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ABSTRACT 

 

Theory exists for unstable convective motion in porous and fractured media, and has been 

detected in the field as fluid fingers in porous media.  Groundwater convective theory is limited 

though due to a lack of field evidence to understand and quantify the process of free convection 

in other settings such as faults.  The Nacimiento Fault Zone in New Mexico was a suitable 

location for such a field study.  This work provides quantification of haline convection in a 

hydraulically active fault zone.  The hypothesis proposed that measured convective parameters of 

wavelength and timescales obtained from electrical resistivity and fluid data will correlate to 

convective groundwater theory in fault zones.  Over a 2 year period (2011-2012), a total of 16 

ERI lines provided two-dimensional and three-dimensional mapping of the convective fluid 

signatures in the Nacimiento Fault.  Additionally, one line of transient data evaluated changes in 

the fault over a 6 day timescale.  The results show circular conductive features which change over 

time as well as EC oscillations in transducer data. 
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CHAPTER I 

 

INTRODUCTION 

 

A theory of unstable convective motion in porous and fractured media has been developed 

(Shikaze et al., 1997; Simmons et al., 2001; Simmons et al., 2008), and the detection of free 

convection in porous media in the field has recently been explored (Van Dam et al., 2009).  

Groundwater convective theory however, is limited due to a lack of field evidence to understand 

and quantify the process of free convection in groundwater systems.  Preliminary data from May 

2011 suggested that the Nacimiento Fault Zone in New Mexico was a potential location for 

quantifying groundwater convection in a fault zone, where no field data exist on convective flow 

processes.  Quantifying fluid movement and saline transport in fault zones is important for water 

supply and understanding geologic processes in these areas.  As the site is composed of faulted 

shale, the understanding of these processes has additional importance as shale hydrogeology is 

still poorly understood.  While there has been some research into the relationship between 

groundwater convection and geothermal anomalies along the Rio Grande rift, only circumstantial 

support for convection theory was found (Morgan et al., 1981).  Thus, this work provides the first 

attempt to quantify haline convection in a hydraulically active fault zone.  Based on theoretical 

development of Simmons et al. (2008), this study was developed to evaluate the presence of 

haline convection cells in a fault zone and the presence of rapidly changing salinities in a system 

with stable discharge.  The study was conducted in two phases, a reconnaissance phase to 

evaluate the fault fluid structure and an evaluation phase which included a pseudo three-
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dimensional geophysical investigation and a temporal geophysical investigation to determine if 

sufficient evidence exists to demonstrate free convection and to quantify the effect if it exists.   

The hypothesis proposes that measured convective parameters of wavelength and timescales 

obtained from electrical resistivity and fluid data will correlate to convective groundwater theory 

in fault zones.  To develop the evidence, an understanding of free convection processes is 

required followed by an approach to look for this evidence in a groundwater system by choosing 

the correct field location and equipment.  Finally, testable evidence must be generated to exclude 

other possible mechanisms as governing the field situation.   

 

Free Convection  

Theoretical modeling of free convection (also known as natural convection) in groundwater is 

limited due to a lack of field data, but is expected to affect a number of groundwater problems of 

interest.  Numerical modeling supports speeds of free convection at decimeters to meters per day, 

suggesting that the timescale for the process is short and observable in the field (Simmons, 2008).  

Once the onset of convection occurs, density can be affected for an entire layer of groundwater in 

the timespan of 2-4 weeks (Simmons et al., 2001).  Flow paths from landfill plumes and 

radioactive waste sites can be affected by differences in density, thus density-driven free 

convection in the field is of vital importance to contaminant transport applications (Deng et al., 

2004).  Field data quantifying free convective processes would significantly advance the study of 

groundwater convective theory, demonstrating that free convection occurs more often than 

previously thought (Van Dam et al., 2009).  For water supply in faulted aquifers, deep faults can 

bring poor quality water to shallow aquifers; convective processes can further concentrate solutes 

impacting both surface and groundwater (Hanna and Harmon, 1989).  Groundwater flow near salt 

domes, where the fluid is a mixture of fresh water and brine, and the evaporation of salt lakes are 
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examples of the need for field research in this area (Holzbecher, 1998).  Quantifying these 

processes will allow for an increased ability to predict the impacts on current and future water 

supply as well as furthering the geological understanding of near surface groundwater flow.  For 

questions of fluid flow at depth, hydrothermal fluids migrating upwards along faults could be 

even more unstable than other convective systems.  This research may allow better insight into 

the hydrology of hydrocarbon reservoirs and geothermal energy systems (Rabinowicz et al., 

1985; Liu et al., 1997).  If convective processes are occurring in a fault zone, convection cells 

may occur in several modes.  Based on convective theory, Mode 1 interfracture convection may 

occur perpendicular to the fault, Mode 2A intrafracture convection and Mode 2B intrafracture 

convection may occur parallel to the plane of the fault with Mode 2B being the most likely mode 

of convection in a low permeability layer (Simmons et al., 2008).        

 

Field Detection of Convection  

Investigating convective processes in groundwater is difficult with standard approaches using sets 

of wells placed into the groundwater domain.  In convective systems, the patterns are spatially 

complex and the placement of a well may disrupt convection cells.  Electrical Resistivity Imaging 

(ERI) is a technology which allows for the observation of subsurface fluid processes from the 

surface (Crook et al., 2008), thus it is well suited for this type of study.  Through the use of ERI 

equipment and inversion processing, direct current can be injected into the subsurface, and 

monitored at the surface, resulting in two- or three-dimensional datasets that can be analyzed.  In 

deep-seated fault flow systems, flow rates tend to be nearly constant; affected only by barometric 

effects.  If convection is occurring in these systems, monitoring fluid conductivity changes may 

show higher rates of variability than expected from deep groundwater flowing to the surface 

under advective (forced convective) processes.  The research hypothesis maintains that measured 
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convective parameters of wavelength and timescales obtained from electrical resistivity and fluid 

field data will correlate to convective groundwater theory in fault zones (Simmons et al., 2008).     

 

Field Evidence of Free Convection 

In porous media, Van Dam et al., (2009) used finger-shaped anomalies in resistivity data along 

with fluid data and theoretical estimates to indicate that convection was occurring in a sabkha 

near Abu Dhabi, United Arab Emirates.  In a fault setting, a similar set of evidence can be 

developed.  The best site to evaluate convection in a fault zone would have steady flow with 

evaporation at the surface increasing the near surface salinity gradient to increase instability and 

aid convection.  The site should also lack alternative electrical features that could be interpreted 

as fingering or convection cells.  At a site that meets the criteria, theoretical support can be 

evaluated using Simmons (2008) to evaluate the Rayleigh number criterion for the onset of 

convection in a faulted system.  As these calculations are for homogeneous media instead of 

faulted media, they provide guidance on the likelihood of convection, not an absolute evaluation. 

Next, two-dimensional resistivity data can be evaluated in a fault zone to look for Mode 1, Mode 

2A or Mode 2B convection cells.  As opposed to fingering in the data, regular circular conductors 

can be expected in these datasets that could be evaluated for a relationship with fluid 

conductivity.  The wavelength of these features should be related in size to the dimensions of the 

fault (Simmons et al., 2001).  These features may be antithetical to the fault if rotation directions 

are antithetical as may be the case in Mode 1 cells.  Transient resistivity data should show both 

increases and decreases in resistivity if the fluid is rotating, and should be evident compared to a 

steady change in one direction or no change at all.  Mode 2B cells would be the most readily 

evaluated as they are the most unstable and would likely have the fastest rotation to detect 

electrically. 
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Field Approach 

The Nacimiento Fault Zone, and more specifically, the Tierra Amarilla mound springs site lies on 

Bureau of Land Management public land, thus borehole exploration would not be possible to 

investigate the existence of groundwater natural convection.  Borehole investigation would not 

prove nor disprove the existence of free convection in this setting as the vertical conduits 

themselves would disturb the free convective processes.  This site met the criteria to provide a 

good site for convection evaluation.  The field resistivity and fluid data were evaluated to 

determine the structure of the convective features of the fault zone, and with the addition of data 

from the University of New Mexico, structural mapping was also employed in order to interpret 

the geologic context of the ERI data to test alternative explanations for the resulting data. 
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

The literature for this investigation includes an understanding of the theoretical and field data 

describing free convective processes in fluids.  As electrical techniques are the dominant 

technique thus far to quantify these processes in the field, free convective theory will be described 

followed by a description of ERI, followed by the approach used in the literature to use these data 

in order to evaluate convective processes. 

 

Free and Forced Convection 

Free convection is a transport mechanism in which a density gradient exists from a source of 

thermal and/or salinity differences.  Forced convection, or advection, is a similar transport 

mechanism in which an outside source is causing the transport, as in a steep hydraulic gradient, or 

manmade device (Simmons, 2005).  Convection in non-groundwater settings has been of interest 

since 1900 when Henri Bénard conducted an experiment in which a thin layer of fluid was 

continuously heated from below, producing thermal free convection in a regular pattern of cells 

later known as Bénard cells.  In 1916, Rayleigh theorized that a particle hotter than its 
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environment encounters increasingly colder fluid as it rises, driving instability and thus 

convection (Lord Rayleigh, 1916).  Further developments include the Rayleigh-Bénard 

experiment which consisted of placing a fluid between two flat horizontal conductive plates, and 

heating the lower plate to temperature significantly above the higher plate.  Thermal expansion 

occurs at the lower plate resulting in a lowered density at that plate, and due to the conservation 

of mass, instability then occurs at a finite wavelength (Cross and Hohenberg, 1993).  The 

Rayleigh number (Ra), describes this instability, and is a dimensionless ratio of the destabilizing 

buoyance force to the stabilizing dissipative force (Nield, 1994).    

 

Ra =  

where Ra = Rayleigh number (dimensionless) 

α = thermal expansion coefficient (meters/
0
C) 

g = acceleration due to gravity (meters
2
/second) 

ΔT = change in temperature (
0
C) 

d = plate separation (meters) 

k  = thermal diffusivity (meters
2
/second) 

and v = kinematic viscosity (meters
2
/second) 

 

When the Rayleigh number is below the critical value for a specific fluid, heat transfer occurs in 

the form of conduction; when it is above the critical value for that fluid, heat transfer occurs in 

the form of thermal convection.  
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Convection Experiments 

In 1945, free convection theory predicted that in a steady state, square cells will form with 

wavelengths equal to twice the layer thickness (Horton and Rogers, 1945).  This gives rise to the 

theory that convective circulations have width equal to twice the layer thickness.   

The first significant work on transient thermal convection was done by Elder (1967), and 

consisted of a heat convection experiment in which a rectangular Hele-Shaw cell (two flat plates 

parallel to each other and separated by a small distance) was heated at its base.  Six convection 

plumes formed, though only four cells remained towards the end of the experiment.  This was an 

important step in convection theory, but more recently the Elder problem has been shown to be 

ineffective in numerical modeling due to multiple steady states stemming from a high Rayleigh 

number of 400 (Van Reeuwijk et al., 2009).  Convection theory was furthered through the 

investigation of thermohaline properties in a porous medium.  Nield’s (1968) experiment showed 

that oscillatory instability is possible when a “strongly stabilizing solute gradient is opposed by a 

destabilizing thermal gradient, but attention is concentrated on monotonic instability”.   

Significant progress has also been made in the field of open-ocean convection, where recent 

observing technology is being used to study convection processes.  Detailed observations of this 

process have been made in the Labrador, Greenland and Mediterranean Seas (Marshall and 

Friedrich, 1999).  In the Southern Ocean near the Greenwich meridian, brine release during ice 

formation is significant enough to destabilize the water column and cause the onset of open-ocean 

free convection.  This thermohaline convection process brings deeper, warmer water to the 

surface which in turn melts the ice.  The surface layer increases in salinity, and a destabilizing 

buoyancy flux occurs that continues until the ice disappears and the cooling is no longer vigorous 

enough to destabilize the water column (Goosse and Fichefet, 2000). 
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Free convection heat transfer has also been studied in solar collectors where heat flux 

distributions occur in the annular space between circular receiver tubes and glass envelopes.  

Finite difference numerical modeling was used to obtain a Rayleigh number of 1.2 x 10
+04

 

(Kassem, 2007). 

Spontaneously generated convection has been observed in oil drop experiments where, 

“monodisperse polystyrene particles with a mean diameter of 2.134 µm were added to varying 

concentrations of nonionic surfactant solutions” underneath a glass surface (Peña and Miller, 

2006).  At high surfactant concentrations, radial convection was monitored by videomicroscopy.  

The convection pattern in Figure 2.1 below shows circulation within the oil drop. 
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Submerged throat glass melting furnaces have also been shown to produce three-dimensional 

convection in the production of glassware, container glass and TV panels (Pilon et al., 2006).  

The glass melting furnace consists of a melting tank which is connected to the output of the 

melted glass by a connected channel referred to as a throat.  Figure 2.2 shows the Mode 1 

convective circulation pattern formed in submerged throat furnaces which have no air bubbles or 

electric boosting.  Pilon et al., (2006) found that in an experimental glass tank 15.85 meters long, 

7.32 meters wide and 1.03 meters deep, 16 Rayleigh-Bénard cells were observed in the glass 

batch.  These convective cells extended along the entire length of the glass tank, but then 

dissipated as soon as the glass surface came into contact with the combustion space.  A heat flux 

gradient in the x-direction is present, (Figure 2.3b), and is the driving force behind the two 

circulation loops in the longitudinal direction (Zhiqiang and Zhihao, 1997; Pilon et al., 2006).  

The three-dimensional convection which is produced is similar to the known Mode 1 convective 

cell structure, as the flow pattern is antithetical and contains fingering patterns.  
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Convection in Porous Media 

In the late 1940s, it was demonstrated that if a porous-medium layer was heated from below, 

instability occurs leading to the onset of thermal convection (Horton and Rogers, 1945; Lapwood, 

1948).  This is of interest not only to geothermal convection study, but also to the problem of 

contaminant transport stemming from buried nuclear waste.   

The onset of thermal convection in a horizontal layer of porous medium uniformly heated from 

below has been studied in detail using the Horton-Rogers-Lapwood problem (Nield and Bejan, 

2006; Nield and Kuznetsov, 2006; Nield and Kuznetsov, 2011).  In the case of weak 

heterogeneity, a Rayleigh number based on the mean properties is an acceptable basis for the 

prediction of the onset of instability; thus the effects of vertical heterogeneity and horizontal 

heterogeneity are considered to be comparable (Nield and Kuznetsov, 2006).       

Variable density fluid flow occurs in many different forms and localities.  When it is caused by 

solute/colloidal concentration, temperature, and pressure, it can occur in hydrological situations 
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including seawater intrusion, high-level radioactive waste disposal, groundwater contamination 

and geothermal energy production (Simmons et al., 2001).  Convective currents can arise from 

heat and salinity gradients acting simultaneously or independently (Angisara and Scrinivasan, 

1989).  Several studies have shown that density-driven free convection is a likely mechanism for 

the circulation of large quantities of fluid without the requirement of large external inputs and 

outputs (Morton and Land, 1987; McKenna and Sharp, 1997; Sharp et al., 2001).   

There are various studies which focus on convection in vertical fractures and other conduits.  

Thermal convection in faulted extensional sedimentary basins has been studied; convection can 

occur for basal heat flows when the vertical hydraulic conductivity is on the order of 1.5 

meters/year and lower (Simms and Garven, 2004).  Tracer experiments have shown that 

buoyancy-induced flow may play an important role in groundwater transport and mixing in open 

vertical conduits in aquifers (Ronen et al., 1995).  Convection in groundwater wells has also been 

recently investigated.  The addition of salt to typical well geometry can further destabilize the 

already unstable geothermal gradient in the well producing double-diffusive vertical convection 

(Love et al., 2007).  Recent studies in variable density groundwater flow have focused on density-

driven free convection, hydraulic gradient-driven forced convection, the porous medium 

properties and dispersion that reduces density-driven flow (Simmons, 2005).  The results of these 

studies have shown that “only very small to modest density differences (e.g., driven by salinity 

inversions on the order of several thousand milligrams per liter but often substantially less or by a 

typical geothermal gradient) are required for free convection phenomena to occur where vertical 

conduits exist” (Simmons et al., 2008).   

  



13 
  

Convection Quantification 

In controlled settings, convection theory predicts that square or nearly square circulations develop 

with steady state fingering wavelength that is equal to twice the thickness of the layer in which 

convection occurs (Diersch and Kolditz, 2001; Van Dam et al., 2009).  In simple free convective 

systems where mechanical dispersion is assumed independent of convective flow velocity, the 

onset of instability is determined by the value of the Rayleigh number (Ra).  This dimensionless 

number is the ratio between buoyancy driven forces and resisting forces caused by diffusion and 

dispersion (Simmons et al., 2001).  Numerical modeling utilizing the boundary layer Rayleigh 

number to determine the critical brine thickness necessary for free haline convection to occur, 

place the Rayleigh number at about 10 (Wooding et al., 1997).  Simmons et al., (2001) mentions 

that a Rayleigh number above a value of 5 may be a potential site for free convection, while 

pointing out that the larger the Rayleigh number, the more unstable the system.  

To estimate how fast a convective fingering pattern may dissipate, convective velocity (U c) can 

be found by rearranging the Rayleigh number equation: 

 

Uc =  

Where Uc = convective speed (meters/second) 

Ra = Rayleigh number (dimensionless) 

DO = molecular diffusivity (meters
2
/second) 

and H = layer thickness (meters) 

 

Thus, if a given layer thickness is 10 meters, with a Rayleigh number of 3.5 x 10
+05

, the 

convective speed would be approximately three meters/day.  This theory suggests that even if the 
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layer thickness was as small as 1 meter, convective movement would still occur on the order of 

decimeters per day (Simmons et al., 2001).  In steady state, the free convection problem studied 

by Horton and Rogers (1945) predicts square convection cells will form with a wavelength equal 

to twice the layer thickness, while at a pre-steady state the wavelengths will be much higher and 

have a more narrow circulation (Simmons et al., 2001). 

 

Numerical Convection Models 

Numerical models have been developed in order to study groundwater flow and transport affected 

by three-dimensional thermohaline convection systems.  The three-dimensional finite element 

simulator FEFLOW has been utilized to study two-dimensional and three-dimensional convection 

problems (Diersch and Kolditz, 1996).  Two finite element simulators, HYDROCOIN and 

ROCKFLOW were also studied using non-linear, coupled, partial differential equations to solve 

for pressure/hydraulic head, and mass fraction/concentration of the solute component (Kolditz et 

al., 1996).  It was found that a diffusive regime occurs if a stable salinity gradient is heated from 

below, and a finger regime occurs if hot saline fluid exists on top of a stable temperature gradient.  

Other models have used a finite volume method (FVM) combined with upwind methods in order 

to avoid numerical instabilities with varying success (Frolkovic and De Schepper, 2000).  The 

numerical model SUTRA (Saturated and Unsaturated Transport) has also been used specifically 

to study free convection (Voss, 1984), simulating two-dimensional density dependent 

groundwater flow and solute transport, while RES2DINV has been used to model resistivity 

imaging of free convective flows in tanks (Dhu, et al., 2003).  This modeling suggests that free 

convection can be identified in the field with the use of ERI (Van Dam et al., 2009).    
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Field Evaluation of Convection in Porous Media 

In convective theory, heat-driven (thermal convection), density-driven (haline, free and forced 

convection) are well understood processes and have been extensively investigated in numerical 

and laboratory experiments.  Free convection specifically, is the process of convection driven 

purely by a density gradient, and has never been directly observed in a field groundwater setting 

(Simmons and Sharp, 2000).  Free, or natural convection is of scientific importance because in 

comparison with diffusion, it transports a larger quantity, has a significantly lower timescale and 

enables solutes to spread over much greater distances due to the dimensions of the mixing.  

Without definitive field evidence, free convection remains an incomplete theory, and an entire 

class of groundwater problems and issues remain to be explored (Halihan, 2002).  Density-driven 

free convection in groundwater can occur when the density of the invading fluid or plume, is 

greater than that of the ambient groundwater, and is often produced in the form of fingering 

patterns or lobe-shaped instabilities.  The density stratification resulting from the denser fluid 

overlying the less dense fluid is the main cause of free convection, and can lead to transport of 

heat and solutes over larger spatial scales and significantly shorter time scales than compared 

with diffusion alone (Simmons et al., 2001; Schincariol and Schwartz, 1990).  This is especially 

important when considering the effect of variable density flow in groundwater contamination.  

When surface-based point source pollution releases heavy leachates into the soil, the higher 

density contaminants can modify the transport behavior as the plume moves into the groundwater 

region with an approximate density contrast of 0.35-2.8% between the leachate and the 

groundwater (Freeze and Cherry 1979, p. 435).  The leachate can then sink as it penetrates into 

the groundwater and is transported not only by forced convection (advection) and diffusion, but 

also by free convection (Ghebart et al., 1988).  Schincariol and Schwarts (1990) demonstrated 

that plume concentrations of only a few hundred to a few thousand milligrams per liter above 
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ambient groundwater are sufficient to induce the formation of lobe-shaped anomalies (Schincariol 

and Schwarts, 1990; Shikaze et al., 1998).  

Many problems arise from the fact that convection studied numerically and in the laboratory 

assume steady-state flow, isotropy and homogeneity.  Since the Rayleigh number assumes steady-

state, “the Rayleigh number can only provide information concerning onset conditions, and 

nothing about subsequent temporal development” (Simmons et al., 2001).  Heterogeneity is a 

triggering mechanism for the onset of instabilities, and is also the most important factor 

controlling whether the instabilities will grow or decay.  Long and vertically continuous high-

permeability regions (vertical fracturing) tend to enhance growth conditions, while intermediate 

low-permeability regions provide resistance to horizontal dispersive mixing (Simmons et al., 

2001).        

The importance of both stable and unstable variable-density groundwater flow and solute 

transport has been studied in the literature.  Seawater intrusion into coastal aquifers occurs when 

higher density seawater mixes with the lower density freshwater, forming a saltwater front that 

advances inland (Shikaze et al., 1998) and has been widely studied (Frind, 1982a; Huyakorn et 

al., 1987; Lee and Cheng, 1974; Pinder and Cooper, 1970; Segol et al., 1975; Segol and Pinder, 

1976; Voss and Souza, 1987).   

 

Convection in Fractured and Faulted Systems 

Interfracture and intrafracture convection has been recently analyzed in low-permeability shales 

in the Gulf of Mexico citing fracture spacing, fracture aperture, shale thickness and density 

gradient as major influences in fluid and solute transport (Simmons et al., 2008).  In convection 

theory, free convection is possible for convection parallel to the fracture plane, perpendicular to 

the fracture plane and also between fractures, though parallel free convection has been shown to 



17 
  

be the most likely process due to its lower salinity difference requirement for the onset of 

convection to occur (Simmons et al., 2008).  Simmons found that, “the most likely mode of 

convection in a low-permeability layer is Mode 2B, with free convection occurring parallel to the 

plane of the fracture” and may occur in most hydrologic settings.  Figure 2.4 below shows the 

three convection modes in a fractured low-permeability layer.  “The top figure shows Mode 1 

interfracture convection, while the bottom figure shows intrafracture convection perpendicular to 

the plane of the fracture (Mode 2A) and intrafracture convection parallel to the plane of the 

fracture (Mode 2B)” (Simmons et al., 2008). 

 

 

 

Resistivity and Convection 

Electrical resistivity is a geophysical technique which measures the difference in subsurface 

resistivity utilizing four electrodes.  Electrical resistivity methods were first developed in the 
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early 1900’s, though it was not put into use widely until the 1970s (Hauser et al., 1998).  More 

recent developments in in field systems and processing software have produced electrical images 

which mirror the subsurface more accurately that ever before (Andrews et al., 1995; Reynolds, 

1997).  These systems use switching between several electrodes to collect a number of resistivity 

measurements from an array of electrodes.  Modern ERI technology has been described as a 

combination of traditional electrical probing introduced by the Schlumberger brothers, and 

cutting edge tomography data inversion methods (Daily et al., 2004).  

Resistivity is an inherent property of all materials, thus resistivity imaging is well suited for both 

resistive and conductive materials, and unlike other subsurface methods such as ground 

penetrating radar (GPR), it functions well under various surface/subsurface conditions and can be 

used when the field site contains significant topographic variability.  The fundamental theory for 

ERI surveying relies on Ohm’s law.  Ohm’s law describes the relationship between resistance, 

potential difference and current.   

 

R = V/I  

where R = resistance (ohms) 

V = potential difference (volts) 

I = current (amps) 

 

The resistance of a wire cable can be expressed as:  
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where R = resistance (ohms) 

ρ = resistivity (ohm-meters) 

L = length (meters) 

A = cross sectional area (meters
2
) 

 

From this equation, resistivity (ρ) can be defined: 

 

where ρ = resistivity (ohm-meters) 

V = potential difference (volts) 

A = cross-sectional area (meters
2
) 

I = current (amps) 

L = length (meters) 

 

Resistivity (ρ) is the volumetric parameter that defines resistance over a three-dimensional object 

verses a one-dimensional wire.  With the advances in computing power and data logging 

equipment, resistivity equipment has developed different sampling techniques and different array 

possibilities.  A single survey may contain thousands of data points, allowing for much larger 

scale, high-resolution surveys. 
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Surface resistivity equipment uses a direct current signal (I) which is sent to the electrode array 

which is connected to the ground surface through metal stakes, while independently measuring 

different combinations of the potential difference (V) across the electrodes.  Power is supplied by 

dry-cell batteries which can be recharged through the use of portable generators for field work 

when longer timescales are involved.  The process is repeated for several current/potential 

electrode configurations over a predetermined period of time which allows for the collection and 

onsite storage of thousands of data points.  Data are collected by the ERI equipment over a period 

of time and is stored in the instrument.  Through data inversion processing, ERI can produce two- 

or three-dimensional subsurface images which allow for an understanding of subsurface 

resistivity variations tens to hundreds of meters deep for most surveys (Reynolds 1997; Hsu et al., 

2010; Smith and Sjogren, 2006).  An electrode array with constant spacing is utilized to record 

changes in apparent resistivity, which then reflects geologic variability or localized subsurface 
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anomalous features (Wightman et al., 2003).  The data gathered by the equipment is interpreted in 

values of apparent resistivity (ρa) and is defined as, “the resistivity of an electrically 

homogeneous and isotropic half-space that would yield the measured relationship between the 

applied current and the potential difference for a particular arrangement and spacing of 

electrodes” (Wightman et al., 2003). 

 

Field-based Detection of Convection in Groundwater   

There is a range of evidence that free convective flow of variable-density fluids in groundwater 

can be detected and monitored through geophysical field techniques.  Geoelectrical imaging was 

conducted in the Okavango Delta, Botswana, to infer the salinity distribution in the subsurface 

below two islands; one density finger was observed on one of the islands (Bauer et al., 2006).  

The University of Texas hydrogeology field projects at Padre Island National Seashore included a 

series of resistivity profiles in tidal flats as well as hydrogeologic mapping which showed an 

expected freshwater lens overlying saline water from the Gulf of Mexico and the Laguna Madre 

as well as salinity inversions (UTHFC, 1997, 2001, 2003, 2005, and 2007).  A separate resistivity 

profile conducted in 2000 shows a salinity profile also performed at North Padre Island National 

Seashore; salinities were inferred from the resistivity profiles and later confirmed with Geoprobe 

data (Fenstemaker et al., 2001). 
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Further investigation at this site by Stevens et al. (2009) included ERI methods along with nested 

piezometers and data loggers which captured the development of density inversions and plumes 

of high-salinity water.  “Estimated Rayleigh numbers and mixed convection ratios using field 

data confirmed that inverted density gradients should be unstable”, but the existence of free 

convection at the site was not confirmed by the data (Stevens et al., 2009).  The hypothesis, 

however, that free convection occurs in a natural setting is still considered valid.   

In Van Dam et al., (2009), geophysical imaging resulted in a “fingering pattern with lobe 

structures that descend to variable depths into the aquifer.”  The pattern found was consistent with 

fingering patterns found by redissolution of brine.  Mode 2B free convective cells were imaged 

through the use of ERI, though transient and three-dimensional characteristics were not 

investigated (Van Dam et al., 2009).   
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CHAPTER III 

 

SITE DESCRIPTION 

 

Geology 

The Sierra Nacimiento uplift in northern New Mexico consists of an area over 2,200 km
2
 

bounded on the west by the San Juan Basin, on the northeast by the Chama Basin, on the east by 

the Jemez Volcanic Field and on the southeast by the Albuquerque Basin of the Rio Grande rift 

(Pollock et al., 2004).  Mountain building processes and geologic uplift resulted in the structures 

found there today, and are of importance to many structural geologists who have attempted to 

interpret the underlying structure of the Sierra Nacimiento.  Structures in the Sierra Nacimiento 

include high-angle reverse faults, thrust faults, steep normal faults, strike-slip faults and north to 

northwest trending folds (Pollock et al., 2004).    

About 75 million years ago, most of the western United States underwent a compressive 

mountain building event known as the Laramide Orogeny.  The Sierra Nacimiento mountain 

range in New Mexico, was at this time uplifted along a thrust-fault zone on the west side of the 

mountain range (Woodward, 1987; Woodward and Ruetschilling, 1976).  Shear folding of the 

brittle Precambrian basement rocks occurred, as well as stretching of the incompetent overlying 

sedimentary strata along a monoclinal fold on the west side of the uplift.  The normal faults and 

folds were cut by the Nacimiento Fault which is close to vertical at depth, flattens upward and 
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has westward movement of the hanging wall block over the San Juan basin (Woodward et al., 

1971).   

The Tierra Amarilla anticline is a ridge extending approximately 1,600 meters and includes the 

Tierra Amarilla mound springs and the Nacimiento Fault.  The Tierra Amarilla anticline is 

located in north-central New Mexico at the junction of several major geologic provinces: the 

Colorado Plateau, the Rio Grande rift and the southern Rocky Mountains (Woodward, 1987; 

Cron, 2011).  Two major tectonic events resulted in the present day structure of the Tierra 

Amarilla mound springs site: the Nacimiento uplift during the late Cretaceous and early Tertiary, 

and the Rio Grande rift during the late Cenozoic.  The Tierra Amarilla mounds springs site 

consists of the “Todilto Formation, Entrada Sandstone (Jurassic), Petrified Forest Member 

(Triassic), Agua Zarca Sandstone Member (Triassic), and the Glorieta Sandstone and Bernal 

Formation (Permian), the Abo, and the Yeso, and the Madera (Pennsylvanian) stratigraphic units” 

(Cron, 2011). 
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Utilizing the previous work of Cron (2011), two cross sections were created using subsurface 

structural mapping along with the processed ERI data.   
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Hydrogeology 

Helium and carbon isotopic data indicate deep fluid connections in this system.  Stable isotope 

analysis of the study site show that flow from the distal Valles Caldera hydrothermal system may 

be related to the springs in this area as fluid transport occurs along extensional faults.  Travertine 

continues to be deposited in the area while some extinct mound springs may be as old as 270 ka 

(Halihan., 2011).  The range of TDS in springs at the site has been recorded by Cron (2011), at 

4,000-10,000 mg/L.  The water chemistry of the study site is generally a sodic water balanced 

with chloride and sulphate (Figure 3.5).  
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The hydraulic gradient parallel to the Nacimiento fault along the Tierra Amarilla anticline was 

calculated to be 0.08. Generally, fault permeability ranges from 1.00 x 10
-12

 to 1.00 x 10
-21

 

meters
2
 in faults as found by numerical modeling (Matthai and Roberts, 1999).  The permeability 

(k) of the research site can be approximated upon known values of Petrified Forest shale.  Values 

range from 90-250 Darcies at the Petrified Forest in central Arizona with a porosity of 16-41% 

(Trendell et al., 2012).  Through inspection of geologic maps, the Petrified Forest and the 

Nacimiento Fault Zone consist of the same formation.  

 

Rayleigh Criteria 

The following five Rayleigh number equations are found in Simmons et al., (2008).  Mode 1 

fracture permeability from the cubic law is  where b is the aperture length and λ is the fracture 

spacing.  The average permeability of the medium is: 

kav =  

kav =  

kav = 1.89 x 10-10 

 

Mode 1 Rayleigh number equation: 
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Where g = acceleration due to gravity (meters/second
2
) 

k  = permeability (meters
2
) 

 β = coefficient of fluid density change ( ρ/∂C) 

∆C = concentration difference (dimensionless) 

H = layer thickness (meters)
  

θ = aquifer porosity (dimensionless) 

v = fluid kinematic viscosity (meters
2
/second) 

and D = solute diffusivity (meters
2
/second) 

 

 

 

Ra = 49.4 
  

 

The critical concentration difference needed for the onset of Mode 1 convection from the standard 

Horton-Rogers-Lapwood theory is 4π
2
.  Thus, an estimate of the critical concentration difference 

for Mode 1 convection follows (Simmons et al., 2008). 

 

∆Ccrit =  

 

where  = the constant pi (dimensionless) 

Dav = effective diffusion coefficient (meters
2
/second) 

v = fluid kinematic viscosity (meters
2
/second) 

 = effective wavelength (meters) 

g = acceleration due to gravity (meters/second
2
) 
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 β = coefficient of fluid density change ( ρ/∂C) 

b = fracture aperture (meters) 

and H = layer thickness (meters)
  

 

∆Ccrit =  

 

∆Ccrit = 2.53 x 10-07 

 

For Mode 2 convection, the Rayleigh number is based on fluid properties, the vertical gradient, 

and the half-width of a plane vertical layer (Simmons et al., 2008). 

 

Ra =  

 

where g = acceleration due to gravity (meters/second
2
) 

b = fracture aperture (meters) 

 β = coefficient of fluid density change ( ρ/∂C) 

ΔC = concentration difference (dimensionless) 

H = layer thickness (meters)
     

 

Dav = effective diffusion coefficient (meters
2
/second) 

and v = kinematic viscosity (meters
2
/second) 

 

Ra =  
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Ra = 53.6 

 

 

Finally, an estimate for the critical concentration difference for the onset of Mode 2A convection 

follows (Simmons et al., 2008). 

 

ΔC crit  2A =   

 

where Dav = effective diffusion coefficient (meters
2
/second) 

v = fluid kinematic viscosity (meters
2
/second) 

 = layer thickness (meters) 

g = acceleration due to gravity (meters/second
2
) 

 β = coefficient of fluid density change ( ρ/∂C) 

and b = fracture aperture (meters) 

 

ΔC crit  2A =  

 

ΔC crit  2A = 3.50 x 10-03 

 

Simmons et al., (2001) states that a Rayleigh number of 5 or above is sufficient to indicate the 

possibility of free convection, while Wooding et al., (1997) states that a Rayleigh number around 

10 is necessary for free haline convection to occur.  Nield et al., (2008) states that the 



33 
  

approximate Rayleigh number for the onset of instability would be about 30, slightly less than the 

value of 40 previously used for the parallel plate problem (Simmons et al., 2008).  When the 

Rayleigh number reaches a value of 40 or above, free convection is assumed to be taking place.  

Several problems exist with the calculation of the Rayleigh number.  Steady-state flow and 

simple boundary and layer conditions are assumed, a limited knowledge exists for the onset of 

free convection in a field setting, and spatially distributed properties are averaged for 

dimensionless computation (Simmons, et al., 2008).  The calculated Rayleigh number for Mode 1 

free convection was 49.4, while the value for Mode 2 was 53.6; which is above the established 

theoretical values required for the onset of free convection.  The values calculated here indicate 

the probability of free convection exists as Mode 1 and Mode 2 Rayleigh numbers are both above 

40, while keeping in mind that the Rayleigh number is only an indicator of instability and does 

not have the ability to prove free convection in the field.   
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CHAPTER IV 

 

METHODS 

 

In May of 2011, a team from Oklahoma State University in coordination with the University of 

New Mexico used ERI in order to investigate the possibility of free convection at the Tierra 

Amarilla mound springs site.  Six ERI data sets were collected along the length of the fault and 

also perpendicular to the fault (Figure 4.2).  Based on the preliminary data, twelve additional ERI 

datasets were collected in a pseudo three-dimensional array the following year.  The field 

methods employed at the site included GPS surveying, water quality sampling and monitoring, 

ERI data collection, and geologic mapping.  The analysis of the data included data reduction and 

processing of the above methods and a wavelength analysis of the electrical resistivity data. 

 

Resistivity Design 

The ERI equipment used at the Tierra Amarilla mound springs site consists of an Advanced 

Geosciences, Inc. SuperSting R8 multi-channel portable earth resistivity meter, a switchbox 

which connects the main unit and the electrodes, cable with 56 electrodes spaced every 10 meters, 

and one stainless steel stake for each of the 56 electrodes.  The ERI unit’s power supply was 

derived from several 12-volt marine deep cycle batteries that had the ability to be recharged.
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Using the preliminary data from May 2011 as a guide (Figure 4.2), a pseudo three-dimensional 

survey was designed in order to plot the data points that would be required in the field. 
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Figures 4.1-4.4 demonstrate that the pseudo three-dimensional ERI survey design was 

concentrated along the strike of the Nacimiento Fault in order to capture Mode 2A and Mode 2B 

convective cells, along with Mode 1 convective cells orthogonal to the Nacimiento Fault.  The 

2012 survey was designed so that ten ERI lines were to be collected; five running in an east-west 

orientation, three lines in a general north-south orientation along the fault zone, two lines placed 

in diagonal orientations, and two more transient datasets to be collected from the central north-

south oriented ERI line.  Each line consisted of 56 electrodes at 10 meter spacing between each 

electrode for a total length of 550 meters.  The lines were named based on their general 

orientation and distance from the center point of the survey (Twin Mound East).  The central 

north-south line located directly over several springs was used to observe transient electrical 

changes in the conductive features which can be interpreted as Mode 2B convection cell rotation.  
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At the intersection of the central north-south ERI line (NS000) and the central east-west ERI line 

(EW000), lies the active mound spring Twin Mound East.  The NS000 ERI line was imaged at 3 

day intervals a total of three times in order to collect transient data which would evaluate the 

possibility of convection in a weekly timescale.  The EW000 line was recollected at the same 

location and orientation from the previous year providing an evaluation of Mode 1 transient 

behavior on an annual timescale.   

 

Field Surveying 

Springs located along ERI lines were the focus of fluid data collection.  A handheld EC meter 

was utilized in order to collect fluid data at Twin Mound East.  A data logger was also used at the 

site to record the barometric pressure, water level, temperature and conductivity of the fluid 

inside Twin Mound East at the intersection of lines EW000 and NS000 over a timescale of 24 

hours.   

Differential GPS, a laser range finder, and a handheld GPS unit were used to map the topography 

of the site.  After the flagged survey stakes were placed in their pre-selected positions to mark the 

orientation of each line, 100 meter measuring tapes were used to determine the electrode 

locations.  Then, 56 (50 cm long) stainless steel stakes were driven into the travertine and soil 

using sledgehammers.  After all 56 stake-electrode connections were secured and connected to 

the resistivity instrument cables and all connections were visually verified, the unit was powered 

on and stake-electrode connectivity was tested for contact resistance.  Due to the highly resistive 

nature of the travertine along with the dry surface conditions, several stakes had a slurry mixture 

added around them, composed of native soil and saline fluid extracted from Twin Mound East.  

After a successful contact resistance test, the SuperSting R8 unit was allowed to automatically 

collect data.     



41 
  

In order to image Mode 1 convection cells, ERI line EW000 was placed at the same coordinates 

in May of 2011 and June of 2012.  ERI line NS000 was also placed at the same coordinates and 

imaged a total of three times during 2012 in an attempt to image Mode 2B convection cells.  The 

stakes for line NS000 were deployed for 6 days and not moved between dataset collection.       

 

Data Analysis 

The Superting R8 (Advanced Geosciences Inc., Austin, TX) system utilizes a menu based 

program to induce DC current, measure the resulting potentials and store the data for later 

processing (Halihan et al., 2011).  The data collected by the Advanced Geoscience’s Inc. 

SuperSting R8 was stored in the unit on site, downloaded through the use of a laptop and later 

processed using a series of software programs.  Utilizing the Halihan-Fenstemaker technique, 

two-dimensional color models were produced which show the distribution of electrical resistivity 

gathered by the unit in the field (Halihan and Fenstemaker 2004).  The two-dimensional images 

were further processed into a three-dimensional model for further analysis. 

The size of potential convection cells were quantified by analysis of the wavelengths of electrical 

features using the Rose criterion for signal-to-noise.  Signal-to-noise ratio is a statistical measure 

which compares the level of a specific signal to the level of background noise and can be applied 

to any form of signal (Barker, 1990).  In the context of experimentation, a value that is 

significantly away from zero defines a signal in contrast to noise.  The Rose criterion states that a 

signal-to-noise ratio of at least 5 is needed to distinguish image features as statistically likely.  

The method was employed by extracting a horizontal line of resistivity data at the elevation of 

circular conductive anomalies, which generally occurred at a depth of approximately 40 meters in 

the resistivity datasets.  A lower threshold of 2 ohm-meters was used to define conductive 

features.  The size of the features was measured to determine the wavelength of all conductive 
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features at the horizon utilized.  The wavelengths were then compared by dividing the average 

wavelength by the standard deviation of each ERI line and graphing the results.  This method 

estimates the location of a Mode 1 or Mode 2B convection cell, but it is an upper bound estimate 

of the width of the cell.  Additionally, for datasets with a limited number of cells, the statistical 

method is applied to a small number of samples, but still provides a reliable method independent 

of observer.     
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CHAPTER V 

 

RESULTS 

 

After the preliminary survey of six resistivity datasets, a total of ten ERI survey lines were 

imaged in June 2012, at the Tierra Amarilla mound springs site in north-central New Mexico, 

using the AGI equipment previously described (with an additional two transient lines imaged).  

The ERI line along the Nacimiento Fault (NS000), was collected three times in order to evaluate 

the transient properties of Mode 2B convective cells.  The results are presented based on the fluid 

data collected and the relationship between fluid and resistivity data first.  Next, the resistivity 

data and the wavelength analysis are presented.  Finally, the transient data from the Mode 1 and 

Mode 2B collection efforts are presented.     

 

Fluid Results 

The fluid data obtained from the site include conductivity, water level, air pressure and 

temperature at the central travertine-depositing mound spring Twin Mound East.  Conductivity at 

the mound spring over a timescale of 24 hours was shown to have significant salinity fluctuations 

while the barometrically-compensated level of the spring is steady (Figure 5.2).  The temperature 

of the spring was found to be a constant 24.7
0
 C for the duration of the 24 hour timescale 

measured from June 19-20, 2012 (Figure 5.3).        
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The electrical conductivity (EC) of the springs is related to the bulk resistivity of the springs 

when the resistivity is below approximately 30 ohm-meters (Figure 5.4).  The higher resistivity 

areas do not show a relationship.  The relationship between the measured EC values for the 

springs at the site and the bulk resistivity of the springs is affected by the structure of the 

travertine deposits.  In areas where the springs are discharging from travertine which is loosely 

attached to the underlying formations, the bulk resistivity is higher and the travertine sounds 

hollow when walking upon it, or driving a metallic stake into it with a sledgehammer.  In other 

areas the travertine appears competent and the relationship is much stronger. 

 

Resistivity Results  

Results from the ERI data gathered and processed are presented below.  The preliminary results 

from 2011 are presented followed by the results of wavelength analysis of the 2012 datasets.  

Finally, the results of the transient evaluation of potential Mode 1 and Mode 2B convective cells 

are presented.     

 

ERI Preliminary Data 

Preliminary data showed conductive circular features in both Mode 1 cell configuration 

(perpendicular to the fault) as well as Mode 2B configurations along the fault (Figure 5.5).  

Orthogonal to the fault, a resistive signature with an approximately 55 meter width is present 

along the fault with a resistivity range of 5-10 ohm-meters.  Resistive areas greater than 30 ohm-

meters are located near the surface and correspond to areas with significant travertine deposits 

(Figures 3.3 and 3.4).  Orthogonal to the fault are two conductive features which appear to curl 
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antithetical to the fault at a depth of approximately 40 meters below the surface.  In the fault 

plane, a number of conductive circular features are observed near the same depth interval.  

 

 

 

Three-Dimensional Evaluation 

Resistivity data from 2012 created a pseudo three-dimensional dataset that was evaluated for 

wavelengths of potential convection cells (Figure 5.6).  The three-dimensional data show more 

resistive areas corresponding to the location of travertine deposits near the surface.  The more 

conductive areas near the surface corresponding to alluvial deposits or exposures of the Petrified 
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Forest shale.  In the subsurface, conductive circular features are present along the fault plane and 

in two lines parallel to the fault approximately 100 meters on either side of the fault. 

 

 

 

Wavelength Evaluation 

Shown in Figure 5.7, the Rose criterion was used to analyze the wavelengths of the convective 

cells.  This method was successful in predicting where a convective cell would exist, but is an 

upper bound estimate of the width of the cell.  A signal-to-noise ratio value of 5 or above is 

necessary to distinguish a signal from background noise at a statistical certainty. 
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Potential Mode 2B convection cells were expected along the fault and Mode 1 convection cells 

were expected orthogonal to the fault.  In other areas where ERI data were collected, no cells 

were expected.  Examples of images with various wavelengths and Rose criteria values were 

generated in the analysis.  The ERI line EW000 was expected to have the ability to image Mode 1 

convection cell features based on preliminary work.  The measured average wavelength for ERI 

line EW000, was 195 meters with two possible convective cells present and a Rose criteria value 

of 14 (Figure 5.7).  ERI line NS000 was also expected to image Mode 2B convective cells as it 

was aligned with the Nacimiento Fault.  The convective cell features obtained resulted in an 

average wavelength of 128 meters for three expected convective cells with a Rose criteria value 

of 16-17.5.  ERI line NSP010 potentially had observable Mode 2B cells as it was 10 meters off of 

the centerline of the fault.  The measured wavelength of conductive features was 86 meters for 

four cells with a Rose criteria value of 4.  Finally, ERI line EWP100 was not expected to have 

convection cells, and the analysis yielded no cells and was assigned a Rose criteria value of 0. 

In total, six ERI lines were expected to have Mode 1 or Mode 2B convective cells have a Rose 

criteria value of 11-18 (Figure 5.7).  The Mode 1 wavelength estimate was 110 meters.  Mode 2B 

wavelength estimates ranged from 110-128 meters.  Most lines that potentially contained 

convective cells had a smaller Rose criteria ranging from 2-9.  The wavelength estimate for Mode 

1 convective cells was 65-195 meters, and for Mode 2B cells, it was 110-197 meters.  Finally, 

none of the lines that were not expected to have cells had Rose criteria exceeding a value of 1. 
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Transient Data 
 
The transient data for possible Mode 1 cells was available from a line orthogonal to the 

Nacimiento Fault through Twin Mound East spring (Figure 5.9).  The data were collected 1 year 

apart and the stakes were not left in place, so the data are evaluated to determine general 

repeatability.  Both datasets showed a similar resistivity pattern with a resistive fault zone 

between 5-10 ohm-meters with resistive travertine in the shallow central portion of the domain.  

During both years, antithetical conductive features were present on each side of the fault centered 

approximately 100 meters from the center of the fault (Figure 5.12).  While the general pattern of 

the conductors remained similar between the two datasets, the structure was somewhat different.  
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Transient data along the fault was collected on 3 day intervals along the fault on line NS000 

(Figure 5.13) to evaluate potential Mode 2B cells.  Each interval demonstrated positive and 

negative changes in resistivity.  The data changes over the 6 day interval range from a nearly 50% 

decrease in bulk conductivity to an increase in conductivity of approximately 60%.  The changes 

in resistivity occur at two distinct intervals vertically with one set of changes occurring 

approximately 15 meters below land surface and 40 meters below land surface. 
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CHAPTER VI 

 

DISCUSSION 

 

The primary purpose of this field research was to provide the first quantification of free 

convection in a hydraulically active fault zone.  The hypothesis of this study maintains that free 

groundwater convection exists at the Tierra Amarilla mound springs in the Nacimiento Fault 

Zone, and can be quantified through the use of electrical resistivity and transducer data.     

 

What is Required to Prove Free Convection in the Field? 

Three criteria must be met in order to demonstrate that free convection is a mechanism for fluid 

flow in a natural setting.  1 – Lack of alternative diffusive mechanism: field data must 

demonstrate that flow and transport cannot be generated through diffusion; time scales must be 

shorter and length scales must be longer.  2 – Lack of ambient field gradients to support 

advection: the hydraulic gradients must be low enough to not support forced advection as a 

mechanism to explain the observed flow field.  3 – Direct field verification: field data must 

support techniques which would infer free convection from physical or numerical experiments, 

and buoyancy calculations must provide a theoretical basis for the invocation of free convection 

as the mechanism for flow.  Flow field observations must demonstrate either upward movement 

of dense solutes or full flow circulation field (free convection cell).  A corrugated flow field or 
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fingering must be demonstrated having large density contrasts in horizontal and/or vertical 

directions (Halihan, 2002). 

 

Data from the Nacimiento Fault 

Data gathered from the field site in May 2011 show that there is a relationship between ERI 

resistivity and fluid electrical conductivity (Halihan, 2011).  The fluid upwelling along the fault 

plane included a primary zone of about 55 meters wide orthogonal to the strike of the fault, and 

appeared to interact with adjacent aquifer materials (Figure 5.5).  An average conductive 

wavelength of 70 meters was recorded for Mode 2B equidimensional cells along the strike.  

Orthogonally, the cells were shown to have an average wavelength of 197 meters for Mode 1 

cells and are antithetical.  Data gathered in June 2012 further demonstrates the relationship 

between electrical resistivity and conductivity at the site.  The average conductive wavelength in 

2012 was found to be 128 meters for Mode 2B equidimensional cells along the strike, while the 

orthogonal Mode 1 cells had an average wavelength of 195 meters.  The 2011 data shows more 

defined Mode 2B cells verses 2012, while the Mode 1 cells are similar in shape and wavelength.  

A total of 16 ERI lines were imaged in the Tierra Amarilla mound springs site in north-central 

New Mexico approximately 80 kilometers northwest of Albuquerque.  Two additional images 

consisting of the transient line NS000 surveyed along the Nacimiento Fault at 3 day intervals.  

The ERI images show highly conductive cells and fingering patterns associated with free 

convection in the fault and also perpendicular to the fault.  The three-dimensional image created 

from the data shows that the highly conductive cells are circular in shape and are contained within 

the Nacimiento Fault Zone.  The high topographical gradient causes the two main circular 

conductive features to break apart as they travel downwards in elevation towards the north.  The 

analysis of the wavelengths was completed through the application of the Rose criterion.  The 
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signal-to-noise ratio was successful in predicting where the expected convective cells existed.  All 

of the expected convection cells have a signal-to-noise ratio above a value of 10, well above the 

value of 5 which is needed to indicate a signal.   

 

Disproving Possible Anomalies Other Than Free Convection 

Fault asperities do not explain the abnormally high conductive features shown in the ERI data, or 

allow for values of below 5 ohm-meters.  Asperities also do not explain a symmetrically spaced 

electrically conductive feature.  In order from least to most likely, proposed explanations of the 

recorded data which could also result in the processed ERI images obtained include:  

1 – Conductive lithology consisting of clays and/or metallic deposits in two circular shapes on 

opposite sides of the fault.   

2 – Fluid-filled voids consisting of two caves formed by travertine that mirror each other on either 

side of the fault.   

3 – Fluid upwelling of two fluids with a conductive gradient.   

4 – Haline free convection underneath the travertine mound spring in an antithetical corkscrew 

motion. 

Conductive lithology is the least possible explanation for the resistivity datasets.  There are no 

known ultra-conductive ore deposits in the area, and no metallic deposits exist in the Nacimiento 

Fault which would cause convective signatures.  Antithetical lithology on either side of a fault is 

highly unlikely.  This explanation can also be discounted.  Fluid-filled voids is the next possible 

explanation, though if this were the case at the site, the resistivity images would show highly 

resistive outlines filled with highly conductive inner spaces that are not seen in the data analysis.  
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The next explanation of the convective signatures is fluid upwelling of two fluids with an 

electrically conductive gradient.  Upwelling from depth is not a plausible cause for the convective 

signals that exist at the field site.  ERI and fluid chemistry data indicates that upwelling of 

relatively fresh water along the fault is occurring, though it cannot account for the conductive 

features obtained from the processed data.  As the upwelling reaches the surface, it should 

become more dilute and the abnormally conductive areas should exist at the bottom of the ERI 

image and not in the mid-section.  ERI line EWN100 does support the theory for upwelling.  The 

only remaining explanation of the data gathered at the site involves haline free convection 

underneath the active mound spring Twin Mound East in the Nacimiento Fault Zone.  The free 

convection explanation appears to fit the complete dataset.   

 

Implications of Research 

Future implications concerning this research include a further understanding of groundwater 

convective theory as well as a further understanding of water supply quality and ore body 

deposition in faulted hydrothermal ore deposits.  Density-driven free convection affects landfill 

plumes, radioactive waste sites and deep faulted aquifers.  Quantifying these processes will allow 

for a better ability to predict contaminant transport and related impacts on water quality and 

supply.   

 

In order to further study the Tierra Amarilla mound springs site, transient imaging should be 

conducted at a timescale of hours instead of days in order to capture the rotation of Mode 2A and 

Mode 2B convective cells.  In order to further study the Mode 1convection occurring at the site, a 

timescale of 4-8 weeks may be necessary to capture the convective rotation and further quantify 

the interfracture convective cells.     
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CHAPTER VII 

 

CONCLUSIONS 

 

A field study was conducted in north-central New Mexico, USA, to evaluate the potential for free 

convective groundwater flow in the Nacimiento Fault Zone.  The study evaluated theoretical 

values for Rayleigh numbers to evaluate if the flow was unstable.  Then fluid and electrical 

resistivity data were collected to evaluate if field evidence existed for free convection. 

The results show circular conductive features which change over time as well as EC oscillations 

in transducer data.  The data are supportive of the presence of Mode 1 and Mode 2B convection 

cells located adjacent to and inside the fault plane.  The calculated Rayleigh number for Mode 1 

free convection was 49.4, while the value for Mode 2 was 53.6; which is above the established 

theoretical values required for the onset of free convection.  The Mode 1 convective cells have an 

average size of 195 meters and the Mode 2B convective cells have an average size of 128 meters.  

The Rose criteron was utilized to determine if a unique wavelength signal existed in the dataset.   

The method was supportive of the presence of convection cells.  Free convection is assumed to 

exist at the site based upon the calculation of the Rayleigh number.  Alternative hypotheses were 

not supported by the field data. 

This study provides the first quantification of groundwater free convection cells in a fault, and the 

first evidence of antithetical Mode 1 cells in a hydraulically active fault zone.  As these cells were 
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forming in fractured shale, these results have significant implications for the study of fluid flow in 

shales.   
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APPPENDICES 
 

APPENDIX A 

 

Table A.1: Reference table for equations 

Symbol Description Units 

A cross sectional area meters
2
  

b fracture aperture meters 

∆C change in concentration dimensionless 

D solute diffusivity  meters
2
/second 

Dav effective diffusion coefficient meters
2
/second 

d  plate separation meters 

g  acceleration due to gravity meters/second
2
  

H layer thickness meters 

I current amps 

K hydraulic conductivity meters/second 

k permeability meters
2 

k  thermal diffusivity meters
2
/second 

L length meters 

R resistance ohms 

Ra Rayleigh number dimensionless 

Racr Rayleigh number (critical onset) meters 

ΔT change in temperature degrees Celsius 

Uc convective speed meters/second 

V potential difference volts 

Vo kinematic viscosity of the fluid meters
2
/second 

v  kinematic viscosity of the fluid meters
2
/second 

θ aquifer porosity dimensionless 

β = ∂ρ/∂C linear expansion coefficient of 
fluid density/changing fluid 
concentration 

dimensionless  

λ fracture spacing meters 

ρ  resistivity ohm-meters 
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ρ density kilograms/meter
3 

α  thermal expansion coefficient  meters/degrees Celsius 
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APPENDIX B 

 

Figures Processed ERI lines from June, 2012 
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