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Major Field: NUTRITIONAL SCIENCES 

 

Scope and Method of Study: Dietary intakes of fruits and vegetables have been shown to 

lower risks of cardiovascular complications in both epidemiological and clinical studies.  

In particular, the polyphenol subclass of flavonoids has been found to exert anti-

atherosclerotic, anti-hypertensive, and anti-oxidative properties.  Our study aims to 

further investigate the relationships among cardiovascular disease (CVD) risk factors, 

total servings of fruits and vegetables, as well as flavonoid intakes in Oklahoma adults  

with abdominal adiposity and dyslipidemia. Thirty participants (5 males, 25 females) 

were recruited at the General Clinical Reserch Center at the Oklahoma University Health 

Science Center and Department of Nutritional Sciences at the Oklahoma State University.  

Blood draws and anthropometrics were performed and participants completed a 3 day 

food records for dietary analysis. 

Findings and Conclusions: Serum total cholesterol, LDL-cholesterol and glucose levels 

were significantly different across tertiles of ox-LDL (p <0.05); total- and LDL-

cholesterol were significantly higher in the highest vs. lowest tertiles. Waist 

circumference, serum glucose, HbA1c, quercetin intake, and total servings of fruits and 

vegetables were significantly different across tertiles of CRP (p <0.05); elevated levels in 

highest vs. lower tertiles.  This cross-sectional study shows significant differences among 

measures of lipid oxidation, CRP, and flavonoids (kaempferol, myricetin, quercetin) with 

measures of lipids and glycemic control in Oklahoma adults with abdominal adiposity 

and dyslipidemia.  Further investigation with a large population should be conducted to 

confirm these findings. 
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CHAPTER I 
 

 

INTRODUCTION 

Cardiovascular Disease (CVD) refers to multiple conditions of heart and vascular 

complications.  The term is often used for damage caused to either the heart or blood 

vessels by atherosclerosis.  Emerging research shows that obesity, hypertension, diabetes 

mellitus, dyslipidemia, smoking, aging, diets rich in saturated fats and reduced physical 

activity are the established risk factors for atherosclerosis and cardiovascular disease (1).  

All these metabolic and degenerative disorders are also characterized by inflammation 

and oxidant burden.  Oxidative stress and inflammation play a pivotal role at all stages of 

atherosclerosis and the subsequent development of CVD (2). 

Research has shown that patients with elevated basal levels of C-reactive protein (CRP) 

are at an increased risk of diabetes, hypertension, and cardiovascular disease (3,4).  CRP 

expression occurs during the acute phase response to tissue injury or inflammation in the 

hepatic cells of mammals.  High sensitivity-CRP (hs-CRP) assay, detects low 

concentrations of the protein, and is considered useful in determining the potential risk 

level for CVD.  However, it is not known whether hs-CRP is merely an indicator of CVD 

or if it actually plays a role in causing cardiovascular diseases.  
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Experts recommend the combination of hs-CRP tests and the lipid profile as a reliable 

approach to predict CVD risk.  Diet and lifestyle factors continue to be the cornerstone in 

health and prevention of chronic diseases.  Consumption of fruits and vegetables is 

associated with the primary prevention of CVD as well as improved management of 

diabetes (5).  Many of the health benefits associated with diets high in fruits and 

vegetables are attributed to their phytochemical content, particularly flavonoids (6).  

Dietary bioactive compounds, especially phytochemicals, have been shown to play a 

crucial role in attenuating biomarkers of oxidative stress and inflammation.   

According to the National Health and Nutrition Examination Survey (NHANES) 1999-

2002 data on 24 hour dietary recalls, the mean flavonoid intake among U.S. adults is 

1897 mg/day (7).  This phytochemical sub-class exhibits protective effects against 

metabolic syndrome, a precursor for CVD and diabetes mellitus (DM).  However, most 

epidemiologic studies investigating flavonoids and CVD risk have examined only one or 

two sub-classes of flavonoids.  Also, epidemiologic investigation of flavonoid intakes in 

relation to CVD risk in Oklahoma adult population is limited (8).  Thus, there exists a 

need to investigate the relation between total fruits and vegetables consumption, total 

flavonoid intake, dyslipidemia, and CRP in adults with abdominal adiposity. 

Purpose: 

The purpose of this study was to investigate the associations among hs-CRP, lipid 

oxidation [oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA)], and 

flavonoids [Flavonols: kaempferol (KAE), myricetin (MYR), quercetin (QUER), with 

measures of lipids [total cholesterol, triglycerides (TG), low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), very low-density lipoprotein (VLDL)] and glycemic 
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control [glucose, hemoglobin A1c (HbA1c)].  We also aimed to examine for differences 

among waist circumference, measures of lipids (total cholesterol, TG, LDL, HDL) and 

glycemic control (glucose, HbA1c), QUER intake, and servings of fruits and vegetables 

across tertiles of CRP and ox-LDL in our study participants with abdominal adiposity and 

dyslipidemia. 

Hypotheses: 

The following hypotheses are being examined in our study. 

1. Measures of lipid oxidation (ox-LDL, MDA), CRP, and flavonoids (KAE, MYR, 

QUER) will have significant correlations with measures of lipids (total 

cholesterol, TG, LDL, HDL, VLDL) and glycemic control (glucose, HbA1c). 

 

2. Participants with higher mean ox-LDL will have higher waist circumference, TG, 

LDL, fasting serum glucose, and HbA1c and lower HDL, QUER intakes, and 

consumption of fruits and vegetables. 

 

3. Participants with higher mean CRP will have higher waist circumference, TG, 

LDL, fasting serum glucose, and HbA1c and lower HDL, QUER intakes, and 

consumption of fruits and vegetables.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

High dietary intakes of fruits and vegetables, containing a variety of polyphenolic 

phytochemicals, have been shown to lower the risk of cardiovascular complications in 

both epidemiological and clinical studies.  In particular, the polyphenol sub-class of 

flavonoids has been found to exert anti-atherosclerotic, anti-hypertensive, and anti-

oxidative properties (8).  However, most research in flavonoid consumption focuses on 

the associations and the effects of only one or two sub-classes, and limited research has 

been conducted in human subjects with abdominal adiposity and dyslipidemia.  Thus, our 

study aims to further investigate the differences between surrogate risk factors of CVD 

and total intake of fruits and vegetables, as well as flavonoid intake in subjects with 

abdominal adiposity and dyslipidemia. 

Metabolic syndrome and cardiovascular disease 

Metabolic syndrome (MetS) is defined as a cluster of at least three conditions including 

the following: increased blood pressure, elevated fasting glucose levels, excessive body 

fat around the waist, or dyslipidemia (high triglycerides, and low high-density 

lipoprotein), (9).  Risk factors characterized to increase the chance of metabolic 

syndrome may be summarized as follows: age (advancing age), race (Hispanic and Asian 

decent), obesity (abdominal obesity and a Body Mass Index ≥30), history of diabetes   
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(individual or family history of type 2 diabetes mellitus and gestational diabetes), and a 

diagnosis of high blood pressure and cardiovascular disease (9, 10).  MetS affects one in 

five adults and its prevalence increases with age.  The estimated prevalence of MetS in 

U.S. adults (20 years and older) is 76 million (11). 

Cardiovascular disease (CVD) refers to multiple conditions of heart and blood vessel 

disorders.  However, the term is often used to describe damage caused to either the heart 

and/or blood vessels by atherosclerosis (1).  Factors that increase risk of CVD include 

obesity, hypertension, high serum cholesterol levels, tobacco use, insulin insensitivity, 

and physical inactivity.  Globally, CVD, especially atherosclerosis, is the most critical 

health threat, contributing to more than one-third of global morbidity.  According to the 

American Heart Association, one in three American adults have one or more type(s) of 

CVD.  Less than half of the population with recorded CVD is 60 years or over in age 

(12).  In 2009, direct and indirect costs for CVD were estimated around 475.3 billion 

dollars (13).  Once thought as an elderly disease, increasing interest for prevention and 

intervention has grown in the last 10 years because of a high prevalence of cardiovascular 

complications in young and middle aged adults. 

CVD has become an escalating health problem among Oklahomans.  In 2009, the age-

adjusted prevalence of CVD among Oklahomans was 7.2 percent of the state’s adult 

population.  Compared to national CVD related death statistics, Oklahoma ranks the third 

highest state in CVD related death (14).  In addition, CVD related disease is the primary 

diagnosis resulting in over 49,000 hospitalizations, totaling over $2 billion in hospital 

charges in Oklahoma during 2008.   This information is not unexpected when 

Oklahomans, in general, rank high in modifiable risk factors for the development of 
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cardiovascular related diseases.  A recorded 25 percent of the Oklahoma adult population 

is current smokers and studies have shown that smokers are two to four times more likely 

to develop coronary heart disease (14).  The prevalence of type 2 diabetes mellitus 

(T2DM) in adults in Oklahoma is 11 percent, and heart disease death rates increase two 

to four times in adults with diabetes when compared to non-diabetic adults. Furthermore, 

40.4% of Oklahoma adults were observed to have high serum cholesterol levels which 

has shown to be directly associated with the development of CVD (15).  

Abdominal adiposity 

Abdominal adiposity, i.e. central obesity, is the accumulation of abdominal fat resulting 

in an increase in waist size. Increasing abdominal obesity tends to have an association 

with increasing Body Mass Index (BMI) (16, 17).  BMI is calculated by dividing total 

body weight in kilograms by the total height in meters squared.  Obesity is defined as 

having a BMI score of greater than 30.  As a chronic condition, the development and 

incidence of obesity can be affected by an interaction of demographical, behavioral, 

physiological, socioeconomic, and genetic factors (18). 

There is a strong correlation between central obesity and CVD.  The excessive 

accumulation of adipose tissue greatly increases the risks of a number of metabolic 

disorders including but not limited to the following: dyslipidemia, insulin resistance, 

chronic inflammation, endothelial dysfunction, and hypertension (19).  These negative 

health effects have been associated with waist circumference greater than 40 inches in 

men and greater than 35 inches in women (20).  
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Researchers have observed an increase in prevalence of abdominal adiposity in U.S. 

adults (9).  A gradient of increasing waist circumference was found in the first National 

Health Examination Survey (NHES I), the third National Health and Nutrition 

Examination Survey (NHANES III), and 1999-2000 National Health and Nutrition 

Examination Survey (NHANES 1999-2000) in U.S. men and women.  After age-

adjustment, the overall prevalence of abdominal fat in men was found to have increased 

by 25.6 percent and in women by 40.5 percent between the years 1960 to 2000 (21).  

Body-fat distribution has been identified as an independent predictor of health risk.  

Individuals with excess abdominal fat are at an increased risk of negative health 

consequences due to obesity (17, 22).  Data, from the Centers for Disease Control and 

Prevention, indicate a 34 percent incidence of obesity among the U.S. adult population 

(more than double the percent of incidence 30 years ago) (22). 

Dyslipidemia 

Dyslipidemia is a disorder in the normal levels of lipids in the blood and distinguished by 

a triad of lipid level abnormalities including elevated triglycerides and low density 

lipoprotein cholesterol and decreased high density lipoprotein cholesterol (23).  In 

Western societies, most dyslipidemias are hyperlipidemias (elevation of lipids in the 

blood) often due to individual diet and lifestyle choices.  However, genetic 

predispositions for high serum cholesterol levels have been recorded in some families.  

Prevalence of dyslipidemia tends to increase with high BMI (24). 

Undeniable evidence exists that the lipid levels that make up the abnormal triad are 

independently associated with increased CVD risks.  Dyslipidemia adversely affects 

endothelium function (9).  Alterations in endothelial function contribute to pathogenesis 
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and clinical manifestations of CVD (1) which will be discussed further in the next 

section.   

Oxidative stress and inflammation 

Increased oxidative stress and inflammation contribute to the development of 

atherosclerotic cardiovascular diseases.  Oxidative stress is caused by an imbalance of 

free radicals in the living system (25).  Free radicals are molecules or molecular 

fragments that contain at least one unpaired electron in their molecular orbitals and can 

be divided into two categories as follows: reactive oxygen species (ROS) and reactive 

nitrogen species (RNS). 

Formed during biochemical processes, ROS and RNS can play beneficial and harmful 

roles in the human body.  The beneficial roles include defending against infectious agents 

and cell signaling responses.  Free radicals also stimulate protein synthesis.  Conversely, 

free radicals in excess can cause damage to major proteins, enzymes and other 

compounds (26).  Production of free radicals promotes further generation of these 

molecules.  In other words, a balance of free radicals in the system is essential for a 

homeostatic state in living systems. 

Adequately functioning antioxidant systems control the accumulating production of free 

radicals (27).  Endogenous and dietary antioxidant compounds scavenge free radicals to 

be disposed through excretion systems.  These antioxidant defenses function as either 

enzymatic or non-enzymatic mechanisms in the body.  Enzymatic compounds 

(glutathione peroxidase, superoxide dismutase) and non-enzymatic compounds 

(glutathione, α-tocopherol, ascorbic acid, carotenoids, flavonoids) work together to 
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generate antioxidant systems.  However when excessive amounts of free radicals are 

developed beyond the capability of the antioxidants, inflammation can occur and chronic 

oxidative stress can cause damage to vascular tissues that processes to atherosclerotic 

diseases (1). 

Inflammation is the natural acute immune system response to any stimulus such as 

trauma, stress, immune challenge, bacterial, viral, or fungal toxin, resulting in massive 

outpouring of primary inflammatory cytokines from monocytes (28).  Monocytes are 

immune cells that travel through the blood stream to identify injured tissues.  Once the 

injured tissue has been located pro-inflammatory cytokines are released into the system to 

up-regulate inflammation to attract more monocytes to the stressed area.  Monocytes 

transform into macrophages that engulf the harmful agent (29). 

However, if inflammation advances to a chronic state, damage to tissues can occur.  In 

this circumstance, the endothelium becomes compromised from the continuous 

inflammation and migration of adhesion molecules, on the endothelial level, that attach to 

the monocytes (26, 29).  The inflamed monocytes roll over the endothelium until an 

opening into the intima is located, where they migrate into the cell to become 

macrophages.  The macrophages (with no foreign substance to engulf) will start 

engulfing oxidized low-density lipoproteins (ox-LDL) to form foam cells (26, 27, 28).  

This foam cell accumulation converts to atherosclerotic plaque which continues the 

progression by the release of compounds that stimulate further generation of adhesion 

molecules and large amounts of ox-LDL.  Smooth muscle tissue migrates to form a 

fibrous cap to protect the vein against the atherosclerotic plaque.  However continuous 
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inflammation can weaken the fibrous cap wall, possibly resulting in a thrombus clot.  If 

the thrombus breaks free, risks of CVD increase (29). 

C-reactive protein 

C-reactive protein (CRP) expression occurs during an acute phase response to tissue 

injury or inflammation in the living system (3, 7).  The liver synthesizes CRP in response 

to factors released by adipocytes.  The primary factor responsible for rapid elevations in 

the serum concentration of CRP is a rise in plasma concentration of interleukin- 6 (IL-6) 

(3). The IL-6 cytokine acts as both a pro-inflammatory and an anti-inflammatory 

molecule in which macrophages and adipocytes are the predominate producers in 

inflammation.  The production of this inflammatory molecule from adipocytes has been 

suggested as a reason why obese individuals have higher endogenous levels of CRP (1). 

The physiological role of CRP resembles that of an antibody by attaching to 

phosphocholine expressed on the surface of dying cells in order to activate the 

complement system via the C1Q complex (7).  Correspondingly, the protein enhances 

phagocytosis (engulfing mechanism) of macrophages which expresses a receptor for CRP 

complexes (3). 

Recent research suggests that patients with elevated basal levels of CRP are at an 

increased risk of diabetes, hypertension, and CVD (3, 7).  Two different tests are used to 

measure the level of serum CRP; the standard test and the high sensitivity-C reactive 

protein (hs-CRP) test.  The standard test measures a wide range of CRP but is less 

sensitive in the lower ranges, while the hs-CRP test can accurately detect low 

concentrations of the protein.  The latter is considered the most useful in determining the 
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potential risk level for CVD (7).  Experts encourage the combination of hs-CRP tests 

along with a subject’s lipid profile as a reliable approach to predict risk.  However, a rise 

in levels can be caused by a number of other underlying factors.  It is important for 

researchers to use a combination of examination techniques to determine an individual’s 

risks for CVD (1). 

Dietary intakes of fruits and vegetables 

According to the Healthy People 2010 objectives for consumption of fruits and 

vegetables includes targets of increasing the proportion of U.S. individuals who consume 

at least two servings of fruits daily by 75 percent and increasing the proportion of U.S. 

individuals who consume at least three servings of vegetables daily by 50 percent (30).  

According to a CDC report, the average American falls short of these consumption 

objectives (14).  In 2009, an estimated 32.5 percent of U.S. adults consumed fruits at least 

two times per day and only 26.3 percent of adults consumed vegetables at least three 

times per day.  

 

 

(CDC 2010) 

Figure 1. Consumption of fruits and vegetables among US adults 



12 
 

Based on the CDC’s findings, no state met Healthy People 2010 objectives for the 

consumption of fruits or vegetables.  Oklahoma ranks 51st for the consumption of fruits 

and 47
th

 for the consumption of vegetables, compared to all 50 states and the District of 

Columbia (14).   

According to the 2011 Oklahoma State of the State Health Report, only 14.6 percent of 

Oklahoma adults consumed fruits and/or vegetables greater than five times per day.  Also 

50 of the 77 counties in Oklahoma received a failing grade for their average consumption 

of fruits and vegetables.  No significant differences were determined in consumption 

among ethnic, economic, or age groups.  Higher education status only slightly raised the 

intake percent from a grade of failing “F” to above average “C” when analyzed at the 

college graduate level (31). 

 

 

(OSDH 2011) 

Figure 2. Consumption of fruits and vegetables among adults in Oklahoma 
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Furthermore, according to the CDC State Indicator Report on Fruits and Vegetables, the 

percentage of Oklahomans who report consuming greater than one serving per day of 

fruits and vegetables was 50.2 percent (fruits) and 26.8 percent (vegetables) (32). 

There are many obstacles influencing the consumption of fruits and vegetables in 

Oklahoma.  Access continues to be a significant obstacle in the quest to increase total 

consumption of fruits and vegetables in this population.  According to CDC statistics, 

only 51 percent of Oklahoma census territories have food retailers that stock such items 

within a half mile boundary of both rural and urban settings.  This situation could be 

related to only 0.3 percent of total cropland acreage in Oklahoma is used for the harvest 

of fruits and vegetables (32).  Consumers must rely on out-of-state producers which can 

limit selection and availability depending on season, environmental conditions, cost, and 

related factors. Furthermore the increasing cost of food items may compel many 

Oklahomans to choose less nutrient-dense, high-calorie foods in order to feed their 

families in lieu of purchasing produce (33).  According to the USDA Consumer Price 

Index (CPI) for Food 2013, the average cost per portion of fruits and vegetables ($0.46) 

is double the amount of the average cost per portion of high-density snack foods ($0.23) 

(33). 

Flavonoids 

Flavonoids are one of the largest phytochemical sub-classes and can be categorized into 

several varieties, as listed in Table 1.  These compounds are water-soluble polyphenolic 

molecules containing 15 carbon atoms arranged in two benzene rings which are joined 

together with a short three carbon chain.  Over 4,000 flavonoids have been identified, 

many of which occur in fruits and vegetables.  Flavonoids provide much of the flavor and 



14 
 

color of the edible plants and the foods and beverages that are derived from them.  Like 

other phytochemicals, they are not considered essential nutrients (i.e., proteins, fats, 

carbohydrates, vitamins, minerals, and water) and for this reason are often referred to as 

“nonnutritive” compounds (34).   

These plant compounds have aroused considerable interest recently because of their 

potential beneficial effects on human health, particularly obesity and metabolic 

syndrome.  They have been reported to have antiviral, anti-allergy, antiplatelet, anti-

inflammatory, anti-tumor and antioxidant activities, which spark researchers to 

investigate the potential of flavonoid-rich diets and individual flavonoids (4).   

 

 

According to the Department of Health and Human Services, diet plays a role in 10 of the 

leading causes of death, including DM2, coronary heart disease, stroke, certain types of 

cancer, and atherosclerosis (35).  Epidemiologic studies have suggested beneficial effects 

of flavonoids in diets high in fruits and vegetables by decreasing the risk of chronic 

diseases. 

Adapted from the USDA Flavonoid Database (67) 
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Observational studies on the dietary intakes of fruits and vegetables  

Fruits and vegetables contain a wide range of potentially cardioprotective components 

including vitamins, fiber, other antioxidants, and non-nutrient phytochemicals.  The 

World Health Organization noted that inadequate intake of fruits and vegetables is one of 

the leading causes of chronic disease and overall death and mortality worldwide (20).  On 

the whole, observational and case-control studies focusing on consumption of fruits and 

vegetables in relation to CVD risk have consistently shown inverse associations. 

Intake of fruits and vegetables and cardiovascular disease risk 

Higher consumption of fruits and vegetables has consistently shown inverse associations 

with CVD risk when compared to lower intakes.  A cohort study by Hung et al. (36) 

investigated the correlation between consumption of fruits and vegetables and risk of 

chronic disease in participants from the Nurses’ Health Study and Health Professional 

Follow-Up Study comprising of 121,700 women (mean: 42.5 y/o)  and 51,529 men (57.5 

y/o) respectively .  CVD incidence was significantly lower at the highest quartile intake 

of fruits and vegetables (≥ 8 serving per day), when compared to the lowest quartile 

intake (<1.5 serving per day).  Relative risk of CVD was 0.88 for an increment of five 

servings per day of total intake of fruits and vegetables, significantly. (36). 

Similar trends were found by Bazzano et al. (37) when examining the association 

between frequency of the intake of fruits and vegetables and CVD risk in 9,608 

participants (<60 y/o: 6312 and >60 y/o: 2844) in the National Health and Nutrition 

Examination Survey Epidemiologic Follow-Up Study (NHANES I).  Intake of fruits and 

vegetables greater than three times per day compared to less than once per day was 

associated with a 27 percent lower risk of stroke, a 42 percent lower stroke mortality, a 
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24 percent lower ischemic heart disease mortality, a 27 percent lower CVD mortality, and 

a 15 percent lower all-cause mortality after adjustment for established CVD risk factors 

(37). 

Intake of fruits and vegetables and coronary heart disease 

The relationship between risk of Coronary Heart Disease (CHD) and the consumption of 

fruits and vegetables was investigated, by Joshipura et al. (38), in 84,231 middle aged 

women from the Nurse’s Health Study and 42,148 middle aged men from the Health 

Professional’s Follow-Up Study.  A trend of 20 percent lower incidence of disease was 

witnessed in participants that consumed greater than four servings of fruits and 

vegetables per day.  Consumption of fruits and vegetables appeared to have a significant 

protective effect against CHD.  In addition, a significant inverse relationship was found 

for general heart disease (38). 

In agreement with the previous study, Nikolić et al. (39) studied the relationship between 

dietary intake of fruits and vegetables and the risk of CHD in a case-control study 

including 290 cases (194 men, 96 women; mean age 59.98 y/o) of first event acute 

coronary syndrome and 290 paired controls.  The controls were matched by sex, age, and 

admitted to the same regional hospitals as cases without diagnosis of coronary heart 

disease.  The benefits from consumption of fruits and vegetables increased significantly 

by the number of servings consumed.  A trend of 60 percent lower risk of CHD was 

found in those in the upper tertile of consumption of fruits (> 5 items per day) when 

compared to the lowest tertile (< 1 item per day).  A 70 percent lower risk of CHD was 

associated with consumption of vegetables of at least three times per day when compared 

to subjects who did not consume any vegetables (39). 
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To further investigate this inverse association, Oude Griep et al. (40) examined the 

manner in which fruits and vegetables were consumed (raw and processed) in relation to 

CHD incidence.  The cohort study observed 8,988 men (mean 42.6 y/o) and 11,081 

women (mean 49 y/o) participants’ habitual food consumption through a semi-

quantitative food frequency questionnaire (FFQ).  The average daily intake of fruits and 

vegetables in the total study population was 378 grams per day (g/d), of which 188 g/d 

was consumed as raw and 190 g/d processed (including cooked fruits and vegetables).  

An inverse association for CHD was present for both the intake of raw and processed 

fruits and vegetables. The highest total fruits and vegetables consumption (> 475 g/d) was 

inversely associated with CHD incidence compared to participants with the lowest 

consumption (< 241 g/d).  Compared to participants with the lowest intake, an inverse 

association was observed for a high intake of raw fruits and vegetables (<192 g/d vs. 

>262 g/d, respectively) with CHD as well as a high intake of processed fruits and 

vegetables (< 113 g/d vs. >233 g/d).  An inverse trend was observed between CHD 

incidence and intake of fruits greater than 328 g/d and intake of vegetables greater than 

162 g/d; however this was not statistically significant (40).   

Intake of fruits and vegetables and C-reactive protein 

C-reactive protein (CRP) levels have been shown to be affected by consumption of fruits 

and vegetables.  A study by Esmaillzadeh et al. (41) observed an inverse association of 

both intake of fruits and intake of vegetables with plasma CRP concentrations in 

postmenopausal women (n=486 [mean age 50 y/o]).  The higher intakes of both fruits and 

vegetables consumed (> 5 servings/d) showed a lower incidence of obesity along with 

lower plasma CRP concentrations; thus supporting the anti-inflammatory effects of 
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consuming a diet rich in fruits and vegetables.  The association became more evident 

when combining the data for total dietary fruits and vegetables consumption. The study 

observed a 39 percent lower concentration in CRP levels in the highest intake of fruits 

and vegetables (> 5 servings/d) compared to the lowest intake of less than one serving per 

day (41). 

This anti-inflammatory effect due to fruits and vegetables was also observed in another 

epidemiologic study by Gao et al. (42) examining the relationship between intakes of  

fruits and vegetables with plasma CRP concentrations in 445 Hispanic elders (mean 69.5 

y/o) and 154 neighborhood-based non-Hispanic white elders (mean 68.8 y/o).  The 

Massachusetts Hispanic Elders Study (MAHES) cross-sectional study assessed dietary 

habits with a FFQ designed for the specific study population.  A significant inverse dose-

response association between the intake of fruits and vegetables and plasma CRP was 

observed. The prevalence of high plasma CRP (> 10 mg/L) was significantly greater 

among subjects in the lowest quartile of consumption of  fruits and vegetables [1.4 (0.2-

2.2) servings/d], compared to the highest quartile [5.5 (4.4-14.8) servings/d] (42). 

Furthermore, a cross-sectional study investigating the correlation among intake of fruits 

and vegetables with inflammatory and oxidant status found similar results.  This study by 

Root et al. (43) examined 1000 adult subjects [394 male (mean age 45 y/o), 606 female 

(mean age 47 y/o)]. The participants self-reported the frequency of intakes of fruits and 

vegetables and multiple markers of inflammatory and oxidant status.  Higher intakes of 

combined fruits (> 2 servings/d) and vegetables (> 3 servings/d) were associated with 

lower concentrations of CRP and other established inflammatory markers when 

compared to the lowest intakes (< 2 servings/d and <3 servings/d) (43).    
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Observational studies on the dietary intakes of flavonoids  

Epidemiological evidence suggests that flavonoids may explain the cardio-protective 

benefits of increasing consumption of fruits and vegetables.  Several prospective studies 

have reported statistically significant inverse associations between total flavonoid intake 

and the intake of specific sub-classes of flavonoids and CVD incidence, mortality, or risk 

factors. Thus the following evidence suggests that phytochemicals may play a crucial role 

in reducing CVD risks. 

Flavonoid intake and cardiovascular disease risk 

Research provides conflicting evidence on correlations between flavonoid intake and 

overall cardiovascular disease risk.  A study by Mink et al. (6) observed that higher 

flavonoid intake to be inversely associated with CVD mortality in postmenopausal 

women.  Women (n= 34,489; mean age 62 y/o) from the Iowa Women’s Health Study 

1986 (IWHS) were selected for the purpose of evaluating the relationship between 

individual high flavonoid content foods and specific mortality endpoints.  A follow up 

questionnaire was distributed after 16 years to collect information from the participants or 

their relatives regarding cause and rate of death. Of these participants, there were 7,091 

total deaths, with 2,316 CVD related deaths, 1,329 CHD related deaths, and 469 stroke 

related deaths. In the analysis of total flavonoid and flavonoid sub-class intakes, dietary 

flavanones and anthocyanidins were significantly associated with a reduced risk of death 

due to CVD and CHD.  However there was no association between total flavonoid intake 

or any of the sub-classes and stroke mortality.   Further investigation found a similar 

association in the analysis of CHD mortality and foods rich in flavonoids. The age- and 

energy-adjusted relative risks were significantly reduced in participants reporting 



20 
 

consumption of apples, pears, oranges, grapefruit, blueberries, red wine, celery, 

strawberries, chocolate, bran, and other fruit juices.  Additionally, apples, pears, 

grapefruit, and red wine remained significantly inversely associated with CHD mortality 

in the multivariate-adjusted model (6).   

 A large prospective cohort study of U.S. adults by McCullough et al. (44) further 

observed that high intake of total flavonoids, and majority of flavonoid sub-classes, were 

associated with a lower risk of fatal CVD in both men and women after adjusting for 

several confounding factors.  A total of 98,469 participants (38,180 men [mean age 69.9 

y/o] and 60, 289 women [mean age 68.5 y/o]) free of chronic disease were chosen from 

the Cancer and Prevention Study II Nutrition Cohort study.  The energy-adjusted mean 

total flavonoid intake for both men and women was 268 mg/d, corresponding to the 10
th

-

90
th

 percentile distributions.  The participants with total flavonoid intakes in the highest 

quintile (≥359.7 mg/d) had an 18 percent lower risk of fatal CVD when compared with 

the lowest quintile(<121/5 mg/d).  Significant inverse associations were observed for 

anthocyanidins (median: 22.2 mg/d), flavan-3-ols (median: 63.7 mg/d), flavones (median: 

3.0 mg/d), flavonols (median: 27.5 mg/d), and proanthocyanidins (median: 379.4 mg/d).  

In examining men and women separately, strong inverse associations were seen in both 

gender groups.   The strongest inverse association in women was observed with flavones 

for fatal CHD.  In men, total flavonoid intake was associated with lower risk of fatal 

stroke.  Interestingly, comparing total flavonoids and proanthocyanidin intake in the third 

tertile (median intakes 201.9; 132.0 mg/d respectfully) compared with the bottom tertile 

(median intakes 94.5; 53.1 mg/d respectfully), men of 70 years or older in age had a 

lower risk of fatal CVD compared with men younger than 70 years of age.  Many of the 
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associations were nonlinear, with low risks seen at even modest intake, suggesting that 

consumption of even small amounts of flavonoid-rich foods may be beneficial for 

reducing risk of fatal CVD (44).  

In contrast, Mursu et al. (45) examined the relationship between flavonoid intake and the 

CVD mortality along with the risk of ischemic stroke. Finnish men (n= 1950, mean age 

52.4 y/o) from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) were used 

to examine the relationship.  During the average follow-up time of 15.2 years, men with 

no previous CHD or stroke experienced 102 ischemic strokes and 153 CVD related 

deaths.  When comparing the most commonly consumed flavonoids in quartiles, neither 

total flavonoid nor flavonoid subclasses were associated significantly with CVD 

mortality (45). 

Similarly, Sesso et al. (46) evaluated the intakes of total flavonoids, flavonols and 

flavones among 38,445 women (mean age: 53.9 y/o) free of CVD (at baseline) from the 

Women’s Health Study.  A follow-up questionnaire was used to collect information on 

CVD risk and incidence.  After adjustment for dietary and lifestyle factors, the results 

indicated that a higher flavonoid intake (median intake: 47.44 mg/d) was not associated 

with a reduced risk of CVD compared to lowest flavonoid intake (median intake: 8.88 

mg/d).  No single sub-class of commonly consumed flavonols or flavones showed a clear 

inverse association with the risk of either CVD or important vascular events (46). 

Flavonoid intake and hypertension 

High flavonoid intakes have been shown to have inverse correlations with blood pressure.  

In examining the habitual intake of flavonoid sub-classes, Cassidy et al. (47) found that 



22 
 

specific classes of flavonoids, specifically anthocyanins, were associated with a reduction 

in hypertension risk.  Three prospective cohort studies using similar questionnaires were 

chosen to explore the association between flavonoids sub-classes and risk of incident 

hypertension as follows: 1976 Nurses’ Health Study (NHS I), 1986 Health Professionals 

Follow-Up Study (HPFS), and 1991 Nurse’s Health Study (NHS II). The participants 

(46,672 women mean age of 55y [NHS I], 87,242 women mean age 36y [NHS II], and 

23,043 men mean age of 56y [HFPS]) were included in the analysis based on a set of 

inclusion criteria.  In a combined cohort analysis, an 8 percent reduction risk of 

hypertension was associated with a high intake of anthocyanins when comparing the 

highest intake (Quintile 5) with the lowest intake (Quintile 1).  Interestingly, comparing 

the same quintiles, the magnitude of the association was greater in participants under 60 

years of age.  The inverse association was observed in the NHS I and NHS II cohorts; 

however, no association was found in HPFS.  Also, only in NHS II (younger adult 

women) was a linear association observed.  Additionally, no significant evidence was 

shown in the other major flavonoid sub-classes in association with reduction in incident 

of hypertension.   However, some individual compounds within the major sub-classes 

were found to be associated with lower rates of hypertension.  For instance, high apigenin 

(flavones subclass) intake was found to have a 5 percent reduction in rates of 

hypertension in individuals in the 5
th

 quintile compared to 1
st
 quintile.  Catechin and 

epicatechin (flavan-3-ols) intakes were associated with lower rates in participants under 

60 years of age.  These data reinforce the importance of dietary intervention strategies for 

reduction of surrogate risk factors for cardiovascular complications before middle age 

(47).   
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Flavonoid intake and C-reactive protein 

High intakes of total flavonoid and individual sub-classes have been associated with 

lower serum C-reactive protein (CRP).  A study by Chun et al. (7) examined the 

associations between dietary flavonoid intake and serum CRP concentrations after 

adjusting for known factors that affect inflammation levels in humans. The analysis 

consisted of a 24 hour dietary flavonoid estimated intake and serum CRP concentrations 

from a total of 8335 adult individuals (mean age: 44.5 y/o) from the NHANES 1999-

2002. A significant inverse correlation among serum CRP concentration was seen with 

total flavonoid intake and individual flavonol, anthocyanidins, and isoflavone sub-classes 

after adjusting for confounding factors (7). 

Clinical studies of dietary flavonoids  

The majority of studies of dietary intervention of flavonoids focus on the following 

specific risk factors of CVD: hypertension, lipid metabolism, glucose metabolism, and 

inflammation. These cardio-protective effects are specifically shown in flavonoid rich 

dietary intakes of cocoa, green tea (EGCG), berries (anthocyanidins), and soy 

(isoflavones). 

Effects of flavonoids on hypertension and vascular function 

Cocoa and chocolate  

Chocolate products have been shown to have beneficial effects on the vascular system 

and accounts for the majority of total flavonoid intake in Western countries.  A 

randomized, controlled, single-blinded, parallel-group trial conducted by Taubert et al. 

(48) demonstrated the effect of low dose habitual cocoa intake on blood pressure in 44 

pre-hypertensive adults (20 men, 24 women).  The participants (aged 53 to 73 years) 
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were randomly assigned to consume either a dark chocolate bar containing 30 mg of 

polyphenols (22 participants) or a matching polyphenol-free white chocolate bar (22 

participants).  The participants were counseled to maintain their usual dietary and 

physical activities, and instructed to abstain from consuming other cocoa products during 

the course of the 18 week study.  Participants completed a 7-day cocoa-free run-in period 

and an overnight (12 hour) fasting period before starting the intervention.  The chocolate 

products were consumed two hours after the evening meal.  Blood pressure (BP) was 

recorded between 8 and 10 am to examine the effects of the intervention (baseline, 6, 12, 

and 18 weeks).  BP was taken in intervals (0, 60, 120, 240, 360, and 480 minutes) after 

first dose to assess acute effects from the chocolate treatments. The results showed that 

consuming dark chocolate progressively lowered systolic (SBP) and diastolic (DBP) 

blood pressure significantly compared to the baseline.  No significant changes were seen 

at six weeks.  However, after 12 weeks of dark chocolate intake, both SBP (mean of -2.4 

mm Hg) and DBP (mean of -1.3 mm Hg) declined compared to the baseline.  Further 

decline of SBP (mean of -2.9 mm Hg) and DBP (mean -1.9 mm Hg) was observed after 

consumption of the dark chocolate for 18 weeks.  SBP and DBP remained unchanged 

throughout the duration of the study for the participants consuming the white chocolate.  

This study showed the positive effects on blood pressure from consuming flavon-3-ol 

rich cocoa (48). 

A randomized, single-blind, cross-over study was conducted by Grassi et al. (49) to 

examine the vascular-protective effects of dark chocolate in 20 never-treated 

hypertension stage 1 adult patients (10 men, 10 women [mean age 43.65 y]) and 15 

healthy control adult subjects (7 men, 8 women [mean age 33.9 y]).  Participants were 



25 
 

instructed to maintain their usual diet; however, they were requested to abstain from 

consuming flavonoid-rich foods and beverages during the 30 week (Phase 1: 15 weeks; 

Phase 2: 15 weeks) duration of the study.  All participants entered a 7-day-cocoa-free-

run-in period before starting the first phase. The groups were randomly assigned to 

consume either a dark chocolate (DC) 100 gram bar (21.91 mg catechin, 65.97 mg 

epicatechin, 0.59 mg QUER, 0.03 mg KAE) or a 90 gram flavonol-free white chocolate 

(WC) bar daily.  At the end of Phase 1, all participants completed another 7-day-cocoa-

free period.  During Phase 2, participants were crossed over to the corresponding 

treatment after completion of the second cocoa-free period.  Before and after each study 

phase, BP was recorded by 24-hour ambulatory blood pressure monitoring (ABPM) at 15 

min intervals during the daytime (6 am to 10 pm) or 20 min intervals during the nighttime 

(10 pm to 6 am).  BP was similar at baseline for all hypertensive patients. The results 

showed that the consumption of DC significantly decreased SBP (-11.0 mm Hg) and 

DBP (-6.4 mm Hg) in the hypertensive patients compared to the consumption of WC.  

Flow-mediated dilation (FMD) of the brachial artery was also improved after the 

treatment of DC.  In the hypertensive patients, FMD increased to almost normal values 

(8.9 percent) compared to the WC treatment.  Even the healthy controls showed 

improved FMD after DC intake compared to WC intake. Significant improvements in 

glucose and insulin responses were observed in both groups after the DC treatment 

compared to the WC treatment (49).  The above findings support a potentially beneficial 

action of cocoa flavonols on BP in hypertensive and healthy adults.   
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Tea-derived epigallocatechin-3-gallate (EGCG) 

Epigallocatechin-3-gallate (EGCG) from green tea has shown significant inverse effects 

on endothelial dysfunction.  The endothelium plays a central role in the regulation of 

vascular homeostasis, and maintenance of the normal vasodilator properties of the 

endothelium may reduce cardiovascular risk.  A double-blind, placebo-controlled, 

crossover, five week study by Widlansky et al. (50) examined the effects of EGCG on 

vascular function in 42 adult subjects (29 men, 13 women) with Coronary Artery 

Disease.  Subjects were randomly assigned to receive either 150 mg EGCG capsules 

(TEAVIGO) or placebo gelatin capsules. Both the EGCG-first group and the placebo-

first group were instructed to take a capsule twice a day for two weeks, followed by a 

one-week washout period.  Finally, a cross-over of the treatments occurred for an 

additional two weeks of study after the washout period.  The participants’ vascular 

functions were tested at baseline, two hours after initial treatment, and after two weeks of 

treatment.  FMD of both groups increased significantly after treatment of EGCG 

compared to baseline.  The placebo treatment had no effect on FMD.  Additionally, 

EGCG (300 mg/d) improved brachial artery flow-mediated dilation in patients with 

coronary artery disease (50). 

Further significant beneficial effects on endothelial function were shown after green tea 

consumption in a study by Alexopoulos et al. (51).  The randomized, single-blind, sham 

procedure-controlled, crossover design study investigated the effects of tea consumption 

in 14 healthy individuals.  Participants consumed either 450 ml of boiled water, green tea 

in 450 ml of boiled water or 125mg of caffeine (the amount contained in 6 g of green tea) 

in 450 ml of boiled water. A baseline FMD of the brachial artery was measured before 
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each intervention and at intervals of 30 minutes, 90 minutes, and 120 minutes after 

intervention.  CRP, IL-6 and total plasma oxidative status were measured at baseline and 

at 120 minutes. There was a significant increase in FMD with tea consumption (by 3.69 

percent, peak at 30 min), and no significant change was observed with caffeine 

consumption (increase by 1.72 percent peak at 30 min).  No effect was observed on CRP 

concentration, IL-6 concentration, or total plasma oxidative status (51). 

Soy isoflavones  

Soy (isoflavones) consumption has been found to have cardio-protective benefits.  A 

randomized cross-over clinical trial was conducted by Azadbakht et al. (52) to determine 

the effects of soy consumption on markers of endothelial function and inflammation in 

postmenopausal women with metabolic syndrome.  All 42 women participants had 

visceral adiposity, dyslipidemia, hypertension, insulin resistance and elevated blood 

levels of inflammatory markers including CRP, interleukin (IL) and tumor necrosis factor 

(TNF-α).   The participants were randomly assigned to consume one of three diets for 

eight week intervals.  The diets were defined as follows: the control diet (Dietary 

Approaches to Stop Hypertension [DASH]), with 55 percent carbohydrates, 17 percent 

protein, and 28 percent total fat and 1 serving of red meat per day), the soy nut diet 

(DASH diet replacing the red meat serving with roasted soy nut), and the soy protein diet 

(DASH diet replacing the red meat serving with soy protein powder or tofu).  

Anthropometric measures, fasting blood samples and 3-day food records were recorded at 

baseline, 4, 8, 12, 16, 20, 24, 28, 32,and 36 weeks.   Each participant followed the three 

diets and had two washout periods (four weeks each washout) before starting a 

corresponding diet.   The results revealed a significant difference in CRP levels when 
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participants consumed the soy nut diet (-8.9 percent) and the soy protein diet (-1.6 

percent) compared to the control group.   In addition, differences in nitric oxide levels 

were displayed due to consumption of the soy nut diet (9.8 percent) and the soy protein 

diet (1.7 percent) compared to the control diet.   Neither soy protein nor soy nut 

consumption changed weight or waist circumference significantly compared with the 

control diet.  Thus, the results indicate that replacement of red meat in the diet by soy nut 

or soy protein improves some markers of endothelial function and inflammation in 

postmenopausal women with metabolic syndrome (52).   

While studying the effects of dietary soy/isoflavones on blood pressure profiles, Teede et 

al. (53) determined that processed soy protein dietary supplementation had no effect on 

arterial function and blood pressure parameters in hypertensive subjects.  A double-blind, 

placebo controlled, cross-over trial was conducted in 41 hypertensive adult participants 

(26 men, 15 women).  Subjects received a soy cereal comprised of 23.0 percent Sorghum 

(cereal grain), 4.4 percent Nutragen (soy isoflavone), 59.6 percent soy concentrate, 11.9 

percent sugar and 0.18 percent salt or the placebo equivalent (41.2 percent Sorghum, 46.2 

percent gluten, 12.4 percent sugar and 0.18 percent salt). The cereal was consumed for 

breakfast during three months and the participants were then crossed over to the 

corresponding cereal for the final three month duration of the study.  Cardiovascular risk 

assessments and biomedical assessments were conducted at three months and six months.  

No effect was noted due to consumption of test cereal on arterial stiffness, arterial 

compliance, 24 hour ambulatory blood pressure parameters, or endothelial function (53). 
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Effects of flavonoids on lipid metabolism 

Cocoa and chocolate  

Cocoa has been shown to exert beneficial effects on blood lipids in humans.  A 

randomized, cross-over study in 23 healthy adults (10 men, 13 women), conducted by 

Wan et al. (54), investigated the effects of cocoa powder and dark chocolate on blood 

lipids.  Subjects were fed one of two controlled experimental diets defined as follows: 1) 

average American diet (AAD) and 2) cocoa powder (22 g) and dark chocolate diet (CP-

DC) for four weeks followed by a two week wash-out period before the cross-over to the 

corresponding diet for four weeks.  Subjects continued their regular diet during the two 

week wash-out period.  The experimental diets were similar in macronutrient content and 

differed only in contents of flavonoids, and polyphenols due to the cocoa powder and 

dark chocolate bar.  Fasting blood samples were collected at baseline, and before and 

after each experimental diet period to examine effects on serum total cholesterol, HDL, 

LDL, VLDL, and triglyceride (TG) concentrations.  No significant difference was seen in 

total cholesterol, LDL, VLDL, or TG concentrations after intake of CP-DC diet.  

However after consumption of CP-DC diet, subjects had a significant increase in HDL 

concentrations (0.05 mmol/L) compared with the AAD diet (54).  

Baba et al. (55) further conducted a single-blind, controlled study on the effects of cocoa 

powder on serum lipid concentrations in mildly hypercholesterolemic adult males. The 

subjects (n= 25) were divided into two groups according to BMI and serum total, LDL, 

and HDL concentrations. The subjects were further divided in to subgroups randomly and 

assigned to consume either a cocoa containing drink (26 g cocoa powder and 12 g 

sugar/d) or a control drink (12 g sugar/d) twice a day.  Fasting serum VLDL, LDL, HDL 
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concentrations were taken at baseline and 12 weeks.  Home deliveries of food were made 

to ensure that the same foods were consumed in the three days before collection of blood 

samples.  The HDL concentration increased significantly by 23.4 percent after 

consumption of the cocoa drink compared with baseline concentrations and in the 

subjects that consumed the control drink.  Also LDL concentration decreased 

significantly by 12.6 percent in the cocoa group compared to control group. No 

significant differences in resulting effects were found between subjects in the higher BMI 

group compared to lower BMI group (55).  

Cocoa powder and dark chocolate consumption have also been shown to exert favorable 

effects on lipid oxidation susceptibility.  A study reported by Mathur et al. (56) 

investigated the effects of cocoa rich supplementation on lipid oxidation susceptibility in 

healthy adults. Subjects (13 men, 12 women) were instructed to consume both a dark 

chocolate bar (36.9 g) and a cocoa powder drink (30.95g [651 mg procyanidins/d]) daily 

for six weeks.  The intervention was followed by a 6-week-cocoa-free wash-out period to 

accesses the impact on lipid oxidation after treatment.  Subjects were advised to consume 

a low flavonoid diet and abstain from consuming other cocoa containing products 

throughout the entire 12 week study period.  Fasting blood samples were obtained at the 

baseline, after the intervention period, and after the wash-out period.  The results showed 

that the cocoa product supplementation significantly decreased oxidization of low-density 

lipoprotein (LDL) with a 9.8 percent longer lag time of conjugated double bond diene 

formation compared with the baseline.  However, serum total antioxidant capacity did not 

have a correlation with LDL oxidation lag time, rate of LDL oxidation, or conjugated 
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diene formation.  Thus, the results show that the cocoa product supplementation can 

decrease susceptibility to lipid oxidation (56).   

Tea-derived epigallocatechin-3-gallate (EGCG)  

Green tea consumption has been shown to have beneficial effects on serum lipid levels. A 

study by Coimbra et al. (57) found significant improvement in the lipid profiles of 29 

subjects (7 men and 22 women) after participating in a study to evaluate the effect of 

green tea on the lipid profile.  The biochemical evaluations included cholesterol, TG, 

HDL-C, LDL-C, Apo A-I, ApoB, and LP(a).  These measurements were performed at the 

beginning of the study, after three weeks of drinking one liter of water daily, and after 

consuming one liter of green tea (1.75 g of tea leaves per 200mL of water) daily for four 

weeks.  Fasting venous blood samples revealed no significant reduction in lipid profiles 

after the water phase.  The results showed a significant reduction in total cholesterol (-2.8 

percent), LDL (-8.9 percent), Apo B (-3.6 percent) and a significant increase in HDL (4.0 

percent) and Apo A-I (5.1 percent) after green tea consumption compared to the water 

phase. The data suggests green tea intake protects against CVD by improving blood lipid 

profiles (57).  

Berry Anthocyanidins  

Berries have been shown to modulate lipid levels in several clinical studies using freeze-

dried forms of the berry intervention.  A single-center, intervention study by Basu et al. 

(58) examined the effects of consuming freeze-dried strawberry powder (FSP) daily on 

serum concentrations of lipids, biomarkers of oxidative stress, and inflammation in 16 

women with metabolic syndrome. The shakes contained 25g per cup FSP mixed in eight 

ounces of water and were consumed at least six hours apart for a total of four weeks.  
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Fasting blood samples were collected at the baseline, and four weeks. A significant 

reduction in serum total cholesterol and LDL levels was observed after the intervention 

period compared to baseline.  However, no significant differences were found in fasting 

glucose, triglycerides, HDL- and VLDL-cholesterol levels (58).  

Similar effects of strawberries were observed in a randomized, single-blind, placebo-

controlled, 12 week crossover intervention trial conducted by Burton-Freeman et al. (59) 

to examine the effects of freeze-dried strawberry powder with a challenge of high fat diet 

(HFD) on blood lipid concentrations in hyperlipidemic adults.  Following a 7-day-berry-

free run-in period, participants (10 men, 14 women) were randomly assigned to one of 

the two trial arms as follows: daily consumption of active freeze-dried strawberry 

beverage (Str) or placebo strawberry-flavored beverage (Pbo).  All subjects consumed the 

HFD consisting of breakfast items that reflected typical American dietary patterns for 

energy and macronutrient intakes during the entire duration of study.  Subjects consumed 

their assigned beverages for six weeks, followed by a cross-over period of the alternate 

beverage for an additional six weeks.  No wash-out period occurred between the six week 

intervention intervals.   Blood samples were obtained after the initial run-in period and 

after each six week intervention interval to analyze the fasting and postprandial total 

cholesterol, LDL, HDL, TG, and ox-LDL concentrations. Under both experimental 

conditions, significant increases in concentrations of TG, HDL, and oxLDL were 

observed in the postprandial state.  However, significantly lower concentrations of TG, 

HDL, and ox-LDL were seen when participants consumed the Str beverage along with 

the HFD diet compared to the Pbo.  The LDL concentrations were only affected 

significantly by the Str in the beverage postprandial phase in men compared to the Pbo 
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(120.1 mg/dL vs. 122.8 mg/dL). No significant effects on total cholesterol were observed 

in relation to the Str beverage.  Furthermore, only in men did the postprandial ox-LDL 

concentrations lower significantly at all points (180, 240, 360 minutes) after consumption 

of the Str beverage compared to the Pbo.  No significance in ox-LDL concentrations were 

found among women (59).  Thus, Str beverages have a beneficial effect on postprandial 

blood lipid concentrations in hyperlipidemic men. 

Soy isoflavones  

Significant lipid lowering effects have been observed in studies examining the health 

effects of soy isoflavones. A randomized, cross-over study by Jenkins et al. (60) 

investigated the effects of soy foods containing different concentrations of isoflavones on 

blood lipid levels in 41 hyperlipidemic adults. The subjects were recruited to participate 

in three different diet phases: the control phase (dairy-/egg protein), the soy-protein high 

isoflavones phase (73 mg/d), and the soy-protein low isoflavones phase (10 mg/d).  

During all three phases subjects followed a self-selected National Cholesterol Education 

Program Step II diet (< 7 percent energy from saturated fat and < 200 mg dietary 

cholesterol/d) for base meals.  The subjects were randomized as follows: the control 

phase (low-fat dairy products and egg substitute), and the soy phases (low-fat soymilk, 

and soy hot dogs, burgers, old cuts, and tofu burgers).  The soy phases were controlled 

for isoflavones concentrations by the amounts allowed to be consumed during each 

phase.  Each of the phases lasted for a length of four weeks, and then was followed by a 

two week wash-out period before the cross-over period to an alternate diet.  Fasting blood 

samples were obtained at the start and the end of each four week diet phase to analyze the 

effects of diet on total cholesterol, triacylglycerol, and HDL cholesterol concentrations.  
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The results showed an equal decrease in blood lipid concentrations during both soy 

phases. This decrease was significantly greater than the control phase compared to all the 

baseline blood lipid concentrations.  Both low- and high-isoflavones soy phases had 

significantly lower values of total cholesterol, total:HDL ratio, LDL:HDL ratio than the 

control compared to all baselines. In addition, LDL concentrations significantly 

decreased during the high-isoflavone phase compared to the control phase. The Low-

isoflavone phase showed a lower LDL concentration when compared to the control 

phase; however, it was not statistically significant (60).  These outcomes show that intake 

of isoflavones can have a beneficial effect on blood lipid concentrations. 

Effects of flavonoids on glucose metabolism 

Cocoa and chocolate  

Dietary cocoa flavonoids have been shown to have blood glucose lowering effects and in 

improving insulin sensitivity. A randomized, single-blind, cross-over two phase study by 

Grassi et al. (61) was conducted in 15 healthy adults (7 men, 8 women [mean age 33.9 

years]).  The participants completed a 7-day-cocoa-free run-in period before being 

randomly assigned to consume either 100 g dark chocolate bars (~500 mg polyphenols) 

or 90 g white chocolate bars during Phase 1 (15 days). Phase 2 (15 days) began after a 

second cocoa-free-wash-out period in which participants consumed the corresponding 

treatment. An oral-glucose-tolerance test (OGTT) was performed after the cocoa-free-

run-in period and after each phase (participants fasted overnight and ingestion of last 

chocolate was at least ≥12 hours).  The assessments of blood glucose and insulin were 

performed in 30 minute intervals from baseline to 180 minutes after the glucose load.  

The results showed that ingestion of the dark chocolate bar significantly lowered the 
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homeostasis model assessment of insulin resistance (HOMA-IR) values compared to the 

ingestion of the white chocolate bar.  The quantitative insulin sensitivity check index 

(QICKI) values increased after the ingestion of the dark chocolate bar compared to the 

ingestion of white chocolate bar.  Also, the insulin sensitivity index (ISI) values increased 

significantly with ingestion of dark chocolate compared to white chocolate. These 

findings indicate that ingestion of dark chocolate could improve insulin sensitivity in 

healthy adults (61). 

Similar results were observed in hypertensive patients in another randomized, single-

blind, cross-over two phase study by Grassi et al. (62). This study aimed to examine the 

effects of flavonoid-rich dark chocolate (FRDC) and flavonol-free white chocolate 

(FFWC) on glucose tolerance and insulin sensitivity in 19 hypertensive adult subjects (11 

men, 8 women [mean age 44.8 y/o])) with impaired glucose tolerance (IGT).  After 

starting with a 7-day-cocoa-free-run-in period, the study randomly assigned subjects in 

Phase 1 (15 days) to consume each day in two half-bar dose at breakfast and lunch either 

a FRDC bar (100g) or a FFWC bar (100g). Following a second 7-day-cocoa-free period, 

Phase 2 was started in which subjects consumed the corresponding treatment.  A glucose 

tolerance test (OGTT) was performed following a 10 to 14 hour overnight fast at the end 

of the first run-in period and after both intervention phases.  The plasma glucose and 

insulin assessments were performed in 30 min intervals from the baseline to 180 min 

after the glucose load. The results indicated that after 15 days of consuming the FRDC 

bar, the HOMA-IR values decreased and the QUICKI values increased significantly 

compared to the baseline and ingestion of the FFWC bar. No changes were shown in 

either the HOMA-IR values or the QUICKI values after ingestion of the FFWC bar.  The 
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ISI values increased compared with the baseline (2.03) and ingestion of the FFWC bar 

(1.99).  Thus, the results concluded that the ingestion of dark chocolate has the ability to 

enhance insulin sensitivity in hypertensive patients with IGT (62). 

Tea-derived epigallocatechin-3-gallate (EGCG)  

Flavonoids from green tea (EGCG) have shown blood glucose lowering effects and in 

improving insulin sensitivity. A randomized, control, cross-over study by Fukino et al. 

(63) was performed in 60 healthy adults (49 men, 11 women) to investigate the effects of 

green tea-extract powder on glucose abnormalities.  Subjects were randomly divided into 

the Early intervention group or the Later intervention group.  The Early group consumed 

an one packet daily supplement of a mixture of green tea-extract and green tea powder 

(ratio 9:1) for the first two months of the study’s duration.  The Later group consumed 

the one packet daily supplement in months three and four after the first phase.  The 

supplement mixture (1/3 to 1/4 of packet used at a time [~456 mg catechins]) was 

dissolved in eight ounces of hot water and consumed at the end of every meal.  

Biochemical measures (fasting blood glucose, insulin, and HbA1c) were obtain at the 

baseline, two, and four months. A significant reduction was observed in HbA1c level 

associated with the intervention in a time-dependent manner in both the Early and Later 

intervention groups.  However, no significant changes were found in blood glucose or 

insulin levels associated with green tea intervention (63).    

Effects of flavonoids on inflammation 

Cocoa and chocolate  

Cocoa has been demonstrated to have beneficial effects on lowering biomarkers of 

inflammation.  A single center controlled trial by Monagas et al. (64) investigated the 
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effects of 100 g of dark chocolate (DC) consumed daily for one week on CRP levels in 

28 healthy adults (9 men, 19 women).  Each dose of DC contained 70 percent cocoa and 

provided 700 mg of flavonoids daily.  The subjects were asked to abstain from 

consuming any outside sources of dark chocolate or other flavonoid-rich products for two 

weeks prior to the intervention and during the duration of the study (7 days).  Fasting 

blood samples were obtained and analyzed pre- and post-intervention to examine hs-CRP 

levels. The seven day consumption of the DC significantly decreased hs-CRP levels by 

23 percent in women.  However, there was no significant association with DC treatment 

in men or total men and women combined.  This study demonstrated that short-term dark 

chocolate intake can significantly lower biomarkers of inflammation in healthy adult 

women (64).  

Berry anthocyanidins  

Among the berry fruits, strawberries are a rich source of anthocyanins which have been 

shown to possess anti-inflammatory effects in humans. A single-center, randomized 

single-blind, placebo-controlled, cross-over trial by Edirisinghe et al. (65) was conducted 

in 26 healthy adults (10 men, 14 women).  The subjects completed a 7-day-berry-free-

run-in period before starting the study.  The subjects consumed a controlled meal 

accompanied by either an active strawberry beverage or a strawberry-flavored placebo 

beverage, randomly.  At the next controlled meal time, subjects consumed the 

corresponding beverage which allowed subjects to serve as their own control.  Both of 

the beverages contained Strawberry Nesquik powder, skim milk, and were matching in 

total energy. However, only the active strawberry beverage contained 10 g of freeze-dried 

strawberry powder (~81.6mg/10g of anthocyanin) from California, USA.  Under 
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supervision, the meals and the beverages were consumed within 20 minutes.  Blood 

samples were obtained for analysis of hs-CRP levels before the meal and after the meal at 

multiple point intervals (30 minute to 120 min and then hourly thereafter for a total of 6 

hours).  The results indicated that postprandial hs-CRP significantly decreased due to the 

active strawberry beverage when compared to the placebo.  Thus, this study showed that 

the intake of an anthocyanin rich strawberry beverage can have beneficial effects on CRP 

levels in both adult men and women (65). 

Conclusions 

Epidemiologic and clinical evidence suggests that protection against cardiovascular 

disease risk factors might be the result of the interaction of several dietary antioxidant 

phytochemicals including flavonoids. The mechanisms by which they may exert these 

functions could be summarized as follows: lipid lowering, antioxidant and anti-

inflammatory effects. Importantly, a review of the effect of phytochemicals on 

cardiovascular disease risk factors suggests that the favorable effects may be related to 

whole foods and beverages containing these flavonoids versus isolated doses of 

flavonoids, thus suggesting a synergistic action among different flavonoids and nutrients 

in foods and beverages. However, most epidemiologic studies on flavonoids and CVD 

risk have examined only one or two classes of flavonoid sub-classes.  In addition, 

epidemiologic investigation of flavonoids in relation to CVD risks in Oklahoma adult 

populations is limited.  Thus, there exists a need to investigate the relationship between 

total intake of fruits and vegetables, total flavonoid intakes, dyslipidemia, and CRP, in 

adults with abdominal adiposity and this leads to the hypothesis of our current study.  
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CHAPTER III 
 

 

METHODOLOGY 

Institutional review board approval 

This study was conducted according to the guidelines of the Declaration of Helsinki, and 

approval was obtained from the Oklahoma State University Institutional Review Board 

(IRB) for all procedures and the corresponding human ethics committee at the University 

of Oklahoma Health Sciences Center.  Prior to involvement in the study, all investigators 

and graduate research assistants (GRA) completed the IRB training for human subjects 

research practices through the Collaborative Institutional Training Initiative (CITI) and 

also received training on the process of consenting and data collection.  All participants 

provided signed informed consent before their enrollment in the study. 

Participants 

Thirty adult participants with abdominal adiposity and dyslipidemia were recruited at 

both the General Clinical Research Center (GCRC) at Oklahoma University Health 

Sciences Center Oklahoma City, and the Oklahoma State University Campus, Stillwater.  

Interested participants were screened to examine if they fit the criteria of the study.  A 

telephone questionnaire was used for initial screening, followed by an onsite interview to 

ensure qualification and compliance. The qualification was confirmed based on specific
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measurements such as waist circumference and a fasting lipid profile. Upon qualification, 

participants were enrolled into the study.  This study required participation of adults (>21 

years) with abdominal adiposity as well as dyslipidemia. 

Inclusion criteria: Participants with enlarged waist circumference indicative of 

abdominal adiposity (men >40 inches, women >35 inches) and dyslipidemia (2 of 4 

criteria: fasting total cholesterol >200mg/dL, triglycerides >150mg/dL, LDL-cholesterol 

>100mg/dL, or HDL-cholesterol (men <40mg/dL, women <50mg/dL) were included in 

the study.  Participants on stable multivitamin/mineral supplements or prescription 

medications (except hypolipidemic, hypoglycemic, and steroid agents) were also 

included.  In addition, males and females, as well as individuals from any ethnic group, 

who qualified, were included in the study.  

Exclusion criteria:  Individuals were excluded if they had any form of pre-existing 

disease including cancer, heart disease, diabetes (fasting glucose ≥126mg/dL, liver, or 

renal disorders, or anemia.  Subjects were also excluded if they were pregnant, nursing, 

taking mega doses of antioxidants/fish oil supplements (> 1g/day), taking hypolipidemic, 

hypoglycemic, and steroid medications.  Moreover, individuals with abnormal metabolic 

levels of hemoglobin (normal range: 12.0-18.0g/dL), white blood cells (normal range: 

4.0-11.0 K/mm³), or platelets (140-440 K/mm³), hypo/hyperthyroidism (normal range for 

thyroid stimulation hormone: 0.35-4.940 uiu/mL), abnormal liver enzymes (normal range 

for aspartate amiontransferase: 7-40 units/L; alanine aminotransferase: 10-45 units/L), 

and abnormal kidney function (normal creatinine: females- 0.7-1.2mg/dL; males- 0.8-

1.2mg/dL; normal BUN: 1-59 years- 7-18mg/dL; >59 years- 8-21mg/dL) were excluded 
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from this study. Individuals who smoked or used any other form of tobacco were 

excluded as well as those who consumed greater than one serving of alcohol per day. 

Cross-sectional study design 

Participants were asked to maintain their typical diet, physical activity, and lifestyle 

during the study. Registered Dietitians (at both sites) instructed the participants on correct 

completion of the detailed 3-day food records, including one weekend day to reflect 

average normal dietary intake.  The participants were instructed on how to use the food 

records and how to accurately record any food portions consumed.  The participants 

recorded/described the type of food and amount of food consumed, as well as location 

(home, restaurant, with friends, or at work) and type of meal or snack during which the 

food was eaten (breakfast, morning snack, lunch, afternoon snack, dinner, or evening 

snack).  The participants were also instructed to record the names of specific restaurants 

where the food was consumed and the names of the menu items eaten.  The submission 

of recipes and nutrition labels for foods prepared at the participant’s home were requested 

in order to ensure accurate dietary analysis. 

Dietary analyses 

A 3-day average for each participant’s intake of fruits and vegetables and average total 

flavonoid intake were analyzed using the U.S. Department of Agriculture’s Food and 

Nutrient Database (66) and U.S. Department of Agricultures’ Flavonoid Databases (67), 

respectively. The following flavonoid sub-classes were included in the analysis: 

anthocyanides, flavones, flavan-3-ol, and flavonol (kaempferol, myricetin, and 

quercetin).  To obtain the 3-day estimated flavonoid intake values, the reported frequency 
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of standard portion sizes were multiplied by the flavonoid compound content of each 

food (per 100 grams) and flavonoid intakes across total dietary food and beverage items. 

Gram amounts of each food item were weighted out on the Ozeri ZK011 Precision Pro 

Scale (San Diego, California).  If a participant consumed a food item not included in the 

database, the item was omitted and recorded as missing data to be explained in the 

discussion session.   

Anthropometrics and blood pressure 

Height, weight, blood pressure, and waist circumference were measured by trained 

personnel at GCRC and at NSCI.   Weight was measured with the SECA 644 

Multifunctional Hand Rail Scale (SECA) and recorded to the nearest 0.1 kg.  Height was 

measured using the Accustat Genentech Stadiometer and recorded to the 0.1 cm.  Systolic 

and diastolic blood pressures were measured in millimeters Hg using Spot Vital Signs 

Device.  Participants were asked to lay down and relax for 8-10 min, followed by three 

blood pressure measurements recorded in five minute intervals.  Waist circumference was 

measured at the superior iliac crest using the Gulick II Tape Measure.  All measurements 

were conducted in a fasting state. 

Clinical analysis 

Blood draws were performed by trained nurses at GCRC and by trained phlebotomists at 

Stillwater Medical Center at OSU.  Serum separator tubes (SST) and tubes containing the 

anticoagulant EDTA were used in collecting 45-60 mL of blood from the participants 

after a period of fasting.  Serum and plasma samples were stored at -80 °C until analysis.  

In order to separate plasma and serum, centrifugation at 1464 g was performed for 10 
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minutes at 4° C using the Centrifuge 5810 R (Eppendorf, Hamburg, Germany) in Human 

Nutrition Laboratory at Oklahoma State University Nutrition Science Department or the 

University of Oklahoma Medical Center laboratory.  Analysis of each participant’s serum 

glucose, lipids, hemoglobin and hematocrit, platelets, and liver, renal, and thyroid 

function tests were performed at Stillwater Medical Center (Stillwater, OK) and the 

University of Oklahoma Medical Center laboratory (Oklahoma City, OK).   

Lipid oxidation analysis 

Biomarkers of lipid oxidation in blood samples that were measured for this study 

included oxidized LDL (ox-LDL), and malondialdehyde (MDA).  The serum ox-LDL 

was measured in triplicate using an ox-LDL competitive ELISA (Mercodia, Uppsala, 

Sweden) which is based on the monoclonal antibody 4E6 (mAb-4E6).  In this procedure, 

the ox-LDL in the participant’s blood sample competes with a pre-determined amount of 

ox-LDL in the microtiter well for binding with biotin-labeled specific antibodies.  

Following a washing to remove un-reactive sample components, the biotin labeled 

antibody was identified with streptavidin.  In the final steps, the bound conjugate was 

detected through its reaction with 3,3,5,5- tetramethylbenzidine (TMB), stop solution was 

added, and the sample was read spectrophotometrically using the Synergy HT Plate 

reader (BioTek Instruments, Inc., Winooski, VT) at 450 nm.   

The serum levels of MDA were determined with the Bioxytech® LPO-586ᵀᴹ assay 

(OxisResearchᵀᴹ Inc., Foster City, CA).  This assay detects lipid peroxidation based on 

the reaction of MDA with the chromogenic reagent, N-methyl-2-phenylindole at 45°C.  

Methanesulfonic.  The sample was read spectrophotometrically using the Synergy HT 

plate reader (BioTek Instruments, Inc., Winooski, VT) at 586 nm. 
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C-reactive protein analysis 

The concentrations of human C-reactive protein (CRP) were measured as a biomarker of 

inflammation.  The procedure for the determination of serum levels of CRP utilizes the 

quantitative sandwich enzyme immunoassay technique with a monoclonal antibody that 

is specific for CRP.  The standards and samples are added to the wells and the CRP 

present in the plasma becomes bound by the immobilized antibody.  Subsequent washing 

removes any unbound substances and an enzyme-linked monoclonal antibody specific for 

CRP is then added to the wells.  After a second wash, addition of a substrate solution 

causes color to develop in proportion to the amount of CRP that was bound in the first 

step of the procedure.  A stop solution stops the color development and the intensity of 

the color is measured spectrophotometrically with Synergy HT plate reader at 450 nm.   

Statistical analysis 

Pearson Correlation analyses were used to examine the correlations among measures of 

lipid oxidation (ox-LDL, MDA), CRP, flavonoids (KAE, MYR, QUER), fruits and 

vegetables intakes, and measures of lipids (total cholesterol, TG, LDL, HDL, VLDL) and 

glycemic control (glucose, insulin, HbA1c).  To ascertain whether waist circumference, 

measures of lipids and glycemic control differed by CRP and ox-LDL levels, CRP 

concentrations and ox-LDL concentrations were defined by tertiles as follows: CRP 

[Tertile 1 (0.1 to 2.63 mg/L); Tertile 2 (2.631 to 7.3 mg/L); Tertile 3 (7.31 to 25.6 

mg/L)]; oxLDL [Tertile 1 (87 to 125.33 U/L); Tertile 2 (125.34 to 140 U/L); Tertile 3 

(140.1 to 156 U/L)].  An ANOVA was used to determine if lipids (total cholesterol, TG, 

LDL, HDL, VLDL), glycemic control (glucose, insulin, HbA1c), waist circumference, 

and intakes of flavonoids, and fruits and vegetables differed by tertiles of CRP and ox-
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LDL concentrations. Due to missing data among several flavonoid sub-classes, only 

quercetin was included in the final analysis examined by ox-LDL and CRP tertiles.  

Variables were compared using SPSS® 16.0 for Windows (SPSS Inc., Chicago, IL, 

USA).  Alpha was set as 0.05 for statistical significance. 
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CHAPTER IV 
 

 

RESULTS 

Baseline characteristics of participants 

A total of 30 adults with abdominal adiposity and dyslipidemia were included in the 

analysis.  The baseline characteristics of the participants are illustrated in Table 2.  The 

participants’ age (mean±SD) was 48±9.6 years old and ranged from 27 to 72 years.  The 

participants were predominantly female (n= 25) with few male participants (n= 5).  Table 

2 also displays the daily medication and supplement use by the participants. 

All participants were obese as determined by their body mass index (BMI).  The 

mean±SD for BMI was 37.2±6.3 kg/m² for all participants.  Each male participant had a 

waist circumference greater than 40 inches and each female participant had a waist 

circumference greater than 35 inches.  The mean±SD waist circumference of all 

participants was 42.7±4.5 inches (43.4±3.5 M, 42.5±4.7 F).  All participants had 

dyslipidemia indicated by mean±SD serum values as follows: total cholesterol 213±37 

mg/dL (normal: <200mg/dL), TG 173±74 mg/dL (normal: 40 to 160 mg/dL M; 35 to 135 

mg/dL F), LDL 185±294 mg/dL (normal: 60 to 180 mg/dL), HDL 47±16 m/dL (normal: 

>45 mg/dL M; >55 mg/dL F), VLDL 34±15 mg/dL (normal: 7 to 32 mg/dL), and 

LDL/HDL ratio 3±1 (normal: <3.6 M, <3.2 F).
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The mean±SD serum glucose level (94±15 mg/dL) was in the normal range (< 100 

mg/dL); whereas the mean±SD HbA1c level (5.9±0.6%) was in the pre-diabetes range 

(5.7-6.4%).  The participants were found to be pre-hypertensive with measurements of 

systolic and diastolic blood pressures above 120/80 mm Hg.  The mean±SD systolic and 

diastolic blood pressure values were 130±13/84±8 mm Hg. 

The average reported servings of fruits and vegetables, derived from 3-day food records, 

for each participant were calculated using the USDA Food and Nutrient Database.  The 

average reported serving of fruits was 0.66 cups, average reported serving of vegetable 

1.20 cups, and total reported servings of fruits and vegetables was 1.86 cups which is 

lower than the desirable daily intake of greater than five servings (about 5 cups) of fruits 

and vegetables per day.  The average reported flavonoid intakes of the participants, 

derived from 3-day food records, were analyzed using the USDA Flavonoid Database.  

The mean±SD reported intakes of the flavonoid sub-classes were as follows: kaempferol 

928±7 mg/100g, myricetin 567±7 mg/100g, and quercetin 5980±238 mg/100g. The 

reported intakes of the other flavonoid subclasses had too many missing values to be 

included in the analysis.  

The dietary flavonoid containing foods most commonly reported as consumed by the 

participants are shown in Supplemental Figure 1. 

Correlations among measures of lipid oxidation, CRP, and flavonoids 

with measures of lipids and glycemic control    

The correlations among measures of lipid oxidation (ox-LDL, MDA), CRP, and 

flavonoids (KAE, MYR, QUER) with measures of lipids (total cholesterol, TG, LDL, 

HDL, VLDL) and glycemic control (glucose, HbA1c) are illustrated in Table 3.   The 
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Pearson Correlation statistic was used to examine these correlations. The results showed 

that ox-LDL had significant positive correlations with total cholesterol (0.406; p < 0.05) 

and HDL-cholesterol (0.362; p < 0.05).  However, no significant correlations of ox-LDL 

were observed with TG, LDL, VLDL, glucose, HbA1c, reported total servings of fruits 

and vegetables, servings of fruits, and servings of vegetables.  Likewise, MDA had 

significant positive correlations with total cholesterol (0.436; p < 0.05) and HDL-

cholesterol (0.432; p < 0.05).  However, no significant correlations were observed with 

TG, LDL, VLDL, glucose, HbA1c levels.  No correlations of MDA were observed with 

reported total servings of fruits and vegetables, serving of fruits, and servings of 

vegetables.  The results showed that the CRP levels were not correlated with any of the 

variables.  However, all three flavonols (KAE, MYR, QUER) showed positive 

correlations with HbA1c levels (0.572, 0.572, 0.474, respectively; p < 0.05).  

Differences in metabolic parameters and intakes of fruits and vegetables 

among increasing tertiles of ox-LDL and CRP. 

The comparisons among waist circumference, measures of lipids (total cholesterol, TG, 

LDL, HDL), glycemic control (glucose, insulin, HbA1c), CRP, QUER, and reported 

servings of fruits and vegetables across tertiles of ox-LDL are illustrated in Table 4.  

Serum ox-LDL levels were defined as follows: Tertile 1: (lowest [87 – 125.33 U/L]); 

Tertile 2 (125.34 – 140 U/L), and Tertile 3: (highest [140.1 – 156 U/L]).  The results 

showed that the participants in the highest tertile of ox-LDL had significantly higher total 

cholesterol, and LDL cholesterol when compared to the lowest tertiles (p < 0.05).  The 

participants in the middle tertile (Tertile 2) had significantly higher glucose than the 

highest tertile (p < 0.05).  No significant differences were observed in waist 
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circumference, HbA1c, TG, HDL, and intakes of QUER, fruits and vegetables among 

tertiles of ox-LDL (Table 4).     

The comparisons among waist circumference, measures of lipids (total cholesterol, TG, 

LDL, HDL), glycemic control (glucose, insulin, HbA1c), QUER, and reported servings 

of fruits and vegetables across increasing tertiles of CRP are illustrated in Table 5.  The 

tertiles were defined as follows: Tertile 1 (lowest [0.1 – 2.63 mg/L]), Tertile 2 (2.631 – 

7.3), and Tertile 3 (highest [7.31 – 25.6 mg/L]).  The results showed that the participants 

in the highest tertile of CRP had higher waist circumference than the middle tertile 

(Tertile 2). Again, those with the highest CRP levels had significantly higher glucose and 

HbA1c when compared to the lower tertile (p < 0.05). Finally, the highest tertile of CRP 

was observed to have higher QUER and reported servings of fruits and vegetables vs. 

lower tertiles (p < 0.05). However, no significant differences were observed in measures 

of lipids (total cholesterol, TG, LDL, and HDL) among tertiles of CRP (Table 5). 
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Table 2. Baseline characteristics of participants (n=30) 
Gender 
     Male (n) 
     Female (n) 
Age (years) 

 
5 

25 
48.0±9.6 

Anthropometrics 
     Weight (kg) 
     Height (cm) 
     BMI (kg/m²) 
     Waist Circumference (inch) 
          Males 
          Females 
     Blood Pressure 
         Systolic blood pressure (mm Hg) 
         Diastolic blood pressure (mm Hg) 

 
101.7±21.5 
166.4±7.0 
37.2±6.3 
42.7±4.5 
43.4±3.5 
42.5±4.7 

 
130.0±13.0 

84.0±8.0 

Glycemic Control 
    Glucose (mg/dL) 
    Insulin (mg/dL) 
    HbA1c (%) 

 
94.0±15.0 
21.0±17.0 

5.9±0.6 

Lipid Panel 
    Total Cholesterol (mg/dL) 
    Triglyceride (mg/dL) 
     LDL-cholesterol (mg/dL) 
     HDL-cholesterol (mg/dL) 
     VLDL-cholesterol (mg/dL) 
     LDL/HDL ratio 

 
213.0±37.0 
173.0±74.0 

185.0±294.0 
47.0±16.0 
34.0±15.0 

3.0±1.0 

Inflammation and Oxidation Markers 
     High sensitivity CRP (mg/dL) 
     Oxidized LDL (U/L) 

 
7.0±6.0 

130.0±16.0 

Reported Medication and Supplement Use (n) 
     Medication 
             Hypertension 
             Anti-depressant 
             Pain Medication 
             NSAID 
     Supplement 
             Calcium 
             Multivitamin/mineral 
             Herb/other 

 
 

6 
4 
4 
4 
 

3 
3 
4 

Reported Servings of Fruits & Vegetables  
     Fruits (cup) 
     Vegetables (cup) 
     Total Fruits & Vegetables (cup) 

 
0.7 
1.2 
1.9 

Reported Flavonoid Intake 
      Kaempferol (mg/100g) 
      Myricetin (mg/100g) 
      Quercetin (mg/100g)  

 
928±7.0 
567±7.0 

5980±238 
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Data presented as mean±SD.  Reported intakes of fruits and vegetables (3 day averages) 

were quantified based on the USDA Food and Nutrient Database.  Reported intakes of 

flavonoids (3 day averages) were quantified based on the USDA Flavonoid Database.    
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Table 3. Correlations among measures of lipid oxidation (ox-LDL, MDA), CRP, and flavonoids (KAE, MYR, QUER) 
with measures of lipids (total cholesterol, triglycerides, LDL, HDL, VLDL), and glycemic control (glucose, HbA1c). 

 ox-LDL 
(n=30) 

MDA 
(n=30) 

CRP 
(n=30) 

KAE 
(n=26) 

MYR 
(n=26) 

QUER 
(n=30) 

Total Cholesterol (mg/dL) 
Triglyceride (mg/dL) 
HDL-cholesterol (mg/dL) 
LDL-cholesterol (mg/dL) 
VLDL-cholesterol (mg/dL) 
Serum Glucose (mg/dL) 
HbA1c (%) 

Fruit & Vegetables (cup) 
Fruits (cup) 
Vegetables (cup) 

0.406* 
0.348 

0.362* 
-0.012 
0.345 
-0.272 
0.055 
-0.205 
-0.306 
-0.032 

0.436* 
0.270 

0.432* 
0.010 
0.269 
0.133 
0.119 
-0.075 
-0.047 
-0.072 

-0.077 
-0.158 
-0.141 
0.268 
-0.159 
0.266 
0.176 
0.271 
0.272 
0.041 

-0.108 
0.139 
-0.144 
-0.221 
0.139 
0.304 

0.572** 
0.058 
0.083 
0.010 

-0.143 
0.232 
-0.138 
-0.337 
0.231 

0.418* 
0.572** 

0.226 
0.173 
0.167 

-0.080 
0.347 
-0.151 
-0.339 
0.346 

0.395* 
0.474** 

0.316 
0.261 
0.245 

 

 

 

  

Reported intakes of fruits and vegetables (3 day average) were quantified based on the USDA Food and Nutrient Database. Reported 

intakes of flavonoids (3 day average) were quantified based on the USDA Flavonoid Database. *Pearson Correlation is significant at the 

0.05 level (2-tailed), **Pearson Correlation is significant at the 0.01 level (2-tailed). ox-LDL (oxidized low-density lipoprotein), MDA 

(malondialdehyde), CRP (C reactive protein), KAE (kaempferol), MYR (myricetin), and QUER (quercetin). 
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Table 4. Differences in waist circumference, glycemic control, lipids, quercetin, and fruits and vegetables among 
tertiles of  ox- LDL. 
 Tertile 1 

(87-125.33 U/L) 

Tertile 2 
(125.34-140 U/L) 

Tertile 3 
(140.1-156 U/L) 

Overall p¹ 

n= 
Waist Circumference (inch) 
Serum Glucose (mg/dL) 
HbA1c (%) 
Total Cholesterol (mg/dL) 
Triglyceride (mg/dL) 
LDL-cholesterol (mg/dL) 
HDL-cholesterol (mg/dL) 
Quercetin (mg/100g) 
Fruits & Vegetables (cups) 

10 
44.56±4.3 

92.8±14.3ᵅ٫ᵇ 
5.89±0.51 

192.7±21.6ᵅ 
155.7±71.3 
117.9±15.4ᵅ 
43.8±12.8 

196.67±130.5 
2.18±1.8 

10 
42.3±4.8 

102.7±8.3ᵅ 
5.89±0.6 

218.2±44.3ᵅ٫ᵇ 
170.4±50.4 
133±43.7ᵅ٫ᵇ 
50.9±19.0 

243.74±194.5 
1.86±0.7 

10 
41.19±3.9 
86.1±15.7ᵇ 
6.0±0.62 

227.0±34.1ᵇ 
191.3±96.3 
148.5±29.2ᵇ 
46.9±17.2 

157.53±173.4 
1.53±1.1 

30 
42.68±4.5 

93.87±14.5 
5.93±0.56 

212.63±36.5 
172.47±73.9 
133.13±33.1 

47.2±16.2 
199.32±166.2 

1.86±1.3 

 
NS² 

0.009 
NS² 

0.035 
NS² 

0.040 
NS² 
NS² 
NS² 

 

 

 

Data presented as mean±SD. Reported intakes of fruits and vegetables (3 day averages) were quantified based on the USDA Food and 

Nutrient Database.  Reported intakes of flavonoids (3 day averages) were quantified based on the USDA Flavonoid Database. ¹ANOVA for 

categorical variables, and ²NS= No Significance.  ᵃ٫ᵇFor each variable, values with different superscripts letters are significantly different 

across tertiles of ox-LDL (oxidized low-density lipoprotein) (p < 0.05).  
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Table 5. Differences in waist circumference, glycemic control, lipids, quercetin, and fruits and vegetables among 
tertiles of CRP. 
 Tertile 1 

(0.1-2.63 mg/L) 
Tertile 2 

(2.631-7.3 mg/L) 
Tertile 3 

(7.31-25.6 mg/L) 
Overall p¹ 

n= 
Waist Circumference (inch) 
Serum Glucose (mg/dL) 
HbA1c (%) 
Total Cholesterol (mg/dL) 
Triglyceride (mg/dL) 
LDL-cholesterol (mg/dL) 
HDL-cholesterol (mg/dL) 
Quercetin (mg/100g) 
Fruits & Vegetables (cups) 

10 
42.0±4.4ᵅ٫ᵇ 
86.8±15.7ᵅ 
5.69±0.3ᵅ 

218.8±44.3 
163.2±80.6 
136.8±38.7 
49.6±22.2 

153.7±140.8ᵅ 
1.51±0.9ᵅ 

11 
41.03±3.8ᵅ 

94.0±11.4ᵅ٫ᵇ 
5.81±0.4ᵅ 

212.73±39.6 
194.91±78.4 
136.36±37.5 

43.18±5.4 
144.15±138.9ᵅ 

1.39±1.0ᵅ 

9 
45.46±4.4ᵇ 

101.56±13.9ᵇ 
6.34±0.7ᵇ 

205.67±23.8 
155.33±60.7 
125.11±20.4 
49.44±18.1 

317.43±176.9ᵇ 
2.81±1.5ᵇ 

30 
42.68±4.5 

93.87±14.5 
5.93±0.6 

212.63±36.5 
172.47±73.9 
133.13±33.1 

47.2±16.2 
199.32±166.2 

1.86±1.3 

 
0.025 
0.027 
0.01 
NS² 
NS² 
NS² 
NS² 

0.026 
0.021 

 

 

 

Data presented as mean±SD. Reported intakes of fruits and vegetables (3 day averages) were quantified based on the USDA Food and 

Nutrient Database.  Reported intakes of flavonoids (3 day averages) were quantified based on the USDA Flavonoid Database. ¹ANOVA 

for categorical variables, and ²NS= No Significance.  ᵃ٫ᵇFor each variable, values with different superscripts letters are significantly 

different across tertiles of CRP (C-reactive protein) (p < 0.05).  
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CHAPTER V 
 

 

CONCLUSION 

Our cross-sectional study shows significant associations among measures of lipid 

oxidation, and flavonols (KAE, MYR, QUER), with measures of lipids, and glycemic 

control in Oklahoma (OK) adults with abdominal adiposity and dyslipidemia.  Also, we 

found significant differences in these CVD risk factors across tertiles of ox-LDL and 

CRP.  In general, participants with higher ox-LDL and/or CRP were shown to have 

higher levels of serum cholesterol, glucose, and HbA1c.  To our knowledge no previous 

study has specifically examined the differences among biochemical variables of CVD 

risks in this sub-group of adults in OK.   

Although OK is an agricultural state, very little of the total cropland acreage is used to 

harvest fruits and vegetables (32).  Consumers thus rely on out-of-state producers which 

can limit selection and availability depending on season, environmental conditions, cost, 

and related factors.  Epidemiologic investigation of flavonoids in relation of CVD risks in 

OK adults populations is limited.  Thus, there exists a need to investigate the relationship 

among total servings of fruits and vegetables, total flavonoid intakes, dyslipidemia, and 

CRP levels in OK adults with general obesity and abdominal adiposity.  This forms the 

scope of our study. 
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A total of 30 adults with abdominal adiposity and dyslipidemia were included in our 

analysis.  All participants were obese as determined by their BMI and had dyslipidemia 

as evidenced by their serum lipid levels.  Although serum glucose levels were found to be 

within the normal range, the mean HbA1c was in the pre-diabetes range.  Also, the 

participants were found to be pre-hypertensive; but free of any other disease conditions.  

The reported servings of fruits and vegetables by the participants were found to be lower 

than the desirable daily intake of greater than five servings of fruits and vegetables per 

day, which is not surprising as the consumption of fruits and vegetables in OK adults has 

been documented to be inadequate (14). 

Oxidized LDL (ox-LDL) has been shown to be a surrogate risk factor for CVD (28).  The 

oxidation of LDL occurs when LDL cholesterol particles react with free radicals.  The 

ox-LDL becomes reactive with the surrounding tissues, which can produce tissue 

damage.  These ox-LDL particles enter directly into the endothelium of arterial tissue and 

promote atherosclerosis by inducing accumulation macrophages and adhesion molecules 

to the damaged area. This process causes inflammation at the site of the damaged artery. 

The accumulation leads to formation of plaque within the arterial wall.  If uncontrolled, 

the plaque buildup causes thickening of arterial wall and restricts blood flow throughout 

the damage area (68).     

We noted that participants in the highest tertile of ox-LDL also had the higher total 

cholesterol and LDL-cholesterol concentrations when compared to lowest tertile which 

are in accordance with previously reported studies (69, 70, 71). Higher concentrations of 

LDL cholesterol have been shown to be associated with higher ox-LDL serum levels.  A 

study by Wu et al. (69) in adults with dyslipidemia observed significant increases in lipid 
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oxidation in subjects with higher total cholesterol and LDL levels compared to healthy 

adults (69).  Another study in adults with dyslipidemia, reported by Oqunro et al. (70), 

also observed significant increases in susceptibility of lipid oxidation directly related to 

high total and LDL-cholesterol levels (70). Furthermore a study by Lankin et al. (71) 

showed a similar correlation among levels of ox-LDL and LDL-cholesterol. 

Concentrations of ox-LDL, in subjects with CVD, were significantly higher in the 

subjects with highest LDL levels compared to subjects with lower LDL levels (71). These 

observations support our study findings. 

Interestingly, we noted that participants in the middle tertile of ox-LDL had significantly 

higher serum glucose levels than the highest tertile which is not entirely in accordance 

with previously reported studies (72, 73).  However, this may be attributed to the small 

sample size within each tertiles of our analyses.  Studies have shown higher susceptibility 

of lipid oxidation in relation to high serum glucose levels.  A study by Likidlilid et al. 

(72) investigated oxidative stress in type 2 diabetic subjects.  The subjects (19 

uncontrolled T2DM subjects, 26 controlled T2DM subjects, 20 subjects with T2DM and 

CVD complications, and 20 healthy controls) with higher serum glucose levels also had 

significantly higher ox-LDL levels (72).  Another study by Nivedita et al. (73) 

investigating the association between hyperglycemia and lipid oxidation levels observed 

similar results.  DM adult subjects (n= 100; 50 uncontrolled DM, 50 controlled DM) 

were compared to 50 healthy adults and the susceptibility of LDL oxidation was found to 

be significantly higher in both diabetic groups compared to the healthy control group 

(73).   



58 
 

No significant differences were observed among intakes of fruits and vegetables and 

quercetin across increasing tertiles of ox-LDL. These outcomes are contradictory to a 

similar study by McCullough et al. (44), who observed a significant inverse association 

between flavonol intake (median 27.5 mg/d) and measures of oxidative stress in both 

adult males and females (44).  This could be explained by our small sample size of a 

population that is already known for their low intake of fruits and vegetables (14).  Also, 

these findings could possibly be affected by missing data. 

Several studies have documented inflammation as a central contributor to the progression 

of cardiovascular complications (3, 25).  The predictive value of serum CRP as a risk 

factor for cardiovascular events allows researchers to use it as a main CVD risk 

assessment tool.   We found that waist circumference was significantly higher in the 

highest tertile of CRP vs. the lower middle tertile.  Again, those in the highest tertile of 

CRP had significantly higher serum glucose and HbA1c when compared to the lower 

tertiles. Multiple studies have shown inflammation can be affected by visceral adiposity 

(74, 75, 76). Tsuriya et al. (74) observed significant increases in serum CRP levels with 

increased waist circumference in adult men and women (74).  Another study by Verrijken 

et al. (75) examined inflammation in relation to elevated visceral adipose tissue and 

observed that CRP levels were significantly higher in participants defined as obese 

compared to participants with normal waist circumference (75). A study investigating the 

relationship between glycemic control and inflammation by Bahceci et al. (76) also 

observed elevated serum CRP concentrations in T2DM males with high levels of serum 

glucose and HbA1c concentrations compared to healthy males (76).  
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Interestingly, we observed higher quercetin and reported total servings of fruits and 

vegetables among participants in the highest tertile of CRP.  This is surprising because 

flavonoids have been shown to decrease inflammation according to multiple studies (7, 

77, 78).  Our findings were also contradictory to studies that provide evidence that high 

intakes of fruits and vegetables reduce plasma CRP concentrations (25, 41, 43).  Again, 

small sample size, methodological errors in flavonoid estimations, particular dietary 

habits, and missing data may explain these differences among our study and previously 

reported findings.  

Based on our results we partially support the hypothesis that measures of lipid oxidation, 

CRP, and flavonoids (KAE, MYR, QUER) will have significant correlations with 

measures of lipids and glycemic control. The measures of lipid oxidation (i.e ox-LDL and 

MDA) were shown to be significantly correlated with total cholesterol levels and HDL-

cholesterol levels; however no other correlations were observed with ox-LDL and MDA.  

Also, no correlations were observed among either of the measures of lipids and glycemic 

control with CRP levels.  Finally, significant correlations were observed in HbA1c levels 

with all three flavonoids; and among serum glucose concentrations with MYR and 

QUER.   

On the other hand, our data largely supports the hypotheses that participants with higher 

ox-LDL and CRP levels will have significantly different waist circumference, measures 

of lipids, and glycemic control, when compared to lower levels.  The highest tertile of ox-

LDL was observed to have significantly higher levels of total cholesterol and LDL-

cholesterol. Conversely, the middle ox-LDL tertile had significantly higher serum 

glucose than the highest tertile in our study.  In regards to CRP, participants with the 
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higher concentrations were shown to have significantly a larger waist circumference, and 

higher measures of glycemic control (serum glucose, HbA1c), QUER, and reported 

servings of fruits and vegetables when compared to the lower tertiles.   

Our study has certain limitations that must be taken into consideration in the 

interpretation of our findings.  First, this investigation was conducted in a small sample of 

participants.  Second, the biological measurements that were obtained in this cross-

sectional study were collected at only one time point and may not be reflective of overall 

inflammatory status or oxidative stress in participants with abdominal adiposity and 

dyslipidemia. Third, the USDA food composition databases, in particularly the Flavonoid 

Database, are lacking in some dietary choices and preparation methods which could 

affect our dietary analyses.  Any reported dietary choices that were not in accordance 

with database content or preparation methods had to be excluded from the final analysis 

and therefore may not be a true representation of the flavonoid intakes.  Fourth, the 

reported dietary items the participants consumed were not prepared using similar 

methods and could affect the balance of anti- and pro-inflammatory biomarker factors 

expression in the participants.  Fifth, this study focused on flavonoid intake, not 

bioavailability and metabolism in the human body or changes during processing and food 

preparation.  Finally, we have not completely adjusted for other variables that could be 

confounding our results, such as total energy intake.  Thus, our findings warrant further 

investigation in larger prospective studies.  

Future studies should include a more comprehensive analysis of biomarkers of oxidative 

stress and inflammation, such as, 4-hydroxynonenal (HNE), advanced glycation end 

products (AGEs) or F₂-isoprostances, as these markers are also elevated in patients with 
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dyslipidemia (79).  Additionally, it may be beneficial to include a more extensive food 

record, such as having participants complete a food frequency questionnaire (FFQ) that 

includes flavonoid containing food products. This would give a better representation of 

the amount and type of polyphenolic compounds typically consumed in the participants’ 

overall dietary habits. Furthermore, oxidative stress and pro-inflammatory responses may 

be affected by a variety of stimuli including stress, increased activity, a high-fat diet, or 

bacterial infections (26). These need to be addressed in larger studies. 

In conclusion, this cross-sectional study demonstrates differences in serum concentrations 

of total cholesterol, LDL-cholesterol, and serum glucose across tertiles of oxLDL. In 

addition, this study shows higher levels of waist circumference, measures of glycemic 

control, quercetin intake and servings of fruits and vegetables across tertiles of CRP in 

OK adults with abdominal adiposity and dyslipidemia.  Thus, our small cross-sectional 

study provides evidence of elevated surrogate risk factors of CVD, especially elevated 

waist circumference, serum glucose and HbA1c, total and LDL-cholesterol in obese 

adults with higher ox-LDL and CRP levels.  These findings remain significant when 

compared to lower levels of these two surrogate markers of CVD risks.  Thus, the utility 

of serum ox-LDL and CRP in identifying individuals with specific CVD risks, including 

dietary habits need to be further investigated in larger prospective studies. 
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