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Abstract:  

 

A computationally simple method is demonstrated for automated identification of steady 

state and transient state in noisy process signals of an industrial-scale, single or multi-

variable process.  This steady state and transient state identification method uses the R-

statistic method, which is a ratio of estimated variances, and independent of the process 

variance. It has been implemented for automated identification of steady state of a single 

variable water flow rate to an absorption column in the Unit Operations Lab and the 

multi-variable commercial scale distillation process in FRI. When there is an upset in the 

process the steady state identifier indicates so. Most often the visual identification of 

steady state agrees with the statistic-based method of identification of steady state. At the 

process where the noise is pronounced and confounds identification of steady state, the 

steady state identifier helps operators to interpret the data. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Overview 

Identification of both steady state and transient state in noisy process signals is important 

to design and analyze a control system. Steady state is where the system becomes stable but may 

be confounded by noise. Steady state triggers the collection of data for process model adjustment, 

control [1], optimization [2], process analysis, fault detection [3], data reconciliation [4], neural 

network training, etc. Alternately, a transient state can occur because of environmental changes, 

upsets, changes in set point, etc. Transient state triggers the collection of data for dynamic 

modeling, recognition of points of change, motion, etc. [5-7] Identification of steady state is 

usually a visually subjective operator decision, and a statistically-based method can standardize 

this procedure. This study reports on an application to trigger sampling and transitions in an 

experimental sequence. 

Engineers often run a sequence of experiments throughout a range of operating 

conditions to collect data, and process operators sequence to the next stage of a process. Each 

sampling event is initiated when the operator observes that steady conditions are met, and then 

the operator implements the new set of operating conditions.  However, this visual method of 
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triggering requires continual human attention, and it is subject to human error in the recognition 

of steady state when: measurements are noisy, process changes are slow, there are multiple 

dynamics, or change-of-shift timing infects the visual interpretation.  

Alternately, the experimental run can be scheduled to go to the next set of conditions at 

pre-set time intervals. Unfortunately, this method can create inefficiency if the runs are scheduled 

for an unnecessarily long time, or the data can be worthless if the scheduled time is insufficient 

for any particular set of conditions to achieve steady state. Since the time to reach steady state 

varies with operating conditions, it is nearly impossible to predict the necessary hold time.  

Consequently, automated online, real-time steady state identification would be useful to 

trigger the next stage of an experimental plan or process phase.  

The Steady State Identification (SSID) and Transient State Identification (TSID) method 

in this study is based on the R-statistic method [8]. It has been implemented for automated 

identification of steady state of a single variable water flow rate to an absorption column in the 

Unit Operations Lab at OSU and the multi-variable commercial scale distillation process in 

Fractionation Research, Inc. (FRI).  

The implementation has two stages:  First, historical data are used off-line to choose a 

sample interval to eliminate autocorrelation of the data and to validate the method. Second, the 

SS and TS identification code is installed onto an online computer for either application (Labview 

software in the Unit Operation Lab, and Excel VBA running on the FRI servers at the unit).  

Results illustrate how this SS or TS identification can be used in real-time for online control of a 

test sequences.  
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The findings reveal: A) When there is an upset in the process the steady state identifier 

indicates so; B) Most often the visual identification of steady state agrees with the statistic-based 

method of identification of steady state; C) At the process where the noise is pronounced and 

confounds identification of steady state, the steady state identifier helps operators interpret the 

data. 

1.2 Literature Survey 

1.2.1 Direct Approach to Steady State Identification 

The direct approach to steady state identification is to perform a linear regression of a 

sequence of data and test the slope of this linear regression line. If the slope is close to zero, it 

means the process is probably at steady state. On the contrary, if the slope is significantly 

different from zero, the process is probably at transient state [9].  

In general, this method is an off-line technique. The online version requires large 

computational data storage, and user expertise to decide the data window length to clear 

autocorrelation. Concerning computational burden, the whole data window must be updated and 

the computer must calculate the linear regression slope at each of the time interval. Furthermore, 

the appropriate length of the data window is important. For example, the linear regression slope is 

temporarily equal zero in the middle of a definite oscillation, which would lead to wrong steady 

state identification. The length of data window could not be decided by a universal rule and any 

selection would require human judgment. 
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1.2.2 F-test Type Statistic Method 

The F-test type statistic method [10] is to calculate the ratio of variances which is 

measured from same sequence of data using two different methods. One of the variances is the 

mean square deviation of data within the chosen data window. The other variance is the mean of 

squared differences of successive data from the same data window. Ideally, the ratio of two 

variances would be unity at a steady state process. However, the actual ratio will not be exactly 

unity because of random noise in the real process. The ratio is around unity at steady state. 

The F-test statistic method is valid, but has several undesirable features. For instance, this 

method must also store and calculate a large number of data, which leads to it also being 

computationally expensive. Furthermore, this method requires user expertise to select an 

appropriate time interval to eliminate the autocorrelation.  

1.2.3 R-Statistic Method 

The R-statistic Method is styled after the F-test type static method [11]. The R-statistic 

method [8] calculates the ratio of variances, which are measured on the same set of data by two 

different methods. The detailed information of R-statistic method is presented in Chapter 2. This 

approach is executed using an easily implemented statistical method with defined critical values 

[12, 13].  It was extended to a multi-variable process and demonstrated on lab-scale and pilot-

scale processes to automatically trigger an experimental sequence [14-16].  It was also 

demonstrated as a convergence criterion in nonlinear regression optimization [17, 18]. This work 

demonstrates it in a commercial scale process. 
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1.3 Summary 

In either Steady State Identification or Transient State Identification, computers are 

preferred over visual inspection. The R-statistic method has advantages over direct approach 

identification method and F-test type statistic method. This work demonstrates two separate 

implementations, one in the Unit Operation Lab and the other on the FRI Unit. The method works 

with both off-line and online data by running in the background. It is a computationally simple 

method which only needs to store eight variables in each calculation. It detects steady state and 

loss of steady state based on time series analysis and statistical tests, which requires no process 

knowledge for the operators. 
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CHAPTER II 

 

Method 

 

2.1  Explanation of the R-statistic Method 

This R-statistic method calculates the ratio of two variances, which are measured on the 

same set of data by two methods [8]. In order to reduce computational effort, exponentially 

weighted moving average and variances are calculated in place of the conventional average or 

variance. Fig 2.1 illustrates the concept.  The dotted line represents the true but unknowable trend 

of a process.  The value starts at 15, ramps to a value of 10 at a time of 50, and then holds steady. 

The diamond markers about that trend represent the measured data that the observer sees and 

constitutes all knowledge. The dashed line, the true trend is unknowable, only the measurements 

can be known and they are infected with noise-like fluctuations, masking the truth.  

The SSID/TSID approach first calculates a filtered value of the process measurement, 

indicated by the curved line that lags behind the data. Then the variance in the data is measured 

by two methods. The deviation indicated by d2 in the upper left of the figure is the difference 

between measurement and the filtered trend. The deviation indicated by d1 in the lower right is 

the difference between sequential data measurements. If the process is at SS, as illustrated in the 

80 to 100 time period, Xf is almost the middle of the data. Then the process variance ν
2
, estimated 
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by d2 will ideally be equal to δ
2
 estimated by d1. Then the ratio of the variances   

  
  

  
  

 will be 

approximately equal to unity,   
  

  

  
  

  . Alternately, if the process is in a TS, then Xf is not 

the middle of data, the filtered value lags behind, and the variance as estimated by d2 will be 

much larger than the variance as estimated by d1,  
 
  

   
  

 , and ratio will be much greater 

than unity,   
  

  

  
  

>> 1.  

 

Figure 2.1: Calculated actual process, filtered data and process trend by Excel 

To minimize computational burden, in this method a filtered value (not an average) 

provides an estimate of the data mean: 

                                                                                                                                (1) 
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Where, 

                          

                         

                   

                           

  The first method to obtain a measure of the variance uses an exponentially weighted 

moving “variance” (another filter) based on the square of the difference between the data and the 

“average”: 

  
                 

         
 
                                                                                         (2) 

Where, 

  
                                                  

  
                                                                 

Equation (2) is a measure of the variance to be used in the numerator or the ratio statistic.  

In Equation (2) the previous value of the filtered measurement is used instead of the most recently 

updated value to prevent autocorrelation from biasing the variance estimate,   
   , keeping the 

equation for the ratio simple. 

The second method to obtain a measure of variance is an exponentially weighted moving 

“variance” (another filter) based on sequential data differences: 

  
               

         
 
                                                                                           (3) 
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Where, 

  
                                                  

  
                                                                

This will be the denominator measure of the variance. 

The ratio of variances, the R-statistic, may now be computed by the following simple 

equation: 

  
        

   

  
   

                                                                                                                                 (4) 

The calculated value is to be compared to its critical values to determine SS or TS. 

Neither Equation (2) nor Equation (3) computes the variance.  They compute a measure of the 

variance.  Accordingly, the (2 – λ1) coefficient in Equation (4) is required to scale the ratio to 

represent the variance ratio. See [8] for the full derivation and analysis. 

In expanding the technique for a multi-variable analysis, we choose to claim that a 

process is not at steady state if any process variable is not at steady state, and might be at steady 

state if all variables are at SS. This can be easily computed with a single statistic: 

          ∏    
 
                                                                                                                         (5) 

Where, 
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2.2 Selection of Critical Value 

The concept is simple but the statistical vagaries create distributions of the R-statistic 

values that need to be understood. Fig 2.2 represents the statistical distribution of the R-statistic 

values at steady state. 

 

Figure 2.2: R-statistic distribution at steady state 

The value of the R-statistic will have some variability because of the random fluctuations 

in the sequential measured data. If the value of R is less than the upper 95% confidence value, the 

process may be at steady state, but if it is beyond (larger than) the 95% confidence value then it is 
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likely that the process is not at steady state. If the process is at steady state, there is a small, α = 

5% chance that R > R0.95. 

Fig 2.3 includes the distribution of the R-statistic for a process that is not at steady state, 

one that is in a transient state, with its distribution of R-statistic values greater than unity. For a 

process that is not at steady state, there is a high chance that R > R0.95. As illustrated in Fig 2.3 it 

is over a 70% chance. 

 
Figure 2.3: High chance of not being at steady state 

So, if R > R0.95 the likely explanation is process is in transient state. As illustrated by the 

shaded areas to the right of the R0.95 value, the probability that an excessive R-value could come 

from the SS or the TS distribution, the odds are about 15:1 for being in the transient state.  

However, if R > R0.95 this does not indicate the process is at steady state. Fig 2.4 provides 

an illustration using the same two SS and TS distributions.  As illustrated, the likelihood of R < 

R0.95 if at steady state is 95%, and if not at steady state is 30%. Here the odds are 3:1 that the 
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steady state conclusion is true. The 3:1 odds are not very definitive.  So, to be confident that the 

process is at steady state, consider the left side of the distributions. 

 
 

Figure 2.4: Critical value for steady state identification 

For a given transient state, Rβ, TS is the lower β critical value and for a given steady state, 

R1-α, SS is the 1-α upper critical value. If R > R1-α, SS, then it will reject SS (accept TS). And if R < 

R1-α, SS, it will reject TS (accept SS). 

If the process is in a transient state then β is the probability of R < Rβ, TS. However, if the 

process is at steady state then as illustrated in Fig 2.4 there is a 40% likelihood that R < Rβ, TS. 

However, if the process is in TS, then as illustrate in Fig 2.4 there is only a 1% chance that R < 

Rβ, TS. So, if R < R1-α, SS the odds are 40:1 that process is at steady state.  

If Rβ, TS ≤ R ≤ R1-α, SS then there is a likelihood of the process being either at steady state 

or transient state. There is no certainty that a change happened, so hold the last decision. 

A Type-I error is the trigger of a ‘not at steady state’ claim when the process is at steady 

state.  A Type-II error is the trigger of an ‘at steady state’ claim when the process is in a transient 
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state.  In any statistical test, the user needs to choose the level of significance, α, the probability 

of a Type-I error, and power, β the probability of a Type-II error.  Once decided, the R1-α, SS 

critical value can be obtained from [12] and the Rβ, TS critical value from [13].  

However, if this is a multi-variable test, to have the overall test error probability values of 

α and β, the individual test values need to be shifted.  Theoretically, it can be shown [14] that 

when there is no correlation between process variables,  

     √          
 

                                                                                                                  (6) 

Where,  

                                                           

                                                                           

                                                                       

For example in a SSID application that includes      variables and with an overall 

level of significance        for rejecting the SS hypothesis and claiming TS, the level of 

significance for each individual test needs to be about 0.005.   

However, it is more convenient and less dependent on idealizations to visually select data 

from periods that represent a transient or steady period, and to find the R-critical values that make 

the algorithm agree with the user interpretation.  
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2.3 Selection of Filter Value 

Three filter factors, λ1, λ2 and λ3, are used to calculate the R-statistic value. The filter 

factors in Equations (1-3) can be related to the number of data (the length of the time window) in 

the average or variance calculation. The lower the λ-value the more data are effectively averaged, 

and the longer a not-at-SS event will persist in the data window. This means a larger run length to 

claim SS after the process returns to SS. To determine an average run length (ARL), first expand 

the filter mechanism: 

                  
 

          [      
           

] 

                 
             

           
   

                    
                                                  (7) 

What value of N makes the persisting influence of the old          trivial? If at SS for 

N samplings then               and       . What value of N makes              
 

   ? As an estimate assume     means 2%, and perhaps      
     . If      , then    

                     , and    
   

    

 
 

         
   

         

       
     . If we assume     

means 5%,   
   

    

 
 

         
     . If we assume     means 5% and       

     ,   

   
    

 
 

         
     . So, N for the influence to be gone, to permit Xf, νf

2
 and δf

2
 to be at SS values 

is between 35 and 50 samples of steady state after an event, depending on magnitude of event and 

what decay fraction makes it in consequential. 
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When the process is at SS and the method values have reduced to their SS value, then 

there is a probability of R < Rβ, TS. Assume K is average number of samples to get an R < critical 

value, 

                                      

  (                                  ) 

                (          )   (          ) 

                      

                                                                                                                                            (8) 

                                                                                                        (9) 

For the multi-variable test, if we have M variables and each PV is independent, 

                                                                

               (          )      (          ) 

                                                                                                                                    (10) 

                                                                                                     (11) 

If we assume a 50% chance of claiming SS when the process is at SS,   
        

 
  

       
. If  

       and     , then     . If we assume a 95% chance of claiming SS when the process 

is at SS, then     . That means that after wait of 35 to 50 samples for an event to clear, there is 
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an additional wait of about 10 to 20 samples for the probability of R less than critical value. The 

average run length (ARL) to detect SS after a transient is then about 45 to 70 samples. 

However, to ensure greater confidence in the SS claim [13, 15, 18], or faster 

identification [19], alternate values have been recommended. Larger λ values mean that fewer 

data are involved in the analysis, which has a benefit of reducing the time for the identifier to 

catch up to a process change; but, has a undesired impact of increasing the variability on the 

statistic, confounding interpretation.  Lower λ values undesirably increase the average run length 

to detection, but increase precision (minimizing Type-I and Type-II statistical errors). Following 

the findings of [14-16] , this work uses filter values of               in Unit Operation Lab 

and         and            in FRI, balancing precision with ARL. 

2.4  Selection of Sampling Intervals 

The basis for this method presumes that there is no autocorrelation in the time-series 

process data.  Autocorrelation means that if a measurement value is high (or low) the subsequent 

measurement value will be related to it.  For example, if a real process event causes a temperature 

measurement to be a bit high, and the event has persistence, then the next measurement will also 

be influenced by the event and will also be a bit high.  Autocorrelation could be related to control 

action, thermal inertia, filters in sensors, etc.  Autocorrelation would tend to make all R-statistic 

distributions shift to the right, requiring a reinterpretation of critical values for each process 

variable.  

It is more convenient to choose a sampling interval that eliminates autocorrelation.  A 

plot of the current process measurement versus the previous sampling of the process 
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measurement over a sufficiently long period of time (equaling several time-constants) at steady 

state is required to establish the presence/absence of autocorrelation.  Visually choose a segment 

of data that is at steady state, and plot the PV value vs. its prior value.  If a plot that resembles the 

pattern shown in Fig 2.5, there is no autocorrelation between the sequential process 

measurements. This pattern is also referred to as a shotgun pattern. 

 

Figure 2.5: Test for autocorrelation revealing no trend  

Alternately, if the plot appears as Fig 2.6 where there is a definite trend between the 

current measurement and the previous measurement, then there is autocorrelation.  The figure 

illustrates a linear pattern; however, the trends can be exponential, quadratic, etc. 
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If autocorrelation is revealed, increase the sampling interval until it effectively 

disappears, leaving a shotgun pattern.  Although there are statistical methods to evaluate the 

degree of confidence in autocorrelation, this experience reveals that visual inspection of the plots 

testing autocorrelation is sufficient. 

 

Figure 2.6: Test for autocorrelation revealing trends  

In the Unit Operation Lab, data is available for each measurement on a one-second 

interval. Fig 2.7 shows that there is no autocorrelation at one second interval. For the single 

variable test in Unit Operation Lab, a sampling interval of one second is suitable for the steady 

state identifier and controller also. 
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Figure 2.7: Test for autocorrelation revealing no trend in Unit Operation Lab 

For the multi-variable test in the FRI distillation column, nearly all variables revealed 

autocorrelation at the sampling frequency of the controller.  For some, a sampling interval of 20 

seconds removed the autocorrelation, but for others, it required about a 50 seconds sampling 

interval. For instance, for the variable “FIC-2”, Fig 2.8 shows the autocorrelation at one second 

interval, and it would change to non-autocorrelation by increasing the sampling interval, which is 

shown in Fig 2.9. For simplicity, we set a common sampling interval of one-minute for all 

variables.   
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Figure 2.8: Test for auto correlation revealing trends of FIC-2 in FRI. 

 

Figure 2.9: Test for autocorrelation revealing no trend of FIC-2 in FRI.  
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As a final aspect of the method development, recognize that this statistical method only 

accommodates noisy data.  If the data are noiseless and at steady state, the data series will have 

exactly the same values, which would drive the denominator measure of variance to zero, leading 

to an execution error.  In this application, because of discrimination error in the instrument 

system under some conditions, or zero flow rate under other conditions, the time series of 

measurements could have identical values.  In order to avoid this condition, a normally and 

independently distributed noise signal of zero mean and small variance NID (0, σ) was added on 

the original data to calculate the R value. The Box Mueller formula was used to generate the 

perturbation.  The variance was chosen to be small relative to the signal variance at normal 

conditions.  

2.5 Summary 

Upon algorithm initialization all SSi values are set to a value of 0.5, to represent that 

there is no basis to state that the variable is either in a transient SSi = 0 or at steady state SSi = 1. 

Subsequently, when the process variable is at SS (if Ri < lower critical value), it will set SSi = 1.  

Alternately, if Ri > higher critical value set SSi = 0. When each variable becomes confidently at 

SS, the product of all SSi values is 1, and the process is at SS.  If the product is 0, then at least one 

variable is confidently in a transient, or has recently been in a transient and is not confidently at 

steady state, which means the process is in a transient, not at SS. If the product is between 0 and 

1, it means that some labels still have the initial 0.5 value, meaning that there is not enough 

information to make a definite decision about the recent state of the process. 
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CHAPTER III 

 

EXPERIMENTAL EQUIPMENT 

 

3.1 Experimental Equipment in Unit Operation Lab 

The absorption column in the Unit Operation Lab in the School of Chemical Engineering 

is approximately 12 ft. tall and 0.7 ft. in diameter. In the column, 0.7 inch Nutter rings are 

randomly distributed. This packing is used to increase the surface area of contact between 

absorbent and gas streams to improve mass transfer.  National Instruments Compact FieldPoint 

and LabView software are used for data acquisition of 7 variables and control of 4.  One 

represents the absorbent liquid (water or a dilute NaOH solution) flow rate into the column.  

An orifice flow meter is used.  Ideally, an orifice plate is a thin plate with a hole in the 

middle. It is placed in the pipe in which water flows. When the water reaches the orifice plate, 

water is forced to converge to go through the small hole. The point of maximum convergence 

actually occurs shortly downstream of the physical orifice, at the so-called the vena contracta. As 

it does so, the water flow rate changes. Beyond the vena contracta, the water flow streamlines 

expand and the water flow rate changes once again.  The Bernoulli relation defines the pressure 

difference created by the differing fluid velocity.  The pressure drop across the orifice then 

becomes an easy to measure representation of the flow rate.   
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Our non-ideal orifice assembly, shown in Fig. 3.1, is in a 1.25 inch line and represents the 

flange-tap configuration commonly used in industry. The differential pressure cell, just below and 

out of the photo, converts differential pressure of the orifice to a 4-20 mA transmission electric 

current.   

 

 

Figure 3.1: Orifice meter used in the Unit Operation Lab 

As part of the nonideality of the device, turbulence in the flowing water creates pressure 

drop fluctuations on the pressure drop, which adds noise to the signal.  Further, the intensity of 

the pressure fluctuations increases with flow rate.  But simultaneously, the nonlinear conversion 

of the transmission signal to flow rate (ideally a square root) tempers the larger fluctuations, 

making the noise on the calculated flow rate signal appear lower at high flow rates and larger at 
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low flow rates.  In this project, water flow rate is used to demonstrate that this SS and TS 

identification works. 

The application in the Unit Operation Lab is a pilot scale water flow process, which is 

single variable, but also represents industrial craft. It has the advantage of permitting a variety of 

tests to reveal method application. 

3.2 Experimental Equipment in FRI 

Fractionation Research, Inc. (FRI) [20] is a non-profit research consortium which 

performs distillation research in commercial scale distillation columns for its 72 member 

companies around the world.  

The FRI unit has two distillation columns – the low-pressure (LP) column that operates 

from deep vacuum to 165 psia and the high-pressure (HP) column that operates from atmospheric 

pressure to 500 psia. Both the LP and the HP columns have a 4-ft diameter 28-ft section, and the 

LP column has an 8-ft diameter 12-ft section on top of the 4-ft diameter section. Binary 

hydrocarbon systems are typically used. The FRI unit is capable of operating from deep vacuum 

to a high pressure of 500 psia. Each column has its own set of auxiliary equipment (condensers, 

reboilers, pumps, etc.). 

FRI tests distillation column internals by using hydrocarbon systems. Each test has 

different design conditions to perform different test requirement. All the FRI data are collected at 

steady state. Once the required test conditions are established and steady state is confirmed, data 

will start to be recorded. Once the data collection is complete, new conditions will start to be 

approached and wait for the steady state again. 
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FRI reads the real-time process data from Yokogawa® Exaquantum™ historian and it 

could be output to excel spreadsheet, which is installed the steady state and transient state 

identification code by running in VBA. 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

The implementation has three stages:  First, historical data is used off-line to choose a 

sample interval to eliminate autocorrelation of the data and to validate the method. Second, the 

steady state and transient state identification code is installed into online computers for either 

application: LabView software in the Unit Operation Lab and also installed onto FRI servers, 

running in Excel VBA, at the unit. Third, the result from the steady state and transient state 

identifier would be tested whether or not it agrees with visual observation. Results illustrate how 

this SS or TS identification can be used to in real-time for online control of test sequences. 

4.1  SSID Implementation in Unit Operation Lab 

The steady state identifier has been tested on a water flow line feeding the absorption 

column. In this test, 1 second is chosen as sampling interval, which is as same as the operation 

time interval, λ1 = λ2 = λ3 = 0.1 are used as the filter factor, as well as 1 is used as the lower 

critical value and 4 is used as higher critical value. 

4.1.1 SSID Test with Set Point Change in the Unit Operation Lab 

Fig. 4.1 presents the plot of water flow rate vs. time and the state identification value, SS, 

results vs. time. The solid line is the process measurement (water flow rate) and the dotted line is 
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the SS-value.  A value of 1 means probably or confidently at steady state. And, the value of 0 

means confidently or probably transient state. It shows that the steady state identifier does 

respond correctly to the dynamic changes made in the system. In Fig. 4.1, all the process changes 

are step changes to the flow rate set point, and trigger the steady state identifier to SS=0 almost 

instantly. But, when the process is back to steady state, it will take almost 30 seconds (30 

samples) for the R-value to go below the critical value and trigger the steady state. That is 

because of the filtering nature of the steady state identifier. The amount of delay depends on λ 

values, the nature of the process and the trigger value. For example, λ1 = λ2 = λ3 = 0.1 meaning 

that the most recent 30 data points are used to calculate the R-statistic value. In the other words, 

the identifier has to wait 30 seconds to change the status. The time to claim SS, the ARL, is 

consistent with the N+K estimate of the prior section. For most of the processes, the amount of 

delay is acceptable. Step changes are made at 0, 25, 60, 100, 130, 210 seconds. Notice that at low 

flow rates, the measurement noise is much higher compared to high flow rates. The SSID 

response is independent of the noise amplitude. A visual detection would be subjective, however 

having a steady state identifier that has a theoretical basis helps identify steady state. 
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Figure 4.1: Steady state identifier results with set point changes in the water flow rate 

4.1.2 SSID Test with Diverse External Upsets in the Unit Operation Lab 

Similar with the Fig 4.1, Fig. 4.2 presents the plot of water flow rate vs. time and the state 

identification value, SS, results vs. time. The solid line is the process measurement (water flow 

rate) and the dotted line is the SS-value.  A value of 1 means probably or confidently at steady 

state. And, the value of 0 means confidently or probably transient state. It shows that the steady 

state identifier responds to upsets and environmental disturbances. We toggled the pump off then 

on at t~65s and changed the signal to the valve down then up at time~130s.  Fig. 4.2 reveals that 

the identifier recognized these changes “instantly” and then comes back to the steady state. At 

time~250s, we changed the set points and increased the flow controller gain, which prevented 
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process from settling. Observe again that the steady state identifier works in spite of the noise 

change.  

 

Figure 4.2: Steady state identifier results on the water flow rate with diverse external upsets 

In both of these graphs, the steady state identifier agrees with a visual recognition of the 

system state except for one instance at a lower flow rate (Fig 4.2, time~250s) where the controller 

oscillation might appear as noise on the comprised time scale, which confounds identification of 

steady state visually. 

4.2 SSID Implementation in FRI 

The steady state identifier has been used to detect steady state and transient state in 

offline and online data at the FRI distillation unit. As we have discussed above, the value of 0.5 

means that there is no basis to state that the variable is either in a transient or at steady state, the 
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value of 1 means probably or confidently at steady state and the value of 0 means confidently or 

probably transient state. For every test in FRI, six to twelve key variables are chosen to monitor 

to decide whether the process is at steady state or transient state that is based on the nature of the 

distillation column. Depending on the different test objectives; the monitored key variables are 

changed. 

4.2.1 SSID Offline test in FRI 

Offline data from historian was collected to check on the working of this steady state and 

transient state identification method and confirmed that the 1 minute sampling interval is 

appropriated.  

Fig 4.3 shows that the steady state identifier responds correctly to the dynamic changes to 

the multi-variable historical process. The solid lines reveal eight process measurements vs. time, 

and the dotted line is the SS-value vs. time. At first, there is no basis to state the process is at 

steady state or transient state so SSID value equal 0.5. In Fig. 4.3, the process changed at 23:33, 

and trigger the steady state identifier to SS=0 almost instantly. But similar with the SSID test in 

Unit Operation Lab, the process will take some time to trigger the process is back to steady state.  

In this multi-variables test, λ1 = 0.2 and λ2 = λ 3 = 0.1 was used. That means we need to 

wait 35 to 50 samples for an event to clear and an additional 10 to 20 samples for the probability 

of R less than critical value for each variable. In total the identifier has to wait 45 to 70 minutes 

(samples) to change the status. For a commercial scale distillation process, the delay is 

acceptable. 
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Figure 4.3: Steady state identifier offline result in FRI 

4.2.2 SSID Online Test in FRI 

The steady state and transient state identifier was also installed onto FRI servers, running 

in Excel VBA, to test online. Based on the result from offline test, 1 minute is chosen as the 

sampling interval, λ1 = 0.2 and λ2 = λ3 = 0.1 is chosen as filter factor, as well as 1 is chosen as 

lower critical value and 4 is chosen as higher critical value. 

4.2.2.1 SSID Online Test in FRI on 8/14/2012 - 8/15/2012 

Fig 4.4 shows that the steady state identifier result on 8/14/2012 - 8/15/2012, which 

responds correctly online to the dynamic changes to multi-variable process. The solid lines reveal 

seven process measurements vs. time, and the dotted line is the SS-value vs. time. Step changes 

are made in the process at 20:25, 23:55, 3:10, and 6:05. Steady state and transient state identifier 
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is triggered to SSID = 0 almost instantly. But similar with the SSID test in Unit Operation Lab 

and SSID offline test, the process will take some time to trigger the process is back to steady 

state. The approximately one hour delay is acceptable for FRI. 

 

Figure 4.4: Steady state identifier online result in FRI on 8/14/2012 - 8/15/2012 

4.2.2.2 SSID Online Test in FRI on 9/17/2012 - 9/19/2012 

Fig 4.5 shows that the steady state identifier result on 9/17/2012 - 9/19/2012, which 

responds correctly online to the dynamic changes to multi-variable process. Similar with the other 

tests, the solid lines reveal seven process measurements vs. time, and the dotted line is the SS-

value vs. time. More step changes are made in this test. The result are also similar with the SSID 

test in Unit Operation Lab and other offline and online tests in FRI, steady state and transient 
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state identifier is triggered to SSID = 0 almost instantly, but the process will take some time to 

trigger the process is back to steady state.  

 

Figure 4.5: Steady state identifier online result in FRI on 9/17/2012 - 9/19/2012 

4.2.2.3 SSID Online Test in FRI on 8/20/2012 - 8/22/2012 

Fig 4.6 shows that the steady state identifier result on 8/20/2012 - 8/22/2012, which 

responds correctly online to the dynamic changes to multi-variable process with larger noise 

disturbance. Similar with the other tests, the solid lines reveal seven process measurements vs. 

time, and the dotted line is the SS-value vs. time. In this test the process is running with larger 

noise disturbance. The result is also similar with the SSID test in Unit Operation Lab and other 

offline and online tests in FRI, steady state and transient state identifier is triggered to SSID = 0 

almost instantly, but the process will take some time to trigger the process is back to steady state.  
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Figure 4.6: Steady state identifier online result in FRI on 8/20/2012 - 8/22/2012 

4.2.3 SSID Online Test Corroborate with Visual Observation from FRI 

In order to test the steady state and transient state identifier, the results from the online 

SSID test were compared with the visual observation from FRI operators. Table 4.1 shows the 

times which are the FRI operators determined steady state based on the FRI test on 10/1/2012 – 

10/4/2012, as well as at that time the SSID results of each key variable. From Table 4.1, almost 

all the SSID test result matches with the visual observation from FRI operators except the 

variables of flow rate. Through the analysis of each key variable SSID result, the mismatch of 

flow rate variables is because the steady state and transient state identifier response later than the 

FRI operator. In order to decrease the response delay, the lower critical value is changed to 1.3 
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and the higher critical value is changed to 3.9. The sampling interval of flow rate variables is 

changed to 30 second, as well as sampling interval of other variables is kept at 1 minute.  
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Table 4.1: Compare the result from FRI operator and steady state identifier 

FRI determined steady state

Date and Time FIC-2 PIC-1B FI-7 TE-105 TE-113 TE-101 Overall Overall without flows

10/1/12 4:44 PM 1 1 0 1 1 1 0 1

10/1/12 5:07 PM 1 1 0 1 1 1 0 1

10/1/12 10:26 PM 1 1 1 1 1 1 1 1

10/1/12 10:47 PM 1 1 1 1 1 1 1 1

10/2/12 2:08 AM 1 1 0 1 1 1 0 1

10/2/12 2:22 AM 1 1 0 1 1 1 0 1

10/2/12 5:10 AM 1 1 1 1 1 1 1 1

10/2/12 5:21 AM 1 1 1 1 1 1 1 1

10/2/12 8:13 AM 0 1 0 1 1 1 0 1

10/2/12 8:37 AM 1 1 0 1 1 1 0 1

10/2/12 11:47 AM 1 1 0 1 1 1 0 1

10/2/12 12:10 PM 1 1 0 1 1 1 0 1

10/2/12 3:15 PM 0 1 1 1 1 1 0 1

10/2/12 3:38 PM 1 1 1 1 1 1 1 1

10/2/12 6:17 PM 1 1 1 1 1 1 1 1

10/2/12 6:39 PM 1 1 1 1 1 1 1 1

10/2/12 9:49 PM 1 1 1 1 1 1 1 1

10/2/12 10:10 PM 1 1 1 1 1 1 1 1

10/3/12 1:05 AM 1 1 1 1 1 1 1 1

10/3/12 1:29 AM 1 1 1 1 1 1 1 1

10/3/12 4:25 AM 1 1 1 1 1 1 1 1

10/3/12 4:44 AM 1 1 1 1 1 1 1 1

10/3/12 4:37 PM 1 1 0 1 1 1 0 1

10/3/12 5:52 PM 0 1 1 1 1 1 0 1

10/3/12 7:25 PM 0 1 1 1 1 1 0 1

10/3/12 10:03 PM 1 1 0 1 1 1 0 1

10/3/12 11:17 PM 0 1 0 1 1 1 0 1

10/4/12 2:22 AM 1 1 0 1 1 1 0 1

10/4/12 3:40 AM 1 1 1 1 1 1 1 1

10/4/12 8:12 AM 0 1 0 1 1 1 0 1

10/4/12 9:27 AM 0 1 0 1 1 1 0 1

10/4/12 10:46 AM 0 1 0 1 1 1 0 1

10/4/12 12:30 PM 0 1 1 1 1 1 0 1

10/4/12 1:59 PM 1 1 0 1 1 1 0 1

10/4/12 3:08 PM 0 1 0 1 1 1 0 1

10/4/12 5:04 PM 0 0 0 0 0 0 0 0

10/4/12 6:07 PM 0 1 0 1 1 1 0 1

10/4/12 7:07 PM 0 1 0 1 1 1 0 1

10/4/12 8:02 PM 0 1 0 1 1 1 0 1

10/4/12 9:00 PM 0 1 0 1 1 1 0 1

10/4/12 10:17 PM 0 1 0 1 1 1 0 1

34% 98%

SSID Program Predictions Compare

Percent of math compare the result from FRI and SS/TS Identifer
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4.2.3.1 SSID Online Test Corroborate with Visual Observation on10/1/2012 

Fig 4.7 and Fig 4.8 show that the detail steady state identifier result and FRI operator 

visual observation result on 10/1/2012, which responds to the dynamic changes. The operator 

determined the steady state times almost agree with the steady state and transient state identifier 

predictions. Most of the times, the steady state and transient state identifier triggered the SS = 1 

quicker than the FRI operator, which is agreed with the observation of the whole process. Only 

few times, the steady state and transient state triggered delay. But little delay is acceptable for the 

operators. 

 

Figure 4.7: Steady state identifier online result Corroborate with Operator on 10/1/2012 
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Figure 4.8: Steady state identifier online result Corroborate with Operator on 10/1/2012 

4.2.3.2 SSID Online Test Corroborate with Visual Observation on 2/6/2013 – 2/7/2013 

Fig 4.9 show that the steady state identifier result and FRI operator visual observation 

result on 2/6/2013 - 2/7/2013, which responds to the dynamic changes. The operator determined 

the steady state times clearly agree with the steady state and transient state identifier predictions. 

Most of the times, the steady state and transient state identifier triggered the SS = 1 quicker than 

the FRI operator, which is agreed with the observation of the whole process.  
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Figure 4.6: Steady state identifier online result Corroborate with Operator on 2/6/2013 – 2/7/2013 
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CHAPTER V 

 

CONCLUSION AND RECOMMENDATIONS 

 

 In order to evaluate the performance of the steady state and transient state identifier, the 

steady state and transient state identifier has been implemented on the absorption unit in the Unit 

Operation Lab to do the single variable test, as well as on the FRI distillation unit to do the multi-

variable test. Prior to the multi-variable test, the identifier had been tested offline to analyze the 

filter factor, lower and higher critical value, sampling interval, and then tested online to compare 

the online test results with the visual observations from the operator to optimize the identifier 

result. 

5.1  Conclusions 

1. R-statistic steady state and transient state identification method detects steady state and loss 

of steady state on time series analysis and statistical tests. 

2. R-statistic steady state and transient state identification method requires no process 

knowledge, only the time series data. 

3. R-statistic steady state and transient state identification method works for one variable and 

multi-variable. 

4. The steady state and transient state identifier could work with historical or real-time data in 

Unit Operation Lab and FRI distillation unit. 
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5. The steady state and transient state identifier was implemented in the Unit Operation Lab by 

using LabView and FRI unit by using Excel VBA. 

6. The steady state and transient state identifier would run in the background, which will not 

affect the other operations of the operators. 

7. The steady state and transient state results are consistent with visual observations from the 

FRI operators. 

8. The steady state and transient state identifier is computationally simple, only 8 variables are 

stored in the computer, which decreases the computational load and leads to a quicker 

computer response. 

9. The steady state and transient state identifier has the potential to be easily implemented in 

other industrial processes. 

5.2 Recommendations 

Recommendations for future work are: 

1. Continue to test the steady state and transient state identifier in FRI. Based on the different 

test objective, different key variables are used to test the identifier. 

2. One of the variables is hard to eliminate the autocorrelation and always show the incorrect 

responds. So increase the correctness of the steady state and transient state identifier result, 

through the analysis of the filter factor, lower and higher critical values, sampling interval, 

etc. 

3. Decrease the response time of the steady state and transient state identifier. 
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4. Evaluate the use of the steady state and transient state identifier; consider the ease of use, 

computational burden, robustness, understandability and other technical issues compared to 

other approaches. 

  



43 
 

REFERENCES 

 

1. Forbes, J.F. and T.E. Marlin, Model Accuracy for Economic Optimizing Controllers: 

The Bias Update Case. Industrial & Engineering Chemistry Research, 1994. 33(8): p. 

1919-1929. 

2. Lin, T.D.V., FCCU advanced control and optimization. [Fluid Catalytic Cracking 

Unit]. Journal Name: Hydrocarbon Processing; (United States); Journal Volume: 

72:4, 1993: p. Medium: X; Size: Pages: 107-114. 

3. Keller, J.Y., M. Darouach, and G. Krzakala, Fault detection of multiple biases or 

process leaks in linear steady state systems. Computers & Chemical Engineering, 

1994. 18(10): p. 1001-1004. 

4. Albers, J.E., Data reconciliation with unmeasured variables. Hydrocarbon 

Processing, 1994. 73: p. 65-66. 

5. Jeison, D. and J.B. van Lier, On-line cake-layer management by trans-membrane 

pressure steady state assessment in Anaerobic Membrane Bioreactors for wastewater 

treatment. Biochemical Engineering Journal, 2006. 29(3): p. 204-209. 

6. Kuehl, P. and A. Horch, Detection of sluggish control loops-experiences and 

improvements. Control Engineering Practice, 2005. 13(8): p. 1019-1025. 

7. Jiang, T., et al., Application of steady-state detection method based on wavelet 

transform. Computers & Chemical Engineering, 2003. 27(4): p. 569-578. 

8. Cao, S. and R.R. Rhinehart, An efficient method for on-line identification of steady 

state. Journal of Process Control, 1995. 5(6): p. 363-374. 

9. Bethea, R.M. and R.R. Rhinehart, Applied Engineering Statistics, 1991, Marcel 

Dekker, Inc.: New York. 

10. Crow, E.L., F.A. Davis, and M.W. Maxfield, Statistics Manual, 1960, Dover 

Publications, Inc.: China Lake, California. 

11. Rhinehart, R.R., Automated steady state identification: experimental demonstration. 

Journal  of Process Analytical Chemistry, 2002. 7(2): p. 81-84. 



44 
 

12. Cao, S. and R.R. Rhinehart, Critical values for a steady-state identifier. Journal of 

Process Control, 1997. 7(2): p. 149-152. 

13. Shrowti, N.A., K.P. Vilankar, and R.R. Rhinehart, Type-II critical values for a 

steady-state identifier. Journal of Process Control, 2010. 20(7): p. 885-890. 

14. Brown, P.R. and R.R. Rhinehart, Demonstration of a method for automated steady-

state identification in multivariable systems. Hydrocarbon Processing, 2000. 79(9): p. 

79-83. 

15. Katterhenry, P. and R.R. Rhinehart, Use a virtual employee to trigger a sequence of 

conditions. Control for the process industries, 2001. XIV(10): p. 53-55. 

16. Szela, J.T. and R.R. Rhinehart, A virtual employee to trigger a sequence of 

conditions. Journal  of Process Analytical Chemistry, 2003. 8(1). 

17. Iyer, M.S. and R.R. Rhinehart. A novel method to stop neural network training. in 

American Control Conference, 2000. Proceedings of the 2000. 2000. 

18. Padmanabhan, V. and R.R. Rhinehart. A novel termination criterion for optimization. 

in American Control Conference, 2005. Proceedings of the 2005. 2005. 

19. Bhat, S.A. and D.N. Saraf, Steady-State Identification, Gross Error Detection, and 

Data Reconciliation for Industrial Process Units. Industrial & Engineering Chemistry 

Research, 2004. 43(15): p. 4323-4336. 

20. Fractionation Research, Inc. http://www.fri.org/. 2013  [cited 2013 03-28]. 

 

 

 

  

http://www.fri.org/


45 
 

APPENDICES 

 

The methodology of the steady state and transient state identifier is described in Chapter 

2. This section lists the LabView cod and Excel VBA code of the simulation system. 

A.1 LabView code of the application system 

NV = lambda * (x - xf) ^ 2 + (1 - lambda) * NV               ' numerator of variance estimator 

xf = lambda * x + (1 - lambda) * xf     ' first order filter 

DV = lambda * (x - xold) ^ 2 + (1 - lambda) * DV  ' denominator of variance estimator 

xold = x 

If (2 - lambda) * NV > Ra * DV Then 

ID = "SS" 

ElseIf (2 - lambda) * NV > Rb * DV Then 

ID = "TS" 

End If 

Where lambda=0.1, α=0.01, Ra=4, β<0.05, Rb=1.  

A.2 Excel VBA code of the application system 

Option Explicit 
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'Declare variables 

 

Dim lamada1 As Double                                           '1st filter factor 

Dim lamada2 As Double                                           '2nd filter factor 

Dim lamada3 As Double                                           '3rd filter factor 

Dim i As Integer                                                        'counter the variable 

Dim SSID_total As Double                                       'total SSID result 

Dim n As Long                                                          'counter 

Dim p As Long                                                          'counter 

Dim m As Integer                                                      'number of columns of data - ANV 

Dim x(1 To 100) As Double 

Dim x_new(1 To 100) As Double 

Dim xf(1 To 100) As Double 

Dim xf_new(1 To 100) As Double 

Dim numvar(1 To 100) As Double 
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Dim numvar_new(1 To 100) As Double 

Dim denovar(1 To 100) As Double 

Dim denovar_new(1 To 100) As Double 

Dim SSID(1 To 100) As Double                               'SSID result for each variable 

Dim r(1 To 100) As Double                                      'R-statistic value 

Dim nvar As Long                                                     'numble of variable 

Dim nn As Long 

Dim nf As Integer 

Dim mm As Integer 

Dim tSSID As Single                                                 'counter the number of SS 

Dim percentage_SSID As Single                               'percentage of variables reaches SS 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub main() 

'The main program calls each sub program to make events organized 
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Call initial                                                                   'input values and initialize states 

 

For p = 1 To 10796 

nn = 0 

SSID_total = 1 

tSSID = 0 

 

If Sheet1.Cells(2, 1).Value > Sheet1.Cells(445, 1).Value Then 

 

    If Sheet1.Cells(2, 1).Value - Sheet1.Cells(445, 1).Value > 0.000694444 * 5 Then 

        For m = 1 To nvar Step 1 

            SSID(m) = 0.5 

        Next m 

    End If 
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       For m = 1 To nvar 

 

  If m <= nf Then     

         'for the flow rate variables, 30 second is chosen as sampling interval 

            Call SSID_cal                                    'calulate SSID for each variable 

        Elseif p Mod 2 <> 0 Then  

        'for the other variables, 60 second is chosen as sampling interval 

            Call SSID_cal                                    'calulate SSID for each variable 

        End If 

 

        Call SSID_total                                         'calculate total SSID 

 

        If SSID(m) = 1 Then 

            tSSID = tSSID + 1 

        End If 
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    Next m 

 

       Call percentage_cal                                       'calculate percent of variable reach SS 

       Call GRAPH                                                 'graph on sheet1 

       Call S2                                                          'echo the result to sheet2 

       DoEvents 

Else 

    p = p - 1 

       For n = 1 To 100000 

        DoEvents 

    Next n 

End If 

 

DoEvents 

Call S2                                                                 'echo the result to sheet2 

Call save_file                                                       'automatically save the contents in sheet2                           
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                                                                             'every 4 hour 

Next p 

 

End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub initial() 

' This sub program is used to give the initial  

 

lamada1 = 0.2 

lamada2 = 0.1 

lamada3 = 0.1 

 

nvar = 0 

nf = Sheet1.Cells(4, 2).Value 
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Sheet1.Range(Cells(445, 1), Cells(445, 103)).Clear 

 

For i = 1 To 100 Step 1 

If Cells(2, i + 1) <> "" Then 

nvar = nvar + 1 

Else 

Exit For 

End If 

Next i 

 

Sheet2.Cells(1, nvar * 2 + 2).Value = "Total SSID" 

Sheet2.Cells(1, nvar * 2 + 3).Value = "Percent @ SS" 

 

For m = 1 To nvar 

SSID(m) = 0.5 

Next m 
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Application.ScreenUpdating = True 

 

End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub SSID_cal() 

' This sub program is used to calculate the SSID result for each variable 

 

Sheet1.Cells(445, 1).Value = Sheet1.Cells(2,1).value 

 

If p = 1 Then 

x_new(m) = Sheet1.Cells(2, m + 1).Value 

xf_new(m) = x_new(m) 

numvar_new(m) = 0 
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denovar_new(m) = 0 

Else 

x_new(m) = Sheet1.Cells(2, m + 1).Value * (1 + 0.001 * Sqr(-2 * Log(Rnd())) * Sin(2 * 

3.14159 * Rnd())) 

xf_new(m) = lamada1 * x_new(m) + (1 - lamada1) * xf(m) 

numvar_new(m) = lamada2 * (x_new(m) - xf(m)) ^ 2 + (1 - lamada2) * numvar(m) 

denovar_new(m) = lamada3 * (x_new(m) - x(m)) ^ 2 + (1 - lamada3) * denovar(m) 

End If 

 

If denovar_new(m) > 0.000000000001 Then 

 

r(m) = (2 - lamada1) * numvar_new(m) / denovar_new(m) 

 

If r(m) > 3.9 Then 

SSID(m) = "0" 

Sheet1.Cells(3, m + 1).Interior.Color = vbRed 

End If 
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If r(m) < 1.3 Then 

SSID(m) = "1" 

Sheet1.Cells(3, m + 1).Interior.Color = vbGreen 

End If 

 

Else 

 

SSID(m) = 0.5 

 

End If 

 

If SSID(m) = 0.5 Then 

Sheet1.Cells(3, m + 1).Interior.Color = vbYellow 

End If 
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Sheet1.Cells(3, m + 1).Value = SSID(m) 

End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub SSID_total() 

' This sub program is used to update the information and calculate the total SSID result 

 

Sheet1.Cells(445, nn + 2).Value = Sheet1.Cells(2, m + 1).Value 

Sheet1.Cells(445, nn + 3).Value = Sheet1.Cells(3, m + 1).Value 

 

x(m) = x_new(m) 

xf(m) = xf_new(m) 

numvar(m) = numvar_new(m) 

denovar(m) = denovar_new(m) 
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SSID_total = SSID_total * SSID(m) 

 

nn = nn + 2 

 

End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub percentage_cal() 

' This sub program is used to calculate how many variable at SS 

 

percentage_SSID = Round(tSSID / nvar, 4) 

Sheet1.Cells(445, 102).Value = SSID_total 

Sheet1.Cells(4, 5).Value = percentage_SSID 

Sheet1.Cells(445, 103).Value = percentage_SSID 
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End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub GRAPH() 

' This sub program is used to graph the variable vs time and SS value vs time of the recent 4 hours 

 

For i = 6 To 444 Step 1 

 

For m = 1 To 103 Step 1 

 

Sheet1.Cells(i, m).Value = Sheet1.Cells(i + 1, m).Value 

 

Next m 

 

Next i 
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End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub S2() 

' This sub program is used to echo the result to sheet2 

 

Sheet2.Cells(p + 1, 1).Value = Sheet1.Cells(445, 1).Value 

 

For m = 1 To nvar * 2 

Sheet2.Cells(p + 1, m + 1).Value = Sheet1.Cells(445, m + 1).Value 

Next m 

 

Sheet2.Cells(p + 1, nvar * 2 + 2).Value = Sheet1.Cells(445, 102).Value 

Sheet2.Cells(p + 1, nvar * 2 + 3).Value = Sheet1.Cells(445, 103).Value 
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End Sub 

'' 

'' 

--------------------------------------------------------------------------------------------------------------------- 

Sub save_file() 

' This sub program is used to save the content in sheet2 automatically every 4 hours 

 

If p Mod 480 = 0 Then 

 

ActiveWorkbook.Save 

 

ActiveWorkbook.Worksheets(2).Copy 

 

ActiveWorkbook.SaveAs ThisWorkbook.Path & "\" & "130109 SSID_" & Format(Time, 

hhmmss") & "_" & Format(Date, "MMM-DD-YY") & ".xls" 
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ActiveWindow.Close 

 

End If 

 

End Sub 
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