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CHAPTER I

INTRODUCTION

The research reported in this thesis concerns goats under conditions of

low nutritional status. Studies of this nature are of special importance in

developing countries in which the quality and quantity of feed resources are often

limited. In order for goat producers to know how to most economically provide

optional nutritional management with fluctuating feed quality and supply and

limited labor, greater knowledge of performance during and after periods of a low

nutritional plane is required. Thus, two experiments were conducted, each

shedding light onto a different aspect of supplementation.

The first experiment is titled UEffects of Frequency of Supplementation with

Soybean Meal on Performance of Angora Does Consuming Low-Quality Forage

in Late Gestation and Early Lactation."

There are reports suggesting that ewes and beef cows supplemented as

infrequently as once weekly are able to maintain performance levels similar to

those supplemented daily, irrespective of stage of production (Beaty et aI., 1994;

Huston et aI., 1999a). Whether Angora does are able to respond similarly to

infrequent supplementation during and after gestation is unknown, in part

because of their high nutrient requirements for fiber growth. The objective of the

study was therefore to examine the effects of no supplementation and

supplementation of Angora does with soybean meal every 1, 4, or 8 days, during
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periods of high nutrient demands for fetal development and lactation. Measures

included feed intake, BW, mohair fiber growth, and other physiological variables.

These findings should identify the lowest frequency of supplementation that

allows acceptable levels of production.

The second experiment is titled "Effects of Length of Nutrient Restriction

and Level of Realimentation on Growth of Yearling Spanish and Boer x Spanish

Doelings." Treatments were designed to simulate changes in nutritional

conditions between periods of high and low rainfall. Changes in nutritional plane

may lead to compensatory growth. Whether goats differing in mature size and

growth potential would elicit different responses was examined by comparing

indigenous Spanish doelings with Boer x Spanish crossbred goats, of greater

mature size and growth potential.

Compensatory growth is defined as a physiological response whereby an

organism accelerates its growth after a period of restricted development (usually

due to restricted feed intake) in order to reach a weight achieved by animals that

have not undergone feed restriction (Hornick et aI., 2000). Means by which

animals subsequently compensate for slow growth with feed restriction include

increased feed intake and(or) improved feed efficiency (Hornick et aI., 2000). A

greater understanding of how length of feed restriction and re-feeding level

interact should lead to improved nutritional management of meat goats for

desired levels of performance but with minimal feed inputs.
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CHAPTER II

REVIEW OF LITERATURE

Frequency of Supplementation of Ruminants Fed Low-Quality Roughages

There has been a considerable amount of research on the effects of

frequency of supplementation on performance by cattle and sheep, but there has

not been similar experimentation with goats. Therefore, the literature reviewed for

this study primarily concerns other ruminant species.

Animal Performance

Evidence has accumulated since the early 1960's indicating that relative to

daily supplementation, ruminant performance is unaffected by infrequent protein

supplementation, such as one, two, or three times weekly (Melton et aI., 1960,

Melton and Riggs, 1964; Mcilvain and Scoop, 1962). More recent studies

(Huston et aI., 1999a and b; Farmer et aI., 2001) have shown similar results;

however, there is evidence of interaction between breeding season and

supplement type and(or) protein concentration (Wallace, 1988; Beaty et aI.,

1994; Huston et aI., 1999a).
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Supplement Type and(or) Protein Concentration. A supplement of

cottonseed meal (CSM) providing approximately 25% of the CP requirement

(NRC, 1985) of ewes during late gestation (NRC, 1985) increased BW regardless

of supplementation frequency, i.e., 1-,2-, (4-) or 7-d intervals, which was

observed for both fall and winter-lambing ewes (Huston et aI., 1999a).

Conversely, Huston et al. (1999a) noted significant effects of supplementation

frequency with a supplement that was low in CP concentration (20% CP) (65:35

mixture of sorghum grain andcottonseed meal) and was fed at 105 (LOW) or 227

g/d (HIGH). The LOW supplement supplied one-half the protein and similar

energy, and t.he HIGH supplement supplied similar protein with twice the

digestible energy relative to CSM. It was found that with LOW and HIGH, BW

gain of fall-lambing ewes was greater for supplementation daily vs once or three

times weekly. However, BW gain was similar among the winter-lambing ewes.

Another example of interaction between supplementation frequency and

supplement type isan earlier study by Wallace (1988). Cottonseed cake and

grain cubes were fed to. pregnant yearling heifers grazing dormant rangeland

forage. There was no difference in BW change between supplementation

frequencies (Le., once and three times weekly) when cottonseed cake was fed.

Supplementation with grain cubes, however, resulted in less BW loss for daily

supplementation compared with supplementation twice weekly. Influences of

supplementation frequency on reproductive performance also varied with

supplement type. Early conception by heifers fed CSM twice weekly (1000/0) was

greater than for those fed grajn daily (81 %) or twice weekly (58%).
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Wallace (1988) further investigated effects of cattle breed (Angus x

Hereford vs Simmental x [Angus x Hereford] heifers) on responses to

supplementation frequency and supplement type. Angus x Hereford heifers

supplemented twice weekly with CSM gained 2.3 times more BW than heifers

given grain cubes daily. Using the same comparison, Simmental x [Angus x

Hereford] heifers exhibited BW gain eight times greater for twice-weekly

supplementation with cottonseed cake compared with daily supplementation of

grain cubes. Based on these findings, Wallace (1988) concluded that

supplements high in CP may be fed less frequently than grain-based

supplements, which may necessitate daily offering.

Although reports of Huston et al. (1999a) and Wallace (1988) indicate less

potential for infrequent supplementation with high-starch concentrate vs high-CP

feedstuffs, findings of Beaty at al. (1994) are somewhat different. Beaty et al.

(1994) offered supplements of increasing CP concentration (12, 20, 30, and 39%

CP) or high in grain (74% corn or sorghum) to pregnant beef cows that were fed

either daily or three times weekly. There was no interaction between frequency of

supplementation and CP concentration or grain type. Regardless of protein

concentration in the supplement, cows supplemented three times weekly lost

more body condition and weight through calving than cows supplemented daily.

Conversely, Kartcher and Adams (1982) and Wallace (1988) reported a

reduction in performance when supplements containing relatively low

concentrations of CP « 100/0) were fed infrequently. Beaty et al. (1994)

discussed these contradictions and attributed the lack of interaction between
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supplementation frequency and CP concentration in their study to the source of

grain used in the protein supplement. Sorghum grain used by Beaty et al~ (1994),

compared with corn employed by Kartcher and Adams (1982) and Wallace

(1988), has slower and less extensive ruminal starch digestion (Theurer, 1986),

which might explain differences in observed responses to infrequent

supplementation. Both Wallace (1988) and Kartcher and Adams (1982) attributed

lower performance levels· among infrequently supplemented animals to the

detrimental effects that feeding large quantities of readily fermentable substrate

such as corn (0.60/0 BW, Kartcher and Adams, 1982; 1.28°A> BW, Wallace, 1988)

have on ruminal function. However, when comparing the 74% sorghum and corn

based supplements, Beaty et al. (1994) found no difference in performance

between daily and three times weekly supplemented cows.

Huston et al. (1999b) found that pregnant adult cows (Brangus or Hereford

x Brangus, 3-10 years old) responded similarly when fed CSM daily or three

times or once weekly. There were, however, differences between individually fed

cows (using Calan gates) and those managed as a group. For individually fed

cows there were no differences in BW change or condition score between daily

and weekly supplementation. Conversely, group-fed cows supplemented daily

experienced lower BW and condition losses than those supplemented less

frequently. Irrespective of differences in response between individually and

group-fed cows, Huston et al. (199gb) concluded that the findings generally

supported the premise that feeding as infrequently as once weekly was

acceptable.
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In contrast to findings highlighted earlier in which there was no difference

among various supplementation frequencies, Farmer et al. (2001) found_a linear

increase in cumulative BW among spring calving Hereford x Angus cows as

frequency of supplementation with a 43% CP concentrate increased s with

supplementation 2, 3, 5, or 7 d/week. There was approximately a 0.03 kg/d

decrease in BW as supplementation frequency decreased (BW change, kg/d = ­

0.86 + 0.028x; where x =number of days of supplementation). A similar linear

relationship between frequency of supplementation and change in body condifon

was reported. Based on these findings, Farmer et al. (2001) suggested that

caution should be exercised when generalizing about the efficiency of infrequent

supplementation. As an example, Huston et al. (1999a) reported that while daily

supplementation resulted in performance by fall lambing ewes similar to that with

supplementation three times per week, once weekly supplementation was less

effective.

With regard to offspring performance, most studies have reported no

effect of frequency of supplementation (Morcombe et aI., 1988: birth weight;

Beaty et aI., 1994: calf performance; Farmer et aI., 2001: growth rate of lambs).

To examine whether the response to supplementation frequency is similar

between pregnant and non-pregnant females, the study by Tovar-Luna et al.

(1995) can be compared with those of Huston et al. (1999a), Wallace (1988), and

Beaty et al. (1994). Tovar-Luna et al. (1995) reported that non-pregnant yearling

heifers grazing native range responded similarly in ADG to supplementation

every day or every other day, with a 45% CP supplement of which 46% was
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undegradable intake protein. The similarity between this finding and the other

reports referred to suggests that non-pregnant females respond to infrequent

supplementation as pregnant females do.

Based on the studies discussed, it is evident that the efficacy of infrequent

supplementation depends on supplement composition, e.g., protein and starch

contents. Grain-based supplements seem to necessitate more frequent

supplementation than high protein concentrates. Conversely, comparing

supplements of increasing CP concentration and different grain types (corn vs

sorghum), Beaty et al. (1994) did not observe interactions between

supplementation frequency and CP concentration or grain type. This study

reported that less frequently supplemented beef cows lost more BW irrespective

of the CP concentration and grain type of the supplement fed compared with

daily supplementation. High protein supplements generally have resulted in

similar BW change among supplementation frequencies ranging between daily

and twice weekly (Kartcher and Adams, 1982; Wallace, 1988; Huston et aI.,

1999a and b). Findings were similar with non-pregnant heifers as well (Tovar­

Luna et aI., 1995). However results of Farmer et al. (2001) indicate that although

small in magnitude, increasing frequency of supplementation results in improved

BW. The magnitude of impact of infrequent supplementation on performance

should therefore be weighed against the advantage of decreased labor expenses

to determine desirability of the practice.
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Feed Intake. Dry matter, nitrogen (N), and ME intakes typically increase

with protein supplementation of low quality forage « 7.5% CP) (Collins and

Pritchard, 1992; Beaty et aI., 1994; Krehbiel et aI., 1998), and respond

qua-dratically to increasing protein concentration (DelCurto et aI., 1990; Beatyet

aI., 1994). Infrequent supplementation of low quality forage « 7.5% CP) with high

protein supplements, ranging from one to three days weekly, has not significantly

affected total feed (forage + supplement) or forage intake compared with daily

supplementation (Calhoun et aI., 1988; Hunt et aI., 1989; Huston et aI., 1999b).

This suggests partial to complete substitution of supplement for the basal dietary

forage (Huston et aI., 1999b).

Contrary to the above, there are reports suggesting that reducing

supplementation frequency decreases forage intake (Collins and Pritchard, 1992;

Beaty et aI., 1994; Krehbiel et aI., 1998; Huston et aI., 1999; Farmer et aI., 2001).

There may, however, be an interaction between supplementation frequency and

time or day within the supplementation interval. For example, Krehbiel et al.

(1998) reported that forage intake by ewes supplemented every 3 days had lower

forage intake on the day of supplementation, which was presumably due to the

large amount of supplement offered, compared with those supplemented daily.

Forage intake 1 and 2 days following supplementation was considerably greater

than on the day of supplementation. Depending on when intake measurements

are taken, effects on feed intake may therefore vary.

Differences in reports on effects of supplementation frequency on intake

may also be explained by changes in feeding behavior (Krehbiel et aI., 1998).
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Huston et al. (1999b) reported that grazing cows supplemented daily vs less

frequently displayed more aggressive feeding behavior. The response to calling

was slower for less frequently supplemented animals, and those first at the feed

bunks fed freely and left with feed still remaining in the bunks. This allow,ed

slower responding animals to feed without competition or disturbance from the

more dominant ones, and resulted in more similar supplement consumption

among less frequently supplemented animals vs daily supplemented.

Urea and Ammonia Concentrations

An understanding of physiological mechanisms through which less

frequently supplemented animals in many instances maintain levels of

performance similar to those supplemented daily is less established than effects

on performance. Blood urea-nitrogen (BUN) concentration, an indicator of

efficiency of protein utilization (Preston et aI., 1965), interacts with

supplementation frequency (Beaty et aI., 1994). Patterns of change in BUN

concentration "during days relative to the day of supplementation differ between

daily and less frequently supplemented animals (Beaty et aL, 1994; Huston et aI.,

1999a and b). In this regard, Huston et al. (1999a) noted that pregnant ewes

supplemented once weekly had elevated BUN levels 2 days following

supplementation, compared with ewes supplemented daily. However, non­

pregnant yearling heifers supplemented every other day had similar BUN levels

the day after supplementation compared with heifers supplemented daily (Tovar-
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Luna et aI., 1995). Likewise, infrequently supplemented pregnant cows had lower

BUN levels 1 day after supplementation vs the day of supplementation (Huston

et aI., 1999b). Overall, infrequently supplemented animals appear to maintain

similar or higher BUN levels within 2 days following supplementation, compared

with animals supplemented daily (Huston et aI., 1999a; Beaty et aI., 1994;

Farmer et aI., 2001). Consequently, this should facilitate urea recycling to the

rumen for microbial use during days of low CP intake (Krehbiel et aI., 1998).

Ruminants recycle substantial amounts of N by urea transfer across the

rumen or via saliva. Rumen wall adherent bacteria hydrolyze urea to ammonia

that can be used by microbes within the rumen lumen (Krehbiel et aI., 1998). A

high blood urea concentration promotes transfer into the rumen, although it is

generally thought that the gradient is more important than the urea concentration

in the blood (Preston et aI., 1965, Hammond, 1983). In this regard BUN

concentration patterns of change in less frequently supplemented animals,

compared with those of daily supplemented ones, are associated with similar

patterns of ruminal ammonia nitrogen (NH3-N) (Collins and Pritchard, 1992;

Beaty et aI., 1994; Huston et aI., 1999a). Patterns of change in BUN

concentration as day of the supplementation interval advance mirror those of

ruminal NH3-N (Krehbiel et aI., 1998). In accordance, Beaty et al. (1994) found

that within the first few days following supplementation, less frequently

supplemented animals have higher ruminal NH3-N concentrations than more

frequently supplemented animals. The decline in ruminal NH3-N concentration, a
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few days before the next supplementation, is slow, reaching levels lower than

animals supplemented daily.

Supplementation frequency not only affects daily BUN and ruminal NH3-N

concentrations (Beaty et aI., 1994; Huston et a11999a; Huston et aI., 1999b), but

also impacts diurnal variation (Collins and Pritchard, 1992; Beaty et aI., 1994;

Tovar-Lunar et aI., 1995; Farmer et aI., 2001). Within a few hours following

supplementation, less frequently supplemented animals have greater peaks in

ruminal NH3-N and BUN concentration than those supplemented daily (Beaty et

aI., 1994; Tovar-Lunar et aI., 1995; Farmer et al., 2001), which may simply be

because of greater amounts of supplement fed to less frequently supplemented

animals on days of supplementation. Peaks in ruminal NH3-N and BUN with

infrequent supplementation are delayed and declines more slowly compared with

daily supplementation (Beaty et aI., 1994; Farmer et aI., 2001).

Crude protein concentration and type of supplement influence temporal

patterns of change in BUN and ruminal NH3-N concentrations (Collins and

Pritchard, 1992; Beaty et aI., 1994). Levels for animals consuming supplements

higher in CP and(or) rich in ruminally degradable CP peak later and higher and

have a slower rate of decline than with supplements low in CP and(or) ruminally

degradable CP (Collins and Pritchard, 1992; Beaty et aI., 1994; Huston et aI.,

1999b).
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Rumen Digestibility and pH

There are conflicting results concerning how OM digestibility is influenced

by supplementation frequency. For example, Coleman and Wyatt (1982) reported

no effect of frequency of CSM supplementation on OM digestibility. However,

Beaty et al. (1994) observed greater OM and NDF digestibilities with

supplementation daily vs every third day.

Ruminal pH has not consistently differed among supplementation

frequencies. Beaty et al. (1994) reported that on days of supplementation, less

frequently supplemented animals had. lower pH than animals supplemented daily,

although in another study pH was unaffected by supplementation frequency

(Collins and Pritchard, 1992).

Nitrogen Utilization

As noted earlier, N recycling is the most plausible explanation for

maintained performance among infrequently supplemented animals (Nolan and

Leng, 1972; Beaty et aI., 1994; Krehbiel et aI., 1998; Huston et aI., 1999a and b;

Farmer et aI., 2001). Nitrogen is continuously recycled to the rumen from the

bloodstream and saliva for re-utilization and is seen as a conservation

mechanism allowing ruminant animals to survive on diets low in N (Owens and

Goetsch, 1988). Most N is recycled to the rumen via plasma urea, and depending

on the level of protein or N intake, this route accounts for 23-92°k of the N
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recycled to the digestive tract (Owens and Goetsch, 1988). The concentration

gradient of urea between the blood and the rumen lumen, which influences the

degree of diffusion, is primarily governed by activity of urease produced by

bacteria adhering to the rumen wall (Krehbiel et aI., 1998). Urease activity is in

turn regulated by ruminal ammonia concentration, with low levels causing high

activity (Owens and Goetsch, 1988). Thus, diets low in total and(or) ruminal

degradable CP promote high recycling through low ruminal ammonia

concentration, whereas diets high in total and(or) ruminal degradable CP tend to

decrease N recycling via the accompanying high blood urea concentration.

Supplementation may cause an increase in arterial concentration of a­

amino acid nitrogen (AAN) (Krehbiel et aI., 1998). Krehbiel et al. (1998) further

noted a supplementation frequency x time (day relative to day of

supplementation) interaction. It was found that when ewes were supplemented

every third day with S8M, AAN release from the portal drained viscera (PDV) on

the day after supplementation (d 1) was greater compared with the second day

after supplementation (d 2) and lowest on the day of supplementation (d 0).

Animals supplemented daily had a PDV release of AAN similar to non­

supplemented ewes.

As expected, S8M supplementation of ewes consuming low quality forage

increased net PDV flux of NH3-N, but there was no difference among different

frequencies in overall means (Krehbiel et aI., 1998). There was, however, an

interaction between supplementation frequency and time relative to day of

supplementation. In ewes supplemented every third day, the portal-arterial NH3-N
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concentration difference was higher on d 1 followed by that at 2 dafter

supplementation and lowest on d O. These differences are similar to those

previously described for net PDV release of AAN. The temporal patterns of

change in PDV release of AAN and NH3-N on d 0, 1, and 2 after

supplementation, as noted by Krehbiel et al. (1998), seem to follow patterns

similar to BUN concentration noted in a number of studies (Collins and Pritchard,

1992; Beaty et aI., 1994; Huston et aI., 1999a; Farmer et aI., 2001).

Krehbiel et al. (1998) reported that the sum of AAN and ammonia N

uptake by the liver on d 1 after supplementation ranged from 25.5 mmol/h for the

control, 83.0 mmollh for ewes supplemented daily, and 116.8 mmol/h for ewes

fed S8M every third day. These findings suggest that less frequently

supplemented animals are better able to conserve N by increasing liver uptake of

AAN and ammonia N on d 1 and 2 after supplementation.

On d 1 after supplementation, both daily and every third day

supplemented ewes disprayed greater N uptake by the liver than urea-N

synthesized, which accounted for 56-100°A> of liver AAN and ammonia N removal

(Krehbiel et aI., 1998). Differences in urea-N synthesized on d 1 after

supplementation was 63.5 and 91.5 mmol/h for daily and every third day

supplementation, respectively.

Krehbiel et al. (1998) found that of the net transfer of urea-N to the PDV

in ewes supplemented daily or every third day, 20-40% was accounted for by

hepatic release. Values were greater (28-52%) for the non-supplemented

controls and lower for ewes supplemented daily (12.6-23%). On the day of

15



supplementation, net PDV uptake of urea was only 12.3% of N intake. However,

on the second day after supplementation 74% of POV urea uptake could be

attributed to N intake. This indicates that N recycling varies with time in

infrequently supplemented animals, increasing as day after supplementation

advances. This pattern appears similar to increases in ruminal ammonia and

BUN levels on the first and second day after supplementation, as reported by

Huston et al. (1999a) and Beaty et al. (1994).

The previously discussed interaction between supplement type and

supplementation frequency affects urinary N excretion as well. For example,

Collins and Pritchard (.1992) reported that urinary N excretion tended to be

greater 1 d after supplementation with S8M vs CSM, possibly because of a

greater concentration of ruminally degradable CP in S8M. With S8M

supplementation every other day, urinary N excretion was lower on d 1 after

supplementation vs d 0 (day of supplementation) (Coleman et aI., 1982; Collins

and Pritchard, 1992). Likewise, mean urinary N excretion was less with

supplementation every other day vs daily. These findings are in accordance with

results of Krehbiel et al. (1998) who reported greater PDV uptake of urea-N by

ewes on d 2 after supplementation with a 3-d interval.

Metabolites and Hormones

Studies vary in reported effects of supplementation frequency on ruminal

VFA. Collins and Pritchard (1992) reported that there was no effect on mean
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ruminal fluid concentration of VFA. This is in' agreement with the earlier

discussion of the adequacy of ruminal N recycling among infrequently

supplemented animals, thus maintaining ruminal NH3-N concentrations above

levels that can limit microbial growth and digestion (Satter and Slyter, 1974).

Collins and Pritchard (1992) also reported no effect of supplementation

frequency on proportions of the major VFA: acetate:propionate:butyrate of

74:18:7 and 74:18:7 for S8M supplemented daily and every other day,

respectively. However, Farmer et al. (2001) reported greater total VFA

concentrations for steers supplemented daily vs 3, 5, or 7 d/wk on days when

only daily supplemented steers were fed. An inverse relationship between total

VFA concentration and supplementation frequency was evident on the day when

all groups were supplemented, which appeared to be largely due to the greater

quantities of supplement fed to infrequently supplemented groups.

Effects of frequency of supplementation on blood hormone concentrations

have not been extensively studied. Tovar-Luna et al. (1995) fed yearling heifers a

roughage diet supplemented with concentrate containing 450/0 CP of which 46%

was undegradable intake protein. Supplementation was daily or every other day.

There were no differences in serum insulin or growth hormone concentrations.

This is in accordance with the adequacy of N recycling with infrequent

supplementation to maintain ammonia concentrations that allow normal microbial

function for similar energy and nutrient absorption compared with daily

supplementation (Petersen et aI., 1992; Beaty et aI., 1994; Krehbiel et aI., 1998).
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Amino Acid Metabolism

Ruminants like all mammals require an exogenous supply of essential AA;

however, because ruminal fermentation leads to the production of microbial

protein they are often not perceived a-s having essential amino acid requirements

(Merchen and Titgemeyer, 1992). During per"ods of high protein requirements,

such as late gestation or early lactation, microbial protein production may not be

sufficient to meet protein demands, and an exogenous supply of amino acids

becomes essential, Furthermore, providing an array of amino acids for

absorption in the small intestines that matches tissue needs is especially difficult

in ruminants because of ruminal protein degradation. Nitrogen metabolism in

ruminants is thus often considered to be inefficient (Lobley, 1992).

As noted earlier, performance of less frequently supplemented ruminants

has generally not differed from those supplemented daily. However, there has

been little research with highly productive ruminants such as mohair producing

Angoras, as is also true for production states with high amino acid requirements

such as fate gestation and early lactation~ Furthermore, previous studies have

not investigated blood amino acid concentrations with animals supplemented at

different frequencies.

Under conditions where microbial protein is the pri.mary protein source in

growing ruminants, methionine, lysine, and threonine have been found to be first,

second, and third limiting, respectively, with arginine and histidine also potentially

limiting nitrogen retention (Richardson and Hatfield, 1978; Storm and 0rskov,

18



1983; Merchen and Titgemeyer, 1992). The degree of protein degradation and

the quality of protein escaping degradation in the rumen influence which amino

acids are limiting. With a diet high in degradable protein contain'ng 80% barley,

methionine was first limiting (~enderson and Bergman, 1975). However, it is

difficult to identify a single amino aicds as being first limiting, since infusion of

methionine in combination with other essential amino acids has improved

performance over that of animals infused with methionine only (Merchen and

Titgemeyer, 1992).

Feed intake is directly related to net portal fluxes of most amino acids

(Noziere et aI., 2000). Because feed intake has typically not been affected by

infrequent supplem,entation, e.g., once every 3 d, it could be expected that AA

flux will not be influenced by infrequent supplementation.

Mohair Production

An important consideration for wool produc·ng sheep and mohair

producing Angora goats is the potential impact of frequency of supplementation

on fiber growth characteristics. Morcombe et al. (1988) offered a supplement

high in lupin grain to pregnant ewes at 3,4, 7, 14, or 21 d intervals, while grazing

wheat stubble. Wool growth, mean fiber diameter, clean yield, and mean staple

strength were similar among treatments. Wool.growth was affected by production

state, with mean length of wool grown per day lowest before and immediately

after lambing (0.197 - 0.201 mm/d) and higher during lactation (0.206 - 0.214
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mm/d), although the weakest point of the fiber was grown during lactation

(Morcombe et aI., 1988).

Calhoun et al. (1988) examined the effect of supplementation frequency,

using CSM (48.2% CP), on mohair production and fleece characteristics.

Supplement was given every 1,2,3,4, or 5 days. Average daily gain, voluntary

hay intake, fleece production, fiber diameter, and number of medullated (med

and kemp) fibers were similar among frequencies.

Fiber production responds positively to increased protein intake (Reis et

aI., 1990). Likewise, there is a linear relationship between total feed intake and

fiber growth rate (Russel, 1992; Hynd, 2000), and since there has often been no

difference in feed intake among supplementation frequencies, similar feed intake

may explain similar fiber growth and characteristics in the studies of Morcombe

et al. (1988) and Calhoun et al. (1988).

.Another possible explanation for similar fiber growth characteristics

between daily and less frequently supplemented animals may be genetically

based. Adams et al. (2000) suggested that breeds selected for superior fiber

growth are able to maintain a more consistent fractional synthesis rate of protein

in skin, irrespective of feeding level, compared with unselected animals. Thus,

animals selected for high fiber growth may exhibit less variation in this trait

regardless of nutritional plane compared with genetically inferior animals. This is

perhaps because of nutrient partitioning mechanisms enabling control of the

effects of nutrition on fiber growth.
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Compensatory Growth of Ruminants

Compensatory growth may be defined as a physiological response

whereby an organism accelerates its growth after a period of restricted

development (usually due to restricted feed intake), in order to reach a weigiht

achieved by animals that have not undergone feed restricfon (Hornick et aI.,

2000). Mechanisms by which animals are able to compensate growth lost during

feed restriction include improved feed intake and feed efficiency during periods of

realimentation (Hornick et aI., 2000).

The degree to which animals exhibit compensatory growth is influenced by

factors such as severity or level of feed restriction and realimentation, the

nutritional condition most limiting to growth (e.g., protein vs energy), lengths of

feed restriction and realimentation, sex, and age of the animal. To best discuss

compensatory growth, the discussion will be divided into two parts, feed

. restriction (the period preceding realimentation, during which growth in

comparison with non-supplemented controls is restricted) and realimentation (the

period immediately following restriction, in which animals compensate for

previously limited growth).

Feed Restriction

Type and(or) Severity of Feed Restriction. When basic nutrient

requirements of ruminants are not met, depending on the severity and(or) type
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and length of the restriction, tissue reserves are utilized with consequential

losses in BW and body condition that could ultimately lead to death (0rsk9v,

1982; 0rskov and Ryle, 1990). The influence of decreasing levels of feed intake

was examined in a study by G6mez-·Pasten et al. (1999) in which feed intake of

adult female non-pregnant, crossbred Nubian goats was restricted for 36 wk to

100, 80, or 600/0 of the observed average daily consumption of a 50% lucerne

hay and 500/0 sorghum stover diet. There was a significant decrease in BW and

carcass yield, and by design decreasing levels of intake, although 60 and 80%

treatments showed no difference in BW loss. Similar findings were reported by

Ferrell et al. (1986). It was furthermore reported that hepatic protein and muscle

DM and ether extract decreased with decreasing levels of intake, which indicate

increased utilization of body protein and fat reserves. These results are in

agreement with similar studies and reviews (Bergman, 1975; 0rskov and Ryle,

1990; Hornick et aI., 2000) which reported that severely restricted ruminants rely

on body reserves to meet nutrient requirements.

In a study by Sahlu et al. (1999a) the effects of decreasing levels of feed

intake (51, 65, 83, and 1OOO~ of ad libitum intake of a 14.70/0 CP, 70%

concentrate diet for 40 d [severe restriction, moderate restriction, low restriction,

and ad libitum intake, respectively]) did not affect BW change in the last 20 d of

restriction, although los's of BW increased linearly with increasing levels of

restriction in the first 20 d of restriction. In genera.l, digestibi ities of OM, e.nergy,

and N were lower in ad libitum vs restricted treatments, presumably due to

greater feed intake.
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The above two studies indicated that restricted feed intake has an

immediate effect on ADG, with decreases in BW peaking within the first f~wdays

of restriction. Depending on the severity of the restriction of intake and

metabolism of the animal, an equilibrium could be reached within days of

restriction. There are subsequent increases in fat mobilization with increas,ing

levels of restriction, and possibly an additional decrease in body protein.

For comparison with restricted feed intake, the influence of length of feed

restriction on Belgian Blue bulls (Hornick et aI., 1998) is discussed. After 115,

239, and 411 d (G2, G3, and G4, respectively) of feed restriction for an ADG of

0.5 kg/d, with ad libitum consumption of a diet limiting in both protein and energy,

BW ranked G4 > G3 > G2 (486,435, and 368 kg, res,pectively). Actual ADG was

close to 0.5 kg/d during the restriction period, although it was slightly higher in G2

and lower in G4. Daily feed intake was close to 6 kg/d among the three groups,

although higher in G4. Feed consumed per unit of ADG was however high and

increased with increasing length of feed restriction (10.2,11.1, and 14.4 kg/kg for

G2, G3, and G4, respectively).

What is evident when comparing the above reported studies (Hornick et

aI., 1998; G6mez-Pasten et aI., 1999; Sahlu et aI., 1999a) is that animal

performance during restricted periods may vary with type and severity of

restriction. When feed intake is restricted as in the studies of G6mez-Pasten et

al. (1999) andSahlu et al. (1999a), there are proportiona decreases in BWand

carcass yield. However, in the case with ad libitum intake of a nutrient restricted

diet at a predetermined ADG, OM intake would tend to increase to compensate
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for poor feed quality. The different effects of restriction treatments on intake could

lead to differences in visceral organ energy use, PDV weight, and conseq_uently

BW gain, and feed efficiency (Ortiques and Dorea, 1995; Goetsch, 1998).

Variation in PDV weight with DE intake may contribute to changes in energy

maintenance requirements and in turn differences in animal performance during

subsequent realimentation periods (Ortiques and Dorea, 1995; Sainz et aI., 1995;

Goetsch, 1998; Noziere et aI., 2000).

It is possible that animals exposed to levels of low to moderate feed

restriction are capable of maintaining BW by adjusting basal metabolic rate,

energy requirements, and nutrient flux (Noziere et aI., 2000). This ability may be

further influenced by growth potential and age or maturity (Steen, 1986; Goetsch,

1999; Hornick et aI., 2000).

Noziere et al. (2000) investigated the effects of moderate levels of feed

restriction on PDV metabolism with the following treatments: 143 (H), 88 (M), and

51°J'c> (L) of maintenance energy requirements of adult ewes. The sum of net

portal energy flux increased linearly as ME intake rose, with 51 % of the ME

intake recovered in portal blood with the three levels of intake. The loss in ME

(49% intake) corresponded mainly to heat of fermentation and heat production by

PDV tissues. In agreement, Lindsay (1993) reported that 52-59% of ME intake

was released in the portal vein and that heat production by PDV tissues as a

percentage of ME intake increased in response to underfeeding (Ortiques and

Durand, 1995). Noziere et al. (2000) noted that underfeeding did not modify the

contribution of VFA to ME absorbed, but the contribution of amino acids
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decreased from 16% for Hand M to 1% for L. The contribution of 3­

hydroxyutyrate and lactate increased from 10 to 15°A> and from 4 to 10°A> for H

and L intake levels, respectively. It was thus concluded that there was no

quantitative adaptation to spare energy in the PDV, in terms of percentage

intake, but the pattern of absorption of energetic nutrients was modified.

Body Composition. In addition to the effect of feed restriction on BW,

effects on body composition are evident. During normal growth muscle initially

exhibits the highest growth rate followed by fat tissue (Hornick et aI., 2000). With

decreased growth rates there is a coordinated decrease of tissue turnover with

some tissues reacting more than others (viscera> adipose tissue> muscle),

resulting in an overall decrease in visceral organ mass (Carstens et aI., 1991;

Wester et aI., 1995; Hornick et aI., 2000). Because fat deposition is more affected

than protein deposition, during restriction the body consequently becomes leaner

(Hornick et aI., 2000).

Severe feed restriction is characterized by a sharp decrease in protein

synthesis relative to degradation, indicating that mechanisms of synthesis are

more susceptible to feed restriction than degradation (Hornick et aI., 2000). Initial

weight loss results from an early mobilization of a very labile protein

compartment (Paquay et aI., 1972) that lasts for a few days until a new

equilibrium is reached, possibly caused by a decrease in basal metabolism.

'Depending on the nutritional status of the animal, metabolic activity, and the

severity of feed restriction, fat mobilization increases, whereas protein is
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conserved as long as possible. Eventually as the animal becomes leaner, the

muscle becomes the main source of energy, causing greater protein than tat

losses (Foot and Tulloh, 1977).

Type of feed restriction and(or) diet quality and quantity may affect body

composition at the end of feed restriction and thus possibly after realimentation.

In this regard, restricted energy consumption by the gastrointestinal tract and

liver may be directly related to tissue mass (Burrin et aI., 1990; Johnson et aI.,

1990). As an example, Drouillard et al. (1991) restricted growth of crossbred

lambs by use of protein and energy deficient diets. Diets deficient in

-metabolizable protein (PR) and net energy (ER) were formulated to a Jow for

maintenance of BW at ad libitum intake. At the end of a 42 d restriction period,

PR lambs lost protein (16 g/d), fat (15 g/d), and water (78 g/d). Conversely, ER

lambs experienced no change in protein mass but lost fat (20 g/d) and water (42

g/d). Thus, the ER animals provided with sufficient dietary protein maintained

body protein and mobilized body fat for energy to maintain protein mass.

Conversely, PR lambs were forced to mobilize protein to satisfy maintenance or

endogenous losses, and to provide specific amino acids essential for vital

functions. These findings are in agreement with a later review by Chowdhury and

0rskov (1997), in which it is reported that adequate dietary prote'n with low

energy intake by sheep and cattle permitted gain of protein even with a negative

energy balance (presumably by oxidizing body fat). Increasing protein supply,

even without exogenous energy increased N retention, and at a very high level of

protein supply ADG reached 0.8 kg/d.
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Visceral Organ Mass. Part of the decrease in empty body weight with

restricted nutritional planes can be attributed to decreased visceral organ mass.

Absolute weights of the, liver, stomach complex, and intestines are dramatically

reduced by feed restriction (Ferrell et aI., 1986; Richmond et aI., 1988; Burrin et

aI., 1990; Drouillard et aI., 1991). Likewise, Kamalzadeh et al. (.1998) observed

that proportions of visceral organs, feet, head, and blood relative to BW

decreased during feed restriction, although the rate of decline varied among body

components and visceral organs. This in turn may influence maintenance energy

requirements, which is demonstrated by findings of Drouillard et al. (1991).

Drouillard et al. (1991) noted similar in vitro oxygen consumption per unit mass of

liver slices by restricted and unrestricted lambs, suggesting that the decline in

energy use by visceral organs during feed restriction is proportional to the

change in organ mass.

The decreased proportional weights of body components with high

metabolic activity at the end of feed restriction, particularly visceral organs, may

influence subsequent ADG during realimentation because of a decreased

maintenance energy requirement (Ledger and Sayers, 1977; Ferrell et ai., 1986).

Organs with higher rates of decline in mass during restriction likewise recover

rapidly upon re-feeding. The impact of decreased organ mass after restriction on

subsequent ADG during realimentation thus depends on the length of time before

normal mass and energy use is achieved (Kamalzadeh et aI., 1998). In this

regard, Richmond et aL (1988) conducted a study to determine if compensatory

gain resulted from lowered maintenance energy requirements due to decreased
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visceral organ mass or metabolic rate. Hereford steers averaging 369 kg BW

were restricted for 0, 3, 7, or 14 d (SO°A> of previous individual ad libitum

consumption) followed by 7, 14, 21, or 28 d of realimentation for the 14 d

restricted steers only. During realimentation concentrate intake was increased by

0.9 kg/d until previous ad libitum consumption was reached, with ad libitum

consumption thereafter. The largest proportion of liver mass was lost in the early

stages of the restricted feeding period and was regained within 7 d of

realimentation, followed by an increase in lean tissue deposition without a

concurrent increase in vital organ mass. Since liver mass was regained so

rapidly during realimentation, it was concluded that compensatory gain

influenced by a lowered maintenance energy requirement was not only due to

decreased vital organ mass.

It is thought that decreases in visceral organ and gastrointestinal tract

(GIT) tissue mass and metabolism may be caused by decreases in DE intake

and digestible organic matter intake (DOMI) (Kouakou et aI., 1997a; Goetsch,

1998). In another study by Kouakou et al. (1997b), crossbred wethers were used

to determine effects of different grass sources and qualities on visceral organ

mass after consumption of bermudagrass or orchardgrass at different levels of

maturity for 42 or 84 days. It was reported that increasing length of feeding

showed no substantial change in GIT energy use by growing ruminants, despite

ad libitum consumption of grasses varying in quality. It was further reported that

both DOMI and digesta mass influenced Gil tissue mass, and that liver mass

was attributed more to changes in GIT tissue mass than DOMI. It was concluded
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that physical attributes of digesta resulting from low- to moderate-quality grasses

may affect splanchnic tissue mass and energy use. The imp ication of this-study

is that restricted energy consumption can change the weight of visceral organs,

which has further implications for maintenance energy requirements during feed

restricted periods and subsequent realimentation periods.

Grazing Management Systems. Management strategies to improve

grazing and subsequent feedlot animal performance often include the

manipulation of compensatory growth displayed by previously restricted animals.

The phenomenon of compensatory growth is of considerable practical

significance to animal production (Park et aI., 1987; Drouillard and Kuhl, 1999).

Substantial diversity exists among the major forage-producing areas in terms of

plant species, annual precipitation, soil fertility, and other environmental

conditions. The expression or absence of compensatory growth during the

finishing phase appears to be related to the nutritional quality of forages uflized

in the grazing period, with higher quality forages tending to yield greater

compensatory effects.

Phillips et al. (2001) addressed the influence of forage quality on post­

weaning and feedlot performance between yearling spring-born ca,lves, assigned

to grazing winter wheat pasture 0fVW) or dormant native prairie plus a

concentrate supplemental (NP). At the end of these winter stocker treatments,

lasting for 4 months, calves grazed on cool-season grasses as a single group for

4 months. Thereafter they were placed in a feedlot and fed a high concentrate
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diet for 120 days, or until backfat thickness was greater than 10 mm. As

expected, ADG in the wither stocker phase was greater for \f\MJ than for N_P. In

the spring, ADG was similar between treatments and 500/0 greater than in the

winter. No compensatory growth was observed among the NP-treated calves

during the spring. This suggested that the spring grazing conditions were not

conducive to expression of compensatory growth potential forNP, given the

mode of development.

In addition to nutritional quality of forages, plane of nutrition during grazing

periods also influences live weight gain, and thus subsequent potential for

compensatory growth. As an example, the optimum level of performance during

the winter is largely determined by the extent in which animals over-wintered on

a low plane of nutrition exhibit compensatory growth at pasture (Steen, 1986).

Recommendations for live weight gain during winter to optimize compensatory

growth when turned out to pasture range fro·m 0.25 to 0.60 kg/d (Drennan, 1975;

Baker, 1975; Allen and Kilkenny, 1984). Recommendations may however differ

with age or maturity, and thus could differ among breeds. As an example,

Drennan and Harte (1979) reported that cattle of 8 to 13 rna of age that have

been reared on a low (0.50 kg/d) or moderate plane of nutrition (0.66 kg/d) had a

recovery index of 0.39 and 0.71, respectively. A recovery index is often used to

quantify the degree to which animals display compensatory growth, estimated as

A-BfA, with A being the weight difference between the control and the

experimental groups at the end of the period of restriction and B the weight

difference between the control and experimenta groups at the end of a period of
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realimentation. Conversely, Steen (1986) observed that steers on a low ,plane of

nutrition (ADG =0.4 kg/d) during a winter period displayed a greater degree of

compensatory gain when turned out to pasture compared with those that were on

a higher plane of nutrition (ADG = 0.7 kg/d). Differences in compensatory

response between these two studies (Drennan and Harte, 1979; Steen, 1986)

were attributed to differences in breed type in terms of age at maturity, Le., early

maturing vs late maturing (Steen,' 1986).

Realimentation

Feed Intake and Feed Efficiency. Compensatory growth typically occurs

as a function of increased feed intake and(or) improved efficiency of feed

utilization (Drouillard et aI., 1999; Yambayamba et aI., 1996; Goetsch and Aiken

et aI., 1999; Sahlu et aI., 1999a). In some instances one but not the other occurs,

whereas in other cases both are noted. As an example, in trial 2 of Drouillard et

al. (1991), during realimentation OM intake by PR and ER lambs was 7 and 19%

greater than control lambs. In trial 1, OM intake by PR and ER lambs was similar

during the first 2 week of realimentation and tended to be greater than the control

lambs from 2 week to 50 kg BW. Empty BW gain for PR and ER was greater

than that of unrestricted lambs, although there was no difference between the

restriction treatments; hence, efficiency of feed conversion from 2 wk to 50 kg

BW was not differe,nt between PR and ER and was also similar to that of

unrestricted lambs. Efficiency of protein deposition was 6.6 9 of protein
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retained/gram protein consumed for unrestricted lambs, and averaged 7.5 for PR

and ER lambs.

Sahlu et al. (1999a) observed a linear increase in BW gain and efficiency

of feed conversion by Angora goats during realimentation as the prior level of

feed restriction increased (Le., no restriction, low, moderate, and severe at 100,

83, 65, and 51 0
10 ad libitum intake, respectively). Similar findings were reported

by Hornick et al. (1998) when Belgian Blue bulls were subjected to different

lengths of restriction, i.e., 115, 239, or 411 d (designated G2, G3, and G4,

respectively), and then offered a high con-centrate diet with ad libitum

consumption in a 1 mo (month) realimentation period. At the end of

realimentation, ADG of restricted groups was higher than those of the control.

The G2 and G4 groups exhibited the highest compensatory gain and greatest

feed intake (11.8,12.1,9.7, and 10.7 kg/d for G2, G4, control, and G3,

respectively). Feed conversion ratio (feed:gain) was however similar among the

four groups, averaging 7.5 kg/kg; final BW was simi ar for the control, G2, and

G3, with the ratio for G4 being the highest. Considering both periods combined,

ADG decreased with increasing length of restriction. However, total gain was

greatest for G4.

Nature of Feed Restriction. Compensatory gain has in some cases been

affected by the nature of nutrient restriction. For example, Goetsch and Aiken

(1999) used wethers to determine effects of limited intake of an 80°/0 concentrate

diet and ad libitum intake of forage (long stemmed alfalfa hay) on subsequent
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performance while consuming a high concentrate diet ad libitum. Treatments

were ad libitum intake of an 80% concentrate (AC) diet for 14 wk, restrictef1

intake of concentrate for 8 wk followed by 6 wk ad libitum intake of concentrate

(LC), ad libitum intake of forage for 8 wk followed by 6 wk ad libitum intake of

concentrate (F), and 6 wk ad libitum intake of forage followed by 2 wk restricted

intake of concentrate, then 6 wk ad libitum intake of concentrate (F-LC). Despite

similar empty BW and ADG among treatments (F, LC, and F-LC), at the end of

. feed restriction LC and Fe wethers had greater subsequent ADG than F-LC with

ad libitum consumption of a concentrate diet during realimentation.

Conversely, there are studies suggesting that diets varying in

energy:protein and forage content, but which sustain the same growth rate during

restricted periods, may not affect subsequent performance during realimentation

(Steen, 1986; Drouillard et aI., 1991). In accordance, wethers previously

restricted by feeding diets with different levels of cereal grain and protein

sources, with ad libitum intake of hay, displayed similar ADG in both the

restricted (83 d) and realimentation phases (63 d) when an 80% concentrate diet

was consumed ad libitum (Goetsch, 1999). Dry matter and whole body

composition were similar after realimentation.

Body Composition. Effects of type of diet on subsequent growth rate

during realimentation are likely to be mediated through differences in body

composition at the end of a restriction period (Kirby et aI., 1983; Steen, 1986;

Goetsch, 1999; Goetsch and Aiken, 1999). Drouillard et al. (1991) reported that
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the WW treatment at the start of the finishing phase. Carcass analysis showed

that at the end of the feedlot phase, hot carcass weight was lower (315 vs-337),

longissimus muscle area was smaller (81.8 vs 84.9 cm2
), kidney, pelvic', and

heart fat percentage was less (2.26 vs 2.320/0), and dressing percentage was

lower (61.3 vs 62.2) for NP vs WW calves. Although, fat depth, yield grade, and

marbling score were not different. It was therefore concluded that dormant native

grass can be used to winter stocker calves in addition to winter wheat pasture,

but the ownership of these calves would have to be retained through the feedlot

phase to realize any advantage of built-in ~compensatory gain.

Metabolite and Hormone Status During Feed Restriction and Realimentation.

Animals adapt to feed restriction by metabolic and endocrine alterations

(Hornick et aI., 2000), which along with a decrease in visceral mass cause a

decline in basal metabolism. Blood serum status of metabolites and hormones

thus plays an important role during feed restriction (de Boer et aI., 1985) and

affects growth responses during realimentation.

Glucose and NEFA. The great majority of glucose utilized by ruminants is

supplied via gluconeogenesis, with the most important precursor being

propionate (Bergman, 1975; Danfaer et aI., 1995). Feed restriction decreases

plasma glucose levels (Yambayaba et aI., 1996; Hornick et aI., 2000) in part

because of decreased VFA production, which consequently leads to a shift in
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energy balance (Brockman and Laarveld, 1986). Glucose levels tend to stay

within physiological levels during feed restriction, which may reflect the boEJy's

ability to continuously supply glucose during periods of low energy intake. A

decrease in glucose level is however evident during severe feed restriction

(Gomez-Pasten et aI., 1999). There are further reports of hypoglycaemia and

ketosis during periods of severe feed restriction (54°A> of requirement; de Boer et

aI., 1985). Therefore, it appears that ruminants can adapt to more efficient

utilization of available glucose during periods of nutrient restriction.

Adipose tissue Iypolysis is caused by an elevated growth hormone (GH)

level, which spares use of protein as an energy source (Yambayamba et aI.,

1986). Also, the severity and(or) length of feed restriction influence the extent of

tissue mobilization, and consequently the concentration of NEFA. Yambayamba

et al. (1986) noted that as feed restriction progresses, the concentration of NEFA

increases in accordance with the decline in energy balance associated with

increasing-levels of feed restriction. For example, results of Dimarco et al. (1981)

and Yambayamba et al. (1986) show 1.6- to 8-fold i-ncreases in NEFA

concentration after 2 and 6 d of feed restriction, respectively.

Realimentation has opposite effects on glucose and NEFA concentrations

compared with feed restriction. For example, glucose concentration increased

and NEFA decreased in concentration by d 10 and 8 of realimentation in reports

of Yambayamba et al. (1986) and Dimarco et al. (1981), respectively.
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Hormones. Decreases in thyroid hormones, triiodothyronine (T3) and(or)

thyroxine- (T4) associated with feed restriction are generally considered

responsible for the adaptive decrease in fasting heat production and,

consequently, the decrease -in maintenance energy requirement (Hayden et aI.,

1993; Wester et aI., 1995; Hornick et aI., 2000). G6mez-Pasten et al. (1999),

however, reported no change in serum T4 level, but decreases in serum T3 and

glucose levels occurred in response to increasing levels of feed restriction (60,

80, and 1000/0, ad libitum intake) over an extended period (36 wk). Decreased T3

with no change in T4 have been previously found with low energy diets in both

humans- (Barrows and Snook, 1985) and dairy cows (Pethes et aI., 1985). No

change in T4 has been associated with its conversion to reverse triiodothyronine

(rT3), which in turn has been proposed to be the main route for the reduction in

basal metabolism during feed restriction (G6mez-Pasten et aI., 1999). It has

been further reported that rT3 causes decreased T3 levels (G6mez-Pasten et aI.,

1999) during feed restriction.

Along with decreases in T3 and T4 during feed restriction, there are

reported decreases in insulin and insulin-like growth- factor, with a concomitant

increase in plasma GH (Hornick et aI., 2000). Increases in plasma GH during

feed restriction results from decreased nutrient intake, in turn causing decreased

secretion of somatostatin (Thomas et aI., 1990), the inhibiting hormone of GH.

High levels of GH circulating in the blood during feed restriction lead to fat

mobilization, and released fatty acids in part provide energy (Drouillard et aI.,

1991).
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Changes in endocrine hormones during feed restriction affect tissue

metabolism, such as a decrease in the protein synthesis:degradation ratio

(Hornick et aI., 2000). Consequently there is a release of free fatty acids and

ketone bodies from adipose tissue and the liver, respectively, whi,ch are used by

hepatic tissues as energy substrates (Bossart et aI., 1985; Jarret et aI., 1976).

During feed restriction skeletal muscles release lactate and branched-chain keto

acids, as well as alanine, glutamine, and branched-chain amino acids (Hornick et

aI., 2000). Alanine and lactate are important glucose precursors during fasting

and feed restriction; increased levels of plasma glutamine and branched-chain

amino acids result from proteolysis, while catabol'ism of branched-chain amino

acids leads to increased plasma levels of branched-chain keto acids (Hornick et

aI., 2000).

Urea. Urea production by hepatocytes during moderate feed restriction is

initially increased and then stabilizes, but during severe feed restriction a large

transfer of nitrogen to the liver occurs, which is associated with enhanced liver

glutamine synthesis (Hornick et aI., 2000). Yambayamba et al. (1996) observed

lower levels of blood urea-N during feed restriction compared with unrestricted

animals, with restriction being a maintenance level of intake for 95 d. During

realimentation, blood urea-N level increased within 8-10 d to levels of

unrestricted animals (Yambayamba et aI., 1996). Ellenberger et al. (1989)

reported a decline in blood urea-N during initial stages of compensatory growth,
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which may be because of more efficient nutrient utilization and therefore

increased growth.
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CHAPTER III

EFFECTS OF FREQUENCY OF SUPPLEMENTATION WITH
SOYBEAN MEAL ON PERFORMANCE OF ANGORA DOES CONSUMING

LOW-QUALITY FORAGE IN LATE GESTATION
AND EARLY LACTATION

ABSTRACT: To determine the effect of supplementation frequency (daily, every

4 d or every 8 d), production state (late gestation and early lactation), and litter

size (1 or 2) on performance of Angora goats, 80 does (43.2 ± 0.7 kg initial BW)

were used in a split-split plot design experiment. The experiment began at 92

±18 d of gestation and was 120 d in length, with 15 8-d periods. Coarsely

chopped prairie hay (Table 1) was consumed ad libitum without supplementation

(C) or with SBM, offered daily (X1) at 0.125% BW (OM), every 4 d (X4), or every

8 d (X8). Ground corn was supplemented at 0.5 to 1.0% BW (OM) in the latter

half of the experiment. Body weight on d 31 was lowest (P < 0.05) for C vs X1,

X4, and X8. On d 57 BW was lower for C (P < 0.05) and X8 vs X1 and X4, and

ranked (P < 0.05) C < X8 < X1 and X4 on d 120. Does with single kids had

greater (P < 0.05) BW than twin-bearing does on d 57 (41.5 vs 38.7 kg) and 120

(37.3 vs 33.9 kg). Skin follicle activity was not influenced by supplementation

frequency, but was lower (P < 0.05) on d 120 vs 57 (24.4 vs 28.4/mm2
) and for

does with twins than single kids (25.1 vs 27.7/mm2
). Fiber diameter and clean

staple strength were similar among supplementation frequencies. Fiber growth

rate was similar among dietary treatments on d 0 to 57 but on d 58 to 120 was

greater (P < 0.05) for X1 than for C and X4. In conclusion, supplementation of
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Angora does in late gestation and early lactation consuming low qual·ity forage

with soybean meal may be as infrequent as once every 4 d without adversely

affecting BW or fiber growth, regardless of litter size. However, with high nutrient

requirements during early lactation with both does suckling 1 or 2 kids, less

frequent supplementation, such as once every 8 days, may negatively impact

BW, and potential exists for slower fiber growth rate with infrequent compared

with daily supplementation.

Introduction

To maintain acceptable performance levels, cattle often require

supplemental feeding during periods of poor forage.production and(or) high

nutrient requirements (Huston et aI., 1999a). In winter when forage quality ·s low,

if cows are not supplemented they may lose up to 200/0 of their fall BW by spring

(Huston et aI., 1993), in turn increasing calving interval. Supplementing animals

during periods of low forage production and(or) poor quality is a recommended

management practice.

Providing supplements with relatively high CP concentration to ruminants

consuming low-quality forage enhances forage use and livestock performance

(McCollum and Galyean~ 1985; Guthrie and Wagner, 1988; DelCurto et aI.,

1990). Supplementation is associated with increases in forage digestibility (Del

Curto et aI., 1990), forage intake (McCoilum and Galyean, 1985), and overall

animal productivity (Bellido et aI., 1981). Feeding supplements daily are often too

expensive (Goonewardene et aI., 1995). In order to minimize labor costs,
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supplementation frequency has been reduced without adverse effects on

productivity.

One of the first investigations into the effects of feeding frequency on

animal performance was a study by Melton et al. (1960), in which there was no

difference in performance of cows supplemented daily, three times per week, or

two times per week. More recent studies on supplementation frequency (Beaty et

aI., 1994; Krehbiel et aI., 1998; Huston et aI., 1999a and b) have been conducted

with sheep or cattle. These reports suggest that ewes and beef cows

supplemented as infrequently as once weekly are able to maintain performance

levels similar to those supplemented daily, irrespective of stage of production

(Huston et al., 1999a; Beaty et al.~ 1994). Whether Angora does are able to

respond similarly to infrequent supplementation during and after gestation is

unknown, in part because of their high nutrient requirements for fiber growth.

As goat production increases with increasing demand for goat products,

effective management techniques become imperative in supporting one of the

fastest growing livestock industries in the U.S.A. Studies on the effects of

supplementation frequency may thus be important to goat producers in saving

labor and(or) feed expenses. The objective of this study was therefore to

examine the effects of no supplementation of mature Angora does and

supplementation with soybean meal every 1,4, or 8 d, during periods when

nutrient demands for fetal development and lactation are high, via measurements

of feed intake, BW, mohair fiber growth, and other physiological variab es. These
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findings should identify the lowest frequency of supplementation that allows

acceptable levels of production, with minimum labor input.

Materials and Methods

Animal Housing and Dates

This experiment used eighty mature Angora does. Angora bucks were

placed with does from October 3 to November 12, 1999. On November 23 at an

estimated 45 d of gestation, does were tested for pregnancy and litter size by

ultrasonography. A second ultrasound test was conducted on December 7 for

females bred the latter part of the breeding period. At 92 ± 18 d of gestation,

does were assigned to eight groups, with similar means and variation within

group for litter size (single or twins), projected birth date, and BW. The does were

then placed in eight, 4 x 10m pens, with two groups randomly assigned to each

of four treatments. After kidding, does whose kids died, that had no milk, or that

gave birth to unexpected singles or twins were removed to achieve a total of 56

does. For the first 3 d after kidding, does with their kids were moved to small

temporary pens. The experiment lasted 120 d, from January 12 to May 10, 2000,

consisting of 15 8-d periods.

Feeding and Treatments

Coarsely chopped prairie hay was offered daily in wooden feeders for ad

libitum consumption (Table 1). All does had free access to fresh water and trace

mineralized salt blocks. On the last day of each 8-d period, orts were removed

and weighed. Does were supplemented with soybean meal (S8M) in separate

feeders. Supplement treatments were no supplementation (C), daily
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supplementation (X1), supplementation every 4 days (X4), and supplementafon

every 8 days (X8). For the X4 group, S8M was supplemented on d 1 and 5--of the

8-d period, and on d 1 for X8. The daily rate of S8M supplementation for X1, X4,

. and X8 was 0.125% BW (DM basis); therefore, on respective days of

supplementation, X1, X4, and X8 does received 0.125, 0.5, and 1.0% BW,

respectively. In addition to S8M, after kidding all does were supplemented with

corn at a daily rate of 0.50/0 BW as well as given continued access to trace

mineralized salt blocks. This was achieved with a temporary division in the pen

separating does that had kidded from those that had not. However, starting

February 28 (d 49), because of the apparent poor condition of a number of does,

the daily corn supplement was given to all does. The first doe kidded on February

28, 2000 (d 49) in period 7, and the last kidded on April 3 in period 11 (d 82).

Moreover, because of low BW, poor health, and death of some kids, as well as

poor body condition of does in lactation, the daily level of supplemental corn was

doubled from 0.5 to 1% BWon March 16,2000 (d 65, period 9) and continued at

this level to the end of the experiment (d 120). These adjustments, were made

because of lower hay quality than expected.

All does were treated for internal parasites (4 cc Ivomec, Merk Ag Vet

Division, Rahway, NJ) on January 19, 2000, and received 1st and 2nd

vaccinations for Corynebacterium pseua'otubercuJosis (2.5 cc U-Bac 8, Colorado

Serum Co., Denver, CO) on January 19 and February 28,2000, respectively.

Does were hoof-trimmed on February 3, 2000 and kids received 3 cc of Panacur

(Colorado, Serum Co., Denver, CO)·and 2 cc of CD&T vaccine (Colorado, Serum
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Co., Denver, CO) vaccine for Clostridium perfringens type Cand 0 and tetanus

toxoid on May 10, 2000.

Measurements and Sampling

BW. Does were weighed on d 0, d 31, d 57, immediately after kidding, and

at the end of the experiment (d 120). On d 31, none of the does had kidded,

whereas by d 57 approximately one-half had kidded and d 120 was 4 week after

the last doe kidded. Kids were weighed at birth.

Feed and Orts. Feedstuffs were grab sampled at the start of each period

before feeding, and samples were placed in labeled bags and stored below­

20°C. Hay arts were sampled during period 5 (d 33-40 of the experiment), placed

in labeled bags, and stored below -20°C. Total consumption of S8M an"d corn

was assumed.

Skin and Fleece. Does were shorn 2 week before and 2 weeks after the

experiment, at which time fleece weight was recorded and a grab sample was

taken. In addition, a 100-cm2 left side patch was clipped (Oster blade no. 40) on

d 0, 57, and 120 to determine mohair growth and yield, and a skin biopsy (8 mm;

P250, Acuderm, Ft. Lauderdale, FL) sample was taken to assess skin

histological characteristics (ASTM, 1988). Skin biopsy samples were taken under

local anesthesia (1 mL lidocaine) and close to the site of fiber patch samples.

Tissue samples were placed in labeled cassettes and preserved in phosphate

buffered formalin for a minimum of 48 h before analysis.

Blood and Ruminal Fluid. Blood and ruminal fluid samples were

collected in periods 4 and 12 at approximately 4 h after feeding. These periods
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were chosen because no does had kidded in period 4, and kidding was complete

by period 12. All does were sampled on d 1 of the period, which was the day of

supplementation for X1, X4, and X8. The day of the period for sampling C and X1

was not anticipated to influence blood or ruminal fluid measures. Conversely, to

address likely differences among days for X4 and X8, additional samp'les were

taken. For both X4 and X8 does, samples were taken on d 4, which was 3 dafter

supplementation. The X8 does were also sampled on d 7,. which was 6 dafter

supplementation. To minimize stress and avert potentially negative effects on

feed intake, C and X1 were not sampled on·these days. Blood was collected

using 22 gauge, 2.54-cm long needles by jugular venipuncture into two 10-mL

vacutainers (Becton Dickinson, Franklin Lakes, NJ), one containing heparin and

the other potassium oxalate-sodium chloride. Following collection, samples were

chilled in ice for approximately 1 h and centrifuged (J-68 Centrifuge; Beckman

Instruments, Inc. Fullerton, CA) at 2,400 x 9 for 25 min at 4°C. After centrifuging,

approximately 3 mL of plasma was withdrawn using a pipette and divided into

1.5-mL micro centrifuge tubes (Fisher Scientific, Pittsburgh, PA) and then stored

below -20°C until analysis. Ruminal fluid was sampled via stomach tube into two

tubes, one with 1mL of 250/0 (wtlvol) metaphosphoric acid for VFA analysis, and

the other with 2 mL of 4°AJ (wtlvol) trichloroacetic acid for ammonia analysis.

Laboratory Analyses

Feed. Feedstuffs were dried at 55°C for a minimum of 48 h and ground in

a Willey mill to pass a 1-mm screen. Feed and ort samples were analyzed for
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OM, ash (AOAC, 1990), CP (Technicon Instrument Co., Tarrytown, NY), NOF,

AOF, and ADL (filter bag technique; ANKOM Technology Corp., Fairport, NY).

Skin and Fleece. Mohair patch samples collected on d 0, 57, and 120

were weighed for grease fleece weight and evaluated for laboratory scoured

(clean) yield and fiber diameter. Samples measured weighed between 5 to 25 g

and scoured (clean) yield was calculated as (weight of bone-dry, washed mohair

/ weight of grease mohair) x 100 x 1.1123, in which 1.1123 is an adjustment

factor for plant material not removed by scouring (ASTM, 1988). Staple length

and strength were determined for d 120 only, since samples collected on d 0 and

57 were too short and not suited for proper analysis. Staple length was

determined by standard procedures of ASTM (1988). Grease and clean staple

strength was determined using an Agritest Staple Beaker System (Agritest Pty,

Sydney Australia) at the San Angelo Texas A&M University Research Station.

Staple strength of grease and clean mohair was analyzed as the maximum load

(Newtons) needed to break a staple. To correct for differences in the size of the

staple tested, measurements were standardized by the linear density

(grams/centimeter =kilotex) of grease or clean mohair. Fiber diameter was

measured on samples collected on patch samples using an optical fiber

distribution analyzer (OFDA 100; Zellweger Uster, Inc., Charlette, NC).

Skin samples were processed overnight through a 12-step process of

graded concentrations of ethanol, choroform, xylene, and paraffin wax using a

Citadel tissue processor (Shandon Inc., Pittsburg, PA). After step 12, skin

samples were immediately embedded with the epidermal surface uppermost into
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a mold of paraffin-polymer wax, using a Histocenter II Embedder (Shandon,

Pittsburg, PA). The embedded skin was transversely sectioned into 8-f.lm thick

layers of wax ribbons starting from the epidermal surface to the base of the hair

follicles. The sectioned samples were mounted onto slides with at least five

sectioned samples per slide. Once mounted, samples were stained using the

adapted Sacpic stain method (Nixon, 1993). Approximately 10 follicle bundles

were then scored under the microscope for number of active and inactive primary

and secondary follicles, from which the percentages of active and inactive

primary and secondary follicles, follicle density, and ratio of primary to secondary

follicles were calculated (Nixon, 1993).

Blood and Ruminal Fluid. Plasma samples were analyzed for glucose

and urea via colorimetric assays with a Technicon Auto Analyzer II System

(Technicon Instruments, Tarrytown, NY). Nonesterfied fatty acids were

determined with a commercial kit using an enzymatic colorimetric procedure

(Wako Pure Chemical Industries, Richmond, VA). Amino acid concentrations

were determined as described by Puchala et al. (1995) using an AminoQuant

system (Hewlett Packard Co., San Fernando, CA).

Ruminal fluid was analyzed for ammonia by the phenol-hypochlorite

colorimetric procedure of Broderick and Kang (1980). VFA concentrations were

analyzed by gas chromatography as described by Lu et al. (1990).

Statistical Analysis

Pre-kidding data collected from does removed from the experiment were

retained for analysis of late gestation measures but were omitted from early
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lactation analyses. Data were analyzed as a split-split-p·lot design, with a main

plot of dietary treatment, a subplot of litter size, and a sub-subplot of phase (Le.,

gestation and lactation) or day of measurement, using the MIXED model

procedure of SAS (SAS Inst. Inc., Cary, NC). Effects of supplementation

frequency, production state, and litter size on BW and skin tissue and patch

sample measures were analyzed with a model consisting of supplementation

frequency, litter size, supplementation frequency x litter size, phase or day,

supplementation frequency x phase, litter size x phase or day, and

supplementation frequency x litter size x phase or day. Random sources of

variation considered were group x supplementation frequency and animal x

group x supplementation frequency. Furthermore, measurements taken on d 0,

such as BW and skin measures, were used as covariates.

For ruminal fluid and blood measures with samples taken on different days

of supplementation intervals, the mean of values on different days and those on

d 1 were analyzed as described above. To assess differences between or among

days for X4 and X8 does, data were analyzed within treatment with a model

consisting of litter size, phase, litter size x phase or day, and the random effect of

group. For d 4 and 7, the model terms were litter size, phase or day, litter size x

phase or day, and the random effect of group. Treatment means were separated

by least significant difference when overall F-values were significant (P < 0.05).

Because of differences in the number of observations and levels of

supplemental grain, separate supplementation frequency and litter size means

and SE are presented for the different phases or days. When interactions
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involving supplementation frequency and litter size were significant,interaction

means are presented; main effects means are given with nonsignificant

interactions regardless of significance.

Results and Discussion

DoeBW

Initial BW was 42.0 ± 1.02 and 44.3 ± 0.84 kg for does bearing single and

twin kids, respectively. Doe BW for all treatments decreased during the

experiment, with the magnitude of loss ranking (P < 0.05) C > X1 and X4 > X8

(Table 2). Doe BW after kidding was lowest among treatments (P < 0.05) for C

but was similar among X1, X4, and X8. Moreover, twin bearing does lost more

BW than does with single kids.

There were two-way interactions between day of weighing (Le., d 31, and

57) and supplementation frequency and litter size (Table 3). On d 31 (2 weeks

prior to the first kidding), X8does were similar in BW to X1 and X4 does, but

were lower (P s 0.05) in BW on d 57 (during kidding) and 120 (24 d after the last

doe kidded). Compared with C, BW for X8 was greater (P < 0.05) on d 31 and

120 but similar on d 57 (P = 0.11). There was a difference in BW between does

bearing twins vs singles on d 57 and 120 (P < 0.01) though not on d 31 (P =

0.80).

Lower BW loss for supplemented than unsupplemented does is in

agreement with similar reports for other ru,minant species. Pregnant ewes

supplemented at 1-,4-, or 7-d intervals lost less BW compared with

unsupplemented ewes (Huston et aJ., 1999a). Huston et al. (1999b) noted
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greater BW gain by beef cows supplemented with CSM daily, three times weekly,

or once weekly than by control cows. Similarly, when given a corn/cottonse-ed

meal supplement, Angora kids had greater BW gain than ones -not supplemented

(Huston et aI., 1993). Farmer et al. (2001), Ebro et al. (1998),Okello et al.

(1996), and Beaty et al. (1994) also reported improved BW gain when

supplements high in protein were fed compared with supplements of lower

protein concentration or no supplementation.

Similar BW change and live BW between X1 and X4 supports findings of

Huston et al. (1999a) in which supplementation of pregnant ewes daily or every 4

d resulted in similar BW change after fall and winter lambing seasons and of

Huston et al. (1999b) in which there were no differences in BW change of

pregnant cows supplemented daily, three times per week, or weekly. Greater BW

loss and 10\lver BW for X8 vs X1 and X4 contrast the report of Huston et al

(1999a) in which BW change of pregnant ewes supplemented weekly was not

different from that with supplementation daily or every 4 d.

As indicated by the difference between initial BW and BW on d 31 and by

BW change over the entire experiment, the loss of BW over time may have

resulted from greater nutrient requirements during lactation vs gestation

(Schingoethe et aI., 1988). In accordance, the X8 supplementation treatment

appeared acceptable relative to more frequent supplementation during gestation

but not in lactation with elevated nutrient demands. Conversely, the X4 treatment

relative to daily supplementation (X1) was acceptable in regards to BW change 'n

both production states. In contrast to findings of the present experiment, Beatyet

59



al. (1994) reported that cows supplemented three times weekly loss more BW

during gestation (75 d before calving) than those supplemented daily, althollgh

there was no difference in BW during subsequent periods.

Differences in doe BW between litter sizes reflect the increased nutrient

demands associated with suckling of multiple vs single kid litters (Schingoethe et

aI., 1988). Lower birth weight for twin than single kids along with similar doe BW

on d 31 implies little effect of litter size on nutrient needs in gestation. The lack of

interaction between supplementation frequency and litter size may indicate that .

the interaction between supplementation frequency and day of BW measurement

relates to a threshold effect on the increase in nutrient demands with the onset of

lactation.

KidBW

Birth weight was greater for single vs twin kids (P < 0.05; Table 2). 0

explanation is apparent for greater (P ~ 0.05) -birth weights for X4 vs C and X1.

Conversely, Thomas et al. (1991) reported no difference in lamb birth and

weaning weights between ewes supplemented with 21% CP pellets daily or

every alternate day. Likewise, Beaty et al. (1994) and Farmer et al. (2001) found

similar calf birth weight for cows supplemented daily or 2, 3, or 5 d weekly. Kid

BW at the end of the experiment was not different among treatments (P = 0.3).

Feed Intake

Dry matter intake in the different phases of the experiment was

numerically greater for treatments with than without supplementation (Table 4).

Total intake averaged across phases was greater (P < 0.05) for X1, X4, and X8
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compared with C. In agreement, Huston et al. (1999b) observed similar DMI

among cows supplemented daily or three times or once weekly. Krehbiel et-al.

(1998) reported no difference in total intake by ewes between daily and three

times weekly supplementation. In contrast, Huston et al. (1999a) observed that

supplementation.every other day depressed DMI by mature ewes compared with

daily supplementation. Collins and Pritchard (1992) found no difference in OMI by

wethers supplemented daily or every other day, and Calhoun et al. (1988) also

reported similar OMI with supplementation intervals of 1, 2, 3,4, and 5 d.

Ruminal Ammonia Nitrogen

Mean ruminal ammonia N concentrations when sampled during gestation

(Table 5) were near 5 mg/100 mL, suggested by Satter and Slyter (1974) as the

concentration necessary for maximum bacterial growth with non-protein N

supplements. Mean concentration during gestation was lower (P < 0.05) for C vs

X4 and X8, although mean concentrations for X4 and X8 treatments are largely

influenced by the particular days chosen for sampling. There was an interaction

between supplementation frequency and litter size (P < 0.05) in mean ammonia

N concentration during lactation. Mean concentration was similar among

treatments for does with single kids. However, the concentration for does with

twin kids was lowest among treatments for C (P < 0.05). On d 1 of gestation and

lactation, when all treatment groups were supplemented, ruminal ammonia N

concentration was similar between C and X1. This was somewhat surprising

considering greater N intake for X1. Although, samples were taken 4 h after

feeding, which may have been later than peak concentration resulting from
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degradation of protein of SBM. Because of the high amount of S8M fed on d 1

for X8, the ammonia concentration was greater (P < 0.05) than for C and X-1 in

both gestation and lactation, but was similar to the concentration for X4 in

gestation. Litter size did not influence ammonia N concentration on d 1 or mean

concentration in gestation.

On d 4 of the period, during both gestation and lactation, ruminal ammonia

N concentration for X4 was less than on d 1 (Table 6). Similar findings were

observed for X8, with levels on d 4 and 7 not different but lower than on d 1 of

gestation and lactation (P < 0.05).

Rumina; ammonia N levels in this exper.ment follow response patterns

similar to previous reports. On days when both daily and every third day

supplemented steers were fed, ammonia N concentrations were higher in the

less frequently supplemented steers (Beaty et aI., 1994). Similarly, on days when

all treatment groups were fed, Collins and Pritchard (1992) reported higher

ruminal ammonia N concentration in wethers supplemented every second day

than in wethers supplemented daily, and Farmer et al. (2001) observed a higher

concentration in cows supplemented twice weekly than daily. Previous studies

furthermore show day x supplementation frequency interactions, in which

infrequently supplemented animals had higher concentrations on the first 2 d

after supplementation compared with concentrations in animals supplemented

daily (Collins and Pritchard, 1992; Beaty et aI., 1994; Farmer et aI., 2001).

Plasma Urea Nitrogen
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Day 1 and mean plasma ureaN concentrations were not different among

dietary treatments (Table 7), which is in contrast to differences in ammonia N

levels. Plasma urea N concentration for X4 does was greater (P < 0.05) on d 1 vs

4 in gestation, although the concentration was similar between days in lactation

(Table 8). For X8 does, in gestation plasma urea concentration ranked d 1 > 4 >

7 (P < 0.05). However, a different ranking (P < 0.05) was noted in lactation (d 1 >

7 > 4). The plasma urea concentration was not affected by litter size, except for a

lower level in X8 does for single- vs twin-kid litters.

Contrary to findings of this experiment, Huston et al. (1999a and b) and

Beaty et al. (1994) reported that in animals supplemented every 3 or 7 d, plasma

urea N concentration at 2 d after supplementation was greater than in

unsupplemented controls and animals supplemented daily. Similar plasma urea

levels among treatments on d 1 of the present experiment may be explained by a

delayed response (e.g., 6-8 h) to infrequent supplementation, as suggested by

Beaty et al. (1994) and Farmer et al. (2001).

Ruminal pH

All pH values fell within a range of 6.2-7.0, typical of high roughage diets

(Owens and Goetsch, 1988). On d 1 during gestation, when all supplemented

does received SSM, pH for X8 and X4 was lower (P < 0.05) than for C, with X1

ruminal pH being intermediate (Table 9). Mean ruminal pH during gestation was

lowest among treatments for X1 (P < 0.05); however, values during lactation

were similar among treatments. The most likely explanation for decreased pH

among supplemented does in some instances is increased microbial activity and
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VFA production. Similarly,Beaty et at. (1994) found lower ruminal pH in

infrequently supplemented cows on days of supplementation compared with

values in animals supplemented daily. Day of sampling did not influence pH in X4

and X8 does (Table 10).

Volatile Fatty Acids

The mean total VFA concentration during gestation was greater (P < 0.05)

for X1, X4, and X8 than for C (Table 11). A similar trend was evident on d 1 of

gestation (treatmentF-value, P < 0.08). Conversely, mean concentrations were

similar among all groups during lactation. There was a litter size x

supplementation frequency interaction on d 1 (P < 0.05). During gestation, X4

and X8 had total VFA concentration higher on d 1 (P < 0.05) than on d 4. Day of

sampling in lactation did not affect total VFA concentration in X8 does (Table 12).

For X4 does in lactation there was a litter size x sampling day interaction in total

VFA concentration, with lower and greater levels on d 1 vs 4 for does with singles

and twins, respectively. One of the factors causing greater VFA concentration for

supplemented vs C does in some cases is the highly fermentable nature of S8M,

in addition the supply of nitrogenous compounds for microbial growth and

digestion. That mean VFA concentration did not differ among treatments during

lactation as in gestation may partially be because of daily corn sup,plementation.

The acetate:propionate ratio (A:P; mean and d 1 values) was greatest (P <

0.05) among treatments for X1 does in all but one instance (Table 13). Contrary

to these findings, Collins and Pritchard (1992) did not observe effects of

supplementation frequency on molar proport·ons of the major VFA. The A:P ratio
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for X4 and X8 was not influenced by day of sampling, except for a greater ratio

on d 4 vs 1 in gestation for X4 does (Table 14). Litter size did not affect the A:P

ratio.

Glucose

Glucose concentration on d 1 was higher (P <0.05) during gestation than

lactation (57.4 vs 40.0 mg/dL; Table 15). Glucose concentration on d 1 was

similar among supplementation frequencies. Mean glucose concentration was

not affected by dietary treatment during gestation, but during lactation was

greatest among dietary treatments (P < 0.05) for X8. The only litter size effect

noted was a high concentration on d 1 during gestation for litter size 1 vs 2 (P <

0.05). For X4, glucose concentration was greater on d 4 than on d 1 of gestation

(P < 0.05); however, values were similar during lactation (Table 16). Conversely,

glucose concentration during lactation for X8 ranked (P < '0.05) d 7 > 1 > 4 but

was similar among days during gestation.

Higher glucose concentrations during gestation compared with lactation in

this experiment agree with findings of Davis et al. (1979) in which it is reported

that mammary glucose uptake by goats on the day after parturition was nine

times that on d 7 to 9 prepartum, and five times that on d 2 prepartum. The

authors concluded that the magnitude and timi'ng of this increase in glucose

uptake is an important index of the onset of copious milk secretion because

glucose is required for lactose synthesis and lactose is the most important

osmotic solute in milk. Similar findings were reported by Bel (1995), in whi'ch the
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mammary requirement for g'lucose was 2.7 times that of the gravid uterus during

late gestation.

In agreement with findings of this study, Tovar-Luna et al. (1995) reported

that ewes supplemented every other day had glucose concentrations similar to

daily supplemented ewes. It was suggested that nutrient absorption by ewes

supplemented on alternate days may be buffered by the reticula-rumen, which

acts as a reservoir to lessen temporal variation in absorption of glucose

precursors.

NEFA

Blood concentrations of NEFA can be reflective of the nutritional status of

animals. Mean concentrations of NEFA were higher (P < 0.05) during lactation

than gestation (763 vs 534 IJEq/L; Table 17). Mean and d 1 NEFA concentrations

were similar among supplementation frequencies in lactation even thoughBW

loss during lactation was greatest for C. However, in gestation mean and d 1

NEFA levels were greatest among treatments (P < 0.05) for C. Similar to

differences among NEFA concentrations for supplementation frequencies, NEFA

levels (mean and d 1) in lactation were not different between litter sizes but were

greater (P < 0.05) for does with twin vs single kids in gestation. These differences

in gestation but not lactation disagree with greater BW loss in lactation than

gestation, which perhaps in part may relate to corn supplem,entation in lactation.

The only effect of sampling day on NEFA concentrations for X4 and X8 does in

lactation involved an interaction between production state and litter size. The

NEFA level for X4in lactation was greater (P < 0.05) on d 4 vs 1 in does with twin
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kids (Table 18). Also, NEFA concentration in gestation was greater for litter size

2 vs 1 in X8 does. Greater NEFA concentrations during lactation vs gestation

may reflect increased energy requirements -(Schingoethe et aI., 1988). Likew'se,

greater NEFA levels for C vs X1, X4, and X8 may have been due to low,er energy

intake for C, which· elevated fat mobilization. However, it was expected that

differences in NEFA concentrations among dietary treatments would have been

more likely and pronounced in lactation compared with gestation.

Plasma Amino Acids

Aspartate, glycine, and tyrosine were the only amino acids with

concentrations not affected .by litter·size, supplementation frequency, and

production state (Figures 1, 2, and 3, respectively). Glutamine concentration on d

1 was greatest among supplementation frequency treatments (P < 0.05) for X8,

although mean concentration was only greater for X8 vs' C (P < 0.05; Figure 4).

For serine there was an interaction between supplementation frequency and litter

size (P < 0.05; Table 19). For single-kid bearing does in gestation, X4 had the

greatest serine concentration (P < 0.05), whereas there were no differences for

does with twins. Alanine concentration on d 1 of the period during gestation was

lower for does with singles than twins (P < 0.05), although mean va ues were

similar (Figure 6). Among the amino acids affected by supplementation

frequency, there was only one essential amino acid. Arginine concentration on d

1 during gestation was greater for X8 and X1 vs X4 and C (P < 0.05); however,

mean values for X8, X1, and C were greater than for X4 (P < 0.05; Figure 7).

Relatively higher concentrations of glutamine and arginine in X8 does on d 1
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during gestation may simply be due to greater amounts of SSM fed to the X8

does. Similar trends for less frequently supplemented does were found for other

nonessential amino acids (Le., aspartate, serine, glycine, and alanine).

There were essential amino acids with higher concentrations during

gestation than lactation, namely arginine, threonine, valine, methionine,

phenylalanine, isoleucine, leucine, and lysine (Figures 7, 8, 9, 10, 11, 12, 13, and

14, respectively). Lower concentrations during lactation are most likely due to

increased utilization compared with gestation. Nursing ewes especially those with

twins may have a 50-60% increase in protein requirements relative to late

gestation (Schingoethe et aI., 1988). Amino acids also provide 50 to 55% of

energy used by the developing fetus (Bell, 1995), which is further supported by

evidence that fetal protein deposition only accounts for approximately 50% of the

fetal net uptake of amino acids in sheep (Lemons et aI., 1976) and cattle (Ferrell,

1991 ).

Skin and Hair Characteristics

There were no differences among supplementation frequency treatments

in skin follicle measures (Table 20). There was no litter size effect in apparent

total follicle density for periods of d ·0-56 and 56-120. Averaged values were

however higher in single bearing does vs those with twins (P < 0.05), as well as

at the end of the experiment than on d 57. Similarly, the ratio of primary to

secondary follicles was not impacted by litter size during individual periods;

average values were however lower for does with twins vs singles (P < 0.05).
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There was no treatment or litter size effect on primary and secondary follicle

activities, or their ratio.

Fiber growth rate was greater (P < 0.05) from d 58 to 120 than from d 0 to

57 (Table 21). There were no differences among treatments in fiber growth on d

oto 57; however, growth was greater for X1 vsC and X4 on d 58-120 (P < 0.05).

Clean yield was not influenced by supplementation frequency or by litter size.

Fiber diameter was considerably lower from d a to 57 than d 58 to 120 (P < 0.05),

but was similar among supplementation frequencies and between litter sizes.

Clean staple strength was not affected by supplementation frequency or litter

size.

Fiber growth and characteristic measures of the present experiment are in

general agreement with the report of Morcombe et al. (1988), in which

supplementation frequency had no effect on wool growth, mean fiber diameter,

clean yield, or mean staple strength. Morcombe et al. (1988) noted that wool

growth was affected by production state, with mean length of wool grown per day

lowest before and immediately after lambing (0.197 - 0.201 mm/d) and higher in

later stages of lactation (0.206 - 0.214 mm/d), similar to the difference in fiber

growth rate noted in the present experiment. Likewise Calhoun et al. (1988) did

not alter mohair fleece production, fiber diameter, or number of medullated (med

and kemp) fibers in male Angora goats by supplementing every 1,2,3,4, or 5 d.

Implications

Angora does in late gestation and early lactation consuming low quality

forage can be supplemented with protein as infrequently as once every 4 days
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without adversely affecting BW. Less frequent supplementation, such as once

every 8 days, may be as effective as supplementation daily or every 4 days with

moderate nutrient requirements of late gestation. However, in early lactation with

elevated nutritional demands, supplementation once every 8 days can increase

BW loss compared with more frequent supplementation, although nutrient needs

as impacted by litter size did not influence BW response to supplementation

frequency. Skin and fiber characteristics were not influenced by infrequent

supplementation, except for an improvement in fiber grovvth rate with daily

supplementation between d 58 and 120. This suggests a need for more frequent

supplementation to stimulate fiber production when nutrient demands are high

during lactation.
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Table 2. Effects of supplementation frequency and litter size on body weight change of Angora

does, body weight after kidding, kid birth weight, and kid weight (kg) at the end of

the experiment1
.

Item Supplementation frequency2 Litter size

C X1 X4 X8 SE 1 2 SE

Change in doe BW -11.9c -5.48 -5.6a -9.1 b 0.82 -6.4b -9.68 0.59

BW after kidding 34.68 39.2b 38.3b 38.6b 1.20 38.4 37.0 0.83

Kid birth weight 2.58 2.68 3.1 b 2.9ab 0.12 3.2b 2.3a 0.08

.......:J
0\

Kid final BW 5.7 6.5 6.7 6.8 0.36 7.3b 5.5a 0.33

a,b,cMeans in a row without a common superscript letter differ (P < 0.05).
115 8-d periods, with kidding in periods 6-10.
2Supplementation frequency: C =no supplementation; X1 =daily supplementation;
X4 =supplementation every fourth day; X8 =supplementation every eighth day.



Table 3. Effect of supplementation frequency, litter size, and day of the experiment

on body weight (kg) of Angora does.

Supplementation frequency2 Litter size
Day1

C X1 X4 X8 SE 1 2 SE

Day 31 43.38 46.0b 46.2b 45.9b 0.74 45.4 45.2 0.53

Day5? 37.78 41.Sb 41.8b 39.38 0.75 41.Sb 38.78 0.53

Day 120 31.58 38.5c 37.7c 34.7b 0.84 37.3b 33.98 0.60

8,b'CMeans in a row without a common superscript letter differ (P < 0.05).
10ay 31 =gestation; day 57 =approximately one-half does in late gestation and one-half in early
lactation; day 120 = end of experiment, lactation.
2Supplementation frequency: C = no supplementation; X1 =daily supplementation;
X4 =supplementation every fourth day; X8 = supplementation every eighth day.



Table 4. Effects of supplementation frequency and production state on

dry matter intake (kg) by Angora does.

Production Supplementation frequency2
Item

state1 C X1 X4 X8 SE

Total Gestation 0.97 1.11 1.07 1.14 0.052

During kidding 0.98 1.23 1.25 1.13 0.061

Lactation 1.07 1.42 1.41 1.41 0.095

Mean 1.00a 1.2Sb 1.24b 1.23b 0.042

......:l Forage00 Gestation 0.97 1.05 1.01 1.08 0.052

During kidding 0.68 0.85 0.85 0.76 0.047

Lactation 0.71 1.03 1.02 0.99 0.083

Mean 0.79 0.97 0.96 0.94 0.039

1The experiment consisted of 15 8-d periods; gestation =periods 1-6;
during kidding = periods 7-11 (approximately one-half of the does had kidded on d 57 in
~eriod 8); lactation =periods 12-15.
Supplementation frequency: C =no supplementation; X1 =daily supplementation; X4 =

supplementation every fourth day; X8 =supplementation every eighth day.



Table 5. Effects of supplementation frequency, litter size, and production state on ruminal ammonia N

concentration (mg/dL) in Angora does.

Day 1

Mean

Production Supplementation frequency3 Litter size

state2 C X1 X4 X8 SE 1 2 SE

Gestation 3.2a 4.0a 9.9b 12.ab 1.00 7.6 7.4 0.64

Lactation 1.5a 4.6a 6.4a 12.3b 1.36 5.7 6.8 0.79

Gestation 3.2a 4.0ab 6.2bC 6.gc 0.71 5.2 5.0 0.44

Lactation
Litter size 1 2.2 2.8 3.4 4.9 1.41
Litter size 2 0.9a 6.0b 4.Sb 4.7b 1.31

a,b,c Means in a row, without a common superscript letter differ (P < 0.05).
1Day (8-d periods): 1 =day of supplementation; mean =average from all samples (C and X1, sampled on d1;
X4, sampled on d 1 and 4; X8, sampled on d 1, 4, and 7).
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in period 12.
3Supplementation frequency: C = no supplementation; X1 = daily supplementation; X4 = supplementation every
fourth day; X8 =supplementation every eighth day.



Table 6. Effects of day of the period on ruminal ammonia N concentration (mg/dL) in Angora does

supplemented every 4 or 8 days.

X8

Supplementation Production Day of the period3 Litter size

frequency1 state2 1 4 7 SE 1 2

X4 Gestation· 9.9b 2.4a 1.4 5.8 6.5

Lactation 6.4b 1.8a 1.15 3.7 4.5

Gestation 12.8b 2.8a 4.2a 0.80 7.1 6.2

Lactation 12.5b O.7a 0.2a 1.11 4.2 4.8

SE

1.47

1.23

0.82

1.07

00
o

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 = supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in
~eriod 12.
X4 does were supplemented on d 1 and 5, and X8 does were supplemented on d 1, 4, and 7

of the 8-d periods.



Table 7. Effects of supplementation frequency, litter size, and production state on

blood urea N concentration (mg/dL) in Angora does.

Day1
Production Supplementation frequency3 Litter size

state2 C X1 X4 X8 SE 1 2 SE

Day 1 Gestation 12.1 12.6 12.1 12.7 1.2 11.8 12.9 0.7

Lactation 5.7 11.3 11.0 12.8 2.5 10.0 10.3 1.4

Mean Gestation 12.1 12.6 10.9 9.7 1.2 11.0 11.6 0.7

Lactation 5.7 11.3 9.2 9.1 1.3 9.0 9.0 0.8

'Day (8-d periods): 1 =day of supplementation; mean = average of all samples (C and X1,
sampled on d 1; X4, sampled on d 1 and 4; X8, sampled on d 1, 4, and 7).
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling
in period 12.
3Supplementation frequency: C =no supplementation; X1 =daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every eighth day.



Table 8. Effects of day of the period on blood urea N concentration (mg/dL) in Angora does

supplemented every 4 or 8 days.

X8

Supplementation Production Day of the period3 Litter size

frequency1 state2 1 4 7 SE 1 2

X4 Gestation 12.2b 9.88 0.73 10.6 11.4

Lactation 10.4 9.2 2.26 10.6 9.0

Gestation 12.7c 9.4b 7.08 0.99 8.48 11.1 b

Lactation 13.1 c 4.88 8.6b 2.19 7.8 9.9

SE

0.81

2.47

1.00

2.17

00
N

a,b,CMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C =no supplementation; X1 =daily supplementation;
X4 =supplementation every fourth day; X8 = supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling
in period 12.
3X4 does were supplemented on d 1 and 4, and X8 does were supplemented on d 1, 4, and 7 of
the 8-d period.



Table 9. Effects of supplementation frequency, litter size, and production state on ruminal pH in Angora does.

Production Supplementation frequency3 Litter size

state2 C X1 X4 X8 SE 1 2 SE

Day 1

Mean

Gestation 6.58c 6.42bc 6.348b 6.238 0.048 6.43b 6.358 0.030

Lactation 6.45 6.33 6.33 6.33 0.043 6.36 6.36 0.028

Gestation 6.58b 6.428 6.41 8 6.458 0.033 6.50b 6.438 0.023
Lactation 6.45 6.33 6.42 6.39 0.047 6.40 6.39 0.030

00
w

a,b,c Means in a row without a common superscript letter differ (P < 0.05).
10ay (8-d periods): 1 = day of supplementation; mean =average of all samples (C and X1, sampled on d
1; X4, sampled on d 1 and 4; X8, sampled on d 1, 4, and 7).
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling
in period 12.
3Supplementation frequency: C =no supplementation; X1 = daily supplementation; X4 =supplementation
every fourth day; X8 = supplementation every eighth day.



Table 10. Effects of day of the period on ruminal pH in Angora does supplemented every 4 or 8 days.

X8

Supplementation Production Day of the period3 Litter size

frequency1 state2 1 4 7 SE 1 2

X4 Gestation 6.34 6.49 0.031 6.42 6.41
Lactation 6.33 6.51 0.054 6.43 6.41
Gestation 6.23 6.59 6.52 0.046 6.49 6.41
Lactation 6.33 6.44 6.25 0.045 6.31 6.36

SE

0.027
0.049
0.047
0.038

'Supplementation frequency: C =no supplementation; X1 = daily supplementation;
X4 =supplementation every fourth day; X8 =supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling
in period 12.
3X4 does were supplemented on d 1 and 4, and X8 does were supplemented on d 1, 4 and 7 of
the 8-d period.



Table 11. Effects of supplementation frequency, litter size, and production state on total volatile fatty acid

concentration (mM) in Angora does.

Production Supplementation frequency3 Litter size
Day1

state2 C X1 X4 X8 SE 1 2 SE

Day 1 Gestation 42.9 61.9 74.4 80.9 5.12 66.9 63.1 3.40

Lactation
Litter size 1 60.98 71.68b 84.Sb 90.2b 6.86
Litter size 2 64.2b 66.4b 37.78 89.4c 5.92

Mean Gestation 42.68 61.7b 66.3b 61.8b 3.40 58.5 57.7 2.39

00 Lactation 62.4 67.0 60.5 73.0 4.23 69.2 63.3 3.00Ul

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Day (8-d periods): 1 =day of supplementation; mean =average of all samples (C and X1, sampled on d 1; X4,
sampled on d 1 and 4; X8, sampled on d 1, 4, and 7)..
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in period 12.
3Supplementation frequency: C =no supplementation; X1 = daily supplementation; X4 =supplementation every
fourth day; X8 = supplementation every eighth day.



Table 12. Effects of day of the period on total volatile fatty acid concentration (mM) in Angora

does supplemented every 4 or 8 days.

5.52

3.70

6.93

SE2

56.5

61.3

73.7

Litter size

1

73.85.53

SE

Day of the period3

147

75.2b 55.1 a

Production

state2

Gestation
Lactation

Litter size 1 84.5
b

59.9
a

6.03

Litter size 2 37.7
a

59.8
b

7.78

Gestation 80.8b 42.8
a

3.33 62.4
Lactation 89.8 60.5 68.7 10.17 72.3

X8

X4

Supplementation

frequency1

00
0'\

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C = no supplementation; X1 = daily supplementation;
X4 = supplementation every fourth day; X8 = supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in
~eriod 12.
X4 does were supplemented on d 1 and 4, and X8 does were supplemented on d 1, 4, and 7 of

the 8-d period.



Table 13. Effects of supplementation frequency, litter size, and production state on acetate:propionate in Angora does.

Production Supplementation frequency3 Litter size
Day1

state2 C X1 X4 X8 SE 1 2 SE

Day 1 Gestation 4.91 c 5.34d 4.41 b 3.728 0.134 4.68 4~51 0.095

Lactation
Litter size 1 3.46 4.31 4.01 3.19 0.311
Litter size 2 3.49b 4.37c 1.938 3.64b 0.284

Mean Gestation 4.91 b 5.34c 4.92b 4.568 0.132 5.00 4.86 0.093

Lactation 3.478 4.34b 3.40b 3.50b 0.247 3.70 3.65 0.176
00

8,b,c,dMeans in a row without a common superscript letter differ (P < 0.05) .......:l

1Day (8-d periods): 1 = day of supplementation; mean =average of all samples
~C and X1, sampled on d 1; X4, sampled on d 1 and 4; X8, sampled on d 1,4, and 7).
The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in period 12.

3Supplementation frequency: C =no supplementation; X1 = daily supplementation; X4 = supplementation every fourth
day; X8 =supplementation every eighth day.



Table 14. Effects of day of the period on acetate:propionate in Angora does supplemented every 4 or 8

days.

Supplementation

frequency1

X4

X8

Production Day of the period3 Litter size

state2 1 4 7 SE 1 2 SE

Gestation 4.41 a 5.51 b 0.194 5.02 4.91 0.215
Lactation 2.97 3.84 0.694 3.81 2.99 0.707
Gestation 3.72 5.40 0.094 4.6 4.52 0.109
Lactation 3.42 3.17 3.86 0.471 3.23 3.74 0.371

00
00

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C = no supplementation; X1 =daily supplementation; X4 =supplementation
every fourth day; X8 =supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in period 12.
3X4 does were supplemented on d 1 and 4, and X8 does were supplemented on d 1, 4, and 7 of the 8-d
period.



Table 15. Effects of supplementation frequency, litter size, and production state on plasma glucose

concentration (mg/dL) in Angora does.

Production Supplementation frequency3 Litter size
Day1

state2 C X1 X4 X8 SE 1 2 SE

Day 1 Gestation 50.4 60.5 54.4 64.3 6.00 60.5b 54.3a 3.20

Lactation 38 ..6 40.1 39.2 37.9 3.20 39.8 38.2 2.30

Mean Gestation 50.5 60.5 59.9 72.5 8.11 63.9 57.8 6.30

Lactation 38.6a 40.2a 38.2a 51.7b 2.00 43.0 41.4 1.40
00
\0

a,bMeans in a row without a common superscript letter differ (P < 0.05).
10ay (8-d periods): 1 =day of supplementation; mean =average of all samples
~C and X1, sampled on d 1; X4, sampled on d 1 and 4; X8, sampled on d 1, 4, and 7).
The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in

r,eriod 12.
Supplementation frequency: C =no supplementation; X1 =daily supplementation; X4 =

supplementation every fourth day; X8 = supplementation every eighth day.
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Table 16. Effects of day of the period on plasma glucose (mg/dL) in Angora does

supplemented every 4 or 8 days.

Supplementation Production Day of the period3 Litter size

frequency1 state2 1 4 7 SE 1 2

X4 . Gestation 54.58 65.2b 3.76 64.3 55.4
Lactation 38.8 34.0 5.07 40.5 32.3

Gestation 64.5b 57.2b 38.38 2.54 55.4 51.3

Lactation 38.3b 29.88 93.9c 3.20 52.8 55.2

SE

4.50
5.10

1.80

3.10
8,b'CMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C = no supplementation; X1 = daily supplementation;
X4 =supplementation every fourth day; X8 =supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling in
~eriod 12.
X4 does, were supplemented on d 1 and 4, and X8 does were supplemented on d 1, 4, and 7 of

the 8-d period.



Table 17. Effects of supplementation frequency, litter size, and production state on

plasma NEFA (IJEq/L) concentration in Angora does.

Production Supplementation frequency3 Litter size

state2 c X1 X4 X8 SE 1 2 SE

Day 1 Gestation 697b 469a 450a 398a 63.5 411 a 596b 44.9

Mean

Lactation 638

Gestation

767 878 811 75.1

62.9

837 710 66.8

44.5

Lactation 638 766 911 811 72.1 847 716 50.8

a,bMeans in a row without a common superscript letter differ (P < 0.05).
10ay (8-d periods): 1 = day of supplementation; mean = average of all samples
~C and X1, sampled on d 1; X4, sampled on d 1 and 4; X8, sampled on d 1,4, and 7).
The experiment consisted of 15 8-d periods; gestation: sampling in period 4;

lactation: sampling in period 12.
3Supplementation frequency: C = no supplementation; X1 = daily supplementation;
X4 =supplementation every fourth day; X8 =supplementation every eighth day.



Table 18. Effects of day of the period on plasma NEFA concentration (J,JEq/L) in Angora does

supplemented every 4 or 8 days.

Litter sizeSupplementation Production

frequency1 state2

Day of the period3

1 4 7 SE 1 2 SE

56.053255966.5450 641

X8

X4 Gestation

Lactation

Litter size 1 998 867 205

Litter size 2 705a 937b 181

Gestation 404 454 522 41.2 407a 667b 45.5
Lactation 803 857 795 102.0 870 766 92.5

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C =no supplementation; X1 =daily supplementation;
X4 =supplementation every fourth day; X8 =supplementation every eighth day.
2The experiment consisted of 15 8-d periods; gestation: sampling in period 4; lactation: sampling
in period 12.
3X4 does were supplemented on d 1 and 4, .and X8 does were supplemented on d 1, 4, and 7
of the 8-d period.



Table 19. Effect of supplementation frequency, litter size, and production state

on plasma serine concentration (IJmol/mL) in Angora does.

Production Supplementation frequency1

state Litter size C X1 X4 X8 SE

Gestation 1 1448 1568 361 b 174a 46.9

2 178 163 157 191 42.7

Lactation 1 144 157 264 172 24.1

2 178 161 169 152 21.3
\0
w

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Supplementation frequency: C =no supplementation;
X1 =daily supplementation; X4 =supplementation every fourth day;
X8 =supplementation every eighth day.



Table 20. Effects of supplementation frequency, litter size, and production state

on skin follicle growth characteristics in Angora does.

Supplementation frequency2 Litter size
Day1 C X1 X4 X8 SE 1 2 SE

Apparent total
follicle density, no./mm2

Day 0-57 23.9 24.4 ,26.5 24.2 1.32 25.8 23.6 0.929
Day 58-120 26.8 26.7 28.8 29.6 1.46 29.1 26.8 1.01

10 follicle activity, 0/0

Day 0-57 97.2 97.3 98.2 97.3 1.76 98.2 96.9 1.21
Day 58-120 95.5 99.5 98.7 99.8 1.47 99.3 97.4 1.03

2° follicle activity, 0/0
Day 0-57 98.6 98.8 98.7 93.8 3.25 99.0 96.0 2.15

'-0 Day 58-120 92 98.6 98.0 98.4 3.34 99.0 94.6 2.21~

Primary:secondary ratio
Day 0-57 6.95 7.04 7.30 6.84 0.300 7.27 6.79 0.212
~ 58-120 6.60 7.20 7.02 7.55 0.312 7.35 6.83 0.219

Approximately one-half of the does had kidded on d 57.
2Supplementation frequency: C =no supplementation; X1 =daily supplementation;
X4 = supplementation every fourth day; X8 =supplementation every eighth day.



Table 21. Effects of supplementation frequency, litter size, and production station on fiber growth characteristics

in Angora does.

Supplementation frequency2
C X1 X4 X8 SE

Litter size
1 2 SE

Clean fiber growth rate of
patch, g/(100 cm2'd)

Day 0-57

Day 58-120
Clean yield of patch, 0/0

Day 0-57
Day 58-120

Fiber diameter of patch,
IJrn

0.065

0.061 a

77.3
82.5

0.061

0.089b

63.3
82.8

0.060

0.060a

74.5
74.5

0.070

0.079ab

78.1
78.1

0.007

0.009

3.65
6.00

0.062

0.070

77.6
80.8

0.066

0.074

69.0
81.0

0.006

0.006

2.45
4.20

~ Day 0-57 31.3 32.0 25.7 31.5 5.55 31.5 28.7 3.89
Day 58-120 49.9 59.0 56.4 56.1 4.41 55.1 55.6 4.80

Clean staple strength of
fleece, N/ktex 66.3 83.4 57.2 80.7 7.35 70.3 73.5 5.24

a,bMeans in a row without a common superscript letter differ (P < 0.05).
1Approximately one-half of the does had kidded on d ,57.
2Supplementation Frequency: C =no supplementation; X1 =daily supplementation; X4 =supplementation
every fourth day; X8 =supplementation every eighth day.



Figure 1. Effect of supplementation frequency, litter size, and production

state on plasma aspartate concentration (Jjmol/mL) in Angora does. 1
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1C = no supplementation; X1 = daHy supplementation; X4 =
supplementation every fourth day; X8 = supplementation every
eighth day; LS1 = does with single kids; LS2 =does with twins;
1 = day of supplementation within an 8-d period; mean = mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 2. Effect of supplementation frequency, litter size,

and production state on plasma glycine concentration (J,Jmol/mL)

in Angora does. 1
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1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 =day of supplementafon within an 8-d 'period; mean = mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 3. Effect of supplementation frequency, titter size,

and production state on plasma tyrosine concentration (IJmol/mL)

in Angora does. 1

1C =no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 = supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 = day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).

98



Figure 4. Effect of supplementation frequency, litter size, and production

state on plasma glutamine concentration (IJmol/mL) in Angora does. 1
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a,bColumns in a production state without a common superscript letter differ
(P < 0.05). .
1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 5. Effect of supplementation frequency, litter size,

and production state on plasma serine concentration (IJmol/mL)

in Angora does. 1
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a,bColumns within a production state without a common superscript letter
differ (P < 0.05).
1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 6. Effect of supplementation frequency, litter size,

and production state on plasma alanine concentration (Jjmol/mL)

in Angora does. 1
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a,bColumns within a production state without a common superscript letter
differ (P < 0.05).
1C =no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 = does with single kids; LS2 = does with twins;
1 = day of supplementation within an 8-d period; mean = mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 7. Effect of supplementation frequency, litter size,

and production state on plasma arginine concentration (IJmol/mL)

in Angora does. 1
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a,bColumns within a production state without a comnlon superscript letter
differ (P < 0.05).
1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids;LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 8. Effect of supplementation frequency, litter size,

and production state on plasma threonine concentration (IJmol/mL)

in Angora does. 1
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1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 9. Effect of supplementation frequency, litter s'ze,

and production state on plasma valine concentration (IJmollmL)

in Angora does. 1
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1C =no supplementation; X1 =daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 10. Effect of supplementation frequency, litter size,

and production state on plasma methionine concentration (JJmol/mL)

in Angora does. 1

35,-<

~ 30
o
E 25
::l.
"-' 20
Q)
c
'c 15
o
:.c 10..-
~ 5

o

35
~- 30
o
E 25
:::l.
"-' 20
Q)
c
'c 15
o:c 10..-
~ 5

o

Gestation

Gestation

Production state

Day 1

Production state

Mean

Lactation

Lactation

DC

~' X1

X4

X8

~LS1

~LS2

DC

III X1

X4

X8

~LS1

~LS2

1C =no supplementation; X1 =daily supplementation; X4 =
supplementation every fourth day; X8 = supplementation every
eighth day; LS1 =does with single kids; LS2 = does with twins;
1 = day of supplementation within an 8-d period; mean = mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 11. Effect of supplementation frequency, litter size,

and production state on plasma phenylalanine c,oncentration

(J-Imol/mL) in Angora does.1
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1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fou·rth day; X8 =supp~lementation every
eighth day; LS1 = does with single kids; LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 12. Effect of supplementation frequency, litter size,

and production state on plasma isoleucine concentration

(J,Jmol/mL) in Angora does. 1
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1C =no supplementation; X1 =daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 =does with single kids; LS2 =does with twins;
1 =day of supplementation within an 8-d period; mean = mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8)! and d 7 (X8).
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Figure 13o Effect of supplementation frequency, litter size,

and production state on plasma leucine concentration

(Jjmol/mL) in Angora does. 1
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1C =no supplementation; X1 =daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 = does with single kids; LS2 = does with twins;
1 =day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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Figure 14. Effect of supplementation frequency, litter size,

and production state on plasma lysine concentration

(~mol/mL) in Angora does. 1
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1C = no supplementation; X1 = daily supplementation; X4 =
supplementation every fourth day; X8 =supplementation every
eighth day; LS1 = does with single kids; LS2 = does with twins;
1 = day of supplementation within an 8-d period; mean =mean of
samples taken on d 1 (all treatments), d 4 (X4 and X8), and d 7 (X8).
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CHAPTER 4

EFFECTS OF LENGTH OF NUTRIENT RESTRICTION AND LEVEL OF
REALIMENTATION ON GROWTH OF YEARLING SPANISH AND BOER X

SPANISH DOELINGS

ABSTRACT: Twenty-five yearling Spanish (8) and 25 yearling Boer x Spanish

(88) crossbred doelings were used in a 16-wk experiment. The objective was to

test the effect of length of f~ed restriction and realimentation periods and level of

supplementation during realimentation on growth, ruminal and blood

constituents, digestibilities, and N balance. Doel.ings were assigned to five

groups: C =control, daily supplementation with 0.75% BW of concentrate

mixture; H-28 =sequential 28-d periods of no supplementation and daily

supplementation with 1.50% BW of concentrate mixture; L-28 = sequential 28-d

periods of no supplementation and daily supplementation with 0.75% BWof

concentrate mixture; H-56 = sequential 56-d periods of no supplementation and

daily supplementation with 1.5°;6 BW of concentrate mixture; and L-56 =

sequential 56-d periods of no supplementation and supplementation with 0.75%

BW of concentrate mixture. Growth subsequent to feed restriction was influenced

by length of feed restriction and realimentation. Body weight on d 28 was similar

among treatments (P :> 0.05). However, BW on d 56, 84, and 112 was affected

by interactions between dietary treatment and genotype, with generally greater

impact of dietary treatment on BW of BS doelings. Body weight at the end of the

experiment was greater for BS vs S doelings, with no treatment differences

among S doelings and lower BW forH-28, L-28, and L-56 vs CBS doelings.

Forage intake by C doelings was fair.ly constant as the experiment progressed.
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(e.g., dietary protein and energy concentrations), lengths of feed restriction and

realimentation periods, and breed and age of the animal.

It has been speculated that some indigenous goats of Africa and the

Middle East (e.g., black Bedouin) have lower energy requirements for

maintenance relative to metabolic size compared with improved genotypes such

as Saanen goats (Silanikove, 2000). Restricted feeding or low nutritional planes

decrease the metabolic rate and maintenance energy requirement (Hornick et aI.,

2000). Silanikove (2000) postulated that goat genotypes may vary in the ability to

minimize maintenance energy needs with low energy intake, although this area

has not been extensively studied. Likewise, potential differences among

genotypes in realimentation response have not been explored. In this regard, the

number of Boer goats and Boer crossbreds being raised for meat in the US is

increasing; however, numbers of the indigenous Spanish goat are still

appreciable. Therefore, objectives of this experiment were to determine effects

on growth performance by yearling Spanish and Boer x Spanish doelings of

different lengths of nutrient restriction and level of realimentation.

Materials and Methods

Animals and Treatments

Twenty-five Spanish and 25 Boer x Spansh doelings (20.9 ± 0.55 and 27.0

± 0.55 kg initial BW, respectively; approximately 12 ma af age) were used in a

16-week experiment. Doelings were placed in 50 individual pens (1.23 x 0.92 m)

with an expanded metal floor, and adjusted to diets and experimental conditions

for 2 weeks. All animals had free access to fresh water via nipple-waters and
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were dewormed on January 26, and February 6,2001 (5 cc Cydectin; Merck Ag

Vet Division, Rahway, NJ) and vaccinated on February 9 and March 23, 2001

against Clostridium perfringens type C and 0 and tetanus toxoid (Colorado

Serum Co., Denver, CO). Body weight was measured 1 week prior to the start of

the experiment for allocation to treatments, and w,as measured again when it

began. There were 10 doeJings, 5 Spanish and 5 Boer x Spanish, allocated per

treatment for similar mean BW and variation in BW among dietary' treatment­

genotype combinations.

The treatment arrangement was a 2 x 2 + 1 factorial, with a control, two

daily levels of supplementation, and two lengths of periods with and without

supplementation. Treatments are outlined in Table 1. All doelings consumed

prairie hay (Table 2) offered at approximately 110% of intake on the preceding

few days. Control doelings were supplemented daily with 0.75 % 'BW of a

concentrate mixture. The L-28 and H-28 treatments entailed no supplementation

in weeks 1-4 and 9-12 and concentrate supplementation in weeks 5-8 and 13-16

at 0.75 and 1.5% BW (OM), respectively. The L-56 and H-56 doelings were not

supplemented in weeks 1-8 but were given concentrate in weeks 9-16 at 0.75

and 1.50/0 BW (DM), respectively. Supplementation amounts were adjusted every

4 weeks based on BW. The supplemental concentrate mixture consisted (DM

basis) of 20% ground corn, 20% ground oats, 20% wheat middlings, 20%

soybean meal, 6.67% -molasses, 5.33°A> fish meal, 4°A> blood meal, and 4°J'c>

feather meal. Chemical composition is shown in Table 2.
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Concentrate was fed first followed by hay. Concentrate consumption was

complete on nearly all days. Hay refusals were collected and weighed daily

before feeding concentrate. Because of the bulkiness of hay, as hay intake rose

the number of times hay was offered each day was increased to two then three.

A vitamin-mineral supplement, consisting of 23.3% dicalcium phosphate, 37%

vitamin premix (2, 200, 000 IU/kg vitamin A; 1, 100, 000 IU/kg vitamin D; and 2,

200 IU/kg vitamin E), and 39.7% trace mineralized salt, was top-dressed on hay

at a rate of 0.050/0 BW.

Sampling and Laboratory Analyses

BW and Feed. Body weight was measured weekly before feeding.

Feedstuffs were grab sampled once weekly in weeks 1,2,4,5,6,8,9, 10, 12,

13,14, and 16. In weeks 3,7,11, and 15 (digestibility and N balance period),

feed and ort sampl"es were collected daily and subsampled (10%
) to form

composite samples. All samples were refrigerated until analyses. Prairie hay and

concentrate samples were analyzed for DM, ash (AOAC, 1990), CP (Technicon

Instrument Co., Tarrytown, NY), NDF, ADF, ADIA (filter bag technique of

ANKOM Technology Corp., Fairport, NY; Van Saest et aI., 1991), and ADL (filter

bag technique; ANKOM Technology Corp., Fairport, NY).

Blood and Ruminal Fluid. Blood was collected weekly after determining

BW. Blood was collected using 22 gauge, 2.5-cm long needles by jugular

venipuncture into two 10-mL vacutainers (Becton Dickinson, Franklin Lakes, NJ)

containing heparin. Following collection, samples were chilled in ice for

approximately 1 h and centrifuged (J-68 Centrifuge; Beckman Instruments, Inc.
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Fullerton, CA) at 2,400 x g for 25 min at 4°C. After centrifuging, approximately 3

mL of plasma was withdrawn using a pipette and divided into two 1.5-mL micro

centrifuge tUbes (Fisher Scientific, Pittsburgh,PA) and stored below -20°C until

analyses. These samples were analyzed for NEFA with a commercial kit using

an enzymatic colorimetric procedure (Wako Pure Chemical Industries,

Richmond, VA) and urea N (Technicon Instrument Co., Tarrytown, NY).

During week 3, 7, 11, and 15, ruminal fluid samples were collected and

analyzed for ammonia N by the phenol-hypochlorite colorimetric procedure of '

Broderick and Kang (1980) and VFA concentration was analyzed by gas

chromatography as described by Lu et al. (1990).

Feces and Urine. Of the 50 animals in the experiment, 30 were used for

digestibility and N balance determinations on the last 4 d of week 3, 7, 11, and

15. The individual pens were fitted with urine funnels placed below wire screens

to collect urine. Feces was collected at the same time when feed refusals were

sampled, with 10% aliquots taken to form a composite for each week of

sampling. Urine was collected into containers with 20 mL of 20% (vol/vol) H2S04 .

Because some fecal pellets were not caught on the wire screens, the composite

sample was used for analysis of an internal, inert marker (i.e., acid detergent

insoluble ash or ADIA; filter bag technique of ANKOM Technology Corp.,

Fairport, NY; Van Soest, et aI., 1991) to estimate fecal output. Feces were

analyzed for OM, ash (AOAC, 1990), N (Technicon Instrument Co., Tarrytown,

NY), NDF, and ADF (filter bag technique; ANKOM Technology Corp., Fairport,

NY). Urine was analyzed for N (Technicon Instrument Co., Tarrytown, NY).
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Statistical Analysis

Data were analyzed using Proc Mixed of SAS (SAS Inst. Inc., Cary, NC.

The model consisted of dietary treatment, genotype, and their interaction, with

the random factor of animal. Body weight at the start of the experiment was used

as a covariate for BW, ADG, and the ratio of ADG:DM intake. Data in each 28-d

period was analyzed separately. Treatment means were separated by least

significant difference when overall F-values were significant (P < 0.05). Main

effect means for dietary treatment and breed were presented in tables when the

dietary treatment x breed interaction was nonsignificant and when a significant

difference in main effects existed.

Results

AnimalPerlormance

Dry Matter Intake. Forage intake was generally greater for doelings when

not supplemented with concentrate (Table 3 and Figure 1). During realimentation

periods, 56-d restricted H supplemented 88 doelings consumed less hay than C,

whereas L supplemented doelings consumed similar amounts~ These differences

were, however, more evident in the first half of realimentation for doelings

restricted for 56 d than in the second 28 d, and also in the first vs second

realimentation period for 28-d restricted doelings. Total feed consumed was

greater for the H vs Land C treatments during realimentation periods for the 56­

and 28-d restricted BS doelings (Figure 2). Boer x Spanish doelings had greater

total, concentrate, and hay DM intakes compared with S in all periods except for

d 1-28.
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Body Weight. Body weight on d 28 was similar among treatments (P >

0.05; Table 4). However, BW on d 56,84, and 112 was affected by interactions

between dietary treatment and genotype, with generally greater impact of dietary

treatment on BW of Boer x Spanish (88) doelings (Table 4 ain,d F,igure 3). One of

the factors contributing to these interactions was BW of C goats relative to other

treatments. Body weight of the BS doelings was greater (P < 0.05) or tended to

be greater for C than for other treatments. Conversely, in all but one instance S

C doelings had BW similar to other treatments. On d 56, BW was greater for BS

C doelings vs H-56, L-56, and L-28 (P < 0.05) but was similar to H-28 (P > 0.05).

Body weight for S doelings was lowest for L-56 on d 56, but similar among other

treatments. On d 84, BW of BS C doelings was greatest among treatments (P <

0.05), although there were no treatment differences for S doelings. Body weight

on d 112 was similar between C and H-56 and greater for C than for H-28, L-28,

and L-56 (P < 0.05).

Average Daily Gain. There were no treatment differences in ADG

between d 1 and 28 (Table 5). Average daily gain from d 29 to 56 was similar

between the 28-d restricted and C groups; however, ADG was lowest among

treatments for H-56 and L-56. On d 57 to 84, ADG for BS was lowest among

treatments for H-28 and L-28 and similar among C, H-56, and H-28. For the S

doelings, the only significant difference in ADG from d 57-84 was a greater value

for H-56 vs C (P < 0.05). In the last 28 d of the experiment, ADG was lower for C

than for L-28, H-56, and L-56 (P < 0.05). Figure 4 depicts the generally more

consistent ADG among 28-d periods by C compared with other treatments.
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Likewise, ADG for H-28 and L-28 varied with 28-d period less than did ADG for

H-56 and L-56.

Average Daily Gain:DM Intake. Gain efficiency was not different between

breeds or among treatments between d 1 and 28 (Table 6 and Figure.S). It was,

however, greater from d 29 to 56 fore, H-28, and L-28 vs 56-d restricted

doelings (P < 0.05). Gain efficiency on d 57-84 was similar among treatments for

S doelings, but for BS it was lowest among treatments for H-28 and L-28 (P <

0.05). On d 85-112 ADG:DM intake was greater for H-56, L-56, and L-28 than for

C (P <0.05) and similar between H-28 and C.

Digestibility and Nitrogen Balance

Apparent total tract DM digestibility (g/d) on d 1 to 28 was similar among

all BS dietary treatments, except H-28 that was lower and L-28 that was

intermediate in comparison to C (Table 7). Between d 29 and -56, DM digestion

(g/d) for BS was lower_(P < 0.05) for the 56-d restriction treatments than for C

and 28-d restriction treatments. For S doelings, OM digestion (g/d) was lower (P

< 0.05) for C vs H-28, L-28, and H-56, but was similar for C vs L-56. There were

no treatment and breed differences between d 57 to 84. Apparent total tract DM

digestibility (0/0) was lowest for L-28 and highest for H-56 between d 85 and 112,

with H-28 and L-56 intermediate in comparison with C.

Nitrogen digestion (g/d) was lower (P < 0.05) for doelings during restriction

periods compared with C and was generally similar to values for C during

realimentation periods (Table 8). However, there were no dietary treatment

differences between d 85 and 112, although mean values were greater for BS vs
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S doelings (P < 0.05). Nitrogen digestion (g/d) during the first half of the

realimentation period for the 56-d restricted doelings was greater (P < 0.05) for

the H vs L level of supplementation.

Organic matter digestibility (%) was similar among treatments on d 1 to 28

(Table 9). On d 29 to 56, OM digestion (%) was greater (P < 0.05) for C, H-28,

and L-28 than for H-56 and L-56. Similarly, on d 57 to 84 OM digestion (0/0) was

greater for C, H-56, and L-56 .compared with H-28 and L-28 (P < 0.05). Between

d 85 to 112, OM digestibility (%) was lower for H-28, L-28, and L-56 vs H-56 (P <

0.05), and intermediate (P < 0.05) for C.

Neutral deterg.ent fiber digestibility (%) was not different among treatments

in any of the four periods (Table 10). For the BS doelings NDF digestion (g/d)

was lowest for H-28 between d 29 and 56, but for the S doelings it was lowest for

C (P < 0.05).

As designed, N intake was greater when concentrate supplement was

given and varied with level of supplementation (Table 11 and Figure 6). On d 18

to 21, urinary N excretion was greatest among treatments for C and lower for L­

28, H-56, and L-56 than for H-28 (P < 0.05). Low urinary N excretion for L-28, H­

56, and L-56 corresponds to high percentage N retention compared with C (P <

0.05). Urinary N excretion (g) and N retained (0/0) on d 46 to 49 were, however,

similar among treatments. Percentage N retention on d 74 to 77 and 102 to 105

was similar among treatments as well.
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Metabolite Status

Urea N. Urea N concentration on d 28 was, as expected, greatest among

treatments for C (P < 0.05; Table 12). Similarly, on d 56 urea N concentration

ranked (P < 0.05) H-28 > C and L-28 > H-56 and H-28. On d 84 and 99, BS

doelings had higher urea N concentration than S. For BS doelings, urea N

concentration was lowest among treatments for H-28 and L-28 and greater for H­

56 vs C and L-56 (P < 0.05). For S, urea N concentration was greatest for H-56

(P < 0.05). Dietary treatment did not influence urea N level on d 99. Figure 7

depicts greater differences among sampling levels in urea N concentration in the

second vs first half of the experiment, in general accordance with .

supplementation with concentrate (Le., greater with than without) and

concentrate level (greater for H vs L).

NEFA. There were no dietary treatment or breed differences in plasma

NEFA concentration on d 28 or 99 (Table 12). In agreement with BW and ADG

data, NEFA concentration was greater among treatments on d 56 for H-56 and L­

28 (P < 0.05). Values on d 84 were consistently greater than on other days.

Nonetheless, NEFA concentration was greater for H-28 and L-28 than for C, H­

56, and L-56 (P < 0.05).

Ruminal Ammonia Nitrogen. During both 28- and 56-d restriction

periods, ruminal ammonia-N levels for unsupplemented doelings were less (P <

0.05) than for C (Table 12 and Figure 8). When restriction treatment doelings

were supplemented, ruminal ammonia N concentration was simi'lar to C, except

for a greater concentration for BS H-56 doelings on d 79 (P <0.05). Figure 8
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shows slightly greater ruminal ammonia N concentration in the first 28 d of

realimentation compared with the second.

Discussion

AnimalPerlormance

Overall growth subsequent to feed restriction was influenced by length of

feed restriction and realimentation and breed type. Loss of BW during feed

restriction, as for H-56 and L-56 primarily in the second 28 d of the 56-d

restriction period, has been noted in many other reports. For example,

Kamalzadeh et al. (1998) withdrew concentrate supplement from growing lambs

and noted a decrease in BW. Hornick et al. (1998) noted that bulls fed diets low

in energy and protein lost BW·with increasing ,length of feed restriction. Sahlu et

al. (1999) reported a decrease in BW of goats when feed intake was restricted.

Interactions between dietary treatment and genotype in ADG and BW

suggest that growth of S doelings may be slightly less impacted by periodic

changes in nutritional plane than that of BS do~lings. In this regard, Silanikove

(2000) suggested that goats indigenous to harsh environments are less

susceptible to changes in quality and quantity of food supply and have lower

nutrient requirements for maintenance vs improved genotypes. This difference

may also be attributed to greater growth potential of BS doelings (Cameron et aI.,

2001), with generally greater ADG, ADG:DM intake, and total and hay intakes vs

S.

Despite the lack of appreciable changes in BW for 28-d restricted S

doelings compared with 56-d restriction treatments, there were tendencies for
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greater ADG, total feed intake, and efficiency of gain during real"mentation

compared with C. In this regard Hornick et al. (2000) suggested that short-term

underfeeding, without loss in BW, could induce adaptive mechanisms that allow

nutrients to be spared for vital functions (Noziere et aI., 2000).

Associated with decreased ADG during feed restriction was lower

ADG:DM intake for H-28 and L-28 BS doelings on d 57 to 84 and for H-56 and L­

56 of both breeds on d 29 to 56. A similar response was reported by Hornick et

al. (1998) with cattle restricted for 411 d, with less efficient feed conversion

compared with cattle restricted for 115 or 239 d. Average daily gain and feed

efficiency of the 56-d restricted doelings increased at a faster rate during the first

4 wk of realimentation than the second; however, ADG was higher during the

second than first 28 d of realimentation. Contrary to findings of this experiment,

Yambayamba et al. (1996) reported that after 95 d restriction, heifers had greater

ADG in the first half of realimentation vs the second.

Numerically greater forage intake for doelings when not supplemented

with concentrate compared with e,and greater forage intake during restriction vs

realimentation periods, are similar to findings of Goetsch and Aiken (1999) in

which nonsupplemented sheep consumed more hay than when supplemented.

Likewise, for 56-d restricted doelings supplementation at 1.5°/0 BW resulted in

lower hay intake compared with supplementation at 0.750/0 BW. This reflects

substitution of supplement for hay, as also noted by Huston et al. (1999).

In summary of BW gain and ADG data, perhaps because of lower nutrient

requirements growth and development of yearling S doelings appear less
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susceptible to restricted nutritional planes than with BS doelings. Concomitantly,

neither lengths of restriction and realimentation periods nor level of

supplementation impacted S BW. Conversely, 28-d periods of restricted

nutritional plane for BS either resulted in loss of, or no change in, BW that were

not compensated for in subsequent 28-d realimentation periods regardless of

supplementation level, suggesting a greater importance of the length of

realimentation period. Because the magnitude of compensation is generally

proportional to intensity of previous growth restriction (Horton and Holmes, 1978;

Coleman and Evans, 1986; Hornick et aI., 2000), this may have been due to the

relatively short period of nutrient restriction. -

Level of supplementation during realimentation influenced BW of BS with

a limited nutritional plane for 56 d. The H level of supplementation for the

subsequent 56 d was adequate for compl,ete recovery of BW lost in the previous

56 d, with overall BW gain and final BW similar to that for C; whereas, the L

supplementation level only allowed for final BWsimilar to that at the start of the

experiment. Hence, the 56-d period was sufficient for expression of

compensatory growth, but a relatively high level of supplementation was required

to attain BW comparable to that of BS doelings continuously on a moderate to

high nutriti·onal plane.

These findings do not support the aforementioned postulate that periods

of low nutritional plane markedly lower overall nutrient requirements or enhance

efficiency of metabolism. Although, as evidenced by BW gain for S doelings, with

little change in BW during periods of low nutritional plane, the severity of nutrient
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restriction employed in this experiment by use of prairie hay was not great.

Further experimentation with lower quality basal forage seems warranted.

Digestibility

Treatment differences in apparent total tract N digestion largely reflect

differences in N intake due to supplementation, along with metabolic fecal N

excretion that varies with OM intake. Similarly, OM digestion was generally

greater with than without concentrate supplementation and for the H vs L level,

because of greater potential digestion of concentrate than forage. Increased

ruminal microbial degradation of forage responded to increased amino acid

availability for concentrate supplementation than without and for H vs L

supplementation, with similar results reported by Patil et al. (1996).

Nitrogen Balance

The 28- and 56-d restricted doelings exhibited a decrease in N excretion

and an increase in percentage N retention during restriction periods (except-for

H-28) compared with C. Measures for H-56 and L-56 reflect an increase in

percentage N retention and decrease in urinary N excretion with increasing

duration of restriction. Subject to type and level of restriction, e.g., energy vs

protein restriction (Drouillard et aI., 1991) and level of feed intake (Sahlu et aI.,

1999), compensatory growth is characterized by a relatively greater increase in

protein synthesis than degradation (Hornick et aI., 2000), resulting in increased

protein accretion and decreased nitrogen excretion as found in this experiment

and with cattle in previous studies (Jones et aI., 1990; Van Eenaeme et aI.,

1998).
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Urea Nitrogen

Greater urea N levels for H-28 vs C and L-28 can be attributed to the ,high

level of supplementation. Similar findings were reported by Hays et al. (1995} in

which urea N levels in cattle increased linearly as dietary CP concentration in the

realimentation diet increased.

Urea N levels for restriction treatments coincided with periods of restriction

and concentrate supplementation. For H-56 and L-56, urea N levels were slightly

greater after 28 vs 56 d of realimentation. Similar results were found by

Yambayamba"et al. (1996), with cattle restricted for 95 d having greater urea N

levels than ones not restricted in the first half of realimentation but not later.

NEFA

Concentrations of NEFA greater during nutrient restriction than

realimentation are indicative of lipolysis. Similarly, Yambayamba et al. (1996)

found greater NEFA concentrations for cattle restricted for 95 d than during

periods of realimentation.

Implications

The low nutritional plane imposed by consumption of prairie hay for 28 or

56 d was insufficient to markedly retard development of Spanish doelings.

Hence, level of concentrate supplementation during realimentation had little or no

effect on Spanish BW change. Yearling Spanish doelings may have lower

nutrient requirements than Boer x Spanish doelings and may be less susceptible

to periods of low nutritional planes. Realimentation periods of 28 d were

inadequate for Boer x Spanish doelings to regain BW lost during 28-d nutrient
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restriction periods, suggesting that longer perliods of low nutritional plane and(or)

realimentation are necessary for growth compensation. Nutrient restriction for 56

d caused an appreciable loss of BW by Boer x Spanish doelings. A high level of

concentrate supplementation was necessary to achieve BW after the 56-d

realimentation period similar to that of doelings continuously receiving a low level

of supplementation, although the low level of concentrate was adequate for BW

comparable to that at the beginning of the experiment. Therefore, it appears that

meat goat doelings with moderate to high mature size and(or) growth potential,

such as the Boer x Spanish, are prone to adverse effects on BW of periods of

low nutritional plane. Lengthy nutrient restri.ction may require relatively long

periods of high nutritional planes for appreciable compensatory growth.
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Table 3. Effects of length of feed restriction and realimentation and level of supplementation during

realimentation on OM intake (g/d) by yearling Spanish and Boer x Spanish doelings.

Dietary treatment1,2

Item Day Breed2,3 C H-28 L-28 H-56 L-56 SE
Forage intake 1-28 BS 4446 535cd 506c 550d 606e 12.1

S 372a 597e 559d 603e 516c

29-56 BS 440d 315b 482e 556f9 536f 10.8
S 278a 362c 390c 5699 538f

57-84 BS 569d 464bC 604de 44gb 579de 14.0
S 330a 617e 498e 333a 568d

85-112 BS 64ge 541 c 568c 610d 652e 13.1
S 322a 660e 537c 432b 655e

Concentrate
~ intake 1-28 BS 233c Oa Oa Oa Oa 0.8w
~

S 183b 08 08 Oa Oa

29-56 BS 234c 452e 228c Oa Oa 2.0

S 184b 368d 186b Oa Oa

57-84 BS 23Sd Oa Oa 460f 226c 2.1
S 185b Oa Oa 380e 181 d

85-112 BS 239b 464e 237b 461 e 240b 2.7
S 190a 390d 194a 381 d 190a

Total OM
intake 1-28 BS 677f 535ab 506a 550b 606e 12.0

S 555b 597c 559b 603d 516a

29-56 BS 674d 767f 711 e 556bc 536b 10.8
S 4628 730e 576c 569c 538b

57-84 BS 803f 464a 604d 9109 80Sf 14.1
S 514c 617d 498bC 713e 74ge



Dietary treatment1
,2

Item Day Breed2
,3 C H-28 L-28 H-56 L-56 SE

85-112 BS 888e 1,OOSf 804c 10689 . 891 e 13.7
S 510a 1 051 9 72gb 811 cd 843d,

a,O,c,d,e,f,9Means within a breed-dietary treatment grouping without a common superscript letter
differ (P < 0.05).
10ietary treatment: C = control, daily supplementation with 0.750/0 BW of concentrate mixture;
H-28 =sequential 28-d periods of no supplementation and daily supplementation with 1.50%
BW of concentrate mixture; L-28 =sequential 28-d periods of no supplementation and daily
supplementation with 0.75% BW of concentrate mixture; H-56 = sequential 56-d periods of no
supplementation and daily supplementation with 1.50/0 BW of concentrate mixture; L-56 =
sequential 56-d periods of no supplementation and supplementation with O.75°~ BWof
concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant
dietary treatment x breed interaction.
38 =Spanish; B8 =Boer x Spanish.



Table 4. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on BW (kg) of Spanish and Boer x Spanish

doelings.

Dietary treatment1,2

Day

28

56

84

112

Breed2
,3 C H-28 L-28 H-56 L-56

BS 26.2 24.8 23.8 25.0 23.9
S 24.1 24.1 24.2 24.6 23.8

BS 26.ae 25.7de 24.9cd 23.2abc 21.3a

S 24.2bCd 24.4bcd 24.0bcd 23.3abc 22.7ab

BS 29.4c 25.6ab 25.2ab 26.9b 24.5a

S 24.9ab 25.3ab 24.8ab 25.1 ab 24.6ab

BS 31.3c 27.9b 27.5ab 29.9bc 27.5ab

S 25.2a 25.9ab 26.3ab 26.9ab 26.4ab

SE

0.57

0.67

0.79

0.81

a,b,c,d,eMeans within a breed dietary treatment grouping without a common
superscript letter differ (P < 0.05). .
1Dietary treatment: C =control, daily supplementation with 0.750/0 BWof
concentrate mixture; H-28 = sequential 28-d periods of no supplementation and
daily supplementation with 1.50% 'BW of concentrate mixture; L-28 = sequential
28-d periods of no supplementation and daily supplementation with 0.75% BW of
concentrate mixture; H-56 = sequential 56-d periods of no supplementation and
daily supplementation with 1.5% BW of concentrate mixture; L-56 = sequential
56-d periods of no supplementation and supplementation with 0.75% BWof
concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a
nonsignificant dietary treatment x breed interaction;
3S =Spanish; BS = Boer x Spanish.



SEL-56Mean SE C H-28 L-28 H-56Breed2,3Day

Table 5. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on ADG (g) by yearling Spanish and Boer x Spanish doelings.

Breed Dietary treatment1
,2

1-28 BS
S

36 5 1 29
8 21 17 32

-23
6

16.0

29-56

57-84

BS -5 0 24 -73 -74 15.5
S -8 -17 -3 -29 -57
Mean _6b _9b 11 b -51 a -658 10.9

BS 77cd 18 28 100d 104d 15.1
S 28ab 298b 43abc 48bc 57bc

85..112 BS 85 5.8 62 77 83 103 99 12.7
S 49 16 28 58 70 71
Mean 398 53ab 71 bc 87c 85c 8.9

a,b,c,dMeans within a breed dietary treatment grouping without a common superscript letter differ
~p < 0.05).
Dietary treatment: C = control, daily supplementation with 0.750/0 BW of concentrate mixture; H-28 =

sequential 28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate
mixture; L-28 =sequential 28-d periods of no supplementation and daily supplementation with 0.75 % BW
of concentrate mixture; H-56 =sequential 56-d periods of no supplementation and daily supplementation
with 1.5% BW of concentrate mixture; L-56 =sequential 56-d periods of no supplementation and
supplementation with 0.750/0 BW of concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant dietary
treatment x breed interaction.
38 =Spanish; BS = Boer x Spanish.



Table 6. Effects of length of feed restriction and realimentation and level of supplementation during

realimentation on ADG:DM intake (g/kg) in yearling Spanish and Boer x Spanish doelings.

Day

1-28

Breed2,3

BS
S

Breed Dietary treatment1
,2

Mean SE C Day Breed2
,3 Mean

47 5 -4 41
9 33 22 45

SE
-38
18

c
26.5

29-56

57-84

BS -7 -2 38 -146 -139 29.4
S -21 -26 -12 -49 -112
Mean -14b -14b 13b -98a -126a 20.7

BS 98cd -11 ab -20a 112cd 129d 25.4
S 63bc 49abc 90ed 78cd 76cd

85-112 BS 104 9.7 71 103 115 123 112 21.0
S 70 36 24 83 122 88
Mean 548 63ab 99be 122c 100bc 14.8

a,b,c, dMeans within a breed dietary treatment grouping without a common superscript letter differ (P < 0.05).
1Dietary treatment: C =control, daily supplementation with 0.75% BW of concentrate mixture; H-28 =
sequential 28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate
mixture; L-28 =sequential 28-d periods of no supplementation and daily supplementation with 0.75% BW
of concentrate mixture; H-56 =sequential 56-d periods of no supplementation and daily supplementation
with 1.5% BW of concentrate mixture; L-56 = sequential 56-d periods of no supplementation and
supplementation with 0.75% BW of concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant dietary
treatment x breed interaction.
3S =Spanish; BS =Boer x Spanish.



Table 7. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on apparent total tract OM digestibility in yearling Spanish and

Boer x Spanish doelings.

Day3

Dietary treatment1,2

Item Breed2
,4 C H-28 L-28 H-56 L-56 SE

1-28 Intake, g/d BS 623bc 461 a 554abc 613bc 670c 53.3
S 540abc 673c 605abc 636c 477ab

Apparent digestion, % BS 50.7 33.8 43.0 51.9 44.4 4.58
S 52.1 49.4 45.4 48.8 55.7

Apparent digestion, g/d BS 318b 158a 23Sab 322b 296b 38.2
S 278b 335b 276b 311 b 265b

~ 29-56 Intake, g/d BS 669bcd 745cd 729cd 569b 553b 43.1
VJ

411 8 784d 632bC 580b 561 b0\ S
Apparent digestion, 0/0 BS 71.3 70.5 74.6 66.8 62.0 2.38

S 74.1 75.4· 71.9 71.0 68.1
Mean 72.7b 73.0b 73.2b 68.9ab 65.0a 1.69

Apparent digestion, g/d BS 477def 527efg 541 fg 380abc 343ab 28.9
S 3048 591 9 452cde 411 bcd 381 abc

57-84 Intake, g/d BS 765 590 766 867 732 84.3
S 474 785 589 680 766

Apparent digestion, 0/0 BS 66.8 52.7 59.6 71.0 70.7 7.05
S 71.1 62.4 56.8 76.6 66.2

Apparent digestion, g/d BS 510 353 454 613 517 69.5
S 336 487 337 520 500



85-112

Item
Intake, g/d

Apparent digestion, %

Apparent digestion, g/d

Dietary treatment1
,2

Breed2
,4 C H-28 L-28 H-56 L-56

BS 831 be 607ab 727ab 105ge 843be

S 4778 1047c 795be 805bC 862be

BS 65.5 59.0 64.0 74.3 66.7
S 68.5 66.5 58.9 69.6 62.0
Mean 67.0bc 52.8ab 61.48 72.0e 64.48b

BS 54Sabed 362ab 475ab 787d 565bed

S 3288 698ed 472ab 566bed 536abe

SE
100.6

2.68

1.85
77.0

a,b,c,d,e,fMeans within a breed dietary treatment grouping without a common superscript letter differ (P < 0.05).
1Dietary treatment: C =control, daily supplementation with 0.75% BW of concentrate mixture; H-28 =
sequential 28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate
mixture; L-28 = sequential 28-d periods of no supplementation and daily supplementation with 0.75% BWof
concentrate mixture; H-56 = sequential 56-d periods of no supplementation and daily supplementation with
1.5% BW of concentrate mixture; L-56 = sequential 56-d periods of no supplementation and supplementation
with 0.75% BW of concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant dietary treatment
x breed interaction.
3Days of measurement: d 1-28 =d 18-21; d 29-56 = d 46-49; d 57-84 =d 74-77; d 85-112 =d 102-105.
4S =Spanish; BS =Boer x Spanish.



Table 8. Effects of length of feed restriction and realimentation and level of supplementation during realimentation on

apparent total tract N digestibility in yearling Spanish and Boer x Spanish doelings.

Breed Dietary treatment1
,2

Day3 Item Breed2
,4 Mean SE C H-28 L-28 H-56 L-56 SE

1-28 Intake, g/d BS 17.2 9.6 6.0 6.8 7.6 1.74
S 13.8 7.3 7.0 6.5 4.6
Mean 15.4b 8.58 6.58 6.68 6.1 8 1.23

Apparent digestion, 0/0 BS 73.7 58.9 47.8 59.7 48.4 6.08
S 73.7 54.9 60.1 52.7 56.9
Mean 73.7b 56.98 54.08 56.28 52.68 4.34

Apparent digestion, g/d BS 12.7 6.7 2.9 4.0 3.7 1.68

S 10.1 4.0 4.2 3.4 2.6

Mean 11.4b 5.48 3.58 3.78 3.28 1.19
~

VJ
00

29-56 Intake, g/d BS 13.8c 16.8d 13.7c 3.48 3.1 8 0.72

S 9.2b 16.8d 11.0b 2.88 2.98

Apparent digestion, 010 BS 82.4 77.7 82.2 25.6 42.3 13.09

S 86.8 85.1 78.7 27.5 28.2
Mean 84.6b 81.4b 80.4b 26.68 35.28 9.25

Apparent digestion, g/d BS 11.4 13.2 11.2 1.0 1.3 0.93

S 8.0 14.3 8.6 0.7 0.9

Mean 9.7b 13.8c 9.9b 0.88 1.1 8 0.66

57-84 Intake, g/d BS 14.6 1.33 16.9 9.1 5.8 26.0 15.3 1.89

S 10.9 11.1 6.9 5.3 16.5 14.7
Mean 14.0b 8.08 5.58 21.3c 15.0b 1.33

Apparent digestion, % BS 67.1 4.27 78.0 58.6 30.7 88.1 79.8 9.53



Breed Dietary treatment1,2
Day3 Item Breed2,4 Mean SE C H-28 L-28 H-56 L-56 SE

S 52.8 82.9 21.6 20.5 84.5 54.5
Mean 80.Sbc 40.1 8 25.68 86.3c 67.1 b 6.73

Apparent digestion, g/d BS 11.2 0.838 13.2 6.2 1.6 22.9 12.2 1.87
S 6.86 9.2 1.7 1.2 14.3 8.0
Mean 11.2b 4.0a 1.48 18.6c 10.1 b 1.32

85-112 Intake, g/d BS 17.0c 16.7c 16.7c 17.1 c 16.9c 0.84
S 10.4a 17.3c 15.1 bc 12.8b 15.7c

Apparent digestion, °/0 BS 73.7 1.68 76.8 79.8 69.7 69.0 73.4 3.74
S 66.5 75.1 66.9 62.0 66.5 61.9

Apparent digestion, g/d BS 12.4 0.36 13.1 13.2 11.6 11.8 12.4 0.80
S 9.4 7.8 11.6 9.4 8.5 9.7

a,b,CMeans within a breed dietary treatment grouping without a common superscript letter differ (P < 0.05).
1Dietary treatment: C =control, daily supplementation with 0.75% BW of concentrate mixture; H-28 =
sequential 28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate
mixture; L-28 =sequential 28-d periods of no supplementation and daily supplementation with 0.75% BW of
concentrate mixture; H-56 =sequential 56-d periods of no supplementation and daily supplementation with
1.5% BW of concentrate mixture; L-56 =sequential 56-d periods of no supplementation and supplementation
with 0.75°/0 BW of concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant dietary treatment x
breed interaction.
3Days of measurement: d 1-28 =d 18-21; d 29-56 = d 46-49; d 57-84 =d 74-77; d 85-112 = d 102-105.
4S =Spanish; BS = Boer x Spanish.



Table 9. Effects of length of feed restriction and realimentation and level of supplementation during realimentation on

apparent total tract OM digestibility in yearling Spanish and Boer x Spanish doelings.

Dietary treatment1
,2

Day3 Item Breed2,4 C H-28 L-28 H-56 L-56 SE

1-28 Intake, g/d BS 587be 4358 523abe 578be 633e 50.2

S 509abe 635c 571 abe 600c 450ab

Apparent digestion, % BS 54.3 35.5 44.9 53.3 46 4.39

S 55.0 51.2 46.9 50.7 57.1

Apparent digestion, g/d BS 320b 157a 231 ab 312b 290b 35.6

S 276b 327b 269b 304b 256b

29-56 Intake, g/d BS 630bcde 694de 686cde 576bC 520b 39.3
)-006

387a 738e 594bcd 546b 528b
~ S
0

Apparent digestion, % BS 72.9 74.6 76.4 66.7 63.4 2.23

S 76 77 73.2 72.3 69.3

Mean 74.5b 75.gb 74.Sb 69.58 66.48 1.58

Apparent digestion, g/d BS 459de 51gef 522ef 383bcd 330ab 25.8

S 2938 569f 433cd 394bcd 3658bc

57-84 Intake, g/d BS 705cd 397a 567abc 838d 674cd 75.5

S 438ab 714cd 536abe 634bcd 704cd

Apparent digestion, % BS 68.7 45.7 59.9 74.3 72.6 4.79

S 72.9 64.1 58.3 78.3 68.5

Mean 70.8b 54.98 59.1 a 76.3b 70.6b 3.39

Apparent digestion, g/d BS 484cde 1928 343bc 621 e 489de
,I 51.5



Item Breed2,4 C

S 319ab

Dietary treatment1
,2

H-28 L-28 H-56 L-56 SE

85-112 Intake,g/d BS 770bcd 681 b 794bcd 1029d 781 bcd 82.2
S 444a 966cd 735b 752bc 796bcd

Apparent digestion, % BS 67.5 63.5 69.0 75.8 68.8 2.49
S 70.5 68.7 61.3 71.9 64.3

Mean 69.0ab 66.1 a 65.1 a 73.8b 66.6a 1.76

Apparent digestion, g/d BS 520bC 436ab 547bc 780d 539bC 66.4

S 3148 665cd 454ab 546bc 513bc

a,b,c,d,eMeans within a breed dietary treatment grouping without a common superscript letter differ (P < 0.05).
1Dietary treatment: C =control, daily supplementation with 0.75°10 BW of concentrate mixture; H-28 =
sequential 28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate
mixture; L-28 =sequential 28-d periods of no supplementation and daily supplementation with 0.75% BWof
concentrate mixture; H-56 = sequential 56-d periods of no supplementation and daily supplementation with
1.5% BW of concentrate mixture; L-56 =sequential 56-d periods of no supplementation and supplementation
with 0.75°;0 BW of concentrate mixture.
2Breed means are presented when significantly different (P < 0.05) and with a nonsignificant dietary treatment x
breed interaction.
30ays of measurement: d 1-28 =d 18-21; d 29-56 =d 46-49; d 57-84 = d 74-77; d 85-112 =d 102-105.
4S =Spanish; BS =Boer x Spanish.



Table 10. Effects of length of feed restriction and realimentation and level of supplementation during

realimentation on total tract NDF digestibility in yearling Spanish and Boer x Spanish doelings.

Dietary treatment1
,2

Day3 Item Breed2
,4 C H-28 L-28 H-56 L-56 SE

1-28 Intake, g/d BS 316abc 313ab 376abcd 416cd 455d 36.2
S 285a 457d 411 cd 432d 324abc

Digestion, 0/0 BS 34.7 22.6 37.0 44.0 37.2 6.04
S 34.3 . 43.9 36.8 43.1 59.6

Digestion, g/d BS 112 73 136 187 168 27.1

S 95 203 152 186 160

29-56 Intake, g/d BS 326ab 267b 364c 396c 358c 27.7
~

~ S 183a 338bC 325bc 375c 363c
N

Digestion, 0/0 BS 58.7 47.7 65.3 59.6 56.1 4.55

S 62.2 62.0 60.5 66.6 63.0

Digestion, g/d BS 191 b 131 a 237b 235b 200b 18.5

S 113a 210b 194b 24gb 228b

57-84 Intake, g/d BS 347bc 251 ab 357bc 334bc 334bC 46.6

S 201 a 450c 338bc 239ab 370bc

Digestion, % BS 48.2 27.3 50.0 50.1 56.2 6.66

S 51.9 54.4 43.5 56.0 51.9

Digestion, g/d BS 167abcd 77a 183bCd 168bcd 187cd 28.9

S 104ab 243d 149abc 133abc 189cd



6.00

85-112

Item

Intake, g/d

Digestion, 0/0

Digestion, g/d

Dietary treatment1,2

Breed2
,4 C H-28 L-28 H-56 L-56 SE

BS 373be 319ab 386be 40abe 337ab 49.0
S 206a 50ae 36gb 29gab 408bc

BS 47.9 38.0 50.1 56.5 49.1
S 51.6 53.3 44.4 45.5 45.9

BS 179abe 127ab 1958be 231 be 1668be 40.3

S 107a 2748 170abe 141 ab 191 abe

a,b,c,d,e,t,9Means within a breed dietary treatment grouping without a common superscript letter
differ (P < 0.05).
1Dietary treatment: C = control, daily supplementation with 0.75% BW of concentrate mixture;
H-28 =sequential 28-d periods of no supplementation and daily supplementation with 1.500/0 BWof
concentrate mixture; L-28 = sequential 28-d periods of no supplementation and daily supplementation
with 0.75% BW of concentrate mixture; H-56 = sequential 56-d periods of no supplementation and daily
supplementation with 1.5% BW of concentrate mixture; L-56 =sequential 56-d periods of no
supplementation and supplementation with 0.75% BW of concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant
dietary treatment x breed interaction;

30ays of measurement: d 1-28 =d 18-21'; d 29-56 = d 46-49; d 57-84 =d 74-77; d 85-112 =
d 102-105.
48 =Spanish; BS =Boer x Spanish.



Table 11. Effects of length of feed restriction and realimentation and level of supplementation during

realimentation on nitrogen retention by yearling Spanish a'nd Boer x Spanish doelings.

Breed Diet treatment1
,2

Day Item Breed2,3 Mean SE C H-28 L-28 H-56 L-56 SE
1R-?1 N int;::)k~ n RS 17 ? ~R RO RR 7R ? n~

S 14.1 7.3 7.1 6.5 4.8
Mean 15.7b 8.Sa 6.6a 6.6a 6.2a 1.49

N in feces, 9 BS 4.5 2.9 3.2 2.7 3.9 0.49
S 4.1 3.3 2.9 3.1 2.2

N in urine, 9 BS 15.4 5.3 3.4 1.0 0.7 1.89
S 17.2 11.7 3.2 1.2 0.3
Mean 16.3c 8.5b 3.3a 1.1 a 0.5a 1.34

N retained, % BS -18.6 -21.0 -11.9 45.9 39.2 26.45

~ S -51.0 -107.0 14.3 34.7 48.4
~ Mean _34.8ab -64.0a 1.2bc 40.3c 43.8c 18.81~

N retained, g/d BS -2.7 1.4 -0.6 3.1 3.0 3.04

S -7.2 -7.7 1.0 2.2 2.3

46-49 N intake, 9 BS 13.8c 16.ad 13.7c 3.03a 3.1 a 0.72

S 9.2b 16.7d 11.0b 2.8a 2.9a

N in feces, 9 BS 2.4 3.6 2.5 2.5 1.8 0.50

S 1.2 2.5 2.4 2.1 1.9

N in urine, 9 BS 0.4 3.6 0.1 0.3 3.4 2.15

S 0.5 1.7 1.0 0.4 2.9
N retained, % BS 79.1 56.8 81.1 6.3 -62.5 21.86

S 81.7 74.2 69.9 14.1 -72.7

Mean 80.4c 65.5c 75.5c 10.2b -67.6a 15.49
N retained, g/d BS 11.0 9.6 11.1 0.2 -2.1 1.64

S 7.5 12.6 7.6 0.3 -2.0



Breed Diet treatment1
,2

Day Item Breed2,3 Mean SE C H-28 L-28 H-56 L-56 SE
MA~n ~ ?b 11 1b ~ ~b n ~a _? Oa 1 1R

74-77 N intake, 9 SB 16.9 9.1 5.8 26.0 15.3 1.98
S 11.1 6.9 5.3 16.5 14.7
Mean 14.0b 8.0a 5.5a 21.3c 15.0b 1.43

N in feces, 9 SB 3.8 2.9 4.2 3.1 3.0 0.97
S 1.9 5.5 4.1 2.3 6.7

N in urine, 9 SB 7.1 1.1 0.4 10.5 7.8 1.89
S 7.4 1.3 0.7 5.5 1.9
Mean 7.3c 1.2ab O.Sa 8.0c 4.9bc 1.34

N retained, 0/0 SB 34.9 37.7 22.0 47.3 28.4 18.60
S 18.8 -0.1 6.2 52.6 41.5

~ N retained, g/d BS 6.0 5.1 1.2 12.4 4.4 2.54
+::a.
Vl S 1.8 0.1 0.5 8.7 6.1

102-105 N intake, 9 SB 16.6c 16.7c 16.8c 17.1 c 16.9a 0.95

S 10.4a 17.3c 15.1 bc 12.88 15.6c

N in feces, g SB 3.8 3.4 5.1 5.3 4.5 0.76

S 2.6 5.8 5.7 4.2 5.9

N in urine, 9 SB 5.3 2.9 0.9 4.4 4.0 5.67

S 3.8 3.1 2.2 1.8 1.0

N retained, °10 SB 45.3 63.9 63.9 43.7 49.3 6.93
S 38.6 49.4 47.4 37.2 55.4

N retained, g/d BS 8.9 0.55 7.5 10.3 10.6 7.5 8.4 1.20
S 6.6 4.0 8.5 7.2 4.5 8.7

Mean 5.8a 9.4b 8.9b 6.0a a.5ab 0.86
a,b,cMeans within a breed-dietary treatment grouping without a common superscript letter differ (P < 0.05).
1Dietary treatment: C =control, daily supplementation with 0.75% BW of concentrate mixture; H-28 =sequential



28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate mixture; L-28 =
sequential 28-d periods of no supplementation and daily supplementation with O.75°AJ BW of concentrate mixture;
H-56 =sequential 56-d periods of no supplementation and daily supplementation with 1.5% BW of concentrate
mixture; L-56 =sequential 56-d periods of no supplementation and supplementation with 0.75% BW of concentrate
mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant dietary treatment x
breed interaction.
3S =Spanish; BS = Boer x Spanish.



Table 12. Effects of length of feed restriction and realimentation and level of supplementation during

realimentation on concentrations of urea N, NEFA in serum, and ruminal fluid ammonia N in yearling Spanish

and Boer x Spanish doelings.

Breed Dietary treatment1
,2

Item Day Breed2,3 Mean SE C H-28 L-28 H-56 L-56 SE

Urea N, 28 BS 23 13 12 8 12 2.1
mg/dL S 18 13 13 13 17

Mean 21 b 138 128 11 8 148 0.9
56 BS 15 26 16 5 8 1.3

S 15 21 15 5 5
Mean 15b 23c 16b 58 68 1.1

84 BS 12cd 88b 68 16e 13d 0.9
....... S gb 88b 88b 1Sde gbc
.,J::.

11 12 1.0.....::J 99 BS 11 13 12 11
S 10 0.4 10 11 10 10 9

NEFA, IJEq/L 28 BS 424 487 498 476 424 37.0
S 422 517 454 467 413

56 BS 163 184 311 588 505 79.4
S 229 163 262 563 441
Mean 1968 1748 2878 575b 473b 55.7

84 BS 497 1070 955 543 688 131.0
S 737 1068 877 609 468
Mean 6178 106gb 916b 5768 5788 91.5

99 BS 155 196 220 173 160 27.6
S 236 199 194 219 156



Item Day
Ruminal 23

ammonia
N, mg/dL

51

79

Breed Diet treatment1
,2

Breed2,3 Mean SE C H-28 L-28 H-56 L-56 SE

BS 14.6 1.7 2.5 1.5 5.8 1.71
S 13.9 4.2 3.4 2.7 2.6
Mean 14.2b 2.9a 3.0a 2.1 a 4.2a 1.21
BS 15.5 19.5 13.8 0.3 1.6 2.15
S 17.0 20.5 14.9 1.0 0.8

16.2b 14.3
Mean c 20.0c b 0.6a 1.2a 1.52

40.4 22.0
BS 25.8b 0.7a 1.6a c b 3.11

22.5 28.6
S 28.3b 1.2a 1.5a b b

10
7 BS 18.4 19.8 18.3 14.9 16.1 2.06

S 18.8 21.7 16.3 16.6 17.4
a,b,c,d,eMeans within a breed-dietary treatment grouping without a common superscript letter differ (P < 0.05).
1Dietary treatment: C = control, daily supplementation with 0.75% BW of concentrate mixture; H-28 =
sequential 28-d periods of no supplementation and daily supplementation with 1.50% BW of concentrate
mixture; L-28 = sequential 28-d periods of no supplementation and daily supplementation with 0.75% BW of
concentrate mixture; H-56 =sequential 56-d periods of no supplementation and daily supplementation with
1.50/0 BW of concentrate mixture; L-56 =sequential 56-d periods of no supplementation and supplementation
with 0.750/0 BW of concentrate mixture.
2Main effect means are presented when significantly different (P < 0.05) and with a nonsignificant dietary
treatment x breed interaction.
38 = Spanish; BS =Boer x Spanish.





Figure 1. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on forage intake by yearling Spanis'h and

Boer x Spanish doelings.
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Figure 2. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on total intake by yearling Spanish and

Boer x Spanish doelings.
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Figure 3. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on BW of yearling Spanish and Boer x

Spanish doelings.
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Figure 4. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on ADG by yearling Spanish and Boer x

Spanish doelings.
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Figure 5. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on ADG:DM intake by yearling Spanish

and Boer x Spanish doelings.
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Figure 6. Effects of length of feed restriction and realimentation and I,evel of

supplementation during realimentation on N retained as percentage of ,N ,intake

by yearling Spanish and Boer x Spanish doelings.
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Figure 7. Effects of length of feed restriction and realimentation and level of

supplementation during realimentation on blood urea N concentration in yearling

Spanish and Boer x Spanish doelings.
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Figure 8. Effects of length of feed restriction and realimentation, and level of

supplementation during realimentation on ruminal ammonia N concentration in

yearling Spanish and Boer x Spanish doelings.
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