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Abstract: Previous research indicates that metabolism and fiber type of skeletal muscle is 

related to intramuscular lipid content. The objective of this study was to determine 

differences in the metabolism and intercellular signaling of skeletal muscle fibers within 

the same muscle group that could be responsible for the initiation of intramuscular 

adipose tissue development and differentiation.  Longissimus dorsi  muscle (LM) samples 

were collected from steers (n = 12; 385 days of age; 378 kg) grazing wheat pasture. LD 

samples were dissected under magnification and sorted into 3 categories based on visual 

stage of development: immature (MM), intermediate (ME) and mature (MA) 

intramuscular fat (IM). In addition, muscle fibers lying adjacent to each IM category and 

those not associated with IM tissue were collected and stored separately. Quantitative 

RT-PCR was used to determine relative fold change in genes involved in metabolism, 

angiogenesis, formation of extracellular matrix, and intercellular signaling pathways in 

both LD and IM samples.  Gene expression data were analyzed using a general linear 

model that included the fixed effect of tissue. Pearson correlation coefficients were also 

computed between gene expression in LD and IM tissue samples that were at the same 

stage of development. Fatty acid binding protein 4 and PPARγ expression were greater 

(P<0.05) in more mature IM while PREF-1 expression was less (P<0.01) indicating 

successful separation into different maturity categories. Genes associated with 

metabolism and angiogenesis in LD tissue showed no differences among stages of 

development. Myostatin expression did not change in LD tissue; however, myostatin 

receptor and follistatin expression decreased (P<0.01) as IM matured. Collagen type I 

and VI had evaluated mRNA expression in the skeletal muscle associated with immature 

IM development. Angiogenic growth factors in MM IM tissue had a strong positive 

correlation (r>0.88) with angiogenic growth factors in LD associated with MM IM; 

however, no correlation was observed in ME or MA IM. These data indicate a 

coordinated effort between LD and IM in early stages of IM development. 
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CHAPTER I 
 

 

INTRODUCTION 

The main goal of meat animal production is to produce a high-quality meat product for the 

customer. Protein growth is the primary concern for producers; however, intramuscular fat is the 

primary aspect of quality grade in beef cattle. Narrow profit margins in animal agriculture have 

made improving the efficiency of animal growth an important focus. Producers receive premiums 

for carcasses with above average intramuscular fat and minimal subcutaneous fat. Therefore, 

understating the effects that management practices have on feedlot performance and carcass 

characteristics, like intramuscular fat, could be economically viable for producers. Some studies 

have shown that the type of growing program has effects on body composition and feedlot 

performance of beef cattle (Carstens et al., 1991; Drouillard et al., 1991; Hersom et al., 2004) . 

Data collected from the Vetlife Benchmark Performance data base  showed a slight decline in 

USDA Choice carcasses since 1999, despite an increase USDA Yield Grades of 4 or 5 (Anderson 

et al., 2007). This data indicates that carcasses are reaching a fatter end point without an increase 

in quality grade.   

Meeting the challenge of increasing meat quality will require a comprehensive knowledge of 

gene expression changes that occur between muscle and intramuscular fat. Development of 

intramuscular fat, also called marbling, occurs within the perimysium of muscle bundles. Since 

marbling develops within close proximity to muscle fibers, it is believed that signaling between 

myogenic cells and adipocytes may influence marbling development (Kokta et al., 2004). 
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Intramuscular fat development has been shown to develop closely with capillary networks 

(Harper and Pethick, 2004). Hausman and Richardson (2004) reported that angiogenesis is an 

important aspect of adipose tissue development, and that differentiation of adipocytes may be 

regulated by factors that stimulate the formation of blood vessels also called angiogenesis.  

The economic benefits from producing cattle that will receive the USDA quality grade of Choice 

or better and the weight gain added to cattle during grazing indicate that it is may be 

advantageous for producers to utilize growing programs to help improve quality grades.  To 

increase the understanding of the physiological mechanisms that regulate the coordinated 

development of skeletal muscle and intramuscular adipose tissue, we evaluated the effect of rate 

of gain during the stocker phase on changes in gene expression associated with intercellular 

signaling mechanisms.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Growing Programs 

Growing programs, commonly referred to as stocker and backgrounding programs in the Great 

Plains, are composed of a variety of production practices all with one common goal, growth. The 

stocker or backgrounding phase of production is commonly the time period between weaning of 

calves and the beginning of the finishing phase. It is estimated that 74 to 82% of yearly calf crop 

is available as stocker calves to enter a stocker program before entering the finishing stage of 

production (Peel, 2003).  Stocker programs are commonly forage based systems with an emphasis 

on skeletal growth of the animal rather than fat deposition. Body growth before fattening allows 

for improved quality and marbling scores because greater maturity is obtained by reaching 

slaughter finish at a desirable carcass weight (Sainz et al., 1995). Producers often utilize wheat 

pasture as a grazing program because the profit available from value added to cattle, as weight, 

along with grain production following removal of the cattle.  Grazing stocker cattle can be 

economically advantageous due to the availability of high quality forage and the favorable 

seasonality of feeder cattle prices (Horn et al., 2005).  

Body composition and feedlot performance are impacted by growing programs. Sainz et al. 

(1995) reported that during the growing phase cattle frequently are under nutritional stress and 

when placed on ad libitum feed will undergo compensatory growth. Compensatory growth is a 

period of more efficient and rapid growth following nutritional and/or environmental stress.
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However, the response to nutrient restriction is highly variable among cattle possibly due to 

genotypic differences or the degree of nutrient restriction (Drouillard et al., 1991). Higher body 

fat condition doesn’t negatively influence feedlot efficiency or performance of calves as 

previously thought (Hersom et al., 2004; McCurdy et al., 2010). Greater efficiency, due to 

increased gain and decreased dry matter intake, was observed in cattle placed directly into a 

feedlot following weaning (Myers et al., 1999). Genetic potential, nutrient availability, and the 

environment are factors that can affect the composition of growth in beef cattle. Alterations in 

carcass fat content may be achieved by modification of final finished body weight through 

nutrition and hormonal factors, even though maximum growth rate is genetically set (Owens et 

al., 1993). Sainz et al. (1995) suggested that when growth is restricted during the growing phase 

the greatest impact is on fat accretion, while muscle development remains unimpaired. A 

reduction in intramuscular fat was shown in cattle that underwent growth depression before 

entering the feedlot, suggesting that nutritional status during the growth phase is a vital 

determinate of final intramuscular fat (Pethick et al., 2004). Nonetheless, whenever cattle are 

marketed at a common endpoint, most commonly determined by 12th-rib fat, there is no 

significant alteration in carcass composition (McCurdy et al., 2010; Sainz et al., 1995). This 

indicates that the impact that growth rate during the growing phase has on final carcass 

composition is small compared to the effects of growth rate during the finishing.  

Tissue Development 

Growth can be described as the accretion of bone, muscle, and fat. Studies have shown that 

growth rates of various tissues differ and appear based on the importance of the functions of the 

body part or tissue starting with skeleton, muscle, and lastly adipose (Berg and Butterfield, 1968; 

Mc Meekan, 1940).  Bone growth is the ultimate determinant of the length of the individual 

muscles and therefore becomes a major determinant of total muscle mass (Beitz, 1985). Early in 

life protein and adipose accretion occur simultaneously; however, later in life fat accretion will 
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surpass that of protein. This pattern occurs because a shift in metabolic priority from protein to fat 

accretion which occurs when an animal reaches 50-60% of their mature weight (Trenkle and 

Marple, 1983). Rate of protein accretion declines as the animal matures because the total turnover 

of protein becomes an increased fraction of total protein synthesis. In addition, there is an 

increase in energy cost per unit of net protein accretion, resulting in a decrease rate of protein 

accretion as protein mass increases (Whittemore and Fawcett, 1976). Protein is less energetically 

efficient than that of fat accretion due to protein having a faster and less efficient turnover rate 

than adipose tissue (Moloney et al., 1991). Moloney et al. (1991) reported fat accretion as being 

1.6 times more efficient than that of protein accretion. A growth curve comparing the relationship 

between protein and fat mass to empty body weight indicates that protein mass increases in a 

linear fashion while adipose tissue is more of a quadratic increase, however upper level was only 

500 kg (Owens et al., 1995). 

Production of new cells can also be explained as growth (Owens et al., 1993). Beitz (1985) stated 

that the number of cells control the total capacity of its respective tissue. Cell growth can occur 

by either hyperplasia or hypertrophy. Hyperplasia is cell multiplication which occurs early in life 

while hypertrophic growth is through cell enlargement, through incorporation of substrates from 

the environment into the cell that occurs later in life (Owens et al., 1993). Increase in muscle fiber 

numbers occurs primarily prenatally with only slight postnatal growth (Moloney et al., 1991). A 

characteristic of a myoblast is their permanent withdrawal from the cell cycle, which prevents the 

myoblast from proliferating (Allen et al., 1979). Since myoblasts lack the capability to proliferate, 

postnatal hypertrophy occurs through incorporation of DNA from satellite cells into the muscle 

fiber. Allen et al. (1979) reported that the most rapid period of muscle growth corresponded with 

the rapid period of increasing DNA within the muscle cell. The incorporation of DNA occurs by 

fusion of satellite cells with muscle cells; the capacity of the muscle cell to grow is attributable to 

a relatively constant amount of muscle cell cytosol present per nucleus (Young et al., 1979). By 
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limiting the amount of DNA incorporated into the muscle cell, muscle growth could be regulated 

(Allen et al., 1979). 

Adipose tissue growth rate is known to differ between sites of deposition in the order of internal, 

intermuscular, subcutaneous, and lastly intramuscular (Beitz, 1985). Unlike skeletal muscle, 

hyperplasia and hypertrophy both occur in adipose tissue postnatally along with prenatal 

hyperplasia. Adipoblasts, which originate from undifferentiated mesenchymal cells, divide to 

form preadipocytes. Preadipocytes lack the ability to divide; therefore, they merely accumulate 

lipid to form mature adipocytes (Beitz, 1985).  Intuitively by increasing the number of fat cells 

present the capacity of the animal to accumulate fat will also be increased. Metabolic activity has 

been shown to differ between adipose depots. Fatty acid biosynthesis in intramuscular fat 

incorporates more carbon from glucose when compared to the subcutaneous depot (Smith and 

Crouse, 1984). Intramuscular fat is known to be a late maturing tissue in animals due to greater 

deposition rate occurring later in life; however, this does not mean that the accretion rate of 

intramuscular fat is also late maturing (Pethick et al., 2004). Adipose deposition is five times 

greater during the finishing phases when compared to deposition rate during growing phase 

(Lemieux et al., 1990).  In contrast, a serial slaughter study of cattle on a high-energy diet 

indicated that marbling develops at a constant rate throughout the growing period opposed to 

being late maturing (Bruns et al., 2004). Another serial slaughter study showed that intramuscular 

fat development increased at a decreasing rate with an increased number of days on feed (Duckett 

et al., 1993).  Pethick et al. (2004) reported that the rate of intramuscular fat as percent of hot 

carcass weight (HCW) is constant for every 10 kg increase in HCW there is a 0.47% increase in 

intramuscular fat.  
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Muscle Fiber Types 

It is an accepted notion among researchers that muscle growth capacity is a characteristic that is 

fixed at birth, since the total number of fibers doesn’t change following birth. The number and 

type of fibers present in bovine muscle is highly variable among sex, breed type, and muscle type 

(Lefaucheur and Gerrard, 2000). Myosin is the primary structural protein present in the thick 

filament of the sarcomere and is a determining factor of the contractile speed.  Polymorphisms of 

the myosin heavy chain (MyHC) is the basis for the contractile type of muscle fibers. Slow 

contractile muscle are involved mainly in posture, while the fast twitch muscles are responsible 

for production of movement.  Succinodehydrogenase, a mitochondrial enzyme, activity is the 

determinant between oxidative and nonoxidative MyHC isoforms (Lefaucheur and Gerrard, 

2000). MyHCs can be categorized as either slow or fast-twitch fibers. Slow-twitch fibers are 

known as type I fibers and display oxidative metabolism characteristics. Fast-twitch fibers are 

known as type II fiber and have three major isoforms, IIA, IIB, and IIX. Type IIA exhibit 

predominantly oxidative metabolism, while IIB primarily glycolytic metabolism. The IIX isoform 

fibers are intermediate to IIA and IIB exhibiting partial oxidative and partial glycolytic (Allen et 

al., 2001; Brooke and Kaiser, 1970; Klont et al., 1998). Studies utilizing PCR amplification have 

shown that bovine muscle does not express the type IIB MyHC isoform (Chikuni et al., 2004; 

Tanabe et al., 1998).  There is an adaption in the energetic metabolism of skeletal muscle during 

development. Lefaucheur and Gerrard (2000) reported that as a whole, muscle metabolism 

becomes more glycolytic with increasing age. It has been determined that bovine are more mature 

at birth than other farm animals due to an earlier start in metabolic differentiation in cattle 

(Gagnière et al., 2000).  

Muscle fiber types are adaptable and can be modified according to management program which 

can be attributed to differences in plane of nutrition and amount of exercise (Klont et al., 1998).  

A study comparing bulls grown on a nutrient restricted diet, loose housing management program 
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to bulls raised on a concentrate diet, tie-stall program showed changes in fiber type between the 

different management programs. The restricted cattle had skeletal muscle that exhibited a higher 

number of the more oxidative type I fiber type (Vestergaard et al., 2000). Similarly, a percent 

increase in type I fiber types was seen in cattle raised in a grazing program when compared to 

cattle in a grain fed system (Shibata et al., 2009). These studies indicate that muscle metabolism 

becomes more oxidative with nutrient restricted diets and increasing exercise. Lefaucheur and 

Gerrard (2000) reported that when induced by physical exercise, the transition of fiber types 

follows the order IIB, IIX, IIA, I.  Management practices aren’t the only factor that can influence 

muscle fiber metabolism; breed and muscle of different function type can also impact muscle 

fiber metabolism. Comparison of Charolais steers to Angus steers of the same age showed that  

Charolais cattle had greater fiber area of primarily glycolytic fibers (Johnston et al., 1981). 

Vestergaard et al. (2000) demonstrated that the different function of muscle will also impact fiber 

metabolism. They stated that the semitendinosus had the most glycolytic metabolism, while the 

supraspinatus had the most oxidative metabolism and the longissimus dorsi was intermediate to 

the two.  

MyHC isoforms composition in skeleton muscle are also an important factor in the quality of 

meat attributed to their effect on post-mortem changes (Klont et al., 1998). Chikuni et al. (2004) 

indicated that the conversion of muscle to meat through rigor mortis is affected by differences in 

ATPase activity of MyHC isoforms. Tenderness and meat discoloration are meat quality 

parameters important to the consumer that can be impacted by post-mortem changes of skeletal 

muscle. Increase in percentage of oxidative muscle fibers have shown a correlation with increased 

tenderness, increase in marbling score, and a decrease in shear force (Calkins et al., 1981). Fiber 

types have also been shown to impact rate of meat discoloration. Higher frequency of glycolytic 

fibers can be related to paler meat with lower intramuscular fat (Wegner et al., 2000). This may 

be because with higher proportions of oxidative fibers within a muscle there will also be an 
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increased concentration of mitochondria. Mitochondria compete with myoglobin for oxygen and 

cause the muscle to have a darker color (Monin and Ouali, 1991). 

Satellite Cells 

Skeletal muscle has the ability to adapt according to demands such as growth, training, or injury. 

The adaptive ability is possible mainly due to a small population of cells called satellite cells 

(Hawke and Garry, 2001). Satellite cells can be described as cells that are closely associated with 

the myofiber and reside between the sarcolemma and basal lamina (Mauro, 1961). Satellite cells 

provide additional myonucleui to growing myofibers. Fusion of satellite cells to myofibers are the 

only form of postnatal muscle growth because muscle fiber numbers aren’t capable of increasing 

following birth (Schultz, 1996). Mitotically quiescent satellite cells remain in an unperturbed state 

and are nonproliferative. Quiescent satellite cells will become activated, proliferative and will 

express myogenic markers in response to a stimuli, such as growth or myotrauma (Hawke and 

Garry, 2001). Activation of the quiescent satellite cells will allow fusion to form new myofibers 

or regenerate damaged muscle (Hawke and Garry, 2001). Schultz (1996) reported that some 

satellite cells withdraw from the cell cycle or cycle slowly to serve as a reserve for satellite cells, 

allowing for satellite cells to be available for future postnatal growth or repair. The process of 

self-renewal by quiescent satellite cells allows for the numbers of satellite cells in the population 

to remain in a constant state (Gibson and Schultz, 1983). Pluripotent stem cells have the capacity 

to differentiate into various cell types with diverse cells (Harper and Pethick, 2004).  A study 

evaluating the potential of satellite cells to differentiate into different cell lineages besides that of 

myogenic cells found that adult satellite cells are capable of differentiating into osteocytes and 

adipocytes following treatment with respective inducer (Asakura et al., 2001). It has also been 

reported, in a more recent study, that satellite cells are committed to the myogenic lineage and 

can’t undergo permanent fate changes to non-myogenic lineages (Starkey et al., 2011).   
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Skeletal Muscle and Satellite Cell Gene Expression 

Skeletal muscle gene expression in meat producing animals has been shown to be regulated by 

many growth factors (Bass et al., 1999; Dayton and White, 2008; Hocquette et al., 1998). Growth 

factors indicated to be of importance in regulation of myoblasts and satellite cell proliferation and 

differentiation are myostatin, IGF-1, MyoD, and MyoG; these factors can have either an 

inhibitory or stimulatory effect on skeletal muscle growth. These growth factors have effects on 

both embryogenesis of myoblasts as well as regulators of the satellite cell population (Hawke and 

Garry, 2001). 

Insulin-like growth factors I and II (IGFs) stimulate the proliferation and differentiation of 

myoblasts (Bass et al., 1999; Dayton and White, 2008). IGF-1 stimulates growth in both pre and 

postnatal periods, while IGF-II effect on growth occurs during fetal growth and has no effect on 

postnatal growth (Collett-Solberg and Cohen, 2000). Dayton and White (2008) reported that 

stimulation of protein synthesis and suppression of protein degradation are actions of IGF-1 in 

myogenic cells. IGFs have been shown to be required for normal growth and survival of animals 

supported by studies that reported an increased death rate and reduction in postnatal growth rate 

in IGF-1 knockout mice (Baker et al., 1993; Liu et al., 1993). Paracrine and/or autocrine actions 

of IGF-1 from local production in skeletal muscle may play a pivotal role in supporting muscle 

growth (Sjögren et al., 1999). Activity of IGFs are regulated by insulin-like growth factor binding 

proteins 1-6 (IGFBPs). IGFBPs are high affinity binding proteins that have the capability to either 

enhance or inhibit the ability of IGF-1 to bind with its IGF receptor (IGF1R), which is 

responsible for much of IGF-1 biological activity (Baxter, 2000). IGFBP-1,-3, and -5 have both 

stimulatory and inhibitory effects on IGF, while IGFBP-2 and-4 have solely inhibitory effects on 

IGF action. Tan et al. (2006) used bovine bone marrow stromal cells to study adipogenesis in 

vitro and reported that IGFBPs -3, -4, and -5 increased during angiogenesis with IGFBP5 having 

the greatest increase.  IGFBP-6 is the only IGFBP that preferentially binds to IGF-II instead of 
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IGF-I (Collett-Solberg and Cohen, 2000). Dayton and White (2008) also showed that IGFBP-3 

and -5 have hindering effects on myostatin activity; however, the mechanism of these processes 

are poorly understood. In vivo, IGF-1 has been shown to have the same capability to increase 

proliferation and differentiation in satellite cells as seen in myoblasts (Allen and Boxhorn, 1989). 

Myostatin is a negative regulator of muscle growth having inhibitory effects on myoblast 

development as well as regulatory effects on satellite cell activity in adult skeletal muscle. The 

negative regulatory actions of myostatin can be observed in the phenotype of double-muscled 

cattle, who have a naturally occurring mutation in their myostatin gene. This breed of cattle 

display an increased number of muscle fibers and to an extent an increase in muscle size (Arthur, 

1995).  Bass et al. (1999) showed that myostatin is expressed in bovine muscle from day 16 of 

gestation throughout the animal’s adult life, in certain muscles. In bovine muscle, myostatin 

expression is highest during gestation when the formation of muscle fibers is occurring (Oldham 

et al., 2001). Myostatin also functions as a negative regulator of satellite cell proliferation by 

regulating satellite cell mitotic activity and self-renewal. This is supported by data that reported 

that myostatin-null mice display muscle hypertrophy and increased postnatal growth, both of 

which can be related to satellite cell activity (Grounds and Yablonka-Reuveni, 1993). 

McCroskery et al. (2003) showed that satellite cells do express myostatin. They reported an 

increase in satellite cells per unit length of muscle fiber in mice that lacked myostatin indicating 

that there is an increase in self- renewal of satellite cells in the absence of myostatin. The effect of 

myostatin on satellite cell quiescence is supported by higher percent of satellite cells in the 

activated state in myostatin-null mice compared to wild type mice (McCroskery et al., 2003). 

Binding of myostatin with activin type II receptors (ACVR2B) causes signaling that negatively 

influences muscle growth (Lee et al., 2005).   A study utilizing transgenic mice that overexpress 

the propeptide follistatin showed that overexpression of follistatin resulted in a phenotype similar 

to a myostatin-null mouse (Lee and McPherron, 2001). Another study using follistatin-mice 
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resulted in mice with decreased muscle mass after birth, compared to control mice, which would 

be an expected phenotype with over activity of myostatin (Matzuk et al., 1995). These studies 

show that follistatin negatively regulates the activity of myostatin.  

The MyoD family of transcription factors (MFRs) including MyoD, myogenin (MyoG) and Mfy5 

are important factors involved in muscle growth. Myf5 and MyoD are responsible for the 

determination of myogenic cells and myoblast formation during embryogenesis. Activation of 

muscle differentiation is a function of MyoG (Hawke and Garry, 2001). MyoD and MyoG bind to 

the same promoters but have distinctly different roles in skeletal muscle gene expression. MyoD, 

independent of MyoG activity, is sufficient to initiate expression of early genes, but to activate 

late genes combined activity with MyoG is necessary. MyoG does not efficiently activate muscle 

genes without synergistic activity with MyoD on genes expressed late and responsible for 

myogenic differentiation (Cao et al., 2006). Despite the understanding of the role of MRFs in 

embryogenesis, there are a lack of studies that aid in clarifying the roles of MRFs in the growth of 

adult skeletal muscle. MRFs have also been shown to be isolated according to fiber type. Studies 

support that MyoD is localized in fast-twitch fibers while MyoG is localized in slow-twitch 

myofibers (Hughes et al., 1993; Seward et al., 2001). 

Paired box transcription factor (Pax7) expression has been shown to be specific to quiescent 

satellite cells (Hawke and Garry, 2001; Seale et al., 2000). Seale et al. (2000) demonstrated that 

Pax7-null mice exhibited decreased muscle mass, likely attributed to deficient postnatal skeletal 

muscle growth. Lack of postnatal growth is caused by the absence of the formation of muscle 

satellite cells in mice lacking Pax7 expression (Seale et al., 2000).  Two MRFs, MyoD and Myf5, 

also may be used as satellite cell markers along with Pax7. MyoD and Myf5 are not expressed in 

quiescent satellite cells; however, they become expressed once satellite cells become activated 

(Cornelison and Wold, 1997). Studies have determined that MyoD expression isn’t detectable 

until 24 hours after satellite cell activation and Myf5 expression isn’t detectable until 48 hours 
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following activation (Cornelison and Wold, 1997; Smith et al., 1994). These studies indicate that 

MyoD and Myf5 can be used as indicators of satellite cell activation and proliferation.  

Extracellular Matrix 

The extracellular matrix (ECM) has multiple functions that it performs within the body. The 

ECM provides anchorage and structural support for cells, separates one tissue from another, as 

well as regulating intercellular communication between tissues (Hausman, 2012; Velleman, 

2012).  A study indicated that the formation of functional skeletal muscle requires the presence of 

ECM, so muscle growth can be patterned (Purslow and Duance, 1990). Interactions of cells with 

ECM is important because ECM components provide chemical information to cells. Hausman 

(2012) reported that cellular functions that require growth factor mediation for activation can 

occur within the ECM due to the rapid and local availability of growth factors. Growth factors are 

locally available because ECM can act as depot for growth factors that have acquired and stored 

within the ECM.  ECM in skeletal muscle has three layers of connective tissue: endomysium, 

perimysium, and epiysium with each layer differing in composition of collagen types present in 

the ECM (Purslow, 2002; Purslow et al., 2012).  The perimysium which surrounds muscle fibre 

bundles is important when concerning intramuscular fat because the perimysium is where 

intramuscular fat development occurs. ECM of skeletal muscle have both marbling and 

connective tissue present, the intramuscular adipocytes are embedded within the connective tissue 

(Du and Carlin, 2012). Collagens, found exclusively in the ECM, have differing physiological 

and development functions within various cell types (Nakajima et al., 2002).  In a study using a 

bovine intramuscular preadipocytes (BIP) cell line Nakajima et al. (1998) reported that BIP cells 

had the ability to produce collagens type I, III, IV, with VI being the most highly expressed 

collagen. Kubo et al. (2000) reported that the same collagen types stated by Nakajima et al (1998) 

are what compose the fibrous network of interstitial collagens during the late stage of adipocyte 

differentiation. Collagen type I (COL1) is the major component of the anchoring system that 
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connects adipocytes to each other and the fat clusters to the basement membrane (Kubo et al., 

2000). Collagen VI (COL6) appears to be specific for adipocytes because it the primary collagen 

expressed by adipocytes (Mariman and Wang, 2010; Nakajima et al., 2002; Nakajima et al., 

1998). An in vivo study using BIP cells showed that COL6 was capable of increasing lipid 

synthesis (Nakajima et al., 2002). The same authors also speculated that COL6 may be associated 

with the increase intramuscular fat development associated with Japanese Black cattle. The level 

of COL6 expression in the perimysium and endomysium ECM of Japanese Black are more 

abundant than other cattle breeds (Nakajima et al., 2002; Nakajima et al., 1998). Mariman and 

Wang (2010) showed changes in expression levels of collagens and differences were seen among 

collagen types as adipocytes differentiated. COL1 expression levels decreased early during 

differentiation but later increased; COL6 expression pattern was the opposite having high level 

early during differentiation and declining late.  

ECM is constantly being remodeled due to the high degree of replacement that occurs within 

collagen. Changes in the ECM components are associated with remodeling. Remodeling must 

occur for the changes associated with development IM depots. Balance between the activities of 

constructive and destructive enzymes is essential for maintenance of the ECM  homeostasis 

(Mariman and Wang, 2010). In vivo studies have shown that MMP2 and -9 are released by 

adipocytes during differentiation (Bouloumie et al., 2001). The same study also demonstrated that 

MMP2 and -9 play a role in differentiation through the modulation of components within the 

ECM; MMP2 expression constantly increased with differentiation, while MMP9 was shown to 

have a strong downregulation at the end of differentiation period. Bouloumie et al. (2001) also 

reported that MMp2 and -9 are essential for the degradation of ECM associated is angiogenesis.  

MMPs are secreted as zymogens and are activated by the proteolytic removal of a small domain 

that shields the active site of the enzyme (Purslow et al., 2012). Tissue inhibitors of 

metalloproteinases (TIMPs) regulate the activity of MMPs within the ECM (Mariman and Wang, 
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2010; Purslow et al., 2012). Four TIMPs have been discovered however only one, TIMP4, has 

specificity for adipose tissue (Greene et al., 1996). Studies have shown that TIMP4 has binding 

affinity for both MMP2 and -9 (Melendez-Zajgla et al., 2008). The effect of both MMPs and 

TIMPs are essential for remodeling to occur. 

Angiogenesis  

Vasculature and the growth rate of tissue like muscle and adipose are interrelated. Studies have 

shown that there are variations in capillary density of the microvasculature within different 

muscle types. These variations are due to changes in composition, metabolic capabilities, and 

response to exercise of myofibers (Cherwek et al., 2000; Jensen et al., 2004; Williams and Annex, 

2004). Vestergaard et al. (2000) stated that muscle with more Type I (oxidative) muscle fibers 

had significantly greater capillary density. Harper and Pethick (2004) reported that, when 

observed under magnification, it was seen that IM fat developed within close proximity to blood 

capillary networks. Besides delivery of nutrients to tissues, deposition and mobilization of 

adipose tissue are dependent upon blood circulation (Ballard, 1978). Studies, utilizing moderate-

framed continental beef cattle, showed that the areas of muscle containing IM adipose tissue and 

increased vasculature tended to have higher prevalence of muscle fibers that exhibit oxidative 

metabolism (Melton et al., 1974; Melton et al., 1975).  Cattle are fed higher concentrate diets to 

increase IM fat deposition. Interestingly, oxidative metabolism which favors angiogenesis and IM 

deposition is more prevalent in cattle fed high roughage diets (Vestergaard et al., 2000). In human 

skeletal muscle, satellite cells have been shown to be associated more with capillaries that 

myonuclei (Christov et al., 2007). 

Each adipocyte is surrounded by a capillary network making adipose tissue growth dependent 

upon growth and formation of new capillaries. The ability of intramuscular fat depots to continue 

to grow throughout and animals life suggests that adipocytes are capable of recruiting new 
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capillaries (Rupnick et al., 2002). Angiogenic remodeling is the process of modification of 

existing vascular network, whereas angiogenic sprouting is the formation of new vessels from 

existing vessels into area that were previously avascular (Yancopoulos et al., 2000). Numerous 

vascular specific growth factors, including vascular endothelial growth factor (VEGF) and 

angiopoietins (Ang1 and-2), influence vascular remodeling. VEGF is the principal vascular 

specific growth factor needed to initiate immature vascular formation, whether it be through 

vasculogenesis during development or angiogenic sprouting in adult tissue. (Hausman and 

Richardson, 2004; Papetti and Herman, 2002; Yancopoulos et al., 2000). Disruption of a single 

VEGF allele results in severe abnormalities in vascular development which leads to embryonic 

death (Carmeliet et al., 1996). VEGF doesn’t affect angiogenesis only in fat depots.  In skeletal 

muscle, VEGF acts as a signal for the remodeling of myocytes as well as angiogenesis. Acting as 

a signal allows for capillary density to match that of the oxidative metabolism capacity of 

myofibers (van Weel et al., 2004). Ang1 is responsible for the stability of blood vessels walls, 

while Ang2 is antagonistic to Ang1 destabilizing the walls of the blood vessels (Harper and 

Pethick, 2004; Yancopoulos et al., 2000). Studies performed by Yancopoulos et al. (2000) 

reported that deficiency in Ang1 resulted in impaired angiogenic remodeling but normal 

development of primary vasculature. The same study showed that overexpression of Ang1 and -2 

resulted in lethal vascular defects. Rupnick et al. (2002) demonstrated that angiogenesis could be 

a means of adipose tissue regulation through treatment of mice with anti-angiogenic factors that 

resulted in the decreased weight of fat pad by 12 to 22% along with a decrease in total body 

weight.  

 The breakdown and degradation of connective tissue is an important characteristic essential for 

angiogenesis especially angiogenic sprouting (Yancopoulos et al., 2000).  Studies of fetal pigs 

adipose tissue show that in capillary beds present in dense connective tissue are immature and 

will have few adipocytes, while loose connective tissue allows for mature capillary beds that 
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contain more adipocytes (Hausman and Thomas, 1984). Another study evaluating adipose tissue 

of pigs found that dense connective tissue observed in fetal adipose tissue was not present in 

adipose tissue of growing pigs (Hausman and Kauffman, 1986). The results indicate that 

breakdown of connective tissue is critical for the elaboration of capillaries necessary for mature 

adipocyte development.  

Regulation of Adipogenesis 

The first step of adipogenesis is differentiation a process that commits progenitor cells to the 

adipocyte lineage termed adipoblasts. Once committed adipoblasts undergo exponential 

replication until they reach confluence. Early markers of differentiation are expressed in cells 

now called preadipocytes that further proliferate. Once proliferation of preadipocytes is finished 

markers of late differentiation are expressed causing cells, now called adipocytes, to accumulate 

fat displacing the nucleus (Boone et al., 2000; Kokta et al., 2004). Differentiation of 

preadipocytes to adipocytes leads to changes in morphology as well as gene expression (Kokta et 

al., 2004). IGF-I has been confirmed to positively influence preadipocytes proliferation and 

differentiation  (Smith et al., 1988). However, growth hormone is necessary to initiate the 

paracrine/autocrine action needed  for the secretion of  IGF-I (Gregoire et al., 1998). Preadipocyte 

factor 1 (Pref-1) functions to maintain preadipocytes by inhibiting their differentiation into 

adipocytes (Smas and Sul, 1993). Smas and Sul (1993) also reported that Pref-1 expression is 

abundant in preadipocytes but is absent in adipocytes. Peroxisome proliferator activated receptor-

γ (PPARγ) is essential for the differentiation of preadipocytes as well as the maintenance of the 

differentiated state (Rosen and MacDougald, 2006). Fibroblast were induced to differentiate into 

adipocytes when expression of PPARγ was forced  (Tontonoz et al., 1994). Rosen and 

MacDougald (2006) state that without expression of PPARγ promotion of adipogenesis doesn’t 

occur. Fatty acid binding proteins (FABPs) and fatty acid synthase (FASN) are expressed during 

late differentiation and can be used as makers for mature adipocytes. Synthesis of saturated fatty 
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acids is the result of FASN (Schmid et al., 2005) , while FABPs is responsible for transportation 

of fatty acids into adipocytes (Frühbeck et al., 2001a) According to Jeong et. al (2012), fatty acid 

availability influence the amount of intramuscular fat development and an increase in uptake of 

fatty acid into muscle cells contributed to increased intramuscular fat development.  

Adipose tissue has been shown to be an endocrine organ that produces factors including leptin, 

adiponectin, and resistin (Miner, 2004). Production of these adipokines are proportional to the 

size of the fat mass  (Argiles et al., 2005).  Leptin is an adipokine whose primary role is 

regulation of energy (Houseknecht et al., 1998). Leptin can also be used as an indicator of energy 

balance due to an increased expression in response to feed and reduced expression during fasting 

or insulin deficiency (Fehmann et al., 1997).  Decrease in energy conservation, increased body 

energy utilization and partitioning of substrates towards oxidation than storage are all results of 

actions of leptin in the periphery (Margetic et al., 2002). Prevention of internalization of lipids in 

adipocytes could be an autocrine function of leptin synthesized in adipocytes (Frühbeck et al., 

2001b). Adiponectin is another adipokine secreted by adipose tissue that has a role in energy 

homeostasis regulation as a result of its insulin-sensitizing effects (Fang and Sweeney, 2006). 

Regulation of energy homeostasis is a product of adiponectins ability to improve glucose 

metabolism, stimulate fatty acid oxidation, and decrease plasma triglycerides (Bełtowski, 2003). 

Two receptors for adiponectin (Adipor) have been identified; Adipor1 has been shown to be 

expressed primarily in skeletal muscle, while Adipor2 is expressed predominantly in the liver 

(Ahima, 2006; Blüher et al., 2006). Knockout of the adiponectin gene in mice models produced 

mice with severe insulin resistance along with increased lipid deposition within the muscle when 

they were fed a high fat diet (Maeda et al., 2002). The actions of the adipokine resistin contrasts 

to those of adiponectin because resistin increases the insulin resistance of tissues (Meier and 

Gressner, 2004).  
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Extracellular signals can also impact the differentiation of adipose tissue. Some WNT family 

proteins (WNT10b and WNT5b) have been show to influence development of adipocytes through 

paracrine and autocrine mechanism (Rosen and MacDougald, 2006). In vivo studies have shown 

that the inhibitory effects of WNT protein on the differentiation of adipocytes is a result of WNT 

proteins blocking the expression of PPARγ and C/EBPα (Bennett et al., 2002). According to 

Rosen and MacDougald (2006), WNT10b expression is the primary WNT protein responsible for 

the inhibition of adipocyte differentiation. Conversely, WNT5b is responsible from promoting 

differentiation and expression is induced during adipogenesis (Kanazawa et al., 2005).  The 

differentiation of adipocytes is a complex process influenced by both paracrine/autocrine growth 

factors and extracellular signals.  

Intercellular Signaling 

Research has shown that interactions between myogenic cell and adipocytes play a significant 

role in the rate and extent of adipogenesis, myogenesis, lipogenesis, and lipolysis (Kokta et al., 

2004). Balance between uptake, synthesis, and degradation of triglycerides is essential for 

accumulations of fat within the muscle to occur (Hocquette et al., 2003) Since intramuscular fat 

develops in close proximity to muscle fibers, the paracrine activity between skeletal muscle and 

adipose tissue of factors like IGF-1, leptin, and adiponectin have important implications on the 

development of muscle and adipose tissue along with influences on energy utilization (Kokta et 

al., 2004). Lipid partitioning in skeletal muscle has been altered by leptin through an increase in 

muscle fatty acid oxidation and decreased incorporation of fatty acids into triglycerides (Muoio et 

al., 1997). Adiponectin had the same effect on skeletal muscle as it increased fatty acid oxidation 

(Scherer et al., 1995). In vivo studies have determined that glucose uptake is inhibited in skeletal 

muscle cell cultures when resistin is present (Moon et al., 2003). The addition of resistin to 

myoblast in culture demonstrations inhibition of differentiation (Kim et al., 2001).  
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Conclusion 

Growing programs for beef cattle are valuable programs for altering frame size and tissue 

deposition to target for specific markets. Adjusting the plane of nutrition during growing periods 

can affect both skeletal muscle and intramuscular fat development. The literature suggests that 

growing programs do not significantly affect final carcass composition of beef cattle. However, 

the changes in muscle fiber type and the activity of satellite cells, as a result of growing 

programs, may affect the extent of angiogenesis and intramuscular fat deposition during the 

finishing phase resulting in changes in carcass quality.  Understanding how development of 

skeletal muscle and intramuscular fat are interrelated is essential to help develop methods to 

efficiently meet the consumers demand for high quality beef.  
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CHAPTER III 
 

 

 MATERIALS AND METHODS   

Animals and Treatments 

Twelve Angus steers from the Range Cow Research Center-South Range Unit near Stillwater, 

OK were used for this study. Details regarding cattle, cattle and pasture management and 

treatments were reported by Sharman et al. (2013).   

Tissue Collection 

Steers were harvested at the Food and Agricultural Products Center (FAPC) and longissimus 

dorsi muscle (LM) samples were collected as described by Hersom et al. (2004). Tissue samples 

used were from steers harvested in the first intermediate harvest by Sharman (2012). Tissue 

samples were stored at -80°C in RNAlater (Invitrogen). Longissimus dorsi samples were 

dissected, under magnification, according to the maturity of the intramuscular fat. Intramuscular 

fat was identified in cross-sections of LM samples and sorted, based on visual assessment (Figure 

1), into one of three categories: immature (MM), intermediate (ME), and mature (MA). 

Intramuscular fat was removed from muscle tissue and stored separately according to maturity. 

Muscle fibers lying immediately adjacent to intramuscular depots was collected and stored 

separately according to the maturity category of the intramuscular fat it was associated with.  

Muscle fibers not associated with any intramuscular adipose tissue development were also 

collected and stored separately.
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RNA Extraction 

RNAlater was removed from both muscle and adipose tissue samples before being pulverized and 

homogenized in TRIzol reagent (Ambion) for total RNA isolation. RNA was isolated from both 

muscle and fat samples following the manufacturer’s procedures for TRIzol. Following isolations 

of RNA, a clean-up procedure was used to remove additional fat from the sample and removal of 

any carry over guanidine isothiocyanate from the TRIzol procedure by adding chloroform (1:1 

ratio) to isolated RNA. Mixture was centrifuged at 4°C for 5 minutes at 20,000xg. The upper 

aqueous phase was removed and transferred to a fresh tube and then phenol:chloroform:isoamyl 

alcohol (25:24:1) was added in a 1:1 ratio. Mixture was centrifuged at 4°C for 5 minutes at 

20,000xg. Upper aqueous phase was transferred to a fresh tube and 100% ethyl alcohol was 

added (2.5:1 ratio) along with 3 M sodium acetate (0.1:1 ratio) and incubated for 60 minutes at -

80°C. Following incubation, the RNA was precipitated and the supernatant was discarded. The 

RNA pellet was washed with 75% ethyl alcohol and the RNA pellet was allowed to air dry then 

was resuspeneded in diethylpyrocarbonate (DEPC) -treated water and stored at -80°C. The 

quantity of RNA was determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and RNA integrity was determined using gel electrophoresis.  

Total RNA (1.0µg) was used to synthesize cDNA using a reverse transcription kit (QuantiTect, 

Qiagen Inc., Valencia, CA). Following reverse transcription and amplification, samples were 

quantified using a NanoDrop ND-1000 spectrophotometer. cDNA samples were stored at -20°C 

until gene expression analysis was performed.  

qRT-PCR Protocol 

Quantitative real-time PCR (qRT-PCR) was used to determine the mRNA expression level of 

specific genes of interest. Gene specific primers were designed using exonic sequences obtained 

from the National Center for Biotechnology Information (NCBI) using a Primer3 software 
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package (Rozen and Skaletsky, 1999). When possible, primers were designed to be intron 

spanning in order to prevent amplification of contaminating genomic DNA. Specificity of each 

primer set was evaluated by comparing primer sequences to the database of GenBank using the 

blast tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Complementary forward and reverse primer 

sequences for each primer pair were evaluated with the OligoAnalyzer 3.1 (Integrated DNA 

Technologies, Coralville, IA). A list of primers used in muscle tissue are listed in Table 1 and 

primers used in intramuscular adipose tissue are listed in Table 2.  A Bio-Rad CFX96 real-time 

detection system (Bio-Rad Laboratories, Hercules, CA) was used to quantify mRNA abundance. 

For both tissue types, qRT-PCR reactions contained 7 µL of RT2 SYBR Green 2X Super Mix 

(Qiagen), 0.23 µL of 25µM forward primer, 0.23 µL of 25 µM reverse primer, 2.77 µL of Rnase-

free PCR water, and 100 ng of template cDNA. Thermal cycling protocol consisted of 95°C for 

10 minutes, followed by 40 cycles of 95°C for 10 seconds, optimal annealing temperature 

(specific to each gene) for 30 seconds, followed by 95°C for 1 min. Thermal cycling protocol was 

performed using a Bio-Rad C1000 thermal cycler. A melt curve was performed after 

amplification to verify the specificity of each gene. For each gene, all reactions displayed a single 

peak melt temperature (± 0.5°C) indicating a unique product was produced.  

Gene Expression 

A normalization factor was calculated using geNorm software (Biogazelle., Zwijnaarde, 

Belgium) by calculating the geometric mean of four reference genes. The genes used as reference 

genes for muscle tissue were tyrosine 3/tryptophan 5 monooxygenase activation protein zeta 

(YWHAZ), succinate dehydrogenase subunit A flavoprotein (SDHA), ribosomal protein S9 

(RPS9), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). For the adipose tissue 

normalization factor, the reference genes peptidyprolyl iomerase A (PPIA), actin, beta (ACTB), 

RPS9 and YWHAZ were used. Relative expression for each gene was computed using the 2ΔCt 

method. The threshold cycle (Ct) values for each gene were multiplied by the ratio of the natural 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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log of 2 to the natural log of the qRT-PCR reaction efficiency factor for each individual gene. 

Multiplying the Ct value with the ratio of the qRT-PCR reaction efficiency adjusts the Ct value 

for differences in qRT-PCR efficiency.  The relative expression values of the target genes in both 

muscle and adipose tissue were calculated as 2^ (normalization factor- adjusted Target Ct)*103 

(Chung and Johnson, 2009).  This procedure allowed statistical analysis of linear mRNA 

expression values after being adjusted for difference in qRT-PCT reaction efficiencies.  

Statistical Analysis 

mRNA relative expression data was analyzed using SAS (SAS Inst., Inc., Cary, NC). Gene 

expression data were analyzed using a general linear model (Proc GLM; SAS Inst. Inc., Cary, 

NC) with year, tissue, treatment, year x tissue, year x treatment, and tissue x treatment 

interactions as fixed effects in the model. Least Squares means were separated using Fisher 

Protected LSD with alpha 0.10.  Treatment differences were declared significant when p ≤ 0.05.  

Pearson’s correlations were also computed between the gene expression in muscle and its related 

intramuscular adipose tissue for each stage of maturity using the Proc Corr procedure of SAS.  
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Figure 1. Photographs representing the different stages of intramuscular adipose tissue 

development using a dissecting microscope and camera: A) Immature stage, B) Intermediate 

stage, and C) Mature stage of development of intramuscular tissue between muscle bundles.   

  
A B C 
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CHAPTER IV 
 

 

FINDINGS 

Results 

Muscle Gene Expression  

Expression of genes evaluated in LM are reported in Table 3. Year and treatment had no effect on 

gene expression, so only tissue effects are reported. Genes associated with metabolism, COX3 

and ND2, showed no change among different adipose tissue maturity categories. There were no 

change in fiber type expression among the differing maturity levels of adipose tissue. Satellite 

cell activity were evaluated in muscle tissue by measuring the expression of PAX7, MYOG, and 

MYF5. The results show no change in expression in muscle associated with more mature adipose 

depots indicating that satellite cell activity does not affect intramuscular fat development. 

VEGFA, ANGPT1, and ANGPT2 all genes involved in angiogenesis, expression were not 

different as adipose tissue matured. Extracellular matrix changes were detected with increasing 

maturity and changes in collagen expression. Levels of COL1A1 (P = 0.01), COL1A2 (P = 

0.004), and COL6A2 (P = 0.04) were all increased in muscle associated with immature 

intramuscular adipose development above the levels of the other maturity categories. However, 

genes responsible for the remodeling of ECM, MMP2 and TIMP4 remained constant throughout 

maturity stages. It was attempted to evaluate MMP9 expression; however, mRNA levels were not 

detectable in skeletal muscle tissue (data not shown).



27 
 

Intramuscular Adipose Tissue Gene Expression 

Expression of genes evaluated in intramuscular adipose tissue are reported in Table 4. Year and 

treatment had no affect on gene expression so only tissue affects are reported.  As intramuscular 

fat increased with visible maturity, PREF1 levels decreased (P= 0.002) while PPARγ (P= 0.02) 

and FABP4 (P< 0.0001) increased with maturity. These results show an increase in the number of 

differentiated adipocytes indicating that we were successful in separating intramuscular adipose 

tissue into different stages of maturity based on visual assessment under the microscope. FASN 

levels didn’t change and G3PDH (P= 0.004) was lower with more mature adipose tissue, which is 

contrary to what was expected. Angiogenic genes VEGFA and ANGPT1-2 remained constant as 

adipose tissue matured. The effects of extracellular signaling pathways on adipogenesis were also 

evaluated. WNT5B (P< 0.0001) mRNA expression in intramuscular adipose tissue was evaluated 

and had the highest expression in mature intramuscular fat with no differences between immature 

and intermediate stages of development. It was attempted to evaluate WNT10B but mRNA 

expression was undetectable in intramuscular adipose tissue.  

Intercellular Signaling Pathways Gene Expression 

MSTN and IGF1 expression remained constant in muscle tissue regardless of adipose tissue 

maturity category. Myostatin’s receptor, ACVR2B (P= 0.002), and FST  (P= 0.01) measured in 

intramuscular adipose tissue did differ with maturity being expressed highest in immature adipose 

tissue. Changes in IGF1 receptor (IGF1R) mRNA expression in adipose tissue were detected with 

lower expression  (P = 0.03) in intermediate than immature and mature categories. mRNA 

expression of IGFBPs were different among adipose tissue, but changes were not consistent 

between IGFBPs.  IGFBP-2 (P< 0.0001) and -3 (P< 0.0001) both increased with increasing 

maturity; conversely, IGFBP-6 decreased (P< 0.0001) with increasing maturity. mRNA 

expression of  IGFBP-1, -4, and -5 was consistent among maturity categories. Adipokines and 

their receptors present in muscle were also evaluated. ADIPOQ mRNA expression remained 
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constant as adipose matured, which is contrary to what was expected. Expression level of the 

ADIPOQ receptors (ADIPOR) had differing expression patterns. ADIPOR1 expression didn’t 

change with increasing maturity, but ADIPOR2 mRNA expression increased (P< 0.0001) as 

muscle became associated with more mature adipose tissue. As expected, leptin mRNA levels 

increased (P= 0.05) as number of differentiated adipocytes increased. LEP receptor (LEPR) 

remained constant along maturity categories. An attempt was made to evaluate the resistin 

signaling pathway; however, resistin mRNA in intramuscular tissue and resistin receptor mRNA 

in muscle were not detectable (data not shown). 

Pearson’s Correlations between Muscle and Intramuscular Adipose Tissue 

Correlations were calculated between intramuscular adipose tissue and the muscle tissue that 

corresponded with each maturity category (Table 5). A strong positive correlation (r = 0.69 to 

0.94) was observed between mRNA expression of VEGFA, ANGPT1 and ANGPT2, genes 

involved in angiogenesis, in LM and the expression of ANGPT1 and ANGPT2 in intramuscular 

adipose tissue.  mRNA expression of genes involved with adipogenesis measured in adipose 

tissue, FASN and PPARγ,  were also shown to be strongly correlated  (r = 0.89 to 0.96) with 

angiogenic genes measured in muscle tissue. In addition, the adipokines ADIPOQ and LEP 

showed a moderate to strong correlation (r = 0.56 to 0.94) with angiogenic genes mRNA 

expression in muscle tissue.  Interestingly, these correlations were observed only in immature 

intramuscular development. These data suggest that there is a highly coordinated set of changes 

that occur between skeletal muscle and intramuscular adipose tissue during the early development 

of intramuscular adipose tissue. 
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Discussion 

The stage of maturity of adipose tissue resulted in a change in gene expression in both 

intramuscular adipose tissue and its corresponding muscle tissue. Muscle fiber types are 

adaptable and can be modified according to differences in plane of nutrition associated with 

different management programs (Klont et al., 1998). Muscle metabolism can be affected by 

changes in fiber types because fiber types differ in metabolism characteristics.  There was no 

change in either muscle fiber type mRNA expression or mRNA expression of the metabolic genes 

ND2 and COX3 related to differing rates of gain. Conversely, Vestergaard et al (2000) reported 

that when cattle were fed roughage in order to achieve a slower rate of gain there was a greater 

percentage of oxidative muscle fibers present.   

Myostatin mRNA expression in muscle tissue remained constant as intramuscular adipose tissue 

matured, however, the expression of myostatin receptor, ACVR2B, decreased as intramuscular 

fat became more mature. A myostatin inhibitor, follistatin, followed the expression pattern of 

ACVR2B and decreased with increasing maturity of intramuscular fat. Collectively, these data 

suggest that as intramuscular adipose tissue matures it becomes desensitized to the inhibitory 

effects of myostatin on the differentiation of adipocytes. IGF-1 mRNA expression in muscle 

tissue was unchanged as intramuscular fat matured. mRNA expression  of IGF-I receptor in 

adipose tissue was not statistically different; however, numerically it was lower in intermediate 

than immature and mature categories. The availability and activity of IGF-I would be affected by 

IGFBPs due to their ability to bind IGF-I, however, the changes in mRNA expression of IGFBPs 

were not consistent among the IGFBPs. The inconsistency is due to the different effects each 

IGFBP has on IGF-I activity. IGFBP-2 is known to have solely inhibitory effects on IGF-I 

actions. The increase in IGFBP-2 in more mature adipose tissue suggests that it may play a role in 

reducing the proliferative effects of IGF-I on adipocytes allowing them to transition towards lipid 

accumulation. IGFBP-6 mRNA expression was highest in immature intramuscular fat and 
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decreased as depots became more mature. IGFBP6 is the only IGFBP that has a higher affinity 

for IGF-II  and preferentially binds with it  (Collett-Solberg and Cohen, 2000).  Suggesting that 

IGF-II levels may be elevated in less mature intramuscular fat. Elevated levels of IGF-II was 

observed in stromal-vascular cells from 75 day old pigs produced IGF-II, but when adipogenesis 

was induced in these cells IGF-II levels remained steady (Hausman et al., 2002). Both IGFPB-3 

and IGFBP-5 have inhibitor and stimulator effects on IGF-I making it difficult to establish the 

implication of these changes, especially since the mRNA expression pattern of IGFBP-3 is 

opposite that of IGFBP-5. An in vitro study conducted using bovine bone marrow stromal cells 

reported an increase in IGFBPs -3,-4, and -5 with -5 having the greatest increase (Tan et al., 

2006). The results are contradictory to the results shown in our in vivo study indicating that other 

extracellular signals may affect IGFBP activity. These changes in IGFBPs mRNA expression 

throughout the development of intramuscular adipose tissue implies that they may be responsible 

for the response of intramuscular fat to locally or systemic IGF-I.  

It has been well documented that differentiation of adipocytes is controlled by programmed 

changes in gene expression (Kokta et al., 2004). Changes in intramuscular fat mRNA expression 

like the decrease in PREF1 with increasing adipose maturity and the increased expression of 

FABP4 and PPARγ as adipose matured indicate that the separation of intramuscular fat into 

maturity categories based on visual assessment was successful.  PREF-1 is responsible for 

maintenance of preadipocytes by inhibiting their differentiation into adipocytes.  The pattern of 

PREF-1 is similar to reports by Smas and Sul (1993) who reported high PREF-1 expression in 

preadipocytes but absence in adipocytes.  PPARγ was expected to increase as number of 

differentiated adipocytes became larger due to PPARγ role in promoting differentiation of 

adipocytes (Rosen and MacDougald, 2006).  Fruhbeck et al. (2001a) indicated that FABP4 is 

responsible for the transport of fatty acids into adipocytes and FABP4 mRNA expression in 

intramuscular fat was shown to steadily increase as intramuscular adipose tissue matured 
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(Pickworth et al., 2011). These results agree with the current study in which FABP was greater in 

more mature intramuscular depots. The results suggest that FABP4 may be used as a marker for 

adiposity. FASN which is responsible for synthesis of fatty acids has been shown to have a 

positive correlation with increasing intramuscular fat content (Jeong et al., 2012). Taken together 

these results indicate that within a single animal not all intramuscular depots are at the same stage 

of maturity. Supporting the idea that intramuscular fat development occurs throughout the life 

time of an animal.   

The current study did not show any changes in mRNA expression of genes involved in 

angiogenesis in either tissue type; however, there was a correlation between angiogenic growth 

factors in muscle tissue associated with immature intramuscular fat depots and the angiogenic 

growth factors FASN, PPARγ, ADIPOQ, and LEP in the corresponding intramuscular fat. These 

correlations were absent in intermediate and mature categories, indicating that a highly 

coordinated set of changes occurs between muscle and adipose tissue during the early stage of 

intramuscular adipose tissue development. The correlations observed is supported by Rupnick et 

al. (2002) who administered anti-angiogenic agents into obese mice and observed a reduction in 

fat content over the control mice, concluding that there is a correlation between adipogenesis and 

angiogenesis. Collectively these data demonstrate that the development of vasculature and 

adipose tissue are interrelated, especially in early development.  

mRNA expression changes in components of the extracellular matrix were observed in muscle 

tissue associated with increasing maturity of intramuscular adipose tissue.  ECM is essential for 

intramuscular adipose development because adipocytes are embedded with the connective tissue 

present in the ECM (Du and Carlin, 2012). The current study showed that both collagen type I 

and VI exhibited the same mRNA expression pattern with muscle associated with immature 

intramuscular adipose development having the highest expression. On the other hand, a study 

utilizing murine 3T3-L1 cells reported that the expression levels of collagens were different as 
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adipocytes differentiated with collagen I expression being decreased early and increasing late in 

development, while collagen VI expression was the reverse with expression being highest early in 

development and decreasing late. Tan et al. (2006) reported that in adipogenesis of bovine bone 

marrow stromal cells, an increase in mRNA expression of COL1A1 and COL1A2 occurred. A 

microarray study evaluating nutritional restriction effects on gene expression in muscle tissue 

reported a downregulation of COL1A1 and COL1A2 in nutrient restricted cattle (Byrne et al., 

2005). Animals that have a genetic predisposition for high levels on intramuscular fat 

development have been shown to have increased levels of collagen type I and VI (Nakajima et al., 

1998; Wang et al., 2009).These results suggest that the expansion of extracellular matrix is 

critical for the development of intramuscular adipose tissue, especially during the early stage of  

adipose development.  

Endocrine hormones produced by adipose tissue were shown to have changes in mRNA 

expression as intramuscular fat matured.  Since adipokines are produced by adipocytes, it is 

logical that adipokine production is proportional to the size of intramuscular adipose tissue mass 

and would increase as the number of differentiated adipocytes increases  (Argiles et al., 2005). 

Leptin mRNA expression in the current study followed the pattern expected that as the number of 

differentiated adipocytes increased so did the mRNA expression of leptin. However, the mRNA 

expression of leptin receptor measured in muscle tissue remained constant in muscle regardless of 

the maturity of the associated adipose tissue. Another adipokine, adiponectin was numerically 

higher in more mature adipose tissue; however, it was not statistically different from immature 

stage of adipose tissue.  There was, however, an increase in the mRNA expression of the 

adiponectin receptor 2 (ADIPOR2) as muscle became associated with more mature intramuscular 

adipose tissue, yet there was no change in the mRNA expression of ADIPOR1. Interestingly, 

Ahima (2006) reported that ADIPOR2 is mainly expressed in liver. Whether the increase of 

ADIPOR2 expression is prompted due to intramuscular development or inherent to muscle fibers 
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which results in development of intramuscular fat at that location is not clear from these data.  

Actions of both leptin and adiponectin have the same result on skeletal muscle which is an 

increase in fatty acid oxidation and glucose uptake by muscle tissue (Kokta et al., 2004; Muoio et 

al., 1997), suggesting that muscle closely associated with intramuscular fat development would 

have improved insulin sensitivity and utilize fatty acids for energy more than skeletal muscle not 

associated with intramuscular fat development.  

Extracellular signaling pathways that influence adipogenesis were also evaluated. WNT5B is 

responsible for promotion of differentiation of adipocytes (Kanazawa et al., 2005).  The current 

study showed an increase in WNT5B muscle mRNA expression as maturity of intramuscular 

adipose tissue increased.  WNT10B, which has inhibitory effects on adipocyte differentiation, had 

undetectable levels of mRNA expression in this study. Tan et al. (2006) reported that when 

adipogenesis was inducted in bovine bone marrow stromal cells, WTN10B expression was 

reduced and undetectable by day 3 post- induction of adipogenesis. 
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Table 1. Primers used to quantify mRNA expression of genes in muscle tissue using qRT-PCR. 

 

Gene Name1 

 

Accession 

 

Forward Primer (5’-3’) 

 

Reverse Primer (5’-3’) 

Product 

Size, bases 

Reaction 

Eff., % 

ND2 NC_006853 AATTCCACCACCACTACCCTGTCA 

 

GAGAGTGGCAAGAATTAGGACGGT 

 

81 

 

96.0 

COX3 NC_006853 ACGTCATCATTGGGTCCACCTTCT GCTTCAAAGCCGAAGTGGTGGTTA 91 91.9 

PAX7 XM_002685738 AGAAAGCCAAGCACAGCATC TCGGGTTCTGACTCCACATC  106.2 

MYOG NM_001111325 CTCCCATCGCGCCTCCTG GCAGATTGTGGGCGTCTG  94.1 

MYF5 NM_1741167 CAGCGTCTACTGTCCTGATGT CTGGAGTTGCAGGTTGAGAA  99.2 

MYH1 NM_174117 CCCACTTCTCCCTGATCCACTAC TTGAGCGGGTCTTTGTTTTTCT  96.5 

MYH2 NM_001166227 GCTGCGTCTTCTCACTTGGT CCACCTTCTCTGCTCTGGAT  94.7 

MYH7 NM_174727 GGGCAAGAAGAGGAGTGAGG CGGTAATCAGGATGGACTGG 104 97.0 

VEGFA NM_174216 ACTTCTGCGCTGTTCTCGTTC CTCTTCCTTCTCTTCTTCCTCCTC 139 99.1 

ANGPT1 NM_001076797 GGTCAGAAGAAAGGAGCGAGT GAATAGCAGCGAGGAAAGCA 98 91.7 

ANGPT2 NM_001098855 CTGAGCGGGTGGTTTATTAC CCGTGCTGAACCTGATACTG 154 89.9 

COL1A1 NM_001034039 TGGCAAGAACGGAGATGATG CCATCCAAACCACTGAAACC 147 101.2 

COL1A2 NM_174520 GGCCCAAGTGGAGATAGAGG AGCAAAGTTCCCGCCAAG 138 97.6 

COL6A2 NM_001075126 TCCACGAGAAGCACGAGAG CCAGGTCGGAGAAGAGTGTC 90 90.1 

MMP2 NM_174745 GTCTTCGACGGCATCTCTC TTCTCCTCCTGTGGGTCTTC 173 82.2 

TIMP4 NM_001045871 CCAAATCACCACCTGCTATG TACCCGTAGAGCTTCCGTTC 96 87.1 

MSTN NM_001001525 GTTTGGCTTGGCGTTACTCA TTCCTTCTGCTCGCTGTTCT 178 99.1 

IGF1 NM_001077828 ATCACATCCTCCTCGCATCT CTGTCTCCGCACACGAACT 131 98.6 

LEPR NM_001012285 TGGCTTAGAATCCCTTCCTC TCGGTTTCCCTACTCCTTCC 115 98.8 

ADIPOR1 NM_001034055 AAGCACCGGCAGACAAGAG ATCGTGAAGTGCATGGTAGG 77 98.9 

ADIPOR2 NM_001040499 AAGGTCTGGGAAGGTCGATG ATGTTGCCTGTCTCGGTGTG 158 96.10 
1ND2= NADH dehydrogenase subunit 2; COX3=Cytochrome c oxidase subunit III; PAX7= Paired box 7; MYOG= Myogenin; MYF5= 

Myogenic factor 5; MYH1= Myosin, heavy chain 1; MYH2= Myosin, heavy chain 2; MYH7= Myosin, heavy chain 7; VEGFA= Vascular 

endothelial growth factor A; ANGPT1= Angiopoietin-1; ANGPT2= Angiopoietin-2;COL1A1= Collagen type I alpha1; COL1A2- 

Collagen type I alpha 2; COL6A2- Collagen type VI alpha 2; MMP2= Matrix metallopeptidase 2; TIMP4= Tissue metallopeptidase 

inhibitor 4; MSTN= Myostatin; IGF1= Insulin- like growth factor 1; LEPR= Leptin receptor; ADIPOR1= Adiponectin receptor 1; 

ADIPOR2= Adiponectin receptor 2. 
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Table 2. Primers used to quantify mRNA expression of genes in intramuscular adipose tissue using qRT-PCR. 

 

 

Gene Name1 

 

 

Accession 

 

 

Forward Primer (5’-3’) 

 

 

Reverse Primer (5’-3’) 

 

Product 

Size, 

bases 

 

Reaction 

Eff., % 

PREF1 NM_174037 CGACATGACCACCTTCACC CAGACCGCACAGAGAGACAG 113 80.5 

PPARγ NM_181024 TTCTCCAGCATTTCCACTCC GACGCTTTATCCCCACAGAC 233 103.9 

FABP4 NM_174314 AGCTGCACTTCTTTCTCACC TGACACATTCCAGCACCATC 404 96.0 

G3PDH NM_001035354 ATCAATGGAGACAGGCAGAAG TTTGGAGAGGGACTAGGCAAC 199 90.3 

FASN NM_001012669 AAGCAGGCACACAATATGGAC TGAAGTCAAAGAAGAAGGAGAGG 244 87.7 

VEGFA NM_174216 ACTTCTGCGCTGTTCTCGTTC CTCTTCCTTCTCTTCTTCCTCCTC 139 104.1 

ANGPT1 NM_001076797 GGTCAGAAGAAAGGAGCGAGT GAATAGCAGCGAGGAAAGCA 98 108.8 

ANGPT2 NM_001098855 CTGAGCGGGTGGTTTATTAC CCGTGCTGAACCTGATACTG 154 91.3 

IGF1R XM_002696504 ATCCAGGCCACCTCTCTCTC CCAAGCCTCCCACTATCAAC 142 87.0 

IGFBP1 NM_174554 TGCCAGCGAGAACTCTACAA AGATCCTCTTCCCACTCCAA 193 77.9 

IGFBP2 NM_174555 GGACGGGAACGTGAACTTG GTGCTGCTCCGTGACCTTCT 109 96.5 

IGFBP3 NM_174556 TTTCCCACTCAGCCATTC CAACAAGCCACTCGTCTTCC 152 89.0 

IGFBP4 NM_174557 GGAAGGGAAGAGGTCAGAGG ACAAACGGAGGAGGAAGGAG 164 93.6 

IGFBP5 NM_001105327 GAGCAAGCCAAGATCGAAAG TCTCAGCTCCTCCCACGAAC 190 94.4 

IGFBP6 NM_001040495 GCGTACAAGACACTGAGATGG GGTCACAATTAGGCACGTAGAG 114 90.4 

ACVR2B NM_174495 AACGGCACTACCTCGGACT ACTCGTGTCCTGGGCTTAGA 99 99.5 

FST NM_175801 GAGCTGTGCCCTGAGAGTAA TCCTCGTCTTCGGTGTCTTC 167 96.0 

ADIPOQ NM_174742 CCATCGCCTCCTACTTCCAC GGGATCTTCCATGTTGTCCTC 138 93.0 

LEP NM_173928 ACTAGACCGGAGCTGGGATT GAGGGAATCTTGCTTGATGG 122 99.7 

WNT5B NM_001205628 AGGAGCACATGGCCTACATC TGCAGGACTCTCCCAAAGAC 127 94.4 
1 PREF1= Preadipocyte factor 1; PPARγ= Peroxisome proliferator-activated receptor gamma; FABP4= Adipocyte fatty acid binding 

protein; G3PDH= Glycerol-3-phosphate dehydrogenase; FASN= Fatty acid synthase; VEGFA= Vascular endothelial growth factor; 

ANGPT1= Angiopoietin-1; ANGPT2= Angiopoietin-2; IGF1R=Insulin-like growth factor 1 receptor; IGFBP1= Insulin-like growth factor 

binding protein 1; IGFBP2= Insulin-like growth factor binding protein 2; IGFBP3= Insulin-like growth factor binding protein 3; IGFBP4= 

Insulin-like growth factor binding protein 4; IGFBP5= Insulin-like growth factor binding protein 5; IGFBP6= Insulin-like growth factor 

binding protein 6; ACVR2B= Activin A receptor IIB; FST= Follistatin; ADIPOQ= Adiponectin; LEP= Leptin; WNT5B= Wingless type 

MMTV integration site family, member 5B
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Table 3. Relative mRNA expression of genes evaluated in longissimus dorsi muscle tissue 

associated with different intramuscular adipose tissue maturity.  

 

Gene Name1 

 

NF2 

 

MM 

 

ME 

 

MA 

 

SEM 

 

P-value 

Metabolism       

ND2 3596.38 2911.58 2769.05 2951.47 309.24 0.25 

COX3 34858.58 37546.33 37878.43 37462.86 3527.36 0.92 

Satellite Cells Activity      

PAX7 0.19 0.27 0.18 0.19 0.04 0.27 

MYOG 32.27 34.22 30.54 33.10 4.21 0.93 

MYF5 2.83 3.25 3.26 3.41 0.27 0.49 

Fiber Type       

MYH1 4462.69 5386.09 3359.91 3578.03 821.30 0.26 

MYH2 14568.91 15925.39 9013.87 10962.19 2609.59 0.20 

MYH7 4559.87 5673.68 3754.01 3613.38 785.59 0.21 

Angiogenesis       

VEGFA 27.95 41.53 23.58 26.33 7.16 0.27 

ANGPT1 11.55 14.37 7.97 10.11 3.27 0.54 

ANGPT2 11.85 18.08 10.73 10.70 3.62 0.39 

Extracellular Matrix      

COL1A1 18.64b 35.29a 12.42b 11.74b 5.68 0.01 

COL1A2 13.85b 23.78a 11.13b 10.62b 2.81 0.004 

COL6A2 102.27b 140.68a 106.55b 113.77b 10.25 0.04 

MMP2 61.06 69.85 52.25 60.34 5.78 0.18 

TIMP4 78.51 76.30 71.36 77.99 5.06 0.72 

Intercellular Signaling      

MSTN 8.22 9.08 8.44 8.03 1.146 0.92 

IGF1 1.71 1.57 1.49 1.57 0.17 0.83 

LEPR 0.33 0.41 0.41 0.39 0.60 0.76 

ADIPOR1 30.72 33.03 29.84 30.76 1.70 0.55 

ADIPOR2 29.31a 91.56b 122.74c 142.06d 8.01 <0.0001 

 
1ND2= NADH dehydrogenase subunit 2; COX3=Cytochrome c oxidase subunit III; PAX7= 

Paired box 7; MYOG= Myogenin; MYF5= Myogenic factor 5; MYH1= Myosin, heavy chain 1; 

MYH2= Myosin, heavy chain 2; MYH7= Myosin, heavy chain 7; VEGFA= Vascular endothelial 

growth factor A; ANGPT1= Angiopoietin-1; ANGPT2= Angiopoietin-2;COL1A1= Collagen 

type I alpha1; COL1A2- Collagen type I alpha 2; COL6A2- Collagen type VI alpha 2; MMP2= 

Matrix metallopeptidase 2; TIMP4= Tissue metallopeptidase inhibitor 4; MSTN= Myostatin; 

IGF1= Insulin- like growth factor 1; LEPR= Leptin receptor; ADIPOR1= Adiponectin receptor 1; 

ADIPOR2= Adiponectin receptor 2. 
2NF= Longissimus muscle not associated with intramuscular fat; MM= Longissimus tissue 

associated with immature intramuscular fat; ME= Longissimus tissue associated with 

intermediate intramuscular fat; MA- Longissimus tissue associated with mature intramuscular 

tissue 
abcd LSmeans differ P<0.05 
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Table 4. Relative mRNA expression of genes evaluated in intramuscular adipose tissue of 

different stages of maturity. 

Gene Name1 MM2 ME MA SEM P-value 

Adipogenesis      

PREF1 164.92a 176.69a 119.57b 10.84 0.002 

PPARγ 5.10b 10.02a 10.07a 1.35 0.02 

FABP4 973.13c 4031.96a 2902.08b 428.90 <0.0001 

G3PDH 3828.94a 3711.80a 2123.75b 371.43 0.004 

FASN 311.31 284.95 356.75 93.71 0.86 

Angiogenesis      

VEGFA 9.88 7.94 8.55 0.88 0.30 

ANGPT1 0.47 0.34 0.30 0.11 0.52 

ANGPT2 40.84 29.23 32.46 3.76 0.09 

Intercellular Signaling     

IGF1R 76.14a 49.06b 72.06a 7.39 0.03 

IGFBP1 66.89 92.02 60.42 11.42 0.14 

IGFBP2 0.97b 0.87b 2.16a 0.15 <0.0001 

IGFBP3 320.82b 515.65a 514.45a 32.39 <0.0001 

IGFBP4 570.89 623.46 592.14 29.01 0.44 

IGFBP5 710.99 508.03 615.94 59.24 0.07 

IGFBP6 4622.04a 2376.59b 1988.85b 231.66 <0.0001 

ACVR2B 7.17a 5.49b 4.27b 0.52 0.002 

FST 172.76a 130.44b 101.82b 15.27 0.01 

ADIPOQ 197.33 309.87 319.52 50.65 0.18 

LEP 4.58b 10.64a 11.58a 2.09 0.05 

Other      

WNT5B 2.32b 2.23b 5.53a 0.38 <0.0001 

 

1 PREF1= Preadipocyte factor 1; PPARγ= Peroxisome proliferator-activated receptor gamma; 

FABP4= Adipocyte fatty acid binding protein; G3PDH= Glycerol-3-phosphate dehydrogenase; 

FASN= Fatty acid synthase; VEGFA= Vascular endothelial growth factor; ANGPT1= 

Angiopoietin-1; ANGPT2= Angiopoietin-2; IGF1R=Insulin-like growth factor 1 receptor; 

IGFBP1= Insulin-like growth factor binding protein 1; IGFBP2= Insulin-like growth factor 

binding protein 2; IGFBP3= Insulin-like growth factor binding protein 3; IGFBP4= Insulin-like 

growth factor binding protein 4; IGFBP5= Insulin-like growth factor binding protein 5; IGFBP6= 

Insulin-like growth factor binding protein 6; ACVR2B= Activin A receptor IIB; FST= Follistatin; 

ADIPOQ= Adiponectin; LEP= Leptin; WNT5B= Wingless type MMTV integration site family, 

member 5B 
2 MM= Immature intramuscular fat; ME= Intermediate intramuscular fat; MA= Mature 

intramuscular fat 
abc LSmeans differ P<0.05 
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Table 5. Correlations of angiogenic gene expression in longissimus dorsi muscle (LM) with gene 

expression in corresponding immature, intermediate, and mature intramuscular adipose tissue 

(IM). 

 

Item 

 

VEGFA1 (LD) 

 

ANGPT1 (LD) 

 

ANGPT2 (LD) 

Immature IM    

FASN 0.96* 0.91* 0.91* 

PPARγ 0.89* 0.91* 0.92* 

ANGPT1 0.91* 0.94* 0.94* 

ANGPT2 0.79* 0.69* 0.69* 

ADIPOQ 0.93* 0.95* 0.96* 

LEP 0.72* 0.56* 0.56 

Intermediate IM    

FASN 0.01 -0.35 -0.75* 

PPARγ -0.18 -0.20 -0.58* 

ANGPT1 -0.19 -0.18 -0.53 

ANGPT2 -0.15 -0.12 -0.35 

ADIPOQ -0.19 -0.43 -0.32 

LEP 0.54 -0.18 -0.61* 

Mature IM    

FASN 0.37 -0.06 -0.38 

PPARγ 0.37 0.18 -0.12 

ANGPT1 0.42 0.26 -0.13 

ANGPT2 -0.14 0.29 0.52 

ADIPOQ 0.19 -0.22 -0.07 

LEP 0.79* -0.11 -0.43 
1 VEGFA=Vascular endothelial growth factor A; ANGPT1= Angiopoietin 1; ANGPT2= 

Angiopoietin 2; FASN= Fatty acid synthase; PPARγ= Peroxisome proliferator activated receptor 

gamma; ADIPOQ= Adiponectin; LEP= Leptin. 

*Correlations are significantly different from zero (P < 0.05)
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Figure 2. Relative expression of genes evaluated in IM tissue involved in adipogenesis. 

 

 

A,B,C means differ P < 0.05 
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Figure 3. Relative expression of genes evaluated in LM involved with remodeling of the extracellular matrix. 

 

 

A, B means differ P < 0.05 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

COL1A1 COL1A2 COL6A2 MMP2 TIMP4

Fo
ld

 C
h

an
ge

NF MM ME MA

B      A     B      B B     A      B     B B      A     B      B 



41 
 

Figure 4. Relative expression of genes involved in myostatin (MSTN) cell signaling. MSTN measured in LM tissue. ACVR2B and FST 

measured in IM tissue. 

 

A, B means differ P < 0.05 
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Figure 5. Relative expression of genes involved in IGF-1 signaling pathways. IGF1 measured in LM tissue. IGF1R and IGFBPs measured 

in IM tissue. 

 

A, B means differ P < 0.05 
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Figure 6. Relative expression of genes involved in the adiponectin signaling. ADIPOQ measured in IM tissue. ADIPOR1 and ADIPOR2 

measured in LM tissue. 

 

A, B, C, D means differ P < 0.05
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CHAPTER V 
 

CONCLUSION 

Development of intramuscular fat is a complex process that is influenced by a variety of signals. 

The close proximity of intramuscular fat to muscle tissue during development indicates that 

intercellular signaling between these two tissues is crucial for development. This study shows that 

early in the development of intramuscular adipose tissue, remodeling of the extracellular matrix 

occurs along with angiogenesis is critical for development of intramuscular adipose tissue. The 

strong correlation between angiogenic growth factors in LM with angiogenic growth factors and 

markers of adipocyte differentiation in immature intramuscular fat development suggests that 

there is a highly coordinated change that occurs between skeletal muscle and intramuscular fat 

during the early stage of adipose development.  This study also shows that skeletal muscle closely 

associated to intramuscular fat development may have increased sensitivity to insulin due to 

effects of adiponectin and leptin activity. 

 However, the mechanism of intramuscular adipose tissue regulation are still unclear and more  in 

vitro and in vivo studies similar to this study need to be conducted to further elucidate the 

pathways and mechanism involved in intramuscular fat development. Further understanding the 

interactions between skeletal muscle and adipose tissue during intramuscular development could 

allow for development of management strategies that reduce waste fat and optimize carcass 

quality. Optimization of the development of muscle and adipose tissue will allow for the efficient 

production of high quality beef that will meet the demands of the consumer.
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