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The deep convolutional neural network is a new concept in the neural network field, and
research is still going on to improve network performance. These networks are used for
recognizing patterns in data, as they provide shift invariance, automatic extraction of local
features, by using local receptive fields, and improved generalization, by using weight shar-
ing techniques. The main purpose of this thesis is to create a Flexible Image Recognition
Software Toolbox (FIRST), which is a software package that allows users to build custom
deep networks, while also having ready-made versions of popular deep networks, such as
Lecun’s LeNet-1, LeNet-5 and LeNet-7. This software package is created for designing,
training and simulating deep networks. The goal is to reduce the amount of time required
by users to implement any particular network. To design this software package, a general
modular framework is introduced, in which simulation and gradient calculations are de-
rived. Due to this modularity and generality, FIRST provides flexibility to users in easily
designing specific complex or deep networks. FIRST includes several training algorithms,
such as Resilient Backpropagation, Scaled Conjugate Gradient and Steepest Descent. This
thesis also describes the usage of the FIRST software and the design of functions used
in the software. It also provides information about how to create custom networks. The
thesis includes two sample training sessions that demonstrate how to use the FIRST soft-
ware. One example is phoneme recognition in 1D speech data. The second example is
handwritten digit recognition in 2D images.
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CHAPTER 1

INTRODUCTION

1.1 Pattern Recognition and Neural Networks

Pattern recognition is related to the automatic discovery of regularities in data by using

computer algorithms. These regularities help to take actions, such as classifying the data

into different categories. Pattern recognition is one of the traditional uses of neural net-

works. From the pattern recognition point of view, neural networks are extensions of con-

ventional methods that have been used over decades. These neural networks are adaptive

systems that change their parameters based on the difference between the output of the

network and the desired output. The desired outputs are target values that are predefined

during the training phase. The process of finding the optimal network parameters is called

training, and it is generally done with gradient-based methods, which will be described in

Chapter 4. A neural network is a parameterized non-linear mapping between sets of input

and output variables. During network training we want to adjust the network parameters

until the correct mapping is made. For pattern recognition, the network input is an image,

and the target output is a code that indicates the corresponding category that the image

belongs to. The following section describes the basic network operation for two types of

neural network.

1.2 Multilayer Perceptron

To begin the discussion of neural networks, we start with a single neuron, as shown in

Figure 1.1. For a single input neuron, a scalar input p is multiplied by scalar weight w,
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and then it is added to a bias b to form the net input n, which is then applied to a transfer

function f() to produce the neuron output a.

a = f (wp+b)

Input General Neuron

wp n a

b

f

Figure 1.1: Single Input Neuron

The multiple input neuron perceptron has R inputs and a single output. For each input

there will be one weight, w1,1, ...w1,R, as shown in Figure 1.2.

a = f (Wp+b)

Input Multiple Input Neuron

1
p

2
p

R
p 1,R

w

1,1
w

n

b

a
f

Figure 1.2: Multiple Input Neuron

Multiple neurons can be stacked together to create a layer of neurons, as shown in

Figure 1.3. This layer consists of weight matrix W, bias vector b, summing junction,

transfer function and output vector a. Each input is connected to each neuron. (This is

considered a “fully connected” layer.) This network is called a single layer perceptron. It

is capable of discriminating between two linearly separable classes.
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f

Layer of S Neurons

1
p

2
p

3
p

R
p

1,1
w

S,R
w

f

f

f

n

n

n

b

b

b

1

2

1

2

R

R

a

a

a

1

2

R

Figure 1.3: Layer of S Neurons

Multilayer perceptrons are composed of multiple perceptrons connected in series, as

shown in Figure 1.4. They are capable of creating arbitrary decision boundaries. Here

superscripts are used to identify the layer number. This type of network is also called a

feed forward network, because calculations flow forward from input to output layer. Also,

as each neuron in the previous layer is connected to all neurons in the present layer, it is

called a fully connected network.

First Layer Second Layer Third layer
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Figure 1.4: Three-Layer Network
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1.3 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are deep (more than three layers) neural network

architectures that have been proposed for classification or recognition tasks. The CNN

was inspired by a description of the cat’s visual system, and it is an efficient architecture,

because it uses shared weights and fewer connections than fully connected multilayer net-

works. These constraints reduce the computational burden, so it is easier to train than fully

connected deep networks. These shared weights play the role of a filtering (i.e., convo-

lution) kernel. Lecun [6] developed the CNN, which is reminiscent of the Neocognitron.

The CNN is capable of extracting local features by using a local receptive field. A certain

degree of shift and distortion invariance is obtained by reducing the spatial resolution of

the feature map. Also, the number of free parameters is significantly decreased by using

the same set of weights for all features in the feature map (weight sharing technique). The

Neocognitron and the CNN will be discussed in more detail in Chapter 2.

1.4 Previous Work

The multilayer perceptron has several drawbacks when it comes to real-world applications

such as pattern recognition. First, the number of trainable parameters becomes extremely

large for large inputs, like images. Secondly, it offers little or no automatic invariance to

shifting, scaling, and other forms of distortion. Third, the topology of the input data is

completely ignored, yielding similar training results for all permutations of the input vec-

tor. To overcome these problems, a classifier is often split up into a hand designed feature

extractor and the actual trainable classifier module. Designing the feature extractor by hand

requires a lot of heuristics and a great deal of time. To tackle these problems, the CNN was

introduced. In order to verify the performance of the CNN, it is compared with different

classifiers based on accuracy, run time, memory requirement and training time. By com-

paring the CNN with linear classifiers, tangent distance classifiers, large fully connected

4



multilayer neural networks, principal component analysis and polynomial classifiers, op-

timum margin classifiers, it was found that the CNN is superior [7]. In [7], the error rate

score was compared, and they found that the CNN (boosted LeNet-4) was best. Training

time was also measured. The CNN often takes more time than TDC or other classifiers,

but this is dependent on the designer’s requirements. When comparing memory require-

ments, it is found that the CNN is best (LeNet-4). Research is still going on to improve

the performance of CNNs, and extensions continue to be invented. It has been found that

boosted LeNet-4 is giving high accuracies with less memory requirements and a smaller

computational burden. Thus, convolutional networks have been found to be well suited for

recognizing or rejecting shapes with widely varying size, position, and orientation. Be-

cause of all these properties, CNNs have been used in speed sign recognition, handwritten

digit recognition, text recognition, face recognition, and in an operational bank check read-

ing system developed at AT & T in the early 1990 [4]. It was first used commercially in

1993 for check-reading ATM machines in Europe and the US, and was deployed in large

bank check reading machines in 1996. It was reading over 10% of all the checks in the

US by the late 90s. Microsoft used CNN techniques in handwriting recognition systems,

including for Arabic [8] and Chinese characters [9]. Google recently used this to detect

faces and license plates in Street View images, so as to protect privacy [10]. France Tele-

com used this technique for face detection systems for video-conferencing [11]. Due to

all its abilities, CNNs are widely used in many applications, and research is still going on.

There is a need to have a software package so that researchers will be able to experiment

with different deep architectures without having to derive and program their own gradient

calculations and training functions. With the modular structure of the FIRST design, users

can invent new layer types and network architectures with minimal programming.

5



1.5 Objectives

There have been many deep networks proposed for pattern recognition, such as the Neocog-

nitron and several variations of the CNN. We do not yet know what the best architecture

is. Whenever a new architecture is considered, new training algorithms must be developed

and new computer code must be written. This delays the progress of new developments.

In this thesis, we will construct a Flexible Image Recognition Software Toolbox (FIRST).

With FIRST, a user will be able to quickly implement new network architectures for pat-

tern recognition in images. In order to create a flexible software package, it will first be

necessary to generate the deep network concept and to develop a modular framework that

can capture previously proposed architectures while enabling the creation of totally new

networks.

1.6 Outline of Thesis

In the following chapter, we will discuss the Convolutional Neural Network (CNN), which

is the foundation of this work. We will describe some of the most important extensions

of the CNN proposed till now and their applications. In Chapter 3, the main focus is on a

general modular network framework that can include all of the networks that we discuss in

Chapter 2. This general network framework can be used to create any type of deep CNN,

as well as new networks. Also, we will discuss the type of training data needed for such

a general network framework. In Chapter 4, we will discuss training algorithms for the

general network framework. In addition to steepest descent, we will also discuss more effi-

cient optimization strategies based on the gradient. We will derive gradient equations that

will work for all networks. Issues associated with training algorithms are also described in

this chapter. Chapter 5 describes how FIRST can be used to implement deep convolution

neural networks for practical pattern recognition problems. We will also present experi-

mental results for recognizing handwritten digits and speech (phonemes). We will focus

6



on the processing of two-dimensional gray-level images and one-dimensional frequency

domain speech data. Finally, Chapter 6 will conclude this thesis work and provide some

perspectives for future work.
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CHAPTER 2

CONVOLUTIONAL NEURAL NETWORK

2.1 Introduction

The multi-layer feed-forward neural network is a popular network for pattern classification.

It is a very powerful machine learning technique, because it can be trained to approximate

complex non-linear functions. The most common type of this network is the Multi-Layer

Perceptron (MLP). However, the MLP often performs best when a separate feature extrac-

tion algorithm is used to reduce the dimension of the input data. However, selecting the

right feature extraction method is often difficult [12].

The problem faced by the MLP is that many times the input dimensions for pattern

recognition systems are high, as in images. This requires a large number of connections in

the network, thus a large number of trainable parameters, because in the MLP the inputs

are fully connected to each hidden unit. The number of connections can be several 10000

or several 100000, depending on the application. This leads to highly complex neural

network architectures that require very large training data sets, since overfitting can occur

when the number of training points is less than the number of network parameters. Also,

such a large network will require a large amount of memory, which is not practical. Another

drawback of fully connected architectures is that they do not conveniently take into account

correlations between neighboring inputs (i.e., neighboring pixels in images). For pattern

recognition, the topology of the inputs is important, because in images or speech there

is a high amount of correlation. Finally, slight variations or distortions in input images

can cause changes in the position of distinctive features. Standard MLPs have no built-in

invariance w.r.t. local distortions and small translations. [12]
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In order to solve pattern recognition problems, we need neural networks that allow di-

rect application of raw input data, and whose training algorithms will find the best feature

extractors by adjusting trainable parameters. They should implement weight sharing to re-

duce the number of free network parameters and thus to increase generalization. Also, it

would be preferable to extract local features by restricting the receptive field to be local.

Lastly we would like to have neural networks that can automatically achieve shift invari-

ance. All of these features can be found in an approach called the Convolutional Neural

Network(CNN).

2.2 Background History

This section presents the history behind the development of the CNN.

2.2.1 Neocognitron Model

The original idea for the CNN is based on the neocognitron. The neocognitron is a bio-

logically inspired structure. It was developed by Fukushima in 1980 and is based upon the

research of Hubel and Weisel, who discovered locally-sensitive, orientation-selective neu-

rons in the visual system of cats [13]. From their work, Fukushima invented the concept of

hierarchy in alternating layers of S cells and C cells, which make up the neocognitron.

9



Figure 2.1: The model of an S cell, taken from [1]

S cells are feature extracting cells that resemble the simple cells found in the primary

visual cortex, and are therefore called simple cells. The basic model of the S cell is shown in

Fig. 2.1. This model shows how these cells would respond to features in its receptive field.

Since features are local, each unit can only extract the attributes of one local neighborhood

of the input. Therefore, the parameters of features are shared among a grid of units, so

that they can extract the same feature from different locations. This strategy of sharing

parameters among subsets of units is called weight sharing.[1]

Fukushima describes weight sharing as follows:

“ It is assumed that all the cells in a single cell-plane have input synapses of the same

spatial distribution, and only the positions of the presynaptic cells are shifted in parallel

from cell to cell. Hence, all the cells in a single cell-plane have receptive fields of the same

function, but at different positions ”.[2]

Essentially, weight sharing is a way of implementing a filtering operation within locally

connected neural networks. The outputs of S cells approximate convolution, normalized by

length of weight vector and input vector. S cells extract local visual features, such as edges

or corners. Several S planes contain different sets of weights to extract different features at

the same locations, so these groups of cells and these S planes are called an S layer.[14]
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C cells represent complex cells found in the visual cortex. The input to the C cells

comes from the output of the preceding S cells. C cells respond if any of the S cells are

excited. C cells reduce the resolution of S cells. They reduce the sensitivity to small shifts

and distortions in input patterns. This is equivalent to a blurring operation.[2]

Figure 2.2: Neocognitron, taken from [2]

Fig.2.2 shows the structure of the neocognitron. This is a three stage local feature

detector hierarchy, where each stage consists of two layers: filtering or non-linearity and

pooling. In Fig. 2.2 the filtering layers are visualized as the links between U0 and US1,

UC1 and US2, and UC2 and US3, and the pooling layers are the subsequent connections of

US1 and UC1, US2 and UC2, and US3 and UC3. Motivated by biology, units that perform

local feature computation were called simple cells (denoted by US) and pooling units were

referred to as complex cells (denoted by UC). Here in this figure, inhibitory inputs v are not

depicted. The inhibitory inputs of the S planes are connected to V planes. The v neurons

of each V plane receive their inputs from corresponding sub-regions in each preceding C

plane. By alternating S and C layers, complex feature extractors can be constructed. In

early layers, simple local features are extracted (e.g., line segments), and the following

layers combine local features to extract more complex features (e.g., combinations of line

segments).[2]
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The neocognitron was introduced in a decade when computational models were at a

preliminary stage of development. A rather ad-hoc unsupervised learning algorithm was

used to adapt the weights of simple cells, without any exact criterion for learning (e.g.,

minimizing energy or maximizing likelihood). This unsupervised learning is based on

self- organization [2]. Later studies showed that the performance of neocognitron with

supervised training is better than the original unsupervised training. Also, the model is a

bit complicated, as it was designed to match existing biological understanding.

2.2.2 Lecun’s CNN model

Lecun introduced the first CNN in [6]. It was trained by backpropagation and was applied

to handwritten digit recognition (the numerals 0 through 9). This first CNN model is also

called LeNet-1.

The CNN is simpler than the neocognitron and its extensions. Nevertheless, the neocog-

nitron and the CNN architecture are similar in many aspects. In the neocognitron, S layers

and C layers alternate. In the CNN, instead of S and C layers, convolution and sub-sampling

layers are alternated. The S and C layers consist of planes, which contain cells. These

planes correspond to feature maps of the convolution and sub-sampling layers. In the CNN

model, the inhibitory input and the V planes are not present, which simplifies the model.

The CNN also uses weight sharing and implements the concept of receptive fields. In the

CNN, local features are not extracted manually; they are updated automatically by learning

the convolution kernels.

Figure 2.3: Architecture of LeNet-1. Figure taken from [3]
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The CNN LeNet-1 [6] architecture consists of 5 layers, which are denoted by C1, S2,

C3, S4, and F5. The architecture is shown in Fig. 2.3. The output of the first layer serves as

input to the next layer. C1 and C3 are convolution layers, and S2 and S4 are sub-sampling

layers. The last layer is a fully connected layer, as in the MLP. The input is a gray scale

28 × 28 image. The pixel intensities are normalized. The C1 layer consists of 4 Feature

Maps (FMs), each having 25 trainable weights. This means that each unit in an FM takes

its receptive field from a 5× 5 neighborhood area on the input plane. The convolution FMs

are obtained by convolving the input images with a convolution kernel (the layer weights),

adding a bias and applying an activation function. The output of C1 is 24 × 24. The

dimension is reduced to avoid the boundary effect of the convolution calculation, as blank

pixels are added around the border of the original image to increase its dimensions from

16× 16 to 28× 28.

S2 is a sub-sampling layer that is composed of 4 FMs of size 12 × 12. The S2 layer

performs down-sampling and reduces the dimension of each convolution FM by a factor of

two. The units in a plane share the same weight and bias. This layer has a total of 4 weights

and 4 biases. The output of this layer is obtained by averaging the previous layer output and

then multiplying by a scalar weight, adding a bias and then applying an activation function.

Table 2.1: Connection table between FMs S2 and C3

1 2 3 4 5 6 7 8 9 10 11 12

1 X X X X X

2 X X X X X

3 X X X X X

4 X X X X X

Layers C3 and S4 contain 12 FMs of dimension 8 × 8 and 4 × 4, respectively. They

perform the same functions as C1 and S2. The only difference is the connection between

13



S2 and C3. The input to C3 is a combination of the FMs in S2. The connection between

S2 and C3 is shown in Table 2.1. In this table, the columns indicate the number of the

FM in C3, and the rows indicate the number of the FM in S2. One convolution map in

layer C3 can have several kernels operating on different FMs in layer S2. The output of the

convolution is simply the addition of all convolution results, and then the bias is added and

the activation function is applied. Therefore, C3 extracts complex features by combining

all selected local features of layer S2.

The last layer is a full connection layer. In LeNet-1, the output of S4 is fully connected

to next layer F5, which contains 10 neurons (representing the numerals 0 through 9). For

this full connection, the output of S4 is transformed from a matrix to a column vector before

being input to the last layer, F5. When the input pattern represents a certain digit, then the

desired output is 1 for the corresponding neuron and -1 for other neurons.

In summary, the network has 4635 units, 98442 connections and 2578 independent

trainable parameters. Lecun trained this network by using online backpropagation. The

training of CNNs is similar to training of other types of neural networks.

2.3 Extensions of CNN

This section describes enhancements to the CNN model of Lecun. In the CNN, the num-

ber of layers, dimensions, connections, and parameters are based on the structure of the

problem. There is no algorithm that can automatically determine optimal values for these

parameters according to the chosen task, so we need to apply trial and error. That’s why

many enhancements and extensions of the CNN have been developed. However, the basic

ideas used in the CNN remain the same: 1) local receptive field, 2) weight sharing and 3)

sub-sampling [4] .
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2.3.1 Boosted LeNet-4

For more complex problems, there is need for larger networks, so LeNet-4 was introduced.

It is similar to LeNet-1, but it has more FMs, as well as an additional hidden layer that

is fully connected to the last layer. The input to the network is 32 × 32. It has about

260000 connections and 17000 free trainable parameters, but the performance achieved by

this network was not significantly improved, so the concept of boosting was developed by

R. Schapire, Drucker et al.[15]. They proposed using a combination of multiple classifiers

to improve performance. Drucker used this idea and constructed a combination of three

classifiers.[3]

The architecture of boosted LeNet-4 is as follows. It contains three LeNet-4 networks.

The first LeNet-4 is trained in the usual way. The second one is trained on patterns that are

filtered by the first network, so that the second network has a mix of patterns in which half

of the patterns were correctly classified by the first LeNet-4 and the second half were not.

Finally, patterns on which the first and the second networks give different results, are given

as input to the last (third) LeNet-4. During testing, the outputs of the three networks are

combined.[3]

In order to train these three networks, a large training set is necessary. To produce such

a large data is not practical, so it is produced artificially by distorting a smaller training set.

The performance of the boosted LeNet-4 is better than LeNet-1 and LeNet-4.[3]

The computation time required for this combination of three versions of LeNet-4 is

not three times that of a single network. It only requires 1.75 times as much computation,

because when the first network produces an answer with high confidence then there is no

need to call the other two networks.[3]

2.3.2 LeNet-5

In order to improve recognition rate and generalization capacity, a more complex network,

LeNet-5, was developed by Lecun [4]. This network is typically used for isolated hand-
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written character recognition. LeNet-5 is composed of 7 layers, with an input of pixel size

32× 32.

Figure 2.4: Architecture of LeNet-5, taken from [4]

The architecture of LeNet-5 is shown in Fig. 2.4 [4]. There are 3 convolution layers.

The first convolution layer is composed of 6 FMs, so C1 contains 156 trainable parameters

in six 5 × 5 kernels plus 6 bias values to create 122304 connections. The size of the FM

in the C1 layer is 28× 28, due to the boundary conditions, whereas the second convolution

layer, C3, contains 1500 weights and 16 biases, which are shared between 151600 connec-

tions over 16 FMs. The connections between S2 and C3 are shown in Table 2.2. Lecun

designed these connections to maximize the number of features extracted by C3, while re-

ducing the number of weights. The last convolution layer, C5, contains 120 FMs, and the

output dimension is 1× 1, so there are 120 output elements.

There are two sub-sampling layers, S2 and S4. S2 contains 6 FMs, and S4 has 16 FMs.

This is a non-overlapping layer. FMs of this layer are always half the size of the preceding

FMs of the convolution layer. Layer S2 has 12 trainable parameters with 5880 connections,

whereas S4 has 32 trainable parameters with 156000 connections.
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Table 2.2: Connection table between FMs S2 and C3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 X X X X X X X X X X

2 X X X X X X X X X X

3 X X X X X X X X X X

4 X X X X X X X X X X

5 X X X X X X X X X X

6 X X X X X X X X X X

F6 is an additional hidden layer, which is fully connected to layer C5 and contains 86

units. This layer has 10164 trainable parameters. The output layer consists of Euclidean

Radial Basis Function (RBF) units, one for each character, so the output is computed as

follows:

yi =
∑
j

(xj − wi ,j )
2 (2.1)

The RBF unit calculates the Euclidean distance between its input vector and the weight

vectors. It calculates the fit between the input vector and the target that is associated with

that class. These weight vectors are fixed, and their elements are set to -1 and +1 to form

7×12 matrices representing stylized images of the characters. This can be help to eliminate

confusion between similar characters, like uppercase O, lowercase o and zero, because this

network produces similar outputs for similar characters[4].

The error function used in this network is designed to get the F6 output as close as

possible to the stylized images. The equation is as follows:

E(W ) = 1/P
P∑

p=1

(yDp
(Zp,W ) + log(e−j +

∑
i

eyi (Z
p,W ))) (2.2)

Here P is number of training patterns, yDp is output of the Dpth RBF unit and Dp is the

desired class for input p. The first term in Equation 2.2 is the Euclidean distance between
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the desired output and the RBF centers. However, if the RBF parameters are learned, using

only this term could lead to all RBF centers becoming equal and all RBF outputs equal to

zero. So to avoid this, the second term is added. It keeps RBF centers apart. Also, the

positive j inhibits the error function from increasing for classes that have large outputs [4].

2.3.3 Convolutional Deep Belief Networks

In many problems, labeled data are scarce. The Convolutional Deep Belief network pro-

vides a mechanism for using unlabeled data in learning features. The convolutional deep

belief network is a stacked max-pooling Convolutional Restricted Boltzmann Machine

(CRBM).

For this network, a layer-wise learning algorithm is developed for locally connected

feature hierarchies. Layers are trained separately and from the bottom layer upward. When

this type of training is performed, a multiplicative reduction in gradients does not occur.

After training each layer, its weights are frozen and it is stacked. This model can be used

to extract features from images, but it does not explicitly capture the spatial structure of

images. In order to capture spatial structure, weight sharing and filtering are used. CRBM

is introduced to incorporate weight sharing. It also consists of a visible layer, a detection

layer and a pooling layer, as shown in Fig. 2.5. By stacking this CRBM into a multilayered

hierarchy to extract large scale features, we obtain the Convolutional Deep Belief network.

The CRBM consists of a detection layer to extract features and a max-pooling layer to

make it translational invariant and to reduce the computational burden. [16]

The first layer in the CRBM is the visible layer. This layer is trained first, then the

parameters for this layer are frozen and the probability of hidden units being activated are

computed. These values are in between 0 and 1. They are obtained by applying a logistic

sigmoid to the convolution output. Then this probabilistic output is down-sampled. The

sub-sampled probabilities are input to the next visible layer, followed by the max pooling

layer. [16]
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Figure 2.5: Convolution RBM with probabilistic max-pooling, from [4]

2.4 Some Applications

CNNs have been used for many visual pattern recognition systems. Some of these applica-

tion are listed below.

Fukushima introduced the neocognitron, and he used it for handwritten digit recog-

nition [2]. Then he introduced exensions of the neocognitron and used them for more

complicated tasks, such as handwritten connected and isolated character recognition [17].

Lecun proposed his first CNN, LeNet-1, for handwritten digit recognition [6]. Later

he introduced LeNet-5 to recognize isolated characters. He also proposed integrating the

network into a graph framework to recognize handwritten amounts on bank checks. He also

used CNNs based systems to recognize objects like cars or planes on noisy backgrounds

[4]. For a camera based steering system for an autonomous mobile robot, he used a CNN

architecture to avoid obstacles in an off-road environment [18].

CNNs have been used for facial recognition and robust face localization [19]. Fasel

[20] used CNNs for face and facial expression detection. CNNs were also used for eye and

face detection by Tivive and Bouzerdoum [21]. They used shunting inhibitory CNNs.

Saidane and Garcia used CNNs for scene text detection, where characters had consider-

able variations in color, shape and background [22]. CNNs were also used for text detection

[23], hand detection and tracking [24] and for crack detection in sewer pipes [25], among

many other applications.
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2.5 Conclusions

In this chapter, the development of CNNs was discussed. It is an excellent network for pat-

tern classification with automatic feature extraction. The CNN is based on an earlier neural

network architecture, the neocognitron. Simple cells and complex cells in the neocogni-

tron are replaced with convolution and sub-sampling layers in the CNN. The use of weight

sharing in the CNN makes the network computationally strong. It reduces the number of

free parameters, which improves convergence and generalization capacity. Also, the use

of sub-sampling makes the network invariant to small distortions as well as to translations.

The CNN is able to extract complex features from high dimensional input data. The main

difference between the original neocognitron and the CNN is the method of training. The

CNN is trained by using backpropagation to minimize a global error function, so there is

no need to extract features manually.

The performance of any recognition system depends on accuracy, memory require-

ments and training time. Extensions of LeNet continue to be introduced and research is

still going on to improve CNN performance. LeNet-4 and LeNet-5 were developed to cre-

ate larger capacity recognizers for large, high dimensional data sets. Boosted networks also

show significant improvements in accuracy, but at the expense of memory and computation

speed. Also, for boosted networks, there is no need for unlimited data, since data can be

created using a distortion strategy.

In the next chapter, we will focus on a general network architecture that can include all

of the networks we have discussed so far as special cases. This general network architecture

can be used to create any type of CNN. Also, we will discuss the type of training data

needed for such a general network architecture.
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CHAPTER 3

GENERAL NETWORK ARCHITECTURE AND SIMULATION

3.1 Introduction

As we have seen in chapter 2, different classification tasks require different numbers of

layers, numbers of FMs, error functions, weight functions, etc. So there is a need to build a

general network framework that can help users to create any kind of network, depending on

the classification task. The main goal here is to develop a general purpose software package

that can be used to simulate and train arbitrary layered neural networks for recognizing

patterns in images and to enable new types of networks to be easily implemented. The goal

is to develop user friendly software in which one can easily modify existing functions or

add new functions, in order to reduce the amount of time required by users to implement

any particular network. We will call this software package the Flexible Image Recognition

Software Toolbox, or FIRST.

3.2 General Layered Structure

This section describes the general layered structure of the proposed network object. The

number of layers, the number of FMs and the weight functions are dependent on the classi-

fication task. Therefore, there is a need to first design a general layered network structure,

and then we will describe the details of each layer. A diagram of the general layered struc-

ture is shown in Fig. 3.1. We can see in the figure that there are M layers that are connected

one after the another. The input is an image in matrix form.
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Layer 1 Layer 2 Layer m Layer  M

Input

Output

Figure 3.1: General Layered Structure

In this network, each layer consists of Hm cell (FM) components and a connection

matrix, as shown in Fig. 3.2.
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Figure 3.2: General Structure for a Single Layer

Each cell component consists of five parts: connection matrix, transformation function,

weight function, net input function and transfer function. A detailed diagram showing the

structure of a general cell is shown in Figure 3.3. Descriptions of the five parts of a layer

follow.

1) Connection Matrix - a matrix that defines the connections between the FMs of two

adjacent layers. It is denoted by Cm where m is the layer number.

2) Transformation Function - a function that comes after the connection matrix. It per-

forms conversions from matrix to vector or vector to matrix. For some layers, no conversion
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will take place. This transformation depends on the input requirement of next layer. It is

denoted by vf , and a hexagon symbol is used to represent it graphically. The output of this

transformation function is represented by Vm,h. Here m is the layer number and h is the

FM number.

3) Weight Function - an adjustable function that operates on the output of the transfor-

mation function. The adjustable parameters of this function are called weights. Examples

of weight functions are: convolution, sub-sampling and dot product (standard matrix mul-

tiplication). The weight function is wf , and is denoted by a diamond shape in the network

diagram. The weight is denoted Wm,h. The output of this function is Zm,h.

4) Net Input Function - a function that combines the output of a weight function with

a vector bias. The most common net input function is a summation between the bias and

the output of the weight function. It is represented by nf and denoted by a circle in the

network diagram. The bias is bm,h, and the output of the net input function is Nm,h. It is

called the net input.

5) Transfer Function - a fixed static function that converts the net input to the layer

output. There are different types of transfer functions, such as linear, tan-sigmoid function,

logistic sigmoid, etc. It is denoted as tf , and is represented by a square in the network

diagram. The output of this function is Am,h, which is the layer output. We will provide

more detailed explanations for each cell component in the following sections.
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Figure 3.3: Diagram showing the structure of a general cell

3.3 Input Image Patterns

Digital images are composed of a finite number of pixels arranged in a grid pattern. The

general network structures addressed in this thesis are designed to have inputs that are

digital images. In most cases these images are two dimensional, although three dimensional

or even one dimensional images could be used. In addition, we can think of the output of

each layer as being a filtered image (or a set of filtered images), which is called an FM.

These various types of images are discussed in more detail in the following sections.

3.3.1 2D Images

The basic two-dimensional image is a monochrome (grey scale) image that has been digi-

tised. A 2D Image is a two-dimensional light intensity function f (x , y) where x and y are

spatial coordinates and the value of f at any point (x , y) is proportional to the brightness
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or grey value of the image at that point. A typical digitised image is one where 1) spatial

and grey scale values have been made discrete, 2) intensity is measured across a regularly

spaced grid in x and y directions, 3) intensities are sampled to 8 bits (256 values). Each el-

ement in the image array is called a pixel (picture element). Intensity values range between

0 to 255, where 0 represents black and 255 represents white. This type of 2D imaging is

used in X-ray, MRI, etc. [26] (For the FIRST software, intensity values do not have to be 8

bit. Any value can be used.)

2D images can also be in color, but they require more storage space than gray scale

images. Pixels in gray scale images need just one number to indicate the intensity of

gray needed to render the pixel on screen. Any color can be created using the correct

combination of red, green, and blue. Thus, pixels in color images are represented by three

values (r,g,b). The values indicate the intensity of red, green, and blue needed to render the

pixel on screen. The range of intensities is exactly the same as gray scale images, where

0 means none of the color appears in the pixel and 255 indicates the highest level of the

color present in the pixel. For example, the triple (128, 0, 128) represents a medium purple

while (255, 215, 0) represents gold [26]. In a sense, we can think of color images as having

a third dimension, since a numerical value is provided at each x and y location in addition

to each color.

3.3.2 3D Images

3D images are three dimensional. Like 2D images, 3D images also contain x and y coor-

dinates but also contain one additional z coordinate for depth values (or color). 2D images

have only height and width information, but 3D images have depth information as well.

Therefore, 2D images give only limited information about the physical shape and size of

an object in a scene. But this is not case with 3D, as 3D images express the geometry in

terms of three-dimensional coordinates. [26]
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3.3.3 Feature Maps

Generally, for images, feature extraction is used to reduce the dimensionality of data. Fea-

tures contain relevant information, so irrelevant information is suppressed (e.g., image

backgrounds). Features are meaningful and detectable. Features are associated with in-

teresting scene elements, and they are invariant to some variations in the image formation

process (e.g., invariant to viewpoint and illumination). There are two types of features. 1)

Local Features: They are computed at multiple points in the images, so they are robust to

occlusions and clutter; they describe image patches, e.g., edges, corners, etc. 2) Global

Features: They have the ability to generalize an entire object with a single vector. They

describe images as a whole, e.g., contour representations, shape descriptors, and texture

features [26].

In the general network structure, the network input will be an image (usually a 2D

image, but it could also be 3D or 1D). The output of a layer will consist of sets of images.

(We use the term image in an abstract sense.) Neurons in a layer are arranged in a plane,

where all neurons share the same set of weights. This set of planar neurons is referred to

as a feature map (FM). A layer may consist of multiple FMs, each one corresponding to a

different network cell (see Fig. 3.2).

An initial layer in a general network may extract local features in its FMs. Later layers

can combine local features to extract global features. FMs in convolutional neural networks

act like neurons in fully connected neural networks. The location of each pixel in an FM is

formed by the region convolved on the FM of the preceding layer. The dimensions of these

FMs depend on the dimensions of the inputs presented to the cells and on the operation

performed on the inputs of those cells. Every cell output is an FM. Each pixel of an FM

stores the output of a neuron. All the pixels or neurons in one FM share identical weights.

This is similar to the cells in the cell-planes of the neocognitron. The total number of FMs

(or cells) for each layer depends on the application. Each FM extracts a different feature,

because they each have inputs from different sources, as well as different weights. For a
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general network, the index of an FM is denoted by h, and the total number of FMs for layer

m is denoted by Hm .

3.4 Connection Matrix

The connection matrix defines the connections between the cells (FMs) in adjacent layers.

It is similar to the connection table in the neocognitron (see Table 2.1). If element i , j of

the connection matrix is equal to 1, then cell j of the current layer is connected to cell

i in the previous layer. If that element is 0, there is no connection between those cells.

Using these connection matrices, there can be any number of possible combinations of

connections between FMs of two layers, which allows the structure to be used for many

different applications. There is no need to always have full connections between layers.

This can avoid high computational costs and overfitting. Also, irregular connections can

break network symmetry.

The connection matrix columns correspond to the FM number in the current layer, and

the rows represent the FM number in the previous layer. There is a connection matrix for

each layer. If there is a connection between FM j of the current layer m to FM i of the

previous layer, then Cm(i, j) = 1.

3.5 Transformation Function

The transformation function comes after the connection matrix. The output of this function

is denoted Vm,h. This is represented in variable form as follows:

Am−1 → Vm (3.1)

3.5.1 General Transformation Idea

In this network, along with convolution and sub-sampling layers, full connection layers are

also present. For a full connection layer, the input and output are in vector form, whereas,
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for other types of layers, the input and output are in matrix (image) form. So sometimes

there is a need for conversion from matrix to vector or vector to matrix. Therefore, before

passing the output of one layer as input to the next, it is passed through a transformation

function. The types of transformations are discussed in detail in the next subsections.

3.5.2 Vector Transformation

The output of this operation is a vector. There can be a matrix to vector transformation, or,

if the input is already a vector, no transformation will take place. If the input is a matrix,

then the rows of the matrix are stacked together to form the vector output, as shown in

Equation 3.2 below.

Matrix to Vector conversion

Scalar form (v):

vm,h
i = am−1,h

ceil(i/Sm−1
r ),Sm−1

r −mod(Sm−1
r −i,Sm−1

r )
(3.2)

Vector form (v):

vm,h = vec(Am−1,h) (3.3)

Vector to Vector conversion

Scalar form (V):

vm,h
i = am−1,h

i (3.4)

Vector form (v):

vm,h = am−1,h (3.5)

Here Sm−1
r represents the number of rows in layer m − 1 , and the maximum value of i

is the total number of elements in the matrix. Here vec denotes the vector transformation.
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3.5.3 Matrix Transformation

The output of this transformation is a matrix form. There is a vector to matrix conversion,

or there is no conversion if the input is a matrix.

Vector to Matrix conversion

Scalar form (v):

vm,h
ceil(i/Sm

r ),Sm
r −mod(Sm

r −i,Sm
r ) = am−1,h

i (3.6)

Matrix form (V):

Vm,h = mat(am−1,h) (3.7)

Matrix to Matrix conversion

Scalar form (V):

vm,h
i,j = am−1,h

i,j (3.8)

Matrix form (V):

Vm,h = Am−1,h (3.9)

Here mat denotes the matrix transformation.

3.6 Weight Function

3.6.1 General Concept of Weight Function

In the standard multilayer perceptron, a weight matrix multiplies the input to a layer. For

the network structure used in this thesis, we generalize this concept. The input to a layer is

operated on by a set of adjustable parameters that we call weights. This operation could be a

standard matrix multiplication (dot product), or it could be a convolution operation. There

are many different types of weight operations, a few of which are defined in following

subsections.
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A weight function is defined for each cell of each layer. The output of a weight function

is denoted by Zm,h for cell h of layer m. The output of the transformation function is the

input to the weight function, so it is written as follows:

Vm → Zm (3.10)

3.6.2 Convolution Weight Function

A convolution weight function performs a two-dimensional convolution between an input

image and a weight matrix (convolution kernel). It is a kind of spatial filtering, and because

the weights are adjustable, it is an adaptive local filter. In this filter, each output pixel

is unresponsive to variations outside of its receptive field with respect to the input. So

convolution is able to detect local features, such as edges, corners, etc. Natural images

have the property of being stationary, meaning that the statistics of one part of the image

are the same as any other part. This means that the kernel that we learn in one part of the

image can also be applied to other parts of the image. We can use the same kernel at all

locations.

A convolutional layer is made up of FMs in which the convolution operation is per-

formed on the previous layer’s output. There is one convolution kernel or receptive field

(weight matrix) for each connection between an FM in the previous layer and an FM in

the current layer. A convolution layer acts like feature extractor, where one or more output

images (FMs) from previous layers are convolved with one or more kernels or weights to

produce an output image (or multiple images).

The convolution operation is performed over boundaries that are defined by the size

of the FMs in the preceding layer. The sizes of FMs in successive convolutional layers

decrease. The amount of decrease depends on the size of the kernel. If a convolutional

layer takes an input of size Rr × Rc and performs a convolution with Hm kernels of size

rm × cm, this will produce Hm outputs of size (Rr − rm + 1, Rc − cm + 1). So Hm

specific features are detected by scanning across the entire input image. By convolving with
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the same kernel across an image produces a more complex network without exponentially

increasing the number of network parameters. The input image is padded with zeros around

its boundaries to allow the center of the kernel to reach the edge of the image. This was

suggested by Lecun to increase the accuracy of the pattern recognition [6].

The general equation for convolution is

Scalar form (z):

zm,h
i,j =

∑
lϵCm,h

rm∑
u=1

cm∑
v=1

wm,h,l
u,v vm,l

u+i−1,v+j−1 (3.11)

(For the first layer, v0 ,l = pl where pl is the input image. In most cases H0 = 1, so l is

only equal to 1.)

Matrix form (Z):

Zm,h =
∑

lϵCm,h

Wm,h,l ⋆Vm,l (3.12)

The symbol ⋆ is used to denote convolution. Wm,h,l is the weight matrix (convolution

kernel) that connects the l th FM in layer m − 1 to FM h in layer m. The corresponding

element of this matrix in row u and column v is wm,h,l
u,v . Zm,h is the FM h output of the

weight function in layer m, and zm,h
i,j is the corresponding element in row i , column j .

Cm,h is the set of indices of FMs in layer m− 1 that connect to FM h in layer m. vm,h
i,j and

Vm,l are transformation function outputs in scalar and vector (or matrix) form, respectively.

3.6.3 Subsampling Weight Function

A subsampling layer, like a convolution layer, takes FMs (or images) as inputs and produces

FMs as outputs. Subsampling layers generally follow convolution layers. The subsampling

operation consists of a summation over non-overlapping blocks from a previous layer’s

FMs, followed by multiplication by a scalar weight. This operation reduces the size of

the FM by some factor. This factor can be two or more, depending on the size of the

input image. In practice, this factor would not be too large, or important information might

be lost. The reduction is done in such a way that a feature detected at the output of the
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previous layer is equally detected at the output of the subsampling layer. The only change

is in the resolution. The subsampling operation adds robustness against spatial dependence

(e.g., shifts, distortions, translations, scaling), and it also reduces the number of network

parameters.

The subsampling operation is defined as

Scalar form (z):

zm,h
i,j =

{
rm∑
k=1

cm∑
l=1

vm,h
rm(i−1)+k,cm(j−1)+l

}
wm,h (3.13)

Matrix form (Z):

Zm,h = wm,h �Sm
r ,Sm

c
Vm,h (3.14)

The summation operation is denoted �Sm
r ,Sm

c
, where Sm

r and Sm
c are the dimensions of

the output matrix Zm,h . The scalar weight is denoted wm,h. Other variables are defined in

the same manner as in the convolution weight function.

3.6.4 Dot Product Weight Function

A dot product layer performs a standard matrix multiplication to produce the layer output.

This operation is a multiplication between the weight matrix and the input vector, which is

the output of the preceding layer. The input to this function is always in vector form, and

the output is also in vector form.

The equation for the dot product function is

Scalar form (z):

zmk =
∑

hϵCm,1

Sm−1
r ×Sm−1

c∑
i=1

wm,h
k,i vm,h

i (3.15)

Vector form (z):

zm =
∑

hϵCm,1

Wm,hvm,h (3.16)
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3.7 Net Input Function

The net input function combines the bias with the output of the weight function to produce

the net input. It performs the following operation.

Zm → Nm (3.17)

This function consists of operations like summation, multiplication, etc., depending on

the application. If a radial basis layer is used at last layer, for example, then the operation

is multiplication. These operations are performed on the bias and the output of the weight

function. The bias enables neurons to shift their transfer functions. This is necessary to

give the network full pattern recognition capability.

3.7.1 Summation

The equation for the summation net input function is

Scalar form (n, feature map):

nm,h
i,j = zm,h

i,j + bm,h (3.18)

Matrix form (N, feature map):

Nm,h = Zm,h + bm,h × 1Sm
r ×Sm

c
(3.19)

Scalar form (n, vector):

nm
k = zmk + bmk (3.20)

Vector form (n, vector):

nm = zm + bm (3.21)

The dimension of the output of the net input function is always the same as the dimen-

sion of the input. nm,h
i,j and Nm,h represent the output of the net input function in scalar and

matrix form, respectively.
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3.8 Transfer Function

The transfer function, also called the activation function, is a fixed, static, differentiable

function that converts the net input to the layer output. This can be written as

Nm → Am (3.22)

The transfer functions add non-linearities to the network. Because of these non-linearities,

the network can learn complex non-linear tasks. There are different types of transfer func-

tions. The most commonly used non-linear transfer functions are the logistic function and

the hyperbolic tangent function. These sigmoid functions are linear near zero, but they

limit the output of a neuron to positive or negative asymptotes for larger magnitude inputs,

acting like a smooth step function. A neuron is said to be saturated when the output is

approaching one of the asymptotes. The letter f is used to denote the transfer function. For

example, if the transfer function is the logistic sigmoid, then f can be written as:

f (n) = 1/(1 + exp(−n)) (3.23)

3.8.1 General Transfer Function

The generale transfer function equation is shown below:

Scalar form (a, feature map):

am,h
i,j = f m,h(nm,h

i,j ) (3.24)

Matrix form (A, feature map):

Am,h = Fm,h(Nm,h) (3.25)

Scalar form (a, vector):

am
k = f m(nm

k ) (3.26)

Vector form (a, vector):

am = Fm(nm) (3.27)
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3.9 Conclusions

In this chapter, we introduced a general framework for representing pattern recognition

neural networks that are designed to work on images. This framework forms the basis for

a software package for building, training, and simulating such networks. The software has

ready-made versions of some classical network architectures as Lecun’s LeNet-1, LeNet-5

and LeNet-7. However, it is also easy for users to create custom networks with arbitrary

numbers of layers. Users can define their own weight functions, net input functions and

transfer functions.

The basic idea is that the general framework should be very modular. Users can define

their own architectures and even insert custom modules, while the software engine does the

training and simulation without the need of any modification by users. It is the generality

and modularity of the network framework that was introduced in this chapter that makes

this possible. (See Figure 3.4 for an example of the types of networks that can be created.)

In the next chapter, we will discuss training algorithms for the general network frame-

work introduced in this chapter. In addition to steepest descent, other gradient-based meth-

ods are also discussed and compared. The accuracy of networks trained with steepest de-

scent is good, but computational speed is major drawback, so more efficient optimization

strategies are discussed in the next chapter. The key to all of the training algorithms is the

computation of the gradient of the performance index with respect to the weights and biases

of the network. This gradient computation will be the major focus of the next chapter.
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CHAPTER 4

General Network Training

4.1 Introduction

Network training refers to the process of adjusting the weights and biases of the network.

Most training techniques are types of optimization algorithms. A performance index is

chosen (e.g., mean square error), and then the weights and biases are adjusted in an iterative

way until the performance index is optimized. The optimization algorithms considered

in this thesis are all based on the gradient of the performance index with respect to the

network weights and biases. The simplest optimization algorithm is steepest descent, in

which the weights are moved in the negative gradient direction. Conjugate gradient and

quasi-Newton algorithms also use the gradient and are more efficient than steepest descent.

A detailed discussion of several training algorithms is given in the following sections. The

most suitable training algorithm for a particular problem is dependent on the nature of

training data, the neural network architecture and the complexity of the desired decision

function. There is no specific method to decide which training algorithm is best for a given

problem. FIRST has incorporated several training algorithms, and others could be easily

added. The framework is modular.

The key to all of our training algorithms is the computation of the gradient, so this chap-

ter will spend significant space describing how the gradient can be computed for the general

network structure. The key concept is the chain rule of calculus. Because the network out-

put is computed in stages (layers), and because the performance index is computed at the

last layer of the network, we can compute the derivative of the performance with respect to

the weights of any layer by using the chain rule on each layer, starting from the last layer
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and moving backward through the layers. This backpropagation of the derivatives through

the network to compute the gradient will be described in the following sections.

4.2 Performance Index

The performance index (PI) is defined to measure how well the network performs. Gener-

ally it is a normed difference between the network’s output and the correct or target outputs

over a specified training set. During training, the network parameters (weights and bi-

ases) are updated to minimize the PI. The training algorithm forces the neural network to

implement the optimal decision function [5].

For a general network, the choice of PI will depend on the classification task, the nature

of the training data, and the nature of the target output, e.g., the PI used in LeNet-5 is

different than in LeNet-1. In our software, the PI is defined in such a way that it can be

changed easily. The description of two commonly used PIs are given next. We use F to

represent the PI.

1) Mean square error: It is the most commonly used PI, and is defined in Equation 4.1

[5].

F =
1

Q× SM

Q∑
q=1

SM∑
i=1

(ti,q − ai,q)
2 (4.1)

Here q is the pattern number, i is the neuron number in the output layer, t is the target value,

and a is the network output.

2) Cross Entropy: For classification tasks, the cross entropy PI is often used, since the

normal mean square PI does not provide the proper distinction between classes. The multi-

class cross-entropy loss is given in Equation 4.2. It is often used when the output of the

neural net uses a softmax transfer function. This equation is non-negative and equals zero

at its minimum value, when ai,q = ti,q for all i and q. Here a 1-of-c class coding scheme is

used where c denotes the number of classes. [27]

F =

Q∑
q=1

SM∑
i=1

ti,qln(ai,q/ti,q) (4.2)
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4.3 Gradient Calculation

All of the training methods described in this thesis are based on the gradient, which is the

vector derivative of the PI with respect to the weights and biases of the network. This

section describes how the gradient can be computed for the general network architecture.

4.3.1 Backpropagation Algorithm Introduction

The term “backpropagation” refers to the manner in which the gradient is computed. The

general network architecture is composed of layers that are connected in series from the

network input to the output of the network (see Figure 3.1). Within each layer, the network

response is also computed in stages, v − z − n− a (see Figure 3.3). When computing the

derivative of the PI with respect to the weights and biases of a given layer, we can use the

chain rule backward through the layers of the network (M − (M − 1)− ......− 2− 1) and

through the stages of each layer (da− dn− dz − dv).

Equation 4.3 is a simple scalar description of the backpropagation process through a

layer, and Equation 4.4 shows the corresponding gradient calculation. Figure 4.1 illustrates

the process.

∂F

∂v
=

∂F

∂a
× ∂a

∂n
× ∂n

∂z
× ∂z

∂v
(4.3)

∂F

∂w
=

∂F

∂a
× ∂a

∂n
× ∂n

∂z
× ∂z

∂w
(4.4)

A detailed description of the complete general backpropagation calculation of the gra-

dient is given in the following subsection. The notation used for the gradient calculations

are shown in the following tables.
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Table 4.1: Scalar Element at feature map h of layer m

Derivative of PI w.r.t. Symbol

Transform function output dVm,h
i,j

Transfer function output dAm,h
i,j

Net function output dNm,h
i,j

Weight function output dZm,h
i,j

Weight dWm,h
i,j

Bias dbm,h

Table 4.2: Matrix at feature map h of layer m

Derivative of PI w.r.t. Symbol

Transform function output dVm,h

Transfer function output dAm,h

Net function output(sensitivity) dNm,h

Weight function output dZm,h

Weight dWm,h

Bias(vector form) dbm

dN dZ dV dA
m

dW

db

dA
m m m

m

m

m-1

Figure 4.1: Overall General Block-Diagram
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In the remaining subsections we will step through the backpropagation process one

stage at a time, beginning with an initialization at the output of the network. For simplicity

of development, we will demonstrate the gradient calculation for a partial PI involving one

input pattern (a stochastic gradient). To find the complete (batch) gradient, we can just add

the partial gradients over all training patterns.

4.3.2 Initialization

The backpropagation process begins at the output layer by taking the gradient of the PI

with respect to the network output. The following equations demonstrate the initialization

for the case where the PI is mean square error.

Scalar form (dA):

dAM
k =

∂F̂

∂aMk
=

∂
∑SM

k=1(1/S
M)× (ak − tk)

2

∂aMk
=

SM∑
k=1

2

SM
(ak − tk) (4.5)

Vector form (da):

daM =
2

SM
(aM − t) (4.6)

4.3.3 Transfer Function

The first step in backpropagation through a layer is to backpropagate through the transfer

function. The transfer function output is a. The derivative of the PI with respect to the net

input is

∂F

∂n
=

∂F

∂a
× ∂a

∂n
(4.7)

Here,
∂a

∂n
=

∂f(n)

∂n
= ḟ(n) (4.8)

The term ∂F
∂a

is dA, which was computed in the initialization stage (or, if this is not the

last layer, it was backpropagated from the next layer), so the process is

dAm → dNm (4.9)
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The general backpropagation equation through the transfer function is given as follows:

Scalar form (dN):

dNm,h
i,j =

∂F̂

∂nm,h
i,j

=
∂am,h

i,j

∂nm,h
i,j

× ∂F̂

∂am,h
i,j

(4.10)

here,
∂F̂

∂am,h
i,j

= dAm,h
i,j (4.11)

dNm,h
i,j = ḟm,h(nm,h

i,j )× dAm,h
i,j (4.12)

Matrix form (dN):

dNm,h = Ḟm,h ◦ dAm,h (4.13)

Here ◦ is the Hadamard product, which is an element by element matrix multiplication.

There are different types of transfer functions, and the derivatives for each transfer function

will be different [5].

Tan sigmoid transfer function

This transfer function squashes the input into the range from -1 to +1, according to

a =
en − e−n

en + e−n
(4.14)

The derivative for this function is

ḟ(n) =
∂a

∂n

=
∂

∂n
(en − e−n/en + e−n)

= −(en − e−n/(en + e−n)2)(en − e−n) + (en + e−n/en + e−n)

= 1− ((en − e−n)2/(en + e−n)2)

= 1− a2

(4.15)

Log sigmoid transfer function

This is a transfer function which takes the input and squashes it into range the from 0 to 1,

according to

a =
1

1 + e−n
(4.16)
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The derivative for this function is given as

ḟ(n) =
∂a

∂n

=
∂

∂n
(1/1 + en)

= −(e−n/(1 + e−n)2)

= (1− (1/(1 + e−n)))(1/(1 + e−n))

= (1− a)a

(4.17)

Linear transfer function

This transfer function maps the input to the output in a linear fashion, as in

a = n (4.18)

Its derivative can be easily calculated.

ḟ(n) =
∂a

∂n
=

∂

∂n
(n) = 1 (4.19)

4.3.4 Net Input Function

The next stage of backpropagation is to backpropagate through the net input function.

There are two paths for this stage. One is to compute the derivative of the PI with re-

spect to the output of the weight function, z, to continue the backpropagation. The other

path is to compute the derivative of the PI with respect to the bias in the current layer. This

can be written

∂F

∂z
=

∂F

∂n
× ∂n

∂z
(4.20)

∂F

∂b
=

∂F

∂n
× ∂n

∂b
(4.21)

The term ∂F
∂n

is dN , which was computed at the previous layer, so the process can be

presented

dNm → dZm (4.22)
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dNm → dbm (4.23)

The following subsections describe the details of this operation for two common net

input functions.

Summation

The summation net input function is n = z + b , where z is the weight function output

(see Equation 3.20). The partial derivative of the net input n with respect to the weight

function output z is one, so backpropagation through the net input function is given by

Scalar form (dZ):

dZm,h
i,j = dNm,h

i,j (4.24)

Matrix form (dZ):

dZm,h = dNm,h (4.25)

The bias gradient for feature maps is given by

Scalar form (db):

dbm,h =
∂F̂

∂bm,h
=

∂F̂

∂nm,h
i,j

×
∂nm,h

i,j

∂bm,h
(4.26)

dbm,h =

Sm
r∑

i=1

Sm
c∑

j=1

dNm,h
i,j (4.27)

Matrix form (db):

dbm,h = (�1,1dN
m,h)) (4.28)

where �1,1 is the same operator used for the sub-sampling reduction operation, and

after reduction the size of matrix will be 1× 1.

The bias gradient for the vector form (dot product layers) is given by

Scalar form (db):

dbmk =
∂F̂

∂bmk
=

∂F̂

∂nm
k

× ∂nm
k

∂bmk
(4.29)

dbmk = dNm
k (4.30)

Vector form (db):

dbm = dnm (4.31)
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Product

Here product means n = z × b. Therefore, the derivative can be calculated as follows:

Scalar form (dZ):

dZm,h
i,j = bm,hdNm,h

i,j (4.32)

Matrix form (dZ):

dZm,h = bm,hdNm,h (4.33)

Bias gradient for feature maps is given by

Scalar form (db):

dbm,h =
∂F̂

∂bm,h
=

∂F̂

∂nm,h
i,j

×
∂nm,h

i,j

∂bm,h
(4.34)

dbm,h =

Sm
r∑

i=1

Sm
c∑

j=1

dNm,h
i,j zm,h

i,j (4.35)

Matrix form (db):

dbm,h = (�1,1dN
m,h ◦ Zm,h) (4.36)

Bias gradient in standard form is

Scalar form (db):

dbmk =
∂F̂

∂bmk
=

∂F̂

∂nm
k

× ∂nm
k

∂bmk
(4.37)

dbmk = dNm
k z

m
k (4.38)

Vector form (db):

dbm = dnmzm (4.39)

4.3.5 Weight Function

The next stage of the backpropagation process is through the weight function. This stage

has two paths. First, we need to find the derivative of the PI with respect to the output of

the transformation function, v, to continue the backpropagation process. Second, we need

to find the derivative of the PI with respect to the weights in the current layer. This can be

written in mathematical form as follows:
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∂F

∂v
=

∂F

∂z
× ∂z

∂v
(4.40)

∂F

∂w
=

∂F

∂z
× ∂z

∂w
(4.41)

The term ∂F
∂z

is dZ, which was computed at the previous backpropagation stage.

dZm → dVm,dZm → dWm (4.42)

Convolution Weight Function

Taking the derivative of Equation 3.11, we can find the following forms.

Scalar form (dV):

dV m,l
i,j =

∂F̂

∂vm,l
i,j

=
∂F̂

∂zm,h
u,v

×
∂zm,h

u,v

∂vm,l
i,j

=
∑

hϵCm,l
b

Sm
r∑

u=1

Sm
c∑

v=1

dZm,h
i,j wm,h,l

i−u+1,j−v+1 (4.43)

Where Cm,l
b is the set of FMs in layer m that the lth FM in layer m− 1 connects to.

Matrix form (dV):

dVm,l =
∑

hϵCm,l
b

(rot180(Wm,h,l)) ⋆ (dZm,h) (4.44)

Here ⋆ is used to denote convolution operation and rot180 means matrix is rotated by

180 angle. Weight update is given in following equation.

Scalar form (dW):

dWm,h,l
u,v =

∂F̂

∂wm,h,l
u,v

=
∂F̂

∂zm,h
i,j

×
∂zm,h

i,j

∂wm,h,l
u,v

(4.45)

dWm,h,l
u,v =

Sm
r∑

i=1

Sm
c∑

j=1

dZm,h
i,j vm,l

u+i−1,v+j−1 (4.46)

here l is feature map in layer m− 1.

Matrix form (dW):

dWm,h,l = dZm,h ⋆Vm,l (4.47)
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Sub-sampling Weight Function

Taking the derivative of Equation 3.13, we can write the following.

Scalar form (dV):

dV m,h
rm(i−1)+k,cm(j−1)+l =

∂F̂

∂vm,h
i,j

=
∂F̂

∂zm,h
i,j

×
∂zm,h

i,j

∂vm,h
i,j

= dZm,h
i,j × wm,h (4.48)

For k=1 to rm and l=1 to cm.

Matrix form (dV):

dVm,h = (wm,h)�Sm−1
r ,Sm−1

c
(dZm,h) (4.49)

where �j,kA takes each element of the matrix A and expands it so that the resulting

matrix has j rows and k columns.

Scalar form (dW):

dWm,h =
∂F̂

∂wm,h
=

∂F̂

∂zm,h
i,j

×
∂zm,h

i,j

∂wm,h
(4.50)

dWm,h =

Sm
r∑

i=1

Sm
c∑

j=1

dZm,h
i,j

{
rm∑
k=1

cm∑
l=1

vm,h
rm(i−1)+k,cm(j−1)+l

}
(4.51)

Matrix form (dW):

dWm,h = �1,1(dZ
m,h ◦ (�Sm

r ,Sm
c
Vm,h)) (4.52)

First it performs a reduction operation that produces a matrix of size Sm
r by Sm

c , and

then, after a Hadamard matrix multiplication, it performs another reduction to produce the

scalar gradient.

Dot product Weight Function

Taking the derivative of Equation 3.15, we can derive the following.

Scalar form (dV):

dV m,h
i =

∂F̂

∂vm,h
i

=
SM∑
k=1

∂F̂

∂zmk
× ∂zmk

∂vm,h
i

=
SM∑
k=1

dZm
k × wm,h

k,i (4.53)
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Matrix form (dV ):

dVm,h = (Wm,h)T ∗ (dZm) (4.54)

Here ∗ is used to denote normal matrix multiplication. The gradient is as follows.

Scalar form (dW):

dWm,h
k,i =

∂F̂

∂wm,h
k,i

=
∂F̂

∂zmk
× ∂zmk

∂wm,h
k,i

(4.55)

dWm,h
k,i = dZm

k vm,h
i (4.56)

Matrix form (dW ):

dWm,h = dzm ∗ (vm,h)T (4.57)

4.3.6 Transformation Function

The final backpropagation stage for each layer is the backpropagation through the transfor-

mation function. The derivative of the PI with respect to the transformation function input,

a, is given as follows.

∂F

∂am−1
=

∂F

∂vm
× ∂vm

∂am−1
(4.58)

The term ∂F
∂vm

is dV , which was computed at the previous stage.

dVm → dAm−1 (4.59)

The transformation function simply converts a vector to a matrix or a matrix to a vector

(or makes no change), so the backpropagation step simply performs the reverse operation.

If the forward transformation converts a vector to a matrix (V = mat(a)), then the back-

propagation calculation will convert a matrix to a vector (da = vec(dV )), and vice-a-versa.

If no conversion is required on the forward step, then no conversion is required for the

backpropagation. The following headings refer to the forward calculation, as in previous

sections.
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Vector to Matrix transformation

Scalar form (dA):

dAm−1,h

ceil(i/Sm−1
r ),Sm−1

r −mod(Sm−1
r −i,Sm−1

r )
= dVm,h

i (4.60)

Matrix form (dA):

dAm−1,h = mat(dvm,h) (4.61)

Here mat is used to denote the matrix transformation.

Matrix to Matrix transformation

Scalar form (dA):

dAm−1,h
i,j = dVm,h

i,j (4.62)

Matrix form (dA ):

dAm−1,h = dVm,h (4.63)

Matrix to Vector conversion

Scalar form (dA):

dAm−1,h
i = dVm,h

mod(i,Sm
r ),1+fix(i/Sm

r ) (4.64)

Vector form (da ):

dam−1,h = vec(dVm,h) (4.65)

Here vec performs the vector transformation, which stacks the rows of a matrix on

top of each other.

Vector to Vector transformation

Scalar form (da):

dAm−1,h
i = dVm,h

i (4.66)

Vector form (da):

dam−1,h = dvm,h (4.67)
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4.3.7 Summary

The previous subsections have shown how the gradient of the PI with respect to the weights

and biases of the network can be computed with a backpropagation process. This process

begins at the last layer of the network (layer M ) and continues backward to the first layer.

The gradient described in these subsections has been for a partial PI, which involves only

one input pattern. This is sometimes referred to as a stochastic gradient. The total gradient,

also referred to as the batch gradient, can be found by summing the individual gradients

over the entire training set, since the gradient of the sum is equal to the sum of the gradients.

4.4 Training Algorithms

The neural network training algorithms that we consider in this thesis are optimization al-

gorithms that minimize the PI. All of the algorithms that we consider are based on the

gradient. There are many such algorithms that could be considered, such as variations of

steepest descent, conjugate gradient and quasi-Newton algorithms. FIRST is very modu-

lar, and any of these optimization algorithms could be easily added. For the preliminary

version of FIRST, we have implemented three training algorithms. The first is steepest

descent, because it is the most straightforward. The other two, Resilient Backpropagation

and Scaled Conjugate Gradient, are among the most efficient algorithms for training neural

networks, especially for pattern recognition problems. The following subsections describe

these three algorithms.

4.4.1 Steepest Descent

Steepest descent is also called gradient descent. This is because the negative of the gradient

(of the PI with respect to the weights and biases of the network) is the direction in which

the PI decreases most rapidly. The steepest descent algorithm can be written as

wk+1 = wk − αkgk (4.68)
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Where w is a vector containing all of the weights and biases of the network, k represents the

iteration number, αk is the learning rate and gk is gradient. Although the steepest descent

algorithm is simple, it often has slow convergence. This is because α must be kept small in

order to guarantee the stability of the algorithm. The next two sections describe algorithms

that use the gradient more efficiently.

4.4.2 Resilient Back-propagation

To overcome shortcomings of the gradient descent algorithm, an adaptive learning algo-

rithm, Resilient Back-propagation (RPROP) was developed by Riedmiller and Braun [28].

In this technique, the size of the weight update is not dependent on the magnitude of the

gradient. Only the sign of the gradient is used. The basic idea of RPROP is as follows.

The size of the weight update depends on the previous update and the sign of the gradient.

When the sign of the element of the gradient corresponding to a specific weight changes,

that means the previous update may have been too large, and overshot the minimum point,

so the update size is decreased by a factor of η−, which is typically chosen to be 0.5. If the

sign of the element of the gradient does not change, that means the update is going in the

right direction, so the size is increased by a factor of η+, in order to increase convergence

speed. When the element of the gradient is zero, the update maintains the same value. In

all cases, the sign of the update depends on the sign of the gradient element. [28]

The details of the RPROP algorithm follow. If

∂E

∂wi,j

(k − 1)× ∂E

∂wi,j

(k) > 0 (4.69)

then

∆i,j(k) = η+ ∗∆i,j(k − 1) (4.70)

This value is compared with ∆max = 50, and the minimum is taken as the update value.

∆wi,j(k) = −sign(
∂E

∂wi,j

(k)) ∗∆i,j(k) (4.71)
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wi,j(k + 1) = wi,j(k) + ∆wi,j(k) (4.72)

On the other hand, if
∂E

∂wi,j

(k − 1)× ∂E

∂wi,j

(k) = 0 (4.73)

then

∆wi,j(k) = −sign(
∂E

∂wi,j

(k)) ∗∆i,j(k) (4.74)

wi,j(k + 1) = wi,j(k) + ∆wi,j(k) (4.75)

Finally, if
∂E

∂wi,j

(k − 1)× ∂E

∂wi,j

(k) < 0 (4.76)

then

∆i,j(k) = η− ∗∆i,j(k − 1) (4.77)

This value is compared with ∆min = 1e−6, and the maximum is taken as the update value.

wi,j(k + 1) = wi,j(k)−∆wi,j(k) (4.78)

The parameter η+ is used to increase convergence speed in flat regions, and it is typi-

cally chosen to be 1.2. Notice that all algorithm parameters are pre-decided. There is no

need to change them for most problems. This is an important advantage of this technique.

[28]

4.4.3 Scaled Conjugate Gradient

It is well known that optimization algorithms can be improved by using second order in-

formation (i.e., the Hessian matrix) in addition to the first order information contained in

the gradient. The most direct way of doing this is Newton’s method. However, the Hes-

sian matrix requires a significant amount of computation. Conjugate gradient algorithms

were introduced to utilize second order information, obtained through successive gradi-

ent computations, without requiring the Hessian computation. Instead of searching for the
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minimum along the negative gradient directions, the searches are made along conjugate

directions. Most conjugate gradient algorithms require that a line search be carried out

along the conjugate directions, which imposes a large computational burden. Moller in-

troduced the Scaled Conjugate Gradient (SCG) algorithm [29] to eliminate the line search

requirement.

The SCG weight update is similar to the steepest descent algorithm of Equation 4.68.

wk+1 = wk + αkpk (4.79)

where pk is a conjugate direction, which is computed from successive gradients. For the

SCG algorithm, the learning rate αk is computed at each iteration, but it does not require a

line search, so the computational burden is quite small. Like RPROP, SCG does not require

fine-tuning of any adjustable parameters.

4.5 Other Training Issues

4.5.1 Convergence Plot

The convergence plot shows the PI versus the iteration number. It provides insights into the

progression of the network training. For example, if the slope of the convergence plot is

negative at the final iteration, this may indicate that further training might improve perfor-

mance. Whereas a flat region at the end of training would indicate complete convergence.

FIRST displays a convergence plot during the training process. If the data has been divided

into training, validation and test sets, then all three convergence plots will be displayed. An

example convergence plot is shown in Fig. 4.2.
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Figure 4.2: Example Convergence Plot

4.5.2 Overfitting and Early Stopping

Overfitting occurs when the network has many more parameters than points in the training

data set. If care is not taken during training, the network will memorize the training data

and will not generalize well. A technique that is used to improve generalization capacity

is called early stopping. In this technique, the data is divided into two mutually exclusive

sets: 1) training data and 2) validation data. The network is trained on the training data, but

the PI for the validation data is monitored during training. If the validation PI goes up for

several iterations, training is stopped, and the weights at the minimum of the validation PI

are returned. In most cases, it is observed that, at the beginning of training, the PI for both

training and validation sets decrease, but after some point the validation PI increases. At

this point, it is assumed that network starts to overfit, or memorize the training data.

In addition to the training and validation data sets, a test set is also selected. The test

set is not used as part of the training process, but the error of the trained network on the test

data is a measure of future performance.
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4.5.3 Network Validation

After the network has been trained, it is important to validate the network performance.

FIRST provides two tools for network validation- the confusion matrix and the Receiver

Operating Characteristic (ROC) curve. They are described below.

1) Confusion Matrix: The confusion matrix [30] is a matrix in which each column

represents a predicted class and each row represents an actual class. The matrix gives us

information about the quality of the classification done by the network. For example, see

Fig. 4.3. This represents a network that was trained to classify the handwritten digits 0

and 1. The diagonal cells show the number of correctly classified patterns for each class,

whereas the remaining cells show incorrectly classified patterns.

151 13

19 211

0

1

0 1

Predicted Class

Actual

Class

Figure 4.3: Example Confusion Matrix

2) Receiver Operating Characteristic (ROC) curve: The ROC curve is a plot of the true

positive rate (TPR) versus the false positive rate (FPR) as the decision threshold is varied.

The TPR is the ratio of the number of correctly classified positive patterns in the data set

to the total number of positive patterns. The FPR is the ratio of the number of incorrectly

classified negative patterns to the total number of negative patterns. The decision threshold

is the value of the final layer neuron output beyond which we say the classification is posi-

tive. For example, if we have a network that classifies 0’s and 1’s, and we use a hyperbolic

tangent sigmoid in the last layer, an output of 1 could represent the digit 1, and an output of

-1 could represent the digit 0. In that case, we would normally say that the predicted class

was 1 for any network output greater than 0, but this decision threshold could be set to any
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value between -1 and 1. As we adjust this threshold over that range, while computing the

TPR and FPR, we can create the ROC curve. An example ROC curve is shown in Fig. 4.4.

The quality of the classification is sometimes measured by the area under the ROC curve.

The larger this area is, the better the performance of the classifier. The worst case is the 45◦

line in Fig. 4.4 , which represents a random guess.

Figure 4.4: Example ROC curve, taken from [5]

4.6 Summary

In this chapter, we have discussed two important topics: gradient calculations and train-

ing algorithms. The training algorithms are optimization procedures that are designed to

minimize a performance index, like mean square error, by adjusting the weights and biases

of the network. All of the training algorithms presented here use the gradient of the per-

formance index with respect to the network weights and biases to determine their search

directions. The steepest descent algorithm moves in the negative gradient direction. The

resilient backpropagation algorithm uses changes in signs of the elements of the gradient to

determine the search direction, and has been found to be much more efficient than steepest

descent. The scaled conjugate gradient algorithm uses successive gradients to deduce sec-

ond order information in order to adjust the search directions. This algorithm is also much

more efficient than steepest descent.
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The gradient computation procedures described here are very general and modular.

They can be applied to a network with an arbitrary number of layers and with arbitrary

weight functions, net input functions and transfer functions in each layer. The gradient is

computed using the chain rule, starting from the network output, and proceeding backward

through the network.

In next chapter, we will focus on how FIRST can be used to implement deep convolu-

tion neural networks for practical pattern recognition problems.
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CHAPTER 5

FIRST Software Design and Usage

5.1 Introduction

This chapter focuses on software implementation and how to use the software. It also

explains how the concepts and equations introduced in Chapter 3 and 4 are implemented in

the FIRST software. This chapter serves as a guide for the FIRST user.

The FIRST software contains many modular functions, such as transfer functions,

weight functions, transform functions, net input functions, etc. All of these functions

are implemented in Matlab. FIRST can run on basic Matlab installations, as the modu-

lar functions do not use any Matlab toolboxes. The modular functions, network structure,

functions for calculating gradient, functions for calculating performance functions, etc., are

constructed in order to arrange the code in a systematic format and to make it general so

that users can easily build new custom networks. In the following sections, we explain

how the functions in the FIRST software are designed and how FIRST can be used to build

networks.

5.2 Network Object

Network objects are used in FIRST to define network architectures and initialize network

parameters. The network architecture is defined by the number of layers, number of fea-

ture maps used for each layer, initialization of weights and biases of each layer and their

dimensions, weight functions of each layer (e.g., convolution, subsampling, etc.), transfer

functions of each layer, etc., so all these are included in the network object. The network ar-
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chitecture can vary according to the application so users can modify these network objects

to build different network with different numbers of layers or different weight functions,

etc.

A detailed explanation for each component of the network object follows. The total

number of layers is denoted net.numLayers. The input is considered a layer, to make it

easier to define the connection matrix between the input and the first regular layer. For each

layer, to define the total number of feature maps, net.featureMap(m) is used, where

m is the layer number. The structure used for a feature map is a simple array. A connection

matrix is defined for each layer (see Section 3.4). The dimensions of the connection matrix

depend on the number of feature maps in the previous and present layers, so the size of the

connection matrix is different for each layer. The structure used to contain the connection

matrices is a cell array and is denoted net.ConnectionMatrix{m} (Cm), where m

is the layer number, and the curly parenthesis is used to define the cell.

The row and column reduction factors for the subsampling layer are defined for the

layer number m as net.subfactor r(m) (rm), net.subfactor c(m) (cm).

The weights and biases are defined as net.w and net.b. A cell structure is used

for both of these parameters, because their sizes in each layer might be different. The

weights and biases are randomly initialized in the network creation function. For the weight

matrices, a three dimensional cell structure is used, because each layer has multiple feature

maps. The weight is defined as net.w{i, j, k} (W i,j,k) where i is the layer number, j is

the feature map of that layer and k is the feature map of the previous layer. For a full

connection layer, there is one feature map, so we can define it as net.w{i, 1, k}. There

is one bias for each feature map, so it is defined by net.b{i, j} (bi,j) where i is the layer

number, j is the feature map of that layer.

The weight function for each layer is defined by using a cell structure and is denoted

net.wf{m}=‘weight function name’. In similar ways, we can assign the net

input function using net.nf{m}=‘net input function name’, and the transfer
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function using net.tf{m}=‘transfer function name’.

To select the performance function, use net.performFcn =‘performance function

name’. Training algorithms that are based on batch training need the gradients and the

weights and biases to be stored in vector form in order to conveniently update the weights

and biases. To convert sets of matrices into one large vector, we need to assign indices.

These indices are stored in net.wind{i, j, k} and net.bind{i, j}, where i is the layer

number, j is the feature map of that layer and k is the feature map of the previous layer.

FIRST contains three batch training algorithms: trainrp (resilient backpropagation),

trainscg (scaled conjugate gradient) and trainsd (steepest descent backpropaga-

tion). To select the training algorithm, use net.trainFcn =‘training function

name’.

Network creation functions define the above mentioned objects. FIRST includes net-

work creation functions for Lecun’s networks: LeNet-1, LeNet-5 and LeNet-7. Also, this

software can be easily modified to accommodate custom networks.

5.2.1 Existing FIRST Network Creation Functions

FIRST includes a LeNet-1 creation function, which is called newcnn. This function does

not contain any argument list, since the LeNet-1 architecture is completely specified. It

returns the network object, with all necessary parameters defined. The syntax used to call

this function is shown below:

net=newcnn

FIRST also includes a LeNet-5 creation function, which is called newcnn5le. The

newcnn5le command also returns a network object. The syntax used to call this function

is shown below:

net=newcnn5le

FIRST also includes a newcnn5, which is similar to LeNet-5, except for the last layer.

It also contains two full connection layers, but the error is calculated as the difference
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between the output of the last layer and the target, which is formed by using the 1 of k

encoding method. The syntax used to call this function is shown below:

net=newcnn5

The FIRST implementation of LeNet-7 is called newcnn7. The syntax used to call

this function is shown below:

net=newcnn7

In all of the above network creation functions, network objects are defined as follows:

net.featureMap(m) (number of feature maps)

net.numLayers (number of layers)

net.trainFcn=‘’ (training algorithm)

net.performFcn=‘’ (performance function)

net.ConnectionMatrix{m} (connection between feature maps of adjacent

layers)

net.w{i, j, k} (weight for layer i between feature map j of

layer i and feature map of previous layer k)

net.b{i, j} (bias for feature map j of layer i)

net.subfactor r(m) (subsampling factor for row wise reduction )

net.subfactor c(m) (subsampling factor for column wise reduction)

net.wf{m}=‘’ (weight function for layer m)

net.nf{m}=‘’ (net input function for layer m)

net.tf{m}=‘’ (transfer function for layer m)

net.vf{m}=‘’ (transform function for layer m)

net.wind{i, j, k} (weight indices between feature map j of layer

i and feature map k of the previous layer)

net.bind{i, j} (bias indices for feature map j of layer i)
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5.2.2 Adding Custom Network Creation Functions and Network Modules

In addition to the network creation functions described in the previous section, users can

create custom networks. Users can change the number of layers or dimensions of weights

and biases, number of feature maps, training algorithms or connection matrix. These

changes can be easily done, and a new network can be formed. Also, any weight func-

tion or transfer function can be used for any layer.

In addition to custom network architectures, users can also create custom weight func-

tions, custom net input functions or custom transfer functions,. The process of customiza-

tion will be described in more detail in Section 5.7.

5.3 Simulation Flow

Simulation flow is the flow of computations when calculating the network output. In the

simulation flow, first the transform function output v is calculated from the network input

p, then the weight function output z is calculated, which is given to the net input function,

which produces n. Then the transfer function is applied to n to produce a. This simulation

is performed in the calcgx function in the FIRST software. This flow is followed for

each layer and for every pattern. The flowchart is given in Figure 5.1.
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Start

For all data
q<=total no

of data

For all layers
i <= total number

of layers

Weight function (wf) 

evaluation 

Net function (nf)

evaluation 

Transfer function (tf)

evaluation 

Transform function 

(vf) evaluation 

Yes

NO Calculate error by 

using last layer output 

and for each  data

Yes

NOCalculate mean 

squared error for all

patterns and all data

 

End

i=i+1

q=q+1

Figure 5.1: Flowchart for simulation

In the FIRST software, in order to perform the forward calculation and to calculate the

performance, the calcgx function is used. In this function, the error is calculated for all

patterns and is summed together to find total performance. The syntax for this function is

given below:
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[perf,gX]=calcgx(net,p,t,perg)

Here net is a network, p is the network input, t is the network target, perg is a flag to

denote whether only a PI calculation is done or both gradient and PI calculations are done

and perf is the performance. When perg is zero, it returns only the performance perf.

In this function, first the transform function is invoked and the output is stored in v. Then

v is given as input to the weight function. The output of the weight function z is given to

the net input function to calculate n, which is given to the transfer function to calculate a.

This is repeated for all layers, and then the output of the last layer is compared with the

target value to calculate the error. This is repeated for all input data, and then the total PI is

calculated.

To evaluate transform functions, the following syntax is used:

v=feval(net.vf{i},a,ba,i,net)

Here a is the transfer function output, ba is a flag to indicate whether it is a backpropa-

gation calculation or a forward calculation (here ba=0), i is the layer number, net is a

network and v is the output of the transform function (a cell structure).

To evaluate the weight functions, the following syntax is used:

z=feval(net.wf{i},w,v,ba,i,net)

Here w is the weight, v is the transform function output, ba is a flag to indicate whether it is

a backpropagation calculation or a forward calculation (here ba=0), i is the layer number,

net is a network and z is the output of the weight function (a cell structure containing the

results for all FMs).

To evaluate net input functions, the following syntax is used:

n=feval(net.nf{i},b,z,ba,i,net)

Here b is the bias, z is the weight function output, ba is a flag to indicate whether it is a

backpropagation calculation or a forward calculation (here ba=0), i is the layer number,

net is a network and n is the output of the net input functions (a cell structure containing

the results for all FMs).
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To evaluate transfer functions, the following syntax is used:

a=feval(net.tf{i},n,ba,i,net)

Here n is the net input, ba is a flag to indicate whether it is a backpropagation calculation

or a forward calculation (here ba=0), i is the layer number, net is a network and a is the

output of the transfer function (a cell structure).

The final step in the network simulation is the calculation of the PI. This is done after

the last layer output has been computed. The syntax of the PI calculation is

perf=feval(net.performFcn,a,t,ba)

where net.performFcn is the name of the PI function, a is the output of the last layer of

the network, t is the target output and ba is a flag to indicate whether a forward calculation

or a backpropagation calculation is needed (here ba=0).

5.4 Gradient Flow

Gradient flow is the flow of computations during the gradient calculation. The gradient is

calculated in a backward direction in the calcgx function. The flow begins by calculating

the gradient of the PI with respect to the output of the last layer dA. This is used to calculate

the gradient of the PI with respect to the net input dN , and then this is used to calculate the

gradient of the PI with respect to the weight function output dZ. This gradient is used to

calculate the gradient of the PI with respect to the transform function dV . This process is

illustrated in Figure 5.2. The remainder of this section will step through the details of this

backpropagation process. In addition to Figure 5.2, it may be helpful to review Figure 4.1

before continuing in this section.
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Figure 5.2: Flowchart for gradient calculation

In the FIRST software, calcgx is used to perform the gradient calculation. As this is
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batch training, the gradient is computed for each pattern, and then the individual gradients

are summed. The gradient is calculated in vector form. The syntax for this function is

[perf,gX]=calcgx(net,p,t,perg)

Here net is a network, p is the training input, t is the target output, perg is a flag to

denote whether just the PI calculation is done or both the gradient and the PI calculations

are done, perf is the performance, and gX is the gradient. When perg is one it returns

gradient gX as well as performance perf.

The gradient calculation begins with the gradient of the PI with respect to the layer

output. The syntax is

dA{M, 1}=feval(net.performFcn,a,t,ba)

where a is the final layer output, t is the target, ba is the backpropagation flag (here ba=1).

dA is calculated at the output layer M .

The next step is to compute the gradient of the PI with respect to the net input n. The

syntax is

dN(i,:)=feval(net.tf{i},a,ba,i,net,dA(i,:))

For this backpropagation calculation, ba is 1.

We now compute the gradient with respect to the weight function output, z, and also

with respect to the bias. The syntax is

[db(i,:),dZ(i,:)]=feval(net.nf{i},dN(i,:),z,ba,i,net)

For this backpropagation calculation, ba is 1 and z is 0.

Then the gradient with respect to the transform function output, v, and with respect to

the weights is calculated.

[dw(i,:,:),dV(i,:)]=feval(net.wf{i},dZ(i,:),a(i-1,:),ba,i,net)

For this backpropagation calculation, ba is 1.

To calculate the gradient of the PI with respect to the previous layer output (completing

the backpropagation through one layer) the syntax is

dA(i-1,:)=feval(net.vf{i},dV(i,:),ba,i,net,a{i− 1})
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For this backpropagation calculation, ba is 1, and a {i− 1} is the network output.

5.5 Training Flow

The general flow of the training functions is shown in 5.3. The algorithms begin by setting

the training parameters. Next, the training, testing and validation performance is com-

puted. Then the gradient is calculated for the training data and it is used to update weights

and biases. And if the maximum number of epochs is reached, the maximum amount of

time is exceeded, the performance gradient falls below min grad or validation performance

has increased more than max fail times, then training stops. To update the weights and

biases, different optimization techniques are used. A good selection of optimization tech-

niques are included in the FIRST software. Detailed descriptions of the implementations

of these algorithms are included in next subsection. It is also possible for the user to add

custom training algorithms by using existing training algorithms as templates. This is also

explained in a later subsection.
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Figure 5.3: Flowchart for training
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5.5.1 Existing FIRST Training Algorithms

The FIRST software includes three batch training algorithms: Resilient Backpropagation,

Scaled Conjugate Gradient and Steepest Descent.

For resilient backpropagation (RPROP), the trainrp function is used (see Section

4.5.2 for a description of the RPROP algorithm). The syntax of trainrp is shown below.

[net,tr]=imtrain(net,p,t,p1,t1,p2,t2)

The inputs to the function are the initialized network, net, the training inputs and targets

p and t, the validation inputs and targets, p2 and t2, and the testing inputs and targets,

p1 and t1. The training record tr contains information about the progress of training and

net is the trained network. The parameters that are used in this algorithm are shown in

Table 5.1, with their default values:

Table 5.1: Default Parameters for trainrp

Parameter Description Default value

net.trainParam.epochs Maximum number of epochs to train 1000

net.trainParam.show Epochs between displays 20

net.trainParam.goal Performance goal 0

net.trainParam.time Maximum time to train in seconds inf

net.trainParam.min grad Minimum performance gradient 1e-10

net.trainParam.max fail Maximum validation failures 20

net.trainParam.delt inc Increment to weight change 1.2

net.trainParam.delt dec Decrement to weight change 0.5

net.trainParam.delta0 Initial weight change 0.07

net.trainParam.deltamax Maximum weight change 50.0

The scaled conjugate gradient algorithm is implemented in the FIRST software using

trainscg (see Section 4.4.3 for a description of the scaled conjugate gradient algorithm).
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The syntax used for trainscg is

[net,tr]=imtrain(net,p,t,p1,t1,p2,t2)

The parameters that are used by the SCG algorithm are given in Table 5.2, along with their

default values.

Table 5.2: Default Parameters for trainscg

Parameter Description Default value

net.trainParam.epochs Maximum number of epochs to

train

1000

net.trainParam.show Epochs between displays 20

net.trainParam.goal Performance goal 0

net.trainParam.time Maximum time to train in seconds inf

net.trainParam.min grad Minimum performance gradient 1e-10

net.trainParam.max fail Maximum validation failures 20

net.trainParam.sigma Determine change in weight for

second derivative approximation

5.0e-5

net.trainParam.lambda Parameter for regulating the indefi-

niteness of the Hessian

5.0e-7

The trainsd function is used to implement the steepest descent batch training algo-

rithm in the FIRST software. The following syntax is used

[net,tr]=imtrain(net,p,t,p1,t1,p2,t2)

Seven parameters are associated with this function. The parameters, along with their default

values, are given Table 5.3.
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Table 5.3: Default Parameters for trainsd

Parameter Description Default value

net.trainParam.epochs Maximum number of epochs to train 1000

net.trainParam.show Epochs between displays 20

net.trainParam.goal Performance goal 0

net.trainParam.time Maximum time to train in seconds inf

net.trainParam.min grad Minimum performance gradient 1e-10

net.trainParam.max fail Maximum validation failures 20

net.trainParam.lr Learning rate 0.01

5.5.2 Adding Custom Training Algorithms

The easiest way to create a custom training function is to use one of the three existing

training functions as a template. For algorithms that use the gradient, very few changes

would need to be made. The calculation of the gradient would remain the same. The

setting of the default parameters and the calculation of the weight update from the gradient

would be the main parts of the code that would need to change.

5.6 Sample Training Sessions

In order to illustrate how FIRST is used, we will demonstrate the software on two different

problems. One problem involves recognizing 2D images of handwritten digits. The second

problem involves recognizing speech phonemes from 1D frequency domain data.

5.6.1 Sample Training Session for Image Data

The image data are handwritten digits. The data are present in the file usps resampled.mat

[31]. The data are divided into training and test sets, containing 4649 cases each. The mat
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file contains 4 variables:

test labels : 10x4649

test patterns : 256x4649

train labels : 10x4649

train patterns : 256x4649

The pattern variables contain a raster scan of the 16 by 16 grey level pixel intensities, which

have been scaled to the range [-1; 1]. The label variables contain a one-of-k encoding, with

values -1 and +1 of the classification; there is one +1 per column, which indicates the digit.

The USPS digits data were gathered at the Center of Excellence in Document Analysis

and Recognition (CEDAR) at SUNY Buffalo, as part of a project sponsored by the US

Postal Service. The data set is described in [32]. In order to reduce boundary effects due

to the convolution operation, background pixels are added around the boundary of each

image. Also, to avoid saturating the transfer functions, the target values are multiplied by

0.76. This loading and preprocessing of data is done in the datag function. Also, data are

divided into training, testing and validation sets. For this example, 60 % of the data is used

for training, 20% is used for testing, and the remaining 20% is used for validation (to stop

training before overfitting occurs). This is also done in the datag function.

The digit recognition example uses the LeNet-5 network and also a smaller modified

LeNet-5 structure. The steps followed during execution of this example follow.

1) Load the data, which consists of input and target values. Also, the loaded data are

preprocessed by adding extra pixels around the boundary of each image and the data are

randomly divided into training, testing and validation sets.

[p,t,p1,t1,p2,t2]=datag5

This loaded data gives p and t as training inputs and targets, p1 and t1 as testing inputs

and targets, and p2 and t2 as validation inputs and targets.

2) Create the network. We use newcnn5 to create a LeNet-5 network.

net=newcnn5
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3) Train the network. The network uses the resilient backpropagation algorithm for train-

ing. Here net.trainFcn=’trainrp’ is already defined in newcnn5. So to train the

network, enter the following command

[net1,tr]=imtrain(net,p,t,p1,t1,p2,t2)

During training, the following results start displaying in the command window. This win-

dow displays training progress: training algorithm name, epoch value, performance value

for that epoch and calculated gradient value.

TRAINRP, Epoch 0/10000, performance 2.79359/0,

Gradient 0.000184095/1e-010

TRAINRP, Epoch 20/10000, performance 0.211999/0,

Gradient 0.452726/1e-010

TRAINRP, Epoch 40/10000, performance 0.191529/0,

Gradient 0.24936/1e-010

TRAINRP, Epoch 60/10000, performance 0.152278/0,

Gradient 0.329577/1e-010

TRAINRP, Epoch 80/10000, performance 0.117953/0,

Gradient 0.120948/1e-010

.................................................

.........................

TRAINRP, Epoch 300/10000, performance 0.010985/0,

Gradient 0.0528472/1e-010

TRAINRP, Epoch 318/10000, performance 0.0105404/0,

Gradient 0.017447/1e-010

TRAINRP, Validation stop.

Elapsed time is 619861.349836 seconds.

The training stopped when the validation error increased for twenty iterations, which

occurred at iteration 318. During training, it also shows a plot of the training errors, vali-
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dation errors, and test errors as, shown in the Figure 5.4.

In this example, the result is reasonable because of the following considerations: The

final performance value for training is small. The test set error and the validation set error

have similar characteristics. No significant overfitting has occurred by iteration 298 (where

the best validation performance occurs).

Figure 5.4: Performance Plot for LeNet-5

4) If you want to calculate the confusion matrix and the accuracy for the training re-

sults, as well as store images of the convolution kernels in tif format, enter the following

command.

[confusionmatrix train,accuracy train]=ker(net1,p,t)

confusionmatrix train =
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941 0 1 0 1 0 0 0 0 0

0 757 1 0 2 0 0 0 0 0

1 0 537 0 1 0 0 0 2 0

2 0 0 455 0 5 0 1 2 0

0 1 3 0 480 0 1 0 0 4

1 0 0 4 0 391 0 0 0 1

1 0 0 0 1 1 483 0 0 0

0 0 1 0 2 0 0 480 1 6

1 0 0 0 0 2 0 0 404 0

0 0 0 1 0 0 0 2 0 483

accuracy train =

97.0061

For all convolution kernels, images are formed with tif extensions and stored in the

current folder. A few kernels are shown in Figure 5.5. These tif images are saved with

name kernel−x−y−z, where x is the layer number, y is the FM number of that layer, and

z is the FM number of the previous layer. By looking at the images, one can understand

the working of the network. Using the convolution kernels, features are extracted from

images, and then the dimensions of the features are reduced at the subsampling layer to

reduce resolution.
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Figure 5.5: Convolution kernel for LeNet-5

5) To calculate confusion matrix and accuracy for testing, the following command is

used.

[confusionmatrix test,accuracy test]=testcnn(p1,t1,net1)

confusionmatrix test =
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270 0 0 0 1 1 4 0 2 0

0 231 0 0 1 0 0 0 0 0

2 0 174 2 1 0 0 0 3 1

0 1 4 156 0 4 0 0 1 0

1 2 0 0 154 0 0 0 0 3

3 0 0 4 1 140 3 0 1 0

1 0 1 0 2 0 172 0 1 0

0 0 0 0 1 0 0 143 4 0

0 1 1 1 0 1 0 0 141 0

0 0 0 0 1 0 0 1 1 154

accuracy test =

93.2796

If even more accurate results were required, you could try any of these approaches:

Reset the initial network weights and biases to new values by calling the network creation

function again. Increase the number of layers or number of feature maps. Increase the num-

ber of training data. Try a different training algorithm, such as trainscg or trainsd.

5.6.2 Sample Training Session for Speech Data

The speech data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic Con-

tinuous Speech Corpus, NTIS, US Dept of Commerce) which is a widely used resource

for research in speech recognition [33]. The data set is described in [34]. A data set was

composed of five phonemes such as “sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel

in “she”, “aa” as the vowel in “dark”, and “ao” as the first vowel in “water”. From contin-

uous speech of 50 male speakers, 4509 speech frames of 32 msec duration were selected,
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approximately 2 examples of each phoneme from each speaker. Each speech frame is rep-

resented by 512 samples at a 16kHz sampling rate, and each frame represents one of the

above five phonemes.

From each speech frame, a log-periodogram is calculated, because it is a suitable form

for speech recognition. Thus the data consist of 4509 log-periodograms of length 256,

with known class (phoneme) memberships. The data contain 256 columns labelled “x.1”

- “x.256” and a column labelled “speaker” identifying the different speakers. To avoid

saturation of the transfer functions, the target values are multiplied by 0.76. This loading

and preprocessing of data is done in the datas function. The data are divided into training,

testing and validation sets. For this experiment, 60 % of the data is used for training, 20%

is used for testing, and the remaining 20% is used for validation. This is also done in the

datas function.

For the speech data, LeNet-1 is used. The following steps demonstrate how to train a

network from the command line,

1) Load the data. Also, the data are randomly divided into training, testing and validation

data sets.

[p,t,p1,t1,p2,t2]=datas

This loaded data gives p and t as training inputs and targets, p1 and t1 as testing inputs

and targets, p2 and t2 as validation inputs and targets.

2) Create the network. We use newcnns to create a LeNet-1 network.

net=newcnns

3) Train the network. The network uses the resilient backpropagation algorithm for train-

ing. Here net.trainFcn=‘trainrp’ is already defined in newcnns. So to train the

network, enter the following command

[net1,tr]=imtrain(net,p,t,p1,t1,p2,t2)

During training, the following results display in the command window. This window dis-

plays training progress: training algorithm name, epoch value, performance value for that
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epoch and calculated gradient value.

TRAINRP, Epoch 0/10000, performance 0.391371/0,

Gradient 1.65438/1e-012

TRAINRP, Epoch 20/10000, performance 0.183133/0,

Gradient 0.327583/1e-012

TRAINRP, Epoch 40/10000, performance 0.179088/0,

Gradient 0.445899/1e-012

TRAINRP, Epoch 60/10000, performance 0.170226/0,

Gradient 0.246669/1e-012

TRAINRP, Epoch 80/10000, performance 0.130636/0,

Gradient 0.715547/1e-012

..................................................

.........................

TRAINRP, Epoch 760/10000, performance 0.0257026/0,

Gradient 0.044878/1e-012

TRAINRP, Epoch 780/10000, performance 0.0255818/0,

Gradient 0.0767968/1e-012

TRAINRP, Epoch 794/10000, performance 0.0254977/0,

Gradient 0.0497147/1e-012

TRAINRP, Validation stop.

Elapsed time is 115923.296911 seconds.

This training stopped when the validation error increased for twenty iterations, which

occurred at iteration 794. During training, it also shows a plot of the training errors, vali-

dation errors, and test errors, as shown in the Figure5.6.

In this example, the result is reasonable because of the following considerations: The

final performance value for training is small. The test set error and the validation set error

have similar characteristics. No significant overfitting has occurred by iteration 773 (where
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the best validation performance occurs).

Figure 5.6: Performance Plot for LeNet-1

4) If you want to calculate the confusion matrix and the accuracy for the training results,

as well as to plot convolution kernels, enter the following command.

[confusionmatrix train,accuracy train]=ker(net1,p,t)

confusionmatrix train =

301 79 0 0 0

37 560 0 0 0

0 0 436 2 3

0 0 0 700 1

0 0 0 0 517

accuracy train =

92.9390

Here the convolution kernels are one dimensional data (rather than images), therefore

they are plotted. A few kernels are shown in Figure 5.7. The title of each figure takes the

form kernel−x−y−z, where x is the layer number, y is the FM number of that layer and

y is the FM number of the previous layer. By looking at these plots, one can understand
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the working of the network. Using convolution kernels, features are extracted, and then the

dimensions of the features are reduced at the subsampling layer to reduce resolution.

original speech signal

Convolution kernel at first 

layer

Output at convolution 

layer

Output at subsampling 

layer  i.e. layer 2

Convolution kernels at 

layer 3

Output at convolution layer at 

layer 3

.. . . . . . . . . . . . . . 

.. . . . . . . . . . . . . . 

Figure 5.7: Convolution kernels for LeNet-1

5) To calculate the confusion matrix and the accuracy for testing, the following com-
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mand is used.

[confusionmatrix test,accuracy test]=testcnn(p1,t1,net1)

confusionmatrix test =

83 37 0 0 0

17 176 0 0 0

0 0 142 3 0

0 0 1 240 0

0 0 0 0 171

accuracy test =

90.0222

If you want to run LeNet-1 for handwritten digit images, then instead of datas use

datag, and instead of newcnns, use newcnn. Also, one can try different training algo-

rithms, such as trainscg or trainsd.

5.7 Customization

In addition to the built-in networks like LeNet-1 and LeNet-5, FIRST allows the user to

create custom networks. The FIRST software is designed in a such a way that a user

can easily modify the number of layers in a network or the number of FMs in a layer,

simply by modifying a few parameters. The user can also create new weight functions

or transfer functions. This customization is possible because networks have an object-

oriented representation, which allows you to define various architectures and assign various

algorithms to those architectures. There are three types of customization: 1) you can change

the number and types of layers in the network, 2) you can create new network modules (like

weight functions, transfer functions, and net input functions), and 3) you can create new
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training functions. This can be done without changing the gradient function (calcgx with

perg=1), the performance function (calgx with perg=0) or other elemental functions.

The built-in network creation functions in the FIRST software are newcnn, newcnn5

and newcnn7. These network creation functions can be modified to create new func-

tions by changing the number or types of layers, number of FMs for each layer, or by

changing the connection matrix for each layer. In order to change number of layers,

net.numLayers is changed. To change number of FMs, net.featureMap(m)

is changed. To change connection matrix, net.ConnectionMatrix{m} matrix is

changed. One can also create new network functions by giving any name to the functions

and storing all network objects into a net structure. The existing network creation functions

can be used as templates. According to application requirements, the user can define or ini-

tialize parameters such as net.w, net.b, net.numLayers, etc. The user can also pass

an argument list, if the number of network modules is small. This could provide a flexible

network creation function that allow many kinds of networks to be created.

The weight function, net input function, transform function and transfer function for

each layer are assigned in the network creation functions. These functions can be modi-

fied for each layer. For example, to assign the convolution weight function to the second

layer, you would use net.wf{2}=‘convol’. Here convol is an existing function

in FIRST. Similarly, other functions, such as net input functions, transfer functions and

transform functions can be modified for each layer. The user can also create new weight

functions. The best way to do this is to use an existing weight function (e.g., convol.m)

as a template. Note that all of the modular functions have two modes of operation: forward

(simulation) and backward (gradient calculation). The backward operation requires that the

derivative of the function be computed.

In a similar way, users can modify net input functions with net.nf{m}, transfer func-

tions with net.tf{m} and transform functions with net.vf{m}. New training func-

tions can be assigned in the network creation function by setting set net.trainFcn to
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‘training function name’. New training functions can be created by using one of

the existing functions as a template (trainrp, trainscg or trainsd). New training

functions can use the existing gradient and performance calculation function calgx.

5.8 Summary

This chapter gave a detailed explanation of the FIRST software. This modular software is

built to create deep convolutional neural networks. FIRST includes all of Lecun’s networks

(LeNet-1, LeNet-5 and Lenet-7), and is flexible enough to enable users to easily create cus-

tom networks with arbitrary architectures. FIRST contains a computational engine that will

calculate network performance and performance gradients. This engine does not have to

be modified, even if new network architectures or new network modules are used. FIRST

contains three different network training functions, and new training functions can be eas-

ily added. FIRST also has network validation tools, to assess the performance of trained

networks.

A list of functions included in the FIRST software follow.
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Network Creation Functions:

newcnn LeNet-1

newcnn5 LeNet-5 but with last layer output used to calculate

the performance function

newcnn5le LeNet-5 as per Lecun’s

newcnn7 LeNet-7

Weight Functions:

convol Convolution weight function

subsampling Subsampling weight function

fullconnection Dot product weight function

Net input Functions:

mplus plus operation

Transfer Functions:

imagetansig Hyperbolic tangent sigmoid transfer function

imagelogsig Logarithmic sigmoid transfer function

Transform Functions:

vec to change matrix into vector

Training Functions:

trainsd Gradient(Steepest) descent backpropagation

trainrp Resilient Backpropagation

trainscg Scaled conjugate gradient backpropagation

Utility Functions:

calcgx calculate weight and bias performance gradient as sin-

gle vector, also calculate network outputs, signals,

and performance

getx all network weight and bias values as single vector

setx set all network weight and bias values with single vec-

tor
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Analysis Functions:

ker to calculate confusion matrix, accuracy for training data and

to plot (speech data), convolution kernel or to create image

of convolution kernel (image data)

testcnn to calculate confusion matrix, accuracy for testing data

Processing Functions:

datag for loading data, preprocessing data and dividing data into

training , validation and testing.(for images-2D)

datas for loading data, preprocessing data and dividing data into

training , validation and testing.(for speech-1D)

Users can create their own version of functions in the software as well as modify or add

any functions to the software. The above mentioned functions can be easily modified if

the user wants to change network objects, network parameters or training parameters. New

functions can be created inside any of the functions which are mentioned above. The user

needs to follow the steps which are mentioned in this chapter to customize the network.

The next chapter will conclude the work done in the thesis and provide a brief summary.

Proposed future work will also be included.
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CHAPTER 6

CONCLUSIONS

The main objective of this thesis has been to create a general purpose user friendly software

package that can be used to simulate and train arbitrary deep neural networks for recog-

nizing patterns in data of any dimension. In order to build such a general neural network

framework, we began by analyzing previously proposed deep network architectures. We

discovered that these networks could be represented by a standard set of modules, con-

nected in various ways. This lead us to propose a modular framework, which could include

existing networks while allowing new types of networks to be easily constructed. By us-

ing this framework, a software package was created for designing, training, and simulating

many network types. We call this software package the Flexible Image Recognition Soft-

ware Toolbox (FIRST).

This software includes ready-made versions of some classical network architectures,

such as Lecun’s LeNet-1, LeNet-5 and LeNet-7. Also, by using this software, users can

create custom networks with arbitrary numbers of layers and arrangements of existing

layer modules without writing new code. A library of common layer modules, such as

weight functions, net input functions, transfer functions, and transform functions is pro-

vided. Users can easily create their own architecture or add new modules without changing

the existing training and simulation functions. This addition of new module types to the

FIRST library is easy, as it requires minimal programming.

FIRST contains several training algorithms, and the addition of other algorithms is easy,

as the framework is modular. The gradient calculation does not need to be changed. FIRST

includes three efficient training algorithms: 1) Resilient Backpropagation 2) Scaled Con-
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jugate Gradient Backpropagation and 3) Steepest Descent Backpropagation. The gradient

computation procedures derived for this software are very general and modular. Because

of this generality and modularity, it can be applied to any network that the user has created.

The FIRST software accommodates signals (1D), images (2D) and higher order objects.

In this thesis, we have demonstrated the software using two practical pattern recognition

problems. One problem consists of 1D speech data, and the second problem uses 2D

images of handwritten digits. FIRST displays training progress and provides plots to assess

network performance. Also, to verify results, the software calculates the confusion matrix

and the accuracy for training and testing data.

For future work, this FIRST software can be used to train 3D data, multi-spectral data or

color images. There are also some improvements that could be made to the weight initial-

ization procedures. For multi-layer networks, layer weights and biases are often initialized

with the Nguyen-Widrow [35] method. It may be possible to develop similar procedures

for deep convolutional neural networks. This could help speed up network convergence.
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APPENDIX A Notation

Basic Concepts:

Scalars: small italic letters....a,b,c

Vectors: small bold non-italic letters...a,b,c

Matrices: capital bold letters....A,B,C

Vectors:

Vector means a column of numbers.

Transformations:

vec means converting matrix into vector.

mat means converting vector into matrix.

Weight Matrices:

Scalar Element:

wm,h
i,j

wm,h,l
i,j

i -row, j -column, m -layer, h -feature map at layer m , l -feature

map at layer m− 1 .

Matrix

Wm,h

Wm,h,l
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Bias Matrices:

Scalar Element:

bm
k

Vector:

bm

Matrix

Bm,h

bias matrix created by multiplying matrix all elements=1 with scalar bm,h

Input Matrices:

Scalar Element:

pm
i,j

One of a set of input matrices(patterns):

Pm
i,j,q

q-number of patterns

Weight Operation Output matrices:

Scalar Element:

zm,h
i,j

Matrix:

Zm,h

Net Input matrices:

Scalar Element:

nm,h
i,j

Matrix:

Nm,h
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Output matrices:

Scalar Element:

am,h
i,j

Matrix:

Am,h

Transfer Function:

Scalar Element:

am,h
i,j

Vector:

am,h

Matrix:

Am,h

Transformation Function:

Scalar Element:

vm,h
i

Vector:

vm,h

Matrix:

Vm,h

Connection Matrix Indices:

Cm,h

set of indices of feature maps in layer m− 1 that connect to feature map

h in layer m .

97



Cm,h
b

set of indices of feature maps in layer m that connect to feature map

l in layer m− 1 .

Matrix:

Cm

Scalar Element:

cmi,j

if feature map j in layer m− 1 connects to feature map i in layer m .

Target Matrices:

Scalar Element:

tmi,q

Vector:

tmq

Matrix:

Tm
q

Set of Prototype Input/Target Matrices:

( Pm
1 , Tm

1 ),( Pm
2 , Tm

2 ) ,.....,( Pm
Q , Tm

Q )

Error Vector:

Scalar Element:

emi,q = tmi,q - am
i,q

Vector:

emq
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Size and Dimensions:

number of rows in sub-sampling kernel for layer m : rm

number of columns in sub-sampling kernel for layer m : cm

number of rows in feature map in layer m : Sm
r

number of columns in feature map in layer m : Sm
c

number of Input matrices(target vectors) and dimensions of input : Q,

Rr ×Rc

number of layers and number of feature maps : M,H

number of neurons in dot product : K

Performance Variable:

F (x)

Gradient:

Scalar Element:

partial derivative of error w.r.t. transform function output : dVm,h
i,j

partial derivative of error w.r.t. transfer function output : dAm,h
i,j

partial derivative of error w.r.t. net function output : dNm,h
i,j

partial derivative of error w.r.t. weight function output : dZm,h
i,j

partial derivative of error w.r.t. weight : dWm,h
i,j

partial derivative of error w.r.t. bias : dbm,h

Matrix:

partial derivative of error w.r.t. transform function output : dVm,h

partial derivative of error w.r.t. transfer function output : dAm,h

partial derivative of error w.r.t. net function output(sensitivity) : dNm,h

partial derivative of error w.r.t. weight function output : dZm,h

partial derivative of error w.r.t. weight : dWm,h
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Vector:

partial derivative of error w.r.t. bias : dbm

Mathematical Operators for functions:

Convolution operator : ⋆

Sub-sampling Operator for reduction with size of output of operation:

�Sm
r ,Sm

c

Sub-sampling Operator for expansion: �

Multiplication : ×

Matrix element by element multiplication (Hadamard Product): ◦

Normal Matrix Multiplication : ∗

Double summation (i.e Sub-sampling Operator for reduction with size of

output of operation as 1× 1 ): �1,1
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APPENDIX B List of FIRST Functions

New Networks Functions: to create network architectures

newcnn- LeNet-1

net=newcnn

returns net which is the new network objects.

newcnn5- LeNet-5 but with last layer output is taken in calculating

performance function

net=newcnn5

returns net which is the new network objects.

newcnn5le- LeNet-5 as per Lecun’s

net=newcnn5le

returns net which is the new network objects.

newcnn7- LeNet-7

net=newcnn7

returns net which is the new network objects.

Weight Functions: to perform operation with weights of layer

convol- Convolution weight function

dd=convol(a,b,ba,i,net,q)
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a and b - cell array inputs on which convolution is performed.

ba - a flag i.e. when ba=0 i.e. forward calculation.

when ba=1 i.e. backward calculation.

i - layer number.

net - a network given with parameters.

and returns,

dd - a cell array in which output for each FM is stored for layer i during forward

calculation.

[dw,dZ]-the gradient with respect to the transform function output is calculated and

with respect to the weights during backward calculation.

subsampling- Subsampling weight function

c=subsampling(b,a,ba,i,net)

a and b - cell array inputs on which subsampling(reduction or expansion) is performed.

ba - a flag i.e. when ba=0 i.e. forward calculation.

when ba=1 i.e. backward calculation.

i - layer number.

net - a network given with parameters.

and returns,

c - a cell array in which output for each FM is stored for layer i during forward

calculation.

[dw,dZ]-the gradient with respect to the transform function output is calculated and

with respect to the weights during backward calculation.

fullconnection- Dot product weight function

c=fullconnection(a,b,ba,i,net)

a and b - cell array inputs on which dot product is performed.
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ba - a flag i.e. when ba=0 i.e. forward calculation.

when ba=1 i.e. backward calculation.

i - layer number.

net - a network given with parameters.

and returns,

c - a cell array in which output for each FM is stored for layer i during forward

calculation.

[dw,dZ]-the gradient with respect to the transform function output is calculated and

with respect to the weights during backward calculation.

Net input Functions: to sum excitations of layers

mplus- plus operation

n=mplus(b,z,ba,i,net)

b - bias and z - output of weight function.

ba - a flag (future use).

i - layer number.

net - a network given with parameters.

and returns,

n - a cell array which stores net input function output for layer i during forward

calculation.

[db,dZ]-the gradient with respect to weight function output and also with respect to

the bias during backward calculation.

Transfer Functions: to squash output into the range

imagetansig- Hyperbolic tangent sigmoid transfer function.
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a=imagetansig(n,ba,i,net,dA)

n - input to the transfer function is performed.

ba - a flag i.e. when ba=0 i.e. forward calculation.

when ba=1 i.e. backward calculation.

i - layer number.

net - a network given with parameters.

dA - a gradient of the PI with respect to the previous layer output during backward

calculation.

and returns,

a - a cell array which stores transfer function output for layer i during forward

calculation.

dN - the gradient of the PI with respect to the net input function output (requires during

backward calculation).

imagelogsig- Logarithmic sigmoid transfer function.

a=imagelogsig(n,ba,i,net,dA)

n - input to the transfer function is performed.

ba - a flag i.e. when ba=0 i.e. forward calculation.

when ba=1 i.e. backward calculation.

i - layer number.

net - a network given with parameters.

dA - gradient w.r.t. transfer function output (requires during backward calculation).

and returns,

a - a cell array which stores transfer function output for layer i during forward

calculation.

dN - the gradient of the PI with respect to the net input function output (requires during

backward calculation).
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Transform Functions: to transform output of network layer

vec- to change matrix into vector.

v=vec(a,ba,i,net,q)

a - input on which conversion takes place.

ba - a flag i.e. when ba=0 i.e. forward calculation.

when ba=1 i.e. backward calculation.

i - layer number.

net - a network given with parameters.

q - required during backward calculation.

and returns,

v - a cell array which stores transform function output for layer i during forward

calculation.

dA - the gradient of the PI with respect to the previous layer output (requires during

backward calculation).

Training Functions: to train networks

trainsd- Gradient(Steepest) descent backpropagation

[net,tr] = trainsd(net,Pd,Tl,p1,t1,p2,t2)

This function takes inputs,

NET - Neural network.

Pd - training input data.

Tl - training target data.

p1 - testing input data.

t1 - testing target data.
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p2 - validation data set.

t2 - validation target data.

and returns,

NET - Trained network.

TR - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

trainrp- Resilient Backpropagation

[net,tr] = trainrp(net,Pd,Tl,p1,t1,p2,t2)

This function takes inputs,

NET - Neural network.

Pd - training input data.

Tl - training target data.

p1 - testing input data.

t1 - testing target data.

p2 - validation data set.

t2 - validation target data.

and returns,

NET - Trained network.

TR - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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trainscg- Scaled conjugate gradient backpropagation

[net,tr] = trainscg(net,Pd,Tl,p1,t1,p2,t2)

This function takes inputs,

NET - Neural network.

Pd - training input data.

Tl - training target data.

p1 - testing input data.

t1 - testing target data.

p2 - validation data set.

t2 - validation target data.

and returns,

NET - Trained network.

TR - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

Utility Functions: internal utility functions

calcgx- calculate weight and bias performance gradient as single vector,

also calculate network outputs, signals, and performance

[perf,gX]=calcgx(net,p,t,perg)

p - given input.

t - target values.

net - network.
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perg - a flag to denote whether to calculate PI or gradient along with PI

perf - the performance

gX - gradient value which is in a vector form.

getx- all network weight and bias values as single vector

x = getx(net)

net - Neural network.

x - Vector of weight and bias values.

setx- set all network weight and bias values with single vector

net = setx(net,x)

net - Neural network.

x - Vector of weight and bias values.

imtrain- to evaluate training function.

[net,tr]=imtrain(net,p,t,p1,t1,p2,t2)

This function takes inputs,

NET - Neural network.

p - training input data.

t - training target data.

p1 - testing input data.

t1 - testing target data.

p2 - validation data set.

t2 - validation target data.

and returns,

NET - Trained network.

TR - Training record of various values over each epoch:
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TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

imagemse- to calculate mean square value as PI

[E]=imagemse(a,t,ba)

a - the final layer output

t - the target

ba - the backpropagation flag

and returns,

E- mean squared value during forward calculation.

dA-the gradient of the PI with respect to the layer output during backward calculation.

Analysis Functions: to analyze network performance

ker- to calculate confusion matrix, accuracy for training data and to plot (speech data)

convolution kernel or to create image of convolution kernel (image data)

[confusionmatrix train,accuracy train]=ker(net1,p,t)

net1- network with updated values of weights and biases.

p and t-training data and target values for training data.

and returns,

confusionmatrix train- confusion matrix.

accuracy train- accuracy calculated from confusion matrix.

testcnn- to calculate confusion matrix, accuracy for testing data

[confusionmatrix test,accuracy test]=testcnn(p1,t1,net)
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net- network with updated values of weights and biases.

p1 and t1- testing data and target values for testing data.

and returns,

confusionmatrix test- confusion matrix.

accuracy test- accuracy calculated from confusion matrix.

Processing Functions: to load and preprocess input data

datag- for loading data for LeNet-1, preprocessing data and dividing data

into training , validation and testing.(for images-2D)

datag5- for loading data for modified LeNet-5, preprocessing data and dividing data

into training , validation and testing.(for images-2D)

[p,t,p1,t1,p2,t2]=datag

[p,t,p1,t1,p2,t2]=datag5

p and t-training data and target values for training data.

p1 and t1-testing data and target values for testing data.

p2 and t2-validation data and target values for validation data.

datas- for loading data for LeNet-5, preprocessing data and dividing data

into training , validation and testing.(for speech-1D)

[p,t,p1,t1,p2,t2]=datas

p and t-training data and target values for training data.

p1 and t1-testing data and target values for testing data.

p2 and t2-validation data and target values for validation data.
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APPENDIX C List of Abbreviations

List of Abbreviations

CNN Convolutional Neural Network

FIRST Flexible Image Recognition Software Toolbox

RPROP Resilient Backpropagation

SCG Scaled Conjugate Gradient

MLP Multilayer Perceptron

MRI Magnetic resonance Imaging

RBM Restricted Boltzmann Machine

FM Feature Map

RBF Radial Basis Function

CRBM Convolutional Restricted Boltzmann Machine

2D Two Dimensional

1D One Dimensional

3D Three Dimesional

PI Performance Index

ROC Receiver Operating Characteristic

TPR True Positive Rate

FPR False Positive Rate
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