
MULTMEDIA ENABLED CROWDSOURCING

APPLICATION FOR MOBILE DEVICES

 By

 SAM HONARVARALIJANI

Bachelor of Computer Science

 Multimedia University

 Cyberjaya, Selangor, Malaysia

 2011

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 July, 2013

ii	
	

MULTMEDIA ENABLED CROWDSOURCING

APPLICATION FOR MOBILE DEVICES

 Thesis Approved:

 Dr. Tingting Chen

 Thesis Adviser

 Dr. David Cline

 Dr. Nophil Park

iii	
Acknowledgements	 reflect	 the	 views	 of	 the	 author	 and	 are	 not	 endorsed	 by	 committee	
members	 or	 Oklahoma	 State	 University.	

ACKNOLEDGEMENTS

My sincere gratitude goes to my advisor Dr. Tingting Chen who has been a great mentor

and an impeccable help throughout my entire thesis.

My appreciation also extends to Dr. David Cline and Dr. Nophil Park for their advice

during my thesis proposal presentation and also for serving on my graduate committee.

And last but certainly not least, I would like to express my profound appreciation to the

most wonderful, supportive, and tremendously understanding parents and brother,

Bahram, Sholeh, and Yasha who have always been there for me and their constant

support has provided me great encouragement to go on.

iv
	

Name: SAM HONARVARALIJANI

Date of Degree: JULY, 2013

Title of Study: MULTMEDIA ENABLED CROWDSOURCING APPLICATION FOR

MOBILE DEVICES

Major Field: COMPUTER SCIENCE

ABSTRACT

Crowdsourcing has been a great topic of research and development recently due
to the low cost of operation and perpetual availability. Smartphones have also grown to
be very popular and pervasive. They are available these days with tremendous processing
power equipped with great cameras, microphones, HD screens, GPS, and etc. It has been
a while since cell phones and recently smartphones have been exploited for
crowdsourcing purposes. There are already apps that provide features to report and help
in process of recovering from disasters and natural phenomenon. Before smartphones era,
text messages were used as a way of crowdsourcing as well as a source of income.
Translation of small pieces of text was a common example of crowdsourcing where the
user would receive a small text, translate and send it back and for every text they would
make a small amount of money. However there has never been an app that is both multi-
purpose and multimedia capable. In our proposed method and application (Crowdesk) the
user is capable of choosing the type of their message including image and audio. Since
we are dealing with larger file sizes when working with audio and image files, the
network connection and transmission rate becomes an issue. We have utilized buffering
techniques and breaking down the files into smaller pieces to overcome the connectivity
speed problem. Tests and benchmarking have been performed for both cases where
connected to a Wi-Fi access point with an Android device, or when 3G/4G is used for
transmission of data, and for all cases, the results have been satisfactory. Crowdesk is
solely meant to be a representation of what can be achieved by utilizing people’s
contribution on a mobile platform.

v
	

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1	

1.1	 Overview ... 1	

1.2	 Problem Statement ... 3
	

II. REVIEW OF LITERATURE AND SIMILAR PROEJCTS .. 5	

2.1	 Crowdsourcing to smartphones ... 5	

2.2	 Crowdsourcing with smartphones ... 6	

2.3	 Crowdsourcing of Pollution Data using Smartphones .. 6
	

III. DESIGN AND IMPLEMENTATION .. 8	

3.1	 Overview ... 8	

3.2	 Design .. 9	

3.2.1	 Server Side .. 9	

3.2.2	 Client Side .. 13
	

3.3	 Implementation .. 14	

3.3.1	 Server Side .. 14	

3.3.2	 Client Side .. 19
	

IV. RESULTS AND BENCHMARKING .. 25
	

V. SUMMARY AND FUTURE WORK .. 28
	

IV. REFERENCES .. 30	

vi
	

LIST OF TABLES

Table Page

TABLE 1. TIME LATENCIES FOR ACCESS, QUERY, DOWNLOAD, AND UPLOAD OF
MESSAGES AND ATTACHMENTS ...26

vii
	

LIST OF FIGURES

Figure Page

FIGURE 1. THE GENERAL STRUCTURE AND COMMUNICATION PATHWAYS IN THE
SYSTEM ... 10

FIGURE 2. EXAMPLE ILLUSTRATION OF THE FILE STRUCTURE FOR 2 DIFFERENT
USERS, “PAM@TEST.COM” AND “BOB@TEST.COM” .. 11

FIGURE 3. THE WEBSERVER STRUCTURE AND PYTHON AND PHP WEB SERVICES
MODULES. APACHE CALLS TO PYTHON/PHP MODULES AND THEY RUN AND FORM AN
HTTP RESPONSE AND SEND IT BACK TO APACHE .. 15

FIGURE 4. NEXUS 7 FRONT PAGE ILLUSTRATION. LEFT: IN LANDSCAPE MODE, RIGHT:
ON PORTRAIT MODE ... 20

FIGURE 5. THE COMPLETE ACTIVITY FLOW OF THE APP. OVAL SHAPES SHOW
ACTIONS, DIAMONDS SHOW DECISIONS, RECTANGLES INDICATE ACTIVITIES AND
PARALLELOGRAMS DEMONSTRATE THE DIALOG BOXES ... 21

1
	

CHAPTER I

INTRODUCTION

	

1.1 Overview

Cell phones have come a long way since their early days. These small devices that

nowadays we call them smartphones were initially designed for the sole purpose of oral

communication. The very first models were quite a few inches tall and considerably heavy. With

the advancements of processors and flat screens, the cell phones started to get smaller, faster, and

have much better screens in terms of number of pixels per inch, size and heat. Over the past 10

years this process has been expedited mostly because the processor manufacturers have done a

great job by making very fast processors while keeping the size and heat level low such that most

of advanced smartphones possess processors that are faster or at least equivalent to those

available on laptops at the beginning of the decade. All this has made smartphones to be even

more popular than computers recently [Weintraub]. Having such processing power means that

more advanced operating systems can be loaded on them and more sophisticated games and

applications will be able to run on top of those operating systems. A good example of such

operating systems is Android that has the stable core of Linux operating system. We will talk

about Android OS in more detail in the rest of this thesis.

Besides being equipped with faster processors, cell phones are shipped with other parts

such as remarkable built-in cameras making them a proper device for online video chatting, as

2
	

well as satisfying everyday and non-professional photography needs, good processing power,

crystal clear and high definition screens, microphones, and reliable speakers.

These features make these small devices into incredibly multimedia-capable gadgets that

fit in the palm of hand. As the result of these features in the past few years, smartphones have

become one of the top software development platforms and tons of creative apps have been

designed for them. As a proof, at the time this documentation is being written, more than 850,000

apps have been officially submitted to IOS app store [Wikipedia App Store] and approximately

800,000 apps uploaded to Google's Play Store [Wikipedia Play Store].

One of the great ideas to utilize the capabilities of the smartphones that has recently

become popular is the notion of Crowdsourcing [Howe 06]. According to Merriam-Webster

dictionary definition of Crowdsourcing is "the practice of obtaining needed services, ideas, or

content by soliciting contributions from a large group of people and especially from the online

community rather than from traditional employees or suppliers" [Merriam-Webster]. A good

example is an actual situation that instead of paying thousands for dollars to professional

photographers for certain photos, the required photos' description can be posted on a website and

semi-professional photographer will do the same task for much less cost or instead of paying

professional reviewers for books that are to be published, the text can be split to smaller pieces

and be sent to several reviewers [Doan et al. 11]. Another good instance is a fully human-driven

database that uses the power of people for running queries on a database [Franklin et al. 11].

In simpler words Crowdsourcing is same as outsourcing except that there is no specific

aimed source and any one with the right tools/knowledge will be able to be one of the sources,

hence the word crowd. The use of crowdsourcing stands out when mixed with computers or more

3
	

specifically mobile devices whereby a user can participate in an outsourcing activity during their

free time. As an example, someone that spends some of one’s very day’s time on commute, can

utilize one’s time by translating some texts in a particular language and earning money by

sending the translation back through text messaging.

Having the idea of smartphones and crowdsourcing together envisions some very unique

applications. Since smartphone are not confined to only text and more importantly have access to

fast Internet connection nowadays, they can act very much like a computer and perform variety of

tasks. For instance, an app that can help blind people to recognize items in a supermarket or

helping them to recognize what is contained in a can. Taking a photo, and using the app to upload

the photo can send the answer back in audio format stating the brand and content of the can.

1.2 Problem Statement

In our project, we thought of much bigger picture. All apps available today for

crowdsourcing are too specific and are only suitable for certain tasks and therefore might not be

very useful. We had the idea of all in one for our project and being able to crowdsource pretty

much anything is quite fascinating. There is also the idea of providing enough incentive for users

to participate in the crowdsourcing activity which is out of the scope this thesis but there already

existing mechanisms that provide good solutions [Yang et al. 12].

We have also categorized the types of posts users can upload based on the timeliness and

time sensitivity of the required information/data. Considering a medical emergency in which

someone requires fast information on helping someone else that had just a stroke, the user needs a

4
	

way to specify that the post is urgent and quick response is required. Such cases motivated us to

utilize different mechanisms for different questions based on their priorities.

5
	

CHAPTER II

REVIEW OF LITERATURE AND SIMILAR PROEJCTS

	

2.1 Crowdsourcing to smartphones

"Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing”,

proposes on the topic of sensing capabilities of smartphones. Since smartphones are nowadays

shipped with great sensing peripherals such as microphones, cameras, GPS and many others, it

makes them the perfect tool to be used as a sensing device to collect data and use their Internet

connectivity to transmit the data. One factor is not considered in many cases is the lack of

enough incentives for the user to contribute to the project. Most probably because most users

prefer not to enclose their data with GPS and location data and have them be stored and

accessible. Therefore the writers are proposing two mechanisms to increase users’ incentive,

platform-centric model and user-centric model. The paper doesn’t provide any mechanism or

general architecture on the way system should work rather they propose only methodologies for

providing incentive to user by implementing auctioning mechanism and paying user more than it

costs them to contribute.

6
	

2.2 Crowdsourcing with smartphones

The authors in this paper have very close viewpoint to our aim at having a

multifunctional app for crowdsourcing [Chatzimilioudis et al. 12]. They have developed three

different apps presented in their paper as follows:

SmartTrace+: provides mobility patterns and movement trajectories according to a single

request. Most users are not willing to share their movement trajectories or patterns due to privacy

issues. However in case of a specific request the user will be considered anonymous while

providing the data. An example provided is in case of bus ride. If someone planning a trip

requires knowing the specific bus routes and the user is willing to know whether a specific route

is taken by certain number of users, they can send a request to all users and users will voluntarily

take part in providing their answer by sending the collected information on the specific route.

Crowdcast: an application that uses smartphones locality capability to find nearest

neighbors. This feature can be useful in cases of SOS, immediate help or medical emergency.

SmartP2P: intelligently runs queries according to location and GPS data. As an example

if a user sends out a query for finding a picture of golden gate bridge, the app will run the query

on the smartphones located in California and more specifically in San Francisco since a

smartphone located in San Francisco has a higher chance of containing a picture of golden gate

bridge than a smartphone belonging to someone living in Manhattan.

2.3 Crowdsourcing of Pollution Data using Smartphones

NoiseTube is another interesting example of crowdsourcing app for smartphones

[Stevens and D’Hondt 10]. There already exist few apps related to traffic [Mohan et al. 08] and

noise level [Rana et al. 10] that utilize crowdsourcing concepts. In recent years smartphones have

been greatly exploited for environmental sensing [Das et al. 10] using people’s smartphones as

7
	

the platform with mechanisms [Bruke et al. 06] to promote people’s participation [Campbell et al.

08]. Nowadays our lives are polluted with different pollution sources such as noise pollution, air

pollution and etc. NoiseTube app is used to collect different types of data from different

smartphones sensors (microphone, GPS, user’s input) and the collected data is then uploaded to a

centralized server, which tracks and records the input data. These input data later is later on

converted to maps of pollution areas, which indicate different levels of pollution in different

areas. The app uses a signal-processing algorithm that requires the user to record one-second long

audio. These picked up samples are then illustrated using numeric and graphs. Each of these

recordings then are tagged with GPS and location data and the user is given the option to provide

more details on the recording, such as source of noise, subjective impression and etc.

Few of the mentioned problems by the authors include lack of real usability of the app

and the way user interacts with the phone. The phone if left in the pocket or purse will not be able

to pick up real and trustworthy data and it also may conflict with the normal use of phones. Also

one of the most common issues in crowdsourcing is the validity of the responses from the user is

discussed.

8
	

CHAPTER III

DESIGN AND IMPLEMENTATION

3.1 Overview

The name Crowdesk comes from two separate ideas of crowdsourcing and helpdesk. It

pretty much represents the concept of what we have been trying to accomplish in this project. Our

main purpose and ultimate goal has been to utilize the power of people and create a perpetual and

constantly available service that can help people with their everyday or emergency needs. There

are forums and online discussion boards that allow people to ask any type of questions but they

normally require a PC, knowledge of computers, knowledge of available forums and most

importantly, they don’t fit in your palm. With Crowdesk however, one only needs an Android

device (tablets, cell phones) and an active Internet connection and they will have access to

crowd’s knowledge in a few touches. Moreover, replies also lay few touches away. In the other

end, for most people with the proper knowledge, a computer is a requirement if they know the

answer to a specific question. They have to access that forum online, login, take a look at the list

of questions and they won’t always be available due to both being away from their PCs as well as

not receiving any notifications. With our design however all these hassles have been diminished

and availability and accessibility are two key features of it.

9
	

Crowdesk currently is only available on devices that run Android platform. The app

however has been designed such that it can run on any device loaded with Android regardless of

screen size and screen orientation. It would be one of the work-in-the-future tasks to be

performed to port the application onto IOS driven devices if this was to be turned into an actual

business model and be industrialized and commercialized.

3.2 Design

Crowdesk application is consisted of two major components: a multi-function server and

an Android app that communicates with the server mostly through http protocol. In the following

sections we discuss each component in more detail.

3.2.1 Server Side

The server side is a multi-function server. The reason we call it multi-functional is

because it runs and executes multiple tasks and multiple services. The server major responsibility

is to receive and respond to http calls and direct them to the proper services. The services running

on the server includes Python service for file management, PHP service for handling database

calls and briefly to handle send/receive of files. The server also contains a MySQL server that is

in charge of recording and retrieving user information and post information. We will illustrate

and explain each of these services separately along with the technologies required for all these

communications in between.

10
	

Figure 1. The general structure and communication pathways in the system

Python Web Service: Python recently is vastly being used in web technologies majorly

because it ships with out-of-the-box and ready to use libraries that make it remarkably efficient to

be used with different technologies. Python also as a scripting language, is armed with super easy

operating system API calls to handle files and file-related operations. As an example, Moving,

deleting and creating files and directories is an extremely easy task in Python and feels

completely natural. It takes few lines of code to write an http server in Python while it requires

hundred lines of code to do the same in languages such C++ or Java. Also great web frameworks

such as Django are available for Python that make web development fast and efficient.

In our design however, we used most basic functionalities of Python for handling the

contents of the posts uploaded to the server, which could be of any type of audios, images and

texts. In other words Python was acting as our back-end storage engine.

Every file that contains post information are uploaded to the server, initially are located

in a folder named tmp folder. Then the app calls a Python service module to relocate the file. The

11
	

module receives the name of the temporary file, username to whom the file belongs to (this

actually gives a lot of information regarding where the file should be moved to) and finally the

extension of the file (which determines the type of the file and subsequently the proper folder in

the user’s directory).

Another Python module is when a user is created. As soon as a new user registers, after

updating the database, a Python web API is called that receives the username (email address of

the user) and creates the required folders.

Figure 2. Example illustration of the file structure for 2 different users, “pam@test.com” and “bob@test.com”

	

As it can be seen in Figure 2, user Bob registers with his full name and email address and

password. This information is stored in the database (we will discuss more about the database

structure at the end of this chapter) and the email address (i.e. username) is used by the Python

service to create a user’s folder. Four sub-folders are then created as below:

Ø text: used to store the full description of a text post. This is different than the short

description that contains a short summary of what the post is about.

12
	

Ø image: all the images from image-posts posted by the user are stored in this folder.

Ø audio: audio files recorded by the user will be dropped in this folder.

Ø meta: This is reserved for further and future work. This was initially intended to contain

all the meta data regarding the post and their relationship with the user.

PHP Web Service: PHP in essence is very well established in web architectures for its

fluency to deal with back-end databases and generating dynamic web pages. We intensively use

PHP for handling SQL queries and briefly for file handling.

Every time a post is submitted, the files uploaded with the post are uploaded and stored in

the user’s local directory. To do so, a PHP module is called and the file is posted using a POST

http request and 2 stream lines are opened at both ends and file is gradually uploaded to the

server. This ensures that there is basically no limit (except what is set on the web server

configurations, i.e. 200MB) to the size of file to be uploaded and we never occupy the mobile

device’s memory for buffering the content on it. The PHP module then will return a random

filename through a http response message and that is read by the device and passed to Python

module explained above to rename and relocate the file to the proper location.

We also utilize the PHP strength to communicate with the MySQL server and any query

for updating, inserting and retrieving data from MySQL goes through PHP module.

MySQL server: Very hardly there are actual applications nowadays that don’t use

databases, and by database we mean any kind of storage and retrieval of data such as XML, and

of course MySQL and its derivatives. We use MySQL in our project to store following

information:

Ø User’s information and data

Ø Posts and their related information

Ø User-Post relationship

13
	

The structure of the database we use is consisted of four tables:

Ø users: Stores users’ login information, name, UID, and list of subscriptions

Ø posts: Stores posts’ information such as submission date, UID, tag, location of attachment

and etc.

Ø dismissed_posts: An identical table to posts except that stores posts that are already

closed and dismissed.

Ø Post response tables: These tables are dynamically created by the prefix of “t” and the

UID of the post attached. Every post that gets its first response, a new table is created for

that post. For example, a post with uid of 195 will have a table with name of t195.

3.2.2 Client Side

On the client side, the app is designed for devices that run Android version 2.2 and higher.

Every user needs to register their username, password, and full name before they can use the app.

Once the user is registered, they will be asked to choose the list of categories that they are

interested to see the posts. This list of categories is stored in the database and is used to populate

the post feed for the specific user. They are given the capability to update this list at any time.

The user can perform three major tasks; one is to post a new message in the format of

text, image, or audio, next is seeing a list of currently active posts and post respond to each of

them if interested and last seeing a list of the user’s own posts.

In the post feed, all the posts with the proper tags are listed and the user will only see the

short description of the post. To see more details or see the actual message in text/image/audio

format they need to tap on the post and then app will navigate them to a new page that shows the

full post body.

14
	

The reason for this is, since we are often dealing with images and audios, there is no need

to download all the post’s data that are not even user’s interest specially when running on a cell

phone 3G/4G network. Therefore the content will be queried and downloaded on the devices as

soon as the user shows interest in a specific post by clicking on download attachment and the user

will be asked to wait for the attachment to be downloaded.

The app also uses Android’s internal database better known as SQLite. Every time the

user logs in, we store the state of the application in the internal database and the when the user

runs the app, the app checks internally to see if the current user has ever logged out of the

application. If the user never logged out, the flag is set and the app navigates directly to the front

page. Otherwise it would ask the user for their credentials before allowing the user to use the app.

3.3 Implementation

In the previous section we talked about the general design and methodologies used in the

system and in this section we are going to talk in details about the implementation and

technologies used to implement the design. We’ll start with the server side again.

3.3.1 Server Side

As it can be seen in Figure 1 the server is an http Apache server running on Ubuntu 13.04

with LAMP package installed on it. All the Python codes were designed for version 2.7 and PHP

version 5 and Apache version 2 was used as the http server.

15
	

	

Figure 3. The webserver structure and Python and PHP web services modules. Apache calls to Python/PHP modules
and they run and form an http response and send it back to Apache

	

Python Web service: Python web services or CGI was primarily used for file handling

on the server side. Two major modules were the one creating the user and relocating the uploaded

files to the proper folder.

Ø new_user.py: When user entered their credential for the first time and clicked on register

button, one action is to prepare the user’s folder on the server. This was basically

creating four folders as described in the previous section and setting the right permission

for the Apache server to able to write to those folders. The general mechanism of

communication was by sending a POST http request to the right CGI module and

waiting for its response. The response would be in form of an http response compatible

with SOAP1. The responses are in conventional http response codes2. A “Status: 200

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

1 SOAP (Simple Object Access Protocol) is a protocol to transmit structured data between computers in a network

2 A complete list of these can be found at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

16
	

OK” response would be sent back to calling method in Java and the Java code would

analyze the response and will react accordingly. If the parameters composed in the

params section of the request aren’t what expected by the server, the server will reply

with a “Status: 400 Wrong Parameter” message. And in any case of unexpected error or

exception, the server will issue a “Status: 500 Internal Server Error” message. If this

module returns an OK message, the app will go ahead and add the new user to the

database.

Ø fix_loc.py: This module is in charge of moving the temporary file to the right folder

under user’s root folder. The responses back from the module are pretty much the same

as the new_user.py but it actually receives three parameters, the temporary filename

received from upload module, the new filename and the type of the file (audio, image,

text).

There are few other modules for storing configuration and other details that are of minor

importance.

PHP web service: PHP is almost always a part of implementation if we are dealing web

servers and databases. Although recently a lot of big firms are moving away from PHP but it’s

still pretty much one of the best server-side scripting languages. We used PHP for the same

purpose and the entire set of queries to Crowdesk’s MySQL database is handled through PHP

scripting. The structure of PHP implemented on the server is illustrated in Figure 3.

include directory includes all the modules required for communicating with the database.

Ø config.php: includes the required information to connect to the database, such as

username, password, address of the MySQL’s server, and the name of the database.

17
	

Ø DB_Connect.php: as the name hints, this module is in charge of establishing a connection

to the database. It returns a handle to the database to calling module and from that point

on every call to the database will be though that handle.

Ø DB_Functions.php: probably the most important PHP script. Any action required by the

application to be done to the database, has to go through this script. Actions such as

adding a new user, modifying table fields, authenticating user, adding and removing posts

and etc.

Before moving on to other modules, we need to specify here our password storage

mechanism. Since the user’s privacy is always of crucial importance, we did take that seriously

too. Therefore we use a common method of password storage and retrieval mechanism. Every

time a new user registers, the password is sent to the database. Then we use PHP’s built-in hash

function to generate a unique “salt” value and then we concatenate that to the password. Then, we

run the password through our encryption mechanism and the encrypted value will be stored in the

database. When the user tries to login later on, the password received from Android is sent to

PHP code, PHP will use the received password and runs the same procedure on the received

password and then checks it against the encrypted password received from the database and if

they are a match, the user is authenticated and user is given permission to login or otherwise the

error messages is sent back to the app and the login page on the Android will show a “wrong

user/password” error message.

On the root of the Apache server’s folder, we have few more PHP modules. One and

most important one is the index.php that essentially handles all of the http requests.

Ø index.php: Every single call to this module should be an http’s POST request. The design

of this module is such that, initially it looks for a “tag” value in the POST parameters. If

it doesn’t find, “wrong parameters” message is returned right away. “tag” is the actual

18
	

way of telling the PHP module what the app is requesting for. Tags such as “register”,

“login”, “get_subscriptions”, and “add_post” are few examples. This module goes

through a very straightforward procedure for every request and is used specifically for

dealing with the MySQL server. All the database queries go through this module and it

receives the responses back from the SQL server. A tag in this module determines each

operation and the tag is concealed as one of parameters of the POST request. Get the

“tag”, identify the proper action, find the right user, perform the action and commit it to

the database and finally, form the response in a JSON object and return the JSON

response back to the server. We will talk more about the use of JSON in responses

received from the server in the next section. The app will analyze the JSON message and

will make decision based on the parameters to go ahead and consider the request as

successful or not.

Ø upload.php: is the one that does the important task of uploading files. This module is very

sensitive since it needs to be reliable enough and memory efficient. Our initial design was

not successful since it was consuming memory to store the files in a buffer and right after

the whole file was received, it will flush everything to the disk. That proved to not be

very efficient and eventually the current design was implemented. We do have modules

in our system that are implemented in Python and they can perform the same action but

since the PHP code looks more stable and smaller, it was decided to use PHP. The way

this PHP file works is truly simple. It generates a 20 character long random file consisted

of alphabets and numbers, then it saves the files received to disk and assigns the file the

randomly generated name. Consecutively it returns the filename in an http response back

to the Java caller module on Android. Then the Java code calls the fix_loc.py, which was

explained earlier, with the temporary filename received.

Ø download.php: this PHP module is a very handy and complete piece of code that takes

care of any kind of download. What we needed here in essence was a piece of code

19
	

running on the server to provide a download-like mechanism for our Android code to

call; upon the call, the file should be downloaded in the proper formatting and be encoded

properly according to file type. In other words, this snippet looks for the type of the

request and extension of the file that is being requested and makes decision for content-

type being provided. The download.php receives three parameters, the file (full path of

the file on the disk), the name of the file (content-type decision is made based on this

parameter), and an optional mime type that we never use since the type is dynamically

determined. Once it receives the request, it looks at the file type and chooses the right file

type and determines the length of file being requested. Upon determining the size, it starts

reading the file into a buffer and wrapping them in http response packets and sending

them piece-by-piece to the requesting end.

MySQL: The implementation of database is very straightforward. It’s based on the

design explained above there are no database design complication involved.

3.3.2 Client Side

Android development is proven to be not so easy. Although Java is an impeccable

programming language and huge portion of programming for Android is done in Java, yet it’s far

from being simple and/or intuitive. Interface’s UI are coded in XML format and when the project

is compiled and run, during runtime, the XML files are inflated and compiled in Java format.

Also any of the device’s peripherals or external resources such as Internet, that are to be used,

need to be declared in the AndroidManifest.xml file so the app is given the right permission to

access those resources.

Crowdesk is designed to be compatible with most devices and screen sizes and any

orientation shown in Figure 4. The activities are all scrollable which means even though the

screen size is too tiny the user can scroll through the content and perform their actions.

20
	

	

Figure 4. Nexus 7 front page illustration. Left: In Landscape mode, Right: On Portrait mode

	

The minimum SDK required to run the app is SDK version 8 (Android 2.2.x, a.k.a

FROYO) but the target SDK is 17 (Android 4.2, a.k.a JELLY_BEAN).

There are 12 Android activities in Crowdesk app. Aside from the apps, there is the

Library modules that are not directly related to Android activities but are used and called by the

activities to carry on specific tasks, such as communicating with Database, Parsing the JSON

messages received from the http server, View and List adapters for Android lists, general

configuration of the app, such as the IP address of the main http server, and few other. The

activities and their connections and relationships are illustrated in Figure 4.

21
	

Figure 5. The complete Activity flow of the app. Oval shapes show actions, Diamonds show decisions, Rectangles

indicate Activities and Parallelograms demonstrate the Dialog boxes

The entry point to the app is either one of two, loginActivity or registerActivity depending

on the login status. If the user is already logged in, the onResume() module will check the app’s

login status and if the SQLite on the device indicates that the user is already logged on, then the

app will directly jump to FrontPageActivity. When in so called “front page”, the user has three

different types of action to perform:

Ø Create a new post: It provides the user the interface to create a new post and send it to the

post feed. Every post in Crowdesk has a “short description” section that is to give users a

quick hint on what the post is all about. Users should keep these short descriptions

actually short and by default, the app won’t allow them to write more than 200

characters. After the short description, depending on type of the post, it’s either a bigger

22
	

textbox that allows the user to type in a question or problem and post it as a text message.

In case of image, user can snap a picture with the device’s camera and the image will be

sent as part of the post and short description is used to identify what the user requirement

is. Audio posts are same as images and the app will record the sound by the device’s

microphone and will attach that sound file to the post when sent. Every user is also given

the choice of indicating their post as time sensitive, means something that requires

immediate attention from the other users. Here one good mechanism to use would be to

use smart notifications and if there is an emergency post, the user’s device (Smartphone,

tablet) will keep beeping and/or vibrating to indicate that an urgent matter is waiting for

their response. But in case of normal post, a single one-time beep/vibration would be a

good notification method. This functionality however is not implemented due to

insufficient time.

Ø View the list of active posts from everyone: This page invokes a database query that

retrieves all the posts in the database that are currently active and shows a list of all these

posts. However by design, every user will not see their own posts. Every post is clickable

and when clicked, the user will be taken to ViewPostDetailsActivity activity that shows

the details and actual content of the post. It’s worth mentioning that in the list of posts,

only short description, tag, type of post (text, audio, image) and priority will be shown

and nothing else will be queried from server (although each posts UID is implicitly

requested and stored to be used later on if the user needs to reply to the post). Since we

deal sometimes with big data files such as audios and images, and most users access the

app on their cell phone using their 3G/4G networks, therefore the transaction amount will

be kept to minimum if data is retrieved only when needed. As the result, when the user

clicks on a post, a new Activity called MessageDetailsAcitivity will be invoked. This

Activity still wont call to the server for the attachment and it will until explicitly

requested by the user through the Download Attachment button. There are few minor

23
	

details in here where the user navigates from the list of posts to one particular message.

Since we don’t call to the server again when the user clicks on a post, the post somehow

needs to acquire the information it requires, such as the post’s UID, type, and the short

description of the post. All these are passed through a facility that is offered by Intents

structure3 in Android platform. Any Intent in Android can pass or receive “extras” when

calling or being called. Through this object passing mechanism the programmer can pass

data from one Intent to another in different data type formats including Strings. We have

also exploited this feature to pass the post’s UID from one interface to the next and

finally when the user in PostResponseAcitivty taps on Submit reply, the UID is already

available for the Activity. This UID is actually very crucially important since it’s the

main key to figuring out where and in which table the response should be saved.

For every active post, as soon as the first response is received, a new table in MySQL is

created with the UID of the post used as part of the table’s name. To be more precise, if the UID

of the post is 981, the table created will be “t981”. This also brings so much ease in the process of

the retrieving posts and their related responses later on. In the section explained below regarding

user’s list of posts, when user clicks on a post, without any requirement to check or run a query to

get the table name or related field in the table, the UID is directly used and the table name is

constructed and a simple SELECT query is enough to retrieve all the responses. There is also

another implementation detail that provides better user experience. Instead of having a general,

single UI for all different types of post’s details page, the app provides different interfaces based

on the type of the post. In fact another reason for using Intents extras has been utilized here.

When the user clicks on a post to navigate to posts’ details interface, based on the extent received

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

3 Intent is an Android activity in its abstract form. When invoked, it starts a new activity and can be connected to a
“content” as its user interface.

24
	

in the calling Activity (MessageDetailsActivity), the app makes a choice between three different

interfaces for Audios, Images, or Texts and uses customized features for the specific type of post.

Ø View their own posts regardless of their status, sorted based on date: This page shows the

list of posts by the user. The user will be able to see the content by tapping on the post

but will not be able to answer their own post. All posts, active or closed posts will be

visible and sorted chronologically and user can scroll through them.

On the front page of the app, the user’s menu button also provides two options:

Ø Logout

Ø Edit subscription list

As the name expresses, Logout simply sends a command to set the flag that the user is

logged out and next time the app is started, the user needs to login before accessing the app. Edit

subscription list, allows the user to change their list of interest. Upon that next time user checks

on the active posts, they will see the updated posts based on their update subscriptions.

25
	

CHAPTER IV

RESULTS AND BENCHMARKING

	

In this section we are going to investigate on the performance of the system as well as its

general scalability measures. First we will talk about the system configuration and platform, and

eventually discuss about the measurements and their results.

The entire Crowdesk system, as discussed before, is based on a Multi-functional Server

and set of Android devices that communicate with it. The configuration of the system we have

used for development and our tests is as follows:

Ø Server:

o Hardware: Intel Pentium4, 3.4GHZ with 2GB of RAM

o Operating System: Ubuntu 13.04 with XFCE4 as the GUI

o Connectivity: AT&T home Internet, 12MB package

Ø Android App:

o Device: Nexus 7, Model ME370T with 16GB Internal Storage

o Android Version: 4.2.2

We have run tests to measure the responsiveness of our system when only a single

Android device is operating and communicating with the server. The tests are based on responses

of separate Activities.

26
	

Name of the Activity Nexus 7 on Wi-Fi HTC Inspire 4G on 4G

Login 212 ms 354 ms

Register 552 ms 424 ms

Get Subscription 176 ms 207 ms

Update Subscription 210 ms 391 ms

Message Feed 201 ms for 23 items 662 ms for 23 items

Post Image 2983 ms for 611KB 6763 ms for 1.2MB

Table 1. Time latencies for access, query, download, and upload of messages and attachments

	

From the results above, it can be understood that the response times and general

performance of the system is quite acceptable. However there are many factors in play that have

great influence on the responsiveness or activity rate of the system. As an example, we ran the

test on posting an image on the highest possible quality of the internal camera on Nexus 7 device.

Some newer devices, such as Samsung Galaxy S3 have better and more sophisticated cameras

that provide better quality and resolution and therefore bigger files. Considering that the newer

devices also utilize the 4G technologies and better processing power, it’s expected that the wait

time for uploading images will not be outrageous and relatively acceptable.

It is worth mentioning that this system is purely experimental and in no way is meant to

be used as a commercial app with the current configuration. This concept also brings us to the

next concern that is shared among all distributed and network systems; the concept of scalability.

There are two broad category of scalability, vertical and horizontal scalability. In Vertical

scalability, the system is expanded on top the current system. In simpler words, if in our example,

Crowdesk’s main storage space is running out of space, the vertical expandability solution would

attach more disks and expand the space on the server. Or if the network connectivity of the server

is not enough, we provide wider and faster network connection to the system. This method

27
	

however cheaper but is not always efficient and is in fact, very risky if for any reason any of the

disks fails or if the network on the server shuts down or gets cut out for a while. In contrast, we

have horizontal scaling or expansion which tries to keep the performance and activity of every

entity up to a certain level but instead having multiple of those smaller entities as backup or

redundancy. This method although is impeccably safe and trustworthy however is expensive and

has some very fundamental deficiencies that we will discuss below.

Redundancy is always a factor in distributed systems and is a very crucial one. In other

words, consider Crowdesk application and all the users’ data stored on one single entity. In case

of a disk failure, all users’ information and data is lost and in no easy way are they retrievable.

Losing Terabytes or in some cases, Petabytes of data is something that is not forgivable and all

the trust in a system will be destroyed. The solution is simple and is achieved by having multiple

copies of the data, so in case of a loss in one of the servers, other copies are available and will be

in service right away. It’s generally recommended that 3 or more copies of the data provide

enough redundancy. But having redundancy will solve one issue and will always bring into

picture more problems such as how to keep the copies of data on the severs updated, what

happens if one server has old, out-of-date data while the user accesses it?

In industry there are ways of somehow resolving these issues and if Crowdesk was ever

going to grow to that size, those methodologies need to be applied to the system. Crowdesk

utilizes databases that are common member of any expansion and the conventional methodologies

can be applied to the system. To provide an example porting the database to Apache Cassandra

will give them enough scalability and will allow the database to be spread out amongst multiple

nodes and servers. Load balancers and store-and-forward technology are few other examples of

possible expansion and reliability techniques that are viable to be applied to Crowdesk.

28
	

CHAPTER V

SUMMARY AND FUTURE WORK

	

 Looking closer at the idea behind crowdsourcing somehow brings to attention that the

crowdsourcing and cloud computing are somehow in contrast. Cloud sourcing intensively strives

to unify processing and storage units to one single powerful entity (cloud) while crowdsourcing

tries to spread out tasks amongst as many entities as possible and try to accomplish tasks by

having many smaller/slower units. Cloud computing has made spectacular progress and we

strongly believe that crowdsourcing is still at its very infancy and the amount of current on-going

research and projects hovering around it indicate that more attention is being drawn towards it.

 We also have tried to make the role of crowdsourcing bolder and more obvious by

designing a multi-functional, multimedia capable application on a mobile device. Although

mobile devices are always limited by their battery life, recently new methods have been proposed

to extend the battery life on mobile devices [Cuervo et al. 10].

Crowdesk by no means is a complete, fully scalable project and the sole purpose of such

application is to present and demonstrate the possibilities and capabilities of power of

crowdsourcing. We have tried to represent the plausibility of such power in our everyday life and

providing a platform for further development and expansion. As the result there are so many

functionalities and factors that can be added to the system to deliver better user experience, ease

of use, and of course more functionality.

29
	

As we discussed above, the server side needs a lot of work to be able to handle request

more efficiently as the number of incoming requests increases. On the app side however, features

such as notification upon a new post, multimedia response to posts, compression mechanism for

pictures and audio files to reduce the upload/download time, better and more sophisticated user

interface, and of course IOS version of the app for iPhone and Ipad users, and many other are set

of possible features to be added to the system.

As we discussed before, providing the incentive for the user is without a doubt one of the

most challenging obstacles in crowdsourcing. We initially proposed and designed a mechanism

but due to lack of time were not able to implement this section of the system. By providing

auction like mechanism such as Vickery Auction, and tagging the posts based on their timeliness

level, rewarding and rating mechanisms to reward those users with most related and precise

answers, it is believed that Crowdesk will be able to attract more people into contributing and

committing to the system. That states that bilateral gain will be possible both for people posting a

new request and for people responding to a request and the concept of popularity and auctioning

will provide the incentive and drive to both participation as well as more reliable responses.

30
	

REFERENCES

	

[Franklin et al. 11] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and
Reynold Xin, “CrowdDB: answering queries with crowdsourcing”, SIGMOD '11 Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data, pp. 61-72, NY, 2011

[Doan et al. 11] Anhai Doan, Raghu Ramarkrishnan, and Alony Y. Halevy, “Crowdsourcing
Systems on the World-Wide Web”, Communication of the ACM, No. 4, pp. 86-96, Vol. 54, April
2011

[Chatzimilioudis et al. 12] Georgios Chatzimilioudis, Andreas Konstantinidis, Christos Laoudias,
and Demetrios Zeinalipour-Yazti, “Crowdsourcing with Smartphones”, IEEE Internet
Computing, published by IEEE Computer Society, pp. 33-44, 2012

[Stevens and D’Hondt 10] Matthias Stevens & Ellie D’Hondt, “Crowdsourcing of Pollution Data
using Smartphones”, UCL Discovery, 2010

[Howe 06] Jeff Howe, “The Rise of Crowdsourcing”, Wired Magazine, Issue 14.06, June 2006

[Yang et al. 12] Dejung Yang, Guoliang Xue, Xi Fang, Jian Tang, “Crowdsourcing to
Smartphones: incentive mechanism design for mobile phone sensing”, Mobicom '12 Proceedings
of the 18th annual international conference on Mobile computing and networking, pp. 173-184,
NY, 2012

[Weintraub] Seth Weintraub, “Industry first: Smartphones pass PCs in sales”,
“http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-
2010” accessd on May 2013

[Mohan et al. 08] P. Mohan, V.N. Padmanabhan, and Ramjee. Nericell, “Rich monitoring of road
and traffic conditions using mobile smartphones”, Proceedings of SenSys, pp. 326-336, 2008

[Rana et al. 10] R. Rana, C. Chou, S. Kanhere, N. Bulusu, and W. Hu., “Earphone: An end-to-
end participatory urban noise mapping”, in Proceedings of ACM/IEEE IPSN, pp. 105–116, 2010.

31
	

[Cuervo et al. 10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “MAUI: making smartphones last longer with code offload”, In Proceedings of
MobiSys, pp. 49–62, 2010

[Das et al. 10] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma, "PRISM:
platform for remote sensing using smartphones", In Proceedings of ACM MobiSys, pp. 63–76,
2010

[Bruke et al. 06] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M.
B. Srivastava, “Participatory Sensing”, In World Sensor Web Workshop (WSW’06) at ACM
SenSys’06, Boulder, Colorado, USA, October 2006

[Campbell et al. 08] A. T. Campbell, N. D. Lane, E. Miluzzo, R. A. Peterson, H. Lu, X. Zheng,
M. Musolesi, K. Fodor, S. B. Eisenman, and G.-S. Ahn, “The Rise of People-Centric Sensing”,
IEEE Internet Computing, pp. 12–21, July/August 2008

[Merriam-Webster] Merriam-Webster Dictionary, Crowdsourcing definition,
“http://www.merriamwebster.com/dictionary/crowdsourcing”, accessed on May 2013

[Wikipedia App Store] Wikipedia on Apple Store,
“http://en.wikipedia.org/wiki/App_Store_(iOS)” accessed on June 2013

[Wikipedia Play Store] Wikipedia on Play Store “http://en.wikipedia.org/wiki/Play_Store”,
accessed on June 2013

	 	

VITA

Sam Honarvaralijani

Candidate for the Degree of

Master of Science

Thesis: MULTMEDIA ENABLED CROWDSOURCING APPLICATION FOR

 MOBILE DEVICES

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in department of
Computer Science at Oklahoma State University, Stillwater, Oklahoma in July
2013.

Completed the requirements for the Bachelor of Science in Computer Science at
Multimedia University, Cyberjaya, Selangor, Malaysia in 2011.

Experience:

 Worked as a Software Engineer and System Support Engineer in several

companies during 2005 through 2013 In Iran, Malaysia, and United
States.

Professional Memberships:

 Member of ACM Chapter at Oklahoma State University

