate Channel Gain Matrix
[1 *N] Matrix

Steered Directive
Array

Cannel Capac'ty
Equation by (2.13)

Transmit Diversity

Cannel Capacity
Equation by (2.15)

Dual Array Antenn

Cannel Capacity
Equation by (2.18)

Outage Probability (10%
)

Single user data rate
supported in 90% of
locations vs. range

Figure(2..8)

Single user data rate
supported in 90% of
locations vs. range

Figure (2-10)
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<Program > Ca ac·ty 0, tage s. or e ba e i e

% arne :SDA I.m
%
% Title: Steered Directive Array Diversity
%
% Synopsis: SDA_l returns the 10% outage Capacity from B -A and B -B for =[1 4 8]
%
% Date: av. 29, 2002
% Author: Jin-Baek Kim
%
% ACSEL & GeL B Laboratories, School of Electrical & Computer nginee "ng
% Oklahoma State University, Stillwa er, OK 74075
%

% Variable Initializations
n=le6;
BW==5e6;
Pt=10;
k==1.38e-23;
T=300;
G=101\1.5;
M==[1 4 8];
F=10I\O.3;
Outage = 90;

VaT_Log arm == 101\.8;
Var_Rayl = .16;

%Initialization of Matrices
Capo = [];
ff= [];
C_l=[];
C_2=[];

%number of Stat"sties
%Bandwidth is 5 M, z
%Transm"tter power is 0 W
% Bo·tzman constan
% temperature
% antenna gain 15 dBi
% number of antenna elements at the Tx
% oise spectral density
% Capacity Outage

% Variance for Lognormal
% Variance for Rayle"gh

% Generate Gaussian R.V.
a=nonnmd(O, sqrt(Var_Ray), M, n);
b=nonnrnd(O, sqrt(Var_Ray), M, n);

q=nonnrnd(O,sqrt(Var_Logorm), ,n);
p "=al.1\2+bl.1\2;

%mean 0 & 1/sqrt(2) variance (Rayie"gh)
%mean 0 & l/sqrt(2) variance (Rayleigh)

%mean 0 & 8dB variance (lognonnal)
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index=l;
for d=I.O:.5:8.0

L=-134-35*logI0(d)+1O*logIO(G);

ohm= O.I\(.l.*(L+q);
h_square=phi.*ohm;
nO=k*T;
sigma_square=nO*BW*F;

% oise spectral density On a

Capo(I,:)=BW*log2( +M(I)*Pt*h_square/sigma_squa e); % Capacity of he ystem
Capo(2,:)=BW*log2(1+M(2)*Pt*h_ quare/sigma_square);
Capo(3,:)=BW*Iog2(1+M(3)*Pt*h_square/sigma_sq are);

C=Capo;
C=sort(C, 2);
Iteration=length(C);

ff( 1,index)==C( I ,Iteration*(1DO-Outage)*1e-2);
ff(2,index)=C(2,Iteration*(IOO-Ou age)*le-2);
ff(3,index)=C(3,Iteration*(100-0 tage)* le-2);

index=index+1

end

for i=12:-1:1
Des(I,13-i)=ff(1,i);
Des(2,13-i)==ff(2,i);
Des(3,13-i)=ff(3,i);

End

% Sorted Capacity

% 10% Outage Capacity

d=1.0:.5:8.0;
figure(4);

loglog(d, C_l(l,:)./ e6,'r--', d, C_l(2,:)./le6, 'b--', d, C_l(3,:)./ e6, 'k--');
log og(d, C_2( ,:)./le6,'r--', d, C_2(2,:)./ e6, 'b--', d, C_2(3,:)./le6,' --');
axis([1 10 1 te2]);
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<Progra 2> Sing e er data a e

% arne :SDA 2.m
%
% Title: S eered Directive Array Di ersity
%
% Synopsis: SDA_2 returns the sum of 10% outage Capacity for =[148]
%
% Date: ov. 29,2002
% Author: Jin-Baek Kim
%
% ACSEL & DeL B Laboratories, Schoo of Electrieal& Computer Eng" eenng
% Oklahoma State University, Stillwater, 0 74075
%

% Variable Initializat"ons
n=le6;
BW=5e6;
Pt=lO;
k=1.38e-23;
T=300;
G=101\1.5;
M==[l 4 8];
F=IOI\O.3;
Outage = 90;

Var_Log onn = 101\.8;
Var_Rayl == .16;

%Init' alization of Matrices
Capo = [];
ff= [];
C_l=[];
C_2=[];

%number of Stat' sties
%Bandw'dth is 5 MHz
0/0Transmitter power is lOW
% Bol zman co stant
% temperatu e
% antenna gain 15 dB'
% number of antenna elements at the Tx
% oise spectral den ity
% Capacity Outage

% Variance for Lognonnal
% Variance for Rayleigh

% Generate Gaussian R.V.
a=normrnd(O, sqrt(Var_Ray), M, n);
b=normrnd(O, sqrt(Var_Ray), M, n);

q=normrnd(O,sqrt(Var_Log orm), ,n);
phi=al.1\2+b1."2;

index=l;
for d= 00:.5:8.0

%mean 0 & /sqrt(2) variance (RayleOg )
%mean 0 & /sqrt(2) variance (Rayleig )

%mean 0 & 8dB variance (lognonnal)
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L=-134-35*logl O(d)+ lO*loglO(G);

ohm=10.1\(.1.*(L+q»;
h_square=phi.*ohm;
nO=k*T;
sigma_sq are=nO*BW*F;

% oise spectral density in Was

Capo(l,:)=BW* og2(1 +M(l)*Pt*h_square/sigma_square); % Capacity of the y te
Capo(2,:)=BW*log2(1+M(2)*Pt*h_square/sigma_square);
Capo(3,:)=BW*log2(I+M(3)*Pt*h_square/sigma_square);

C=Capo;
C=sort(C, 2);
Iteration=length(C);

ff( 1,index)=C(l ,Iteration*(l aO-Outage)* 1e-2);
ff(2,index)=C(2,Iteration*( OO-Outage)* 1e-2);
ff(3,index)=C(3, teration*(lOO-Outage)* e-2)'

index=index+1

end

C l=[C 1 ff]- -

for i=12:-1:1
Des(1,13-i)==ff(1,i);
Des(2,13-i)==ff(2,i);
Des(3,13-i)==ff(3,i);

End

sum=C_ +C_2;

% orted Capacity

0/0 100/0 Outage Capacity

d=1.O:.5:8.0;
figure(4);
loglog(d, sum( ,:)./le6,'r-', d, sum(2,:)./le6, 'b-', d, sum(3,:)./le6, 'k-');
axis([ 1 10 1 1e2]);
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< rogra 3> Proba iIi of ca ac·
irective arra

% arne :SDA.m
%
% T" Ie: S eered Directive Array Diversity
%
% Synopsis: SDA returns the 10% outage Capacity for M=[l 4
%
% Date: ov. 29,2002
0/0 Author: Jin-Baek Kim
%
% ACSEL & DeL B Laboratories, chool of Electrical & Computer ngi ee ·ng
% Oklahoma State University, Stillwater, OK 74075
%

% Variable Initializations
n=le6;
BW==5e6;
Pt==10;
k==1.38e-23;
T==300;
G=IO/\ 1.5;
M=[l 4 8];
F=10/\0.3;
Outage == 90;

Var_Log orm == 10/\.8;
Var_Rayl == .16;

%Initialization of Matrices
Capo = [];
ff= [];

%number of Statistics
%Bandwid h is 5 M z
%Transmitter power is lOW
0/0 Boltzman constant
0/0 temperature
% antenna gain 15 dBi
% n mber of antenna elements at the Tx
% oise spectral dens" ty
% Capacity Outage

% Variance for Lognormal
% Variance for Rayleigh

% Generate Gaussian R.V.
a==normrnd(O, sqrt(Var_Ray), M, n);
b=normrnd(O, sqrt(Var_Ray), M, n);

q=normrnd(O,sqrt(Var_LogNonn), ,n);
phi==al./\2+b1./\2;

index==l;
for d=1.O:.5:8.0

%mean 0 & 1/sqrt(2) variance (Rayleigh)
%mean 0 & 1/sqrt(2) variance (Rayleigh)

%mean 0 & 8dB varia ce ( ognonna ')
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L=-134-35*logIO(d)+ IO*log O(G);

ohm=10."(.1.*(L+q));
h_square=phi. *ohm;
nO=k*T;
sigma_square=nO*BW*F;

% o·se spectra de ity on a

Capo(I,:)=BW*log2(1+M(I)*Pt*h_square/sigma_ quare); % Capacity of he y tern
Capo(2,:)=BW*log2(I+M(2)*Pt*h_ quare/ igma_square);
Capo(3,:)=BW*log2(1+M(3)*Pt*h_square/sigma_ quare)·

C=Capo;
C=sort(C,2);
Iteration=length(C);

ff(1 ,index)=C(I, teration*(1 OO-Outage)* Ie-2);
ff(2,index)=C(2,Iteration*( 1OO-Outage)* 1e-2);
ff(3,index)=C(3,Iteration*(1OO-Outage)* 1e-2);

index=index+1

end

d=1.0:.5:8.0;
figure(4);

0/0 Sorted Capacity

% 0% Outage Capacity

loglog(d, ff(I,:)./le6,'r--', d, ff(2,:)./le6, 'b--', d, ff(3,:)./le6,' --');
axis([ 1 10 1 1e2]);
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< rogram 4> Ca acity 0 age a te

0/0 arne:M Tx 5.m
%
% Title: Transmit Diversity
%
% Synopsis: M_Tx_5 returns the sum ofa 0% 0 tage Capac"ty for =[1 4 ]
%
% Date: ov. 29, 2002
% A thor: Jin-Bae Kim
%
% ACSEL & OCL B Laboratories, School of Electrical & Compute Engineering
% Oklahoma S ate University, Stillwater, 0 74075
%

% Variable In"tializations
n=le6;
BW=5e6;
Pt=lO;
k=1.38e-23;
F=lOI\O.3;
T=300;
nO=k*T;
sigma_square=nO*BW*F;

G=101\1.5;
Outage = 90;
Var_Log orm = 101\.8;
Var_Ray= .16;

%Initialization of Matrices
Capo = [];
Sum_Capo==[];
ff= [];
C 1=[];
C~2=[];

M_Elem=[1 4 8];

fori=1:1:3
M=M_Elem(i);
h_square=O;
index=l;
for d=O.1:.3:6.0

% number of Statistic
% Bandwidth is 5 Mz
% Transmitter power'sOW
% Boltzman constant
%3dB
% temperature
% oise spectral dens'ty in Watts

% antenna gain 15 dBi
% Capac"ty 0 tage
% Variance for ognonna
% Variance for Rayleigh
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% Generate Gauss·an Random Variab 'es
a=normrnd(O, sqrt(Var_Ray), , n)·
b=normrnd(O, sqrt(Var_Ray), , n);

% mean 0 & 1/sqrt(2) arian e ( a le"gh)
% mean 0 & 1/sqrt(2) ariance ( ayle"gh

q = normrnd(O, sqrt(Var_Log orm), M, n); % mean 0 & 8dB ariance (lognormal)

phi=a./\2+b.1\2;
L=-134-35*logl O(d)+1O*logl O(G)'

ohm=l 0.1\(.1.*(L+q);

h_square=phi. *ohm;
SUb_h:= sum(h_square,l);

% Capacity of the system

% Sum of the Channel Gai Matrix

Capo = BW.*log2(1+Pt.*Sub_h./(M*sigma_square»; % Capacity for x. D"v. Sy .
C=Capo;
C=sort(C, 2); % Sorted Capacity
Iteration=length(C);
ff(index)=C(Iteration*(IOO-Outage)*le-2); % 0% Outage Capacity
index=index+1

end
C l=[C 1 ff]- -

for i==12:-I: 1
Des(1,13-i)=ff(1,i);
Des(2,13-i)=ff(2,i);
Des(3,13-i)=ff(3,i);

end
C_2=[C_2 Des]

s m=C l+C 2·
- -'

d=O.1:.3 :6.0;
figure(2);

old on;
loglog(d, sm(1,:)./le6,'r-', d, sum(2,:)./le6, 'b-', d, sum(3,:)./le6, 'k-');
axis([06 1e2]);
end
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< rog
dive si

5> 0 ab"· oca re d it

% ame:M Tx 5"m
%
% T"tle: Transmit D"versity
%
% Synopsis: M_Tx_5 returns the 10% outage Capacity for M=: 1 4
%
% Date: av. 29, 2002
% Author: in-Baek Kim
%
% ACSEL & OCLNB aboratories, School of Electrical & Compu er Engineering
% Oklahoma State Un"versity, Stil water, OK 74075
%

% Variable In'tializations
n=le6;
BW=5e6;
Pt= 0;
k=1.38e-23;
F=10I\O.3;
T==300;
nO=k*T;
sigma_square=nO*BW*F;

G=101\1.5;
Outage = 90;
Var_Log onn = 101\.8;
Var_Ray= .16;

%Initialization of Matrices
Capo = [];
SUffi_Capa=[];
ff= [];

fori=1:1:3
M=M_Elem(i);
h_sq are=O;
index==l ;
for d=O.1:.3:6.0

0/0 number ofStaistics
% Bandwidth is 5 MHz
% Transmitter power is lOW
% Bol zman con tant
%3 dB
% temperature
% oise spectral density in Watts

% antenna ga"n 15 dBi
% Capacity Outage
% Variance for Lognormal
% Variance for Rayleigh
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% Generate Ga s ian andorn Variab e
a=nonnrnd(O, sqrt(Var_Ray), ,n);
b=nonnrnd(O, sqrt(Var_ ay), M, n);

% mean 0 & Is rt(2) ariance ( ayl igh)
% mean 0 & II qrt(2 aria ce ayleig)

q = nonnrnd(O, sqrt(Var_Log orm), M, n); % mean 0 & 8 B arianc logno al)

phi=a.1\2+b.1\2;
L=-134-35*logl O(d)+ 1O*logl O(G);

ohm=IO.I\(.I.*(L+q);

h_square=phi.*ohm;
Sub_h = sum(h_square, 1);

% Capacity of the system

% Sum of the anneI a n atri

Capo = BW.*log2(1+Pt.*Sub_h./(M*sigma_square»; % Capacity for Tx. Div. ys.
C=Capo;
C=sort(C, 2); % Sorted Capacity
Iteration=length(C);
ff(index)=C( teration*(1OO-Outage)* 1e-2); % 10% Outage Capacity
index=index+1

end

d=O.l :.3:6.0;
figure(2);
hold on;
loglog(d, ff./le6,'b--');

axis([O 6 e2]);
end
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<Progra.6> Caacity 0 age e

% ame:M 0 .m
%
% Tit,e: MIMO Diversity
%
% Synopsis: MIMO_1 returns I he 10% outage Capacity for M=[ 4 8]
%
% Date: ov. 29, 2002
0/0 Author: Jin-Baek Kim
%
% ACSEL & OCL B Laboratories, Sc 00 of Elec .cal & Computer Enginee " g
% OklahomaS ate University, Stil !water, OK 74075
%

n=le6;
BW=5e6;
Pt= 0;
k==1.38e-23;
F==10I\O.3;
T=300;
nO=k*T;
sigma_square=nO*BW*F;
G==lOI\1.5;

Outage == 90;
Var_LogNorm == 101\.8;
Var_Ray ==. 6;

M==[l 248];

%Initialization
Sum_Capo=[];
ff== [];

for E: em == : length(M),
Tmp_M = M(Elem);
h_square=[] ;
index=l;

Capo = zeros(Tmp_M,n);

%number of times
% Bandwidth is 5 MHz
% Transmitter power is 10 W
0/0 Boltzman constant
%3dB
% temperature
% oise spectral dens"ty in Watts

%antenna ga"n 15 dB"

%Capac·ty Outage
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for d=1:10.0
for capacity_loop = 1 : Tmp_ ,

0/0 Generate Gaussian Random Variables
a=nonnrnd(O, sqrt(Var_Ray), Tmp_ , ). %mean 0 & 1/sqrt(2) ar.( yl ig )
b=nonnrnd(O, sqrt(Var_Ray), Tmp_M, n); %mean 0 & I qrt(2 aT. ay 0g

q=nonnrnd(O, sqrt(Var_Log orm), Tmp_M, n); %mean O&8dB ar. ( ognorm

phi=a."2+b."2;
ohm = 4*lO"(-14)*d"(-3.5)*G* O."(q./IO)·
h_square==phi. *ohm;
Sub_h = sum(h_square, 1);

%Capacity of the system

Capo(capacity_loop,:) = BW.*log2(1+(Pt/( mp_M * sigma_square».*Sub_h);

end
C = sum(Capo, 1);

%Outage
C=sort(C, 2);
Iteration==length(C);
ff(index)=C(Iteration*(l OO-Outage)* 1e-2)
index=index+ I
Capo = [];
C = [];

end

. for i=12:-1:1
Des(1,13-i)=ff(1,i);
Des(2, 3-i)=ff(2,i);
Des(3, 3-i)=ff(3,i);

end
C_2=[C_2 Des]

sum=C_I+C_2;
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d=l: 10;
figure(I);
loglog(d, sum( :)./le6,'r-', d, sum(2,:)./le6, 'b-', d, um(3 :)./ e6 ' -' ·
axis([ 1 10 1 1e2]);
hold on;

end
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<P ogra 7> Probab· ity of c aci · c ac· t re 01

% ame:M O.m
%
% Title: MIMO Diversity
%
% Synopsis: MIMO returns the 10% 0 tage Capacity for M=[1 4 8]
0/0
% Date: ov. 29, 2002
0/0 Author: Jin-Baek Kim
%
% ACSEL & DeL B Laboratories, School of Electrical & Computer Engi eering
% Oklahoma State University, Stillwater, OK 74075
%

n==le6;
BW==5e6;
Pt=IO;
k= .38e-23;
F==101\0.3;
T==300;
nO=k*T;
sigma_square=nO*BW*
G=IOI\1.5;

Outage == 90;
Var_Log arm = 101\.8;
Var_Ray =. 6;

M==[1 248];

%In·tialization
Sum_Capo=[];
ff= [];

for Elem == 1 : length(M),
Tmp_M == M(Elem);
h_square=[] ;
index=l;

Capo == zeros(Tmp_M,n);

%number of times
% Bandwidth is 5 M z
% Transm· tier power .sOW
% Boltzman cons .ant
%3dB
% temperature
% oise spectral density in Watts

%antenna gain 15 dBi

%Capacity Outage
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for d=1:10.0
for capacity_loop = 1 : Tmp_ ,

% Generate Gaussian Random Variables
a=normrnd(O, sqrt(Var_ ay) Tmp_ ,n)· %mea 0 & 1/ qrt(2) r.( ayl igh)
b=normrnd(O, sqrt(Var_ ay), Tmp_ , n); %mean 0 & 1/ qrt(2) ar.(Raye"gh

q=normmd(O, sqrt(Var_Log arm), Tmp_M n); %mean O&8dB var. (logno )

phi==a./\2+b./\2;
ohm = 4* IO/\(-14)*d/\(-3.5)*G* 10./\ q./IO);
h_square==phi. *ohm;
Sub_h := sum(h_squar ,1);

%Capacity of the system

Capo(capacity_loop,:) == BW.*log2(1+(Pt/(Tmp_M * sigma_square)).* b_h)·

end
C = sum(Capo, 1);

%Outage

C=sort(C, 2);
Iteration=length(C);
ff(index)=C(Iteration*( 1aD-Outage)*1e-2)
index=index+1
Capo == [];

C:= [];

end
d==1:10;
figure(l);

. loglog(d, ff./le6,'r-');
axis([1 10 le2]);
hold on;

end
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