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Abstract: 

Fall calving cows were used to determine the effects of protein supplementation 

on reproduction, and growth and carcass characteristics of calves.  Cows were 

individually supplemented from mid-November to mid-March for four years with either a 

control diet (Con; 1.82 kg/d of 38 % CP) or low diet (L; 0.2 kg/d of 8% CP).  During 

each year, cows were reassigned dietary treatments according to calving date and BCS, 

with half of Con and L cows remaining on the same diets as the previous year and the 

other half assigned to the other diet.  Cows were exposed to bulls for 60 d beginning 

December 1.  Statistical analyses were performed with a 2 x 2 factorial design with 

PROC GLM and PROC FREQ.  Cows on Con diets lost less BW from November to 

January compared with L cows (-29.8 ± 2.8 and -49.7 ± 2.8 kg, P < 0.001).  Control cows 

had greater BCS compared with L cows in May (4.1 ± 0.1 and 3.9 ± 0.1, P = 0.03). 

Prenatal supplementation did not influence birth weight of calves (P = 0.86). 

Concentrations of IGF-I were greater in plasma of calves suckling Con cows compared 

with calves from L cows (21.4 ± 2.1 and 14.8 ± 2.1ng/ml, respectively; P = 0.03).  There 

was a prenatal x postnatal effect for BW of calves; prenatal Low and postnatal Control 

(LCon)  calves (186.1 ± 4.4, P = 0.02) had greater 205 d adjusted weaning weights 

compared with prenatal Low and postnatal Low (LL), prenatal Control and postnatal Low 

(ConL), and prenatal Control and postnatal Control (ConCon) calves (154.9 ± 4.0, 172.4 

± 4.1, and 180.1 ± 4.2 kg, respectively).  Calves from cows on Con diets during prenatal 

and postnatal growth had greater hot carcass weights (393.6 ± 9.1 kg) compared with LL 

calves (362.6 ± 9.1 kg, P = 0.02), however, other carcass characteristics were not 

influenced by treatment (P < 0.17).  Feeding supplemental protein that decreased BW 

loss and increased BCS, increased ADG of calves prior to weaning, increased IGF-I in 

plasma, and increased BW until harvest, but did not influence carcass characteristics of 

calves. 
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CHAPTER I 
 

 

INTRODUCTION 

Profitability of a cow-calf producer depends on the calf to sell at weaning, thus 

weaning weight is the most important variable that influences efficiency of production 

(Dickerson, 1970).  Gestation length in beef cows averages 280 d, therefore cows have 

approximately 85 d after parturition for involution, resumption of estrous activity, and 

rebreeding to produce a calf every 12 mo.  Excess nutrient intake is stored as body energy 

reserves in adipose tissue and are utilized during periods when nutrient intake is 

inadequate.  Body energy reserves, 1-9 scale as BCS (Wagner et al., 1988), at calving is 

the best indicator of the time it will take for cows to initiate estrous cycles and conceive 

after parturition (Richards et al., 1986; Selk et al., 1988; DeRouen et al., 1994). 

As forage availability and quality decrease during late summer and winter grazing 

cows cannot acquire adequate protein or energy needed for maintenance.  Inadequate 

nutrients not only influence reproductive efficiency of a cow herd but can also decrease 

birth weight of calves if restriction occurs during late gestation (Spitzer et al., 1995; 

Sletmoen-Olson et al., 2000b; Stalker et al., 2006).  When nutrient restriction occurs 

during gestation, birth weight is decreased. Nutrient restriction that continues postnatally 

will alter growth and  development of the neonate (Freetly et al., 2000).  Reduced 

postnatal growth will decrease profitability of a cow-calf operation because income is 

based on production of maximum BW at weaning. 
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Evaluation of data from the Dutch Famine has led to the development of a theory 

known as the thrifty phenotype; the environment provided in utero will influence fetal 

development that may result in traits best suited for survival when exposed to adverse 

external environment (Roseboom et al., 2001).  The increase in disease associated with 

prenatal nutrient restriction has led to the field of fetal origins of adult disease in humans 

or fetal programming in domesticated livestock (Barker et al., 1993; Godfrey and Barker, 

2000; Roseboom et al., 2001).   

The effects of restriction of nutrients during gestation are dependent on the time 

and severity of restriction.  Nutrient restriction early in gestation may not influence birth 

weight of calves (Martin et al., 2007; Long et al., 2009) or lambs (Zhu et al., 2006; Ford 

et al., 2007); however, a normal phenotype does not ensure that metabolic pathways are 

functioning normally.  Nutrient restriction of beef cattle during early to mid-gestation 

increases the prevalence of glucose intolerance (Long et al., 2010d), reduces organ 

development (Long et al., 2010c), decreases muscle mass, and increased adipocyte 

diameter (Long et al., 2012).  Birth weight is less when nutrient restriction occurs during 

late gestation (Wiltbank et al., 1962; Dunn et al., 1969; Bellows and Short, 1978) and 

postnatal growth and weaning weight of calves will be reduced (Corah et al., 1975).   

Objectives of this study were to determine the influence of protein 

supplementation during early gestation and mid lactation on calf growth, carcass 

characteristics, and reproductive performance of fall calving cows.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

Nutritional Regulation of Reproductive Performance of Beef Cows 

Nutritional regulation of reproduction is controlled through body energy reserves, 

nutrient intake, and suckling intensity.  Nutritional status, before and after calving, is a 

major determinant of reproductive efficiency of a beef herd, however, uterine involution 

after calving are similar between cows on differing planes of nutrition (Kiracofe, 1980; 

Spicer et al., 1986; Perry et al., 1991).  Body energy reserve at parturition is the major 

factor influencing duration between parturition and resumption of estrus cycles (Richards 

et al., 1986; Selk et al., 1988; DeRouen et al., 1994).  Pre- and postpartum BW 

fluctuations will not influence pregnancy rates when cows are in good condition at 

calving (Corah et al., 1975; Dunn and Kaltenbach, 1980). 

Body Condition Score: 

  Body energy reserves are quantified with a nine point system known as body 

condition score (BCS) with 1 = emaciated and 9 = obese (Wagner et al., 1988).  A one 

BCS unit change has been related to a 33 to 51 kg change in BW (Wagner, 1985; Buskirk 

et al., 1992; Ferrell and Jenkins, 1996; NRC, 1996; Lalman et al., 1997).  During late 

gestation, BW is confounded with rapid fetal and placental development, thus utilizing 

body fat and BCS is a more accurate indicator of condition and energy reserves 

(Wiltbank et al., 1962; Richards et al., 1986; Wagner et al., 1988).  Pregnancy rate is 
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dependent on BCS and maximum reproductive efficiency can be achieved when BCS at 

calving is greater than or equal to 5 for multiparous cows (Dziuk and Bellows, 1983; 

Richards et al., 1986; Selk et al., 1988) and greater than or equal to 6 for primiparous 

cows (DeRouen et al., 1994; Spitzer et al., 1995; Lalman et al., 1997).  

Restriction of nutrient intake will result in loss of body energy stores and 

cessation of estrous cycles.  To reinitiate estrous cycles after nutritionally induced 

anestrus, cows must obtain a greater BCS compared with the BCS at the onset of anestrus 

(Louw et al., 1988; Richards et al., 1989a).  Availability of energy reserves will influence 

the interval from parturition to resumption of estrous activity when nutrient intake is not 

adequate (Rakestraw et al., 1986). Maintenance of BCS greater than or equal to 5 will 

allow for resumption of estrous activity sooner after parturition than if cows lose weight 

after calving and reproductive success can be decreased (Wettemann, 1994).  When 

postpartum BCS is inadequate i.e. below 5, nutritional intake will influence the interval 

for an animal to return to estrus (Richards et al., 1986). 

Nutrient Intake: 

Reproductive performance is dependent on adequate nutrient intake during 

gestation and after calving. Visceral tissues use the majority of nutrients during 

maintenance and growth of body tissues (Lobley, 2003).  Gestation and lactation are 

unique physiological states that increase nutrient requirements but do not benefit the dam.  

The majority of bovine fetal development occurs during the last third of gestation, after 

nutrient demands for lactation have ceased.  Nutrient demands of the developing fetus 

cause nutrient requirements for cows to be similar during lactation and during late 

gestation (Bauman and Currie, 1980).  



5 
 

 Body energy reserves are mobilized when nutrient intake is inadequate; BCS will 

decrease and the ability of cows to conceive will be reduced.  Nutrition does not 

influence uterine involution unless nutrients are inadequate (Kiracofe, 1980). Uterine 

involution will occur, within 30 d of parturition, well before estrous activity resumes and 

will not influence resumption of estrous cycles; except when dystocia (Bellows and 

Short, 1978; Bellows et al., 1982) or heat stress (Lewis et al., 1984) occurs. 

Energy may be the most influential nutrient for reproduction, and glucose is a 

precursor for milk production, fetal development, fat stores, and reproductive function. 

Inadequate pre- and postpartum energy consumption will decrease birth weights, milk 

production, and increase the interval to ovulation (Wiltbank et al., 1962; Bellows and 

Short, 1978; Perry et al., 1991). Reduced ovarian activity (Oxenreider and Wagner, 

1971), size of dominant follicle (Lents et al., 2008), and secretion of LH (Perry et al., 

1991; Grimard et al., 1995) will occur when energy intake is inadequate.   

 Prepartum energy intake influences the postpartum interval from parturition to 

ovulation and greater energy intake increases conception rates (Wiltbank et al., 1962; 

Dunn et al., 1969; Ciccioli et al., 2003). Fat supplementation is readily used to increase 

energy in diets. The ability of fat to increase energy has conflicting effects on 

reproduction depending on the type and source of fat, age of animal, and physiological 

state of supplementation (Funston, 2004). 

Protein and energy requirements increase about 33% during gestation but 

supplementing energy will initiate estrous activity sooner after parturition than 

supplementing protein (Davis et al., 1977). Protein supplementation of cows grazing 

winter range during late gestation, will increase BCS (Stalker et al., 2006; Lents et al., 
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2008; Larson et al., 2009) and BW (Fleck and Lusby, 1986; Lusby et al., 1991; Marston 

et al., 1995; Sletmoen-Olson et al., 2000b) at calving.  Influence of protein on 

reproductive traits may be dependent on the source of protein supplemented (Fleck and 

Lusby, 1986; Van Saun et al., 1993; Marston et al., 1995). 

Degradable intake protein (DIP) has negative effects on reproduction in dairy 

cattle (Canfield et al., 1990) especially during lactation due to increases in milk 

production which exacerbates the negative energy balance (Butler, 1998). Conception 

rates and overall pregnancy rates are decreased from excessive DIP supplementation of 

dairy cows (Canfield et al., 1990) and heifers (Canfield et al., 1990; Elrod and Butler, 

1993). Supplemental DIP did not change reproductive characteristics or endocrine 

function of beef cows (Wiley et al., 1991; Rusche et al., 1993). Therefore, greater 

amounts of milk production of dairy cattle may increase protein availability to the rumen 

and contribute to reduced reproductive efficiency. 

Undegradable intake protein (UIP) may have beneficial effects on reproductive 

traits, especially, in cows with BCS of 4 or 5 (Wiley et al., 1991). Supplemental UIP does 

not influence BCS or BW (Rusche et al., 1993; Triplett et al., 1995; Lents et al., 2000) 

but may decrease postpartum weight loss (Miner et al., 1990; Dhuyvetter et al., 1993). 

Protein supplementation with 50 % UIP increased first service conception and overall 

pregnancy rates but did not influence interval to estrus compared with protein supplement 

containing 75 % UIP (Triplett et al., 1995).  A supplement consisting of 25 % UIP of 

total protein decreased interval to first estrus but had no effect on pregnancy rates 

compared with 50 % UIP supplement (Dhuyvetter et al., 1993). Greater amounts of UIP 

increased BCS at calving and after calving (Van Saun et al., 1993).  Supplementation of 
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UIP to heifers increased BW at puberty compared with energy and monesin 

supplementation (Lalman et al., 1993).  However, energy and monesin supplementation 

decreased age of heifer at the onset of puberty (Lalman et al., 1993).   

Suckling Effect on Reproduction: 

Postpartum anestrous interval is shorter for cows not suckled or milked (Graves et 

al., 1968; Oxenreider, 1968; Saiduddin et al., 1968; Wagner and Oxenreider, 1971), or 

milked twice a day (Wiltbank and Cook, 1958) compared with regular suckling or 

milking four times per day (Clapp, 1937).  Short et al. (1972) found that mastectomy of 

multiparous cows shorten the interval from parturition to estrus even more than only 

removal of suckling stimuli.  The number of offspring suckling will also affect the 

duration of the interval to the first postpartum estrus.  Cows suckling two calves had a 

longer interval to estrus compared with cows only suckling one calf and the effect was 

independent of BW (Wettemann et al., 1978).   

Removal of calves allows ovarian activity to occur sooner after parturition 

compared with cows managed with calves.  Weaning calves allows cows to rebreed 

sooner than suckled cows (Lusby and Wettemann, 1986; Bishop et al., 1994).  The earlier 

resumption of reproductive activity after weaning is due to increased concentrations of 

LH in plasma which stimulate ovarian function and follicular growth (Carter et al., 1980).  

Early weaning of calves increased number of LH pulses and shortened the number of 

days to luteal activity and the response occurred sooner in cows with greater BCS 

(Bishop et al., 1994).  Formation of a fully functional corpus luteum seldom occurs 

before the first behavioral estrus with a majority of first calf heifers (Ciccioli et al., 2003) 

and cows (Looper et al., 2003), and the first luteal cycle before estrus is usually a short 

luteal phase.  Early regression of the corpus luteum is caused by increased concentrations 
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of prostaglandins from the uterus prior to the time that pregnancy recognition usually 

occurs (Guilbault et al., 1984; Guilbault et al., 1987a; Guilbault et al., 1987b). 

Postpartum Anestrus: 

Production of a calf every 12 mo is essential to maximize efficiency and 

profitability of a cow/calf operation.  The length of time required for involution of the 

uterus, resumption of normal ovarian activity, estrous behavior, and conception is 

influenced by numerous factors such as age, nutrition, BCS, and lactation.  The time from 

calving until the first behavioral estrus is known as postpartum anestrous interval and 

should be less than 85 d.  The corpus luteum formed during the anestrous period is 

smaller and secretes less progesterone (Lishman et al., 1979; Rutter and Randel, 1984; 

Carruthers et al., 1986).   

The effects of BCS, nutrition and suckling on ovarian function and estrus were 

discussed previously and will only be summarized. Thin BCS (BCS < 5) at calving will 

increase the length of the postpartum anestrous interval in both cows and heifers 

(Richards et al., 1986; Spitzer et al., 1995; Lalman et al., 1997).  Body condition score at 

calving is the best indicator of interval from parturition to resumption of estrus, thus, 

greater nutrient intake during gestation will reduce the anestrous period (Dunn et al., 

1969; Rutter and Randel, 1984; Lalman et al., 1997).  Inadequate nutrient intake after 

calving can have a greater effect on the duration of the interval to estrus when cows have 

a thin BCS.  Greater nutrient intake can reduce the interval to estrus but cannot 

completely overcome the increase in time due to thin BCS at calving in cows (Wiltbank 

et al., 1962; Perry et al., 1991) and heifers (Dunn et al., 1969; Spitzer et al., 1995).  

Primiparous cows have a longer interval from parturition to estrus than 

multiparous cows because of the increase in nutrients needed for growth (Wiltbank, 
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1970; Bellows et al., 1982; Triplett et al., 1995).  Nutrient partitioning during gestation 

and lactation influences heifers more than cows because heifers are growing and have 

higher nutrient requirements. Bellows et al. (1982) found that sex of the offspring also 

influenced the resumption of estrus and both cows and heifers suckling male calves had a 

longer interval to estrus than those suckling female calves.  Male calves will consume 

greater quantities of milk which results in greater gains prior to weaning and have heavier 

weaning weights than females (Reynolds et al., 1978).   

The environment may also influence the interval from parturition to estrus by 

increasing stress on cows and altering nutrient availability for the resumption of 

reproductive function.  These factors include relative humidity, wind speed, dew point, 

barometric pressure, radiation and photoperiod which influence an animal’s ability to 

maintain body temperature (Christenson, 1980; Hansen, 1997; Wolfenson et al., 2000).  

With a limited time for conception to occur after parturition, cow-calf producers 

must understand how nutrients and BCS, environmental factors, suckling, and age 

influence resumption of estrus to maximize profitability of their operation.  An 

understanding of nutritional influences on reproduction will increase the efficiency of a 

cow herd.  The ability to assess BCS, and knowledge of the different effects of nutrients, 

allows mangers to correctly identify areas of concern without wasting resources. 

Endocrine and Metabolic Regulation of Nutritional Effects on Reproduction 

The main focus of metabolism in ruminants is to control concentrations of glucose 

in the blood (Brockman and Laarveld, 1986).  Glucose is the key energy substrate for the 

brain (Lindsay and Setchell, 1976) and has a role in controlling reproduction.  

Reproduction is one of the body processes that is influenced first by inadequate nutrients; 
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either directly on reproductive organs or by altered endocrine function.  Secretion of LH 

is decreased when nutrient availability is reduced (Richards et al., 1989a; Bossis et al., 

1999).  This reduction in LH is mediated through a reduction in secretion of GnRH which 

may be influenced by altered concentrations of insulin, glucose, GH, IGF-I and NEFA in 

plasma (Bossis et al., 2000).  Increased nutritional intake after parturition will increase 

BCS, number of heifers with luteal activity, and concentration of glucose in plasma 

(Vizcarra et al., 1998).   

Glucose: 

Cattle grazing forages produce acetate as the primary volatile fatty acid (VFA), 

whereas, propionate is the primary VFA in starch based diets (Stewart et al., 1958). When 

glucose is adequate, acetate is metabolized more efficiently (Cronje et al., 1991).  Acetate 

is lost as heat due to inadequate nitrogen supply to rumen microbes when grazing 

dormant forages and metabolizable energy is reduced. Propionate, a more efficient 

glucogenic precursor, is often inadequate in cattle grazing low quality forages (Cronje et 

al., 1991; Hawkins et al., 2000).   

The majority of fetal growth occurs during late gestation. Glucose is the primary 

energy substrate for the fetus which explains the linear decrease in circulating 

concentrations of glucose in plasma during late gestation (Sletmoen-Olson et al., 2000a).  

Concentrations of glucose in plasma increase in a quadratic manner during early 

lactation. This increase alleviates the negative energy balance and provides the glucose 

required for milk production.  Glucose is required for lactose production in the mammary 

gland and to incorporate acetate for formation of long chain fatty acids in adipose and 

mammary tissue (Hawkins et al., 2000).   
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Ovarian function may not be directly influenced by concentrations of glucose,  

although, minimal amounts are needed for steroidogenesis (Stewart et al., 1995). 

Treatment of cattle with a metabolic inhibitor decreased CL formation and estrus 

(McClure et al., 1978). Hypoglycemic states induced by a competitive glucose antagonist 

decreased pulse frequency but did not inhibit GnRH effects in cows (Rutter and Manns, 

1987) or lambs (Bucholtz et al., 1996). When cows receive 70% of energy requirements, 

hypoglycemia is not induced but secretion of LH in plasma may by altered (Grimard et 

al., 1995).  Infusion of glucose can increase follicular growth in sheep (Gallet et al., 

2011) and has been linked to cholesterol uptake by the ruminant ovary (Rabiee and Lean, 

2000).  

Systemic infusion of lactating cows with glucose increased concentration and 

pulse frequency of LH, indicating direct effects on the hypothalamus and/or pituitary 

(Garmendia, 1986).  When systemic glucose is adequate in lactating beef cows infusion 

of glucose did not alter basal LH or LH pulses (McCaughty et al., 1988), however 

propionate infusion increased pituitary sensitivity to GnRH (Rutter et al., 1983).  Energy 

restricted heifers that were supplemented with propionate had LH concentrations similar 

to control heifers, but heifers supplemented with acetate had reduced LH secretion 

(DiCostanzo et al., 1999).  Concentration of glucose in plasma cannot be used to predict 

reproductive performance (Vizcarra et al., 1998). 

Insulin: 

Glucose and energy status may be key elements to variation in secretion of 

hormones influential to reproductive processes (Short and Adams, 1988), however 

glucose uptake into cells cannot occur without glucose transporters.  Glucose transporters 

(GLUT) 1 and 3 are involved in transport within the brain and are insulin independent 
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transporters in cattle (Zhao et al., 1993).  Dominant follicles and the CL have similar 

mRNA expression for GLUT 1 and 3 as the brain of cattle (Nishimoto et al., 2006).  An 

insulin dependent transporter, GLUT 4, is expressed in the hypothalamus and pituitary of 

cattle (Zhao et al., 1993; Livingstone et al., 1995), and indicates that insulin may 

influence the ability of glucose to regulate gonadotropin secretion (Brant et al., 1993) and 

LH pulse frequency (Hileman et al., 1993).  Insulin infusion will increase GnRH 

secretion from the hypothalamus when concentrations of glucose are adequate, indicating 

insulin facilitates GnRH secretion through regulation of glucose (Arias et al., 1992).   

Insulin mediates the availability of energy to tissues by altering systemic glucose 

concentrations, and plasma concentrations of insulin can be used as an indicator of the 

nutritional status of cattle (Ciccioli et al., 2003; Lents et al., 2005). Similar to 

concentrations of glucose in plasma, insulin in postpartum beef cows is not indicative of 

luteal activity (Vizcarra et al., 1998), but plasma glucose and insulin concentration are 

significant predictors of days to second postpartum ovulation in dairy cows (Francisco et 

al., 2003).  Systemic concentrations of glucose and insulin are reduced, and 

concentrations of NEFA are elevated, when cyclic cows receive inadequate nutrients 

(Richards et al., 1989b) and during early lactation in dairy cows (Butler and Smith, 

1989). The ability of insulin to regulate glucose is altered during nutritional deprivation 

by decreased glucose clearance and increased concentrations of insulin in serum of cows 

(Richards et al., 1989b).   

The suckling stimulus decreased concentrations of insulin and glucose in cows 

and may be a mechanism by which suckling inhibits the onset of postpartum estrous 

cycles (Rutter and Manns, 1987).  Heifers on a weight loss diet and treated with glucose 
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or propionate will exhibit increased secretion of insulin (DiCostanzo et al., 1999).  

Supplementation with protein (Marston et al., 1995) or lipid (Ryan et al., 1995) will 

increase concentrations of insulin in plasma of cows because both are gluconeogenic 

precursors. Concentrations of insulin in plasma increased linearly with increased BCS, 

when postpartum nutrition of cows is adequate (Vizcarra et al., 1998).   

Insulin will also influence endocrine function of the ovary by increasing the 

number of follicular thecal (Stewart et al., 1995), and granulosa (Spicer et al., 1993) cells. 

Insulin and LH are synergistic to increase thecal cell production of progesterone and 

androstenedione (Stewart et al., 1995) and insulin and glucose are additive to increase 

steroid production (Stewart et al., 1995). Insulin stimulates granulosa cells from both 

large and small follicles to increase progesterone production. Exposure of differentiated 

granulosa cells from large follicles to increased concentrations of insulin and FSH will 

enhance production of estradiol (Spicer et al., 1993).  Insulin will stimulate estradiol 

production in granulosa cells of small follicles even in the absence of IGF-I and FSH 

(Spicer et al., 1993). 

Growth Hormone /IGF-I axis: 

Insulin-like growth factor - I (IGF-I) is indicative of nutrient status (Houseknecht 

et al., 1988; Granger et al., 1989; Rutter et al., 1989) and is related to BCS of cows 

(Bishop et al., 1994; Ciccioli et al., 2003; Lents et al., 2008). Greater amounts of protein 

and energy in the diet of heifers increased IGF-I concentrations and follicular growth 

rate, but decreased oocyte quality (Armstrong et al., 2001). When adequate protein is 

provided neither BCS nor protein supplementation influences IGF-I concentrations 

(Spicer et al., 1991; Lents et al., 2008). Decreased protein concentrations due to restricted 

nutrient intake will decrease IGF-I concentrations in plasma (Lents et al., 2005).  
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The interval from parturition to first estrus is reduced when nutrient intake is 

increased. Therefore, IGF-I may be associated with the resumption of ovarian activity.  

Acute changes in IGF-I do not influence resumption of ovarian activity (Ciccioli et al., 

2003).  Concentrations of IGF-I in plasma, increased linearly, prior to the resumption of 

ovulation, in anestrous heifers (Bossis et al., 2000), non-lactating cows (Richards et al., 

1995), and suckled cows (Stagg et al., 1998), and prior to the onset of puberty in heifers 

(Jones et al., 1991).  Francisco et al. (2003) found that IGF-I was the most significant 

predictor of days to first postpartum ovulation in dairy cows.  Yelich et al. (1996) found 

that heifers fed to gain more weight prior to puberty attained puberty at a younger age 

and had greater concentrations of IGF-I compared with heifers that had less ADG. 

However, heifers gaining less BW had similar IGF-I concentrations at initiation of 

puberty as heifers that had greater ADG before puberty.  Insulin-like growth factor - I 

may influence the return of estrous activity in suckled or feed restricted cows but it does 

not influence variability in postpartum ovulations associated with genotype (Spicer et al., 

2002). 

Peripheral concentrations of IGF-I regulate dominant follicle growth rate and 

maximum diameter.  Dairy cows with greater concentrations of IGF-I after parturition 

ovulated the first postpartum dominant follicle (Beam and Butler, 1997). Beef cows 

selected for increased twinning rate had greater concentrations of IGF-I in plasma. 

Systemic concentrations of IGF-I are indicative of concentrations of IGF-I levels within 

follicular fluid of large follicles (Echternkamp et al., 1990).  Thecal cells (Stewart et al., 

1996) and granulosa cells (Spicer et al., 1994) from large follicles have greater numbers 

of IGF-I receptors compared with small or immature follicles.  Sensitivity of follicles to 
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LH is increased by IGF-I and facilitates increases binding site numbers and steroid 

hormone production necessary for ovulation (Stewart et al., 1995; Stewart et al., 1996). 

Increased concentrations of IGF-I will increase of thecal (Stewart et al., 1995) and 

granulosa (Spicer et al., 1993) cell proliferation and steroidogenic capabilities.  Although 

stress may decrease ovarian activity via suppression of LH secretion (Li et al., 2003), 

short-term dexamethasone decreased concentrations of IGF-I and this was associated 

with reduced luteal progesterone secretion without affecting follicular growth (Maciel et 

al., 2001). In vitro, cortisol induces proliferation and steroid production in thecal cells 

(Spicer and Chamberlain, 1998). 

Secretion of IGF-I by the liver is stimulated by GH binding to receptors. This 

indicates IGF-I secretion is coupled with GH activity (Thissen et al., 1994). Nutrient 

restriction will reduce systemic IGF-I (Richards et al., 1991; Armstrong et al., 1993; 

Richards et al., 1995) and increase GH in plasma of heifers (Bossis et al., 1999) and cows 

(Roberts et al., 1997).  This coupled effect was demonstrated by Armstrong et al. (1993) 

through immunization against GH which decreased both GH and IGF-I in plasma of 

heifers. Feed restriction further depleted concentrations of IGF-I in plasma. The increase 

in GH associated with decreased IGF-I in plasma is due to a decrease in metabolic 

clearance rate of GH and decreased concentration of somatostatin in hypothalamic portal 

vessels (Keisler and Lucy, 1996). Increased amount (Yelich et al., 1996) and quality 

(Houseknecht et al., 1988) of energy intake decreased systemic GH. Protein 

supplementation will decrease also systemic GH in beef cows fed poor quality hay 

(Sletmoen-Olson et al., 2000a). 
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 The uncoupling of GH stimulated IGF-I secretion may be detrimental to 

reproductive functions because hepatic IGF-I is more influential than IGF-I located 

within follicular fluid (Diskin et al., 2003). The effect of GH on reproductive function is 

not limited to stimulation of IGF-I.  Severe reductions in follicular and luteal 

development occurs in cattle with severely reduced systemic IGF-I due to a mutation in 

GH, rendering GH biologically inactive (Chase et al., 1998; McCormack et al., 2009; 

Chase et al., 2011). Concentration and pulses of GH increase at puberty and may be 

influential in the onset of puberty in heifers (Yelich et al., 1996).   Growth hormone 

receptors are located in large luteal cells, liver, muscle, and adipose tissue in greater 

numbers compared with follicles and small luteal cells (Lucy et al., 1993).  There is also 

greater amounts of mRNA for GH receptor located in CL and uterine tissue compared 

with the hypothalamus, pituitary, and ovary (Lucy et al., 1998), and may explain why GH 

only influenced thecal cells of large follicles at physiological doses (Spicer and Stewart, 

1996).  

Nutritional Effects on Growth and Carcass Traits of Calves 

The cow-calf sector of the beef industry relies on production of pounds of calf at 

weaning for profitability (Dickerson, 1970).  There are many factors that can influence 

the weaning weight of calves; that range from environment to genetics (Short et al., 

1996).  Producers can increase lactation through supplementation of cows and increase 

weaning weight of calves though direct supplementation. 

Birth Weight: 

Late gestation and early lactation are the physiological stages of production in 

which nutrient requirements are the greatest.  These times are when supplementation can 

have the greatest influence.  The majority of fetal growth occurs during the last third of 



17 
 

gestation (Winters et al., 1942; Swett et al., 1948; Bauman and Currie, 1980).  Prenatal 

protein supplementation of cows will not only increase BCS and BW but may increase 

birth weight of the calves (Spitzer et al., 1995; Sletmoen-Olson et al., 2000b; Stalker et 

al., 2007) or may have no effect (Hough et al., 1990; Stalker et al., 2006; Martin et al., 

2007).  The type or quality of forage which is available may influence birth weight; 

improved pastures (Martin et al., 2007) or corn residues (Larson et al., 2009) provide 

more nutrients and can eliminate some of the need for protein or energy supplementation.  

Maternal Diet: 

 Postpartum supplementation of cows will usually not provide nutrients for 

maternal tissues but nutrients will be used by the mammary gland for lactation.  Nutrition 

of cows in early lactation must be adequate to maintain BCS (Short et al., 1996).  Protein 

supplementation after calving will increase milk production (Furr and Nelson, 1964; 

Rusche et al., 1993; Short et al., 1996), quality of milk (Van Saun et al., 1993), and 

weaning weights of calves (Rusche et al., 1993; Stalker et al., 2006; Martin et al., 2007; 

Larson et al., 2009).  Amount of growth from supplementation is dependent on the total 

diet of the cow.  Increased protein (Beaty et al., 1994; Sletmoen-Olson et al., 2000b) or 

energy (Spitzer et al., 1995; Ciccioli et al., 2003) supplementation will usually increase 

weaning weights. Supplementation of UIP did not influence milk production in mature 

cows (Triplett et al., 1995). Supplemental energy will not alleviate the effects of feed 

restriction, with prenatal or postnatal restriction reducing weaning weights (Corah et al., 

1975; Perry et al., 1991).  Although, calves suckling energy supplemented cows exhibited 

more sustained growth after supplementation (Marston et al., 1995).  
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Nutritional Supplementation of Calves: 

Access of high quality forages for calves and not cows is an option for producers 

to increase weaning weights with minimal inputs (Harvey and Burns, 1988).  When 

calves grazed corn residues, BW was heavier compared with calves born on dormant 

native range in May (Martin et al., 2007; Larson et al., 2009).  Another option is to 

provide direct supplementation to calves through creeping feeding. Creep feeding is 

usually done when milk yields are limiting (Christian et al., 1965) to increase weaning 

weights of calves (Bray, 1934) and the profitability of a calf crop (Peterson et al., 1989).  

Creep feeding calves a protein supplement will increase forage intake and digestibility 

when calves are grazing warm season forages (Lusby and Wettemann, 1986). However, 

supplementation when calves graze cool season forages does not increase efficiency of 

calf growth (Cremin et al., 1991).   

Ad libitum creep feeding can have detrimental side effects such as decreased 

forage digestibility throughout the entire gastro-intestinal tract (Stricker et al., 1979; 

Faulkner et al., 1994). Limit fed calves are more efficient (Cremin et al., 1991) with up to 

1.0 kg/d increasing ADG prior to weaning (Lusby, 1986; Lusby and Wettemann, 1986; 

Faulkner et al., 1994).  Increasing efficiency in gain by creep feeding is more profitable 

when calves are sold as feeder animals but when raising replacement heifers, excess fat 

deposition may decrease the development of maternal traits (Holloway and Totusek, 

1973).  Others have indicated that creep feeding does not appear to influence fat 

deposition of heifers (Prichard et al., 1989) and additional weight gained was negated by 

one year of age in replacement heifers (Martin et al., 1981).   
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Preweaning Nutritional Effects on Carcass Characteristics: 

Effects of prenatal and postnatal nutrition on carcass characteristics is difficult to 

evaluate with all of the variables in management, environment, and genetics that can 

influence the finished carcass.  Protein supplementation during both late gestation and 

early lactation will increase gain before weaning and the effect may continue throughout 

growing and finishing (Stalker et al., 2006; Stalker et al., 2007; Larson et al., 2009).  

Calves from protein supplemented cows had greater ADG and DMI when placed on high 

concentrate finishing diets (Larson et al., 2009) or there was no influence on ADG and 

DMI of calves (Stalker et al., 2006). The effects of protein supplementation on weight 

gain may be dependent on length of supplementation and age at weaning (Ciminski, 

2002). Early weaning programs allow for more recovery time for cows, calves start on 

finishing diets at a lighter weight, and increased quality of carcasses (Myers et al., 1999; 

Fluharty et al., 2000). Final body weights and carcass weights were heavier but marbling 

score, yield grade, 12
th

 rib fat (Stalker et al., 2007; Larson et al., 2009), and ribeye area 

(Larson et al., 2009) were not influenced by maternal protein supplementation and calves 

grazed improved pastures or corn residues compared with calves on dormant native range 

which suckled cows that were not supplemented.  Supplying calves with creep feed 

allows them to reach finish weight and greater quality grades at a younger age (Rouquette 

et al., 1983; Faulkner et al., 1994).  

Nutritional Effects on Fetal Programming 

A unique circumstance occurred during WWII in the Netherlands.  After Allied 

forces were stalled just north of the Dutch border all food transport stopped.  This severe 

restriction in food supply limited residents to less than 1000 calories per day, however 

people still had children and good records were kept.  Analysis of these records sparked 
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interest in the effects of maternal nutrition on human fetal development and risk of 

disease (Roseboom et al., 2011).  The theory of the fetal origin of adult disease was 

developed from these data with the impacts varying widely between sexes, time of 

restriction, and severity of restriction (Barker et al., 1993).  Restriction of nutrients in 

early gestation increased the incidence of brain damage, impaired brain function, and 

development of anti-social personality disorders (Stein et al., 1972). Nutrient restriction 

in early gestation also increased the prevalence of heart disease (Painter et al., 2006) and 

hypertension (Stein et al., 2006).   

Nutrient restriction of humans during mid-gestation altered formation of 

glomeruli, overall kidney function, and airway formation (Lopuhaa et al., 2000).  

Exposure to famine at any time during gestation increased the chance for cardiovascular 

disease, metabolic disorders, breast cancer, and obesity to develop during adulthood 

(Painter et al., 2008a).  Similar to domesticated livestock, stress to human fetuses 

influences each sex differently.  The Dutch Famine studies indicated that women exposed 

to nutrient restriction in utero have increased fertility with a greater incident of twins, 

larger families, and reached puberty at a younger age (Lumey and Stein, 1997; Painter et 

al., 2008b).  This may be an attempt to overcome increased mortality rates within nutrient 

restricted environments.  In contrast fetal nutrient restriction did not influence male 

fertility.  Nutrient restriction increases neonatal adiposity in both sexes, but male fetuses 

have a greater incident of this increase which results in obesity (Ravelli et al., 1976; 

Ravelli et al., 1999).   

The placenta as well as the fetus is influenced by nutrient restriction.  A major 

function of the placenta is nutrient exchange and severe dysfunction occurs during and 
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after nutrient restriction (Reynolds and Redmer, 1995; Meschia, 1983).  Nutrient 

restriction during gestation will decrease uterine blood flow and fetal growth while 

increasing uterine vascular resistance and the risk of complications (Trudinger et al., 

1985; North et al., 1994).  Results from these human studies have been extrapolated to 

production livestock for a better understanding of growth and development.   

Bovine: 

 The cow-calf industry experiences periods of nutrient restriction.  Forages are 

dormant during late summer and winter months and seldom provide adequate nutrients 

for gestating cows.  Lack of available nutrients in spring-calving cows, in Oklahoma, 

occurs during mid to late gestation and in fall-calving cows restriction can occur prior to 

breeding through the first half of gestation.  Nutrient restriction will decrease muscle 

mass and increase adipocyte growth and overall fatness of offspring (Zhu et al., 2006; 

Long et al., 2009). Supplementation of protein will have a positive associative effect to 

increase DMI, thus, increasing total protein and energy available to the animal.   

Nutrient restriction during early to mid-gestation may not influence birth weight 

(Martin et al., 2007; Long et al., 2009) or may reduce birth weight (Carstens et al., 1987; 

Spitzer et al., 1995; Larson et al., 2009).  Reduced nutrient intake in late gestation 

increased the weight of the placenta to compensate for less maternal nutrients (Rasby et 

al., 1990). In contrast to the increase in placental weight, numbers of cotelydons (Long et 

al., 2009) surface density, and number of capillaries within the placentome were 

decreased after nutrient restriction (Vonnahme et al., 2007). When postnatal nutrition was 

adequate BW was not affected by birth weight (Freetly et al., 2000).  Postnatal 

supplementation or  grazing improved forage will increase weaning weights (Funston et 

al., 2010). 
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Calves that were nutrient restricted during early to mid-gestation had decreased 

muscle mass and increased adipocyte diameter at harvest (Long et al., 2012).   Nutrient 

restriction, in utero, may increase (Long et al., 2012) or have no effect (Stalker et al., 

2007; Larson et al., 2009) on yield grades of carcasses. The decrease in muscle mass may 

be due to a decrease in the number of muscle fibers (Long et al., 2010c). Adipose 

deposition may be increased by a greater concentration of glucose in plasma of restricted 

vs. adequately fed calves.  Prenatally nutrient restricted calves have a reduced ability to 

clear glucose after infusion of a glucose bolus (Long et al., 2010d).  Nutrient restriction 

can reduce (Long et al., 2010c) or not influence (Stalker et al., 2006; Long et al., 2012) 

organ development depending on time and severity of restriction.    

Nutrient restriction during late prenatal growth will affect weight and growth 

more than development, due to the immense increase in growth rate that occurs during 

the last third of gestation.  Nutrient restriction during the last trimester can decrease birth 

weight (Dunn et al., 1969; Corah et al., 1975; Bellows and Short, 1978). Energy 

restriction during late gestation will reduce the ability of the offspring to thrive and may 

result in reduced weight at weaning (Corah et al., 1975).  Similar to results in human 

studies, nutritional restriction may not influence birth weight but can decrease BW and 

composition of beef cattle. 

Ovine: 

The ovine model has been used extensively to determine the effect of maternal 

nutrition on growth and development of the fetus.  Birth weight is not influenced when 

ewes receive inadequate nutrients during early gestation (Wu et al., 2006; Ford et al., 

2007; Long et al., 2010a).  Nutrient restriction during late gestation decreased birth 

weight of lambs and subsequent milk production of ewes (Tygesen et al., 2007). Lambs 
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that are smaller at birth have less developed GH/IGF-I axis and overall endocrine 

function with decreased concentrations of IGF-I and increased concentrations of insulin 

and GH in plasma (Greenwood et al., 2002).  Similar to cattle, nutrient restriction 

influences the composition of skeletal muscle. The number of muscle fibers are decreased 

when lambs are restricted during early gestation (Zhu et al., 2006). Nutrient restriction 

late in gestation decreases the size of each myocyte but does not alter the number of 

fibers within the muscle (Greenwood et al., 2000)  

Alterations in glucose metabolism occurs in lambs born to both underfed and 

obese ewes (Gardner et al., 2005; Ford et al., 2007; Long et al., 2010a) and probably is 

associated with changes in pancreatic development and insulin resistance due to early 

overexposure of tissues to insulin (Ford et al., 2009). Concentrate diets fed to lambs from 

nutrient restricted ewes exacerbates glucose intolerance and increases the amount of 

adipose deposition (Ford et al., 2007). Lambs born to obese ewes had restricted 

development of the gastro-intestinal tract at harvest (Long et al., 2010a). 

 Nutrient restriction during early gestation may influence peripheral 

organogenesis to a greater extent than brain development.  Nutrient restricted lambs had a 

decrease in cortisol concentrations (Bispham et al., 2003) and release (Long et al., 2010b) 

in response to stress, but when challenged with ACTH or CRH responses were similar to 

control lambs.  This indicates influences on the hypothalamus and/or pituitary glands 

rather than adrenal gland dysfunction.  Nutrient restricted lambs had decreased 

concentrations of progesterone in plasma and overall fertility compared with non-

restricted animals (Long et al., 2010b).  Supplementation with selenium negated some of 

the effects of nutrient restriction on follicular development (Grazul-Bilska et al., 2009). 
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Placentome number and vascularity increases during the last two trimesters of 

gestation in association with increased growth (Borowicz et al., 2007).  Nutrient 

restriction will increase placental weight (Rasby et al., 1990) and decrease placentome 

numbers and vascularity in cattle (Vonnahme et al., 2007; Long et al., 2009).  Nutrient 

restriction in ewes will alter placentome formation causing the increase in cotyledon and 

caruncle contact to occur earlier in gestation (Vonnahme et al., 2006).  Increased 

cotyledonary vascular density during nutrient restriction probably increases the amount of 

nutrients available to the fetus (Zhu et al., 2007).  Decreased vascular density of 

cotyledons in obese or over nourished ewes may decrease growth rate (Zhu et al., 2009).  

Limited nutrient intake of humans, cattle, and sheep during gestation will influence the 

growth of offspring, organ development and endocrine function.  The acquisition and 

understanding of the effects of nutrient restriction, or over nourishment, will allow for 

more efficient production of livestock and longer, healthier lives for all animals.   

Conclusions 

The cow-calf industry relies on weight of calves at weaning for profit.  For cows 

to be efficient they must conceive and give birth to a calf every 12 mo.  To achieve this 

goal a cow must complete parturition and uterine involution, resume estrous cycles, and 

become pregnant within approximately 85 d after calving. Nutrition has a major role in 

the efficiency of reproduction.  Nutrient intake and body energy reserves are limiting 

factors for reproductive efficiency.   

Completion of parturition with limited adverse effect on the reproductive tract and 

cow is the first step in this process.  Use of bulls with genetic potential for minimal birth 

weight will avoid complications with small and immature cows.  Adequate nutrient 
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intake and BCS to provide energy to complete parturition is essential.  Uterine involution 

is a process over which a producer has little influence and length is dependent on the 

amount of damage inflicted during parturition.  Good management scenarios at 

parturition result in rapid involution and rebreeding is not influenced. 

Three factors have roles in resumption of estrous activity: BCS, nutrient intake, 

and intensity of lactation.  Lactation, whether from suckling or milking, may inhibit LH 

pulses from the anterior pituitary resulting in limited ovarian activity or anestrus.  Ad 

libitum suckling will cause the postpartum anestrous interval to be extended compared 

with milking either once or twice daily.  The amounts of nutrients consumed daily by a 

cow can have two roles in the resumption of estrus: 1) provide direct nutrients for bodily 

functions, and 2) excess nutrients are stored as body energy reserves.  The best indicator 

of the length of time between parturition and resumption of estrous activity is BCS at the 

time of parturition, which is a direct estimate of body energy reserves that are available.  

Both energy and protein supplementation during the last trimester of gestation will 

increase BCS prior to calving which will decrease the number of days to the resumption 

of estrus.   

Glucose is the primary energy substrate for the fetus.  Ruminants produce VFA 

that function as gluconeogenic precursors.  Propionic acid is the most efficient glucose 

precursor but cattle grazing forages produce acetate as the primary VFA.  Insulin will 

decease glucose from the circulation and increase energy availability within tissues and 

for bodily stores, thus concentrations of insulin in plasma can be used as an indicator of 

nutritional status.  Concentration of IGF-I in plasma is also indicative of nutrient intake 

and may have a vital role in ovarian activity and follicular growth.  When nutrient intake 
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is adequate, GH will stimulant secretion of hepatic IGF-I.  When nutrient intake is 

adequate and BCS is great enough to allow for estrous activity to resume within the 85 d 

after calving, a cow will generally rebreed within a given breeding season. 

Greater maternal nutrient intake prior to weaning will increase weaning weight of 

calves.  A vast majority of nutrients and body reserves will be utilized for lactation, thus 

providing energy and protein that can be used to increase growth and weight gain of 

calves.  Prenatal and postnatal nutrient intake can influence the quality of carcass at 

harvest.  Diet of cattle can increase the amount of muscle or fat deposited which will 

influence the quality of meat.   

The Dutch Famine provided direct insight into the effects caused by inadequate 

nutrients during gestation in humans.  Greater concerns about health in developing 

countries, associated with malnutrition, or in developed countries due to over nutrition, 

have focused attention to the field of fetal programming.  The effects of nutrient 

restriction during gestation vary from decreased BW gain to dysfunction of organs and 

cardiovascular disease.  Over nutrition has an influence on health by influencing the 

prevalence of type II diabetes and obesity in humans, and increasing the fatness of 

carcasses in ruminants.  Development of a better understanding of how prenatal nutrition 

will influence productivity and health of offspring throughout life will allow for increased 

efficiency in beef production.
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CHAPTER III 
 

 

EFFECTS OF PROTEIN SUPPLEMENTATION ON REPRODUCTIVE 

PERFORMANCE OF FALL CALVING COWS, AND PRENATAL AND 

POSTNATAL GROWTH, AND CARCASS CHARACTERISTICS OF CALVES 

 

ABSTRACT 

 Fall calving cows grazing native dormant range were used to determine the effects 

of protein supplementation on reproductive performance of cows and growth and carcass 

characteristics of calves.  Cows were individually supplemented from mid-November to 

mid-March for four years with either a control diet (Con; 1.82 kg/d of 38 % CP) or low 

diet (L; 0.2 kg/d of 8%).  During each year cows were reassigned dietary treatments 

according to calving date and BCS, with half of Con and L cows remaining on the same 

diets as the previous year and the other half assigned to the other diet.  Cows were 

exposed to bulls for 60 d beginning December 1.  Statistical analyses were performed 

utilizing a 2 x 2 factorial design with PROC GLM and PROC FREQ.  Cows on Con diets 

lost less BW from November to January compared with L cows (-29.8 ± 2.8 and -49.7 ± 

2.8 kg, respectively, respectively; P < 0.001).  Body condition score of Con cows at 

weaning was greater than that of L cows (4.1 ± 0.1 and 3.9 ± 0.1, P = 0.03). Protein 
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supplementation increased insulin concentrations in plasma of Con compared with L 

cows during treatment (P < 0.003).  Birth weight of calves was not influenced by prenatal 

treatment (P = 0.86). Maternal protein supplementation did not influence plasma 

concentrations of insulin in calves (P > 0.22).  Concentrations of IGF-I were greater in 

calves suckling Con cows compared with calves from L cows (21.4 ± 2.1 and 14.8 ± 

2.1ng/ml, respectively; P = 0.03).  A prenatal x postnatal effect was detected for BW of 

calves; prenatal low and postnatal control calves (LCon; 186.1 ± 4.4, P = 0.02) had 

greater 205 d adjusted weaning weights compared with prenatal low and postnatal low 

(LL), prenatal control and postnatal low (ConL), and prenatal control and postnatal 

control (ConCon) calves (154.9 ± 4.0, 172.4 ± 4.1, and 180.1 ± 4.2 kg, respectively).  

There was a tendency (P = 0.06) for a prenatal x postnatal effect on ADG of calves at 

weaning; LCon calves gained more than LL and ConCon calves (2.1 ± 0.1, 1.7 ± 0.1, and 

1.9 ± 0.1 kg/d, respectively).  Calves from cows on Con diets during prenatal and 

postnatal growth had greater hot carcass weights (393.6 ± 9.1 kg) compared with LL 

calves (362.6 ± 9.1 kg, P = 0.02), however, other carcass characteristics were not 

influenced by treatment (P > 0.17).  Supplemental protein that increased BW and BCS of 

cows, increased ADG of calves prior to weaning, and increased BW at harvest, but did 

not influence carcass characteristics of calves. 

Introduction 

 Reproductive efficiency of a cow-calf operation is determined by adequate BCS 

at calving which is the most important factor that influences the postpartum anestrous 

interval (Richards et al., 1986; Selk et al., 1988; Morrison et al., 1999).  Profitability 

depends on maximizing production and minimizing inputs; however, the majority of 

profit comes from increasing BW of calves at weaning (Dickerson, 1970).  A cow must 
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produce one calf every 12 mo to maximize this production, thus there are only 85 d after 

gestation to become reproductively fit and rebreed.  Supplementation of cows will 

increase input costs but may be necessary for successful conception rates during times 

when forage quality is less than adequate (Lusby and Wettemann, 1988; Horney et al., 

1996; DelCurto et al., 2000).  Supplementation of calves, with ad libitum protein and 

energy, will increase weaning weights but can also decrease the amount of forages 

consumed (Stricker et al., 1979; Faulkner et al., 1994). 

 Cows will frequently be subjected to inadequate forage quality and quantity for 

the stage of production.  When adequate nutrients are not provided to the fetus during 

gestation, changes may result which will alter productivity of the offspring (Barker et al., 

1993).  The Dutch Famine gave an opportunity to evaluate the effects of prenatal 

malnutrition in humans (Roseboom et al., 2001) and resulted in increased 

experimentation with domesticated livestock.  When nutrient restriction occurs during 

late gestation, birth weights are reduced in cattle (Wiltbank et al., 1962; Corah et al., 

1975; Bellows and Short, 1978), however, early gestational nutrient restriction may not 

influence birth weight (Martin et al., 2007; Long et al., 2009; Long et al., 2010c).  

Fetuses deprived of adequate nutrition during early gestation had decreased muscle and 

increase adipose development (Long et al., 2012).  Inadequate prenatal nutrition of calves 

may cause decreased fertility (Martin et al., 2007) and carcass quality (Stalker et al., 

2006; Long et al., 2010c). 

 The major objective of the current study was to determine the effects of protein 

supplementation of fall calving cows on BW, BCS, reproductive performance, and the 

influence of protein supplementation to cows on prenatal and postnatal growth, and 
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carcass characteristics of calves.  A second objective was to evaluate the effects of 

protein supplementation on plasma concentrations of insulin, glucose, IGF-I, and plasma 

proteins in cows and insulin, IGF-I, and plasma proteins in calves.  Our hypothesis was 

that protein supplementation of fall calving cows will influence prenatal and postnatal 

growth and carcass characteristics of calves without affecting reproductive efficiency of 

the cows. 

Materials and Methods 

 

All experimental procedures described were approved by the Oklahoma State 

University Animal Care and Use Committee. 

Animals 

Fall calving, multiparous Angus cows were used to determine the effects of 

protein supplementation on BW and BCS, reproductive performance, plasma 

concentrations of insulin, IGF-I, plasma proteins, and glucose in cows and calves, calf 

growth, and carcass characteristics of calves.  Cows were maintained in the same 

pastures, at the Range Cow Research Center, west of Stillwater, OK and diets only 

differed during protein supplementation.  Cows were individually supplemented, from 

mid-November to mid-March during four consecutive years (n = 44, yr 1; n = 51, yr 2; n 

= 58, yr 3; n = 53, yr 4) with one of two diets. 

The low diet (L) consisted of 95 % soybean hulls and 5 % molasses (as-fed)  at 

0.2 kg/d for an 8% crude protein supplement and control diet (Con) consisted of 81 % 

cottonseed meal, 11 % soybean meal, and 8 % wheat mids (as-fed) at 1.82 kg/d for a 38 

% crude protein supplement.  Diets were fed 4 d/wk with Con cows received 3.2 kg and 

L cow received 0.4 kg each feeding. During lactation the subsequent year, half of the 

cows on Con and L prenatal treatments were assigned to Con and the other half was 
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assigned to L.  Cows were provided premixed mineral supplement ad libitum.  Grass hay 

was provided when forage amounts were inadequate due to snow cover or availability.  

Hay was also provided when ambient temperature was less than 0˚ C or 4˚ C with wet 

weather. 

Cows were exposed to mature bulls for a 60 d commencing on December 1. Body 

weights and BCS were obtained for cows, after a 16 h shrink period, 4 to 19 d before 

calving in August, during November to March, and at weaning in May.  Pregnancy rates 

were determined at weaning via rectal palpation and the interval from calving to 

conception was caclulated by subtraction of 280 d from calving dates.   

Calf Growth and Carcass Traits 

 Protein supplementation of cows was used to alter prenatal and postnatal nutrients 

available to calves.  Treatment combinations for calves were: Con prenatal and Con 

postnatal (ConCon), L prenatal and Con postnatal (LCon), Con prenatal and L postnatal 

(ConL), and L prenatal and L postnatal (LL).  Birth weights were taken within 24 h of 

birth and bull calves were castrated with rubber bands.  Body weights of calves were 

recorded in January, February, March, and at weaning in May.  

 Post-weaning growth was determined from BW obtained 3 to 5 times before 

calves entered the feedlot and adjusted ADG was calculated for 205 d and 365 d. After 

weaning each year calves were maintained as a single group at the Range Cow Research 

Center until entry into the feedlot. Calves received an implant of Component - S (yr 1; 

Elanco Animal Health, Greenfield, IN) or Revalor – S (yr 2; Merck Animal Health, 

Summit, NJ), with 120 mg of trenbolone acetate and 24 mg of estradiol-17β, upon entry 

into the feed lot (0 d). Calves received a high concentrate diet, during finishing, that 

consisted of 53 % dry rolled corn, 7 % roughage, 15 % dried distillers grains, 15 % wet 
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corn gluten, 5 % premixed dry supplement, and 5 % premixed liquid supplement on a dry 

matter basis.  Calves were fed until it was estimated that adipose deposition was adequate 

to result in at least 65 % choice carcasses with 1.25 cm back fat depth and prior to carcass 

weights that are penalized for being too heavy.   

Each year calves were harvested on a single day at a commercial abattoir in 

Arkansas City, KS and carcass characteristics were determined by experienced personnel.  

Hot carcass weights, ribeye area, quality grade, yield grade, back fat thickness, dressing 

percentage, and marbling scores were obtained. 

Hormone Analysis 

 Plasma samples were collected immediately following supplementation during yr 

3 from cows via tail veinipuncture and from calves via jugular veinipuncture with 

Monoject vacuum tubes with 15 mg EDTA (Tyco Healthcare Group, LP; Mansfield, 

MA) and samples were placed on ice.  Plasma was removed within 4 h via centrifugation 

at 1800 x g for 15 min and stored at -20˚ C. Cows were sampled in December, January, 

March, and May and calves were sampled in December, January, May, and the following 

November.  Insulin and IGF-I were quantified in samples from calves and cows, and 

glucose was quantified in cows. 

 Plasma samples were thawed at room temperature for 4 h on the day of analyses. 

IGF-I was quantified after acid ethanol extraction (16 h at 4˚ C) using a double antibody 

RIA protocol (Echternkamp et al., 1990) with recombinant human IGF-I (R&D Systems; 

Minneapolis, MN) as the standard.  Intra- and inter-assay CV’s were 13 and 4 %, 

respectively, for mature cow plasma and 13 and 16 %, respectively, for calf plasma.  

Insulin was quantified by a solid-phase RIA (Bossis et al., 1999; Coat-a-Count; Siemens, 

Los Angelos, CA) with bovine pancreatic insulin as the standard (Sigma Chemical Co., 
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St. Louis, MO). Intra- and inter-assay CV’s were 15 and 26 %, respectively, for cow 

plasma, and 20 and 30 %, respectively, for calf plasma. 

 Concentrations of glucose were quantified with Infinity™ Glucose Hexokinase 

Liquid Stable Reagent (Thermo Fisher Scientific Inc., Marietta, OH) in triplicate, at a 

concentration of 1:150 and kept at 4˚ C via ice water, prior to addition of reagent until 

incubation. Immediately following vortexing, samples were incubated in a water bath at 

27˚ C for 10 min; after incubation samples were placed into ice water until quantification. 

Intra- and inter-assay CV’s were 7 and 3 %, respectively.  

Statistical Analysis 

  The GLM procedure of SAS (SAS Institute Inc., Cary, NC), was used to analyze 

carcass traits, IGF-I, insulin, glucose, postpartum anestrous interval, BW and BCS.  The 

model for cow traits included previous year treatment, current year treatment, and all 

interactions.  The model for calf traits included prenatal treatment, postnatal treatment, 

year, and, when appropriate, sex and age as covariates.  Chi-squared analyses were used 

to evaluate the effect of treatment on pregnancy rates (PROC FREQ; SAS). Year was 

initially in the model, without significant interactions, year was removed and means were 

pool.  Fisher’s least square difference was used to compare means when F-test for 

treatments was significant (P < 0.05). 

Results 

Control cows lost less BW (-29.8 ± 2.8 kg; P < 0.001; Table 1) during November 

to January, compared with L cows (-49.7 ± 2.8 kg).  Protein supplementation increased 

BW (P = 0.05) and BCS (P = 0.03; Table 2) of Con cows (576.2 ± 7.0 kg and 4.2 ± 0.1, 

respectively) compared with L cows (556.1 ± 7.0 kg and 4.0 ± 0.1, respectively) in 

February. Control cows had greater BW compared with L cows in March (545.4 ± 7.6 
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and 522.3 ± 7.6 kg, respectively; P = 0.03).  Control cows had greater BW (548.1 ± 6.0 

kg; P = 0.03) and BCS (4.1 ± 0.1; P = 0.03) compared with L cows (529.0 ± 5.9 kg and 

3.9 ± 0.1, respectively) in May.  Calving date, pregnancy rate, and postpartum interval to 

conception were not influenced by protein supplementation (P > 0.22, Table 3).  

Concentrations of insulin in plasma of Con cows were greater (P < 0.001) in 

December, January, and March (1.49, 1.43, and 1.50 ± 0.06 ng/mL, respectively) 

compared with L cows (1.16, 1.04, and 1.15 ± 0.06 ng/mL, respectively).  Insulin in 

plasma of cows at weaning, was not influenced by treatment (P = 0.35, Fig. 1).  

Concentrations of glucose in plasma were not influenced by protein supplementation at 

any sampling period (P > 0.22, Fig. 2).  Concentrations of IGF-I (Fig. 3) were greater in 

Con cows compared with L cows in December (26.5 ± 3.0 and 17.1 ± 3.0 ng/mL, 

respectively; P = 0.04) but were not influenced in January, March, and May.   

Birth weight of calves was not influenced by prenatal protein supplementation of 

cows (P = 0.86, Table 4).  There was a prenatal x postnatal treatment effect (P = 0.04) on 

BW of calves in January; LL calves weighed less than calves on other treatments (Table 

4).  Calves that were LL gained less weight from birth until January (0.69 ± 0.03 kg/d; P 

= 0.04) compared with ConCon, ConL, and LCon calves (0.83, 0.78, and 0.85 ± 0.02 

kg/d, respectively, Fig. 5).  Adjusted weaning weights (205 d) were less for LL calves (P 

< 0.003) compared with all other groups.  LCon calves weighed more than ConL calves 

(186.1 ± 4.4 and 172.4 ± 4.1 kg, respectively, P = 0.02) and ConCon calves did not differ 

in BW compared with LCon and ConL calves (Table 4). Gains of LCon calves were 

greater from January to weaning (0.70 ± 0.02 kg/d) compared with ConL calves (0.63 ± 
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0.02 kg/d, P = 0.007); LL calves had the least gain compared with all treatments (0.56 ± 

0.02 kg/d; P < 0.01, Fig. 4).  

There were no interactions between prenatal and postnatal treatments after 

weaning.  Postnatal supplementation increased yearling weights (Table 4) of calves 

regardless of prenatal treatment. Calves that suckled Con cows had greater BW (301.1 ± 

8.8 kg) compared with calves which suckled L cows (278.5 ± 8.8 kg, P = 0.01).  

Postnatal Con calves tended to have greater ADG from weaning to one year of age 

compared with L calves (0.59 ± 0.02 and 0.56 ± 0.01 kg/d, respectively; P = 0.10).  There 

was a tendency for ConCon calves to weigh more than LL calves (405.0 ± 10.4 and 381.4 

± 10.4 kg, respectively, P = 0.09) at entry to the feed yard (Table 4), at approximately 19 

mo of age.  During the feedlot phase LCon calves had greater ADG (Fig. 5) than all other 

treatments (2.1 ± 0.1 kg/d, P = 0.03) and ConCon calves had a tendency to gain more 

compared with LL calves (1.9 ± 0.1 and 1.7 ± 0.1 kg/d, respectively, P = 0.06).   

Final BW was greater (Table 5; P = 0.02) for ConCon calves (642.6 ± 14.7 kg) 

compared with LL calves (601.4 ± 14.7 kg).  Hot carcass weight was greater (P = 0.02) 

for ConCon (393.6 ± 9.0 kg) and LCon (398.3 ± 9.0 kg) compared with LL calves (362.6 

± 9.0 kg).  Treatments did not influence dressing percentage (P = 0.17), ribeye area (P = 

0.56), yield grade (P = 0.34), or marbling score (P = 0.92; Table 5). 

 Concentrations of insulin (Fig. 6) in plasma of calves were not influenced (P > 

0.43) by prenatal and postnatal treatment.  IGF-I concentrations were greater in January 

(P = 0.03) and tended to be greater in November (P = 0.07) in the postnatal Con calves 

(21.4 ± 2.1 and 23.1 ± 1.6 ng/mL, respectively; Fig. 7) compared with calves on postnatal 

L (14.8 ± 2.1 and 18.7 ± 1.6 ng/mL, respectively). Steers tended to have greater 



36 
 

concentrations of IGF-I at weaning compared with heifers (29.8 ± 2.6 and 22.1 ± 2.9 

ng/mL, respectively, P = 0.06).   

Discussion 

 Body weight and BCS at weaning were decreased by inadequate protein for L 

cows compared with adequate protein for Con cows.  Body weight and BCS of cows at 

calving the subsequent fall was not influenced by protein supplementation the previous 

winter because good quality summer forages were available and cows gained weight.  

Fall calving cows grazing dormant pastures are usually exposed to inadequate nutrients 

during the 1
st
 trimester of gestation if supplemental protein is not fed.  Supplementation 

of lactating beef cows can influence reproductive traits (Wiltbank et al., 1962; Wiltbank 

et al., 1964; Dunn et al., 1969), however, milk production has a greater priority for 

nutrients than BW gain and endocrine functions associated with reproduction (Bauman 

and Currie, 1980).  Body condition score at calving is the best indicator of reproductive 

performance of beef cows (Richards et al., 1986; Selk et al., 1988; DeRouen et al., 1994).  

The interval from parturition to conception and overall pregnancy rates were not 

influenced by treatments because cows in this study were maintained with the minimal 

BCS that would allow onset of estrus and pregnancy to occur within a 60 d breeding 

season (Rakestraw et al., 1986).   

Supplementing protein to cows grazing dormant, low quality forages will increase 

dry matter intake and available energy (Fleck et al., 1988; Ovenell et al., 1991). The 

supplementation program for L cows resulted in a good model to determine if prenatal 

nutrient restriction results in long term effects on calves.  Concentrations of insulin in 

plasma were greater in Con compared with L cows during protein supplementation due to 
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increased nutritional status.  Similarly, Marston et al. (1995) found that protein 

supplementation increased insulin in lactating cows consuming dry forage. 

Concentrations of glucose in plasma were not influenced by treatment.  The lack 

of effect of treatment on plasma concentrations of glucose, although concentrations of 

insulin were greater in Con cows, could be caused by one or more of four possible 

mechanisms: 1) increased insulin caused glucose entry into tissues, 2) excess glucose was 

utilized by the developing fetus and placenta, 3) excess glucose was used for lactose 

production in the mammary gland and/or 4) increased dry matter intake from protein 

supplementation increased the amount of acetate produced which is an inefficiency 

precursor for gluconeogenesis.  The fourth possibility is not that probable since 

concentrations of insulin in plasma were increased. 

Concentrations of IGF-I were greater in December in plasma of Con cows 

compared with L cows.  Insulin and IGF-I are both indicative of nutritional status (Rutter 

et al., 1989; Ciccioli et al., 2003; Lents et al., 2005).  Increased concentrations of insulin 

and IGF-I in plasma indicate that protein supplementation increased available nutrients.  

These differences in maternal environment indicate Con cows can provided greater 

concentrations of nutrients to the developing fetus, or suckling calf, due to repartitioning 

of nutrients toward fetal growth and milk production (Bauman and Currie, 1980).  

 The lack of effect of prenatal protein supplementation of cows on birth weight of 

calves was most likely caused by the stage of gestation that protein and energy were 

limited.  The absence of an effect of nutrient deficiency during early gestation on birth 

weight of calves has also been observed by Martin et al. (2007) and Long et al. (2009).  

Even without an influence of prenatal treatment on birth weight, postnatal growth of 
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calves was reduced.  Reduced postnatal growth after prenatal nutrient restriction agrees 

with studies with humans and the development of a “thrifty phenotype” (Barker et al., 

1993).  Reduced availability of nutrients in utero may program the fetus for survival 

when exposed to nutrient restriction after birth.  Animals that are prenatally programmed 

to survive with limited postnatal nutrients have increased efficiency when adequate 

nutrients are available after birth (Larson et al., 2009).  Calves that were restricted both 

prenatally and postnatally gained less from birth in September and October to January, 

and had less BW compared with other treatments.  During the first few months before 

weaning, calves rely more on milk production, thus calves suckling L cows gained less 

due to decreased milk availability, in agreement with Reynolds et al. (1978).  The 

interaction between prenatal and postnatal treatments resulted in reduced BW and ADG 

for LL calves and intermediate growth for ConL and ConCon calves compared with 

LCon calves existed until weaning.    

Prenatal protein supplementation of cows did not influence concentrations of IGF-

I in plasma of calves.  Calves that suckled Con cows had greater concentrations of IGF-I 

compared with calves suckling L cows in January.  Greater concentrations of IGF-I in 

plasma of calves indicates increased nutritional status through increased milk 

consumption and may explain why differences between Con and L cows diminished after 

December.   

 Nutrient restriction can reduce organ development and function depending on 

severity and time of restriction (Long et al., 2010c). Concentrations of insulin in plasma 

of calves were not influenced by treatments indicating normal development of the 

pancreas and liver, which agrees with results of Stalker et al. (2006) and Long et al. 
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(2012).  In agreement with the effect of nutrient restriction in sheep (Greenwood et al., 

2002), prenatal and postnatal protein supplementation tended to decrease concentrations 

of insulin in ConCon calves compared with LL calves in December.  Severe restriction of 

nutrients of dams altered concentrations of glucose and insulin in plasma of cattle (Long 

et al., 2010d) and sheep (Gardner et al., 2005; Ford et al., 2007).  Maternal obesity 

reduced the ability of lambs to remove glucose from plasma similar to lambs from 

nutrient restricted ewes (Ford et al., 2009; Long et al., 2010a) indicating pancreatic 

malfunction and decreased insulin sensitivity of offspring from obese and under 

nourished mothers.   

Calves grazed forage for almost 12 mo after weaning and the effects of prenatal 

and preweaning nutrition on BW were minimal.  Adjusted yearling weight was 

influenced by postnatal supplementation of cows and ConCon and LCon calves were 

heavier compared with LL calves.  Concentrate diets fed in the finishing stage of beef 

production increase concentrations of propionate in plasma, which could exacerbate 

insulin insensitivity (Ford et al., 2007; Long et al., 2010a). Prenatal L and postnatal Con 

calves had greater growth than other treatment groups when fed rations to maximize gain.  

Conclusions on the influence of maternal protein supplementation on growth when calves 

consume high concentrate diets will be finalized when calves from the final two years are 

fed and harvested. 

Reduced BW and altered body composition occur in humans (Ravelli et al., 

1999), sheep (Ford et al., 2007; Zhu et al., 2007), and cattle (Zhu et al., 2006; Long et al., 

2009; Long et al., 2010c) due to prenatal nutrient restriction.  Restricted pre-weaning 

protein supplementation reduced final BW and hot carcass weight of calves, and the 
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effect was greatest in calves exposed to low prenatal and low postnatal protein 

supplementation of cows. Although BW was increased by maternal protein 

supplementation, ribeye area, dressing percentage, yield grade, or marbling score were 

not influenced.   

Nutrient restriction decreased muscle mass in cattle (Long et al., 2010c) and sheep 

(Zhu et al., 2006) and increased the area of muscle fibers.  Nutrient restriction in sheep 

increased adiposity of carcasses by 18 wk of age (Ford et al., 2007).  Quality grades are 

given to assess the amount of marbling and maturity of carcasses; marbling scores are 

directly related to quality grade.  Quality grades were not influenced by protein 

supplementation of dams.  Carcasses from prenatal L and postnatal L calves had slightly 

reduced marbling scores, and with a limited number of carcasses that have been harvested 

quality grade differences were not adequately evaluated.  

In conclusion, prenatal protein supplementation of fall calving cows, that did not 

influence reproductive efficiency of cows or birth weight of calves, increased growth of 

calves when postnatal nutrition was adequate.  Overall, postnatal protein supplementation 

of cows increased ADG and BW of calves but neither prenatal nor postnatal nutrition 

influenced the quality of the carcass.
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Table 1. Influence of protein supplementation (Control) during breeding and the 1
st
 

trimester of gestation, mid-November to mid-March, compared with low 

supplementation on BW of fall calving cows 

BW, kg 
Treatment 

SE P value 
Control Low  

No. of cows 75 75 - - 

November 622.4 629.8 6.9 0.45 

November to January -29.8 -49.7 5.6 < 0.001 

January 594.4 580.3 7.4 0.18 

February 576.2 556.1 7.0 0.05 

March 545.4 522.3 7.6 0.03 

January to May -48.0 -51.1 2.9 0.45 

May 548.1 529.0 6.0 0.03 

August 656.6 660.3 7.1 0.71 
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Table 2. Influence of protein supplementation (Control) during breeding and the 1
st
 

trimester of gestation, mid-November to mid-March, compared with low 

supplementation on BCS of fall calving cows 

BCS 
a 

Treatment 
SE P value 

Control Low  

No. of cows 75 75 - - 

November
 

4.8 4.8 0.1 0.56 

November to January -0.54 -0.59 0.05 0.47 

January 4.4 4.3 0.1 0.49 

February 4.2 4.0 0.1 0.03 

March 3.9 3.9 0.1 0.30 

January to May -0.29 -0.40 0.05 0.13 

May 4.1 3.9 0.1 0.03 

August 5.3 5.2 0.1 0.37 

a 
BCS: 1 = emaciated; 9 = obese (Wagner et al., 1988) 
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Table 3. Effect of protein supplementation during breeding and the 1
st
 trimester of gestation, 

mid-November to mid-March, on calving date, postpartum interval (PPI), and  pregnancy rates 

in fall calving cows 

Trait 

Treatment 

SE 
P 

value ConCon 
a
 LCon ConL LL 

No. of Cows 38 37 38 37 - - 

Calving Date 
b
 268 269 271 268 3 0.30 

Pregnancy 

Rate, % 
95.5 90.6 86.0 88.0 4.9 0.49 

PPI to 

conception, d
 83.9 90.6 89.7 87.2 3.7 0.22 

a
 ConCon = previous year dietary control treatment and current year dietary control treatment 

b
 Julian date  

 



44 
 

 

Figure 1. Effect of protein supplementation (Control) on concentrations of insulin in 

plasma compared with low supplementation of fall calving cows.  
a,b

 Within month 

means without a common letter differ (P < 0.001).  SE were 0.1, 0.1, 0.1, and 0.1 for 

December, January, March and May, respectively (n = 58). 
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Figure 2. Effect of protein supplementation (Control) on plasma concentrations of 

glucose compared with low supplementation in fall calving cows.  SE were 1, 2, 2, and 3 

for December, January, March and May, respectively (n = 58). 
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Figure 3.  Effect of protein supplementation (Control) in fall calving cows on 

concentrations of IGF-I in plasma compared with low supplementation.  
a,b

 Within month 

means without a common letter differ (P = 0.04).  SE were 3.0, 1.3, 0.9, and 0.7 for 

December, January, March and May, respectively (n = 58). 
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Table 4. Effects of prenatal 
2
 and postnatal

 3 
maternal protein supplementation on growth of 

calves fall born calves
 

Trait 
Treatment 

S.E. 
Number of 

Years ConCon 
1
 ConL LCon LL 

Birth Weight, kg 37.8 38.1 0.6 4 

BW January, kg 126.2
a 

122.6
a 

128.3
a 

111.5
b 

3.2 4 

Weaning Weight, 

kg 
180.1

ab 
172.4

b 
186.1

a 
154.9

c 
4.2 4 

Yearling Weight, 

kg 
303.1

a
 287.7

ab
 299.0

a
 269.2

b
 8.8 3 

Feedlot Entry 

BW, kg 
405.0

g
 395.1

gh
 384.4

gh
 381.4

h
 10.4 2 

a,b,c
 Means within row without a common letter differ (P < 0.05). 

g,h
 Means within row without a common letter differ (P < 0.10). 

1 
ConCon = prenatal control diet and postnatal control diet 

2 
prenatal treatments during conception and the 1

st
 trimester of gestation 

3
 postnatal treatments during early to mid-lactation 
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Figure 4.  Effects of maternal protein supplementation during early gestation and early 

lactation on ADG of calves prior to weaning. 
a,b,c

 Within growth period, means without a 

common letter differ (P < 0.01). SE were 0.06 and 0.04 for birth to January and January 

to weaning, respectively (n = 151). 
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Figure 5. Effect of prenatal and postnatal maternal protein supplementation on ADG of 

steers on high concentrate diets (2 yr; n = 35). 
a,b

 Means without a common superscript 

differ (P < 0.05).  
c,d 

Means without a common superscript tend to differ (P < 0.10). SE 

between treatments was 0.06. 
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Table 5. Effect of prenatal 
2
 and postnatal 

3 
maternal protein supplementation on 

carcass characteristics during years 1 and 2 

Trait 
Treatment 

S.E. 
ConCon 

1 
ConL LCon LL 

Steers, n 10 6 11 8 -- 

Final BW, kg 642.6
a

 616.4
ab

 650.7
ab

 601.4
b

 14.7 

Hot Carcass Weight, 

kg 393.6
a

 376.0
ab

 398.3
a

 362.6
b

 9.0 

Dressing Percentage, 

% 
62.5 63.9 64.0 62.3 0.7 

Ribeye Area, in
2

 13.7 14.1 13.5 13.4 0.6 

Final Yield Grade 3.4 2.9 3.1 3.2 0.3 

Marbling Score 
c

 332 325 309 295 28.6 
a,b

 Within row means without a common letter differ (P < 0.05). 
 c

 Small = 300-399; Slight = 200-299 
1 

ConCon = prenatal control diet and postnatal control diet 
2 

prenatal treatments during conception and the 1
st
 trimester of gestation 

3
 postnatal treatments during early to mid-lactation 
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Figure 6. Effect of prenatal and postnatal protein supplementation of cows during early 

gestation and early lactation on concentrations of insulin in plasma of fall born calves (n 

= 43).  SE were 0.2, 0.1, 0.1, and 0.1 before weaning in December, January, May, and in 

November at 13 mo of age, respectively.   
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Figure 7. Effect of prenatal and postnatal protein supplementation of cows during early 

gestation and early lactation on plasma concentrations of IGF-I in fall born calves (n = 

43).  SE were 6.4, 2.9, 3.9, and 2.3 before weaning in December, January, May, and in 

November at 13 mo of age, respectively.   
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CHAPTER IV 
 

 

SUMMARY AND CONCLUSIONS 

 

Fall calves born (Sept/Oct.) during four consecutive years (n = 196) were used to 

determine the effects of protein supplementation on cow performance and calf growth 

and carcass characteristics.  The major objective of this study was to determine the 

effects of maternal protein supplementation on prenatal and postnatal growth and carcass 

characteristics of calves, and BW, BCS, and reproductive performance of cows.  A 

secondary objective was to evaluate the effects of maternal protein supplementation on 

plasma concentrations of insulin, IGF-I, and proteins in calves and insulin, glucose, IGF-

I, and proteins in cows.  Our hypothesis was that protein supplementation of fall calving 

cows will influence prenatal and postnatal growth and carcass characteristics of calves 

without effecting reproductive efficiency of the cows.  

Cows were individually supplemented with protein to meet requirements when 

grazing dormant native range (Con; 1.82 kg/d of 38 % CP) or inadequate protein (L; 0.2 

kg/d of 8 % CP).  During lactation half of the cows on the Con and L prenatal treatments 

were assigned to the Con treatment the other half was assigned to the L treatment.  

Protein supplementation did not influence pregnancy rate or calving interval.  Negative 

energy balance associated with early lactation results in BW loss, however, protein 

supplementation decreased the amount of BW lost from November to January.  Cows that 

were supplemented had a greater BCS and BW at weaning (May) compared with L 
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cows.  Cows receiving L supplementations from November to March regained BW over 

the summer and BW and BCS were not different from Con cows prior to calving.  

Concentrations of insulin in plasma were increased during supplementation, while 

concentrations of IGF-I were increased in plasma of Con cows compared with L cows in 

December.  The Con cows had greater nutrients available due to supplementation.  This 

increase in nutritional status indicates an increase in nutrient uptake by the mammary 

gland or by the placenta/fetus. 

Birth weight was not influenced by prenatal protein supplementation.  Prenatal 

and postnatal treatments influenced growth of calves.  Calves that were born to L prenatal 

cows, and received C diets postnatally, gained more BW from birth (Sept./Oct.) to 

January compared with calves from other treatments.  These prenatal x postnatal 

interactions for ADG and overall BW remained throughout suckling with LCon calves 

having greater BW in January and 205 d adjusted weaning weights.  Postnatal maternal 

protein supplementation increased concentrations of IGF-I in plasma of calves in January.  

This increase in IGF-I concentrations indicates that Con calves received greater nutrients 

compared with L calves.  

Postnatal supplementation increased 365 d adjusted yearling weights and tended 

to influence BW of calves at entry to the feedlot.  Ad libitum nutrient availability from 

high concentrate finishing diets resulted in LCon outgaining all other treatment groups.  

The onset of a thrifty phenotype was facilitated by prenatal nutrient restriction, which 

programmed the fetus for exposure to postnatal nutrient restriction.  Control prenatal and 

Con postnatal calves tended to gain more than L prenatal and L postnatal calves.  When 

calves from the final two years of this study are harvested, final conclusions will be 
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made.  Independent of prenatal treatment, calves that suckled Con cows had greater BW 

at harvest and hot carcass weight compared with LL calves.  The BW increase with 

protein supplementation did not influence quality of carcasses with approximately 70 % 

of all carcasses grading choice. Neither prenatal nor postnatal protein supplementation 

influenced yield grade, ribeye area, marbling score, or dressing percentage.  

 In conclusion, protein supplementation of cows, during prenatal growth of calves 

in early gestation and postnatal supplementation, will alter the growth of calves prior to 

weaning and in the feedlot.  The increase in BW resulted in heavier carcasses but did not 

influence characteristics of the carcasses.  Further research is needed to fully elucidate the 

effects of prenatal nutrition on carcass characteristics of fall born calves. 
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