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Preface 

Oil is an essential source of energy and one of the main factors that drives the 

economic development of the world. In an oil reservoir, primary and secondary stages 

of oil recovery recover less than 50% of the oil in the reservoir. The remaining oil is 

usually entrapped under capillary pressure and cannot be mobilized by conventional 

methods. To enhance its recovery, capillary pressure entrapping the oil has to be 

reduced. One approach to reduce capillary pressure is to reduce surface and interfacial 

tension. Biosurfactants are microbially-produced surface-active compounds that can 

partition at the oil-water interfaces lowering the interfacial tension and hence the 

capillary pressure and mobilizing the entrapped oil. 

Biosurfactants produced by Bacillus species have very similar structure to 

surfactin, the lipopeptide produced by Bacillus subtilis. Lipopeptide biosurfactants 

have a heptapeptide polar head and a beta hydroxy fatty acid tail (C13 to C18). The 

activity of biosurfactants depends on their structural components. Biosurfactant 

activity has been manipulated previously by module swapping and changes in the 

amino acid composition. The main body of work presented in this dissertation focuses 

on manipulation of biosurfactant activity by changing the fatty acid composition either 

nutritionally or through the design of mixtures. Results from a field trial in a limestone 

petroleum reservoir conducted using injected Bacillus strains are also shown. 

Chapter one focuses on the statistical comparison of three different methods to 

detect biosurfactant production; drop collapse, oil spreading, and blood agar lysis. The 

methods were compared for their ease of use and reliability in relation to the ability of 

the cultures to reduce surface tension. Results showed that both the oil spreading 
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technique and the drop collapse method are more reliable in detecting biosurfactant 

production compared to blood agar lysis. One more advantage of the oil spreading 

technique is that it can be used quantitatively. This work is published in the Journal of 

Microbiological Methods. 

Chapter two reports on the importance of the 3-hydroxy fatty acid composition 

of lipopeptides for biosurfactant activity. A new protocol of biosurfactant purification 

that recovers most of the biosurfactant activity in the original culture was devised. 

Amino acid and fatty acid composition of different lipopeptides combined with 

multiple regression analysis showed the dependence of biosurfactant activity on fatty 

acid composition. This work is published in Applied and Environmental Microbiology. 

In Chapter three, the fatty acid composition of lipopeptides was manipulated 

by mixing biosurfactants produced by different strains and the effect of the mixture on 

lowering interfacial tension against different hydrocarbons was studied. It was found 

that a more heterogeneous fatty acid composition is required for lowering interfacial 

tension. All the interfacial tension measurements were performed by Thu Nguyen in 

the department of Civil and Chemical Engineering. The chapter is written in the style 

recommended by the Applied and Environmental Microbiology. 

Chapter four reports on the results of a field trial in a petroleum limestone 

formulation that was conducted using biosurfactant-producing Bacillus strains. It is 

shown that lipopeptide biosurfactants can be made in oil reservoirs at concentrations 

that far exceed that needed for substantial recovery of entrapped petroleum. The 

inoculum metabolized the substrate and produced the biosurfactant under the 

conditions of the reservoir. Molecular work was conducted by Dr. Randy Simpson. 
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The chapter is written in the style recommended by the Applied and Environmental 

Microbiology. 
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Abstract 

To investigate the activity of lipopeptide biosurfactants produced by Bacillus 

strains, it was necessary to find a fast and reliable method to compare biosurfactant 

production in different strains. Three methods to detect biosurfactant production; drop 

collapse, oil spreading, and blood agar lysis were compared for their ease of use and 

reliability in relation to the ability of the cultures to reduce surface tension. There was 

a very strong, negative, linear correlation between the diameter of clear zone obtained 

with the oil spreading technique and surface tension (rs= -0.959) and a weaker 

negative correlation between drop collapse method and surface tension (rs= -0.82), 

suggesting that the oil spreading technique predicted biosurfactant production better 

than the drop collapse method. The large number of false negatives and positives 

obtained with the blood agar lysis method and its poor correlation to surface tension 

(rs= -0.15) demonstrated that it is not a reliable method to detect biosurfactant 

production. The oil spreading technique was used as the method of choice to detect, 

quantify, and compare biosurfactant activities throughout the work in this thesis. 

Biosurfactants produced by several Bacillus strains had different activities. In 

order to relate biosurfactant structural differences to activity, eight lipopeptide 

biosurfactants with different specific activities produced by various Bacillus species 

were purified by a new protocol. The amino acid composition of the 8 lipopeptides 

was the same (Glu/ Gln: Asp/ Asn: Val: Leu; 1:1:1:4), but the fatty acid composition 

differed. Multiple regression analysis showed that the specific biosurfactant activity 

depended on the ratios of both iso to normal, even-numbered fatty acids and anteiso to 

iso, odd-numbered fatty acids. Manipulation of biosurfactant fatty acid composition, 
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and hence specific activity, was possible through the addition of branched chain fatty 

acids to the growth medium.  

Alternatively, biosurfactant activity can be manipulated by formulation of 

biosurfactant mixtures with different properties. The efficacy of biosurfactants from 

individual strains, and mixtures of biosurfactants from different strains with and 

without synthetic surfactants was tested for enhanced interfacial activity. To design 

(bio)surfactant formulations effective in lowering IFT, information about both the 

bio/surfactant structure and the nature of targeted non-aqueous phase liquids (NAPL) 

was required. The IFT against toluene was lowered by using lipopeptide biosurfactants 

with a heterogeneous fatty acid composition or by using mixtures of lipopeptide and 

rhamnolipid biosurfactants. Conversely, the IFT against hydrophobic NAPL was 

lowered by mixing lipopeptide biosurfactants with a more hydrophobic synthetic 

surfactants. 

To investigate the feasibility of microbially enhanced oil recovery (MEOR), 

we conducted a controlled field experiment in a limestone formation. The feasibility of 

biosurfactant production in-situ by two biosurfactant-producing Bacillus species was 

studied. In situ metabolism and biosurfactant production were evident. The lipopeptide 

biosurfactant was produced at concentrations that far exceeded that needed to mobilize 

substantial amounts of entrapped oil. The data demonstrate the technical feasibility 

and cost-effectiveness of microbial processes for oil recovery and the success of 

inoculation.
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Chapter One 

Comparison of methods to detect biosurfactant production by diverse 

microorganisms 

 Abstract: 

Three methods to detect biosurfactant production; drop collapse, oil spreading, and 

blood agar lysis were compared for their ease of use and reliability in relation to the 

ability of the cultures to reduce surface tension. The three methods were used to test 

for biosurfactant production in 205 environmental strains with different phylogenetic 

affiliations. Surface tension of select strains that gave conflicting results with the 

above three methods was also measured. Sixteen percent of the strains that lysed blood 

agar tested negative for biosurfactant production with the other two methods and had 

little reduction in surface tension (values above 60 mN/m). Thirty eight percent of the 

strains that did not lyse blood agar tested positive for biosurfactant production with the 

other two methods and had surface tension values as low as 35 mN/m. There was a 

very strong, negative, linear correlation between the diameter of clear zone obtained 

with the oil spreading technique and surface tension (rs= -0.959) and a weaker 

negative correlation between drop collapse method and surface tension (rs= -0.82), 

suggesting that the oil spreading technique better predicted biosurfactant production 

than the drop collapse method. The use of the drop collapse method as a primary 

method to detect biosurfactant producers, followed by the determination of the 

biosurfactant concentration using the oil spreading technique, constitutes a quick and 

easy protocol to screen and quantify biosurfactant production. The large number of 

false negatives and positives obtained with the blood agar lysis method and its poor 
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correlation to surface tension (rs= -0.15) demonstrated that it is not a reliable method 

to detect biosurfactant production. 
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Introduction: 

Biosurfactants are a diverse group of surface-active chemical compounds that 

are produced by a wide variety of microorganisms [Banat, 1995]. The types of 

biosurfactants include lipopeptides synthesized by Bacillus and other genera, 

glycolipids synthesized by Pseudomonas species and Candida species, phospholipids 

synthesized by Thiobacillus thiooxidans, polysaccharide-lipid complexes synthesized 

by Acinetobacter species, or even the microbial cell surface itself [Van Dyke et al., 

1991, and Bodour and Miller-Maier, 2002]. Having both polar and non-polar domains, 

biosurfactants are able to partition at water-oil or water-air interfaces and thus reduce 

the interfacial or surface tension [Banat, 1995, Banat et al., 2002, and Georgiou et al., 

1992]. Such surface properties made them good candidates for enhanced oil recovery 

(EOR) [Ron and Rosenberg, 2001, and Van Dyke et al., 1991]. Some biosurfactants 

are known to have therapeutic applications as antibiotics, and antifungal or antiviral 

compounds. Biosurfactants can also be used in bioremediation of soil or sand [Van 

Dyke et al., 1991] or in the cleanup of hydrocarbon contamination in groundwater 

[Ron and Rosenberg, 2001]. These diverse applications necessitate an easy, rapid, and 

reliable method to detect biosurfactant production with a minimum number of false 

positives and/or negatives.  

Biosurfactant production is sometimes detected by measuring emulsification 

[Van Dyke et al., 1993, Makkar and Cameotra, 1997, and Makkar and Cameotra, 

1998], hemolytic activity [Carrillo et al., 1996, Banat, 1993, Yonebayashi et al., 2000, 

and Mulligan et al., 1984], or cell surface hydrophobicity [Vander Mei et al., 1987, 

Mozes and Rouxhet, 1987, Neu and Poralla, 1990, Pruthi and Cameotra, 1997, and 
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Dillon et al., 1986]. The use of methods that measure properties other than the surface 

activity can be problematic. Although, a direct correlation was found between surface 

activity and emulsification activity [Cooper and Goldenberg, 1987, and Denger and 

Schink, 1995], and the emulsification index has been used as a screening method 

[Cooper and Goldenberg, 1987, Denger and Schink, 1995, Makkar and Cameotra, 

1997, and Makkar and Cameotra, 1998], the ability of a molecule to form a stable 

emulsion is not always associated with surface tension lowering activity [Van dyke et 

al., 1993, Willumsen and Carlson, 1997, T. de Acevedo and McInerney, 1996, and 

Bosch et al., 1988]. Cell surface hydrophobicity is an important aspect in bacterial cell 

adhesion to surfaces [Vander Mei et al., 1987]. Since hydrophobic surfaces are usually 

associated with molecules with low surface energy [Mozes and Rouxhet, 1987], Neu 

and Poralla [Neu and Poralla, 1990] used this property to screen for biosurfactant 

production. Pruthi and Cameotra [Pruthi and Cameotra, 1997] found a direct 

correlation between hydrophobicity and biosurfactant production. However, it is not 

clear which method for measuring cell surface hydrophobicity is appropriate for 

general screening [Vander Mei et al., 1987, Mozes and Rouxhet, 1987, Neu and 

Poralla, 1990, Pruthi and Cameotra, 1997, and Dillon et al., 1986]. Seigmund and 

Wagner [1991] developed a colorimetric assay, based on the formation of insoluble 

ion pair between anionic surfactants, cationic cetyl trimethyl ammonium bromide 

(CTAB), and methylene blue. Since this approach is specific for anionic surfactants, it 

cannot be used as a general method of screening for biosurfactant producers. 

There are a number of approaches that measure directly the surface activity of 

biosurfactants. These include surface and/or interfacial tension measurement 
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[McInerney et al., 1990, Haba et al., 2000, and Mercade et al., 1996], axisymmetric 

drop shape analysis profile (ADSA-P) [Vander Vegt et al., 1991, and Noordmans and 

Busscher, 1991], glass-slide test [Persson and Molin, 1987], drop collapse method 

[Jain et al., 1991, and Bodour and Miller-Maier, 1998], and the oil spreading 

technique [Morikawa et al., 2000]. The measurement of surface tension has 

traditionally been used to detect biosurfactant production and most of the other 

methods that measure the surface properties of biosurfactant use surface tension 

reduction as the standard [Noormans and Busscher, 1991, Persson and Molin, 1987, 

Willumsen and Carlson, 1997, Makkar and Cameotra, 1997, and Makkar and 

Cameotra, 1998, Neu and Poralla, 1990, and Bosch et al., 1988]. However, the 

measurement of surface tension is time-consuming which makes it inconvenient to use 

for screening of a large number of isolates. The drop collapse technique depends on 

the principal that a drop of a liquid containing a biosurfactant will collapse and spread 

completely over the surface of oil [Jain et al., 1991, and Bodour and Miller-Maier, 

1998]. The method is easy and can be used to screen large number of samples [Bodour 

et al., 2003], but it has not been correlated to surface tension reduction to confirm its 

reliability. The oil spreading technique measures the diameter of clear zones caused 

when a drop of a biosurfactant-containing solution is placed on an oil-water surface 

[Morikawa et al., 2000]. Morikawa et al. used this method to compare the activity of 

both cyclic and linear forms of surfactin and arthrofactin. However, its ability to detect 

biosurfactant production in diverse microorganisms has not been tested. 

The hemolytic activity of biosurfactants was first discovered when Bernheimer 

and Avigad [Bernheimer and Avigad, 1970] reported that the biosurfactant produced 
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by Bacillus subtilis, surfactin, lysed red blood cells. Blood agar lysis has been used to 

quantify surfactin [Moran et al., 2002] and rhamnolipids [Johnson and Boese-Marrazo, 

1980], and has been used to screen for biosurfactant production by new isolates 

[Carrillo et al., 1996, Banat, 1993, Yonebayashi et al., 2000, and Mulligan et al., 

1984]. Carrilo et al. [1996] found an association between hemolytic activity and 

surfactant production, and they recommended the use of blood agar lysis as a primary 

method to screen for biosurfactant activity. However, only 13.5% of the hemolytic 

strains lowered the surface tension below 40 mN/m. Also, other microbial products 

such as virulence factors lyse blood agar and biosurfactants that are poorly diffusible 

may not lyse blood cells. Thus, it is not clear whether blood agar lysis should be used 

to screen for biosurfactant production. 

In this study, we tested the hemolytic activity of 205 environmental isolates of 

different phylogenetic affiliations, and measured the surface activity of these isolates 

by using both the drop collapse and the oil spreading techniques. Surface tension was 

measured for cultures that gave conflicting results between these three methods. We 

found that the oil spreading and drop collapse methods were correlated with the ability 

of the cultures to reduce surface tension. However, blood agar gave a large number of 

false positives and negatives.  
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Materials and methods: 

Media: 

All cultures were grown aerobically in liquid medium (medium E) (pH 6.9) 

that contained (g/l): KH2PO4, 2.7; K2HPO4, 13.9; sucrose, 10; NaCl, 50; yeast extract, 

0.5; and NaNO3, 1. After autoclaving, 10 ml each of solutions A, B, and C were added 

to 1 liter of the above medium. Solution A contained 25 g/l of MgSO4; solution B 

contained 100 g/l of (NH4)2SO4; and solution C contained (g/l): EDTA, 0.5; 

MnSO4•H2O, 3; NaCl, 1; CaCl2•2H2O, 0.1; ZnSO4•7H2O, 0.1; FeSO4•7H2O, 0.1; 

CuSO4•5H2O, 0.01; AlK(SO4)2, 0.01; Na2MoO4•2H2O, 0.01; boric acid, 0.01; 

Na2SeO4, 0.005;NiCl2•6H2O, 0.003. Solutions A and B were separately autoclaved 

while solution C was filter sterilized. 

Blood agar plates contained 40 g of blood agar base (Becton Dickinson, Sparks 

MD), and 50 ml of sheep blood (Brown laboratory, Topeka KA, USA) per liter.  

Inocula: 

Two hundred and five strains of different phylogenetic affiliations were used 

for this study. Table 1.1 lists the number of strains of each species and their sources 

[Istock et al., 2001, Duncan et al., 1994, and Palmisano et al., 2001]. Cultures were 

grown aerobically in 25 ml of medium E, at 37ºC for 24 hours without shaking. 

Screening methods: 

Each strain was streaked onto blood agar plates and incubated for 48 hours at 

37ºC. The plates were visually inspected for zones of clearing around the colonies, 

indicative of biosurfactant production. The diameter of the clear zones depends on the 

concentration of the biosurfactant [Mulligan et al., 1984]. The zones of clearing were  
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Table1.1. Number and types of strains used in this study.   

 

 

 

 

  

 

 

Species Number of strains Reference 

Bacillus mojavenesis 22 
Istock et al., 2001 and 

Duncan et al., 1994 

Bacillus subtilis subsp. subtilis 47 
Istock et al., 2001 and 

Duncan et al., 1994 

Bacillus subtilis subsp. spizizenii 43 
Istock et al., 2001 and 

Duncan et al., 1994 

Bacillus megaterium 15 Istock et al., 2001 

Bacillus licheniformis 11 Duncan et al., 1994 

Bacillus sonorensis 9 Palmisano et al., 2001 

Bacillus species 14 Istock et al., 2001 

Oil well isolates of unknown taxonomic 

affiliations 
44 OU culture collection 

Total number of strains 205  
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scored as follows: '-', no hemolysis; '+', incomplete hemolysis; '++', complete 

hemolysis with a diameter of lysis <1 cm; '+++', complete hemolysis with a diameter 

of lysis >1cm but < 3cm; and '++++', complete hemolysis with a diameter of lysis > 3 

cm and green colonies. Two plates for each strain were inoculated and clear zones in 

several different areas of each plate were analyzed. 

For the drop collapse method, 2 µl of mineral oil was added to each well of a 

96-well microtiter plate lid. The lid was equilibrated for 1 hour at room temperature, 

and then 5 µl of the culture was added to the surface of oil [Bodour and Miller-Maier, 

1998]. The shape of the drop on the surface of oil was inspected after 1 minute. 

Biosurfactant-producing cultures gave flat drops with scoring system ranging from '+' 

to '++++' corresponding to partial to complete spreading on the oil surface. Those 

cultures that gave rounded drops were scored as negative '-' indicative of the lack of 

biosurfactant production. Aliquots from a culture of each strain were analyzed on two 

separate microtiter plates. 

For the oil spreading technique, 50 ml of distilled water was added to a large 

Petri dish (25 cm diameter) followed by addition of 20 µl of crude oil to the surface of 

the water. Ten µl of culture was then added to the surface of oil [Morikawa et al., 

2000]. The diameter of the clear zone on the oil surface was measured and related to 

the concentration of biosurfactant by using a standard curve prepared with a 

commercially available biosurfactant, surfactin (Sigma Chemicals Co., St. Louis, MO) 

at concentrations ranging from 50 to 2000 mg/l. The diameters of triplicate samples 

from the same culture of each strain were determined. 
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Surface tension was measured using a Du Nouy ring tensiometer [McInerney 

et al., 1990] for 60 different strains, which included representative strains that showed 

either positive or negative results with all the three methods and strains that showed 

positive results with one method and negative results with the other methods. Pure 

water and isopropanol were used as standards. Two milliliters of the culture were 

equilibrated for 15 minutes in a small weighing dish prior to measuring the surface 

tension. The surface tension value shown is the average of three readings from the 

same culture.  

Statistical analysis of the correlation between different tests: 

A statistical test of independence was used to verify the association between 

the different methods by using 2x2 contingency tables [Zar, 1999] in order to find 

correlations between dichotomous nominal scale data (e.g. observations that are either 

positive or negative). The correlation coefficient, φ2 ranged between –1 (strong 

negative correlation) to 1 (strong positive correlation). Since this method did not 

differentiate between positive results of different magnitudes (e.g., +, ++, +++, ++++), 

a general rank correlation test according to Spearman [Zar, 1999] was conducted to 

determine the correlation between each of the three methods and surface tension as 

well as between the oil spreading technique and each of the other two methods. The 

Spearman rank correlation coefficient, rs ranged between –1 (strong negative 

correlation) to 1 (strong positive correlation).  
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Results: 

Oil spreading technique. Morikawa et al. [2000] showed that the area of displacement 

by a surfactant-containing solution is directly proportional to the concentration of the 

two biosurfactants tested. We tested whether the oil spreading technique could be used 

to detect biosurfactant production by diverse microorganisms. The diameter of the 

clear zone linearly increased with the concentration of surfactin over a concentration 

range of 50 to 400 mg/l (Figure 1.1). The coefficient of variation of the diameter of 

clear zones obtained with different concentrations of surfactin ranged from 0, for 

concentrations below 100 mg/l, to 4.7%, for concentrations above 100 mg/l.  With 

different batches of surfactin, the coefficient of variation varied from 1.8, for 

concentrations below 100 mg/l, to 8.3%, for concentrations above 100 mg/l. When the 

degree of oil spreading of 60 strains was compared to the surface tension of the 

culture, an inverse linear relationship between the diameter of the clear zone and the 

surface tension of the culture was obtained (Figure 1.2). Cultures with large 

concentrations of biosurfactant as indicated by the oil spreading technique had low 

surface tension values. This, plus the fact that the diameter of the clear zone is 

proportional to the concentration of a standard biosurfactant, indicated that the oil 

spreading technique is a reliable method to detect biosurfactant production. 

Blood agar method. As mentioned above, the lysis of sheep red blood cells has been 

recommended as a simple and easy method to test for biosurfactant activity [Banat, 

1993, Yonebayashi et al., 2000]. There was a linear increase in the diameter of lysis on  

blood agar as the concentration of surfactin increased (Figure 1.3). The coefficient of 

variation of the diameters of lysis of blood agar for the same concentration of surfactin 
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Figure 1.1 The relationship between the diameter of the clear zone obtained by the oil 

spreading technique (in cm) and the concentration of surfactin (in mg/l). Error bars 

indicate the standard deviation of three independent measurements. The solid line is 

the least square fit with an r2 of 0.997. Where the error bars are not visible, the 

standard deviation was within the area occupied by the symbol. 
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Figure 1.2. The relationship between the diameter of the clear zone obtained by the oil 

spreading technique (in cm) and surface tension of the culture (in mN/m). Each point 

represents a different culture. The solid line is the least square fit with an r2 of 0.839. 
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Figure 1.3. The relationship between the diameter of blood agar lysis (in cm) and the 

concentration of surfactin (in mg/l). Error bars indicate the standard deviation of three 

independent measurements. The solid line is the least square fit with an r2 of 0.996. 

Where the error bars are not visible, the standard deviation was within the area 

occupied by the symbol. 
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was below 11%. However, not all biosurfactants have a hemolytic activity and 

compounds other than biosurfactants may cause hemolysis. Of the 81 strains that did 

not lyse blood agar, 31 were positive for biosurfactant production both by oil 

spreading technique and drop collapse method, and 9 other strains were positive for 

biosurfactant production by the oil spreading technique (Table 1.2). Strains 7 to 16 in 

Table 1.3 did not lyse blood agar, but showed results ranging from ('++’) 

corresponding to partial drop collapse on the oil surface to (‘++++') corresponding to 

complete drop collapse on the oil surface with drop collapse method and gave 

diameters of clearing ranging from 1.2 to 3 cm by the oil spreading technique. Five of 

these strains had surface tension values below 40 mN/m consistent with their ability to 

produce biosurfactants. On the other hand, out of the 124 positive results obtained 

with the blood agar method, 20 gave negative results for biosurfactant production with 

oil spreading technique and drop collapse method (Table 1.2). Strains 1 to 6 in Table 

1.3 lysed blood agar with scores ranging between ('++') corresponding to complete 

hemolysis with a diameter of lysis <1 cm, and ('++++') corresponding to complete 

hemolysis with a diameter of lysis > 3 cm and green colonies, but the results obtained 

with the oil spreading technique or drop collapse method for the same six strains were 

either negative or had low activity. These strains had surface tensions above 60 mN/m 

consistent with their inability to produce biosurfactants. Thus, the blood agar lysis 

gave a high percentage of both false positives and negatives. 

Drop collapse method. Jain et al. [Jain et al., 1991] suggested the use of drop collapse 

method as a sensitive and easy method to test for biosurfactant production. The 
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Table 1.2. Comparison of methods for detection of biosurfactant production, 205 strains tested 

a:   For the oil spreading technique: '+' means a diameter of clearing between 0.5 and 0.9 cm, '++' means a diameter of 
clearing between 1 and 1.5 cm, '+++' means a diameter of clearing >1.5 and less than 2.1 cm, and '++++' means a diameter 
of clearing >2. 1 and <3 cm.

Positive by method Negative by method 

Method No.  of 

positives 

No. (%) of strains 

with identical 

response 

Response 

level 

No.  of 

negatives 

No. (%) of 

negatives that were 

positive with other 

methods 

Method 

number 

1- Blood agar lysis 124 10 (8%) + 81 31 (38%) 2, 3 

  21 (17%) ++  9 (11%) 3 

  49 (39%) +++    

  44 (35%) ++++    

2- Drop collapse 129 14 (11%) + 76 27 (35.5%) 1 

  29 (23%) ++  16 (21%) 3 

  44 (34%) +++    

  42 (33%) ++++    

3- Oil spreading 145 14 (10%) +a 60 21 (35%) 1 

  29 (20%) ++  0 2 

  44 (30%) +++    

  58 (40%) ++++    
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Table 1.3. Efficacy of the blood agar lysis in predicting biosurfactant production. 

Strain Blood agar lysis Drop collapse Oil spreading (cm) 
Surface tension 

(mN/m) 

1 +++a -b - 70.5 

2 +++ + 0.8 60.5 

3 ++++ + 0.7 64 

4 ++ - 0.7 67 

5 ++ - - 65 

6 ++ - 0.5 60 

7 - +++ 1.8 44 

8 - ++ 1.2 52 

9 - ++ 1.2 54 

10 - +++ 2.1 36.7 

11 - +++ 1.8 47.5 

12 - ++++ 3 35 

13 - +++ 1.8 51 

14 - ++ 1.2 52 

15 - ++ 1.2 50 

16 - +++ 1.8 45.7 

 

a: '-', no hemolysis; '+', incomplete hemolysis; '++', complete hemolysis with a 

diameter of lysis <1 cm; '+++', complete hemolysis with a diameter of lysis >1cm but 

< 3cm; and '++++', complete hemolysis with a diameter of lysis > 3 cm and green 

colonies. 

b: flat drops with scoring system ranging from '+' to '++++' corresponding to partial to 

complete spreading on the oil surface. Rounded drops were scored as negative '-' 

indicative of the lack of biosurfactant production. 
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method can also be made quantitative [Bodour and Miller-Maier, 1998]. However, in 

this study, the drop collapse technique was only applied as a qualitative method to 

detect biosurfactant production. Table 1.2 shows that 76 strains tested negative by this 

method. Sixty of these strains were also negative for biosurfactant production by oil 

spreading technique. The other 16 strains were positive for biosurfactant production 

by the oil spreading technique with diameters of clearing on the oil surface ranging 

from 0.5 to 0.8 cm, which suggests low levels of biosurfactant concentration (50-63 

mg/l). Consistent with this, surface tensions of five of these strains were high ranging 

from 60 to 69 dyne/cm. Thus, the drop collapse method may not be as sensitive as the 

oil spreading technique in detecting low levels of biosurfactant production. 

Statistical comparison of the 4 methods used. Table 1.4 shows the coefficient of 

correlation between the four methods that were used to detect biosurfactant production 

by two different statistical analyses [Zar, 1999]. The Spearman rank correlation, (rs= – 

0.959) showed a strong negative correlation between oil spreading technique and 

surface tension (Figure 1.2). A weaker negative correlation, (rs= – 0.82) was detected 

between drop collapse method and surface tension. However, there was a very weak 

negative correlation (rs= – 0.15) between blood agar lysis method and surface tension. 

Oil spreading technique and drop collapse method were strongly correlated with 

Spearman rank correlation coefficient of rs= 0.94. However, a weak correlation was 

detected between drop collapse method and blood agar lysis method (rs= 0.528) and 

between oil spreading technique and blood agar lysis method (rs= 0.497).  The 

statistical test of independence (2x2 contingency table) gave similar conclusions 

regarding the relationships of the three methods. 
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Table 1.4. Statistical correlations between different methods. 

Spearman rank correlation 

coefficient (rs) 

Test of independence correlation 

coefficient (φ2) 
 

Oil 

spreading 

Drop 

collapse 

Blood 

agar 

Oil 

spreading 

Drop 

collapse 

Blood 

agar 

Oil 

spreading 
1   1   

Drop 

collapse 
0.94 1  0.8 1  

Blood 

agar 
0.497 0.528 1 0.2 0.359 1 

Surface 

tension 
-0.959 -0.82 -0.15    
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Discussion: 

In this study, we tested the applicability of using the oil spreading technique to 

detect biosurfactant production in diverse microorganisms. The diameter of clear 

zones was linearly related to surfactin concentrations (Figure 1.1) and replicate 

analyses had low coefficients of variation (< 8.3%). Cultures that gave large diameter 

of clearing also had low surface tension (Figure 1.2). These analyses indicate that the 

oil spreading technique is reliable in detecting biosurfactant production as determined 

by surface tension measurements. Since the concentration of biosurfactant that 

exceeds the critical micelle concentration will not result in further decreases in surface 

tension, the oil spreading technique has a larger dynamic range than surface tension. It 

is also easy to perform and to standardize, and less time-consuming than surface 

tension measurements which makes it applicable for large screening studies. 

The drop collapse method has been used to detect biosurfactant-producing 

microorganisms in natural environments [Bodour et al., 2003]. It was compared to 

surface tension [Bodour and Miller-Maier, 1998], but no correlation studies were 

conducted between the two methods to assess the reliability of the drop collapse 

technique. In this study, we found that the correlation coefficient between the drop 

collapse method and surface tension was strong (rs= -0.82) where cultures showing a 

greater degree of collapse had low surface tension values. Comparing this method to 

the oil spreading technique suggests that it may not be as sensitive in detecting low 

concentrations of biosurfactants since the 16 strains that were negative by drop 

collapse method did have some clearing by the oil spreading technique (0.5-0.9 cm), 

which indicates low concentrations of biosurfactant. Despite this discrepancy, a 
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coefficient of correlation of rs = 0.94 between the drop collapse method and the oil 

spreading technique indicates its reliability as a method of testing biosurfactant 

production especially since any false negatives would be those with low 

concentrations of biosurfactants. Because it can be performed in a microplate, it also 

had the added advantage of allowing the simultaneous analysis of 96 different 

samples. 

Blood agar lysis method was included in this study since it is widely used to 

screen for biosurfactant production and in some cases it is the sole method used 

[Banat, 1993, Yonebayashi et al., 2000]. Mulligan et al. [Mulligan et al., 1984] 

recommended blood agar lysis method as a preliminary screening method. However, 

none of the studies mention the possibility of biosurfactant production without a 

hemolytic activity. In addition a number of false positives (16% in this study) were 

also obtained when using the blood agar lysis (Table 1.2). This method excluded many 

good biosurfactant producers. Forty nine percent of the strains that did not lyse blood 

agar were positive by one of the other two methods (Table 1.2). Blood agar lysis did 

not correlate to surface tension (rs= -0.15) (Table 1.4) and thus is not recommended for 

use as screening method. 

In conclusion, we suggest a simple protocol to screen and quantify 

biosurfactant production in large numbers of microorganisms. First, the cultures are 

analyzed by using the drop collapse method. Positive results obtained by this method 

would constitute cultures that produce either moderate or high amounts of 

biosurfactants (above 60 mg/l). The concentrations of biosurfactant produced can then 

be determined using the oil spreading technique. Cultures negative by the drop 
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collapse method could be screened by the oil spreading technique to detect those that 

produce low levels of biosurfactants. Surface tension can then be used to confirm the 

results if required.  
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Chapter 2 

Importance of the 3-hydroxy fatty acid composition of lipopeptides for 

biosurfactant activity 

Abstract 

Biosurfactant production may be an economic approach to improve oil recovery. To 

obtain candidates most suitable for oil recovery, 207 strains, mostly belonging to the 

genus Bacillus, were tested for growth and biosurfactant production in medium with 

5% NaCl under aerobic and anaerobic conditions. All strains grew aerobically with 

5% NaCl and 147 strains produced a biosurfactant. Thirty-five strains grew 

anaerobically with 5% NaCl and two produced a biosurfactant. In order to relate 

structural differences to activity, eight lipopeptide biosurfactants with different 

specific activities produced by various Bacillus species were purified by a new 

protocol. The amino acid composition of the 8 lipopeptides was the same (Glu/ Gln: 

Asp/ Asn: Val: Leu; 1:1:1:4), but the fatty acid composition differed. Multiple 

regression analysis showed that the specific biosurfactant activity depended on the 

ratios of both iso to normal, even-numbered fatty acids and anteiso to iso, odd-

numbered fatty acids. The multiple regression model accurately predicted the specific 

biosurfactant activity of 4 newly purified biosurfactants (r2 = 0.91). The fatty acid 

composition of the biosurfactant produced by Bacillus subtilis subsp. subtilis strain 

T89-42 was altered by the addition of branched-chain amino acids to the growth 

medium. The specific activities of biosurfactants produced in cultures with the 

different amino acid additions were accurately predicted by the multiple regression 

model from the fatty acid composition (r2 = 0.95). Our work shows that many strains 
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of Bacillus mojavensis and Bacillus subtilis produce biosurfactants and that the fatty 

acid composition is important for biosurfactant activity. 
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Introduction: 

Biosurfactants are compounds produced by a variety of microorganisms (3) 

that are capable of lowering surface and/ or interfacial tension (3, 4, 13) by 

partitioning at the water/air and water/oil interfaces (34, 39). They can have a variety 

of structures including fatty acids, neutral lipids, phospholipids, glycolipids, and 

lipopeptides (13). Biosurfactants aid in the tertiary stage of oil recovery from low 

production oil reservoirs by releasing oil trapped by capillary pressure (34).  

The activity of biosurfactants depends on their structural components, e.g. the 

types of hydrophilic and hydrophobic groups and their spatial orientation (9). Most 

lipopeptide biosurfactants have been shown to have a structure similar to surfactin, the 

biosurfactant produced by Bacillus subtilis (2, 14, 20, 32). Surfactin is a cyclic 

lipopeptide with β-hydroxy fatty acids linked to a heptapeptide (L-Glu-L-Leu-D-Leu-

L-Val-L-Asp-D-Leu-L-Leu) (2, 14). Solubility and surface activity of surfactin 

depend on the arrangement of the amino acid residues to produce two domains, a 

minor hydrophilic domain and a major hydrophobic domain (9). Changes in the amino 

acids in position 2, 4, and/ or 7 of surfactin to a more hydrophobic residue increased 

the surface activity and decreased the critical micelle concentration (8, 31, 32, 35, 36). 

In contrast, Yakimov et al. (40) changed the fatty acid composition of lichenysin A, a 

lipopeptide produced by Bacillus licheniformis BAS50, by addition of branched-chain 

amino acids to the growth medium. The increase in the percentage of branched-chain 

fatty acids in lichenysin A decreased the activity of the biosurfactant.  

Candidate microorganisms for enhanced oil recovery should produce 

biosurfactants at low oxygen tension, slightly elevated temperatures, and high salt 



 34 

concentrations since these are the conditions encountered in many domestic oil 

reservoirs. The lipopeptide produced by Bacillus mojavenesis strain JF-2 generates 

low interfacial tension (less than 0.01 mN/m) needed for substantial oil recovery (24, 

26). It grows and produces the lipopeptide anaerobically at salt concentrations up to 

8% and temperatures up to 45ºC (19, 24). However, most of the activity is lost after 

extended incubations (N. Youssef, and M. J. McInerney, unpublished data), and 

complex nutrients are required for its anaerobic growth (25).  

In an attempt to find better candidates for microbially enhanced oil recovery, a 

number of bacterial strains, mostly Bacillus strains, were screened for anaerobic 

growth and stable biosurfactant production (28, 42) in the presence of 5% NaCl. 

Biosurfactant activity varied markedly among the strains.  To understand the factors 

that influence biosurfactant activity, the biosurfactant concentration and amino acid 

and fatty acid compositions of a number of lipopeptide biosurfactants produced by 

strains of Bacillus subtilis and Bacillus mojavensis were determined.  
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Materials and methods: 

Bacterial strains and cultivation: 

The taxonomic affiliation and the number of strains used in this study are 

shown in Table 2.1.  All cultures were grown at 37ºC in presence and absence of O2 in 

a mineral salts medium with 5% NaCl and sucrose as the energy source as previously 

described (42). For screening, duplicate, 25-ml cultures were used, while duplicate or 

triplicate, 1-liter cultures were used for biosurfactant extraction and purification. Each 

culture was grown until maximal activity was obtained (usually between 42 and 44 h 

of incubation). When needed, amino acids (L-valine, L -alanine, L -leucine, and L -

isoleucine) were added to the medium at 1 g/l before autoclaving. 

Screening for biosurfactant production: 

Biosurfactant activity was measured by the oil spreading technique (28, 42). 

Fifty milliliters of distilled water were added to a large Petri dish (25 cm in diameter) 

followed by the addition of 20 µl of crude oil to the surface of the water. Ten 

microliters of a culture grown in mineral medium was added to the surface of oil. The 

diameter of the clear zone on the oil surface was measured for triplicate samples from 

each replicate culture. Biosurfactant activity, defined as diameter of clearing on the oil 

surface in centimeters, ranged from 0 to 3 cm. The coefficient of variation ranged 

from 0 to 17% for replicates of the same strain. To compare biosurfactant stability, 

duplicate cultures of strains with the highest biosurfactant activity were sampled over 

a period of 14 days and tested for biosurfactant activity. The surface activity relative to 

that of the biosurfactant produced by B. mojavensis strain JF-2 was obtained by 

dividing the oil displacement 
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Table 2.1: Numbers, taxonomic affiliations, growth properties, and biosurfactant production by bacterial strains used in 1 
this study. 2 

 3 

a  Number of strains showing growth or biosurfactant production under the conditions indicated in the column heading. 4 

All the strains were grown with 5% salt; duplicate cultures of each stain were analyzed for each condition. 5 

b Relative activity was measured by dividing diameter of clearing of different strains by that of JF-2 (diameter of 6 

clearing =1.2 ± 0.17 cm). The activity was measured in triplicates for each culture and the coefficient of variation for 7 

duplicates of the same strain ranged from 0 to 17%.  8 

c Reference provides the origin of the strains. 9 

Growth Biosurfactant 
production 

Number of strains with biosurfactant 
activity relative to JF-2 ranging fromb Species # of 

strains +O2 -O2 +O2 -O2 0.42-0.75 0.83-1.7 1.75-2.5 
Referencesc 

B.mojavensis 23 23a 1a 11a 1a 4 5 2 (33) 

B.subtilis subsp. 
subtilis 47 47 0 39 0 14 20 5 (10, 12, 18) 

B.subtilis subsp. 
spizizenii 43 43 0 38 0 10 20 8 (10, 12, 18) 

B. megaterium 15 15 0 7 0 4 3 0 (18) 

B. licheniformis 12 12 12 8 1 7 1 0 (12) 
B. sonorensis 9 9 9 4 0 4 0 0 (29) 

B. species 14 14 0 5 0 4 1 0 (18) 

Oil well isolates 44 44 13 35 0 15 19 1 OU culture 
collection 
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diameter obtained with a given strain by the value obtained for B. mojavensis strain 

JF-2, (1.2 ± 0.17 cm).  

Biosurfactant extraction and purification:  

The method used for biosurfactant extraction and purification was modified 

from Kim et al. (23). When the maximum oil displacement diameter was obtained, 

cells from duplicate or triplicate, 1-liter cultures were removed by centrifugation at 

14,300 x g for 15 min at 4ºC. The pellet was dried at 110ºC overnight and the dry 

weight determined. Biosurfactant in the supernatant was precipitated with 40% w/v 

ammonium sulfate and incubated overnight at room temperature. The precipitate 

containing the biosurfactant along with other compounds was then collected by 

centrifugation at 14,300 x g for 30 min at 4ºC. The precipitate was extracted with 250 

µl of chilled acetone to remove most of the proteins. Instead of the column 

chromatography steps used by Kim et al. (23), further purification was achieved by 

preparative thin layer chromatography (TLC) of the acetone extract. The whole 

acetone extract (250 µl) was spotted on preparative silica gel TLC plates (Whatman, 

Clifton, NJ) and separated by a solvent system of isopropanol: water: 28% w/v 

ammonium hydroxide (80:11:9). The TLC plates were visualized with iodine vapor. 

Each fraction was scraped off the plate, dissolved in 250 µl water, and tested for 

surface activity with the oil spreading technique. Surface-active fractions were 

lyophilized. The weight of the lyophilized biosurfactant was determined and used to 

calculate the biosurfactant yield (biosurfactant weight/ dry weight of cells). 

Biosurfactant yields of different strains varied from 0.9 to 3.1 mg•g-1 dry weight of 
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cell. The coefficient of variation of biosurfactant yield between different batches of the 

same strain ranged from 4.9 to 27%. 

To compare surface activities of different biosurfactants, 1µg•µl-1 solutions of 

purified biosurfactants were prepared and tested by oil spreading technique. The 

specific activity of the purified biosurfactant was expressed as the diameter of the 

clear zone in millimeters per microgram of the purified biosurfactant. Biosurfactant 

specific activity of different strains varied from 0.7 to 4.5 mm•µg-1.  Triplicate samples 

were done for each culture. The coefficient of variation of specific activity between 

different batches of the same strain ranged from 4 to 26%, while that for the same 

batch of the same strain was less than 5%. 

Amino acid analysis: 

The amino acid composition of each purified biosurfactant was determined by the 

molecular biology research facility of the William K. Warren Research Institute 

(Oklahoma City, OK). Purified biosurfactants were acid hydrolyzed under vacuum in 

sealed tubes with 6N HCl at 110ºC for 18-24 hours. Each hydrolyzed sample was 

vacuum dried, dissolved in 0.01N HCl and filtered through a 0.45 µm nylon filter 

before analysis. Amino acid analysis was performed by cation exchange 

chromatography. Amino acid elution was accomplished with a two-buffer system. The 

sample was injected onto the column equilibrated with 0.2 N sodium citrate, pH 3.28. 

This buffer eluted the first 9 amino acids. The remaining amino acids were eluted 

by1N NaCl in 0.2 N sodium acetate, pH 7.4. Amino acids were detected by an on-line 

post-column reaction with ninhydrin (Tritone, Pickering Lab., Inc). Derivatized amino 

acids were quantified by their absorption at 570 nm, except for glutamic acid and 
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proline, which were detected at 440 nm. The procedure was performed with a totally 

automated Beckman System Gold Model 126 HPLC Amino Acid Analyzer. 

Fatty acid analysis: 

A methanolysis procedure, modified from the method of Yakimov et al. (40), 

was used to analyze the fatty acids. Two hundred micrograms of the purified 

biosurfactant were hydrolyzed under vacuum for 16 hours at 90ºC with 4 ml of 25% 

12 N HCl in methanol in sealed tubes. The hydrolyzed fatty acids methyl esters 

(FAME) were then extracted with 7 ml of 1:1 v/v ethyl acetate: hexane (EAH solvent). 

The organic phase was concentrated under a stream of N2 to 0.6 ml. The concentrated 

fractions were neutralized with 0.5 ml of 0.4 M phosphate buffer (pH 12) and 

incubated at room temperature for 10 min. The FAME in the organic layer were 

derivatized with BSTFA (Pierce, Rockford, IL) and analyzed by gas chromatography/ 

mass spectrometry (GC/MS) (Agilent Technologies 6890N Network GC systems/ 

5973 Network Mass Selective Detector, Willmington, DE). One microliter of each 

sample was used for injection; triplicate injections were made for each biosurfactant 

preparation. The oven temperature was set at 60ºC for 5 min and then increased to 

250ºC over a 15-min interval. The column was a capillary column 0.25 mm X 30 m X 

0.25 µm. The carrier gas was helium and the flow rate was 1.2 ml/min. The mass 

spectrometer was operated at 400 Hz. Peak areas obtained on the GC chromatogram 

were used to calculate the percentage of the FAME isomers compared to the area of all 

FAME. The electron ionization mass spectra were dominated by fragment ions 

specific for trimethylsilyl (TMS) derivatives. The fragment ion at 175, which is 

specific for TMS derivatized hydroxyl groups in the beta position, was used to extract 
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the chromatogram to detect peaks corresponding to 3-hydroxy fatty acids. The M-15 

fragments (loss of methyl group) on the MS spectra were used to identify the carbon 

chain length of the fatty acid isomers. These corresponded to 301 for 3-OH-C13, 315 

for 3-OH-C14, 329 for 3-OH-C15, 343 for 3-OH-C16, and 357 for 3-OH-C17. M-31 

fragments, characteristic of fatty acids and corresponding to the loss of methanol, were 

also detected. Iso isomers of fatty acids were identified by the presence of M-43 

fragment (loss of an isopropyl group) and the absence of M-29 fragment (loss of an 

ethyl group) from the MS spectra. Anteiso isomers were identified by the presence of 

M-57 fragment (loss of a secondary butyl group) and the absence of M-43 fragment 

(loss of an isopropyl group) from the MS spectra. Fragments M-29, M-43, and M-57 

were very small in comparison to others specific for trimethylsilyl (TMS) derivatives, 

but were discernable by magnifying the mass spectrum. Retention times and mass 

spectra were compared to authentic standard methyl 3-hydroxy tetradecanoate 

(Larodan Fine Chemicals, Malamö, Sweden). 

Statistical analyses: 

SPSS for windows (release 11.5.0, SPSS Inc., Chicago, IL) and Microsoft 

excel for Mac (version 11.1.1) were used to calculate Pearson’s correlation 

coefficients and test regression models. 

 

 

 

 

 



 41 

Results: 

Screening of microorganisms. 

Thirty-five strains mostly belonging to Bacillus licheniformis and Bacillus 

sonorensis grew anaerobically with 5% NaCl (Table 2.1), two of which produced a 

biosurfactant. One hundred and forty seven strains mostly belonging to Bacillus 

subtilis subsp. subtilis and B. subtilis subsp. spizizenii produced a biosurfactant under 

aerobic conditions (Table 1). Sixteen strains produced biosurfactants with activities 

1.75 to 2.5 times that of JF-2 biosurfactant. Sixty-nine strains had biosurfactant 

activity comparable to JF-2 (0.83 to 1.7 times) (Table 2.1). Some Bacillus mojavensis 

strains (2 out of 5 tested) maintained their biosurfactant activity over a 14-day 

incubation period compared to B. mojavensis strain JF-2 that lost 50% of its activity in 

7 days.  

Evaluation of a new protocol for biosurfactant purification: 

The lipopeptide produced by triplicate cultures of Bacillus mojavensis strain 

ROB-2 was used to compare the efficiency of two purification methods. Method 1 

involved acid precipitation (using 1N HCl to adjust the pH of the cell-free culture fluid 

to 2) (41) followed by thin layer chromatography (TLC). Method 2 used ammonium 

sulfate precipitation followed by acetone extraction and thin layer chromatography. 

Seventy five percent of the biosurfactant activity remained in the cell-free culture fluid 

after cell removal. The surface-active fraction obtained from the TLC plate by method 

1 had 23 ± 7% of the activity originally present in the culture, while the surface-active 

fraction obtained from the TLC plate by method 2 had 63 ± 11% of the activity 

originally present in the culture. The specific biosurfactant activity of the surface-
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active fraction from the TLC plate for 12 different strains was 0.65 ± 0.07 mm• µg-1 by 

method 1 and 1.9 ± 0.7 mm• µg-1 by method 2. Method 2, being more efficient, was 

used to purify the biosurfactants. 

Relationship between biosurfactant yield and activity:  

The biosurfactant yields of seven different Bacillus strains (duplicate cultures 

for each strain) with activities ranging from 0.5 to 4.25 times that of B. mojavenesis 

strain JF-2 were determined. Biosurfactant activity was poorly correlated with 

biosurfactant yield (linear correlation coefficient r2 = 0.09, and Pearson correlation 

coefficient (15) = -0.29). The biosurfactant activity did not always increase with an 

increase in biosurfactant yield, i.e. some biosurfactants were produced in high yields, 

but had relatively low activity, while others were produced in low yields, but had high 

activity. 

Biosurfactants structure-activity relationship: 

The lack of correlation between biosurfactant yield and surface activity prompted 

us to study the effect of variation in structural components of different biosurfactants 

on activity. Amino acid analysis of eight purified biosurfactants showed that they 

contained the same amino acid composition (mean ± std dev of the mole ratio): Glu/ 

Gln: Asp/ Asn: Val: Leu (0.99 ± 0.04: 0.99 ±0.04: 1 ± 0.04: 3.6 ± 0.12). Since the acid 

hydrolysis method used for amino acid analysis does not differentiate between acid or 

amide forms of the acidic amino acids (i.e. glutamate and glutamine, or aspartate and 

asparagine), the peptide portion of these biosurfactants may differ in their Glu/ Gln 

and/ or their Asp/ Asn content. 
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 The fatty acid portion of the biosurfactants contained 3-hydroxy tridecanoate (3-

OH-C13), tetradecanoate (3-OH-C14), pentadecanoate (3-OH-C15), and 

hexadecanoate (3-OH-C16) (Table 2.2). The 3-OH-C13, and 3-OH-C15 fatty acids 

were present as mixtures of iso and anteiso isomers while 3-OH-C14 was comprised 

of normal and iso isomers. The 3-OH-C16 fatty acid contained only the normal 

isomer. In some cases, the 3-OH-C14 and 3-OH-C15 fatty acids together constituted 

the majority of the fatty acids of the lipopeptide. However, in other cases, the 3-OH-

C14 alone was the major fatty acid isomer. When the fatty acids of the biosurfactant 

purified from duplicate cultures of the same strain were analyzed, the fatty acid 

composition varied from one batch to another along with the specific activity of the 

biosurfactant. Multiple regression analysis was used to determine the fatty acid 

isomers that contributed to activity (43). All fatty acid isomers, the sums of the 

tridecanoate, tetradecanoate, pentadecanoate, hexadecanoate, ratios of even iso/normal 

isomers and other combinations were used to construct multiple regression models. 

There was a significant positive correlation between the % mass of the iso 3-OH C14 

fatty acid and biosurfactant specific activity (Pearson’s bivariate correlation 

coefficient, r=0.813, p<0.001) and a significant positive linear correlation between 

ratio of iso to normal, even-numbered fatty acids and biosurfactant specific activity 

(Pearson’s bivariate correlation coefficient, r=0.953, p<0.001). No fatty acid other 

than the iso 3-OH C14 showed a significant positive linear correlation with 

biosurfactant specific activity. We found that the best model of specific activity of 

lipopeptide biosurfactants depended on both the ratio of iso to normal, even-numbered 

fatty acids (positive dependence) and the ratio of anteiso to iso, odd-numbered fatty 
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Table 2.2: Comparison of biosurfactant activity and fatty acid ratios of different biosurfactants 

 

 

 

 

 

 

 

 

 

a Mean ± std dev of triplicate cultures. The specific activity of purified biosurfactant is expressed as diameter of 

spreading in mm per µg of the biosurfactant purified. 

b Mean ± the range of duplicate cultures. The numbers refer to the percentage of different fatty acids (% mass values) in 

the lipid portion of the purified biosurfactant. The percentage was calculated by dividing the peak areas of individual 

fatty acids by the total peak area of all FAME.

Fatty acid composition Species Strain Specific activity 
mm•µg-1  C13 C14 C15 C16 

B. mojavensis JF-2 3 ±2a 1.3 ±2.5b 49.6 ±85.4b 11.3 ±14.9 24.4 ±45 
B. subtilis subsp. 

spizizenii TG6-19 2.4 ±0.8 3.6 ±7.1 58.4 ±54.8 30.3 ±54.8 3.5 ±0.2 

B. subtilis subsp. 
subtilis T89-15 3 ±2 2.4 ±4.8 67.7 ±47.2 22.7 ±29.4 4.3 ±3.8 

B. subtilis subsp. 
subtilis T89-42 1.63 ± 0.3 4.7 ±9.4 67.1 ±29.4 24.6 ±47.2 4.3 ±38 

B. subtilis subsp. 
spizizenii T88-8 3 ±2.95 2.4 ± 4.8 61 ±52.8 27.3 ±52.8 6.3 ±88 

B. subtilis subsp. 
spizizenii CL1-14 2.55 ±2.1 4.2 ±8.4 67.3 ±56.9 25.8 ±44.4 4.4 ±4.9 

B. mojavensis T89-14 2 ±2 6.4 ± 12.8 57 ±69.5 32.8 ±55.7 2.8 ±1.2 
B. subtilis subsp. 

spizizenii T89-3 1.35 ±1.3 6.8 ±13.6 49.7 ±44.3 35.5 ±29 6.2 ±0.7 
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acids (negative dependence). When the values expected for specific activity (obtained 

by using the multiple regression equation) were plotted against the values of specific 

activity obtained experimentally (Fig. 2.1, open squares) (43), the linear correlation 

coefficient (r2) was 0.91 (15) and the Pearson correlation coefficient (r) was 0.94 (15). 

The variation not explained by the multiple regression model might be due to the 

probability of the presence of a different amino acid in the peptide portion (Glu/ Gln 

and/ or Asp/ Asn content) of the lipopeptides. 

The multiple regression model accurately predicted the specific biosurfactant 

activity from the ratios of both iso to normal, even-numbered fatty acids and anteiso to 

iso, odd-numbered fatty acids for four other lipopeptide biosurfactants produced by B. 

mojavensis and B. subtilis subsp. spizizenii strains (Fig. 2.1, closed diamonds). 

Effect of amino acid addition: 

Precursors of branched chain fatty acids (21) were added to the growth 

medium of B. subtilis subsp. subtilis strain T89-42 to change the fatty acid 

composition and test the predictions of the multiple regression model (Table 2.3). 

When the strain was grown with 1g/l valine, the specific activity increased 3.2-fold, 

and the yield almost doubled compared to un-amended cultures. The ratio of iso to 

normal 3-OH even-numbered fatty acids increased 2.8-fold (Table 2.3). The increase 

in both the specific activity and the ratio of iso to normal even-numbered fatty acids 

when valine was added to the growth medium supports the finding that the specific 

activity is positively correlated to this ratio. When strain T89-42 was grown with 

alanine, the specific activity increased 1.7-fold, the ratio of iso to normal even-  
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Figure 2.1: Multiple regression analysis for the fatty acid predictors of specific activity 

of lipopeptide biosurfactants. Values on the X-axis are the experimentally obtained 

specific activities of the different lipopeptide biosurfactants. Values on the Y-axis 

were obtained by using the multiple regression equation: y (specific activity) = 0.39 

(ratio of iso to normal even-numbered fatty acids) – 0.09 (ratio of anteiso to iso odd-

numbered fatty acids) + 0.73. The equation of the straight line was y = 0.908 x + 

0.214. The coefficient of linear regression was r2 = 0.908. The multiple regression 

equation above was used to predict the specific activity of four other strains. The 

coefficient of linear regression (r2) between the predicted and actual specific activity 

for these four strains was 0.9134 (y = 0.925x + 0.611). Squares: values for the 

experimentally obtained versus calculated specific activities for seven biosurfactants 

purified from duplicate cultures and 1 biosurfactant purified from triplicate cultures. 

Closed diamonds: values for the experimentally obtained versus calculated specific 

activities of four other purified biosurfactants. 
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numbered fatty acids increased 1.2-fold, while the ratio of anteiso to iso odd-

numbered fatty acids was about the same as in the control without amino acid addition 

(Table 2.3). When leucine was present, the specific activity doubled (Table 2.3). The 

increase in the specific activity with leucine addition could not be accounted for by an 

increase in the ratios of iso to normal even-numbered fatty acid isomers since the iso 

and normal isomers of even-numbered fatty acids with leucine addition comprised 

only 3.8% of the total fatty acids compared to 48 % of the total fatty acids in the 

control without amino acid addition. However, the decrease in the ratio of anteiso to 

iso odd-numbered fatty acids may explain the increase in specific activity since this 

ratio is negatively correlated to specific activity. When isoleucine was added to the 

growth medium, the specific activity was similar to the unamended control. An 

increase in the ratio of iso to normal even numbered fatty acids (1.7-fold) might have 

counteracted the increase in the ratio of anteiso to iso odd numbered fatty acids (2.7-

fold) to keep the specific activity close to that of the control without amino acid 

addition.  

Figure 2.2 shows that there was a strong linear correlation (r2 = 0.95) (15) between the 

values of specific activities of biosurfactants produced in cultures with the different 

amino acid additions and the specific activities predicted from the multiple regression 

equation based on the fatty acid composition. Pearson correlation coefficient (r) was 

0.98 (15). 
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Table 2.3: Yields, surface activities, and fatty acid ratios of biosurfactants from 

Bacillus subtilis subsp. subtilis strain T89-42 grown in presence and absence of 

exogenous amino acids in the medium. 

 
 
a Mean ± std dev of triplicate cultures. The biosurfactant yield is expressed as mg 

biosurfactant • g-1 dry weight of cells.  

b Mean ± std dev of triplicate cultures. Specific activity of biosurfactant is expressed 

as mm of clearing • µg-1 of biosurfactant.  

c Even-numbered fatty acids are iso-3-OH-C14, normal 3-OH-C14 and normal 3-OH-

C16. Odd-numbered fatty acids are anteiso 3-OH-C13, 3-OH-C15 (and 3OH-C17 only 

in case of isoleucine addition), and iso 3-OH-C13, 3-OH-C15 (and 3-OH-C17 only in 

case of isoleucine and leucine additions). 

d Mean ±( range) of the fatty acid ratios of the biosurfactant purified from duplicate 

cultures. 

 

 

Amino 

acid added 

Biosurfactant 

yield  

Specific 

activity  

Ratio of iso/n 
even-numbered 

fatty acidc 

Ratio of anteiso/iso 
odd-numbered fatty 

acidsc 
 

None 1.2 ± 0.25 a 2 ± 0.05 b 2.25 (±0.5)d 0.55 (±0.1)d 

Alanine 0.28 ± 0.006 3.1 ± 0.4 2.7 (±0.6) 0.45 (±0.3) 

Valine 2.3 ± 0.06 5.7 ± 0.6 6.33 (±0.06) 0.62 (±1.05) 

Leucine 0.25 ± 0.04 4.1 ± 0.6 3.9 (±0.38) 0.037 (±0.07) 

Isoleucine  0.37 ±0.09 2.2 ±0.4 3.9 (±3.2) 2.7 (±0.6) 
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Figure 2.2: Correlation between the experimentally obtained specific biosurfactant 

activities and those predicted by the multiple regression equation based on known 

fatty acid composition. The predicted specific activity was calculated from the fatty 

acid ratios given in Table 2.3 with the multiple regression equation given in the legend 

to Figure 2.1. Data points represent each culture condition shown in Table 2.3. The 

error bars represent range of duplicate cultures for each growth condition. The 

equation of the straight line was y = 0.323 x + 1.12. The coefficient of linear 

regression was r2 = 0.902.  
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Discussion:  

 The majority of strains examined in this study were members of Bacillus 

subtilis (subspecies subtilis and spizizenii), Bacillus licheniformis, or species closely 

related to them. Although many of these strains had originally been isolated for other 

studies (10, 12, 18, 33) and therefore not selected to be biosurfactant producers, 68% 

produced biosurfactant, as compared to 80% of isolates from oil wells (Table 2.1). 

Approximately 14% of these strains that were examined with an oil-spreading 

technique had relative activities 1.75 to 2.5 times that of JF-2 (15 out of 110; Table 

2.1), while 1 in 44 strains isolated from oil wells (2%) had such a high relative 

activity. Therefore, in accordance with recent findings (7), we found that 

biosurfactant-producing microbes can be readily isolated from uncontaminated, 

undisturbed arid soils. However, our percentage of biosurfactant-producing isolates 

was quite high (e.g. 68% vs. 3.4%), reflecting our focus upon Bacillus species known 

to contain strains that produce biosurfactants rather than screening more broadly for 

novel biosurfactant producers. Strains varied greatly in biosurfactant yield (mg 

biosurfactant produced per gram dry weight of cells) and in the surface activity of 

active fractions collected from TLC plates. There was only a weak correlation between 

yield and surface activity. 

The lack of correlation between yield and activity suggested that the variability 

in surface activity of biosurfactants produced by the closely related strains used for 

this study was due to structure differences rather than a result of changed gene 

expression. The three dimensional structure of surfactin, the biosurfactant produced by 

B. subtilis (9), showed that the carboxylic groups of both glutamate and aspartate form 
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a minor hydrophilic domain, and the non-polar residues in position 4 and, to a lesser 

extent, in positions 2 and 7 form major hydrophobic domains with the lipid tail. The 

presence of these 2 domains was found to be important for surface activity. Since then, 

structural variants of surfactin were obtained via chemical modification (38), cultural 

modification, or genetic recombination (8, 14, 31, 32, 35, 36) to obtain a biosurfactant 

molecule with higher surface activity. A substitution of valine to isoleucine in position 

4 decreased the CMC by two-fold and increased the surface activity possibly due to 

the expansion of the major domain by the incorporation of the more hydrophobic 

isoleucine (8). Monoanionic biosurfactants (e.g. lichenysin A with asparagine in 

position 5) had higher surface activity compared to dianionic biosurfactants (e.g. 

surfactin with aspartate in position 5) (14, 41). In this study, all the biosurfactants 

tested had 1 valine and 4 leucines. Glutamine and/ or asparagine could replace 

glutamate and aspartate in positions 1 and 5, respectively, since these amino acids 

could not be distinguished by the method used for amino acid analysis. The presence 

of glutamine or asparagine in the peptide chain would mean that the biosurfactant is 

monoanionic and hence should have higher activity. A more detailed study on the 

presence of the amide form of acidic amino acids is required to rule out their effect on 

the biosurfactant activity. 

The fatty acid composition of the lipopeptide also affects activity. Yakimov et 

al. (40) found that an increase in the percentage of branched chain fatty acids in 

lichenysin A of Bacillus licheniformis strain BAS50 decreased surface activity and an 

increase in the percentage of straight chain 3-hydroxy tetradecanoate (n-3OH-C14) 

increased surface activity. This is in contrast to our results that the percentage of 3-
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hydroxy iso even-numbered fatty acids (in our case iso-3-OH-C14 was the only even-

numbered branched-chain fatty acid) was correlated to surface activity.  However, 

Yakimov et al. (40) studied only one lipopeptide, lichenysin A. Lichenysin A is a 

monoanionic lipopeptide with a heptapeptide (Glu: Asn: Val: Leu: Ile; 1:1:1:3:1). The 

presence of the amide form asparagine and the more hydrophobic isoleucine residue 

results in a lipopeptide with different properties than the lipopeptides compared in this 

study.  

Kaneda (21) showed that biosynthesis of branched chain fatty acids proceeds 

from the corresponding acyl CoA esters derived from branched-chain amino acids (L-

valine, L-isoleucine, and L-leucine). Since the fatty acid composition of the 

biosurfactant, is controlled by the abundance of fatty acids precursors in the cell (1, 5, 

6, 11, 16, 17), we added exogenous branched-chain amino acids to the growth medium 

to determine the effect of changes of fatty acid composition on biosurfactant activity. 

The results of the exogenous amino acid addition to the growth medium (Table 2.3) 

suggests that altering the ratios of even-numbered fatty acids has a more pronounced 

effect on specific activity than does altering the ratios of odd-numbered fatty acids. A 

2.8-fold and 1.2-fold increase in the ratio of iso to normal even-numbered fatty acids 

(with valine, and alanine addition, respectively) led to a 3.2-fold and 1.7-fold increase 

in specific activity. However, a 15-fold decrease in the ratio of anteiso to iso odd 

numbered fatty acids only led to a 2-fold increase in the specific activity when leucine 

was added to the medium. A 2.7-fold increase in the latter ratio with isoleucine 

addition did not change the specific activity much compared to the control without 

amino acid addition. We hypothesize that branched even numbered fatty acids (in this 
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case iso C14 was the only branched even numbered fatty acid) might give the 

optimum hydrophilic-lipophilic balance required for optimum surface activity. A more 

definitive conclusion could be drawn if the lipopeptide with only the iso C14 fatty acid 

could be purified from the mixture of lipopeptides. A higher activity in this case would 

support this hypothesis. 

This work shows that fatty acid of lipopeptide biosurfactants is important for 

activity and that manipulation of the medium composition to change the lipopeptide 

fatty acid composition may result in biosurfactants with higher specific activities. This 

may be a more useful approach than the molecular engineering of the lipopeptide (27, 

35, 37) since the various regulatory policies make it difficult to use recombinant 

strains for in situ applications. 
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Chapter 3 

Basis for formulating biosurfactant mixtures effective in achieving ultra low 
interfacial tension values against hydrocarbons 

 

Abstract 

Biosurfactants could potentially replace or be used in conjunction with 

synthetic surfactants to provide for more cost-effective subsurface remediation. To 

design biosurfactant/ synthetic surfactant formulations that are effective in lowering 

interfacial tension (IFT) needed to mobilize entrapped hydrocarbons, information 

about the surface-active agent and the targeted non-aqueous phase liquids (NAPL) are 

required. We hypothesized that biosurfactant/synthetic surfactant mixtures can be 

formulated to provide the appropriate hydrophobic/hydrophilic conditions to generate 

low IFT against NAPLs and that such mixtures will be more effective than individual 

biosurfactants or synthetic surfactants. Our work tested the efficacy of biosurfactants 

from individual strains and mixtures of biosurfactants from different strains with and 

without synthetic surfactants for enhanced interfacial activity. Multiple regression 

analysis showed that, for lipopeptide biosurfactants produced by various Bacillus 

species, the interfacial activity against toluene depended on the relative proportions of 

3-OH-C14, C15, C16, and C18 in the fatty acid tail. A more heterogeneous fatty acid 

composition was more effective in lowering the IFT against toluene. In mixtures of 

lipopeptide biosurfactants with the more hydrophilic, rhamnolipid biosurfactant, the 

IFT against toluene decreased as the percentage of the 3-OH C14 fatty acid increased in 

the lipopeptide. Mixtures of lipopeptide biosurfactants with the more hydrophobic 

synthetic surfactant, C12, C13-8PO sulfate, produced lower IFT against hexane and 
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decane. In general, we found that lipopeptide biosurfactants with a heterogeneous fatty 

acid composition or mixtures of lipopeptide and rhamnolipid biosurfactants lowered 

the IFT against hydrophilic NAPLs. Conversely, mixtures of lipopeptide 

biosurfactants with more hydrophobic synthetic surfactants lowered the IFT against 

hydrophobic NAPLs.  
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Introduction 

Subsurface light non-aqueous phase liquid (LNAPL) contamination is a 

prevalent environmental problem at Superfund sites, refineries, pipelines and 

chemical/industrial facilities (5). Subsurface LNAPL contamination exists in three 

zones: the source area where dissolution into the groundwater initiates, the 

concentrated plume that contains the center of mass of the contaminant, and the dilute 

contaminant plume (33). Usually, the source area and the concentrated plume, where 

the majority of contaminants exist, are the most challenging to remediate. 

Conventional pump and treat methods have limited success due to the constant 

dissolution of hydrocarbons entrapped in the source area into the passing ground water 

(5, 33).  

Surfactant-enhanced subsurface remediation (SESR) has been identified as a 

promising technology for source area treatment (33, 35). SESR has two general 

approaches. Solubilization is the use of surfactants to enhance the aqueous solubility 

of contaminants thereby decreasing the volumes of water flushing required for 

treatment. Mobilization is the use of surfactant concentrations far above the critical 

micelle concentration to reduce the interfacial tension (IFT) between LNAPL and 

water phases. Capillary forces entrap the LNAPL, and large reductions in IFT are 

necessary to reduce the capillary forces and mobilize the LNAPL and thus achieve 

high LNAPL mass removal efficiencies (33, 35). However, several factors limit the 

use of surfactants in subsurface remediation. The cost of SESR can be high due to the 

high concentrations of surfactants required to achieve ultra low IFT (17, 33). The 
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persistence of surfactants or their metabolites in groundwater and their off site 

migration may also pose a problem (33).  

Biosurfactants may provide a more cost-effective approach for subsurface 

remediation when used alone or in combination with synthetic surfactants. Sufficient 

amounts of biosurfactants can be produced during the growth process of 

microorganisms to produce IFT values less than 0.01 mN/m, as reported for 

lipopeptide biosurfactants at concentrations less than 100 mg/l (26, 27). The critical 

micelle concentration of many biosurfactants is much lower than synthetic surfactants 

(10, 20, 24, 26, 28, 34). Lastly, biosurfactants are biodegradable (30).  

Glycolipid biosurfactants, e.g. the rhamnolipids produced by Pseudomonas 

species (3, 19, 21), and trehalose lipids produced by Rhodococcus species (18) have 

been studied for their ability to mobilize, solubilize, and enhance mineralization of 

alkanes such as hexadecane and octadecane, and polycyclic aromatic hydrocarbons 

such as naphthalene and phenanthrene. Both batch (9, 43) and column studies (12) 

showed that biosurfactant addition increased the aqueous solubility of hydrocarbons. 

However, mixed results were obtained regarding the effect of biosurfactants on the 

rate of hydrocarbon degradation. This may have been due to the pH, ionic strength, 

and biosurfactant concentration used for biodegradation studies. It has been shown 

that optimal pH for hydrocarbon solubilization might not be optimal for microbial 

growth and hydrocarbon degradation (36). The use of improper biosurfactant 

concentration may also impede biodegradation. In some studies, biosurfactant 

concentrations above the CMC inhibited degradation (31). In other studies, 

biodegradation was stimulated at biosurfactant concentrations above the CMC (37). A 
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few studies showed that biosurfactant addition mobilized entrapped hydrocarbons by 

lowering interfacial tension (6, 12). The injection of over 40 to 70 pore volumes of the 

rhamnolipid solution was needed to recover 65% of the entrapped hydrocarbon (6). 

Lipopeptide biosurfactants, on the other hand, recovered 20 to 80% of entrapped crude 

oil depending on the concentration (20 to 920 mg/l) and only two pore volumes of the 

lipopeptide solution were needed (25).  

Previous work on lipopeptide biosurfactants showed that activity against crude 

oil depended on the carbon chain length and the degree of branching of the fatty acid 

tail (39). In this study, we sought to optimize biosurfactants formulations for LNAPL 

mobilization. Our hypothesis was that mixtures of biosurfactants are needed to achieve 

ultra low IFT required for LNAPL mobilization. Mixtures of synthetic surfactants 

have been shown to be effective in mobilizing perchloroethylene and LNAPL (33, 35), 

but the efficacy of biosurfactant mixtures is not known. In this study, lipopeptide 

biosurfactants from individual strains or mixtures from different strains, mixtures of 

lipopeptides and rhamnolipids, and mixtures of lipopeptides with synthetic surfactants 

were tested for their ability to lower interfacial tensions against LNAPL components 

with different hydrophobicities (toluene, hexane, decane, and hexadecane). The results 

provide a basis for formulating biosurfactant/synthetic surfactant formulations to 

achieve ultra low IFT against LNAPL components. 
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Materials and methods 

Sources of biosurfactants/surfactants 

The C12, C13 alcohol propoxylated (PO) sulfate surfactant with 8 PO groups 

(C12, C13 – 8PO – SO4Na) was donated by Sasol (Tucson, AR). Rhamnolipid is a 

mixture of mono- and di-rhamnolipids (19, 21). Monorhamnolipid has the formula of 

α-L-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate and dirhamnolipid 

has the formula of 2-O-α-L-rhamnopyranosyl a-L-rhamnopyranosyl-β-

hydroxydecanoyl-β-hydroxydecanoate. The rhamnolipid was obtained from Jeneil 

Biosurfactants Co. (Saulkville, WI).  

Lipopeptide biosurfactants were obtained from different biosurfactant-

producing Bacillus species as described previously (39) (Table 3.1). Replicate cultures 

were grown aerobically at 37ºC in a mineral salts medium with 5% NaCl and sucrose 

as previously described (39, 41). When needed, 1 g/l L-valine or L-leucine was added 

to the growth medium before autoclaving (39). Biosurfactant production was followed 

over time by using the oil spreading technique (28, 39). When the maximum oil 

displacement diameter was obtained, cells from 4-liter cultures were removed by 

centrifugation at 14,300 g for 15 min at 4ºC. The cell-free culture fluid was acidified 

to pH 2 by the addition of 2N HCl and then incubated at 4ºC overnight. The 

precipitate, which contained the biosurfactant, was collected by centrifugation at 

14,300 g for 30 min at 4ºC. The pellet was then adjusted to pH 7 with 2N NaOH and 

lyophilized (39).  
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Table 3.1: Bacterial strains used, and the CMC of their lipopeptide biosurfactant. 

Species Strain CMC (mg/l)a 

T89-42 10 ± 0.58 

ROGG-2 10 ± 0.58 

Bacillus subtilis subsp. subtilis 

T89-15 ND 

Bacillus subtilis subsp. spizizenii T89-3 10 ± 1.5 

ROB-2 17.4 ± 0 

T89-14 17.4 ± 0.38 

Bacillus mojavenesis 

ROG-4 7.8 ± 0.38 

a: values are average ± standard deviation of 3 measurements 

ND: not determined. 
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Acid-precipitated, lyophilized lipopeptide biosurfactant solutions were analyzed by 

high performance liquid chromatography (HPLC) using a reversed phase-C18 column 

and a solvent system of 60% acetonitrile in water (40). Three peaks were obtained at 

retention times ranging from 1 to 4 minutes corresponding to the different fatty acid 

tails of the lipopeptide. The sum of each peak area was used to quantify the 

biosurfactant concentration in the acid precipitate in comparison to a standard curve 

prepared with a highly purified biosurfactant preparation obtained from the same 

strain by a modified TLC method (15, 39). The surface-active fractions obtained from 

TLC plates were lyophilized and used to prepare standard solutions with 

concentrations ranging from 0.2 to 1 mg/ml.  

Structure analysis of lipopeptide biosurfactants. 

The fatty acid composition of each purified biosurfactant was determined by a 

methanolysis procedure, modified from the method of Yakimov et al. (38, 39).   

The amino acid composition of lipopeptide biosurfactant was determined in the 

Molecular Biology Research Facility of the William K. Warren Research Institute 

(Oklahoma City, OK) as described previously (39). The method did not differentiate 

between acid and amide forms of glutamic and aspartic acids (39). To clarify which 

amino acid was present, direct electrospray-mass spectrometry was used. Samples 

were run in the negative ion mode and the resulting ion fragments were used to 

determine the exact amino acid composition of two lipopeptides. 

Preparation of biosurfactant mixtures 

Lipopeptide biosurfactants from different strains prepared by the acid 

precipitation method were mixed in different proportions. Mixtures of lipopeptides 
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with rhamnolipids, or with C12, C13 – 8PO – SO4Na were also prepared.  The final 

surfactant concentration of each mixture was 1 g/l. 

 Surface and interfacial tension measurement 

Surface tension of biosurfactant solutions with final concentrations ranging 

from 0 to 1 g/l was measured with a Du Nuoy ring tensiometer (20). The tensiometer 

was calibrated with water as the standard for high range surface tension and 

isopropanol as the standard for low range surface tension. The critical micelle 

concentration (CMC) was the concentration at which a sharp increase in surface 

tension was observed (Table 3.1).  

The interfacial tension (IFT) between surfactant solutions and different 

hydrocarbons was determined using a spinning drop tensiometer (8). The surfactant 

solution was used to fill the capillary tube and then the hydrocarbon was added to 

form a drop inside the capillary tube. The hydrocarbons used were toluene, hexane, 

decane, and hexadecane, each with 99% purity. The IFT of a 1g/l surfactant solution 

was measured against each of the above hydrocarbons with NaCl additions ranging 

from 0 to 9% (w/v). The optimal salinity of a given surfactant is defined as the salt 

concentration at which the lowest value for IFT was obtained. 

Surface and interfacial tension measurements were done in triplicates for each 

treatment.  Most experiments were repeated 2 or 3 times. Averages and standard 

deviations were calculated for each analysis.  

Regression analysis 

Multiple regression analysis (42) was used to assess how variability in the fatty 

acid isomers of lipopeptide biosurfactants contributed to variation in the IFT against 
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toluene. All fatty acid isomers, the sums of the tridecanoate, tetradecanoate, 

pentadecanoate, hexadecanoate, and octadecanoate isomers, ratios of even iso to 

normal isomers and other combinations were tested. 
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Results 

Determination of the relative hydrophobicity/ hydrophilicity of biosurfactants/ 

synthetic surfactants. 

Interfacial tension values against hydrocarbons with different equivalent 

alkane carbon numbers (EACN) (1) and against a single hydrocarbon at different salt 

concentrations were used to determine the relative hydrophobicity/ hydrophilicity of 

biosurfactants and synthetic surfactants. The hydrophobicity of hydrocarbons 

increases with the EACN (1). Biosurfactants or synthetic surfactants that have their 

lowest IFT against hydrocarbons with high EACN are considered to be relatively 

hydrophobic (7). Table 3.2 shows the IFT values against different hydrocarbons. 

Comparing the IFT values against toluene, the biosurfactants/synthetic surfactants can 

be ordered from the most hydrophilic to the most hydrophobic as follows, 

rhamnolipid> T89-42> T89-3>ROB-2>T89-14> ROGG-2> C12, C13 – 8PO – SO4Na. 

However, the IFT values against toluene for T89-42 and T89-3 biosurfactants were 

very similar as were those for ROGG-2 biosurfactant and C12, C13 – 8PO – SO4Na. 

To distinguish these compounds further, the IFT values against hydrocarbons with 

different EACN were analyzed. The T89-42 biosurfactant had its lowest IFT against 

decane while the T89-3 biosurfactant had its lowest IFT value against hexane. This 

indicates that the T89-3 biosurfactant was more hydrophilic than the T89-42 

biosurfactant. Similarly, the ROGG-2 biosurfactant had its lowest IFT against toluene 

and C12, C13 – 8PO – SO4Na had its lowest IFT against decane. This indicates that 

the ROGG-2 biosurfactant was more hydrophilic than C12, C13 – 8PO – SO4Na. 

Incorporating all of the above analyses gave the order of 
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Table 3.2: EACN scans of different biosurfactant obtained at their optimal salinity  
Hydrocarbon (EACN) 

 Surfactant  
Toluene (1) Hexane (6) Decane (10) Hexadecane (16) 

T89-42 0.54±0.04 (3.7%)a 0.79 (8%)a 0.5 ± 0.07(9%)a 0.6 ±0.06 (8%)a 

T89-3 0.51 (5%) 0.42 (9%) 0.63 (9%) 0.97 (9%) 

ROB-2 0.66 ±0.03 1.27 ±0.09 1.22 ±0.07 2.75 ± 0.05 

T89-14 1.05 ±0.4 1.19 ±0.5 1.46 ±0.4 1.91 ± 0.25 

Lipopeptide 

ROGG-2 2.17 2.55 3.65 3.89 

Rhamnolipid JBR 515 0.31 ± 0.01 0.65 ± 0.02 0.69 ± 0.1 0.8 ± 0.02 

Synthetic 

surfactant 

C12, C13-8PO 

sulfate 
2.19 ± 0.01 0.2 ± 0.02 0.02 ± 0.001 0.04 ± 0.001 

a: values are average interfacial tensions ± standard deviation of 3 measurements of 1g/l biosurfactant solutions. 

Optimal salinity in g% shown between parentheses for some biosurfactants. 
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hydrophilicity as rhamnolipid> T89-3> T89-42>ROB-2>T89-14> ROGG-2> C12, 

C13 – 8PO – SO4Na. 

The differences between the highest and the lowest IFT values against different 

hydrocarbons for each surfactant were compared (Table 3.2). Three different patterns 

emerged. A relatively small difference was observed for T89-3, T89-42, and 

rhamnolipid biosurfactants (0.4-0.7 mN/m), a moderate difference was observed for 

ROB-2, T89-14, and ROGG-2 biosurfactants (0.9-2 mN/m), and a large difference 

was observed for C12, C13 – 8PO – SO4Na (over a 100-fold change as the EACN 

increased from 1 to 10). These analyses support the conclusion that rhamnolipids and 

lipopeptides were more hydrophilic than C12, C13 – 8PO – SO4Na.  

Additional information about the relative hydrophilicity/ hydrophobicity of the 

biosurfactants/synthetic surfactants was inferred from the salt concentration that gave 

the lowest IFT value (optimal salt concentration) against each of the four 

hydrocarbons. High optimum salt concentration indicates that the surfactant is 

hydrophilic. Table 3.2 shows the optimum salt concentration in parentheses for T89-

42 and T89-3 biosurfactants against the four hydrocarbons. The higher optimal salt 

concentration against toluene and hexane for the T89-3 biosurfactant compared to the 

T89-42 biosurfactant supported the previous observation that the T89-3 biosurfactant 

was more hydrophilic than the T89-42 biosurfactant. 

Effect of fatty acid composition of lipopeptide biosurfactants on interfacial activity 

Amino acid analysis showed that all of the lipopeptides listed in Table 3.2 were 

heptapeptides with the same amino acid composition (mean ± std dev of the mole 

ratio): E/ Q: D/ N: V: L (0.99 ± 0.04: 0.99 ±0.04: 1 ± 0.04: 3.6 ± 0.12). The acid 
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hydrolysis method used to determine the above amino acid composition did not 

differentiate between glutamate and glutamine or aspartate and asparagine.  Direct 

electrospray-mass spectrometry was also used to elucidate the amino acid composition 

of the two biosurfactants produced by strains T89-3 and T89-42. Since electrospray 

MS was run in the negative ion mode, the ion fragments were negatively charged and 

corresponded to M-1, M-2+Na, and M-3+2Na (M is the molecular weight). 

Comparison of the molecular weights of the ions allowed determination of the amino 

acid composition. For example, if the lipopeptide contained a 3-hydroxy 

tetradecanoate, glutamate, and aspartate (an amino acid composition of 1E, 1D, 1V, 

3L), the molecular weight would be 1021 and the M-1, M-2+Na, M-3+2Na ion 

molecular weights would be 1020, 1042, and 1064, respectively. With one amide and 

one acidic amino acid, the molecular weight would be 1020 and the M-1, M-2+Na, M-

3+2Na ion molecular weights would be 1019, 1041, and 1063, respectively. With 2 

amides in the peptide head, the molecular weight would be 1019 and the M-1, M-

2+Na, M-3+2Na ion molecular weights would be 1018, 1041, and 1062, respectively. 

The analysis of the molecular weights of the ions supported the following amino acid 

composition: 1E, 1D, 1V, and 3L (Table 3.3). This is, the T89-42 and T89-3 

biosurfactants each contained 1 glutamate and 1 aspartate in their peptide heads. 

Although electrospray MS was not conducted for the rest of biosurfactants in Table 

3.2, we expect that the amino acid composition of these biosurfactants to be the same 

as the T89-42 and T89-3 biosurfactants since they are produced by strains of Bacillus 

subtilis and the closely related species, Bacillus mojavensis. 
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Table 3.3. Electrospray mass spectrometry data for two lipopeptide biosurfactants 

Biosurfactant 
Ion 

fragment  

Fragment 

molecular weight 

β-OH Fatty 

acid tail 

length 

Amino acid 

composition 

1006 C13 1D, 1E, 1V, 3L 

1020 C14 1D, 1E, 1V, 3L 

M-1a 

1034 C15 1D, 1E, 1V, 3L 

1028 C13 1D, 1E, 1V, 3L 

1042 C14 1D, 1E, 1V, 3L 

M-2+Na a 

1056 C15 1D, 1E, 1V, 3L 

1064 C14 1D, 1E, 1V, 3L 

T89-42 

M-3+2Na a 

1078 C15 1D, 1E, 1V, 3L 

1014 C12 1D, 1E, 1V, 3L 

1028 C13 1D, 1E, 1V, 3L 

1042 C14 1D, 1E, 1V, 3L 

M-2+Na a 

1056 C15 1D, 1E, 1V, 3L 

1050 C13 1D, 1E, 1V, 3L 

1064 C14 1D, 1E, 1V, 3L 

T89-3 

M-3+2Na a 

1078 C15 1D, 1E, 1V, 3L 

a: ion fragments obtained in the negative ion mode. M is the molecular weight of the 

biosurfactant. M-1 corresponds to the loss of one hydrogen ion from the molecule. M-

2+Na corresponds to the loss of 2 hydrogen ions and the addition of one sodium ion. 

M-3+2Na corresponds to the loss of 3 hydrogen ions and the addition of 2 sodium 

ions. All ion fragments are negatively charged. 
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Lipopeptide biosurfactants shown in Table 3.2 contained 3-hydroxy 

tridecanoate (3-OH-C13), tetradecanoate (3-OH-C14), pentadecanoate (3-OH-C15), 

hexadecanoate (3-OH-C16), and octadecanoate (3-OH C18). The 3-OH-C13, and 3-

OH-C15 fatty acids were each present as mixtures of iso and anteiso isomers while 3-

OH-C14 was comprised of normal and iso isomers. Only the normal isomer was 

detected for 3-OH-C16 and 3-OH C18 fatty acids. In some cases, the isomers of the 3-

OH-C14 and 3-OH-C15 fatty acids constituted the majority of the fatty acids of the 

lipopeptide. However, in other cases, isomers of 3-OH-C14 were the major fatty acid 

component.   

When the fatty acids of the biosurfactant purified from replicate cultures of the same 

strain were analyzed, the fatty acid composition varied along with the interfacial 

tension against toluene. The variation in fatty acid composition of lipopeptide 

biosurfactants was correlated to variations in the IFT against toluene. Multiple 

regression analysis (42) was used to determine the changes in fatty acids isomers that 

contributed to the variation in activity (interfacial tension against toluene). The best 

model that explained the interfacial tension of lipopeptide biosurfactants against 

toluene depended on the sum of the 3-OH C14 isomers, the 3-OH C15 isomers, 3-OH 

C16, and 3-OH C18 fatty acids. When the values expected for interfacial tension 

(obtained by using the multiple regression equation from the fatty acid composition) 

were plotted against the values of interfacial tensions obtained experimentally for one 

biosurfactant purified from four replicate cultures, another biosurfactant purified from 

three replicate cultures, and a third biosurfactant purified from duplicate cultures (Fig. 

3.1a), the linear correlation coefficient (r2) was 0.986 (11) and the Pearson correlation  
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Figure 3.1: Multiple regression analysis for the fatty acid predictors of interfacial 

activity against toluene for lipopeptide biosurfactants. (A) Values on the X-axis are the 

experimentally obtained IFT against toluene for lipopeptides produced by three 

different strains (4 replicate cultures for one strain, 3 replicate cultures for the second 

strain, and duplicate cultures for the third strain). Values on the Y-axis were obtained 

by using the multiple regression equation: y (IFT against toluene) = 0.09 (percentage 

of 3-OH C14) + 0.06 (percentage of 3-OH C15) + 0.05 (percentage of 3-OH C16) + 0.09 

(percentage of 3-OH C18) -5.7. The equation of the straight line was y = 1.1 x - 0.053. 

The coefficient of linear regression was r2 = 0.986. (B) The multiple regression 

equation above was used to predict IFT against toluene for five other individual 

biosurfactants (open squares), and twenty biosurfactant mixtures (open diamonds). 

The coefficient of linear regression (r2) between the predicted and actual IFT for the 

five individual biosurfactants was 0.92 (y = 0.9 x + 0.29), and that for biosurfactant 

mixtures was 0.93 (y=0.84 x + 0.04). 
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coefficient (r) was 0.99 (11). The multiple regression model also accurately predicted 

the interfacial tension against toluene from the fatty acid composition for five other 

lipopeptide biosurfactants produced by four strains of B. mojavensis and one strain of 

B. subtilis subsp. subtilis strains and for twenty biosurfactant mixtures (Fig. 3.1b).  

Comparing the coefficients in the multiple regression equation (Figure 3.1a 

legend), it did not appear that one of the fatty acid isomers was more important in 

determining IFT than the others. However, it was observed that low IFT values against 

toluene (< 0.5mN/m) were obtained only when the percentages of 3-OH C14 and 3-

OH C15 constituted less than 70% of the total fatty acids, the percentage of 3-OH C15 

was higher than or equal to that of 3-OH C14, and the ratio of 3-OH C16 to 3-OH C18 

was more than 8. In cases where the percentage of 3 OH C14 comprised more than 

70% of the total fatty acids, the IFT against toluene was high (> 1.5 mN/m).  

Formulating lipopeptide biosurfactant mixtures for low IFT against toluene  

Since the interfacial activity of the biosurfactant depended on the fatty acid 

composition of the lipopeptide, we hypothesized that lipopeptide biosurfactant 

mixtures could be formulated to obtain low interfacial tension against toluene based 

on the fatty acid composition. To test this hypothesis, biosurfactants from strains T89-

42 and T89-3 were mixed in different proportions and the IFT was measured against 

toluene. Each biosurfactant had the same amino acid composition (Table 3.3). Table 

3.4 shows the fatty acid composition of two separate batches of T89-42 and T89-3 

biosurfactants. The IFT against toluene for the biosurfactants from each strain differed 

from one batch to another. The first batch of T89-42 biosurfactant had low IFT (0.27 ± 

0.04 mN/m). The second batch had a relatively higher IFT (0.71 ± 0.04 mN/m) against 



 81 

toluene. Similarly, the first batch of T89-3 biosurfactant had low IFT (0.12 ± 0.01 

mN/m). The second batch had a relatively higher IFT (0.51 mN/m) against toluene. 

The differences in IFT between the first and second batches for each strain were 

explained by using the multiple regression model. In the first batch, the percentage of 

3-OH C14 was less than that of 3-OH C15, their sum was less than 70% of the total 

fatty acids, and the ratio of 3-OH C16 to 3-OH C18 was more than 8, consistent with 

the predictions of the multiple regression model (Table 3.4). However, in the second 

batch, the ratio of 3-OH C16 to 3-OH C18 was low (1.2 and 0.25 for T89-42 and T89-

3 biosurfactants, respectively), which explained the relatively higher IFT values 

(Table 3.4).   

The T89-42 and T89-3 biosurfactants from the first batch were mixed in 

different proportions to test the predictions of the multiple regression model. The fatty 

acid composition of the mixture was calculated from the percentage of each fatty acid 

in the mixture using the following equation: [(fraction of the first biosurfactant in the 

mixture) x (percentage of the fatty acid in the first biosurfactant)] + [(fraction of the 

second biosurfactant in the mixture) x (percentage of the fatty acid in the second 

biosurfactant)]. Table 3.4 shows the calculated fatty acid percentages in the mixtures 

of T89-42 and T89-3 biosurfactants and the predicted IFT values. Ultra low IFT 

values (< 0.1 mN/m) were predicted in mixtures with 20% and 40% T89-42 

biosurfactant. When the mixture contained 20% of the T89-42 biosurfactant, the 

predicted IFT value was 0.09 mN/m and the experimentally obtained IFT value was 

0.06 ± 0.02 mN/m. With a mixture containing 40% of the T89-42 biosurfactant, the 

predicted IFT value was 0.09 mN/m and the experimentally obtained IFT value was  
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Table 3.4: Predicted versus experimentally determined IFT values against toluene for different biosurfactant 

formulations. 

Biosurfactant 3-OH 
C14 

3-OH 
C15 

3-OH 
C16 

3-OH 
C18 

Sum of 3-OH 
C14 and C15 

3-OH C16/ 
3-OH C18 

Predicted 
IFT e 

Experimentally 
obtained IFT f 

T89-42 (1) a 22.2 b 45.8 b 17 b 2 b 68 8.5 0.08 0.27 ± 0.04 
T89-3 (1) a 27.5 b 27.4 b 28.4 b 2.9 b 54.9 9.8 0.13 0.12 ± 0.01 

0.2 T89-42 (1) + 
0.8 T89-3 (1) c 26.4d 31.1 d 26.12 d 2.72 d 57.5 9.6 0.09 0.06 ± 0.02 

0.4 T89-42 (1) + 
0.6 T89-3 (1) c 19.9 d 29.3 d 18.2 d 1.96 d 49.2 9.3 0.09 0.07 ± 0.01 

T89-42 (2) a 29.1 b 56.3 b 3.27 b 2.83 b 85.4 1.2 0.74 0.71 ± 0.04 
T89-3 (2) a 33 b 45 b 1 b 4 b 78 0.25 0.42 0.51 

0.5 T89-42 (2) + 
0.5 T89-3 (2) c 31.1 d 50.7 d 1.69 d 3.4 d 81.8 0.5 0.53 0.78 

ROB-2 25 b 13 b 36 b 18 b 38 2 0.75 0.66 ± 0.03 
T89-14 49 b 36 b 4 b 0.1 b 85 40 1.08 1.05 ± 0.39 

0.5 ROB-2 + 0.5 
T89-14 c 37 d 24.5 d 20 d 9.6 d 61.5 2 0.96 0.85 ± 0.1 

0.8 ROB-2 + 0.2 
T89-14 c 29.8 d 17.6 d 29.6 d 14.4 d 47.4 2 0.83 0.78 ± 0.2 

a: Numbers between parentheses refer to the batch number. T89-42 and T89-3 were grown in 2 separate batches.  
b: The percentage of different fatty acids (% mass values) in the lipid portion of the purified biosurfactant. The 
percentage was calculated by dividing the peak areas of individual fatty acids by the total peak area of all FAME. 
c: Components of lipopeptide mixtures and fractions of each biosurfactant in the mixture 
d: Fatty acid composition of the mixture calculated using the equation [(fraction of the first biosurfactant in the 
mixture) x (percentage of the fatty acid in the first biosurfactant tail)] + [(fraction of the second biosurfactant in the 
mixture) x (percentage of the fatty acid in the second biosurfactant tail)]. 
e: IFT calculated using the multiple regression equation in Figure 1a legend. 
f: IFT values are averages ± standard deviation of 3 measurements 
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0.07 ± 0.01 mN/m. In each case, ultra low values could be explained by the high 3-OH 1 

C16 to 3-OH C18 ratio, which was greater than 9. Based on the low percentage of 3- 2 

OH C16 (< 3%) in the T89-42 and T89-3 biosurfactants from the second batch, the 3 

multiple regression model did not predict ultra low IFT (< 0.1 mN/m) for any 4 

combination of these two biosurfactants. IFT values against toluene for mixtures of the 5 

two biosurfactants from the second batch were similar to IFT values obtained with the 6 

individual biosurfactants. The data for the 50/50 mixture is shown in Table 3.4. The 7 

predicted IFT value was 0.53 mN/m and the experimentally obtained IFT value was 8 

0.78 mN/m. The relatively high IFT values were expected since the sum of 9 

percentages of 3-OH C14 and 3-OH C15 was more than 70% of the total fatty acids, 10 

and the ratio of 3-OH C16 to 3-OH C18 was 0.5 (much less than the needed value of 11 

8).  12 

Similar results were obtained when the ROB-2 and the T89-14 biosurfactants 13 

were mixed in different proportions. The multiple regression model did not predict 14 

ultra low IFT values due to the low 3-OH C16 to 3-OH C18 ratio for both the 15 

biosurfactants produced by individual strains and the mixtures (Table 3.4). 16 

Collectively these results argued for the validity of the multiple regression 17 

model and suggested that the fatty acid composition of lipopeptide biosurfactants is an 18 

accurate predictor of the IFT against toluene and could be used to formulate mixtures 19 

to achieve ultra low IFT.  20 

Mixtures of lipopeptide biosurfactants with rhamnolipids lower IFT against toluene 21 

Due to the similarity in amino acid composition among lipopeptide 22 

biosurfactants, differences in hydrophobicity/ hydrophilicity between individual 23 
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lipopeptide biosurfactants might not be pronounced, making it difficult to formulate 1 

lipopeptide biosurfactant mixtures to achieve ultra low IFT especially with the 2 

variable fatty acid composition. The IFT values against different hydrocarbons showed 3 

that the rhamnolipid was more hydrophilic than T89-42 and T89-3 biosurfactants 4 

(Table 3.2).  Mixtures of lipopeptides with rhamnolipid will be more hydrophilic than 5 

those with only lipopeptides. We hypothesized that mixtures of lipopeptide and 6 

rhamnolipid biosurfactants will be more effective than individual biosurfactants in 7 

achieving ultra low IFT values against toluene, a hydrocarbon with low EACN. To test 8 

this hypothesis, the rhamnolipid was mixed with T89-42 biosurfactants produced 9 

under different culture conditions to manipulate the 3-OH fatty acid tail of the 10 

lipopeptide and hence the hydrophilicity of the lipopeptide biosurfactant. When strain 11 

T89-42 was grown in medium without amino acid addition, the lipopeptide 12 

biosurfactant contained mainly 3-OH C14, and 3-OH C15. The sum of these 13 

comprised 67% of the total fatty acid. According to the multiple regression model, the 14 

IFT against toluene was predicted to be 0.92 and the experimentally obtained value 15 

was 0.95 ± 0.01 mN/m. The IFT against toluene for the rhamnolipid alone was 0.31 ± 16 

0.01 mN/m (Table 3.2). When the T89-42 biosurfactant was mixed with the 17 

rhamnolipid in different proportions, the IFT against toluene decreased from 0.95 ± 18 

0.01 mN/m for T89-42 biosurfactant alone to 0.09 mN/m when only 20% of the 19 

mixture was the lipopeptide (Table 3.5). These data support the hypothesis that the 20 

addition of the more hydrophilic rhamnolipid to lipopeptides lowers the IFT against 21 

hydrocarbons with low EACN.  22 
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To further test the hypothesis, the fatty acid composition of T89-42 biosurfactant was 1 

changed by growing the strain with 1 g/l of valine, a precursor of iso even-numbered 2 

fatty acids, or 1 g/l leucine, a precursor of iso odd-numbered fatty acids (39). When 3 

the lipopeptide produced with valine addition to the growth medium (62% of the fatty 4 

acids was 3-OH-C14) was mixed with the rhamnolipid in different proportions, the 5 

IFT of the mixture was 0.02 mN/m when 20% of the mixture was the lipopeptide 6 

(Table 3.5). However, when the lipopeptide produced with leucine addition (only 5% 7 

of the fatty acids was 3-OH C14) was mixed with the rhamnolipid in different 8 

proportions, the IFT of the mixture with rhamnolipid slightly increased (Table 3.5).  9 

Thus, when the percentage of more hydrophobic fatty acids (3OH C15 and 3OH C17) 10 

in the lipopeptide increased with leucine addition, the biosurfactant mixture was less 11 

effective in lowering IFT against a hydrophilic hydrocarbon (toluene) compared to 12 

mixtures that contained lipopeptides with a high percentage of more hydrophilic fatty 13 

acids, e.g., those obtained with valine addition.  14 

Mixtures of lipopeptide biosurfactants with C12, C13 – 8PO – SO4Na lower IFT 15 

against hexane and decane 16 

As shown above, mixing lipopeptide biosurfactants with the more hydrophilic 17 

rhamnolipid biosurfactant was an effective approach to obtain low IFT values against 18 

hydrocarbons with low EACN, e.g. toluene. To obtain an effective biosurfactant 19 

formulation against hydrocarbons with higher EACN, e.g. hexane and decane, the 20 

hydrophobicity of the mixture should increase relative to that which was effective with 21 

low EACN hydrocarbons. We hypothesized that mixtures of lipopeptide biosurfactants 22 

with the more hydrophobic, synthetic surfactant C12, C13 – 8PO – SO4Na will be  23 
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Table 3.5. Mixtures of lipopeptide biosurfactants with rhamnolipid JBR515. 1 

Percentage of 3-OH C14 fatty acid in the lipopeptide tail and the IFT of the mixture 2 

against toluene. 3 

Biosurfactant  Amino 

acid added 

% of 3-

OH C14 

100% 

lipopeptide a 

50% 

rhamnolipid in 

the mixture a 

80% 

rhamnolipid in 

the mixture a 

Leucine 5 0.23 0.52 0.56 

None 33 0.95 ± 0.01b 0.28 0.09 

T89-42 

Valine 62 1.33 ± 0.04b  0.14 0.02 

a: IFT values against toluene in mN/m 4 

b: IFT values against toluene are average ± standard deviation of 3 measurements. 5 

 6 
 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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needed to obtain low IFT against hydrophobic hydrocarbons such as hexane and 1 

decane. To test this hypothesis, lipopeptide biosurfactants from three different strains 2 

that differed in hydrophobicity were mixed with C12, C13 – 8PO – SO4Na in different 3 

proportions at 5% NaCl. At this salt concentration, the IFT against toluene was 0.51 4 

mN/m for  T89-3biosurfactant, 0.95 ± 0.01 mN/m for the T89-42 biosurfactant, and 5 

2.17 mN/m for the ROGG-2 biosurfactant. These data indicate that the T89-3 6 

biosurfactant was more hydrophilic than the T89-42 biosurfactant, which was more 7 

hydrophilic than the ROGG-2 biosurfactant. In mixtures of lipopeptides with C12, 8 

C13 – 8PO – SO4Na, the hydrophobicity of the mixture will increase as the amount of 9 

C12, C13 – 8PO – SO4Na increases. Secondly, the mixture will be more hydrophilic 10 

with the T89-3 biosurfactant than with the ROGG-2 biosurfactant. Considering these 11 

two factors, we expected that the lowest IFT against hexane (a hydrocarbon with 12 

moderate hydrophobicity and an EACN of 6) will be obtained with mixtures of the 13 

T89-3 biosurfactant (most hydrophilic) and a small percentage of C12, C13 – 8PO – 14 

SO4Na. Similarly, the lowest IFT against decane (a hydrophobic hydrocarbon with an 15 

EACN of 10) will be obtained with a mixture of the ROGG-2 biosurfactant (most 16 

hydrophobic) and a high percentage of C12, C13-8PO sulfate. As predicted, an ultra 17 

low IFT against hexane of 0.014 ± 0.004 mN/m was obtained with a mixture of the 18 

T89-3 biosurfactant and 25% of C12, C13 – 8PO – SO4Na and an ultra low IFT 19 

against decane of 0.013 ± 0.001 mN/m was obtained with a mixture of the ROGG-2 20 

biosurfactant and 50% of C12, C13 – 8PO – SO4Na (Table 3.6). The IFT of each 21 

component alone against the different hydrocarbons is given in Table 3.2. These  22 

 23 
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Table 3.6. Mixtures of lipopeptides with C12, C13 – 8PO – SO4Na. 1 
 2 

25% C12, C13 – 8PO – SO4Na a 50% C12, C13 – 8PO – SO4Na a 
Lipopeptide  

Hexane Decane Hexane Decane 

T89-3 0.014± 0.004 b 0.04± 0.001 b 0.08± 0.006 b 0.02± 0.001 b 

T89-42 0.03±0.01 0.04± 0.006 0.06± 0.01 0.02± 0.002 

ROGG-2 0.05 ±0.01 0.03± 0.001 0.05± 0.01 0.013±0.001 

a; percentage of C12, C13 – 8PO – SO4Na in the mixture 3 

b: IFT of the mixture against the hydrocarbon in the table header. Values are average 4 

± standard deviation of 3 measurements. 5 

The IFT of each component alone with the different hydrocarbons is given in Table 6 

3.2. 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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results supported the hypothesis that low IFT values against hydrocarbons with high 1 

EACN are obtained when the hydrophobicity of the biosurfactant mixture increases. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Discussion 1 

Surfactant-enhanced subsurface remediation (SESR) technology significantly 2 

reduces the time required to remove LNAPL from subsurface by removing the 3 

entrapped mass of hydrocarbon by mobilization with surfactants (33, 35). While 4 

advances in surfactant chemistry have dramatically improved LNAPL removal 5 

efficiencies, the key to further improvements in the economic competitiveness of 6 

surfactant-based technologies is to reduce the mass of surfactant needed to recover the 7 

entrapped LNAPL (17). Interestingly, McInerney et al. found that lipopeptide 8 

biosurfactants can remove a large percentage of residual hydrocarbon from sand- 9 

packed columns at biosurfactant concentrations about 10 to 100-fold lower than 10 

typically used for surfactant-enhanced LNAPL mobilization (16). Other studies with 11 

lipopeptide biosurfactants showed oil recoveries of 56-90% with 1 mg/ml solutions of 12 

lipopeptides (4, 22, 23, 29). In order to mobilize LNAPL, a significant reduction in the 13 

oil-water interfacial tension is required to reduce the capillary forces that trap the oil 14 

(32, 35). Until now, the interfacial activity and the efficacy of recovering residual 15 

hydrocarbon have only been studied with individual biosurfactant compounds. These 16 

studies show that solubilization and biodegradation are the main mechanisms for oil 17 

removal by biosurfactants (2, 9, 14, 36, 43). Only a few studies showed mobilization 18 

of entrapped hydrocarbons (6, 12, 13). Here, we show that ultra low IFT can be 19 

achieved by altering the hydrophilic/ hydrophobic balance of the formulation by 20 

selective addition of biosurfactants or surfactants.  21 

Although most of the characterized lipopeptide biosurfactants studied have 22 

very similar structures, especially in the peptide portion of the molecule, a wide 23 
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variation in the IFT against toluene was observed with different lipopeptides (Table 1 

3.2). In order to explain this, a structure-interfacial activity study was conducted to 2 

delineate the structural features important for interfacial activity. Previous work has 3 

shown that specific biosurfactant surface activity against crude oil depended on both 4 

the ratios of iso to normal even-numbered fatty acid, and anteiso to iso odd-numbered 5 

fatty acids of the lipid tail (39). Here, multiple regression analysis showed that 6 

interfacial tension against toluene is correlated to the percentages of 3-OH C14, 3-OH 7 

C15, 3-OH C16, and 3-OH C18 fatty acids in the lipid tail of lipopeptides. Low IFT 8 

values against toluene were obtained when the percentages of 3-OH C14 and 3-OH 9 

C15 constitute less than 70% of the total fatty acids, the percentage of 3-OH C15 is 10 

higher than or equal to that of 3 OH C14, and the ratio of 3-OH C16 to 3-OH C18 is 11 

more than 8. Low IFT values against toluene were obtained with lipopeptide 12 

biosurfactants that had this fatty acid composition, e.g., the T89-3 biosurfactant (IFT 13 

of 0.12 ± 0.01 mN/m) and the T89-42 biosurfactant (0.27 ± 0.04 mN/m). However, 14 

ultra low IFT values (<0.1 mN/m) were not observed with lipopeptide biosurfactants 15 

produced by individual strains. Using the information from the multiple regression 16 

model, we predicted that ultra low IFT against toluene could be obtained by mixing 17 

lipopeptide biosurfactants in different proportions such that the fatty acid composition 18 

of the mixture is 50-60% 3-OH C14 and 3-OH C15 fatty acids with a maximum 3-OH 19 

C16 to 3-OH C18 ratio. This prediction proved correct when T89-42 and T89-3 20 

biosurfactants were mixed in different proportions to obtain formulations where the 21 

sum of 3-OH C14 and 3-OH C15 fatty acids was in the 50-60% range and the 3-OH 22 

C16 to 3-OH C18 ratio was 9.3 and 9.6. With these mixtures, ultra low IFT values 23 
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(0.06± 0.02 and 0.07 ± 0.01 mN/m) were obtained against toluene (Table 3.4). 1 

Sometimes, the above fatty acid balance may be hard to achieve with binary mixtures 2 

(biosurfactants from two strains) and the addition of a third component to the mixture 3 

may be required. It was shown previously that nutritional manipulation by the addition 4 

of branched-chain amino acids to the culture medium leads to the production of 5 

lipopeptide biosurfactants with 70-90% of their total fatty acid composition as a single 6 

fatty acid, e.g. 3-OH C14 with valine addition or 3-OH C15 with leucine addition (39). 7 

The biosurfactants produced under these conditions could certainly be used as the 8 

third component to increase the percentage of a certain fatty acid to achieve the 9 

appropriate fatty acid composition required for ultra low IFT values. 10 

Although rhamnolipid biosurfactants have been investigated for subsurface 11 

remediation, most of the studies have focused on hydrocarbon removal by 12 

solubilization (increase in the aqueous solubility of the hydrocarbon) (9, 36, 43) rather 13 

than mobilization (lowering IFT between aqueous and LNAPL phases to reduce the 14 

capillary pressure that traps the oil) (12). Here, we found that the rhamnolipid 15 

biosurfactant had a low IFT against toluene (0.31± 0.01 mN/m) and was more 16 

hydrophilic than all of the lipopeptides studied. We hypothesized that mixtures of 17 

rhamnolipids with lipopeptides would alter the hydrophilic/ hydrophobic balance and 18 

achieve the ultra low IFT values against toluene needed for hydrocarbon mobilization. 19 

Our results showed that ultra low IFT values against toluene were obtained with 20 

rhamnolipid-lipopeptide mixtures when the percentage of 3-OH C14 fatty acid in the 21 

lipopeptide tail was 33% or greater (Table 3.5). Although these mixtures were not 22 

tested against hydrocarbons with higher EACN, we predict that ultra low IFT against 23 
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hydrocarbons with high EACN can be achieved by adding a lipopeptide with a more 1 

hydrophobic tail. These results would be important in formulating biosurfactant 2 

mixtures to remove hydrocarbons attached to particulate matter where solubilization is 3 

difficult unless the capillary forces are reduced (13). 4 

Mixtures of lipopeptide biosurfactants with C12, C13 – 8PO – SO4Na were the 5 

most effective in lowering the IFT against hexane and decane. Since lipopeptide 6 

biosurfactants had varying degrees of hydrophilicity, it was possible to formulate 7 

mixtures of different lipopeptides with C12, C13 – 8PO – SO4Na that varied in 8 

hydrophilicity/ hydrophobicity. Varying the percentage of C12, C13 – 8PO – SO4Na 9 

in the mixtures was also used to increase the hydrophobicity of the mixture. Low IFT 10 

values against hexane and decane were obtained with C12, C13 – 8PO – SO4Na alone 11 

(0.2± 0.02 and 0.02± 0.001 mN/m, respectively) (Table 3.2). The addition of 12 

lipopeptides to C12, C13 – 8PO – SO4Na lowered the IFT values against hexane 13 

(0.014 ± 0.004 mN/m) and decane (0.013 ± 0.001 mN/m) (Table 3.6). More 14 

importantly, the addition of lipopeptides lowered the amount of C12, C13 – 8PO – 15 

SO4Na required to achieve these ultra low IFT values. An ultra low IFT value against 16 

hexane was obtained with the T89-3 biosurfactant and 250 mg/l of with C12, C13 – 17 

8PO – SO4Na compared with 1 g/l for C12, C13 – 8PO – SO4Na alone. Reducing the 18 

amount of the surfactant is important from an economic point of view. However, 19 

further information on the economics of biosurfactant production will be needed to 20 

determine if the use of biosurfactants will provide an economic advantage compared 21 

to synthetic surfactants.  22 
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This work focused on biosurfactant/synthetic surfactant interfacial behavior 1 

against single hydrocarbons with varying EACN. We found that knowledge about 2 

biosurfactant fatty acid composition and its relationship to hydrophobicity/ 3 

hydrophilicity can be used to formulate biosurfactant/surfactant mixtures to achieve 4 

ultra low IFT against hydrocarbon with different EACN. The use of biosurfactant 5 

mixtures increased the likelihood for achieving the optimum interfacial behavior 6 

compared to individual biosurfactants. Previous work often paid little attention to the 7 

fatty acid composition since this can be quite variable, making it difficult to correlate 8 

changes in the fatty acid composition to changes in interfacial activity.  Our work 9 

provides guidelines to reduce the trial and error approach often used to find optimum 10 

formulations for mobilizing entrapped hydrocarbons. Future work focusing on 11 

mobilization of hydrophobic hydrocarbons is certainly required before going from the 12 

well-controlled laboratory experiments to designing field scale technology.  13 
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Chapter 4 1 

In-situ biosurfactant production by injected Bacillus strains in a limestone 2 

petroleum reservoir. 3 

Abstract 4 

Biosurfactant-mediated oil recovery may be an economic approach to recover 5 

significant amounts of oil entrapped in reservoirs, but evidence that biosurfactants can 6 

be produced in situ at concentrations needed to mobilize oil is lacking. We tested 7 

whether two Bacillus strains that produce lipopeptide biosurfactants can metabolize 8 

and produce their biosurfactants in an oil reservoir. Five wells that produce from the 9 

same Viola limestone formation were used. Two wells received an inoculum (a 10 

mixture of Bacillus strain RS-1 and Bacillus subtilis subsp. spizizenii NRRL B-23049) 11 

and nutrients (glucose, sodium nitrate, and trace metals), two wells received just 12 

nutrients, and one well received only formation water. Results showed in situ 13 

metabolism and biosurfactant production. The average concentration of lipopeptide 14 

biosurfactant in the produced fluids of inoculated wells was about 90 mg/l. This 15 

concentration is ~ 9-times the minimum concentration required to mobilize entrapped 16 

oil form sandstone cores. Carbon dioxide, acetate, lactate, ethanol, and 2,3-butanediol 17 

were detected in the produced fluids of the inoculated wells. Only CO2 and ethanol 18 

were detected in the produced fluids of the nutrients only treated wells. 19 

Microbiological and molecular data showed that the microorganisms injected into the 20 

formation were retrieved in the produced fluids of the inoculated wells. We provide 21 

essential data for modeling microbial oil recovery processes in situ including, growth 22 

rates (0.06 ± 0.01 h-1), carbon balance (107 ± 34 %), biosurfactant production rates 23 
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(0.02 ± 0.001 h-1), and biosurfactant yields (0.015 ± 0.001 mole biosurfactant/ mole 1 

glucose). The data demonstrate the technical feasibility of microbial processes for oil 2 

recovery. 3 
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Introduction  1 

Oil is an essential source of energy and one of the main factors that drives the 2 

economic development of the world (16). Current oil production technologies only 3 

recover about one-third to one-half of the oil originally present in an oil reservoir (16, 4 

26, 37). Future predictions are that world oil demand will be met by an increasingly 5 

smaller number of countries, mainly located in West Africa, Persian Gulf, and the 6 

former Soviet Union (16). The exploitation of oil resources in existing mature 7 

reservoirs is essential to avoid the political, economic, and strategic consequences that 8 

will result if the number of oil exporting countries dwindles. A key to exploiting this 9 

untapped resource is to overcome the capillary forces that entrap oil in small pores 10 

within the reservoir.  Enhanced oil recovery (EOR), e.g., the use of heat, chemicals 11 

such as surfactants, microbial processes, and miscible gas injection (15), has the 12 

potential to recover a significant portion of this entrapped oil. However, oil recovered 13 

by EOR constitutes less than 10% of the total oil produced in the United States  14 

(http://www.fe.doe.gov/programs/oilgas/eor/). Interfacial tension between the 15 

hydrocarbon and aqueous phases is largely responsible for trapping the hydrocarbon in 16 

the porous matrix and several orders of magnitude reduction in interfacial tension are 17 

needed for hydrocarbon mobilization (1, 15, 47). To achieve large reductions in 18 

interfacial tension, surfactant concentrations significantly above that needed to form 19 

micelles (e.g., the critical micelle concentration) are required (7, 41, 42). The high 20 

chemical costs have prevented the widespread use of surfactants for enhanced oil 21 

recovery.  22 
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Microbially enhanced oil recovery (MEOR) processes employ the use of 1 

microbial metabolites such as biosurfactants to lower interfacial tension between brine 2 

and oil and hence mobilize entrapped oil (2, 8, 24, 32). Several biosurfactants, in 3 

particular the lipopeptides made by Bacillus species, generate the low interfacial 4 

tensions between the hydrocarbon and the aqueous phases required to mobilize 5 

residual hydrocarbon (25, 30). MEOR has several advantages compared to other EOR 6 

processes in that it does not consume large amounts of energy, as do thermal 7 

processes, nor does it depend on the price of crude oil, as do many chemical processes 8 

(2, 31, 32). MEOR can also be cost-effective, since microbial products can be 9 

produced from inexpensive, and renewable resources, and several MEOR processes 10 

have been shown to produce incremental oil for about $19 per m3 ($3 per barrel) (6, 9, 11 

31, 32). Nevertheless, microbial processes have always been viewed with considerable 12 

skepticism for a number of reasons. First, the lack of quantitative information 13 

regarding reaction rates, stoichiometries, product concentration, and yields needed to 14 

simulate the performance of microbial processes makes it difficult to extrapolate 15 

results from a given field test to other reservoirs (31, 32). Second, it is not clear 16 

whether microbial processes can generate the necessary metabolites in sufficient 17 

quantities and rates needed to mobilize entrapped oil in oil reservoirs (10, 31, 32). 18 

Third, technical performances of many field trials have been inconsistent (14, 23). 19 

Lastly, it is unclear whether the microbial strains used as inocula actually grow and 20 

metabolize in the reservoir (31, 32). 21 

Here, we show in a well-controlled field experiment that biosurfactants are 22 

produced in-situ in amounts sufficient to mobilize substantial amounts of entrapped 23 
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oil. We provide, for the first time, data on in-situ product concentrations and yields, 1 

rates of growth, substrate utilization, and metabolites formation, and an excellent 2 

carbon mass balance. This quantitative information shows that biosurfactant-mediated 3 

oil recovery is technically feasible and will facilitate the use of computer simulations 4 

to determine the efficacy of MEOR in different reservoirs.  5 
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Materials and Methods 1 

Preparation of the inoculum. Two halotolerant, biosurfacant producers, Bacillus 2 

strain RS-1 and Bacillus subtilis subsp. spizizenii strain NRRL B-23049 were used as 3 

the inoculum. Both strains grow in medium with 5% NaCl. Bacillus strain RS-1 and 4 

Bacillus subtilis subsp. spizizenii strain NRRL B-23049 were each grown in 200 ml of 5 

medium E (48, 49). When the culture reached late exponential phase of growth, it was 6 

used to inoculate a 10-liter carboy of the same medium, which was incubated at 37ºC 7 

for 48 h. Agitation and aeration were maintained by using glass gas dispersion tubes 8 

with fritted cylinders (Fisher scientific, Inc.). The cells were concentrated by using a 9 

tangential membrane flow system (0.45 µ pore size filter) (Millipore, Bedford, MA, 10 

USA) to yield on average 2 liters of cell concentrate from each 10-liter carboy. The 11 

concentrated cells were stored at 4ºC. One-liter of cell concentrate was used to 12 

inoculate a 132-liter tank with the following components [(grams per liter of tap 13 

water): dibasic potassium phosphate (1.2), monobasic potassium phosphate (0.23), 14 

sucrose (8.6), sodium chloride (8.6), sodium nitrate (0.86), and yeast extract (0.86)]. 15 

The medium was prepared septically due to the lack of facilities on site and tanks were 16 

incubated for approximately 48 hours at ambient temperature. 17 

Field experiment.  Five oil production wells in the Bebee field (Section 19, T5N, 18 

R5E, Pontotoc City, OK) that produce from the same formation (a Viola limestone) 19 

were used for this study. Two wells received an inoculum of the Bacillus strains and 20 

nutrients, two wells received just nutrients, and one well received an equivalent 21 

volume of formation water and served as the negative control. Each well that was 22 

inoculated received 396 liters of Bacillus strain RS-1 and 264 liters of B. subtilis 23 
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subsp. spizizenii NRRL B-23049. The nutrient package consisted of 79.5 kg of 1 

glucose, 7.9 kg of sodium nitrate, 19.9 g of magnesium sulfate, 2.0 g each of 2 

manganese sulfate, zinc sulfate, and iron sulfate, 0.2 g each of copper sulfate, 3 

aluminum/potassium sulfate, boric acid, and sodium molybdate, 0.1 g of sodium 4 

selenate, and 0.6 g of nickel chloride per well. Each well that received nutrients also 5 

received fluorescein (125 g), and sodium bromide (2 kg); the former was used to 6 

detect visually (green fluorescence) when the slug was produced, and the latter served 7 

as the conservative tracer to account for dilution in the reservoir. The nutrients, 8 

inoculum, and tracers were mixed with formation water (~8000 liters) by circulation 9 

supplied by the pump truck. The formation water was obtained from a storage tank 10 

located near the production wells. Each well received an initial injection (pre-flush) of  11 

~1600 liters (10 barrels) of formation water, an injection of  ~8000 liters (50 barrels) 12 

of the treatment (nutrients and cells, nutrients only, or formation water) followed by 13 

~8000 liters (50 barrels) of formation water as post-flush to make a total of ~17500 14 

liters (110 barrels) of fluids injected per well. The post-flush was used to move the 15 

nutrient package 1.2 to 2.4 m into the formation. After injection of the treatment 16 

package, production from each well was stopped for 108 hours to allow time for 17 

growth and metabolism to occur in the formation. After this incubation period, 18 

production was started.  19 

Flow meters were attached to the tubing of three of the five wells to measure 20 

the volume of fluids produced. The total volume produced was recorded when each 21 

sample was collected. Since all the wells were set to pump at almost the same rate, the 22 

volume of fluid produced during a given time interval in the two wells that did not 23 
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have flow meters was estimated from the average volume produced by the 3 wells that 1 

had the flow meters attached.  2 

Sampling. Samples for chemical and microbiological analyses were collected on 3 

several occasions prior to treatment and for a 32-hour period after production 4 

recommenced after the 108-hour incubation period. Each sample was colleted in 2- 5 

liter glass bottle that was allowed to overflow to minimize contact with air. The 6 

temperature of the sample was immediately recorded with a hand-held probe. An 7 

aliquot for chemical analyses was filtered through a 0.45 µm membrane filter to 8 

remove particulate material and oil. The remainder of the unfiltered sample was used 9 

to measure oil-spreading activity and for microbiological enumerations. All samples 10 

were stored on ice until analyzed. The analyses for pH, conductivity, nitrate, nitrite, 11 

ammonium, alkalinity, oil-spreading, and surface tension were completed on site 12 

within two hours after sample collection. For the other analyses, the samples were 13 

transported back to the laboratory and stored at 4oC until analyzed. All measurements 14 

on each sample were done in duplicate unless otherwise indicated.  15 

Detection of biosurfactant production. Biosurfactant activity of unfiltered samples 16 

was measured by using the oil-spreading technique (33, 49). The diameter of the clear 17 

zone on the oil surface was measured in triplicate for each sample. Biosurfactant 18 

activity, defined as diameter of clearing on the oil surface in centimeters, ranged from 19 

0 to 2 cm. Surface tension of filtered samples was measured with a Du Nuoy ring 20 

tensiometer (Fisher Scientific Inc., Hampton, NH) calibrated with water as the high 21 

surface tension standard and isopropanol as the low surface tension standard (25, 30). 22 

The lipopeptide biosurfactant was quantified by using high performance liquid 23 
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chromatography (HPLC) with a reversed phase C18 column (250 mm length x 1.5 mm 1 

ID) and 60% acetonitrile in water as the mobile phase (48). Twenty microliters of 1:4 2 

and 1:2 dilutions of filtered samples were injected onto the column. Retention times 3 

for biosurfactant were 2, 2.3 and 3.1 minutes corresponding to 3 different fatty acid 4 

tails of the lipopeptide (50). The peak areas of the three peaks were added together and 5 

the concentration was calculated from standard curves prepared in a similar manner 6 

with surfactin (Sigma Chemical Co., St. Louis, MO) and the highly purified 7 

lipopeptides (48) produced by each of the two microorganisms, Bacillus strain RS-1 8 

and B. subtilis subsp. spizizenii NRRL B-23049. The standard curve was linear up to 9 

500 mg/l of the lipopetide. The lipopeptides detected in the samples had the same 10 

retention times as the highly purified biosurfactant obtained from cultures of each 11 

inoculum strain.  12 

Fermentation analyses. A modified orcinol/ H2SO4 method was used to determine the 13 

amount of glucose in each sample (45). Acetate, ethanol, and 2,3 butanediol were 14 

measured by using gas chromatography (GC) with a 80/ 120 Carbopack B-DA*/ 4% 15 

Carbowax 20M (2m length x 2mm ID) glass column (Varian, Inc., Walnut Creek, 16 

CA). Helium was used as the carrier gas at a flow rate of 24 ml/min (18, 22). The 17 

injector temperature was 200ºC; flame ionization detector was set at 180ºC. The 18 

column temperature was kept constant at 155ºC for 3.5 minutes and then increased to 19 

180ºC at 30ºC/ min. The temperature was then held at 180ºC for 10 minutes. One 20 

microliter of the sample diluted in 30 mM oxalic acid was injected onto the column. 21 

Lactate was measured by using HPLC with an Alltech Prevail organic acid column 22 

(250 mm length x 1.5 mm ID) (Alltech associates, Deerfield, IL) and 25 mM KH2PO4 23 
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(pH 2.5) as the mobile phase according to manufacturer’s instructions. A 50-µl aliquot 1 

of 1:10 dilution of the sample was used. The above metabolites were identified and 2 

quantified by comparison of retention times and peak areas, respectively, with those of 3 

known standards.  4 

To test whether the two Bacillus strains produced the same fermentation 5 

products from glucose as those detected in the produced fluids of the inoculated wells, 6 

Bacillus strain RS-1 and B. subtilis subsp. spizizenii NRRL B-23049 were each grown 7 

anaerobically in duplicate serum bottles containing 75 ml formation water 8 

supplemented with glucose, sodium nitrate, and metals at the same concentration as 9 

used for the field experiment. The cultures were incubated at 37ºC without shaking for 10 

48 h. A three-series most probable number (MPN) technique (see below) was used to 11 

enumerate the number of viable cells immediately after inoculation and after 48 hours 12 

of incubation.  13 

Other chemical analyses. The pH was measured on filtered samples by using a hand- 14 

held pH/ conductivity meter (EXTECH Instruments, Waltham, MA). Nitrate, nitrite, 15 

ammonium, and alkalinity (in mg/l) were measured colorimetrically by using Hach 16 

kits (Hach Chemical Co., Loveland, CO) according to the manufacturer’s instructions. 17 

Bromide in filtered samples was analyzed by using liquid chromatography with an 18 

analytical anion exchange column (IonPac AS4A-SC, 4 x 250mm, Dionex 19 

corporation, CA, USA) (39). The concentration of bromide in the samples was 20 

calculated from standard curve of NaBr with concentrations ranging from 0 to 500 21 

µM.  22 
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Microbiological analysis. A three-series MPN technique was used to enumerate total 1 

heterotrophic bacteria, spore-forming bacteria, and halotolerant bacteria in unfiltered 2 

samples from both the injected and produced fluids. The procedure was modified to 3 

use 96-well plates. Three columns of wells were used for each sample, which was 4 

serially ten-fold diluted from 10-1 to 10-5.  5 

Physiological properties of Bacillus species, e.g. biofilm formation (17), 6 

sporulation (17), and halotolerance (32), allowed the use of specific media and/or  7 

manipulations for the MPN analysis as follows. Bacillus biofilm growth medium 8 

(BBGM) (17) was used to enumerate heterotrophic bacteria and to promote biofilm 9 

formation since biosurfactant production has been associated with biofilm formation 10 

in Bacillus species (5, 19, 44). Since Bacillus species are known to sporulate (17), a 11 

portion of each sample was heat-treated at 85ºC for 20 min and then diluted in BBGM 12 

to estimate the number of spore-forming bacteria. Finally, to estimate the number of 13 

halotolerant bacteria and to avoid underestimation of Bacillus species due to heat 14 

treatment, plate count broth (Difco laboratories Inc., Detroit, MI) with 5 % NaCl was 15 

used. To estimate the number of biosurfactant producers, 5 µl of sterile crude oil was 16 

added to the surface of the medium in all wells where growth was observed and the 17 

dissipation of the oil drop was noted. The MPN of biosurfactant producers in the 18 

samples was estimated from those wells where the oil dissipated on the surface. 19 

Published tables (www.fsis.usda.gov/Ophs/Microlab/ Appendix2.02.pdf) were used to 20 

calculate the MPN. 21 

Samples (50 µL) from the injected and produced fluids of each well were 22 

patch-inoculated onto blood agar plates and incubated overnight at 37oC. Multiple 23 
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blood agar plates were subsequently streaked from the growth patch. Resulting β- 1 

hemolytic (12) clearing zones were picked and streak-purified until pure isolates were 2 

obtained. The β-hemolytic isolates with the same colony morphology as Bacillus 3 

strain RS-1 or Bacillus subtilis subsp. spizizenii NRRL B-23049 were used for further 4 

culture-dependent molecular analyses (see below). 5 

Molecular analysis. Primers used for different analyses are shown in Table 4.1. 6 

Formation water samples (2 liters) before and after treatment were vacuum-filtered on 7 

a PES membrane of 90 mm diameter and 0.2 µm pore size (VWR, West Chester, PA) 8 

after oil separation. Membranes containing the microorganisms were cut and used for 9 

culture-independent DNA extraction. Cells were lysed by rapid thawing and bead 10 

beating to shear the membrane into small pieces (typically less than 5 mm), followed 11 

by mixing with Stool Lysis Buffer (Qiagen, Valencia, CA), vortexing for 2 minutes, 12 

and incubating at 95ºC for 10 minutes in a water bath. Using a modified QIAamp 13 

DNA Stool Minikit protocol (Qiagen, Valencia, CA), DNA was extracted from lysed 14 

cells, and amplified in a Taq DNA polymerase chain reaction (PCR) using degenerate 15 

primers designed to hybridize with the gyrA gene sequences of a variety of Bacillus 16 

strains (13, 40). PCR products were extracted from the gel (Qiagen), cloned into the 17 

pGEM vector (Promega), and plasmid DNA was purified from selected transformants 18 

(Qiagen). Four clones from each gyrA amplicon were sequenced by the Oklahoma 19 

Medical Research Foundation (OMRF, OKC, OK). Sequences were analyzed by 20 

DNAMAN multiple sequence alignment (Lynnon Biosoft) with the sequences 21 

obtained for Bacillus strain RS-1 (GenBank accession number DQ995270) and  22 

 23 



 113 

Table 4.1. Primers used for the different molecular analyses. 1 

Analysis Primers used References 

907R: 5’-CCGTCAATTCCTTTRAGTTT-3’ 
16S rDNA 

305F:  5'-CTCCTACGGGAGGCAGCAG-3'  
(34, 35) 

gyrAF:  5’-CAGTCAGGAAATGCGTACGTCCTT-3’ 
gyrA 

gyrAR: 5’-CAAGGTAATGCTCCAGGCATTGCT-3’ 
(13, 40) 

Rep-PCR BOXA1R: 5’-CTACGGCAAGGCGACGCTGACG-3’ (21, 46) 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 



 114 

Bacillus subtilis subsp. spizizenii strain NRRL B-23049 (GenBank accession numbers 1 

DQ995271 and AF272020). 2 

Cell templates from isolates obtained on blood agar plates (see above) were utilized as 3 

a source of culture-dependent DNA for 16S rRNA gene and gyrA analyses as well as 4 

rep-PCR (21, 46). Three clones of each gene from each isolate were prepared and 5 

analyzed as described above. Consensus sequences were obtained by multiple 6 

sequence alignment and compared with those from other isolates and the strains used 7 

as inoculum. 8 

The GenBank accession numbers for the 16S rRNA gene (551 bp) of Bacillus 9 

strain RS-1 and Bacillus subtilis subsp. spizizenii strain NRRL B-23049 are 10 

DQ995269 and AF074970, respectively. Rep-PCR reactions were first resolved on a 11 

1% agarose gel and subsequently on a 5% polyacrylamide gel with 0% denaturant at 12 

75V for 3.5 hours at 60oC. 13 

Calculation of total recoveries. The total amount of glucose utilized (CST) in a well 14 

was calculated from the equation, CST = N - Σ Cn•Vn, where N is the number of moles 15 

of glucose injected in the well, Cn is the molar concentration of glucose in the 16 

produced fluid of nth sample from the well, and Vn is the volume of fluid produced 17 

during the time interval between the n-1 and n samples from the well. The total 18 

amount of each metabolite produced (CPT) was calculated from the equation, CPT = Σ 19 

Cn•Vn, where Cn is the molar concentration of the metabolite in the produced fluid of 20 

nth sample, and Vn is the volume of fluid produced during the time interval between the 21 

n-1 and n samples. The total MPN of cells (CXT) was calculated from the equation, CXT 22 

= Σ Cn•Vn, where Cn is the MPN per milliliter of cells in the produced fluid of nth 23 
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sample, and Vn is the volume of fluid produced during the time interval between the n- 1 

1 and n samples. 2 

Bromide was used as a conservative tracer to estimate the amount of dilution 3 

of the nutrient package by dispersion in the formation (4, 39). The bromide recovery 4 

factor was calculated for each of the three wells that had a total volumetric flow meter 5 

attached. The average bromide recovery factor from the 3 wells was 1.09 (24% 6 

variation), which indicated that little dispersion or adsorption of the tracer occurred. 7 

Values obtained from the various chemical analyses (CST or CPT) from these three 8 

wells were divided by the corresponding bromide recovery factor obtained for that 9 

well. For the other two wells, the average bromide recovery factor was used. 10 

Corrected number of moles of glucose utilized and number of moles of end products 11 

were used for percentage carbon recovery calculations. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Results 1 

Preinjection data. Samples were collected from all the wells 1 and 2 weeks prior to 2 

the treatment. The biosurfactant and common bacterial fermentation end products such 3 

as acids and alcohols were not detected in any of the wells prior to treatment (Table 4 

4.2). In addition, we did not detect any viable bacteria at any dilution used for the 5 

MPN enumerations (Table 4.2).  6 

Evidence that the injected strains were maintained in the inoculated wells. MPN 7 

analysis using the Bacillus biofilm growth medium (BBGM) showed biosurfactant 8 

producers in the injected fluids of both the inoculated wells and the nutrients only 9 

treated wells (Table 4.3). The total number of biosurfactant producers in the injected 10 

fluids was one order of magnitude higher for the inoculated wells compared to the 11 

nutrients only treated wells (4.2 x 1010 compared to 3.7 x 109) (Table 4.3).  No spore- 12 

forming microorganisms were detected in either the injected or the produced fluids 13 

from nutrients only treated wells or the negative control. Since Bacillus species are 14 

known to sporulate (17), the absence of spore-forming microorganisms in the nutrients 15 

only treated wells indicates that the biosurfactant producers that were introduced into 16 

these wells were probably not Bacillus species, but microorganisms present in the 17 

storage tank. On the other hand, in the inoculated wells, spore-forming, biosurfactant- 18 

producing microorganisms were both introduced in and retrieved from the injected and 19 

produced fluids, respectively (Table 4.3). MPN of biosurfactant producers in the 20 

injected and produced fluids of inoculated wells were not significantly different (Table 21 

4.3). These data indicate that biosurfactant producers in the inoculum maintained 22 

viability, but did not grow during the incubation period. 23 
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Table 4.2. Preinjection chemical and microbial analyses for all the wells.  1 

Analysis 
 Inoculated 

wellsa 

Nutrients only 

wellsa 

Negative 

control wellb 

Temperature (ºC) 27.9 ±1.2 27.8 ± 3 28.8  ±0.3 

pH 7.54 ±0.55 7.4 ±0.38 7.6 ±0.43 

Glucose (µg/l) 4.22 ±5.7 4.2 ±4.3 1.97 ±1.34 

Nitrate (mg/l) 11.25 ±2.4 11.75 ±2.4 9.5 ±3 

Ammonium (mg/l) 8.12 ±3.75 6.25 ±1.4 7.5 ±5 

Nitrite (mg/l) NDc ND ND 

Bromide (µM) 1.62 ±0.015 1.64 ±0.03 1.62 ±0.01 

Fluorescein (µM) 0.21 ±0.25 0.14 ±0.16 0.18 ±0.36 

Alkalinity (mg/l) 745 ±34 710 ±66 720 ±280 

Acetate (mM) ND ND ND 

Lactate (mM) ND ND ND 

Ethanol (mM) ND ND ND 

Butanediol (mM) ND ND ND 

Biosurfactant (mg/l) ND ND ND 

Total heterotrophic bacteria (MPN) ND ND ND 

Biosurfactant producers (MPN) ND ND ND 

aNumbers are averages ± standard deviation of 4 replicates (2 samples collected for 2 

each of two wells within a one-week interval).  3 

bNumbers are averages ± range of 2 samples collected within a one-week interval.  4 

cND, not detected 5 

6 
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Table 4.3. MPN analysis of total and spore-forming heterotrophic bacteria and 

biosurfactant producers in the injected and the produced fluidsa. 

MPN in the injected fluidb MPN in produced fluidb Wells  

Heterotrophic 

bacteria 

Biosurfactant 

producers 

Heterotrophic 

bacteria 

Biosurfactant 

producers 

Total 1 x 1015 

(15±0.01) 

4.2 x 1010 

(10.3 ±0.6) 

4.3 x 1014 

(14.6 ±0.4) 

--c Inoculated 

Spore 

formers 

3.1 x 1011 

(11.2 ±0.6) 

3.1 x 1011 

(11.2 ±0.6) 

2.5 x 1011 

(10.3 ±0.2) 

2.5 x 1011 

(10.3 ±0.2) 

Total 2.5 x 1011 

(11.5 ±2.3) 

3.7 x 109 (9.6 

±0.6) 

2.7 x 1012 

(12.1 ±0.8) 

-- Nutrients 

only 

treated Spore 

formers 

-- -- -- -- 

Total 1.4 x 109 

(9.15 ±2.3) 

-- 5.3 x 109 (9.7 

±0.11) 

-- Negative 

control 

Spore 

formers 

-- -- -- -- 

a Bacillus biofilm growth medium (BBGM) was used for the MPN analysis. 

b Numbers in parentheses are average log10total MPN ± standard deviation of 4 

independent determinations except for the negative control, where numbers are 

averages ± range of 2 independent determinations. 

c --; no growth was detected in the MPN medium. 
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Although data in Table 4.3 suggest that biosurfactant-producing Bacillus 

species were only present in the produced fluids from inoculated wells but not from 

nutrients only treated wells, it was essential to eliminate any underestimation of 

Bacillus MPN due to the heat treatment. Plate count broth (PCB) medium modified to 

contain 5% salt was used for the MPN analysis to select for the halotolerant Bacillus 

species (Table 4.4). Although halotolerant, biosurfactant producers were detected in 

the produced fluids from nutrients only treated wells, the total MPN of these 

microorganisms was 53-fold lower than that in the injected fluids from the same wells. 

On the other hand, MPN data showed that the total MPN of halotolerant, biosurfactant 

producers in the produced fluids of inoculated wells was about 1.5-times that present 

in the injected fluids of the same wells.  

The MPN data suggest the absence of Bacillus species (no spore-forming, 

biosurfactant-producing microorganisms) and the presence of non-spore-forming, 

halotolerant, biosurfactant producers in the nutrients only treated wells. The latter 

were probably introduced into the wells with the treatment (e.g., from the storage tank 

formation water), but were not maintained. On the other hand, MPN data from 

inoculated wells indicate the survival of Bacillus species (spore-forming, halotolerant, 

biosurfactant-producing microorganisms) in these wells.  

Colonies with the same morphologies as those of the two strains used as the inoculum, 

Bacillus strain RS-1 and B. subtilis subsp. spizizenii NRRL B-23049, were retrieved 

on blood agar plates from both the injected and produced fluids of the inoculated 

wells, but not from the injected and produced fluids of the wells that received only 

nutrients or the negative control well. The 16S rRNA and gyrA gene sequences of  
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Table 4.4. MPN analysis of halotolerant heterotrophic bacteria and biosurfactant 

producers in the injected and the produced fluids a 

MPN in the injected fluids MPN in produced fluids 

Wells Heterotrophic 

bacteria  

Biosurfactant 

producers  

Heterotrophic 

bacteria  

Biosurfactant 

producers  

Inoculated  1.25 x 1012 (12 

±0.3)b 

1 x 1012 (11.9 

±0.3) b 

1.8 x 1015 (15 

±0.5) b 

1.56 x 1012 

(12.2 ±0.05) b 

Nutrients 

only  

1.9 x 1012 (12 

±0.45) 

3.3 x 1011 (10.6 

±1.4) 

6.5 x 1013 (13.7 

±0.3) 

6.2 x 109 (9.8 

±0.3) 

Negative 

control 

3.1 x 1012 (12.5 

±0.4) 

2.5 x 109 (9.4 

±0.4) 

1.2 x 1011 (11.1 

±0.04) 
-- c 

a Plate count broth supplemented with 5% NaCl was used for the MPN analysis. 

b Numbers in parentheses are average log10MPN ± standard deviation of 4 independent 

determinations except for the negative control, where numbers are averages ± range of 

2 independent determinations. 

c --; no growth was detected in the MPN medium 
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these were 100% similar to Bacillus strain RS-1 and B. subtilis subsp. spizizenii 

NRRL B-23049. 

Culture-independent gyrA amplicons were obtained with DNA extracted from 

produced fluids of the inoculated wells and not from DNA extracted from produced 

fluids from the wells that received only nutrients or the control well that received 

brine. The gyrA amplicons were not detected with DNA extracted from produced 

fluids of the inoculated wells collected prior to treatment. The resulting sequences of 

gyrA clones obtained were 99.72% similar to Bacillus strain RS-1 and B. subtilis 

subsp. spizizenii NRRL B-23049.  

Repetitive extragenic palindromic PCR (rep-PCR) reactions (21, 46) on blood 

agar plates isolates from the injected and produced fluids of the inoculated wells 

showed patterns similar to those of the inoculum strains, Bacillus strain RS-1 and B. 

subtilis subsp. spizizenii NRRL B-23049 (Figure 4.1).  

Collectively, microbiological and molecular data show that the 

microorganisms injected into the formation were retrieved in the produced fluids of 

the inoculated wells.  

Lipopeptide biosurfactant production. The presence of the biosurfactant in 

produced fluids was followed over the time of sampling by using three different 

methods. Oil spreading technique (33, 49) and surface tension measurement (25) were 

used to detect the presence of surface-active compounds in the produced fluids from 

all the wells. Surface activity was observed only in production fluids from the 

inoculated wells as evidenced by an increase in oil spreading activity and a decrease in 

surface tension (Figure 4.2A, and 4.2B). No evidence for surface activity was detected  
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Figure 4.1: Polyacrylamide gel of the Rep-PCR reaction for identification of Bacillus 

strains in the injected and produced fluids from the inoculated wells. DNA was 

extracted from isolates that had colonies with the same morphology as the two strains 

used as the inoculum (Bacillus strain RS-1 and Bacillus subtilis subsp. spizizenii 

NRRL B-23049) and used for the PCR reactions. Lanes 2 and 9 are DNA from B. 

licheniformis and B. subtilis subsp. spizizenii type strains, respectively. Lanes 3 and 10 

are DNA from laboratory-grown Bacillus strain RS-1 and Bacillus subtilis subsp. 

spizizenii NRRL B-23049, respectively. Lanes 4 and 11 are DNA from Bacillus strain 

RS-1- and Bacillus subtilis subsp. spizizenii-like isolates, respectively, both obtained 

from the tanks used for the inoculation. Lanes 5 and 6 are DNA from Bacillus strain 

RS-1-like isolates obtained from the injected fluids for the two inoculated wells, 

respectively. Lanes 7 and 8 are DNA from Bacillus strain RS-1-like isolates obtained 

from the produced fluids from the two inoculated wells, respectively. Lanes 12 and 13 

are DNA from Bacillus subtilis subsp. spizizenii -like isolates obtained from the 

injected fluids for the two inoculated wells, respectively. Lanes 14 and 15 are DNA 

from Bacillus subtilis subsp. spizizenii -like isolates obtained from the produced fluids 

from the two inoculated wells, respectively. Lanes 1 and 16 are DNA ladder.  
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Figure 4.2. Evidence for in situ biosurfactant production. X-axis represents the time in 

hours after the production started from the wells. Closed circles and triangles represent 

data from the 2 inoculated wells, open squares and open diamonds represent data from 

the 2 nutrient-treated wells, and open circles represent data from the negative control 

well. (A) By the oil spreading technique. Error bars represent standard deviations of 3 

measurements. (B) By surface tension measurement. Error bars represent standard 

deviation of 3 measurements. (C) By determination of biosurfactant concentration by 

high performance liquid chromatography. Error bars represent ranges of duplicate 

measurements. 
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(A) 

(B) 

(C) 

12
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in production fluids from the nutrients only treated wells or the negative control well 

(Figure 4.2A, and 4.2B). To determine the nature and the concentration of the 

biosurfactant produced in the inoculated wells, high-pressure liquid chromatography 

(HPLC) was used (48). The HPLC profile of the samples from the produced fluids of 

the inoculated wells matched those of the lipopeptide biosurfactants purified from 

laboratory cultures of the two strains used as inoculum, Bacillus strain RS-1 and B. 

subtilis subsp. spizizenii NRRL B-23049.  The average concentration of the 

lipopeptide biosurfactant in the produced fluids of inoculated wells was about 90 mg/l 

(a total amount of 7 moles in ~ 80,000 L of produced water) (Table 4.5, and Figure 

4.2C). The maximum concentration was as high as 350 mg/l in the produced fluids 

from the inoculated wells (Figure 4.2C). These maximum concentrations are more 

than 20-times higher than the reported critical micelle concentration for lipopeptide 

biosurfactants (ranging from 10-20 mg/l) (33). HPLC analysis of the produced fluids 

of the nutrients only treated wells and the negative control wells showed no 

lipopeptide biosurfactant production. 

Glucose utilization and product formation. Glucose was the carbon and energy 

source in our treatments. While complete glucose utilization did not occur, it was clear 

that large amounts of glucose were used since only 20-40% of the glucose added to the 

nutrients-treated wells (both inoculated and un-inoculated) was recovered in the 

produced fluids and products of microbial metabolism were detected in the produced 

fluids. Produced fluids from all of the nutrients-treated wells (both inoculated and un-

inoculated) showed an increase in alkalinity and carbon dioxide concentration 

compared to pre-treatment levels, most likely resulting from microbial growth and 
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Table 4.5. In situ mass balance and product formation rates and yields compared to those obtained in laboratory culture. 

 

 

 

 

 

 

 

 

a The number of moles of glucose used were 506 ± 118 moles, 360 ± 34 moles, and 4.88 ± 0.0004 moles for the 
inoculated wells, nutrients only-treated wells, and the laboratory cultures, respectively. Percent carbon recoveries were 
106.7 ± 34, 20.7 ±9, and 94.5 ±12.8 for the inoculated wells, nutrients only-treated wells, and the laboratory cultures, 
respectively. 
b The numbers are averages ± standard deviation of 4 independent determinations. Values were corrected for adsorption 
using bromide recovery factor. 
c The rates were calculated from the equation, ln (Ct/C0) = k•t, where Ct is the concentration at time t, C0 is the initial 
concentration, k is the rate of production, and t (time) was 108 hours. The numbers are averages ± standard deviation of 
4 independent determinations. 
d ND: not detected 
eNA: not applicable. 

Inoculated wellsa Nutrients only-treated wellsa Laboratory culturea 
Products 

Molesb  Rate (h-1)c Molesb  Rate (h-1)c Molesb  Rate (h-1)c 

Acetate 16.6±7 0.045 ±0.004 NDd NAe 0.57±0.03 0.04±0.001 

Butanediol 67.7±44 0.06±0.007 ND NA 0.54±0.014 0.04±0.0005 

Lactate 39.9±0.9 0.06±0.0002 ND NA 2.06±0.19 0.06±0.001 

Ethanol 902.6±50 0.08±0.001 130±48 0.07 ±0.003 0.39±0.12 0.03±0.007 

CO2 644±113 0.017±0.001 202±76 0.006 ±0.003 11.4±0.56 0.07±0.001 

Biosurfactant 6.8±0.67 0.02±0.001 ND NA 0.11±0.05 0.05±0.009 

Cells 7.3 ± 8 0.06 ±0.01 0.26 ±0.15 0.18±0.006 0.12 ±0.17 0.18±0.06 

12
7 
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activity. Produced fluids from the inoculated wells had a much higher CO2 

concentration following treatment compared to that from the nutrients only-treated 

wells (Table 4.5, Figure 4.3E). In addition to CO2, acetate, lactate, ethanol, and 2,3 

butanediol were detected in the produced fluids of the inoculated wells (Table 4.5, 

Figure 4.3A-D). The percent carbon recovery was 107 ±34 % for the inoculated wells 

(Table 4.5). Similar fermentation products from glucose metabolism were obtained by 

the pure cultures of the strains used as inoculum, Bacillus strain RS-1 and B. subtilis 

subsp. spizizenii NRRL B-23049, when the strains were individually grown in 

formation water supplemented with the nutrients used for well treatments (Table 4.5). 

These data argue that the products detected in the produced fluids of the inoculated 

wells were products of anaerobic glucose metabolism by the inoculum. Although 

glucose was partially utilized in the wells that received only nutrients, none of the 

above fermentation products were detected with the exception of CO2 and some 

ethanol (Figure 4.3). We do not know the fate of the remaining glucose carbon in these 

wells.  

The detection of 2,3-butanediol, a product often produced by Bacillus species 

during fermentation (32, 43) and the biosurfactant indicates that we stimulated the 

microorganisms responsible for biosurfactant production.  
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Figure 4.3: Total moles of glucose fermentation products in produced fluid from the 

wells. X-axis represents the time in hours after the production started from the wells. 

Closed circles and triangles represent data from the 2 inoculated wells, open squares 

and open diamonds represent data from the 2 nutrient-treated wells, and open circles 

represent data from the negative control well. (A) 2, 3-butanediol, (B) acetate, (C) 

lactate, (D) ethanol. and (E) CO2.  
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Discussion 

A major concern with MEOR is whether exogenous microorganisms will be 

metabolically active in the presence of diverse, natural populations of microorganisms 

that inhabit oil reservoirs (2, 8, 32). Biosurfactant-mediated oil recovery is even more 

problematical in that a metabolite, e.g., the biosurfactant, not related to the main 

energy metabolism of the cell must be produced. The data presented in Figures 4.2 and 

4.3 and Table 4.5 clearly show that the appropriate metabolism was stimulated in the 

formation and resulted in production of the biosurfactant and products indicative of  

Bacillus fermentation (45). The MPN data indicate that microorganisms 

physiologically similar to those used as the inoculum (halotolerant, spore-forming 

biosurfactant producers) were present in high numbers in the produced fluids from the 

inoculated wells after the incubation period. Molecular characterization of the isolates 

obtained from produced fluids from the inoculated wells clearly showed that the same 

strains used in the inoculum were retrieved from the produced fluids of the inoculated 

wells.  These data provide clear evidence that biosurfactant-mediated oil recovery is 

technically feasible.  

Even though microorganisms exist in the reservoir (as evidenced by growth 

and glucose utilization in the wells that received only nutrients), the indigenous 

microorganisms did not prevent the strains used as the inoculum from establishing and 

metabolizing in the reservoir. The success of the inoculation procedure might be 

because the type and amount of nutrients used were more favorable for Bacillus 

species compared to indigenous microorganisms. Pre-treatment sampling did not 

detect the presence of microorganisms in produced fluids from the wells that were 
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capable of growing in the various media used for enumeration (Table 4.2). So, it is 

possible that the injection of nutrients created a niche that allowed the injected strains 

to be metabolically active. The MPN analysis did not indicate that the biosurfactant 

producers in the inoculated wells grew since there was not a significant difference in 

the total MPN of the spore-forming biosurfactant producers (Table 4.3) or the 

halotolerant biosurfactant producers (Table 4.4) present in the injected fluids 

compared to the produced fluids. The lack of growth may have been due to a nutrient 

limitation. Nitrate was used as the nitrogen source and limiting amounts of nitrate 

were added to the treated wells to shift the carbon flow from cell mass production to a 

secondary metabolite production. Previous studies show that nitrogen limitation is 

associated with an increase in biosurfactant production (11).  

Sand-packed column studies have shown oil recoveries up to 95% occur when 

the columns are treated with lipopeptide biosurfactants (3, 27, 36, 38). Recent studies 

have shown that at least 11 mg/l of a lipopeptide biosurfactant is required to mobilize 

oil from sandstone cores and recoveries as high as 40% of entrapped oil were obtained 

with as little as 38 mg/l of the lipopeptide biosurfactant (20, 28). In the current field 

test, the average concentration of lipopeptide biosurfactant in the produced fluids of 

inoculated wells was about 90 mg/l. This concentration is ~ 9-times the minimum 

concentration required to mobilize entrapped oil from sandstone cores (28). These 

results showed that in situ lipopeptide biosurfactant production indeed meets this 

important engineering criterion. 

Previous laboratory studies that used both sandstone cores and sand-packed 

columns suggested that 2.2 ml of oil could be recovered per mg of a lipopeptide 
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biosurfactant (29).  Based on this information, the seven moles of lipopeptide 

biosurfactant recovered from the produced fluids of the two inoculated wells could 

recover approximately 16 m3 (100 barrels) of oil. The total material expenses to 

produce seven moles of biosurfactant were about $164 ($82 per well). The cost of the 

in situ biosurfactant production process could be as low as $10 per m3 ($1.6 per 

barrel). Since the main goal of the study was to test whether in situ biosurfactant 

production is possible, the volume of the reservoir that was contacted was small and 

thus significant amounts of additional oil were not expected. However, the company 

followed oil production before and after treatment and these data can be used to judge 

the effectiveness of the process. The lease that had the two inoculated wells, one of the 

nutrient only-treated wells and several other wells showed an average increase of oil 

production of one barrel of oil per day compared to the oil production rate before 

treatment. This increase in oil production was maintained for a period of 7 weeks 

following treatment. On the other hand, oil production rate of the other well that 

received only nutrients slightly decreased during the 7 weeks after treatment compared 

to pre-treatment oil production rates. Although the oil production data suggest that in 

situ process was not as efficient and cost effective as predicted from laboratory data, 

the data still argue for the cost-effectiveness of MEOR compared to the current price 

of oil (> $65/ barrel). However, more definitive results can be obtained if the size of 

the treatment is scaled up.  

Our data show that in situ biosurfactant production is possible and occurred in 

amounts exceeding the engineering criterion to mobilize oil from sandstone cores. 

This work also provides essential data for modeling MEOR processes in situ (Table 
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4.5) including growth rates (0.06 ± 0.01 h-1), carbon balance (107 ± 34 %), 

biosurfactant production rates (0.02 ± 0.001 h-1), and biosurfactant yields (0.015 ± 

0.001 mole biosurfactant/ mole glucose). These data can be used to study 

computationally microbial activity in subsurface environments including petroleum 

reservoirs. We should note that this is the first time that an in situ carbon/mass balance 

has been obtained for any MEOR process. Overall, the work emphasizes technical 

feasibility and cost-effectiveness of MEOR. 
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