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Abstract:  

 

Accurate prostate segmentation in trans-rectal ultrasound (TRUS) imagery is an 

important step in different clinical applications, and it is particularly necessary for 

providing a 3-dimensional spatial prior to guide the image reconstruction of trans-rectal 

optical tomography for prostate cancer detection. Utilizing the US prior to guide near 

infrared tomography reconstruction could be performed by direct segmentation of the US 

image. Therefore, 2-dimensional segmentation of the axial TRUS images are performed 

extensively, however, 2-dimensional segmentation of the sagittal TRUS images are 

challenging, due to more complexities in contrast, morphological features and image 

artifacts, as well as significant inter-subject variations of the prostate shape and size. We 

develop a routine of segmenting 2-dimensional TRUS images obtained from canine 

prostate, based on the combination of a Snake’s algorithm and selected manual 

segmentation. The segmentations obtained from a sparse set of axial and sagittal images 

are aligned to form the 3-dimensional contour of a prostate. The resulted prostate profile 

is implemented as the spatial prior to constrain image reconstruction of trans-rectal 

optical tomography. The trans-rectal optical tomography images reconstructed with the 

prostate profile prior are compared with those reconstructed without any spatial prior by 

monitoring oxygen saturation (StO2) and total hemoglobin concentration ([HbT]) in 

lesions of a canine prostate. 
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CHAPTER 1 
 

INTRODUCTION 

Prostate cancer (PCa) is one of the leading causes of death from cancer among men in the United 

States [1]. Rates of detection of prostate cancers vary widely across the world, with South and 

East Asia detecting less frequently than in Europe, and especially the United States [2]. Prostate 

cancer tends to develop in men over the age of fifty [3]. Globally, it is the sixth leading cause of 

cancer-related death in men [3]. Prostate cancer is most common in the developed world with 

increasing rates in the developing world [4]. 

 

 

Figure 1.1 U.S. Prostate cancer incidences as of 2009
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 As per the National Cancer Institute, prostate cancer incidence rates rose dramatically in 

the late 1980s, when screening with the Prostate Specific Antigen (PSA) test, which received 

initial U.S. Food and Drug Administration approval in 1986, came into wide use. Since the early 

1990s, prostate cancer incidence has been declining. Mortality rates for prostate cancer also have 

declined since the mid-1990s. Well-established risk factors for prostate cancer include increasing 

age, race, and a family history of prostate cancer. Current evidence suggests that screening with a 

digital rectal exam (DRE) and/or PSA has at most only a small effect on prostate cancer 

mortality. According to National Cancer Institute statistics, there are 238,590 new cases, 29,720 

deaths due to prostate cancer and about 239,000 American men will be diagnosed with prostate 

cancer in 2013. 

 

 

Figure 1.2 U.S. Prostate cancer mortality as of 2009 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046171&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044867&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045873&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044391&version=Patient&language=English
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1.1 Prostate 

 

Figure 1.3 Prostate anatomy 

 

The prostate is a small, walnut-sized structure that makes up part of a man's reproductive system. 

The prostate is a part of the male reproductive system that helps make and store seminal fluid. In 

adult men, a typical prostate is about three centimeters long and weighs about twenty grams [5]. It 

is located in the pelvis, under the urinary bladder and in front of the rectum [6]. It wraps around 

the urethra, the tube which carries urine out of the body. It is partly muscular and partly 

glandular, with ducts opening into the prostatic portion of the urethra. It is made up of three 

lobes: a center lobe with one lobe on each side.  

 The prostate gland has four distinct glandular regions, two of which arise from different 

segments of the prostatic urethra. They are as follows: 

https://en.wikipedia.org/wiki/Prostate
https://en.wikipedia.org/wiki/Reproductive_system
https://en.wikipedia.org/wiki/Seminal_fluid
https://en.wikipedia.org/wiki/Pelvis
https://en.wikipedia.org/wiki/Urinary_bladder
https://en.wikipedia.org/wiki/Rectum
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1) Peripheral zone (PZ): This is a sub-capsular portion of the posterior aspect of the prostate 

gland that surrounds the distal urethra. It is from this portion of the gland that ~70–80% of 

prostatic cancers originate. 

2) Central zone (CZ): This zone surrounds the ejaculatory ducts. The central zone accounts for 

roughly 2.5% of prostate cancers although these cancers tend to be more aggressive and more 

likely to invade the seminal vesicles. 

3) Transition zone (TZ): ~10–20% of prostate cancers originate in this zone. The transition zone 

surrounds the proximal urethra and is the region of the prostate gland that grows throughout life 

and is responsible for the disease of benign prostatic enlargement. 

4) Anterior fibro-muscular zone (or stroma): This zone is usually devoid of glandular 

components, and composed only, as its name suggests, of muscle and fibrous tissue. 

As part of the male reproductive system, the prostate gland’s primary function is to make some of 

the fluid that protects and nourishes sperm cells in semen [7]. 

 

Figure 1.4 Zones of prostate gland 
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1.2 Prostate Cancer 

Prostate cancer occurs when cells in the prostate gland grow out of control. The cancer cells may 

spread from the prostate to other parts of the body, particularly the bones and lymph nodes. Many 

prostate cancers grow slowly, and differentiating aggressive from indolent prostate cancer is an 

overarching challenge in prostate cancer study. There are 4 stages of prostate cancer. 

 

Figure 1.5 Stages of prostate cancer 

 

Stage I.  The cancer is only in the prostate. It might be too small to feel during a digital rectal 

exam. If the Gleason score and PSA level are known, the Gleason score is 6 or less, and the PSA 

level is under 10. 

Stage II.  The tumor is more advanced or a higher grade than Stage I, but the tumor does not 

extend beyond the prostate. 

Stage III.  The tumor extends beyond the prostate. The tumor may have invaded a seminal 

vesicle, but cancer cells have not spread to the lymph nodes. 

https://en.wikipedia.org/wiki/Bone
https://en.wikipedia.org/wiki/Lymph_node
http://kisbyto.blogspot.com/2013/03/prostate-cancer-month.html
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044867&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046576&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046576&version=Patient&language=English
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Stage IV.  The tumor may have invaded the bladder, rectum, or nearby structures (beyond the 

seminal vesicles). It may have spread to lymph nodes, bones, or other parts of the body. 

There are often no early prostate cancer symptoms, but some men have urinary symptoms and 

discomfort. For prostate cancer identified as clinically significant (needing treatment), the 

treatment options are surgery, chemotherapy, cryotherapy, hormonal therapy, and/or radiation. In 

some instances, doctors recommend "watchful waiting."  

1.3 TRUS Guided Near Infrared Optical Tomography 

The need for more accurate imaging modalities, for both “targeted biopsy” and “targeted 

treatment,” have evoked investigation and development of a number of novel imaging 

technologies besides the standard modalities, such as Ultra Sound (US), Magnetic Resonance 

Imaging (MRI), and Computerized Tomography. Some of these novel approaches have emerged 

as alternative prostate imaging methods that provide new insights valuable in differentiating 

prostate cancer from benign tissues. Among these emerging alternative prostate imaging 

technologies, the approach using near-infrared (NIR) light has seemed to provide unique 

information regarding optical properties of the intact prostate that may be useful for detecting 

malignant tissue and pretreatment planning.  

 Recently, trans-rectal NIR imaging of the prostate has been investigated through 

simulation in the context of assisting MRI for a treatment decision [8]. Imaging methods which 

include US and MRI could provide reliable information about the size and shape of prostate gland 

and localize the cancer area to improve the accuracy of diagnosis and enabling more efficient 

treatment. Currently the most widely used modality for prostate cancer diagnosis is trans-rectal 

ultrasound (TRUS) because of its images. Trans-rectal probing is undoubtedly the most suitable 

way of prostate imaging for optical means. This probing option, however, indicates that trans-



7 
 

rectal optical imaging may be combined with TRUS to provide broader clinical utility, e.g. 

prostate screening and biopsy guidance. 

 The benefit of complement NIR contrast to ultrasound has been demonstrated in breast 

imaging [9-10]. The methodology of combining NIR and US can certainly be extended from 

breast imaging to prostate imaging. The imaging modalities such as x-ray, ultrasound, and 

magnetic resonance imaging (MRI) provide higher imaging resolution but low functional contrast 

in biological tissue, which is opposite to optical diffuse imaging. Compensating optical imaging 

with spatial a priori information extracted from ultrasound imaging can potentially improve the 

specificity of DOT to malignant tissue. The pioneering works of ultrasound prior guided optical 

tomography reconstruction was conducted by an optical imaging group at the University of 

Connecticut.  

1.4 Motivation and Objective 

There is an interest in significant improvements in prostate cancer diagnosis and treatment. 

Researchers are trying to determine the best way to screen for this type of prostate cancer because 

it is a relatively unknown and rare type of prostate cancer but very serious and quick to spread to 

other parts of the body. Trans-rectal optical tomography (DOT) has the potential to non-

invasively reveal optical signatures of prostatic lesions. Different tissue types often have distinct 

scattering properties, and thereby, we can hope to image this distinction as well. Thus, NIR 

methods have the potential to provide in vivo hemoglobin imaging as a noninvasive assessment of 

blood/vascular status in tissue. This approach was motivated by the hypothesis that optical 

properties of prostate cancer in vivo may be different from those of normal intact prostate tissues 

and was challenged by the difficulty of assessing the prostate in its in vivo real-time environment 

[11]. The main disadvantage of NIR tomography lies in the low spatial resolution resulting from 

the highly scattering nature of tissue for these wavelengths.   
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 Since trans-rectal ultrasound is widely used in prostate cancer diagnosis and prostate 

biopsy guidance, we use axial and sagittal trans-rectal ultrasound images of a prostate for 

structural prior extraction. Utilizing the US prior to guide NIR tomography reconstruction could 

be performed by direct segmentation of the US image. Hence, our objective is to develop a 

routine of segmenting TRUS images obtained from a canine prostate, based on the combination 

of a Snake algorithm and selected manual segmentation. The segmentations obtained from a 

sparse set of axial and sagittal images are aligned to form the 3-dimensional contour of a prostate. 

This 3-D contour provided by TRUS imaging will be used as the spatial structural prior in trans-

rectal optical tomography reconstruction to improve the image reconstruction outcome of TR-

NIR. 

1.5 Organization of Thesis 

The remainder of thesis is organized as follows: A literature review is presented in chapter 2. 

Chapter 3 explains the methodology for 3-D profiling of a canine prostate. Optical tomography 

reconstruction using NIRFAST is shown in chapter 4. Chapter 5 provides results and discussion 

from the study. Conclusion and future work are given in chapter 6. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

2.1 PROSTATE CANCER DIAGNOSIS 

Prostate cancer screening involves testing for prostate cancer in men who have no 

symptoms of the disease. This testing can find cancer at an early stage. However, medical 

experts disagree about whether prostate cancer screening is right for all men, and it is not 

clear if the benefits of screening outweigh the risks. The diagnosis procedure involves 

tests like PSA and DRE. If the test results are not normal, there is a possibility of prostate 

cancer. If the reports of the tests are normal, still it does not rule out the suspicion of 

prostate cancer. Therefore, it is recommended to repeat the tests again.  

 

Figure 2.1 Prostate cancer diagnosis procedure 
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2.1.1 Tests Available for Prostate Cancer Screening 

Prostate cancer screening is an attempt to identify individuals with prostate cancer in a broad 

segment of the population, those for whom there is no reason to suspect prostate cancer. The 

screening  of prostate cancer currently involves determination of prostate-specific antigen (PSA) 

and digital rectal examination (DRE), recommended to begin at 50 years of age for men with 

general risk or at 40 years of age for men with high risk, such as individuals having a family 

history of prostate cancer [12]. If PSA or DRE reports are abnormal, it leads to suspicion of 

cancer and biopsy is performed by the doctors. 

2.1.1.1 Prostate-specific antigen (PSA) blood test 

Prostate-specific antigen, or PSA, is a protein produced by cells of the prostate gland. The PSA 

test measures the level of PSA in a man’s blood. For this test, a blood sample is sent to a 

laboratory for analysis. The results are usually reported as nano grams of PSA per milliliter 

(ng/mL) of blood. The chance of having prostate cancer goes up as the PSA level goes up. There 

is no specific normal or abnormal level of PSA in the blood. In the past, most doctors considered 

PSA levels of 4.0 ng/mL and lower as normal. However, as per the National Cancer Institute, 

more recent studies have shown that some men with PSA levels below 4.0 ng/mL have prostate 

cancer and that many men with higher levels do not have prostate cancer. If the PSA level is high, 

a doctor may advise either waiting a while or repeating the test, or getting a prostate biopsy to 

find out if the person has cancer. Not all doctors use the same PSA cutoff point when advising 

whether to do a biopsy. Some may advise it if the PSA is 4.0 ng/mL or higher, while others might 

recommend it at 2.5 ng/mL or higher. Other factors, such as age, race, and family history, may 

also come into play. 

http://en.wikipedia.org/wiki/Prostate_cancer_screening
http://en.wikipedia.org/wiki/Prostate_cancer
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044214&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044214&version=Patient&language=English
http://www.cancer.org/cancer/prostatecancer/moreinformation/prostatecancerearlydetection/prostate-cancer-early-detection-tests
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Figure 2.2 Prostate specific antigen (PSA) test  

 

 PSA tests are not foolproof. It's possible for PSA levels to be elevated when cancer is not 

present, and to not be elevated when cancer is present. Hence, false reassurance from a PSA test 

that does not reveal cancer (false-negative), leading to a missed diagnosis of aggressive prostate 

cancer that needs treatment makes PSA controversial. 

2.1.1.2 Digital rectal exam (DRE) 

For a digital rectal exam (DRE), the doctor inserts a gloved, lubricated finger into the rectum to 

feel for any bumps or hard areas on the prostate that might be cancer. Most cancers begin in the 

back part of the gland, which can be felt during a rectal exam. This exam can be uncomfortable, 

but it usually is not painful and only takes a short time. 
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Figure 2.3 Digital rectal exam 

 DRE is less effective than the PSA blood test in finding prostate cancer, but it can 

sometimes find cancers in men with normal PSA levels. For this reason, it may be included as a 

part of prostate cancer screening. 

2.1.1.3 Biopsy 

A biopsy is when the doctor takes out tiny pieces of the prostate gland with a needle. The pieces 

are examined under a microscope to look for cancer cells. Directed biopsies are obtained from 

any area that is considered suggestive on the basis of ultra-sonographic findings or palpable 

abnormalities found on the digital rectal examination (DRE). Because the incidence of non-

palpable iso-echoic prostate tumors is high, limiting biopsy sites to either ultra-sonographically 

hypo-echoic lesions or to areas of palpable abnormality tends doctors to miss many malignancies. 

Obtaining separate biopsy samples from each sextant of the prostate improves the odds of 

sampling clinically unapparent tumors. Originally, these biopsy sites included the mid-lobe 

parasagittal plane at the apex, the mid-gland, and the base bilaterally. Subsequently, however, 

changes to this protocol were recommended. 

http://emedicine.medscape.com/article/457757-technique
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Figure 2.4 TRUS guided prostate biopsy 

 

 If the biopsy shows prostate cancer, the lab gives it a Gleason score. Gleason 

scores range from 2 to 10. They give an idea of how fast the cancer may grow. A lower Gleason 

score (2 to 5) means the cancer is slower to grow. A higher score (8 to 10) means the cancer is 

more “aggressive” and more likely to spread. Most men with prostate cancer have a score in the 

middle (6 to 7). Surviving prostate cancer is more likely with lower Gleason scores. This is true 

with any prostate cancer treatment or watchful waiting. 

2.1.2 Prostate Cancer Screening Using MRI and TRUS Imagery 

As mentioned in the introduction, different modalities like CT, MRI and TRUS are used for 

prostate imaging which can help detect the PCa. MRI scans can be helpful in looking at prostate 

cancer. They can produce a very clear picture of the prostate and show whether the cancer has 

spread outside the prostate into the seminal vesicles or other nearby structures. This information 

can be very important for doctors in planning the treatment. However, MRI scans may not 

provide useful information about newly diagnosed prostate cancers that are likely to be confined 

to the prostate based on other factors. 
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Figure 2.5 Magnetic resonance imaging (MRI) scan in a patient with a prostate-specific 

antigen level of 8 ng/mL and right-sided prostate cancer. Low signal intensity is 

demonstrated in the right peripheral zone (arrow). 

 

 Urologists have incorporated trans-rectal ultrasonography (TRUS) of the prostate into 

their practices. Trans-rectal ultrasound (TRUS) uses sound waves to make an image of the 

prostate on a video screen. For this test, a small probe that gives off sound waves is placed into 

the rectum. The sound waves enter the prostate and create echoes that are picked up by the probe. 

A computer turns the pattern of echoes into a black and white image of the prostate. TRUS may 

be used on its own to look at the prostate, but it is most often used during a prostate biopsy to 

guide the needles into the right area of the prostate. However, it was not found to be highly 

effective for this purpose of detecting prostate cancer, because of its lack of specificity: prostate 

cancer lesions may appear hypoechoic, hyperechoic, or isoechoic on the TRUS images. 
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TRUS images 

 

Figure 2.6 TRUS of prostate in axial and sagittal planes 

 

 The convention for presenting ultrasound images in longitudinal view puts the patient’s 

head to the left and his feet to the right. In the clinical axial plane imaging, the left side of the 

image actually indicates the prostate right lobe; the right side of the image shows the left lobe of 

the prostate. Fig. 2.6 shows the axial and sagittal ultrasound of the canine prostate. The prostate 

region can be well defined by the capsule line shown in the ultrasound image. In the sagittal plane 

image, the bladder and pelvic bones can also be used to correlate the location of the prostate with 

respect to the probe since the bladder has a clear hypo-echoic region and the pelvic bone has a 

distinct hyper-echoic region in US images.  

 The Institutional Animal Care and Use Committee of Oklahoma State University 

approved this study. An adult 27-kg, intact male, foxhound estimated to be seven years of age 

was used. The trans-rectal US-integrated triple-band spectral optical tomography system used was 

developed based on an Aloka® trans-rectal ultrasound unit.  
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Figure 2.7 The study was conducted on a dog that had a naturally occurring cystic lesion in 

its left lobe. Order of sub-figures: clockwise from the upper-left. (a) and (b), imaging 

geometry; (d) and (f), a large “scorpion-like” cystic lesion extending irregularly within the 

left lobe; (e), the right lobe was unremarkable on the base-line US; (c), the TVT injection 

site in the right lobe was noticeable on US as indicated by the red arrow. White solid arrow: 

cystic lesion. 

  

 For all baseline and post-injection examinations, trans-rectal US-integrated optical 

tomography was performed on five quasi-sagittal planes (Fig. 2.7 b), including the middle-
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sagittal, half-way to the right lateral edge, the right lateral edge, half-way to the left lateral edge, 

and the left lateral edge of the prostate gland for “laterality” evaluation. On each of the five quasi-

sagittal planes the imaging was performed at three longitudinal positions of the optical-array 

probe with respect to the prostate. For the case of the middle-sagittal plane, at the longitudinal 

position 1 the imaging field-of-view covered the cranial edge of the prostate with the bladder vis-

ible, at the longitudinal position 3 the imaging field-of-view covered the caudal edge of the 

prostate, and the longitudinal position 2 was in between the longitudinal positions 1 and 3. Such 

measurements were necessary for cross-validation of the NIR imaging features associated with 

each quasi-sagittal plane.  

 Urologists use trans-rectal ultrasound during a prostate biopsy and can sometimes see a 

hypo-echoic area which are tissues or structures that reflect relatively less of the ultrasound waves 

directed at them. Fig 2.8 shows axial and sagittal views of a canine prostate with the hypo-echoic 

tumor lesions marked with white arrows. 

  

(a)      (b) 

Figure 2.8 (a) Large hypo-echoic area along the right peripheral zone, suggestive of 

carcinoma in axial view, (b) Sagittal image of the prostate showing a hypo-echoic area 

(white arrow). 
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2.2 Near-Infrared Optical Tomography 

Near Infrared (NIR) optical imaging is a technique where NIR light (650–900 nm) is injected 

through optical fibers positioned on the surface of the imaging volume of interest and the 

emergent light is measured at other locations on the same tissue surface using either other fibers 

or a detector array[13].  It is a non-invasive imaging technique that aims to reconstruct images of 

tissue function and physiology, for the detection and characterization of malignant tumor. NIRS 

was used to provide the changes in the mean concentration of chromophores in the volume 

sampled by a source and detector pair, or a topological map if multiple pairs were used [14]. Until 

the recent decade, with the development in modeling of light propagation in tissue and the current 

detection technology, it is possible to combine NIR spectroscopy with tomography to perform 

diffuse optical tomography (DOT) which can spatially resolve the distribution of chromophore 

concentrations and scattering properties within the volume imaged. 

 The basic idea is that light is applied to the surface of the tissue, by the use of optical 

fibers, and the measured intensity and path-length of the out-coming light from other surface 

mounted fibers are used, together with a model based reconstruction algorithm to produce images 

of the internal light attenuation μa and reduced scatter μs’ coefficient distribution.  NIR optical 

tomography is also referred to as diffuse optical tomography. 

 Biological tissue is highly scattering at NIR wavelengths, and it can be observed from 

Fig. 2.9 that in the range of 700-900nm, the absorption of water is much lower than that of 

oxygenated hemoglobin and deoxygenated hemoglobin. Both features ensure considerable 

penetration depths and the possibility of measuring tissue oxygen saturation level with Near-

infrared light.  With such theoretical basis and assuming homogeneity in biological tissue, Near-

infrared optical spectroscopy has been developed to monitor the hemoglobin concentration and 

oxygen saturation in human tissue with a single source-detector pair. Subsequently, it is 
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demonstrated that with multiple measurements, the heterogeneities of the hemoglobin 

concentration and oxygen saturation level can actually be resolved, which extends the 

spectroscopy system to a tomography system [15]. 

 

Figure 2.9 Absorption spectrum of human tissue in near-infrared band 

 

 The method is successfully implemented in imaging applications such as the diagnosis of  

breast and prostate cancer, the analysis of premature infant brain activities, and imaging of small 

animals as optical contrast generated by the functional variation of the biological tissue is 

sufficiently high for near-infrared light. However, since scattering dominates the photon 

propagation in biological tissue in the near-infrared band, the resolution of NIR tomography is 

relatively low. 

 NIR measurements of attenuation through tissue have demonstrated significant contrast 

gradients between blood and parenchymal tissue that is otherwise difficult to obtain [8, 16-20]. 

The alteration of vascularity or the hemoglobin content in the tumor renders high intrinsic optical 
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contrast between the tumor and benign tissues. This high NIR tumor-tissue contrast has been 

well-demonstrated in functional imaging of breast cancer [8, 16-20]. When multi-spectral 

detection is engaged, NIR imaging is also known for direct quantification of chromophore 

concentration that is important for characterization of the malignancy [8, 16-20]. For a prostate, 

studies have shown vascular density gradient in malignant versus benign tissue specimens [21], 

and different water concentrations in cancerous and benign tissues in vitro [22]. Invasive NIR 

measurements of a prostate have been reported for experimental prostate tumors [23] and human 

prostate [24-25]. Surface measurements of implanted prostate tumors have also been conducted 

[24, 26-27]. These studies have been based on using NIR to detect the prostate cancer. In fact, 

NIR diffuse optical measurement, performed interstitially, is becoming an important tool for 

monitoring photodynamic therapy in prostate [24-25]. Non-invasive NIR imaging of the prostate 

has also been analyzed and attempted via trans-urethral probing [28]. 

 For many solid tumors, including tumors in the prostate, hypoxia has been correlated 

with angiogenesis [29], tumor aggressiveness [30] local recurrence [31], and metastasis [32]. 

Hypoxia also appears to be a prognostic factor in prostate cancer [33, 34]. The relationship 

between prostate tumor oxygenation and response to radiation therapy has been well established 

[35], but hypoxia also affects and is affected by some chemotherapeutic agents [36]. Although 

hypoxia is an important aspect of tumor physiology and response to treatment, the lack of simple 

and efficient methods to image oxygenation hampers further understanding and limits their 

prognostic usefulness [37]. There is no ‘gold standard’ for hypoxia measurement [38]. Many 

noninvasive imaging technologies currently in clinical use rely on expensive equipment, and 

measurement of secreted markers provides an indirect measurement of hypoxia [37]. 

2.3 Reconstruction Enhancement With Spatial Prior 

The main disadvantage of near-infrared tomography lies in the low spatial resolution resulting 

from the highly scattering nature of tissue for these wavelengths. Studies have shown that 
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anatomical information from other modalities such as MRI or ultrasound, when used in the 

reconstruction procedure, can improve the stability of the reconstruction. A combined trans-rectal 

ultrasound and near-infrared (TR-NIR) imaging modality can potentially yield high resolution 

maps of optical properties from noninvasive simultaneous measurement. Therefore, to improve 

the spatial resolution of DOT, structural spatial prior obtained from other modalities can be used. 

   

Figure 2.10 MRI a priori information utilization in NIR tomography on prostate 

 Fig. 2.10 [39] shows the MRI spatial prior information used to get a 3-D profile which is 

used as a structural spatial prior for NIR tomography of a prostate. Pogue et al. [40] tested such 

an algorithm in a case study of the optical changes in a rat cranium in response to variations in 

inhaled oxygen. They created a mesh from the MRI of the rat cranium, which provides a good 

estimate of the actual shape of the tissue boundary. Further, they segmented their mesh and 

assigned relevant optical properties (from the literature) to each tissue region as an initial guess. 

Their image reconstruction process refined these values either spatially throughout the image, or 

in terms of the segmented homogeneous tissue region values. They used knowledge of the 
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structure to apply reasonable constraints to the NIR image reconstruction algorithm, such as not 

allowing the optical properties in the bone region to exceed physiologically relevant values. 

   

(a)       (b) 

 

(c) 

Figure 2.11 (a) Coronal slices MRI of a healthy female breast midway between the chest and 

the nipple. Adipose tissue (on periphery) and heterogeneous glandular tissue (interior) 

regions are clearly visible. (b) Finite element breast mesh with spatial heterogeneity in 

optical properties, modeled after heterogeneity patterns observed in the MRI (c) Mesh 

segmented into two regions; one corresponds to glandular tissue (interior region) and the 
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other corresponds to adipose tissue (exterior region). This region segmentation is used to 

assist and constrain reconstruction.  

Fig. 2.11 [41] shows MRI spatial prior information extraction and its integration into geometry 

generation and region division of finite element meshes.  

          

(a)      (b) 

   

(c)     (d) 

Figure 2.12 (a) US image of the embedded liver tissue (b) NIR image reconstructed without 

US prior,(c) Added boundary profile of background tissue, (d) NIR image reconstructed by 

adding the boundary profile of the background tissue 
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Literature in [42] shows that the accuracy of reconstruction for a highly heterogeneous domain 

can be improved dramatically by use of the TRUS spatial prior. Implementing frequency-domain 

detection to the NIR system will also allow more accurate reconstruction of the absorption 

coefficient owing to the reliable differentiation of it from the scattering by true phase information. 

Fig. 2.12 delivers the results discussed in the paper. 

 The application of spatial prior is not limited to FEM generation but also contribute to 

inverse problem regularization. There are two categories of methods, hard and soft prior 

integration to reconstruction algorithms are practiced and discussed in several literatures [43]. 

The hard prior method basically divides the imaging volume into several regions according to the 

contours observed from the prior providing image and assumes optical property homogeneity 

within each region. This method substantially reduced the unknown optical properties values 

compared to traditional reconstruction methods (number of regions versus number of nodes in 

FEM mesh) and generate high optical property recovery accuracy. Whereas the soft prior method 

still reconstructs the optical properties of each node of the FEM mesh. The update ratio of the 

suspected region is intentionally elevated, producing weighted sensitivity distribution and 

improving the reconstruction reliability [43]. However, the structural prior method will not be 

applicable for occasions where the malignant tissue cannot be visibly segmented. 

2.4 Prostate Image Segmentation 

The imaging modalities such as ultrasound and magnetic resonance imaging (MRI) provide 

higher imaging resolution but low functional contrast in biological tissue, which is opposite to 

optical diffuse imaging. Compensating optical imaging with spatial a priori information extracted 

from ultrasound or MRI imaging can potentially improve the specificity of DOT to malignant 

tissue. 
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 TRUS and MRI provide information about the size and shape of the prostate. With their 

increased utilization, the number of TRUS and MRI systems and the number of radiologists and 

urologists performing TRUS and MRI has greatly increased. Nevertheless, there is still a great 

deal of controversy about the role of the ultrasound in the diagnosis and staging of prostate 

cancer. Use of ultrasound imaging has become widely spread because of its ability to visualize 

main organs with no injurious effects. Extraction of useful features from the segmented structure 

is crucial for automated diagnosis and staging of prostate cancer. Feature extraction simply means 

to pull out useful measures from the segmented structure. These measures are possibly based on a 

mathematical statistical foundation of the segmented structure or it may have physical meaning 

like the volume of the prostate itself.  

 Accurate prostate segmentation in TRUS imagery is an important step in different clinical 

applications, and it is particularly necessary for providing a 3-dimensional spatial prior to the 

image reconstruction of trans-rectal optical tomography for prostate cancer detection. 2-

dimensional segmentation of the TRUS images is challenging, due to more complexities in 

contrast, morphological features and image artifacts, as well as significant inter-subject variations 

of the prostate shape and size. 
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Figure 2.13 Examples of different prostate images with artifacts that make automatic 

segmentation of the gland difficult. The rectangle in each image indicates the artifact 

described. Indistinct boundaries between the prostate and (a) seminal vesicles and (b) 

bladder neck near the base. (c) Echo from pubic arch near the apex. (d) Hyperechoic 

structure within the prostate due to corpora amylacea. (e) Occlusion of part of the prostate 

due to bowel gas. (f) Shadowing due to calcification in the anterior part of the prostate 

 

 Many algorithms have been proposed for prostate contouring. A statistical shape model is 

reported for automatic prostate segmentation [44].  
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Figure 2.14 Demonstration of method proposed in [44] with MRI.  

 

In this method, a Gabor filter bank is first used to characterize the prostate boundaries in 

ultrasound images in both multiple scales and multiple orientations. The Gabor features are 

further reconstructed to be invariant to the rotation of the ultrasound probe and incorporated in 

the prostate model as image attributes for guiding a deformable model that converges to prostate 

boundary in a coarse to fine approach. This method requires prior information about the size of 

the prostate in order to train the system. There are many prostate segmentation algorithms for 

ultrasound images. An algorithm proposed in a study [45] uses an anisotropic diffusion filter and 

patient specific anatomical information.  
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Figure 2.15 Detection of edges before and after weak membrane fitting in paper [45] with 

MRI. (a) Detected edges before a priori knowledge-based filtering. (b) Edge image after 

removal of false edges using knowledge-based filtering. (c) Edges overlaid on top of the 

prostate image. (d) Final boundary delineation on the prostate image.  

 

In this paper, guided edge delineation is described, which involves presenting automatically 

detected prostate edges as a visual guide to the observer, followed by manual editing. It helps an 

expert radiologist to manually segment the images.  

 Quadratic wavelet spline and an active contour model that evolves across edge maps at 

different resolutions of a wavelet transform to converge to the prostate contour are proposed in a 

recent study [46].  
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(a)        (b) 

Figure 2.16 (a) Original image and (b) segmented prostate profile from [46] 

 

This paper presents a semi-automatic prostate contour extraction scheme, which is based on the 

wavelet transform and active contour models, or snakes. The ultrasound image is first 

decomposed into edge maps at different resolutions via the wavelet transform. Seed points are 

found in the coarsest edge map by examining the maxima along the radial profiles which emanate 

from an anchor point selected manually. These seed points are used to initialize a snake, which 

will evolve across the edge maps at different resolutions and eventually converge to the contour 

of the prostate.  

 A Study in [47] Proposes approach of AAM propagation from probabilistic texture 

information estimated in a Bayesian framework with prior shape and posterior probability with 

the goal of segmenting the prostate in 2D TRUS images. 
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(a)     (b) 

Figure 2.17 (a) Automatic initialization of the mean model and (b) Final segmentation result 

from [47] 

 

In paper [48], authors have developed a radial bas-relief (RBR) method, which is adopted and 

extended from a darkroom technique used in conventional photography (i.e. bas-relief), to 

segment the prostate boundary from TRUS. The proposed method consists of 3 steps: (1) image 

inversion, (2) image panning (to provide a position offset register by moving every pixel radically 

from the center of the image by a certain distance), and (3) dual-image addition (superimposing 

positive and negative images). The smoothed, binary image is then inverted again to switch the 

boundary areas to the foreground  
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Figure 2.18 (a)original image, (b)inverted image, (c) RBR processed image (d) final 

segmented image 

 

 To efficiently detect the prostate boundary, in [49], they developed a method based on a 

deformable contour model, named the discrete dynamic contour (DDC). In this method, 

initialization requires the user to select only 4 points (Fig. 2.18 a) from which the outline of the 

prostate is estimated by cubic interpolation functions and shape information. To improve the 

model’s performance, gradient direction information is used during deformation to push the 

model toward the boundaries. However, the success of their approach is dependent on the careful 

initialization of the contour (Fig. 2.18 b), which requires the user to select points on the prostate 

boundary. To overcome this drawback, the authors added a tool to edit the detected boundary and 

then re-deform it (Fig. 2.18, c and d).  
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Figure 2.19 Prostate boundary detection by DDC. (a) Initial DDC, (b) after initial 

deformation, (c) 3 points (indicated by squares) were edited and clamped; d, after second 

deformation. 

 

 Other proposed approaches use Gabor filter texture segmentation [49] and morphological 

operators [50]. Most of the developed techniques use deformable model concepts in segmenting 

prostate images.  

 We use Snakes active control model [50] along with manual contouring for prostate 

segmentation from a TRUS image. A snake is an energy-minimizing spline guided by external 

constraint forces and influenced by image forces that pull it toward features such as lines and 

edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. 

Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes 
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provide a unified account of a number of visual problems, including detection of edges, lines, and 

subjective contours, motion tracking, and stereo matching. 

2.5 Optical Properties of Canine and Human Prostate 

Dogs have been previously used for prostate tumor model studies because of the morphological 

and functional similarities between canine and human prostate glands. Interpretation of the 

“noninvasively” acquired optical tomography images of the prostate relies on previous 

knowledge of prostate optical properties; therefore, a summary of what is known regarding the 

optical properties of both the canine and human prostate is also necessary. For the prostate, there 

is limited information regarding optical characteristic of prostatic tissue as well as oxygenation of 

intact prostatic tissue [51]. Using light to image prostate cancer will not be achievable unless 

benign and cancerous prostate tissues present different optical properties that can be resolved by 

means of optical interrogation. Revealing the contrast of prostate cancer over normal tissue is 

challenging. There are many studies on prostate optical properties using different wavelengths 

and methods [52]. The prostate of a dog is usually considered as a model closest to that of a 

human being. Therefore, numbers of studies have been conducted on canine subjects to estimate 

optical properties of the prostate. 
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CHAPTER 3 
 

3-D PROFILING OF CANINE PROSTATE FOR IMAGE RECONSTRUCTION 

The approach we follow starts with 2-D image segmentation of TRUS images using a Snake 

algorithm. Then we find out the approximate position of axial planes followed by placement of 

these segmented contours in a 3-D space. The next step is to interpolate data points to obtain 

nodes and elements which are used for mesh generation of a prostate. We incorporate the prostate 

blob inside a rectangular mesh. The prostate blob is denser than the surrounding rectangular mesh 

acting as tissue, and it also has different optical properties than the surrounding rectangular mesh. 

The entire mesh volume is used as a spatial prior for DOT. It should be noted that the NIR data 

acquisition was not gated by the anesthesia instrument, so the 4-seconds NIR data acquisition 

could have had interference from the breathing of the dog, as well as possible movements or 

shifts of the hand-held trans-rectal probe during each cycle of NIR data acquisition. 

3.1 Image Segmentation 

In this study research we develop a routine of segmenting TRUS images obtained from canine 

prostate, based on the combination of a Snakes algorithm and selected manual segmentation. 

3.1.1 Snake Algorithm [50] 

It is a feature extraction based on energy minimization. Snake works with image forces that push 

the snake towards salient features like lines, edges and contours.  
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We can represent energy function as 

      
   ∫       

 

 

 ( )    ∫        ( )
 

 

         ( )       ( )      

 ( )  ( ( )  ( )), represents parametric position of snake 

    , is spline due to bending,      , gives rise to the image forces, and     , gives rise to the 

external constraint forces. 

Internal Energy 

 Internal spline energy can be represented as 

     ( ( )    
    ( )     

 )   

The spline energy is composed of a first order term controlled by  ( ) and a second-order term 

controlled by  ( ). The first-order term makes the snake act like a membrane and the second-

order term makes it act like a thin plate. Adjusting the weights  ( ) and  ( ) controls the relative 

importance of the membrane and thin-plate terms. Setting  ( ) to zero at a point allows the snake 

to become second-order discontinuous and develop a corner. The controlled continuity spline is a 

generalization of a Tikonov stabilizer. 

- Image Energy 

 The total image energy can be expressed as a weighted combination of the three energy 

functionals as 

                                           

Line functional is the image intensity represented as 
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       (   ) 

Snake will be attracted either to dark lines of light lines depending on the sign of      . 

Depending on other constraints snake aligns itself with the lightest or the darkest contour. 

Edge functional can be calculated by simply taking the image gradient as 

           (   )   

Snake is attracted to contours with large image gradients. 

If part of a snake finds a low energy image feature, the spline term will pull neighboring parts of 

the snake toward a possible continuation of the feature. This effectively places a large energy well 

around a good local minimum. A similar effect can be achieved by spatially smoothing the edge 

or line-energy functional. One can allow the snake to come to equilibrium. 

To find terminations of lines and corners, the curvature of level lines in a slightly smoothed 

image is used as 

 (   )     (   )   (   ) 

        (
  

  
)  is the gradient angle.   (         )  is a unit vector along the gradient 

direction and   ̂  (          )  is unit vector perpendicular to gradient direction. Then 

curvature of level contours in  (   ) can be written as 
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Combining       and      gives a snake that is attracted to edges or terminations. 

External Energy 

                   

When  ( )     and  ( )     are constants, minimizing energy function 
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gives rise to two independent Euler equations 

             
     

  
   

             
     

  
   

When  ( ) and  ( ) are not constant, 
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Where, v(0) = v(n). 

Corresponding Euler equations are 
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Where, 

  ( )   
     

   
 

and 

  ( )   
     

   
 

The method is implicit with respect to the internal forces, so it can solve very rigid snakes with 

large step sizes. If the external forces become large, the explicit Euler steps of the external forces 

will require much smaller step sizes. 

The basic snake behavior algorithm: 

1) Decide region of interest from an image and initial points are defined around feature to be 

segmented. 

2) Move all these points through an iterative process where energy function for each point is 

minimized. 

3) Calculate energy function for each point in the local neighbourhood. 

4) Move the snake to point with lowest energy function. 

5) Repeat for every point. 

6) Iterate until termination conditions like number of iterations or stability criteria are met. 
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Figure 3.1 TRUS image segmentation using Snake 

 

Total Energy = α. Continuity + β. Curvature + γ. Image. If α is higher, more important is the 

distance between points is minimized. Higher the β, the more important that angles are 

maximized. The higher γ, the more important the edges are. If β is set to 0, snake finds the 

corners from an image. 

3.1.2 Manual Contour Tracking 

2-dimensional segmentation of the axial TRUS images are performed extensively, however, 2-

dimensional segmentation of the sagittal TRUS images are challenging, due to more complexities 

in contrast, morphological features and image artifacts, as well as significant inter-subject 

variations of the prostate shape and size. For such cases we draw a contour manually by hand to 

get accurate contour of 2-dimensional axial as well as sagittal images. 
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 An interactive program takes the input from an expert in the field and manually 

segmented contours are obtained for 3D profiling of a prostate. We segment 3 axial images of 

prostate, one on cranial side, one in middle and one on caudal side of prostate. Sagittal image in 

the middle section is segmented as a reference for 3-D contour profiling. 

     

(a)    (b)    (c) 

Figure 3.2 Manual contour tracking for (a) cranial side of prostate (b) mid part of prostate 

(c) caudal side of prostate 

 

3.2 Approximation of Position of 2-D Segmented Prostate Contours 

It is important to find the position of sparsely acquired 2-D axial images in order to profile more 

accurate 3-D model of a prostate. We have a set of axial images taken at different positions. We 

use a sagittal profile of a prostate to find out the approximate location of an axial plane 

segmented from 2-D TRUS axial images. 
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Figure 3.3 Position approximation of axial planes based on 2-d sagittal image as reference 

 

3.3 3-D Profiling of Canine Prostate 

Earlier step gives idea about where the axial planes are approximately positioned in 3D space of 

prostate profile. We align the segmented axial contours according to the axial positions and use 

interpolation to construct new data points using the points on axial segmented contour to obtain a 

complete 3D profile of a prostate. 

3.3.1 Interpolation 

Different types of interpolation techniques include linear, polynomial, Gaussian interpolation. As 

we want a smooth profile, we use spline interpolation along a curve using the points on axial 

contours. Depending on the density of points required we can construct new data points in 
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between. We use segmented sagittal contour to compare with the interpolated 3-D profile of a 

prostate. 

 

         

(a)       (b) 

Figure 3.4 (a) Sagittal image of prostate used as a reference for (b) interpolated prostate 

profile 

 

The 3-D profile of a prostate is quite close to the actual sagittal view of prostate. It looks a little 

tilted due to limited information from images obtained using TRUS imaging. 

3.3.2 Mesh Generation 

Next step is to create a 3-D mesh from obtained 3-D prostate profile. Meshes are categorized 

according to their dimensionality and choice of elements. Triangular meshes, tetrahedral meshes, 

quadrilateral meshes, and hexahedral meshes are named according to the shapes of their elements. 

Tetrahedral elements are the simplest of all polyhedral shapes, having four vertices and four 

triangular faces. 
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Figure 3.5 Basic block of a mesh-tetrahedron using Delaunay triangulation   

 

 Meshes are also classified as structured and unstructured meshes. Structured meshes are 

suitable primarily for domains that have tractable geometries and do not require a strongly graded 

mesh. Unstructured meshes are much more versatile because of their ability to combine good 

element shapes with odd domain shapes and element sizes that grade from very small to very 

large. For most applications, the elements constituting a mesh must intersect nicely meaning that 

if two elements intersect, their intersection is a vertex or edge or entire face of both [28]. 

3.3.2.1 Delaunay triangulation 

Delaunay triangulations are widely used in scientific computing in many diverse applications. 

While there are numerous algorithms for computing triangulations, it is the favorable geometric 

properties of the Delaunay triangulation that make it so useful. 

 The fundamental property is the Delaunay criterion. In the case of 2-D triangulations, this 

is often called the empty circumcircle criterion. For a set of points in 2-D, a Delaunay 

triangulation of these points ensures the circumcircle associated with each triangle contains no 
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other point in its interior. This property is important. In the illustration below, the circumcircle 

associated with T1 is empty. It does not contain a point in its interior. The circumcircle associated 

with T2 is empty. It does not contain a point in its interior. This triangulation is a Delaunay 

triangulation. 

 

Figure 3.6 Illustration-1 for Delaunay triangulation 

 

The triangles below are different. The circumcircle associated with T1 is not empty. It 

contains V3 in its interior. The circumcircle associated with T2 is not empty. It contains V1 in its 

interior. This triangulation is not a Delaunay triangulation. 

 

Figure 3.7 Illustration-2 for Delaunay triangulation 
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 Delaunay triangles are said to be "well shaped" because in fulfilling the empty 

circumcircle property, triangles with large internal angles are selected over ones with small 

internal angles. The triangles in the non-Delaunay triangulation have sharp angles at 

vertices V2 and V4. If the edge {V2, V4} were replaced by an edge joining V1 and V3, the 

minimum angle would be maximized and the triangulation would become a Delaunay 

triangulation. Also, the Delaunay triangulation connects points in a nearest-neighbor manner. 

These two characteristics, well-shaped triangles and the nearest-neighbor relation have important 

implications in practice and motivate the use of Delaunay triangulations in scattered data 

interpolation. 

 While the Delaunay property is well defined, the topology of the triangulation is not 

unique in the presence of degenerate point sets. In two dimensions, degeneracies arise when four 

or more unique points lie on the same circle. The vertices of a square, for example, have a non-

unique Delaunay triangulation. 

 

Figure 3.8 Non-unique Delaunay triangulation 

 

 The properties of Delaunay triangulations extend to higher dimensions. The triangulation 

of a 3-D set of points is composed of tetrahedra. The next illustration shows a simple 3-D 
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Delaunay triangulation made up of two tetrahedra. The circumsphere of one tetrahedron is shown 

to highlight the empty circumsphere criterion. 

 

Figure 3.9 Delaunay triangulation for 3-D 

 

3.3.2.2 Prostate Blob with Outer Rectangular Mesh 

Rectangular mesh which is used as equivalent to tissue around prostate based on bi-planar TRUS 

transducer shown in fig. 3.10 (a). A working geometry of the NIR array for coupling to TRUS has 

7 channels on each lateral side of the TRUS to span 60mm longitudinally as the TRUS transducer 

window does and the optical channels have 10mm spacing. The NIR array leaves the 10 mm-

wide sagittal TRUS transducer unblocked; therefore there is 20mm separation of the NIR optodes 

from one lateral side to the other. These considerations lead to the NIR array geometry generated 

by a group member previously is shown in fig. 3.10 (c) where 14 optodes are spaced 10mm 

longitudinally and 20mm laterally. fig. 3.10 (d) illustrates an NIR/US probe if the sagittal NIR 

array can be fabricated synergistically with the TRUS probe. 
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Figure 3.10 Geometry of the TRUS-DOT combined probe (a) Photograph of a bi-plane 

TRUS transducer. (b) A feasible geometry of NIR array for coupling with sagittal TRUS 

transducer. (c) The NIR imaging geometry for the one depicted in (b). (d) Cartoon-art 

illustration of a fully-integrated sagittal trans-rectal NIR/US probe. 

 

 We use Delaunay triangulation to form a 3-D tetrahedral mesh of prostate profile which 

can be used as spatial prior for optical tomography reconstruction. Surface nodes and internal 

nodes of the 3-D profile are used as tetrahedral vertices to give input to Delaunay triangulation. 

Tetrahedral mesh formation using Delaunay triangulation is shown in fig. 3.11. 
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Figure 3.11 3-D profile of prostate using Delaunay triangulation 

 

 The parallel-linear geometry of the optical source-array and detector-array entails 3-

dimensional optical tomography reconstruction; however, due to the 2-dimensional 

ultrasonography only the middle sagittal image of optical tomography has an ultrasound image to 

correlate with. The optical tomography reconstruction was performed in a volume of 80 mm X 70 

mm X 50 mm (cranial-to-caudal X right-lateral-to-left-lateral X dorsal-to-ventral), and a 60 mm 

X 40 mm view of middle sagittal image of optical tomography was extracted to correlate with the 

middle sagittal ultrasound image of the same dimension, as detailed in Fig. 3.12(a). Hence, we 

want to form a rectangular mesh enclosing the prostate blob mesh.  
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Figure 3.12 (a) NIR reconstruction geometry, (b) Mesh illustrating outer tissue, prostate 

and tumor, (c) Prostate blob inside rectangular mesh (d) NIR image reconstruction showing 

prostate profile inside tissue. 

 

Fig. 3.12 (b) gives an illustration of how prostate blob and a rectangular mesh can be arranged 

before giving an input to NIRFAST. Fig. 3.12 (c) shows prostate blob embedded inside a 

rectangular mesh. This mesh is now used as spatial prior for optical tomography reconstruction 

using NIRFAST. Fig. 3.12 (d) shows the optical tomography reconstruction using TRUS image 

and prostate profile mesh.  
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CHAPTER 4 

 

NIR Optical Tomography using NIRFAST 

 

Diffuse optical tomography (DOT), also known as near infrared tomography, has been under 

investigation, for non-invasive functional imaging of tissue, specifically for the detection and 

characterization of breast cancer or other soft tissue lesions. Much work has been carried out for 

accurate modeling and image reconstruction from clinical data. NIRFAST (Near-infrared 

Frequency domain absorption and Scatter Tomography) is a modeling and image reconstruction 

package, which is capable of single wavelength and multi-wavelength optical or functional 

imaging from measured data. NIRFAST is for general frequency-domain DOT, i.e., the light 

intensity is modulated.  

Theory [53] 

 Near Infrared Frequency Domain Absorption and Scatter Tomography is an FEM based 

package designed for modeling Near-Infrared light transport in tissue. This includes standard 

single wavelength absorption and reduced scatter, multi-wavelength spectrally constrained 

models, fluorescence models 

4.1 The Forward Model 

The technique of determining what a given sensor would measure in a given formation and 

environment by applying a set of theoretical equations for the sensor response is called the 

forward modeling. If the magnitude of the isotropic fluence within tissue is significantly larger 

http://www.dartmouth.edu/~nir/nirfast/
http://www.glossary.oilfield.slb.com/en/Terms.aspx?LookIn=term%20name&filter=forward%20modeling
http://www.glossary.oilfield.slb.com/en/Terms/f/formation.aspx
http://www.glossary.oilfield.slb.com/en/Terms/t/theoretical.aspx
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than the directional flux magnitude, the light field is ‘diffuse’, which occurs when the scattering 

interactions dominate over absorption and the region of interest is far from sources and 

boundaries provided the light fluence is not rapidly changing with time (i.e. such as in the sub-

picosecond time frame).  

The diffusion approximation in the frequency domain is given by 

    ( )  (   )  (   
  

  ( )
) (   )    (   ) 

where    and     are absorption and reduced scattering coefficients, respectively,   (   ) is an 

isotropic source term,  (   ) is the photon fluence rate at position r, and modulation 

frequency, ,      (      ) is the diffusion coefficient and   ( ) is the speed of light in the 

medium at any point, defined by     ( ), where  ( ) is the index of refraction at the same point 

and    is the speed of light in vacuum. 

 We use finite-element method to solve equation for   (   )  under the Robin-type 

boundary condition [54] 

 (    )       ̂   (    )    

at the boundary ,    where   ̂ is the outward normal vector of the boundary, A is the refractive 

index mismatch coefficient. The refractive indices of air and tissue are 1 and 1.33 respectively, 

for the tissue-air boundary, leading to A=2.82 as in [54].  

 The flux leaving the external boundary is equal to the fluence rate at the boundary 

weighted by a factor that accounts for the internal reflection of light back into the tissue. This 

relationship is described in the following equation 

 (   )     ̂  ( )  (   )    
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where   is a point on the external boundary,  ̂ is the outward pointing normal, and   depends 

upon the relative refractive index (RI) mismatch between the tissue domain Ω and air. Here, A 

can be derived from Fresnel’s law 

  

 
(    )

          
 

         
 

 

where          (
    

  
) , the angle at which total internal reflection occurs for photons moving 

from region Ω with RI    to air with RI     , and    (
  

    
  )  (

  

    
  ) , At the external 

boundaries, RI is generally assumed to be equal to that of free space, so that     =1.  

 When the RI is homogeneous, the finite element discretization of a volume, Ω, can be 

obtained by subdividing the domain into D elements joined at V vertex nodes. The diffusion 

equation in the FEM framework can be expressed as a system of linear algebraic equations 

( ( )   (   
  

  
)  

 

(  )
 )     

 (   
  

  
) and   have entries given by 

    ∫ ( )   ( )    ( ) 
   

    ∫(  ( )  
  

  ( )
)  ( )  ( ) 

   

    ∮  ( )  ( ) 
     

And source vector    has terms 
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    ∫  ( )  ( ) 
   

The source term is defined as a distributed, Gaussian source, matching the intensity profile at the 

tip of the optical fiber. 

4.2 The inverse Model 

The inverse problem consists in using the results of actual observations to infer the values of the 

parameters characterizing the system under investigation. The goal of the inverse problem is the 

recovery of optical properties   (    )  at each FEM node within the domain using 

measurements of light fluence from the tissue surface. This inversion can be achieved using a 

modified-Tikhonov minimization. If the measured fluence at the tissue surface is represented by 

   and the calculated data using the forward solver by   , then the standard Tikhonov 

minimization function is given by 

    { ∑(  
    

 )
 
  

  

   

∑(     )
 

  

   

}

 

   

 

where NM is the total number of measurements obtained from the imaging device, NN is the 

number of FEM nodes (the unknowns).   is the Tikhonov regularization parameter, which is 

defined as the ratio of the variances of the measurement data and optical properties.    is either 

the initial estimate of the optical properties, generally obtained by data-calibration procedure, or it 

can be an a priori optical property distribution, which may be available. The minimization with 

respect to μ in Equation  

(
   

  
)

 

(     )   (    )    
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The derivative matrix (
   

  
) is known as the Jacobian matrix, J, and is also referred to as the 

weight or sensitivity matrix. Using this linear approximation of the problem, and solving it as an 

iterative scheme gives  

(      )         (     ) 

where    is the update for the optical properties and    is the data-model misfit at the current 

iteration. I is the identity matrix. A slight modification of above equation is known as the 

Levenberg–Marquardt (LM) procedure, where    (     ) is assumed in which case 

(     ̅ )
  

         

Where   ̅    . Also note that in LM procedure, the  ̅  is monotonically decreased over the 

iterations [55]. The Jacobian defines the relationship between changes in boundary data   , 

resulting from small changes in optical properties    (     ). Since both amplitude and 

phase data types are available from a frequency domain system, and since the problem considers 

the effects of absorption and diffusion, the structure of the Jacobian becomes 
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where 
     

   
 and 

     

    
 are the sub-matrices that define the change in log of amplitude of the i th 

measurement arising from a small change in   and     at the j th reconstructed node respectively; 

   

   
 and 

   

    
 are the sub-matrices that give the change in phase of the i th measurement arising 

from a change in   and    at the j th node, respectively. Jacobian in the update equation is 

normalized by a diagonal matrix (G) consisting of the initial estimate of the optical properties 

(  ), such that  

 ̃     

      (    ) ; Moreover, is implemented in a modified LM algorithm [55], where it is 

initialized as the variances ratio and is systematically reduced at each iteration (factor of        

and scaled by maximum of diagonal of     ). The iterative procedure is repeated until 

experimental data matches with modeled data to a tolerance level, which is typically set as 2%. 

 Once the optical properties are obtained at each wavelength, the chromophore 

concentrations are calculated using constrained LS fit to the Beer’s law relation  

        

Where   is the molar absorption spectra of the tissue’s absorbing chromophores and c is the 

concentration of these chromophores.  

 The imaging volume for trans-rectal optical tomography can be divided into 2 domains or 

regions-of-interest (ROIs): the peri-prostate tissue, the prostate. We use soft priori method where 

the TRUS structural information is utilized to recover absorption coefficients of all the nodes and 

Jacobian is calculated for every node. The inverse method was tested for two types of 

reconstruction basis. In first type, the reconstruction basis was separately defined as a mesh other 
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than the mesh used for FEM field solution whereas in other approach a Cartesian pixel basis [25, 

25, 25] was used. 

 The system utilized steady-state optical tomography reconstruction for absorption 

tomography. The absorption coefficients at the three specific bands (   
     

     
  ) were 

recovered first, then used to calculate the concentrations of HbO and Hb, by 

[
   
  

]
   

 
 

  (  )
  {

 

       
}
   

         [

  
  

  
  

  
  

] 

Where       was the matrix of molar extinction coefficients represented by 

       [

    (  )        (  )

    (  )        (  )

    (  )        (  )
] 

Oxy-hemoglobin (HbO), deoxy-hemoglobin (Hb) and water are assumed to be the main absorbers 

Total hemoglobin is calculated as HbT= HbO+Hb (in milliMole), and oxygen saturation as 

StO2=HbO/HbT×100 (in %) 

 We have used multi-wave length data, which rendered extracting hemoglobin 

concentration and oxygen saturation information. Conventionally a dual-wavelength combination 

with one wavelength 10 s of nanometer below and the other wavelength 10 s of nanometer above 

the isobestic point (805 nm) of hemoglobin could be implemented for extracting the hemoglobin 

oxygenation information. However, even though two wavelengths in the opposite neighborhoods 

of the isobestic point were quite accurate in recovering the [HbT], they were less reliable in 

quantifying StO2, which could be attributed partially to the error introduced by neglecting water 

or lipid [56]. Therefore one additional shorter wavelength 705 nm LD along with the 785 nm LD 

that is much distant from the isobestic point was implemented to form essentially a three-
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wavelength configuration to recover two unknowns of HbO and Hb, as the difference between the 

absorptions of deoxygenated hemoglobin (Hb) and oxygenated hemoglobin (HbO) became 

greater toward short-wavelength than in the longer wavelength in the near-infrared band [57], but 

the limited spectral coverage of the spectrograph-CCD set forced to use an 808 nm LD. 

4.3 Continuous Wave Steady-State Measurement 

 With the development of the analytic or numerical model of the DOT theory, there are 

several different measurement techniques which have been applied in DOT. The first is time-

domain measurement provides information on the increased path length of light in tissue due to 

multiple scattering events, thus improving the ability to separately recover absorption and 

scattering properties [58-59]. The second is frequency-domain measurement, when the phase shift 

of a sinusoidal wave passing through a tissue volume is recorded; provide a less expensive and 

perhaps stable manner of acquiring time-based information [60-61]. The third one called 

Continuous Wave steady-state measurement uses the DC light source and directly measure the 

attenuation of the light power [62-64]. It was applied in the DC-based imaging reconstruction 

algorithm. Although time-domain and frequency-domain based methods may provide more 

optical information than CW approaches, a number of researchers have been interested in CW 

image reconstruction for several years, in part because of the relative simplicity, high signal-to-

noise ratio, and low cost of CW techniques [65]. Recent studies have demonstrated that 

absorption and reduced scattering coefficients can be reconstructed quantitatively from steady-

state measurements, to minimize a weighted sum of the squared difference between computed 

and measured data [66-68].  
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CHAPTER 5 

 

Results and Discussion 

5.1 Image Segmentation 

Entire routine is developed using MATLAB. The segmentation results using Snake’s algorithm 

are shown in figure 5.1. 

   

(a)    (b)    (c) 

Figure 5.1 Snake algorithm (a) TRUS image to be segmented (b) Initialization of Snake (c) 

image segmentation using Snake 

 

Snake is well suited for images with high contrast and for prostate whose shape and size is 

known. The Accuracy of Snake depends on complexities in contrast, morphological features and 

image artifacts. For axial images, Snake may work satisfactorily, but for sagittal images, it is 

difficult for Snake to segment the prostate accurately. Hence, to obtain more accurate 

segmentation, selected images are segmented manually. 
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(a)       (b) 

Figure 5.2 (a) sagittal image (b) Manual Image segmentation for sagittal image 

 

5.2 3D Mesh Profile of a Prostate 

A 3D profile of a prostate obtained from a set of 2D TRUS images by manual segmentation is 

shown in figure 5.3. Mesh density can be selected as per mesh requirements. It is used to guide 

NIR optical tomography reconstruction. If the mesh is very dense, it takes longer time for 

reconstruction. However, if the density of the mesh is very less, it affects the reconstruction 

result. From the simulation results, mesh density shown in 5.3 (b) was selected as a tradeoff 

between time and accuracy of reconstruction. The Delaunay triangulation in MATLAB gives 

nodes and elements in the profile. Nodes are the points of the mesh and the elements connect 4 

nodes of the tetrahedron. 
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(a)    (b)    (c) 

   

(d)      (e) 

Figure 5.3 (a),(b),(c) meshes with different mesh density, red dots indicate the nodes of a 

mesh (d) sagittal profile of a prostate, (e) Prostate mesh after Delaunay Triangulation. 

 

 The prostate mesh profile after Delaunay triangulation is shown in figure 5.3 (e). We use 

this prostate mesh as a spatial prior for NIR reconstruction by generating a mesh having a 

homogenous background region and a prostate region. The NIR image reconstruction uses a 3-

dimensional mesh representing 80 x 40 x 70 mm
3
 using different optical properties for prostate 

mesh and homogeneous background mesh as shown in figure 5.4. µa value for nodes of 

homogeneous mesh is 0.008 mm
-1

 whereas, that for nodes of prostate profile mesh is 0.02 mm
-1

 
 

 We perform a soft priori method in which for every node, a Jacobian is calculated and the 

TRUS structural information is utilized to recover absorption coefficients of all nodes. So, the 
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hierarchical iteration routine involves ‘N’ steps where N= no. of nodes. In our case, entire mesh 

consists of ~9500 nodes. Therefore, their reconstruction took ~5 hours on an Intel Core 2 quad 

CPU Q8200 at 2.33 GHz processor; 8GB RAM to reconstruct all the absorption and scattering 

coefficients for one mesh.
 

 

(a)      (b) 

Figure 5.4 absorption coefficient reconstruction for (a) A rectangular mesh without spatial 

prior (b) homogeneous rectangular mesh using obtained spatial prior 

 Reconstruction results only for NIRFAST simulation when experimental data is not used 

are shown in figure 5.5.  1% noise is added to the boundary data. Rectangular mesh without 

spatial prior cannot differentiate between prostate and the surrounding tissue.  
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Figure 5.5 absorption coefficient reconstruction for (a) rectangular mesh without spatial 

prior (b) homogeneous rectangular mesh using obtained spatial prior 

 

 Prostate cancer usually appears as an area of abnormal low signal intensity surrounded by 

the normal homogeneous high signal intensity background of the peripheral zone. Low signal 

intensity lesions in the peripheral zone display a sensitive but not specific finding for cancer. 

The prostate boundary is well-delineated in TRUS, and the spatial extent of a tumor can be 

defined if it is shown as hypo-echoic on TRUS. This is when the NIR functional contrast can help 

determine whether a tissue suspicious on US is malignant or not. 

 The feasibility of obtaining trans-rectal optical tomography of prostate when coupling 

with TRUS is investigated by simulation. Figure 5.6 and 5.7 show images of grey-scale US, 

optical tomography of [HbT] and StO2 acquired at base-line, days 49, 56 and 63 post-injection, at 

left-mid-sagittal plane across planned TVT injection site as well as a later developed hypo-echoic 

mass.  Post necropsy pictures are shown to compare the results.  
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Figure 5.6 Image dimension: 60 mm x 40 mm (cranial-caudal x dorsal-ventral). Images 

were acquired at base-line, day-49, day-56 and day-63 after the injection, for grey-scale US, 

[HbT] and StO2 (for reconstruction with and without using a spatial prior), at right-mid-

sagittal plane across the planed TVT injection site as well as a later developed tumor mass 

(marked by the dashed line across the axial US image in the lower panel for the right-lobe). 

The prostate after necropsy was performed is in the right corner. The dashed line at the 

dorsal edge of the US images indicates the actual location of the NIR sensors at 

approximately 3 mm ventral to the surface of the US transducer. C indicates cyst; T 

indicates tumor. 
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5.3 Baseline 

Before TVT injection in a prostate, at baseline, in the left prostatic lobe, a large cystic lesion was 

observed. It showed highly elevated [HbT] and hypoxic for reconstruction with and without 

spatial prior. Right lobe of the prostate showed homogeneously weak [HbT] and StO2 contrast 

except for some part which shows strong [HbT] and hyper-oxic region. The hyperoxic region is 

believed to be because of the intra-vascular tissue. It can be seen in fig. 5.6 and fig. 5.7 

5.4 Right Lobe 

After TVT injection in near-cranial-edge of the right lobe, the development of hypo-echoic mass 

in the middle-aspect of right lobe became evident on US by day 28. By day-49, the mass in the 

middle aspect of the right lobe which is marked as T1 and T2 turned to be an echoic and bi-lobular 

structure with shadowing at its caudal aspect. The larger dorsal-cranial-mass T1 had unremarkable 

[HbT] contrast for both with and without spatial prior reconstructions. However, StO2 marked a 

very strong response for mass T1 in reconstruction with the spatial prior which was not very well 

developed in the reconstruction without using spatial prior. The smaller ventral-caudal-mass T2 

had strongly-marked StO2 contrast for both the cases and weakly increased [HbT]. The necropsy 

performed at the end of 63 days showed the presence of tumors T1, T2, T3 which matches our 

results of hypoxic region. 

 By day-56, T1 started regressing and reduced slightly in size on US with echoic 

reverberation artifact, the hyperoxic focus of it becoming larger, more intense and the [HbT] 

contrast of it remaining undetectable for reconstruction without spatial prior. For reconstruction 

using spatial prior, T1 showed hypoxic region comparatively less strong than that for day-49 

which is in correspondence with regressed tumor. T2 was unremarkable on US except for the 

shadowing hypo-echoic region at the caudal aspect of the previously-indicated mass, the focus of 

it appearing as slightly hypoxic and having significantly increased [HbT] for reconstruction with 
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spatial prior. Reconstruction without spatial prior showed highly hypoxic response with slightly 

increased [HbT]. 

 By day-63, T1 remained unchanged in size on US with reduced echoic reverberation 

artifact, and the caudal aspect of the T2-indicating region became heterogeneously hypo-echoic 

without shadowing. The extended region corresponding to T1 & T2 was mostly anoxic-like, and 

only weak hyper-[ HbT] contrast was observed in the indicated T2 mass.  

 

Figure 5.7 Image dimension: 60 mm x 40 mm (cranial-caudal x dorsal-ventral). Images 

were acquired at base-line, day-49, day-56 and day-63 after the injection, for grey-scale US, 

[HbT] and StO2 (for reconstruction with and without using a spatial prior), at left-mid-

sagittal plane across the cyst (marked by the dotted line across the axial US image in the 

upper panel for the left-lobe) The prostate after necropsy was performed is in the right 

corner. The dashed line at the dorsal edge of the US images indicates the actual location of 
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the NIR sensors at approximately 3 mm ventral to the surface of the US transducer. C 

indicates cyst; T indicates tumor. 

5.5 Left Lobe 

By day-49 the cystic lesion remained similar in NIR appearances to that in base-line. On Doppler 

US the blood flow was observed in areas ventral to the cystic lesion. On Doppler US the blood 

flow was observed in areas ventral to the cystic lesion. The cystic lesion showed strongly elevated 

[HbT] throughout the 63 days of this study for reconstruction using spatial prior in 

correspondence with the Doppler. However, no consistent feature in the proximity of the cystic 

lesion indicating lesion-wise blood flow was observed. By day-49, a response at the cystic lesion 

was highly hypoxic and the shape of the cystic lesion is somewhat visible and both were 

comparative in size to the ultrasonographically delineated lesion. However, for reconstruction 

without the spatial prior, cystic lesion showed elevated [HbT] similar to that with a spatial prior 

but, it was shown hyper-oxic in corresponding StO2 map. 

By day-56, it presented strong heterogeneously elevated [HbT] of which the gross profile 

resembled the hypoxic profile of the cystic lesion in base-line and day-49. Near that location the 

corresponding NIR image revealed a cluster of hyper-[ HbT] region, but the center of which 

seemed displaced slightly cranially with respect to that of US hypo-echoic mass. The region of 

strong heterogeneously elevated [HbT] was associated with weak heterogeneous hyper-oxia for 

reconstruction with spatial prior. For reconstruction without spatial prior, cystic lesion was shown 

highly hypoxic and slightly elevated [HbT]. 

 By day-63, the cystic lesion appeared as having weak lesion-wise hyper-[ HbT] and 

heterogeneous hyper-oxic interior for reconstruction without using spatial prior whereas, for 

reconstruction using spatial prior, cystic lesion sows hypoxic interior. The leaked TVT cells from 

right lobe started to grow in the left lobe in early weeks. In week 4, the tumor mass became big 

volume at caudal to prostate. By day-63, a hypo-echoic mass with shadowing and Doppler flow-
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signal in its caudal aspect was noticed at the cranial-dorsal edge of the left lobe and was 

seemingly confined within the prostatic capsule which is marked by T4. At the indicated position 

of T4 mass, a hypoxic region of approximately 10 mm in longer axis was seen on StO2 image with 

weak hyper-[ HbT] contrast for reconstruction without spatial prior. The same T4 mass was shown 

highly hypoxic and weak [HbT] for reconstruction with spatial prior. Retrospectively on day-56, 

the T4 mass was shown smaller on US with shadowing, and at its dorsal aspect weak [HbT] and 

StO2 contrast were noticed. From all these observations, it can be said that the NIR images 

reconstructed and displayed at the mid-sagittal plane correlate with TRUS images. The hyper-

contrast region of [HbT] is correlated with the hypo-echoic region in TRUS images indicating the 

tumor mass. The necropsy result post 63 days indicates the presence of tumor T4 was recognized 

by NIR which did not show up in TRUS images. 

 

Table 5.1 

Summary of imaging features observed from T1. 

(Prospectively evaluated) 

 

 
 Base-line Day 49 Day 56 Day 63 

US-Grey scale 
 N/A 

Anechoic 

 

Anechoic, size 

reduced 

Anechoic, size 

unchanged 

NIR-[ HbT] 

w/ prior 

w/o prior 

N/A 

N/A 

Unremarkable 

Unremarkable 

Unremarkable 

Hyper, weak 

Unremarkable 

Hyper, weak 

NIR- StO2 

w/ prior 

w/o prior 

N/A 

N/A 

Strong,hypoxic 

Unremarkable 

Hypoxic, smaller 

Hyper-oxic 

Slightly hypoxic 

Slightly hypoxic 
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Table 5.2 

Summary of imaging features observed from T2. 

(Prospectively evaluated) 

 

 
 Base-line Day 49 Day 56 Day 63 

US-Grey scale 
 N/A Anechoic Iso-echoic 

Heterogeneously 

hypo-echoic 

NIR-[ HbT] 

w/ prior 

w/o prior 

N/A 

N/A 

Hyper, weak 

Hyper, weak 

Hyper, strong 

Hyper, weak 

Unremarkable 

Hyper, weak 

NIR- StO2 

w/ prior 

w/o prior 

N/A 

N/A 

Hypo, strong 

Hypo, strong 

Hypo, weak 

Hypo, weak 

Slightly hypoxic 

Slightly hyper-oxic 

 

 

Table 5.3 

Summary of imaging features observed from C. 

(Prospectively evaluated) 

 

 
 Base-line Day 49 Day 56 Day 63 

US-Grey scale 
 Anechoic Anechoic Anechoic Anechoic 

NIR-[ HbT] 

w/ prior 

w/o prior 

Hyper, strong 

Hyper, strong 

Hyper, strong 

Hyper, strong 

Hyper, strong 

Hypo, weak 

Hyper, strong 

Hyper, weak 

NIR- StO2 

w/ prior 

w/o prior 

Hypo, weak 

Hypo, strong 

Hypo, strong 

Hyper, strong 

Hypo, weak 

Hypo, weak 

indistinct 

indistinct 
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Table 5.4 

Summary of imaging features observed from T3. 

(Prospectively evaluated) 

 

 
 Base-line Day 49 Day 56 Day 63 

US-Grey scale 
 N/A Hypo-echoic Hypo-echoic Hypo-echoic 

NIR-[ HbT] 

w/ prior 

w/o prior 

N/A 

N/A 

Indistinct 

Indistinct 

Indistinct 

Hypo, weak 

Indistinct 

Indistinct 

NIR- StO2 

w/ prior 

w/o prior 

N/A  

N/A 

Hypo, strong 

Hyper, weak 

Hypo-weak 

Hyper, weak 

Hypo-weak 

Hypo-weak 

 

 

Table 5.5 

Summary of imaging features observed from T4. 

(Prospectively evaluated) 

 

 
 Base-line Day 49 Day 56 Day 63 

US-Grey scale 
 N/A N/A Hypo-echoic Hypo-echoic 

NIR-[ HbT] 

w/ prior 

w/o prior 

N/A 

N/A 

N/A 

N/A 

Indistinct 

Indistinct 

Indistinct 

Indistinct 

NIR- StO2 

w/ prior 

w/o prior 

N/A  

N/A 

N/A 

N/A 

Hyper-weak 

Hyper, strong 

Hyper-strong 

Hyper-weak 
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CHAPTER 6 

 

 

CONCLUSION AND FUTURE WORK 

 

 

6.1 Contribution of this work 

In summary, sparsely acquired 2D axial TRUS images were successfully segmented to obtain the 

contour profile of the prostate. Approximate lateral positions of these contours were obtained and 

this information was used to obtain a 3D profile of a canine prostate under study. A 3D mesh of a 

canine prostate was generated which was used as a spatial prior in diffuse optical tomography for 

image reconstruction using soft priori approach in form of regularization. Optical tomography 

reconstruction was carried out with and without using a structural spatial prior using simulation. 

Trans-rectal optical tomography was implemented at three wavelength bands to monitor changes 

of the hemoglobin oxygen saturation (StO2) in addition to those of the total hemoglobin 

concentration ([HbT]) in lesions of a canine prostate, including an induced tumor modeling 

canine prostate cancer. It was used to validate the three-wavelength NIR imaging of mapping the 

tissue oxygenation with TVT nodules developed in canine prostate. This work, to our best 

knowledge, is the first demonstration of TRUS guided NIR image reconstruction for prostate 

imaging, in vivo. 

 On US, all the TVT tumor nodules developed during the study were shown to be strongly 

hypo-echoic that correlated with hypoxic findings on NIR reconstruction images. The cystic 

lesion had freshly developed blood on its ventral side which was demonstrated correctly by 

elevated [HbT] and hypoxic in images. TRUS coupled optical tomography using structural spatial
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prior was shown to enhance the detection of the progression and lateral involvement of the 

prostatic tumor compared to TRUS coupled optical tomography without using a structural prior. 

The lesion profiles of T1, T2, T3 and T4 indicated on StO2 images were comparable to those 

identified ultrasonographically. For the cyst, the hypoxic region seemed to noticeably outsize the 

ultrasonographically delineated lesion in some images. This could be due to insufficient image 

resolution of NIR compared to US or it could also indicate that NIR detection of StO2 

characteristics was able to image a peri-cystic tissue non-detectable by ultrasonography. 

 There are some limitations of this method. We do not see the exact reconstruction at 

hypo-echoic regions, because, we do not have exact prior for those particular locations of tumor 

lesions. Some of the tumors may be shown iso-echoic on TRUS, so, the utility or accuracy of this 

approach is hindered when TRUS images do not specify a suspicious region, or when it is 

difficult to define the spatial extent of a suspicion region in TRUS.  

 3D mesh profile generation takes ~1 minute of time after segmented contours are 

obtained. Reconstruction algorithm takes ~10 hours to simulate on an Intel Core 2 quad CPU 

Q8200 at 2.33 GHz processor, 8GB RAM, for 10 iterations as we are using soft priori approach 

where Jacobian is calculated for each node and we have ~9500 nodes. 

6.2 Future Work 

The results we have here are qualitative. An expert is needed to interpret the results. It is 

important to prove the presence of malignancy quantitatively. Therefore, next step could be to 

find solution for quantitative results. We can extract information from TRUS images about the 

structural spatial priors of hypo-echoic regions so as to get an exact reconstruction at these hypo-

echoic regions.  If the reconstruction is optimized to reduce the computing time, it is possible to 

make it a real-time system. The next step could be furthering this research study to additional 

animal studies and eventually to human prostate cancer study. This approach of using TRUS 

images can be used to extract structural spatial prior from a human prostate. Prostate trans-rectal 
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optical imaging is a relatively new area where the initial approach should focus on characterizing 

the lesions most suspicious to TRUS. Trans-rectal NIR imaging of the lesions suspicious to 

TRUS or non-suspicious to TRUS is apparently more challenging and should be preceded by 

trans-rectal NIR/US characterization of a lesion suspicious to US.  
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APPENDICES 
 

MATLAB soft codes 

Manual segmentation for prostate segmentation-    contourTracking.m 

Obtain points inside the prostate blob-     meshInside.m 

Get 3D mesh profile-       tetra_mesh_try.m 

Find approximate plane position-     widthDist.m 

Reconstruction algorithm-      recon_week7.m 

Show tomographic results-                 showresults_no_priori.m 

Quantify oxygen content-      try_quant.m 
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contourTracking.m 

% code for Manual contour tracking for prostate segmentation 

  

clc; clear all; close all; 

 

kkk=imread('d4w9cranial3.png'); %read image 

imagesc(kkk); 

colormap(gray); 

[x y]=getpts;   %get input points from user 

P1=[x(:) y(:)]; 

hold on 

% scatter(P1(:,1),P1(:,2),'g'); 

P1=[P1; P1(1,:)]; 

xe1=[P1(:,1); P1(1,1)]; 

ye1=[P1(:,2); P1(1,2)]; 

plot(xe1,ye1,'w'); 

hold off; 

P1=[P1 210*ones(length(P1),1)];     % get 3rd dimension using widthDist program  

% follow the same for 2nd axial image 

kkk=imread('d4w9cranial6.png'); 

figure 

imagesc(kkk); 

colormap(gray); 

[x y]=getpts; 

P2=[x(:) y(:)]; 

hold on 

% scatter(P(:,1),P(:,2),'g'); 

P2=[P2; P2(1,:)]; 

xe2=[P2(:,1); P2(1,1)]; 

ye2=[P2(:,2); P2(1,2)]; 

plot(xe2,ye2,'w'); 

hold off; 

P2=[P2 375*ones(length(P2),1)]; 

  

% follow the same for 3rd axial image 

kkk=imread('d4w9cranial8.png'); 

figure 

imagesc(kkk); 

colormap(gray); 

[x y]=getpts; 

P3=[x(:) y(:)]; 

hold on 

% scatter(P(:,1),P(:,2),'g'); 

P3=[P3; P3(1,:)]; 

xe3=[P3(:,1); P3(1,1)]; 

ye3=[P3(:,2); P3(1,2)]; 

plot(xe3,ye3,'w'); 

hold off; 

P3=[P3 430*ones(length(P3),1)]; 

  

%   follow the same for sagittal image 
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kkk=imread('Left_mid_mid.png'); 

figure 

imagesc(kkk); 

colormap(gray); 

[x y]=getpts; 

P4=[x(:) y(:)]; 

hold on 

% scatter(P(:,1),P(:,2),'g'); 

P4=[P4; P4(1,:)]; 

xe4=[P4(:,1); P4(1,1)]; 

ye4=[P4(:,2); P4(1,2)]; 

plot(xe4,ye4,'w'); 

P4=[P4 300*ones(length(P4),1)]; 

hold off 

figure 

hold on 

 

plot3(P1(:,3),P1(:,2),P1(:,1),'b'); 

plot3(P2(:,3),P2(:,2),P2(:,1),'b'); 

plot3(P3(:,3),P3(:,2),P3(:,1),'b'); 

plot3(P4(:,1),P4(:,2),P4(:,3),'r'); 

  

hold off 

% save all co-ordinates 

save d4w8P1 P1 

save d4w8P2 P2 

save d4w8P3 P3 

save d4w8P4 P4 

 

 

meshInside.m 

% create mesh inside profile 

% nodes: (px,py,pz), 

% (ipx_full,ipy_full,ipz_full),ran_points,ran_points1(k,:),[X1 Y1 Z1],[X2 

% Y2 Z2],[X3 Y3 Z3] 

% clc; clear all; 

close all; 

% load d4w8P1;load d4w8P2;load d4w8P3 

  

figure; rotate3d on; hold on; view(270,180) 

  

% plot3(P1(:,3),P1(:,2),P1(:,1),'b.'); 

% plot3(P2(:,3),P2(:,2),P2(:,1),'b.'); 

% plot3(P3(:,3),P3(:,2),P3(:,1),'b.'); 

% drawnow; pause(0.2); 

  

% create intermediate mesh on surface 

cranial_mean=mean(P3); 

caudal_mean=mean(P1); 

interPt=[]; 

for i=1:length(P1) 
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    pz = [caudal_mean(1,1) P1(i,1) P2(i,1) P3(i,1) cranial_mean(1,1)]; 

    py = [caudal_mean(1,2)-50 P1(i,2) P2(i,2) P3(i,2) cranial_mean(1,2)]; 

    px = [caudal_mean(1,3)-20 P1(i,3) P2(i,3) P3(i,3) cranial_mean(1,3)+50]; 

    pt = interparc(200,px,py,pz); 

    interPt=[interPt; pt]; 

    % Plot the result 

    plot3(px,py,pz,'r*',pt(:,1),pt(:,2),pt(:,3),'b'); 

%         drawnow; pause(0.1); 

end 

  

n=0:5:length(pt); 

ipx_full=[]; ipy_full=[]; ipz_full=[]; 

for j=1:length(n) 

    ipx=[];    ipy=[];    ipz=[]; 

    for i=1:30 

        ipx=[ipx interPt(n(j)+200*i,1)]; 

        ipy=[ipy interPt(n(j)+200*i,2)]; 

        ipz=[ipz interPt(n(j)+200*i,3)]; 

    end 

    ipx=[ipx ipx(1)]; 

    ipy=[ipy ipy(1)]; 

    ipz=[ipz ipz(1)]; 

    for i=1:length(ipx)-1 

        line([ipx(1,i) ipx(1,i+1)],[ipy(1,i) ipy(1,i+1)],[ipz(1,i) ipz(1,i+1)]); 

    end 

    plot3(ipx,ipy,ipz); 

    ipx_full=[ipx_full; ipx]; 

    ipy_full=[ipy_full; ipy]; 

    ipz_full=[ipz_full; ipz]; 

end 

% hold off 

% figure 

% hold on 

% for i=1:length(ipx_full) 

%     plot3(ipx_full(i,:),ipy_full(i,:),ipz_full(i,:),'g.'); 

%     drawnow; pause(0.2); 

% end 

% plot3(mean2(ipx_full),mean2(ipy_full),mean2(ipz_full),'r.'); 

% drawnow; pause(0.2);  

% % find mid point 

% 

[m n]=size(ipx_full); 

k=1; 

for i=1:m 

    for j=1:2:n 

% for points at regular intervals 

        ran_points(k,:)= [(mean2(ipx_full)+ipx_full(i,j))/2 (mean2(ipy_full)+ipy_full(i,j))/2 

(mean2(ipz_full)+ipz_full(i,j))/2]; 

        ran_points1(k,:)= [(ran_points(k,1)+ipx_full(i,j))/2 (ran_points(k,2)+ipy_full(i,j))/2 

(ran_points(k,3)+ipz_full(i,j))/2]; 

        k=k+1; 
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    end 

end 

  

k=1; 

for i=1:2:m 

    for j=1:2:n 

        ip_single(k,1)=ipx_full(i,j); 

        ip_single(k,2)=ipy_full(i,j); 

        ip_single(k,3)=ipz_full(i,j); 

        k=k+1; 

    end 

end 

 

% create mesh around profile 

  

meanP2=mean(P2); 

  

x = meanP2(1)-40:20:meanP2(1)+40; % width 8 

y = meanP2(2)-30:20:meanP2(2)+30; % length 6 

z = meanP2(3)-35:20:meanP2(3)+35; % height 7 

  

[X1 Y1 Z1] = meshgrid(x([1 end]),y,z); 

[X2 Y2 Z2] = meshgrid(x,y([1 end]),z); 

[X3 Y3 Z3] = meshgrid(x,y,z([1 end])); 

  

h = plot3([X1(:);X2(:);X3(:)], [Y1(:);Y2(:);Y3(:)], [Z1(:);Z2(:);Z3(:)],'.'); 

set(h, 'Color',[0.5 0.5 1], 'LineWidth',1) 

  

xlabel('8 units'); 

ylabel('6 units'); 

zlabel('7 units'); 

axis off 

view(3), axis vis3d 

camproj perspective, rotate3d on 

axis on 

hold off 

 

tetra_mesh_try.m 

% form a mesh in a tetrahedron form 

meshInside 

load mesh_f_mesh_nodes; 

  

outer_fwd_mesh=[]; 

outer_fwd_mesh=zee(:,2:end); 

clc; close all; 

% only for prostate profile 

x_coord=[ip_single(:,1);ran_points(:,1);ran_points1(:,1)]/5-30; 

y_coord=max(outer_fwd_mesh(:,2))-[ip_single(:,2);ran_points(:,2);ran_points1(:,2)]/5+10; 

z_coord=max(outer_fwd_mesh(:,3))-[ip_single(:,3);ran_points(:,3);ran_points1(:,3)]/5+40; 

% % for profile blob with outer mesh 

%  
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% x_pros=[ip_single(:,1); ran_points(:,1); ran_points1(:,1)]/5-30; 

% y_pros=max(outer_fwd_mesh(:,2))-[ip_single(:,2); ran_points(:,2); ran_points1(:,2)]/5+10; 

% z_pros=max(outer_fwd_mesh(:,3))-[ip_single(:,3); ran_points(:,3); ran_points1(:,3)]/5+40; 

%  

% x_coord=[x_pros;outer_fwd_mesh(:,1)]; 

% y_coord=[y_pros;outer_fwd_mesh(:,2)]; 

% z_coord=[z_pros;outer_fwd_mesh(:,3)]; 

  

x = x_coord;                  % x data 

y = z_coord;                  % y data 

z = y_coord;                  % z data 

tri = delaunay(x,y);              % Create a 2-D triangular mesh 

figure 

hold on 

grid; 

tri_rotate=trimesh(tri,x,y,z);               % Plot the mesh in 3-D 

hold off 

figure 

hold on 

grid on; 

tri3 = delaunay3(x,y,z);              % Create a 3-D triangular mesh 

faceColor  = [0.6875 0.8750 0.8984]; 

tetramesh(tri3,[x(:) y(:) z(:)],'FaceColor', faceColor,'FaceAlpha',0.5); 

hold off 

xyz=[x y z]; 

nodes_intern=zeros(length(xyz),1); 

nodes_mesh=[nodes_intern]; 

nodes_mesh=[nodes_mesh xyz]; 

param_intern=[]; 

% for i=1:length(nodes_intern) 

for i=1:length(xyz) 

    param_intern=[param_intern; [0.008 0.330688 1.33  ] ]; 

end 

param_extern=[]; 

for i=1:length(nodes_extern) 

    param_extern=[param_extern; [0.007 0.331016 1.33 ]]; 

end 

param_mesh=[param_intern;param_extern]; 

elem_mesh=tri3+length(outer_fwd_mesh); 

  

widthDist.m 

% find distance to locate view position 

  

clc; clear all; close all; 

figure; 

kkk=imread('d4w8cranial_1.png'); 

imagesc(kkk); 

colormap(gray); 

[x1 y1]=getpts; 

pros_width(1) = sqrt((x1(1)-x1(2))^2 + (y1(1)-y1(2))^2); 

hold on 
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scatter(x1,y1,'w'); 

plot(x1,y1,'y'); 

hold off 

  

figure 

kkk=imread('d4w8cranial_3.png'); 

imagesc(kkk); 

colormap(gray); 

[x2 y2]=getpts; 

pros_width(2) = sqrt((x2(1)-x2(2))^2 + (y2(1)-y2(2))^2); 

hold on 

scatter(x2,y2,'w'); 

plot(x2,y2,'y'); 

hold off 

  

figure 

kkk=imread('d4w8cranial_5.png'); 

imagesc(kkk); 

colormap(gray); 

[x3 y3]=getpts; 

pros_width(3) = sqrt((x3(1)-x3(2))^2 + (y3(1)-y3(2))^2); 

hold on 

scatter(x3,y3,'w'); 

plot(x3,y3,'y'); 

hold off 

  

  

pros_width 

  

figure; 

kkk=imread('Left_mid_8.png'); 

imagesc(kkk); 

colormap(gray); 

[x y]=getpts; 

pros_sagi(1) = sqrt((x(1)-x(2))^2 + (y(1)-y(2))^2); 

pros_sagi(2) = sqrt((x(3)-x(4))^2 + (y(3)-y(4))^2); 

pros_sagi(3) = sqrt((x(5)-x(6))^2 + (y(5)-y(6))^2); 

pros_sagi 

 

recon_week7.m 

% reconstruction routine for week 7 

clear; clc; close all; 

%% Get background data 

mesh_f_pros='mesh_combined_wo_prior'; 

mesh_r_pros='mesh_r_mesh'; 

  

load('roi_04_06_shift_96.mat'); 

for c_i=1:1 

    switch c_i    

             

        case {1} 
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            content='Left_mid_'; 

            mi=5; 

        case {2} 

            content='Right_mid_mid_'; 

            mi=2; 

    end; 

    for meas_i=1:1 

       

        out_fn_1=strcat(content,num2str(meas_i),'_1_out'); 

        regular=1; 

        [mesh,pj_error,it] = 

reconstruct_stnd_0(mesh_f_pros,mesh_r_pros,0,'w1.paa',10,regular,out_fn_1,0); 

        while it<3 

            regular=2*regular; 

            [mesh,pj_error,it] = 

reconstruct_stnd_0(mesh_f_pros,mesh_r_pros,0,'w1.paa',10,regular,out_fn_1,0); 

        end; 

        clear mesh; 

                 

        out_fn_2=strcat(content,num2str(meas_i),'_2_out'); 

        regular=1; 

        [mesh,pj_error,it] = 

reconstruct_stnd_0(mesh_f_pros,mesh_r_pros,0,'w2.paa',10,regular,out_fn_2,0); 

        while it<3 

            regular=2*regular; 

            [mesh,pj_error,it] = 

reconstruct_stnd_0(mesh_f_pros,mesh_r_pros,0,'w2.paa',10,regular,out_fn_2,0); 

        end; 

        clear mesh; 

          

        out_fn_3=strcat(content,num2str(meas_i),'_3_out'); 

        regular=1; 

        [mesh,pj_error,it] = 

reconstruct_stnd_0(mesh_f_pros,mesh_r_pros,0,'w3.paa',10,regular,out_fn_3,0); 

        while it<3 

            regular=2*regular; 

            [mesh,pj_error,it] = 

reconstruct_stnd_0(mesh_f_pros,mesh_r_pros,0,'w3.paa',10,regular,out_fn_3,0); 

        end; 

        clear mesh; 

         

    end; 

end; 

 

showresults_no_priori.m 

clear; clc; close all; 

mesh_f_pros='mesh_combined_wo_prior'; 

data_meas_fn='Left_mid_1'; 

out_fn_1=strcat(data_meas_fn,'_1_out'); 

out_fn_2=strcat(data_meas_fn,'_2_out'); 

out_fn_3=strcat(data_meas_fn,'_3_out'); 
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level=35; 

mesh_1 = read_solution(mesh_f_pros,out_fn_1); %705nm 

close all; 

rasterize_mua(mesh_1,'y',level);  

mesh_2 = read_solution(mesh_f_pros,out_fn_2); %785nm 

close all; 

rasterize_mua(mesh_2,'y',level);  

mesh_3 = read_solution(mesh_f_pros,out_fn_3); %808nm 

close all; 

rasterize_mua(mesh_3,'y',level);mua_1=mesh_1.mua; mua_2=mesh_2.mua; 

mua_3=mesh_3.mua; 

 

% e_1: 704nm, e_2:784nm, e_3: 806nm; from human blood; 

e_1_hbo_human=298/10*log(10);  

e_1_hb_human=1687.76/10*log(10); 

e_2_hbo_human=730.8/10*log(10);  

e_2_hb_human=996.72/10*log(10); 

e_3_hbo_human=844/10*log(10); 

e_3_hb_human=730.28/10*log(10); 

  

  

% e_1_hbo=600/10*log(10);  

% e_1_hb=1100/10*log(10); 

% e_2_hbo=800/10*log(10);  

% e_2_hb=900/10*log(10); 

% e_3_hbo=844/10*log(10); 

% e_3_hb=730.28/10*log(10); 

  

e_1_hbo=e_1_hbo_human;  

e_1_hb=e_1_hb_human; 

e_2_hbo=e_2_hbo_human;  

e_2_hb=e_2_hb_human; 

e_3_hbo=e_3_hbo_human; 

e_3_hb=e_3_hb_human; 

 

extc_3=[e_1_hbo e_1_hb; e_2_hbo e_2_hb; e_3_hbo e_3_hb]; 

  

clear e_1_* e_2_* e_3_*; 

 

F=[mua_1'; mua_2'; mua_3']; 

Hb_both=(extc_3'*extc_3)\extc_3'*F; 

  

hbo=Hb_both(1,:)'; 

hb=Hb_both(2,:)'; 

  

HbT=hbo+hb; 

StO2=hbo./HbT*100; 

  

mesh=load_mesh(mesh_f_pros); 

mesh.mua=HbT; 

rasterize_mua(mesh,'y',level); 
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mesh.mua=StO2; 

rasterize_mua(mesh,'y',level); 

 

try_quant.m 

close all; clc; clear all; 

mesh=load_mesh('mesh_f_mesh'); 

xxyz=mesh.nodes; 

roi_index=[]; 

index=0; 

roi=[15,15,15]; 

for i=1:length(xxyz) 

    find_dist=sqrt((roi(1,1)-xxyz(i,1))^2 + (roi(1,2)-xxyz(i,2))^2 +(roi(1,3)-xxyz(i,3))^2); 

    if (find_dist)<5 

        index=index+1; 

        roi_index(index)=i; 

         

    end 

end 

  

for i=1:length(roi_index) 

    load('sto2_7.mat') 

    roi_sto2_7(i)=StO2(roi_index(i)); 

    load('sto2_8.mat') 

    roi_sto2_8(i)=StO2(roi_index(i)); 

    load('sto2_9.mat') 

    roi_sto2_9(i)=StO2(roi_index(i)); 

end 

mean_sto2(1)=mean(roi_sto2_7); 

mean_sto2(2)=mean(roi_sto2_8); 

mean_sto2(3)=mean(roi_sto2_9); 

  

min_sto2(1)=min(roi_sto2_7); 

min_sto2(2)=min(roi_sto2_8); 

min_sto2(3)=min(roi_sto2_9); 

  

max_sto2(1)=max(roi_sto2_7); 

max_sto2(2)=max(roi_sto2_8); 

max_sto2(3)=max(roi_sto2_9); 

figure; subplot(1,3,1);  bar(min_sto2);ylim([0 100]); 

title('Min StO2 in ROI (without prior)'); 

subplot(1,3,2); bar(max_sto2);ylim([0 100]); 

title('Max StO2 in ROI (without prior)'); 

subplot(1,3,3);  bar(mean_sto2);ylim([0 100]); 

title('average StO2 in ROI (without prior)'); 
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