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Abstract:   Oenothera L. (Onagraceae) is a perennial herb native to North and South 
America.  Three species were treated with 0.6% solutions of ethyl methanesulfonate and 
five toxic heavy metals at two concentrations to induce phenotypic mutations.  Addition 
of metals had some significant effects on seed germination and survival.  Ethyl 
methanesulfonate treatments had varying effects on the seedling mortality rates of each 
Oenothera species.  Phenotypic mutants were induced in all three species, but did not 
produce viable seed, nor maintain stable chlorophyll mutations.  In the second 
experiment, a rooting protocol was developed for two Oenothera species. Cuttings were 
propagated in both vermiculite and perlite to determine the better rooting media. Three 
indole-3-butyric acid commercial rooting hormones were applied to cuttings to determine 
any difference in efficacy versus a control of non-treated cuttings.  Vermiculite produced 
significantly more and longer roots in both species.  Significantly more cuttings of 
Oenothera pallida rooted in vermiculite than in perlite.  None of the three IBA treatments 
produced significantly greater effect than the control.  Slightly significant effect was 
observed in the interaction of media and hormone.  In the third experiment, twelve 
Oenothera species were crossed with allied genera of the Onagraceae family in order to 
incorporate desirable heritable characters.  Interspecific crosses were also made among 
the twelve Oenothera species. Very few seeds were produced from the intergeneric 
Onagraceae crosses.  Viable seeds which were produced showed no signs of the desired 
heritable characters.  One interspecific cross from the Oenothera section Hartmannia 
(Spach) Munz produced a potential hybrid.  
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LITERATURE REVIEW 
 

 

The genus Oenothera L. belongs to the family Onagraceae and contains 145 species.  

The genus contains 15 subgenera which include Anogra (Spach) Jeps., Chylismia (Torr. 

& A. Gray) Jeps., Eulobus (Nutt. ex Torr. & A. Gray) Munz, Oenothera Torr. & A. Gray, 

Gauropsis (Torr. & Frém.) Munz, Hartmannia (Spach) Munz, Heterostemon Nutt., 

Kneiffia (Spach) Munz, Lavauxia (Spach) Jeps., Megapterium (Spach) Munz, 

Pachylophus (Spach) Jeps., Raimannia (Rose ex Britton & A. Br.) Munz, Renneria H.P. 

Fisch., Sphaerostigma (Ser.) Jeps. ex Munz, and Taraxia (Torr. & A. Gray) Jeps. 

(Missouri Botanical Garden, 2013).  Evening primrose is the most often used common 

name for species in the genus Oenothera.  Other common names include suncup or 

sundrop.  

Light Absorption 

Many of the Oenothera species are very tolerant of direct sunlight.  Dement and Raven 

(1974) identified the pigments responsible for the contrasting ultraviolet patterns which 

identified several species of Oenothera to insect pollinators.  The UV pattern interaction 

with nocturnal pollinators has also been investigated in conjunction with floral chemical 

attractants (Kawaano et al. 1995).  The mechanisms for protection 
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from and acclimation to solar UV-B rays by Oenothera stricta Ledeb. ex Link were 

identified (Robberecht and Caldwell, 1983).  

Range  

The genus has a broad habitat range, with 66 species native to the U.S. and represented 

by at least one species in every state excluding Alaska.  Although some species are 

considered weeds, many of the species are grown in gardens or have commercial interest.  

The spread of invasive Oenothera spp. throughout Europe over the last 200 years was 

studied by Mihulka and Pyšek (2001). Populations originating from South America were 

found largely in oceanic regions while North American species were found inland.  

Evening Primrose Oil 

Many varieties of the species Oenthera biennis L. are grown worldwide as an oil crop; 

Oenothera seed oil is used as a dietary supplement for the treatment of medical 

conditions ranging from eczema to rheumatoid arthritis (Immel, 2001).  The oil content 

and chemical composition of evening primrose seed was described by B.J.F. Hudson 

(1984).  Seeds were found to contain 15% protein, 24% oil and 43% cellulose plus lignin. 

The oil component fatty acids of Oenothera spp. seed contained up to 14% gamma-

linolenic acid, an omega-6 fatty acid.  Seed anatomy of 32 species representing the 15 

sections of Oenothera were explored in a systematic and evolutionary study by Tobe et 

al. (1987).  It was found that the distinct differences in seed coat tissues, particularly the 

exotesta, mesotesta and endotesta were indicative of the evolutionary lineages for each 

species.  
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Life Cycles 

Oenothera is a ubiquitous and benign herbaceous genus of primarily perennials, though 

some species have an annual or biennial growth habit, depending on the individual 

drought tendencies of the native climate in which each species evolved (Evans et al., 

2005).  Evans et al. later investigated the impact of climate change on two subgenera of 

Oenothera: Anogra and Kleinia (2009). 

Flowers and Pollinators 

 The flowers of Oenothera range from 2 to 5 cm in diameter.  Flowers are also diverse 

and non-aromatic, with colors usually yellow, pink, or white.  Many of the flowers are 

capable of blooming both day and night such as Oenothera speciosa Nutt., but several 

taxa including those in sections Lavauxia, Anogra, and Kleinia  are exclusively night 

blooming (Raguso et al., 2007; Theiss et al., 2010).  Pollinators of Oenothera include 

honeybees , flies, birds, and a variety of moths including the hawk-moths (Krakos, 2011).  

Hawk-moths are the primary pollinators of most of the night blooming evening primrose 

species.  The honeybee and moth typically pollinate the day-bloomers.  The behavior of 

these pollinators was shown to be significantly impacted by the structural changes in 

flowers due to grazing from herbivores (Mothershead and Marquis, 2000).  Given ideal 

conditions found in nature, it was found that pollination from honeybees could achieve 

complete seed-set in Oenothera fruticosa L. (Silander and Primack, 1978).  
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Genetic Mutations 

Much work has been done in the field of genetic research and breeding with regard to the 

Oenothera.  The genus was studied extensively by renowned pioneer of plant genetics 

Hugo De Vries in 1886.  De Vries (1915) determined the coefficient of mutation for 

Oenothera biennis L. and Oenothera lamarckiana Auct.  In a culture of 8500 O. biennis 

specimens, 3 different types of mutants were observed to spontaneously emerge.  He 

classified them nanella (0.1%), semigigas (0.05%) and sulfurea (0.3%).  In O. 

lamarckiana, De Vries found higher numbers of nanella (1.5%) and semigigas (0.3%), 

but no evidence of the pigment mutation observed in sulfurea.  Mass mutations of up to 

50 percent were also observed in some strains of Oenothera pratincola Bartlett (Bartlett, 

1915).  The wide variety of species has been of special interest because of a tendency for 

genetic anomaly in nature of several sections (Cleland, 1936).  The first spontaneous 

polyploid was discovered in Oenothera lamarckiana.  The subsequent mutants and 

crosses were studied by R.R. Gates (1907).  The most vigorous of these mutants was 

Oenothera rubrinervis Gates (1909).  It was in O. rubrinervis that chromosome ring 

formation was first observed in Oenothera.  Even numbers of four to 14 chromosomes 

often form varying numbers of linked rings in most species of Oenothera.  Odd numbers 

of five or nine chromosomes, however, have been observed in trisomic specimens 

(Cleland, 1967).  Chromosome catenation in Oenothera was expounded on later in other 

works (Darlington, 1929).  

The structure and function of pollen formation in Oenothera gigas, as well as other O. 

lamarckiana mutant hybrids was outlined by Gates.  It was explained how the tetraploid 

cells would reduce to diploid gametes, and yet retain the same volume (Gates, 1907, 
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1911).  Gates showed the cytological makeup of the tetraploid hybrid O. lata gigas to be 

an uneven distribution of its 21 chromosomes.  In somatic cells that were investigated, 

fourteen were paternally originated, and 7 were maternal (Gates, 1909).  Incompatibility 

in Oenothera has been the subject of many studies.  Many of the species of Oenothera 

have been found to be self-incompatible or incompatible with closely related genotypes.  

It has been observed that in several populations of a given Oenothera species (Oenothera 

laciniata Hill), as many as 15 genotypes, with a mean of 10.5 can exist within one 

population (Ellstrand and Levin, 1982).  A series of four genotypically different 

populations of Oenothera organensis Munz were polycrossed to find that all four were 

completely self-sterile, and partially incompatible with their related genotypes (Emerson, 

1939).  Emerson determined that the self-sterility was due to the stylar rejection of pollen 

tube growth from any pollen cell carrying either of its allelomorph components 

(Emerson, 1940).  Clonal propagation from vegetative cuttings was possible, but seed 

was found to be completely inviable.  This self-sterility was later overcome by irradiating 

O. organensis pollen, resulting in self-compatible mutants (Lewis, 1949).  The pollen 

tube growth of O. organensis, as in most Oenothera species, is more rapid in 

competition.  Though it was found to be clonally repeatable, it has a low heritability rate 

(9.4%) in O. organensis (Havens, 1994). 

Phylogenetic Revisions 

Several newly discovered combinations were shown following a detailed botanical 

review of three Oenothera sections around the United States (Wagner, 1983).  Within 

Oenothera section Megapterium, three new subspecies of Oenothera macrocarpa Nutt. 

(O. macrocarpa subsp. incana, O. macrocarpa subsp. oklahomensis and O. macrocarpa 
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subsp. fremontii), and one new species, Oenothera howardii A. Niels., (previously 

Lavauxia howardii A. Niels.) were defined from related populations around the 

southwest United States and northern Mexico.  Two distinct Oenothera populations in 

Colorado from section Pachylophus were also identified.  Oenothera harringtonii 

Wagner was determined as its own distinct species.  It had previously been classified a 

variety of Oenothera caespitosa Nutt. eximia sensu Munz.  Conversely, the species 

Pachylophus macroglottis Ryb. was redefined as Oenothera caespitosa subsp. 

macroglottis due to its distinguishing leaf morphology and habitat.  In section Oenothera, 

O. elata H.B.K. hirsutissima (A. Gray ex S. Wats.) Dietrich was distinguished from its 

previous classification as Oenothera biennis L. var. hirsutissima A. Gray. Populations 

previously included in Oenothera rhombipetala sensu Munz. from around the eastern 

United States were found to have a continuous ring of 14 chromosomes, distinguishing 

them from the rest of the species.  These populations were redefined as Oenothera 

clelandii Dietrich, Raven and W.L. Wagner.  Also in section Oenothera, three 

populations from Arkansas, Nevada and Alabama of Oenothera heterophylla Spach. were 

found to be distinct and separate from the main species and reclassified as Oenothera 

herophylla subsp. orientalis Dietrich, Raven and W.L. Wagner.  Wagner et al. (1985) 

outlined the systematics and evolution of the species Oenothera caespitosa, which 

includes five subspecies.  The systematic of section Kneiffia, and its five recognized 

species were outlined by Straley (1977).  Wagner collaborator, Werner Dietrich (1977) 

had previously published an account of the South American Oenothera section 

Oenothera, primarily a revision of the 57 taxa in subsection Munzia Munz, as well as a 

revision of subsection Emersonia (1985).  Wagner published several revisions to the 
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existing taxa of Oenothera, including one new species (Oenothera coryii W.L. Wagner), 

three new sections (Ravenia, Eremia and Contortae), a subsection of Pachylophus called 

Australis (Wagner, 1986), as well as several species of a new subsection isolated from 

subsection Raimannia called Oenothera section Oenothera subsect. Nutantigemma 

Dietrich and Wagner (1987).   Raven et al. (1979) had previously outlined the systematics 

of subsection Euoenothera, finding it to contain basic A, B, and C genomic complexes 

which remain homozygous or interbreed to form heterozygotic combinations of the three 

original genotypes composing all species within the subsection.  The complete nucleotide 

sequence of a plastid chromosome was mapped from Oenothera elata Kunth, one of the 

major species of subsection Euoenothera (Hupfer et al., 2000).  This map covered 

plastome one of the five distinguishable Euoenothera plastomes and provided a greater 

understanding of how many Oenothera species evolved their unique abilities for 

interspecific hybridization and complex heterozygosis.  

Limited work has been done with regard to commercial breeding of Oenothera and its 

tendency for mutation has not been fully explored.  Arnold and Kressel (1965) utilized 

several chemical and physical mutagens in an attempt to induce stable plasma mutations 

in several species of Oenothera, without success.  Many of the Oenothera species show 

potential for cultivation as commercial ornamentals; however there have been only a few 

commercially available cultivars developed as bedding plants in the United States.  The 

appeal of this genus as a commercial ornamental crop would be increased greatly by the 

incorporation of leaf morphology changes such as leaf variegation, or the incorporation 

of novel flower colors from related genera of plants. 
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CHAPTER I 
 

 

GENETIC MUTATION OF THREE OENOTHERA SPECIES 

 

Oenothera L. is a perennial flowering herb which has seen limited cultivar development.  The 

introduction of mutant characteristics such as leaf variegation may increase the appeal of the 

genus.  The three species of Oenothera used in this study were Oenothera speciosa, Oenothera 

pallida, and Oenothera missouriensis. These three species represent the phenotypic diversity of 

the genus in flower color, texture, and growth habit.  Seeds were treated with ethyl 

methanesulfonate and metal ion solutions in order to induce mutation.  

Hypothesis 1 : Oenothera seeds treated with EMS will yield desirable mutations. 

Hypothesis 2: The addition of metal ions into the EMS solution will increase the rate of mutation. 

Introduction 

Mutation breeding has produced many valuable plant characteristics in a number of 

crops, including dwarf plants in bell pepper (Alcantara et al. 1996); ‘naked-tufted’ seed 

coat mutants in cotton  (Bechere et al. 2009); semidwarfism, waxy endosperm and other 

heritable characters in rice (McKenzie and Rutger, 1986); and the formation of 

adventitious buds in Chrysanthemum morifolium (Broertjes et al., 1976).  Methods for 

inducing plant mutations include physical mutagens and chemical mutagens.  Physical 
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mutagens include various types of radiation including alpha, beta, gamma, and X-rays 

which are ionizing radiations.  The mode of action for ionizing radiations is the breakage 

of hydrogen bonds in DNA strands, causing cross-linkages of genes.  Non-iodizing 

radiations such as UV rays induce purine or pyrimidine dimers.  

Chemical mutagens are a diverse group of agents which cause genetic changes in a 

variety of ways.  Acridine dyes such as proflavine and acridine orange bond between 

nucleotides, disrupting their arrangement and causing additions and deletions of bases.     

Base analogues such as 5-bromo-deoxyuridine induce base pair substitutions.  Sodium 

azide is a potent chemical mutagen which converts cytosine to a modified base and can 

induce chromosome breakages.  Alkylating agents are another group of chemical 

mutagens commonly used in plant mutagenesis and their mode of action is alkylating 

phosphate groups causing mis-pairing or loss of bases.  They include ethylene amine 

(EI), ethylene oxide (EO), ethyl ethane sulphonate (EES), diethyl sulphate (DES), N-

nitroso-N-ethyl urea (NEU), N-nitroso-N-methyl urea (NMU) and ethyl 

methanesulfonate (EMS) (Toker et al., 2007).  

The alkylating agent EMS has proved to be an effective chemical mutagen as a seed 

treatment in many species such as maize (Neuffer and Fiesor, 1963), eucalyptus 

(McManus et al., 2006) and in cowpea (Girija and Dhanavel, 2009).  Ethyl 

methanesulfonate is an alkylating agent which was the first chemical found to cause 

unambiguous mutation in T2 phages (Loveless, 1958).  Ethyl methanesulfonate causes 

point mutations by, among other similar mechanisms, ethylating guanine nucleotides into 

O-alkylguanine.  This transformed nucleotide no longer bonds with cytosine, but with 

uracil, during RNA synthesis before mispairing with thymine during DNA replication.  
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This change prompts a functional switch from guanine to adenine in the DNA strand 

(McManus et al., 2007).  Ethyl methanesulfonate has been shown to have induced 

successful point mutations and even chromosome breakages in large amounts of plants of 

various crop types (Emmanuel and Levy, 2002).  Chromosome aberrations in Vicia faba 

L. have also been observed as a result of EMS treatment (Michaelis and Rieger, 1963).  

The visible effects of EMS treatment on seedlings of horticultural crops include leaf and 

cotyledon distortions, chlorophyll deficiencies and abnormalities, loss of height or vigor, 

and delayed or deformed flowers (Girija and Dhanavel, 2009).  The most common effect 

of EMS on seeds is failure to germinate or early seedling death.  The mortality rate 

caused by EMS can vary greatly among plant species.  

Ethyl methanesulfonate-treated individuals are not competitive in relation to non-treated 

plants because of their lack of vigor and other abnormalities.  The M2 and further 

generations are used to establish elite lines, which carry the chemically mutated genes 

that may be desirable (Alcantara, 1996).  Bhatia and Narayanan (1965) were able to 

increase the mutation rate of EMS on Arabidopsis thaliana (L.) Heynh. through the 

addition of copper and zinc ions.  Similar results were seen in Vicia faba (Moutschen-

Dahmen, 1963), Triticum L. (Bari, 1963) and Hordeum L. (Moutschen and Degraeve, 

1965).  

A concentration of 20 mM EMS has been proven to successfully produce variegated 

seedlings of Oenothera hookeri Torr. & A. Gray (Epp, 1973).  Chlorophyll mutants have 

been one of the primary results of EMS treatment in higher plants (Gaul et al., 1966). 

Ethyl methanesulfonate has often been used to induce variegated leaves in ornamental 

plants (Pan and Upadhyaya, 1998; Smith and Brand, 2012).  Leaf variegation can 
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introduce phenotypic variety into an already commercially successful cultivar which 

makes it a popular trait among ornamental growers (Koh and Davies, 2001).  Variegation 

has also been observed to occur spontaneously in Oenothera.  The ‘LISHAL’ cultivar 

was discovered as an unintended variegated offspring of the unpatented Oenothera 

‘Crown Imperial’ cultivar at a nursery in Great Britain that was the result of spontaneous 

mutation (Catt, 2008).  

The goal of this research is to discern the best procedure or set of procedures for inducing 

variegated leaves or other morphological changes in three Oenothera species using 

varying concentrations of solutions of EMS and five metal ions.  

Materials and Methods 

Oenothera pallida Lindl., O. speciosa Nutt., and O. missouriensis Nutt. seed were 

purchased from Everwilde Farms (Bloomer, WI) in spring of 2010.  On 10 December 

2010, seeds of each species were counted into 22 groups of 100 seeds.  Each group 

represented a mutagen treatment and there were three replications for each treatment. 

Treatments included a control (de-ionized water); a solution of de-ionized water and 

0.6% EMS (Thermo Fischer Scientific, Bridgewater Township, NJ); 10 µM zinc sulfate 

heptahydrate (Sigma-Aldrich Corp., St. Louis, MO), 10 µM zinc sulfate heptahydrate 

plus 0.6% EMS, 20 µM zinc sulfate heptahydrate, 20 µM zinc sulfate heptahydrate, 10 

µM manganese sulfate monohydrate (Sigma-Aldrich Corp., St. Louis, MO),  10 µM 

manganese sulfate monohydrate plus 0.6% EMS, 20 µM manganese sulfate monohydrate, 

20 µM manganese sulfate monohydrate plus 0.6% EMS, 10 µM chromium trioxide (J.T. 

Baker Chemical Co., Phillipsburg, NJ), 10 µM chromium trioxide plus 0.6% EMS,  20 
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µM chromium trioxide, 20 µM chromium trioxide plus 0.6% EMS, 10 µM cupric sulfate 

(Sigma-Aldrich Corp., St. Louis, MO), 10 µM cupric sulfate plus 0.6% EMS, 20 µM 

cupric sulfate, 20 µM cupric sulfate plus 0.6% EMS, 10 µM aluminum potassium sulfate 

(Sigma-Aldrich Corp., St. Louis, MO), 10 µM aluminum potassium sulfate plus 0.6% 

EMS, 20 µM aluminum potassium sulfate, and 20 µM aluminum potassium sulfate plus 

0.6% EMS.  Each of the five metals were diluted in deionized water.  Each treatment was 

placed into an individual empty tea bag (Lipton, Unilever Co., Englewood Cliffs, NJ).  

The teabags were then grouped by treatment into plastic Ziploc (236mL) containers with 

lids (SC Johnson, Racine, WI).  

Seeds were left in each solution (15.55°C) for 24 hours.  On 11 December 2010, seeds 

were removed from solution.  Each individual teabag was rinsed with tap water for 10 

seconds and the seeds were taken out and left to dry for two hours at 15 to 16°C.  Seeds 

were then spread evenly over Metro-mix 902 potting media (Sun Gro Horticultural, 

Vancouver, BC, Canada) in six inch azalea pots (ITML Elite, Myers Industries Inc., 

Akron, OH).  Seeds were then lightly covered with 1 cm more of pottingmedia.  Seeds 

were watered daily as necessary to maintain soil moisture.  Germination numbers were 

then counted for each treatment for 30 days following initial germination.  Mutagenic 

affects such as leaf distortions and chlorophyll abnormalities recorded based on visual 

observations.  Data was analyzed with the GLM procedure using t-tests (p<0.05) of the 

least squared differences in SAS 9.3 (SAS Institute Inc., Cary, NC). The experimental 

design was completely random by species. 

 



16 

 

Results and Discussion 

Significant differences in germination rate were seen among the mutagen treatments 

(Tables 1.1).  The control group of O. missouriensis seed germinated at a rate of 60%, 

while the seed treated with 0.6% EMS solution had a 5% germination rate, which was 

significantly lower (P<0.05).  The germination rate of O. missouriensis seed treated 

solely with metal ions was not significantly different than control.  Similarly, the seeds 

treated with EMS and metals did not produce significantly different results than the EMS 

treatment alone (Table 1.1). 

The control group of O. pallida seed germinated at a rate of 46.33%, which was higher 

than the germination of seeds treated with 0.6% EMS solution (11.66%).  Only one of the 

metal ion treatments (Cupric sulfate 20µM + EMS) produced significantly less 

germination than control.  All of the rest of the O. pallida treatments were statistically 

equal to the untreated seed (Table 1.1). 

The control group of O. speciosa seed germinated at a rate of 52.33%, which was higher 

than seed treated with 0.6% EMS (36.66%).  Two treatments: the lower concentration of 

zinc alone (10µM) and chromium (10µM) plus EMS produced germination equal to that 

of control.  The lower concentration of chromium treatment resulted in significantly 

higher germination than control (p<0.05). The majority of the other treatments were 

statistically similar. The low aluminum concentration plus EMS resulted in the lowest 

average O. speciosa germination (16.7%).  Average germination rates after 30 days of 

growth for each treatment can be seen in Table 1.1.  This is consistent with results from 

an experiment to induce mutation on Oenothera hookeri (Epp, 1974).  Seeds which were 
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treated with 0.04 and 0.08 M solution of EMS resulted in viability rates which were 

significantly lower than untreated seed.  The 0.08 M EMS treatment also resulted in 

significantly lower viability (9%) than the 0.04 M treatment (29%). 

The 10 and 20 µM addition of the metal ions were not significantly different from each 

other across the three treated species (Table 1.1).  For O. missouriensis and O. pallida, 

these treatments were not significantly different from control.  In the experiment 

performed by Bhatia and Narayanan (1965), equal concentrations of metal ions were 

added to a 10 x 103 
µM solution of EMS and distilled water.  Seeds were then soaked in 

the solutions for 24 hours at 24°C.  The result on Arabidopsis showed that EMS in the 

presence of metal ions produced significantly more chlorophyll deficient mutants.  The 

exposure to heavy metals alone has been known to cause chromosome aberrations in 

Vicia faba and Allium cepa root tips (Minissi et al., 1998).  Low concentrations of copper 

(25 ppm), zinc (200 ppm), and chromium (40 ppm) were found in polluted streams in 

which chromosome aberrations were observed in plants at a higher rate than non-polluted 

areas.  The results of this experiment may differ from Minissi et al. (1998) due to the 

prolonged exposure of the streamside plants and the differing forms of the metals.  

Metals such as chromium are more soluble in water, and therefore more easily absorbed 

by plants (Cervantes et al., 2001). 

One potential cause for the different results would be the concentration of EMS.  In this 

study, the concentration of EMS was much higher than in Bhatia and Narayanan, (0.6% 

EMS: roughly equal to 0.058µM).  With a much higher concentration of EMS, the 

comparatively smaller concentrations of metal ions may not have been enough to 

influence the mutagenic effect of EMS.  In a similar study by Moutschen-Dahmen and 
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Moutschen-Dahmen (1963), 10 µM copper and zinc were added to increasing 

concentrations of EMS (from 0 to 0.16 mM solutions).  The results of this experiment 

proved similar to Bhatia and Narayanan (1965).  The percentage of chromosome 

breakages of EMS treated seedlings was increased from 1% to 20% when zinc and 

copper ions were added.  The concentrations of EMS used in this study were far lower 

than that used in Bhatia and Narayanan.  

Mutants 

Ethyl methanesulfonate had significantly different (P<0.05) effects on the three cultivars 

of treated Oenothera seeds, because the mutant seedlings seen in O. pallida occurred at a 

higher rate than the other two species when compared to the surviving germinated 

seedlings (Table 1.2).  The germination rate of Oenothera speciosa was affected the least, 

only resulting in a 30% mortality rate compared to control.  Oenothera missouriensis had 

a mortality rate of 91.7% among EMS treated seed compared to control.  These variations 

in EMS affecting different Oenothera genotypes is consistent with previous findings 

(Kressel & Arnold, 1967).  Most seedlings showed the effect of the treatment as soon as 

cotyledons opened.  Leaves, including cotyledons, had distorted shape and often showed 

regions of chlorophyll deficiency.  (Figures 1.1 and 1.2) The shape distortions were often 

caused by a shortened leaf midrib or veins.  These mutation effects were often expressed 

as periclinal chimeras.  
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Conclusions   

The treatment of Oenothera seeds in a 0.6% solution of EMS for 24 hours most often 

results in an increase in seed and seedling mortality.  Differences in the seed coat 

morphology of some species may alter the absorption rate of the mutagen.   

Ethyl methanesulfonate treatments and treatments including both EMS and metal ions of 

Oenothera missouriensis yielded an average mutation rate of 1.6%.  Phenotypic mutants 

of O. missouriensis did not survive to produce offspring. Treatments of Oenothera 

pallida which included EMS resulted in an average mutation rate of 2.82%.  The majority 

of these O. pallida mutations were chlorophyll-related and desirable, but very few 

survived to sexual maturity and no viable seed was produced. Oenothera speciosa seed 

treatments which included EMS resulted in a mutation rate of 0.484%. Phenotypic 

mutations primarily resulted in slightly distorted leaves. These mutations were not stable, 

undetectable at flowering stage.  Both hypotheses were proved invalid by these results.
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Table 1.1 Effect of ethyl methanesulfonate and five metal ions on the germination rate of 
three Oenothera species 30 days following initial germination (n = 300). 

Treatmentz Germination   
 

 
                                            O. missouriensis 

 
 
        O. pallida 

 
 
O. speciosa 

 
Control 60.0     

 
ay 46.3 

 
a 52.3 

 
ab 

EMS 58x103µM 5.0   cd 11.7 b 36.7 abcd 
Zn 10µM 61.3     a 47.7 a 50.3 ab 
Zn 20µM 62.0     a 52.0 a 46.7 abcd 

Zn 10µM + EMS 58x103µM 5.7  bcd 49.3 a 44.3 abcd 
Zn 20µM + EMS 58x103µM 5.3  bcd 64.7 a 40.3 abcd 

Cu 10µM 57.7     a 41.7 a 43.7 abcd 
Cu 20µM 60.3     a 62.7 a 38.7 abcd 

Cu 10µM + EMS 58x103µM 10.3 b 38.7 a 43.7 abcd 
Cu 20µM + EMS 58x103µM 6.0 bcd 30.0 b 31.0 abcd 

Al 10µM 57.3 a 54.0 a 39.0 abcd 
Al 20µM 54.3 a 60.3 a 31.3 abcd 

Al 10µM + EMS 58x103µM 4.0 d 54.3 a 16.7 e 
Al 20µM + EMS 58x103µM 8.3 bcd 51.7 a 26.3 de 

Mn 10µM 62.3 a 41.3 a 34.3 abcd 
Mn 20µM 55.7 a 38.3 a 47.3 abcd 

Mn 10µM + EMS 58x103µM 7.3 bcd 56.7 a 21.3 cde 
Mn 20µM + EMS 58x103µM 4.0 d 51.3 a 41.3 abcd 

Cr 10µM 50.3 a 50.0 a 56.3 a 
Cr 20µM 54.7 a 45.3 a 44.7 abcd 

Cr 10µM + EMS 58x103µM 9.0 bc 49.3 a 54.0 ab 
Cr 20µM + EMS 58x103µM 5.0 cd 49.3 a 47.0 abc 

       
       

zMetal ion treatments:   Zinc = ZnSO4,   Copper = CuSO4,     Aluminum = AlKSO4,   
Manganese = MnSO4,  Chromium = CrO3. Solutions of 10 and 20 millimolar metal ions 
were diluted in deionized water. 

yTreatments in the same letter group within columns are not significantly different at a 
confidence level of alpha = 0.05.  
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Table 1.2 The effect of metal ions and ethyl methanesulfonate on seedling morphology of 
Oenothera species. 

Treatmentz  Average of Observed Phenotypic Mutants (%)y  

 
 

     O. missouriensis      O. pallida O. speciosa 
 

Control 0 
 
cx 0 

 
d 0 

 
b 

EMS 58x103µM 1.33 ab 1.67 bc 1.00 a 
Zn 10µM 0 c 0 d 0 b 
Zn 20µM 0 c 0 d 0 b 

Zn 10µM + EMS 58x103µM 1.00 ab 3.00 ab 0.33 ab 
Zn 20µM + EMS 58x103µM 2.00 ab 3.00 ab 0.33 ab 

Cu 10µM 0 c 0 d 0 b 
Cu 20µM 0 c 0 d 0 b 

Cu 10µM + EMS 58x103µM 2.67 a 3.00 ab 0.33 ab 
Cu 20µM + EMS 58x103µM 1.00 bc 1.67 ab 0.00 b 

Al 10µM 0 c 0 d 0 b 
Al 20µM 0 c 0 d 0 b 

Al 10µM + EMS 58x103µM 0.67 bc 3.33 ab 0.67 ab 
Al 20µM + EMS 58x103µM 1.67 ab 2.00 bc 0.67 ab 

Mn 10µM 0 c 0 d 0 b 
Mn 20µM 0 c 0 d 0 b 

Mn 10µM + EMS 58x103µM 2.00 ab 3.67 ab 0.67 ab 
Mn 20µM + EMS 58x103µM 1.33 ab 3.00 ab 1.00 a 

Cr 10µM 0 c 0 d 0 b 
Cr 20µM 0 c 0 d 0 b 

Cr 10µM + EMS 58x103µM 2.67 a 2.33 ab 0.00 b 
Cr 20µM + EMS 58x103µM 1.33 ab 4.33 a 0.33 ab 

     
     

zMetal ion treatments:   Zinc = ZnSO4,   Copper = CuSO4,   Aluminum = AlKSO4,   
Manganese = MnSO4,  Chromium = CrO3. Solutions of 10 and 20 millimolar metal ions 
were diluted in deionized water. 

 yPhenotypic Mutants: Seedlings showing any leaf distortion, chlorophyll inconsistency 
or variegation. 

xTreatments in the same letter group within columns are not significantly different at a 
confidence level of alpha = 0.05.  
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Figure 1.1 Phenotypic EMS mutants of Oenothera missouriensis showing chlorophyll 

deficiency and leaf distortion at five weeks after germination.  
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Figure 1.2 Phenotypic EMS mutants of Oenothera pallida showing chlorophyll 

deficiency and leaf distortion at two weeks after germination 
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Figure 1.3 Mature EMS mutant of Oenothera pallida with distorted leaf structure and 

shortened stem internodes 

 

 

 

 

 

 

 



25 

 

Figure 1.4 Mature EMS treated chlorophyll mutant of Oenothera pallida  
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CHAPTER II 
 

 

ASEXUAL PROPAGATION OF TWO OENOTHERA SPECIES 

 

A rooting protocol was developed for two species of Oenothera.  The goal of this study 

was to determine the ability of two species of Oenothera stem cuttings to produce 

adventitious roots under intermittent mist irrigation for varying conditions. The 

experiment tested two variables: media type and rooting hormone application.  Perlite 

and vermiculite rooting media were tested to determine which better facilitated root 

growth in these two Oenothera species.  Three commercially available rooting hormones 

were also tested versus a control of untreated stem cuttings to determine if one hormone 

was more effective at producing adventitious roots or callus material.  Effects tested for 

were: ability of stem cuttings to produce roots, average number of roots per cutting, and 

average length of the longest root produced.  

Hypothesis 1: The rooting media will have significantly different results in the effects 

tested. 

Hypothesis 2: The application of rooting hormones to the Oenothera cuttings will result 

in more rooted cuttings, higher number and longer roots than the control. 

Hypothesis 3: The effect of the three rooting hormones will not be significantly different. 
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 Introduction 

Oenothera spp., also known as evening primrose, can be propagated both sexually and 

asexually using several different propagation methods (Cleland, 1924).  Tissue culture 

has been a successful means of vegetative reproduction of Oenothera (Mehra-Palta, 

1998), but the rapid rate of adventitious root formation enables most species to be rooted 

from stem cuttings.  Supplementation of rooting media with indole-butyric acid (IBA) 

produced a higher percentage of rooted in vitro explants than control in commercial 

cultivars of Oenothera (De Gyves et al., 2001).  Incorporation of 1mg/l IBA into a tissue 

culture substrate has proven to produce 100% rooting of callus material for in vitro 

culture of five species of Oenothera (Thiem et al., 1999). 

While the in vitro cultures employ a much lower concentration throughout the agar to 

induce root initiation, production of large softwood cuttings of Gaura lindheimeri 

Engelm. & Gray required use of a much higher concentration of IBA.  The dipping of 

Gaura cuttings in a 1000 ppm powder before being stuck is recommended (Anderson & 

Peters, 2002).  Indolebutyric acid is a synthetic auxin which has been used commercially 

and in research as a plant growth regulator and adventitious root stimulator.  Natural and 

synthetic auxins have been used extensively in plant cell, tissue, and organ cultures to 

elicit specific morphogenetic responses (Nissen and Sutter, 1990).  An experiment on 

Pennisetum setaceum Forsk. tested the rooting of herbaceous perennials with or without 

IBA, and the use of differing media types including perlite and vermiculite (Cunliffe et 

al., 2001). The researchers found that peat and perlite produced a significantly higher 

percentage of rooted cuttings than sand, vermiculite and a mixture of peat and perlite.  
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Little information is available concerning an effective protocol for vegetative 

reproduction of stem cuttings of Oenothera species.  In one study of Oenothera 

micropropagation, IBA was applied as part of the rooting substrate mixture at low rates 

(0.2 to 1.0 mg/L) (De Gyves et al., 2001).  This experiment also only tested the 

treatments on three commercial varieties of O. biennis L.  The rooting experiment utilized 

other rooting hormones, such as Naphthaleneacetic acid (NAA), within the substrate at 

varying concentrations.  De Gyves et al. also only used one standard IBA treatment and 

the same rooting media within the experiment.   

Materials and Methods 

On 9 June 2011, cuttings of Oenothera speciosa Nutt. and O. drummondii Hooker were 

taken from existing plant material growing in the Oklahoma State University horticulture 

research greenhouses in Stillwater, Oklahoma.  The O. speciosa cuttings were taken from 

6 month old plants grown from seed purchased from Everwilde Farms (Bloomer, WI) in 

spring of 2010.  The O. drummondii cuttings were taken from 2 ½ year old plants grown 

from seed from ARS-GRIN.  Oenothera speciosa cuttings were taken from the tip of 

each stem, while cuttings of O. drummondii were taken from both tip and midsection of 

the stem.  All cuttings were 14 cm long.  The cuttings were grouped in bundles of 25 and 

placed in individual four gallon plastic buckets filled with clear tap water.  The buckets 

were then placed in a walk-in cooler (International Cold Storage Inc., Wichita, KS) for 15 

hours at 4°C.   

For each media type, the cuttings were divided into four rooting hormone treatments plus 

a control with no hormone treatment.  The three rooting hormones tested were: Dip’N 
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Grow Liquid Rooting Concentrate (Dip’N Grow Inc., Clackamas, OR), Hormex Rooting 

Powder (Brooker Corporation, Hollywood, CA) and Hortus IBA Water Soluble Salts 

(Hortus USA Corp., New York, NY).  In total, eight treatments were tested for each 

species. Each treatment consisted of three repetitions of 20 cuttings each. 

The 1000 ppm IBA Hormex Rooting Powder concentration was used in this experiment.  

The other two rooting hormones were mixed in solution of 1000 ppm concentration.  

Leaves were removed from the bottom 2 cm of each cutting.  Any flower buds or open 

flowers were also removed from the tips of cuttings.  The bottom 2 cm of each cutting 

was then dipped into the rooting hormone solution or powder for a period of 5 seconds 

before being stuck into the plug tray.  The cuttings were stuck into 98-cell hex plug trays 

(McConkey Co., Sumner, WA) that had been filled with coarse vermiculite (Sun Gro 

Horticultural, Vancouver, BC, Canada ) or perlite (Sun Gro Horticultural, Vancouver, 

BC, Canada).  The cuttings were then placed under an intermittent mist set to water for 8 

seconds every 2 minutes. 

On 17 June 2011, all rooted cuttings were measured for number of roots present, as well 

as the length in centimeters of the longest root.  Each cutting was removed from the plug 

tray and the rooting media was washed away under tap water for 10 to 15 seconds.  Data 

for the O. speciosa cuttings was recorded after eight days under the mist irrigation, while 

O. drummondii cuttings were recorded after 14 days.  The experimental design of the 

experiment completely randomized by treatment and blocked by species.  Type III test of 

fixed effects was used to determine significance using SAS 9.3. Three levels of 

significance were tested for (p<0.05, p<0.01 and p<0.001). 



32 

 

Results and Discussion 

 The number of cuttings rooted was significantly lower in perlite for O. drummondii 

(P<0.01), but not significantly different for O. speciosa (Table 2.1).  Perlite rooting media 

also proved to be the significantly less effective for these two species of Oenothera, with 

regard to number of roots produced and length of the longest root (O. speciosa P<0.001, 

O. drummondii P<0.05) (Table 2.2, 2.3).  In a similar experiment, several rooting 

substrates were tested on five varieties of Fuchsia hybrida hort. ex Siebold and Voss 

(Onagraceae).  The number of roots produced was found to have been higher in a 

mixture of peat and perlite compared to perlite alone as well as a mixture of perlite and 

sand (Erzsebet et al., 2012).  That study’s results align with the results of this Oenothera 

study.  A substrate medium of only perlite is likely to drain quicker than a media with 

more porous space for water to absorb.  Compared with this experiment, the more slowly 

draining rooting media, vermiculite, produced a higher average number of significantly 

longer roots.   

After eight days, 91.67% of the speciosa cuttings had rooted (Table 2.1).  These results 

are comparable to those of previous IBA supplemented media in the propagation of 

Oenothera spp. (De Gyves, 2001).  Supplementation of rooting media with IBA was 

proven to produce 100% rooted plant material from related species Epilobium 

angustifolium L. (Onagraceae) versus a control which produced no roots (Turker et al., 

2008).  Adventitious root initiation had been observed four days after cuttings were 

placed under the mist.  Rooting percentage of O. speciosa was not significantly higher in 

either media type.  There was no significant difference in rooting percentage of O. 

speciosa between IBA treatments compared to control.  No significant media × hormone 
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interaction was observed compared with the rooting percentage of the control.  After 14 

days, 43.1% of all treatments of the drummondii cuttings had rooted.  Adventitious root 

initiation had been observed 12 days after cuttings were placed under the mist.  Rooting 

percentage of O. drummondii was significantly higher (P<0.01) in vermiculite than in 

perlite.  There was no significant difference in rooting percentage of O. drummondii 

between IBA treatments compared to control.  No significant media × hormone 

interaction was observed compared with the rooting percentage of the control. 

The average length of the longest O. speciosa root was longer in vermiculite than in 

perlite with a high level of significance P<0.001 (Table 2.2).  No rooting hormone 

treatment produced any significantly longer roots than that of the control group.  No 

significant media × hormone interaction was observed compared with the average longest 

root of the control group.  The average length of the longest O. drummondii root was 

significantly longer in vermiculite than in perlite P<0.05 (Table 2.2).  No rooting 

hormone treatment produced any significantly longer roots than that of the control group.  

The Dip’N Grow treatment produced longer roots in vermiculite than the control group 

with a low level of significance.  

The average number of O. speciosa roots was higher in vermiculite than in perlite 

P<0.001 (Table 2.3).  No rooting hormone treatment produced significantly more roots 

than that of the control group.  No significant media × hormone interaction was observed 

compared with the average number of roots of the control.  The average number of O. 

drummondii roots was higher in vermiculite than in perlite P<0.05 (Table 2.3).  No 

rooting hormone treatment produced significantly more roots than that of the control 
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group.  The Hortus treatment produced a higher number of roots in vermiculite than the 

control group P<0.05 (Table 2.3). 

Conclusions 

From these results it can be concluded that vermiculite is a better rooting media for both 

O. speciosa and O. drummondii, producing significantly more and longer roots.  It can 

also be concluded that IBA rooting hormone treatments of this concentration do not 

produce significantly more or longer roots for these two Oenothera species. Hypotheses 1 

and 3 were proved to be valid. Hypothesis 2 was proved invalid.
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Table 2.1 Effect of media and hormone treatment on percentage of Oenothera cuttings 
rooted after being under mist for 8 and 14 days (n=60) 

Speciesz  Treatment           Rooted (%) Probabilityy 
      
O. speciosa  Media    

  Perlite  91.25    NS 
  Vermiculite  92.10  

      
  Hormone    

  Control    91.66    NS 
  Dip’N Grow  93.33  
  Hormex   85.00  
  Hortus  96.65  
      

  Media × Hormone                  NS 
      
      
O. drummondii  Media    

  Perlite  27.10    ** 
  Vermiculite  59.15  

      
  Hormone    

  Control    44.16    NS 
  Dip’N Grow  40.00  
  Hormex   45.83  
  Hortus  42.50  
      
  Media × Hormone         NS 
      
      
      

zOenothera speciosa rooted quickly and was removed from mist six days earlier than O. 
drummondii, which was removed after 14 days. 

yNS = not significant, *, **, and *** for P<0.05, P<0.01, and P<0.001, respectively. 
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Table 2.2 Effect of media and hormone treatment on length of two Oenothera species’ 
roots. 

Species  Treatment      Root lenght (cm) Probabilityz 
      
O. speciosa  Media    

  Perlite  1.82   *** 
  Vermiculite  3.57  

      
  Hormone    

  Control      2.75    NS 
  Dip’N Grow  3.26  
  Hormex   2.28  
  Hortus  2.49  
      

  Media × Hormone      NS 
 

 
O. drummondii 

  
Media 

   

  Perlite  2.29 * 
  Vermiculite  5.39  

      
  Hormone    

  Control      4.05     NS 
  Dip’N Grow  4.26  
  Hormex   3.45  
  Hortus  3.59  
      

  Media x Hormone         * 
  Dip’N Grow × Vermiculite    

      
      
      
zNS = not significant, *, **, and *** for P<0.05, P<0.01, and P<0.001, respectively. 
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Table 2.3 Effect of media and hormone treatment on number of Oenothera roots (n=60) 

  Treatment         # of roots Probabilityz 
      
O. speciosa  Media    

  Perlite  12.82    *** 
  Vermiculite  23.19  

      
  Hormone    

  Control    16.88     NS 
  Dip’N Grow  22.66  
  Hormex   13.47  
  Hortus  19.00  
      

  Media × Hormone       NS 
      
      
      
O. drummondii  Media    

  Perlite     8.88 * 
  Vermiculite   14.99  

      
  Hormone    

  Control     10.49     NS 
  Dip’N Grow  11.75  
  Hormex   11.34  
  Hortus    14.15  
      

  Media × Hormone    
  Hortus × Vermiculite         * 
      
      
zNS = not significant, *, **, and *** for P<0.05, P<0.01, and P<0.001, respectively. 
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CHAPTER III 
 

 

 INTERGENERIC HYBRIDIZATION OF OENOTHERA SPECIES 

 

Twelve species of Oenothera L. were reciprocally crossed with eight species from allied 

genera within family Onagraceae Juss. The goal of this program was to breed an 

intergeneric hybrid which would display traits from the non-Oenothera species which 

would be desirable for the Oenothera genus. The creation of interspecific hybrids of 

Oenothera spp. was also a goal of this research. 

Hypothesis 1: Intergeneric hybrids of Onagraceae can be created through crossing of 

Oenothera with species from the Clarkia Pursh, Camissonia Link, and Calylophus Spach 

genera. 

Hypothesis 2: Interspecific hybrids of Oenothera can be created through the crossing of 

twelve distinct Oenothera species.  

Introduction 

Oenothera ‘Fransiscana Sulfurea’ was created by crossing of Oenothera biennis L. and 

Oenothera fransiscana Bartlett (Davis, 1916).  This hybrid was the basis for significant 

cytological discoveries in the Oenothera genus (Cleland, 1924).  Cleland noted the 

distinct chromosome configurations of the hybrid and its backcrossed progeny.  Cleland 
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found that a negative correlation was illustrated between inherited red pigments of 

Oenothera rubricalyx Gates hybrids with Oenothera lamarckiana Auct. and Oenothera 

rubrinervis de Vries, a lamarckiana mutant.  In a later study, Cleland examined the 

unique chromosome configurations of 11 F1 hybrids of the following species and 

varieties: O. biennis L., O. hookeri Torr. & A. Gray, O. lamarckiana, O. suaveolens 

Desf., O. muricata L., O. grandiflora Ruiz. & Pav., O. fransiscana Bartlett, O. 

fransiscana ‘sulfurea’ Gates, O. latifrons Cleland, O. aurata Cleland, and a mutant of O. 

fransiscana ‘Sulfurea’) (Cleland, 1927).  The catenation of chromosomes from 32 

hybrids of R.R. Gates (King’s College, London, UK) collection were outlined by D.G. 

Catcheside (1933).  

The chromosomes of Oenothera are catenated, forming linked rings end to end during 

prophase of meiosis (Jacob, 1940) which often produce obstacles to breeding between 

related species (Gates, 1933).  The base number of chromosomes for Oenothera is 2n=14.  

The majority of the species are diploid, but there are a few exceptions.  Hugo DeVries’ 

historic discovery of the first spontaneous tetraploid species in nature is one example, 

finding that Oenothera lamarckiana Auct. had mutated to become Oenothera gigas 

(Harshberger, 1905).  Other species, such as Oenothera speciosa Nutt. can be found as 

haploid, diploid, or triploid.  Many species and most hybrids of Oenothera have 

chromosome number notations which are uniquely affected by catenation.  Catenated 

circles of chromosomes can be as small as 4 or contain all 14 chromosomes in one ring.  

For each species, the number and ring configuration is constant (Cleland 1929).  A 

diploid Oenothera which possessed five pairs of chromosomes and a small circle of four 

chromosomes would carry the notation 4 + 5ii (Catcheside, 1933).  It was theorized that 
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these chromosome circles are the result of segmental interchange.  The evolution of O. 

lamarckiana included the combination of two complexes, Velans and Gaudens.  

 Velans complex = 1-2, 3-4, 5-8, 7-6, 9-10, 11-12, 13-14 

 Gaudens complex = 1-2, 3-14, 5-6, 7-4, 12-10, 11-8, 13-9 

If the 14 chromosomes of each complex are numbered accordingly, the matching end 

arrangements combine to form the one pair and one circle of 12 chromosomes of O. 

lamarckiana.  Each chromosome represents a pair from the parent complex “…with the 

velans chromosomes in bold type-face” (Cleland and Blakeslee, 1930).  In this catenated 

form, the lethal genes become balanced resulting in self-incompatibility or 

incompatibility with closely related species. 

 

1-2   3-4   –   4-7   –   7-6   –  6-5  –  5-8  –  8-11 

|   |  |           | 

1-2  3-14 – 14-13 – 13-9 – 9-10 – 10-12 – 12-11 

 

Cleland later found (1951) that aside from the polyploidy of the constituents of 

subsections Hartmannia and Kneifa, naturally occurring aneuploidy and polyploidy are 

rare in Oenothera.  Cleland described two true-breeding lines of mutants of Oenothera 

hookeri Torr. & A. Gray which carried a pair of extra and diminutive chromosomes, 

sometimes finding one or three in each plant.  The two mutants had the notation 4 + 5ii + 
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2.  Significant work has been done more recently to breed Oenothera oil seed crops with 

higher gamma linolenic acid (GLA) content.  Early flowering cultivars were developed 

so that hotter temperatures would increase the production of GLA (Levy et al., 1992).  Of 

these ornamental and oil-crop cultivars, crosses have only been made intraspecifically.  

The day-blooming ‘Gold Evening Primrose’ was produced through the hybridization of 

Oenothera lamarckiana and the island evening primrose (Oenothera sp.) (Kim, 2009).  

Self-incompatability and pollination requirements of O. speciosa are described by CL 

Wolin (1984).  This research describes the necessity of O. speciosa pollinators to 

facilitate outcrossing.  Plants were subjected to seven pollination treatments.  Control 

flowers which were left untouched and open to pollinators had a >450% increase in seed 

set than those which were selfed by hand.  LK Crowe (1955) studied the self-sterility and 

self-fertility of 10 species of Oenothera (O. acaulis Cav., O. speciosa, O. organensis 

Munz, O. missouriensis Sims, O. rhombipetala Nutt. ex Torr. & A. Gray, O. trichocalyx 

Nutt., O. pallida Douglas ex Lindl., O. latifolia [Rydb.] Munz, O. deltoides Torr. & 

Frém., and O. runcinata [Engelm.] Munz), the latter five being of the same sub-genus 

Anogra.  In a polycross of the ten species he proved that those species belonging to 

Anogra were compatible with each other, yet self-incompatible (with the exception of O. 

trichocalyx).  All non-Anogra species were both self-incompatible and incompatible with 

each other or produced inviable seed (with the exception of O. acaulis which was self-

fertile but incompatible with all other species). 

Despite the difficulties posed to interspecific breeding, some Oenothera cultivars have 

been produced commercially.  Several intraspecific Oenothera progeny have been 

patented in the last decade.  In addition to the variegated ‘LISHAL’ cultivar, a branch 
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offshoot of Oenothera speciosa was selected for patent named Oenothera ‘TURNER01’.  

The leaves of ‘TURNER01’ were more variegated and its growth habit was lower than 

the parent plant (Morum, 2006).  A cross made of two unpatented cultivars of Oenothera 

hybrida Michx. resulted in a German cultivar named ‘INNOENO131’ (Hofmann, 2006).  

An open pollination of Oenothera fremontii resulted in the cultivar ‘Shimmer’, which has 

narrower ribbon-like foliage which differentiate it from the parent material (Ogden and 

Ogden, 2009).  

The genes for purple flower color are carried by the genus Clarkia Pursh. which also 

belongs to the family Onagraceae.  Other desirable characteristics exist in close relatives 

of Oenothera such as the flower shape of genus Calylophus Spach and the flower 

clustering of genus Camissonia Link. The phylogenetic tree in Figure 1 shows the genera 

comprising Onagraceae, and the relationship between Oenothera, Clarkia, and 

Camissonia.  The genus Calylophus is incorporated into Oenothera. 

In order to increase the appeal of Oenothera spp. as an ornamental crop, the introduction 

of new flower morphology into the genus was tested through interspecific and 

intergeneric hybridization within the family Onagraceae.  

 

Materials and Methods 

Populations of several species of Oenothera plants (Oenothera drummondii Hooker, 

Oenothera pallida Lindl., Oenothera speciosa Nutt. (Everwilde Farms, Bloomer, WI), 

Oenothera missouriensis Nutt., Oenothera hookeri Torr. & A. Gray, Oenothera 

coronopifolia Torr. & A. Gray (Plants of the Southwest, Santa Fe, NM), Oenothera rosea 
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L’Hér. ex Aiton, Oenothera biennis L., Oenothera flava [A. Nelson] Garrett (USDA – 

GRIN), Oenothera caespitosa Nutt. ssp. marginata [Nutt. ex Hook. & Arn.] Munz 

(Alplains, Kiowa, CO), Oenothera elata Kunth ssp. hirsutissima [A. Gray ex S. Watson] 

W. Dietr.(The Theodore Payne Foundation, Sun Valley, CA), Oenothera longifolia cv. 

Lemon Sunset (Diane’s Flower Seeds, Ogden, UT), were grown from seed in six inch 

azalea pots (ITML Elite, Myers Industries Inc., Akron, OH) using a soilless growing 

media Metro-mix 902 (Sun Gro Horticulture, Vancouver, BC, Canada).  Seeds of Clarkia 

amoena Lehm., Clarkia pulchella Pursh., Clarkia unguiculata Lindl., Clarkia purpurea 

W. Curtis, Calylophus hartwegii Benth., Camissonia ignota Jeps., Camissonia boothii 

Douglas ex Lehm. and Camissonia cheiranthifolia Hornem. ex Spreng from three other 

genera were purchased from JL Hudson Seedsman (La Honda, CA) for the hybridization 

program.  

Flowers were emasculated one or two days prior to crossing.  Sepals were carefully cut 

open with forceps and premature anthers were removed in order to prevent self-

fertilization.  Fertilization was performed using forceps one day after emasculation.  If 

the stigma of the female plant remained turgid for a second day, pollination was 

performed again in the same manner.  Eight distinct species of Oenothera were employed 

as female parents in crosses: O. drummondii, O. pallida, O. speciosa, O. missouriensis, 

O. rosea, O. caespitosa ssp. marginata, O. elata ssp. hirsutissima, and O. hookeri . All of 

the Oenothera species listed were also used as male parent plants in addition to four 

others: O. biennis, O. flava, O. longifolia cv. Lemon Sunset, and O. coronopifolia).  

These Oenothera plants had flowers which bloomed sparser or within a much shorter 

time frame.  In order to be utilized as female parent, a plant needed at least five blooms in 
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order to complete a reciprocal cross.  Those with less than five blooms in a given time 

period were only able to be pollen donors.  When the seed capsules matured, the seed was 

placed into a coin envelope to be sown later.  Collected seed was sown into seedling trays 

with 18-cell plastic inserts filled with metro-mix 702 on 14 March and 26 September, 

2011 and moved to the Oklahoma State University Horticulture Research Greenhouses 

(Stillwater, OK), which were set to a day temperature of 24°C and 18°C night 

temperature.   

Results and Discussion 

During the spring and summer of 2010 and 2011, 721 crosses were made among the 

Oenothera species and with the allied Onagraceae genera.  The majority of seed capsules 

of the parent plant immediately began to wither days after pollination and most fell off 

before any seed could develop.  All capsules, however, that were recovered were opened 

and the undeveloped seeds were sown. 

From the 86 crosses using O. drummondii as the female parent, ten of the crosses 

produced seed.  The majority of seed was sown on 26 September, 2011.  One cross with 

O. caespitosa ssp. marginata produced seed earlier and was sown on 2 June, 2011.  Of 

the seed collected, 64% germinated.  After germination the seed was evaluated until 

maturity.  All seedlings looked identical to O. drummondii and bore no similarities to 

male parents.  All plants had the distinctive yellow flowers of the female parent.  

From the 110 crosses using O. pallida as the female parent, only one cross produced 

seed.  The seed was produced by the cross O. pallida x Clarkia purpurea.  The seed was 

planted and the resulting seedling was evaluated to show no resemblance to C. purpurea.  
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The suspected selfed seed was produced for a couple of likely reasons.  Western flower 

thrips (Frankliniella occidentalis Pergande) were a common pest problem in the 

greenhouse populations of Oenothera.  These thrips likely caused some unintended 

pollination of previously emasculated flowers.  Flowers being pollinated by thrips is a 

common occurrence in nature (Kevan, 1972).  Additionally, many of the individuals of 

each species were grouped close together and hand-watered.  Accidental selfing was 

likely due to the movement resulting from these cultural practices. 

From the 162 crosses using Oenothera speciosa as the female parent, zero viable seed 

was produced.  Immature seeds recovered from capsules of three crosses with O. 

longifolia ‘Lemon Sunset’ and O. caespitosa marginata were sown resulting in no 

germination.  The crosses using O. missouriensis, O. caespitosa ssp. marginata, O. elata 

ssp. hirsutissima and O. hookeri as the female parent produced no viable seed.   

Of the 44 crosses of Calylophus hartwegii, no seed was produced.  The crosses of the 

three species of Camissonia produced seed which was aborted or underdeveloped.  All of 

it failed to germinate.  Similarly, the crosses of Clarkia pulchella, Clarkia unguiculata 

and Clarkia purpurea produced no viable seed.  Of the 12 crosses of Clarkia amoena, 

one produced a total of 70 seeds, all of which failed to germinate. 

There were 43 crosses using Oenothera rosea (Figure 3.2) as female parent with seven 

distinct male parents.  Only the cross O. rosea x O. speciosa produced viable seed.  Of 

the 24 seeds only 12 germinated.  Eleven of the seedlings resembled O. rosea and one 

seedling resembled O. speciosa.  The flowers of Oenothera rosea are rose-colored and 

have an average diameter of 1.6 cm.  Its leaves average 6 cm long and 2 cm wide and are 
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narrowly ovate.  The pink or white flowers of O. speciosa (Figure 3.3) can range from 5 

to 8 cm in diameter.  Fully expanded adult leaves have an average length of 5 cm and a 

width of 2 cm.  The leaves vary in shape from lanceolate and lobed to ovate (Richardson, 

1995).  The suspected hybrid (Figure 3.4) has flowers with the rose-coloration of O. 

rosea and the flower size (5.5 cm diameter) of O. speciosa.  Oenothera speciosa typically 

has blooms which are cupped when fully open.  The progeny has blooms resembling that 

of Oenothera rosea, which open completely to form a flat surface perpendicular to the 

capsule.  The leaves of the progeny have an average width of 2 cm, common to both 

species.  The average length of mature leaves is 4.5 cm which are ovate and slightly 

lobed toward the petiole.  This is a shorter leaf than that of O. rosea, from which the seed 

was taken. 

Conclusions 

The resulting lack of success in crosses resulting from an interspecific Oenothera cross 

could be due to the differences in sections of the two plants.  Consistent with the work of 

LK Crowe (1955), none of the plants from differing Oenothera sections were capable of 

producing any viable seed.  The differences in chromosome arrangement between the 

various sections are likely the cause.  The only two plants which showed potential for 

compatibility were O. rosea and O. speciosa, both of which were members of section 

Hartmannia.  Other species which may have been compatible: O. drummondii and O. 

hookeri (Raimannia) or O. elata, O. biennis, and O. longifolia (Oenothera).  Crosses 

were not made among these plants due to the sparseness of flowers or incompatible 

flowering periods.  Hypothesis 1 was proved to be invalid.  Hypothesis 2 was proved 

valid, but only in one case. 
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Figure 3.1.  The phylogenetic tree of family Onagraceae 

 

Levin et al. 2003. 
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Figure 3.2.  Photograph of Oenothera speciosa. 

 

 

© Plantbixen.dk 2013 
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Figure 3.3.  Photograph of Oenothera rosea 

 

 

© Plants Database of Greece, 2011-2012. 
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Figure 3.4.  Photograph of suspected cross Oenothera rosea × speciosa 
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Table 3.1 The sections of Oentothera species used in this breeding study. 

Species Section 
  
O. drummondii Raimannia(Rose ex Britton & A. Br.) Munz 
O. hookeri Raimannia(Rose ex Britton & A. Br.) Munz 
O. pallida Anogra (Spach) Jeps.  
O. speciosa Hartmannia (Spach) Munz  
O. rosea Hartmannia (Spach) Munz 
O. missouriensis Megapterium (Spach) Munz 
O. caespitosa marginata Pachylophus (Spach) Jeps. 
O. elata hirsutissima Euoenothera Torr. & A. Gray  
O. biennis Euoenothera Torr. & A. Gray 
O. longifolia Euoenothera Torr. & A. Gray  
O. flava 
O. coronopifolia 
 

Lavauxia (Spach) Jeps. 
Chylismia (Torr. & A. Gray) Jeps. 
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Table 3.2  The interspecific and intergeneric crosses of twelve species of Oenothera. 
 
 
Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

O. drummondii Camissonia cheiranthifolia 1 4/8/2010 - - - 
 O. rosea 2 4/9/2010 - - - 
 Clarkia unguiculata 2 10/7/2010 - - - 
 Clarkia unguiculata 6 10/8/2010 - - - 
 O. speciosa 2 2/21/2011 - - - 
 Clarkia purpurea  3 2/24/2011 - - - 
 Clarkia purpurea  4 3/4/2011 - - - 
 Camissonia cheiranthifolia 5 3/7/2011 - - - 
 O. speciosa 2 3/7/2011 - - - 
 O. caespitosa marginata 5 3/8/2011 6/2/2011 50 22 
 O. speciosa 4 3/8/2011 - - - 
 Camissonia cheiranthifolia 5 3/14/2011 - - - 
 O. caespitosa marginata 6 3/14/2011 - - - 
 Clarkia purpurea  5 5/26/2011 9/26/2011 37 34 
 Clarkia unguiculata 5 5/26/2011 9/26/2011 12 7 
 O. rosea 4 6/6/2011 9/26/2011 61 56 
 Clarkia pulchella 4 6/6/2011 9/26/2011 34 22 
 Clarkia amoena 5 6/16/2011 9/26/2011 51 32 
 Calylophus Hartwegii 5 7/27/2011 9/26/2011 39 30 
 O. biennis 5 7/27/2011 9/26/2011 33 0 
 Clarkia purpurea  1 8/3/2011 - - - 
 O. speciosa 5 8/4/2011 9/26/2011 15 9 
       
       
O. pallida O. speciosa (wh) 5 4/8/2010 - - - 
 Camissonia cheiranthifolia 1 4/9/2010 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

       
O. pallida Clarkia amoena 5 5/13/2010 - - - 
 Camissonia cheiranthifolia 2 5/17/2010 - - - 
 Camissonia cheiranthifolia 5 5/18/2010 - - - 
 Clarkia pulchella 5 5/19/2010 - - - 
 Clarkia amoena 5 5/19/2010 

5/21/2010 
- - - 

 Clarkia unguiculata 6 - - - 
 Clarkia purpurea 1 5/21/2010 3/14/2011 1 1 
 Clarka amoena 3 6/2/2010 - - - 
 Camissonia ignota 6 6/4/2010 - - - 
 Clarkia purpurea 7 6/7/2010 - - - 
 Camissonia ignota 4 6/10/2010 3/14/2011 0 - 
 O. speciosa 3 6/10/2010 3/14/2011 0 - 
 O. sp 2 6/10/2010 - - - 
 O speciosa 1 9/17/2010 - - - 
 Clarkia unguiculata 1 11/22/2010 3/14/2011 0 - 
       
O. speciosa Camissonia cheiranthifolia 1 11/22/2010 - - - 
 Camissonia cheiranthifolia 1 2/21/2011 - - - 
 Camissonia cheiranthifolia 2 2/23/2011 - - - 
 Clarkia unguiculata 6 5/25/2011 9/26/2011 0 - 
 Clarkia pulchella 5 6/16/2011 9/26/2011 0 - 
 Calylophus hartwegii 5 7/27/2011 9/26/2011 0 - 
 O. biennis 5 7/28/2011 9/26/2011 0 - 
 Camissonia cheiranthifolia 5 8/1/2011 9/26/2011 0 - 
 O. flava 5 8/4/2011 9/26/2011 0 - 
 O. caespitosa marginata 8 8/5/2011 9/26/2011 0 - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

       
O. speciosa O. caespitosa marginata 3 4/9/2010 - - - 
 Camissonia boothii 3 4/19/2010 - - - 
 Clarkia pulchella 5 4/20/2010 - - - 
 Clarkia purpurea 5 4/30/2010 - - - 
 O. macrocarpa 2 4/30/2010 - - - 
 Clarkia pulchella 2 5/1/2010 - - - 
 Camissonia ignota 4 5/13/2010 - - - 
 Clarkia pulchella 5 5/17/2010 - - - 
 Clarkia purpurea 8 5/17/2010 - - - 
 Clarkia amoena 5 5/19/2010 - - - 
 Clarkia unguiculata 5 5/19/2010 - - - 
 Camissonia boothii 1 5/20/2010 - - - 
 Clarkia unguiculata 3 5/21/2010 - - - 
 Camissonia boothii 3 5/21/2010 - - - 
 Clarkia amoena 10 5/21/2010 - - - 
 Camissonia cheiranthifolia 7 6/7/2010 - - - 
 Camissonia boothii 3 6/9/2010 - - - 
 Calylophus hartwegii 5 6/9/2010 - - - 
 O. Lemon Sunset 1 6/10/2010 3/14/2011 0 - 
 O. missouriensis 3 8/19/2010 - - - 
 O. Lemon Sunset 4 8/24/2010 3/14/2011 0 - 
 O. rosea 4 8/25/2010 - - - 
 Camissonia cheiranthifolia 3 8/25/2010 - - - 
 O. caespitosa marginata 10 8/27/2010 3/14/2011 0 - 
 O. elata hirsutissima 1 8/30/2010 - - - 
 Camissonia cheiranthifolia 6 9/1/2010 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

O. speciosa O. rosea 3 9/16/2010 - - - 
 O. rosea 2 9/17/2010 - - - 

 
Calylophus hartwegii 
Clarkia unguiculata 

3 
2 

9/20/2010 
9/30/2011 

- 
- 

- 
- 

- 
- 

 (X) self 3 10/7/2010 - - - 
 Clarkia unguiculata 1 10/8/2010 - - - 
 O. drummondii 2 2/21/2011 3/14/2011 0 - 
 Camissonia cheiranthifolia 2 2/23/2011 3/14/2011 0 - 
 Clarkia purpurea 2 2/24/2011 3/14/2011 0 - 
 Camissonia cheiranthifolia 10 3/2/2011 3/14/2011 0 - 
 O. caespitosa marginata 14 3/9/2011 3/14/2011 0 - 
 Clarkia purpurea 5 3/10/2011 3/14/2011 0 - 
 Clarkia purpurea 2 3/17/2011 3/14/2011 0 - 
       

       
O. missouriensis Camissonia boothii 1 4/14/2010 - - - 
 Camissonia boothii 1 4/19/2010 - - - 
 Camissonia cheiranthifolia 2 5/17/2010 - - - 
 Calylophus hartwegii 6 7/22/2010 - - - 
 Camissonia ignota 5 7/29/2011 - - - 
 Clarkia unguiculata 3 8/4/2010 - - - 
 O. speciosa 1 9/30/2010 - - - 
 Camissonia cheiranthifolia 1 10/7/2010 - - - 
 Clarkia unguiculata 6 10/8/2010 3/14/2011 0 0 
 Clarkia unguiculata 5 5/25/2011 - - - 
 Clarkia pulchella 5 5/25/2011 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

       
Clarkia pulchella O. speciosa 2 4/20/2010 - - - 
 O. speciosa 3 5/1/2010 - - - 
 O. pallida 5 5/17/2010 - - - 
 O. pallida 3 6/9/2010 - - - 
       
       
Clarkia purpurea x O. missouriensis 5 5/14/2010 - - - 
 x O. speciosa 3 5/14/2010 - - - 
 x O. rosea 1 5/17/2010 - - - 
 x Clarkia amoena 5 5/19/2010 - - - 
 x O. pallida 5 5/21/2010 - - - 
 x O. speciosa 2 6/9/2010 - - - 
 x O. speciosa 10 3/7/2011 9/26/2011 0 - 
 x O. caespitosa marginata 8 3/16/2011 - - - 
 x O. rosea 2 3/17/2011 - - - 
       

Clarkia  
 
O. missouriensis 5 5/14/2010 - - - 

unguiculata O. speciosa 5 5/14/2010 - - - 
 Camissonia ignota 5 5/14/2010 - - - 
 O. missouriensis 1 5/17/2010 - - - 
 Camissonia ignota 1 5/17/2010 - - - 
 O. speciosa 8 5/18/2010 - - - 
 O. pallida 1 5/19/2010 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

Clarkia O. pallida 1 5/21/2010 - - - 
unguiculata O. missouriensis 1 7/30/2010 - - - 
 O. missouriensis 2 8/24/2010 - - - 
 O. Coronopifolia 5 8/27/2010 - - - 
 O. missouriensis 1 8/30/2010 - - - 
 O. missouriensis 7 10/7/2010 - - - 
 O. missouriensis 2 10/13/2010 - - - 
 O. speciosa 2 5/26/2011 - - - 
 O. lemon sunset 5 6/2/2011 - - - 

       
 
Clarkia amoena O. pallida 2 5/17/2010 - - - 
 O. pallida 1 5/20/2010 8/3/2010 70 - 
 O. speciosa 2 5/21/2010 - - - 
 O. speciosa 2 6/10/2010 - - - 
 O. pallida 2 6/11/2010 - - - 
 O. pallida 3 6/14/2010 - - - 

       
       
Camissonia  O. pallida 5 5/17/2010 - - - 
boothii O. speciosa 5 5/17/2010 - - - 

    - - - 
 
O. rosea Clarkia purpurea 1 5/17/2010 - - - 
 Clarkia purpurea 3 5/18/2010 - - - 
 Clarkia purpurea 6 6/15/2010 - - - 
 Clarkia unguiculata 6 6/15/2010 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

O. rosea O. speciosa 1 6/15/2010 3/14/2011 24 12 
 Camissonia cheiranthifolia 3 3/7/2010 - - - 
 Clarkia purpurea 5 5/27/2011 - - - 
 Clarkia unguiculata 5 5/27/2011 - - - 
 O. lemon sunset 5 5/27/2011 - - - 
 O. sp   3 6/3/2011 - - - 
 Calylophus hartwegii 5 8/5/2011 - - - 

      
 
O. caespitosa  Clarkia purpurea 5 5/19/2010 - - - 
marginata Camissonia boothii 1 5/20/2010 - - - 
 O. speciosa 1 6/10/2010 - - - 
 O. Missouriensis 3 8/24/2010 - - - 
 Calylophus hartwegii 1 8/27/2010 - - - 

Clarkia unguiculata 2 9/16/2010 - - - 
 Clarkia purpurea 2 2/23/2011 - - - 
 Clarkia purpurea 3 3/2/2011 - - - 
 Camissonia cheiranthifolia 5 3/4/2011 - - - 
 O. speciosa 2 3/8/2011 - - - 
 Clarkia unguiculata 1 5/25/2011 - - - 
 Clarkia pulchella 1 6/3/2011 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

Calylophus  O. speciosa 2 6/9/2010 - - - 
hartwegii O. pallida 2 6/11/2010 - - - 

 O. speciosa 3 6/14/2010 - - - 
 O. pallida 2 6/16/2010 - - - 
 O. caespitosa marginata 3 8/3/2010 - - - 
 O. missouriensis 8 8/3/2010 - - - 
 Camissonia cheiranthifolia 4 8/3/2010 - - - 
 O. elata hirsutissima 5 8/3/2010 - - - 
 O. speciosa 8 8/25/2010 - - - 
 O. caespitosa marginata 1 8/25/2010 - - - 
 O. speciosa 1 9/30/2010 - - - 
 O. sp     2 6/20/2011 - - - 
 O. flava 2 7/28/2011 - - - 
 O. biennis 1 7/29/2011 - - - 

       
 
Camissonia cheiranthifolia O.speciosa 4 6/7/2010 - - - 
 O. pallida 2 6/9/2010 - - - 

 O. pallida 3 6/10/2010 - - - 
 O. speciosa 2 6/14/2010 - - - 
 O. missouriensis 8 7/28/2010 - - - 

 O. rosea 2 11/22/2010 - - - 
 O. pallida 3 11/22/2010 - - - 
 O. drummondii 3 2/23/2011 - - - 

 O. drummondii 4 2/24/2011 - - - 
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Female parent 

 
 
Male parent 

# of 
Crosses 
made Date of cross Date sown 

# of 
seeds Germ. 

       
Camissonia cheiranthifolia O. speciosa(white) 1 3/7/2011 - - - 

O. speciosa 3 3/10/2011  - - 
 O .speciosa 1 3/14/2011 - - - 
 O. coronopifolia 5 5/25/2011 - - - 
 O. missouriensis 5 6/16/2011 - - - 
 O. pallida 5 7/27/2011 - - - 
       
       
Oenothera elata  Clarkia unguiculata 3 5/21/2010 - - - 
hirsutissima Calylophus hartwegii 4 8/24/2010 - - - 
       
       
Camissonia ignota O. pallida 5 6/3/2010 - - - 
 O. speciosa 7 6/7/2010 - - - 
 O. missou 9 7/28/2010 - - - 
       
       
O. hookeri O. coronopifolia 1 8/30/2010 - - - 
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