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Abstract: Traditional PCR methods for amplification of multiplex STR systems typically 
take 3-4 hours, due to the limitations of the Taq DNA polymerase and the thermal cyclers 
used for amplification. Heat-stable, ‘fast’ polymerases, specially engineered for higher 
processing times, faster activation rates, and faster extension rates can be used in 
conjunction with rapid thermal cyclers that are designed to have faster ramp rates than 
traditional thermal cyclers. Together, these have been demonstrated to dramatically 
decrease the PCR amplification time of forensically relevant samples, to as little as 17 
minutes. However, it is important to determine whether rapid thermal cycling can be 
reliably implemented into a forensic DNA laboratory, for use on forensic casework. 
 This study compared one such rapid thermal cycling platform, Philisa (Streck 
Laboratories Inc., Omaha NE) to the traditional GeneAmp PCR System 9700 (Applied 
Biosystems Inc., Foster City, CA) to determine whether the fast PCR method was as 
robust, sensitive, and reliable as the traditional Taq-based system. Three multiplex PCR 
amplification kits, namely AmpFℓSTR Identifiler, Yfiler, and MiniFiler were 
evaluated for use on Philisa and the quality of the genotyping results obtained from the 
samples amplified with this instrument were reviewed in the context of an internal 
validation study performed in tandem with studies carried out with the GeneAmp PCR 
System 9700. A novel end-point PCR DNA quantification method, Q-TAT, was also 
evaluated using the rapid thermal cycler, comparing its performance to that of the 
traditional GeneAmp 9700 thermal cycler. Further, a cost analysis of each system 
demonstrated the financial investment involved with each thermal cycler. 
 The results indicate that while there was a dramatic decrease in PCR amplification 
time with the rapid thermal cycler, there was a significant increase in PCR artifacts such 
as stutter. Differences in inter-loci peak imbalance and non-adenylated peaks were also 
noted. Moreover, the amount of input template DNA required for the fast PCR system 
was considerably higher than that of the traditional thermal cycler. The two systems 
performed comparably in terms of heterozygote peak height imbalances and drop-in 
artifacts.  

Ultimately, each thermal cycler performed equally well in each study conducted. 
The Philisa thermal cycler was faster, but was out-performed by the GeneAmp PCR 
System 9700 with the Yfiler amplification kit and the Q-TAT method. 
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CHAPTER I 

 

 

INTRODUCTION 

 

The Polymerase Chain Reaction (PCR) technique, invented in 1983 by Sir Kary B. 

Mullis, revolutionized the field of forensic science.1 Because of this discovery, scientists were 

now able to multiply small amounts of deoxyribonucleic acids (DNA), readily detectable by a 

variety of methods, into exponential quantities. The discovery also earned Mullis the Nobel Prize 

in Chemistry for 1993.2 However, Mullis’ first procedure was manually performed, making it a 

highly labor-intensive and slow process.3 A simple thermal cycler was created from the 

partnership between the Cetus Corporation and the Perkin Elmer Corporation, a company that 

developed instruments and reagents for PCR.3 This machine used AmpliTaq DNA Polymerase 

to replicate the DNA strands.4 

In 1993, Perkin Elmer acquired Applied Biosystems. This pioneer in biotechnology had 

experience in developing and manufacturing biochemical, automated genetic engineering and 

diagnostic research instruments.5 With this new arm of the business dedicated specifically to 

instrument development, the GeneAmp PCR System 9700 was created. Today, GeneAmp 

9700s are marketed with 96-well capacity and inter-changeable silver-, or gold-plated blocks. 

These blocks achieve fast temperature changes and distribute the heat more uniformly throughout 
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the block than aluminium. The 9700 system is self-contained, with user-friendly programming 

capabilities.  

 In many forensic laboratories, the GeneAmp PCR System 9700 is used for reference 

and evidentiary sample DNA profiling. It has long been the preferred choice of thermal cyclers 

for DNA laboratories. Moreover, a variety of specialized Short Tandem Repeat (STR) 

amplification kits equipped with master mixes, primers, and all DNA controls needed to produce 

a STR profile from a forensic DNA sample have been developed for use with this instrument. 

Over the years, it has been shown to be a reliable, robust instrument for PCR. In recent times, 

however, several companies have attempted to develop faster thermal cycling technology, and 

this study evaluates one such rapid thermal cycler, Philisa (Streck Laboratories, Omaha NE), 

released in October 2010. 

Philisa is an 8-well, silver-block, end-point detection rapid PCR thermal cycler that is 

marketed to cut traditional amplification times from hours to minutes. The instrument has a small 

footprint and intuitive Windows based software.6	
  	
  	
  With the ever-pressing case backlogs and 

rush-case scenarios that exist in forensic DNA laboratories, the implementation of such a system 

could significantly reduce case turn-around times, although with only 8 wells, this could be 

extremely challenging. But before any new instrument can be used in a DNA laboratory, it must 

first be validated for use with the respective STR kits that the lab has validated for its human 

identification (HID) profiling. The Scientific Working Group on DNA Analysis Methods 

(SWGDAM) has provided guidelines for validation for DNA analysis methods since July 2003; 

the most recent version from December 2012.7 Forensic laboratories accredited under the Federal 
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Bureau of Investigations (FBI) Quality Assurance Standards are required to perform these 

validation studies.  

Validation is one aspect of the laboratory’s quality assurance program. Validation studies 

allow the laboratory to set operational parameters; they determine whether the expected results 

can be obtained, and how those results should be interpreted. According to the Merriam-Webster 

Dictionary, quality assurance can be defined as a “program for the systematic monitoring and 

evaluation of the various aspects of a project, service, or facility to ensure that standards of 

quality are being met” with a stated level of confidence. Quality control encompasses the day-to-

day laboratory operational practices that ensure quality. Validation can be broken down into 

process validation and method validation. Process validation is important to quality control 

because it is the way in which a laboratory documents the evidence and establishment of quality, 

to show that the various procedures will consistently produce results that meet the pre-established 

specifications of quality. Method validation, on the other hand, shows that analytical procedures 

are suitable for their intended use. Developmental and internal validations are examples of 

process and method validations, that are required when implementing or modifying technologies 

for forensic DNA analysis.7 While developmental validation documents test data in order to 

determine the conditions and limitations of novel DNA methodology,7 internal validation 

demonstrates that existing or established procedures perform as expected in the laboratory.7 

Internal validation studies are therefore conducted prior to using a new procedure, or in this case 

a new instrument, for forensic DNA analysis.  

Thermal cyclers are generally considered as critical instruments in a laboratory since the 

performance of the thermal cycler can affect the quality of the DNA profiling results and, by 
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extension, how those results are interpreted. Within the forensic DNA realm, result interpretation 

can have life or death consequences for a	
  suspect on trial, or affect closure to the victims of 

crime. It is therefore imperative to know that any thermal cycler intended for use with forensic 

DNA casework performs within the expected limits for each STR amplification kit used with it. 

 This study was a comparison of the performance of the GeneAmp PCR System 9700 

with that of the Philisa rapid thermal cycler using three AmpFℓSTR STR kits: Identifiler, 

Yfiler, and MiniFiler (Applied Biosystems Inc., Foster City, CA). The three kits were 

evaluated, using various validation criteria, for performance within the context of a forensic DNA 

laboratory. In addition, a unique end-point PCR multiplex quantification method, developed at 

Oklahoma State University, was also assessed on Philisa and compared against the GeneAmp 

PCR System 9700. Lastly, a cost analysis was performed for each thermal cycler, based on its 

capacity
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Short Tandem Repeat (STR) genotyping of deoxyribonucleic acids (DNA) found in the 

nucleus of human cells produces more genetic information than traditional mitochondrial 

methods. Moreover, the advent of multiplex systems targeting several loci on the human genome, 

have increased the ability of forensic DNA laboratories to characterize and individualize samples 

obtained within a forensic context. Not limited to recently-deposited stains or fresh samples, in 

recent times, STR genotyping of human remains has been used to elucidate the sex, identity or 

paternity, disease etiology, and possibly post-mortem intervals of bones that have been buried for 

weeks or hundreds of years.8 This form of genotyping is facilitated by the polymerase chain 

reaction (PCR). During PCR, initial template DNA quantities are multiplied exponentially, while 

each new piece of DNA is tagged with a fluorescent dye, which allows it to be visualized and 

quantified by a capillary electrophoretic process.  

Current STR PCR amplification running times range between 3-4 hours, using traditional 

thermal cycling parameters for multiplex systems. However, recently there has been a thrust to 

reduce amplification times, in an effort to maximize analysis times and increase throughput, 

especially with time-sensitive cases.9 Consequently, a number of rapid thermal cyclers have been 

developed for use with special PCR reagents designed specifically for the fast PCR process.  
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The purpose of this review is three-fold: to discuss rapid PCR and its application to DNA 

analysis, to discuss the implications of rapid PCR being able to generate reproducible STR 

profiles from forensically relevant samples and to discuss internal validation studies used in 

implementing this new technology within the context of a forensic DNA laboratory. 

Importance of Rapid Thermal Cycling 

Rapid PCR has been touted to reduce traditional PCR run times by half10 with the 

AmpFℓSTR Yfileramplification kit, and even to as little as 17 mins11 with the AmpFℓSTR 

Identifileramplification kit. These considerably low PCR run times, coupled with the 

mandatory extraction and quantification steps for forensic samples, can potentially allow a DNA 

laboratory to generate genetic profiles that are ready for analysis in one workday.12 Rapid PCR 

would encourage a higher throughout, and reduce the severe backlogs that loom over many 

forensic DNA laboratories.  

Rapid thermal cycling has been applied in the medical field for clinical diagnosis, 

pathogen detection and specimen identification.13,14 These applications used multiplex systems 

showing that fast PCR has been reliably employed with multiplex assays. Three STR PCR 

multiplex amplification kits widely used in the forensic DNA arena, manufactured by Applied 

Biosystems Incorporated (Foster City, CA), are the Identifiler, Yfiler, and MiniFiler kits. 

These are the three amplification kits used in this comparative study of a new rapid thermal cycler 

versus a traditionally used thermal cycler. From the scientific literature, STR kits have been 

validated with different rapid thermal cyclers, and produced complete genetic profiles of forensic 

samples.10,11,15,16,17 As a result, the capabilities of DNA analysis have been expanded to include a 

new technology that can be implemented after internal validations have been sufficiently 

conducted to document the expected performance of the instrument with each STR kit, as 
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recommended by the Scientific Working Group of DNA Analysis Methods (SWGDAM) in its 

Validation Guidelines document.18  

When accessing the available literature discussing rapid thermal cycling, several key 

words and phrases were used.  Some of these were STR genotyping, fast PCR, rapid PCR, 

mixture interpretation, validation studies of STR kits, DNA stutter, and heterozygous peak ratios. 

Science Direct and PubMed online search engines provided the most relevant literature since they 

both are extensive databases with a wide range of scientific articles in forensics and clinical 

research. Scientific articles dating as far back as twenty years ago to the present were obtained, 

and the relevance of each article was determined from the abstract available on the Science Direct 

or PubMed Websites.  

The literature stated that rapid PCR has been in use since 1990, where DNA fragments of 

about 500 base pairs were being copied in 15 mins.19 Additionally, there was extensive literature 

showing how special reagents and cycling protocols were optimized to suit rapid thermal 

cycling.9,10,17 Several articles included validation studies for the implementation of fast PCR 

protocols with forensic DNA casework, as well as comparisons of the quality of the genetic 

profiles produced from fast thermal cycling versus the traditional thermal cycling procedures. The 

areas focused on were stutter percentages, sensitivity, heterozygous peak ratios, and total PCR 

run time.  

This review illustrates how rapid thermal cycling has been performed in a forensic DNA 

context. It explores the best methods to maximize the quality of fast PCR mechanisms, thereby 

increasing the quality of the resulting genetic profiles produced.  Discussion of the limitations of 

rapid thermal cycling is incorporated, with further discussion of the performance of rapid thermal 

cycling in the areas of stutter, sensitivity, heterozygous peak ratios, and total PCR run time.  
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Results and Discussion 

Rapid Thermal Cycling  

In the context of this study, the rapid thermal cycler used was an end-point detection PCR 

machine, with ramp rates of up to 15°C/s heating and 12°C/s cooling.6 The traditional end-point 

thermal cycler has ramp rates of about 5°C/s heating or cooling.20 ‘Fast’ DNA polymerases, 

specially engineered for higher processing rates, faster extension rates, and faster activation times 

were used with the rapid thermal cyclers.9 Most of these enzymes were combined with optimized 

buffers and deoxyribonucleoside triphosphates (dNTPs) that are required to complete the reagents 

necessary for PCR.  

The enzyme SpeedSTARHS (Takara Bio USA, Madison WI) was frequently cited as 

the polymerase of choice for rapid thermal cycling. One study by Giese et al stated that 

SpeedSTARHS exhibited a four-fold higher fidelity than Taq polymerase for fast PCR.21 This 

fidelity was measured by the extent to which the enzyme amplified a DNA template without 

introducing sequence errors.21 Additionally, a study by Vallone et al used the SpeedSTARHS 

polymerase in conjunction with another fast polymerase, PyroStart (Fermentas, Glen Burnie, 

MD) to increase the efficiency of PCR in the system.17 Interestingly, this study successfully 

performed fast PCR using the traditional thermal cycler with the combination of these two ‘fast’ 

enzymes. Consequently, SpeedSTARHS was the DNA polymerase chosen for use with the 

rapid thermal cycler evaluated in this study.  

Multiplex Amplification of STR Kits with Rapid Thermal Cyclers 

 The use of rapid thermal cycling with multiplex STR kits required optimization of PCR 

methods, and the use of special enzymes, buffers, and dNTPs designed for a faster cycling 

process. In some instances, special rapid thermal cyclers, designed to produce faster ramp rates 
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than traditional thermal cyclers, were also utilized. With all of these essential criteria met, the 

literature was cited specifically relating to the three STR kits used with this comparative study. 

The AmpFℓSTR Identifileramplification kit was validated for use with rapid thermal 

cycling platforms by several researchers. Tsukada and associates performed 60-minute (fast) PCR 

with this kit; a sensitivity range of 500 picograms (pg) to 1 nanogram (ng) of DNA template was 

obtained.22 Choung et al. achieved multiplex PCR of the same assay in 36 minutes using a rapid 

system and the SpeedSTARHS polymerase.16 Another study with Identifiler™ by Vallone et al. 

demonstrated amplification of the 15 loci plus the Amelogenin locus in less than 36 minutes.17 

Here, the optimal target DNA amount was 750pg. A more recent validation of the Identifiler™ 

STR amplification kit, by Halsell, Choquette and Kelly, with the rapid thermal cycler used in this 

comparative study reported total PCR run times of less than 17 minutes.11  

Documented validation studies were not as extensive for the AmpFℓSTR® Yfiler™ and 

AmpFℓSTR® MiniFiler™ STR amplification kits. Tsukada et al. performed fast PCR 

amplification with Yfiler™, using a TaqGold™ Fast PCR Mix on the traditional GeneAmp® 

PCR System 9700 thermal cycler.10 PCR run time was cut in half10, from a conventional time of 

approximately 3 hours. The range of template DNA amount that produced complete genetic 

profile results was 250pg to 2ng.10 No validation publications were found for the MiniFiler™ kit 

from the search engines used for this review. 

Analytical Issues Associated with Rapid Thermal Cyclers 

The rapid PCR thermal cycling capability is not without its flaws. Several issues 

associated with the multiplex amplification of STR amplification kits were noted. These included 

split peaks16, inter-loci peak height imbalances,9 increased stutter percentages21, and more PCR 

artifacts, especially drop-in.9  
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 The most common issue of these was split peaks (minus A), caused by the incomplete 

adenylation of the new copies of DNA during the extension step. To address the split peak issue a 

few approaches were employed. Choung et al. extended the final extension step beyond 10 

minutes.16 In a study by Vallone and colleagues, a final 1 minute incubation step was added after 

the 28-cycle, 3-step rapid PCR method, to promote adenylation.17 Giese et al. increased the 

amount of polymerase as the input DNA template amount increased.21 They also adjusted 

annealing temperatures from 57°C to 62°C, with hold times increased from 5 seconds to 30 

seconds.21 Each of these adjustments to the protocol resulted in a dramatic decrease, if not 

complete elimination, of the minus A peaks. 

Most of the studies reported an increase in stutter percentages with the rapid thermal 

cyclers over those observed with the traditional thermal cycling platforms. Stutter is an artifact of 

PCR where the DNA polymerase slips from the DNA template during extension. The result is a 

DNA fragment that is one repeat less or one repeat more than that of the true fragment size. These 

are reverse and forward stutter, respectively. Stutter peaks usually have peak areas about 15% or 

less that of the true allele peak area.23 Although forward stutter is less frequent, it still occurs and 

must be accounted for when interpreting DNA profiles. 

 From the literature, inter-loci peak height imbalances were similar to those observed with 

the traditional thermal cycling methods.9,17 Heterozygous ratios reported were greater than 0.84.17 

Similarly, no marked increase in drop-in alleles was noted from the studies.  

Conclusions and Implications  

Successful validation of rapid thermal cyclers for use within a forensic context to amplify 

DNA samples using multiplex STR amplification kits has been demonstrated in the scientific 

literature. Special polymerases, buffers, and associated dNTPs are required to carry out these fast 

PCR reactions. This review has shown that the implementation of rapid thermal cycling can 
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potentially reduce the backlog of forensic DNA labs, increase throughput, and facilitate faster 

case turn-around times, especially with time-sensitive cases. Rapid PCR has been shown to be as 

robust, reliable and specific for human profiling as traditional thermal cycling methods.  

Interestingly, a study by Verheij et al. utilized rapid multiplex PCR amplification to directly 

profile DNA samples from extraction to STR typing in 2-3 hours, instead of a conventional 10 -

12 hour time.12 This assay used an inhibitor-tolerant DNA polymerase, with a non-adenylated 

allelic ladder, and a rapid thermal cycler using ultra-thin walled PCR tubes.12 With this system, 

the researchers increased the allele-calling threshold for profiling interpretation, so as to reduce 

the incidence of PCR artifacts appearing in the profiles. Their method was found to be effective 

for high level DNA, such as that obtained from reference samples.12 This type of assay could be 

very useful with database DNA casework, where mass numbers of buccal swabs are analyzed for 

entry into the CODIS database. 

 Finally, rapid PCR amplification experiments by Laurin and Frégeau demonstrated the 

ability of the method to reliably profile the minor alleles in mixture samples.9 This work could 

have implications for mixture interpretation protocol. Therefore, a comparison of the robustness 

of fast thermal cyclers to resolve mixtures against the performance of traditional thermal cyclers 

would be prudent and very significant to the forensic DNA community. 
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CHAPTER III 
 

 

METHODOLOGY 

 

This comparative study between Philisa (Streck Inc., Omaha NE) and the GeneAmp 

PCR System 9700 (Applied Biosystems Inc., Foster City, CA) was modeled after the internal 

validation guidelines articulated in the Scientific Working Group on DNA Analysis Methods 

(SWGDAM) Validation Guidelines for DNA Analysis Methods approved in December 2012.7 

Streck Laboratories Incorporated in Omaha Nebraska provided the Philisa thermal cycler used 

for this comparative study. Because this internal study involved new instrumentation in an 

already-established DNA laboratory, the studies were limited to sensitivity studies, dynamic 

range studies, stochastic studies, known and non-probative sample studies, and mixture studies. 

Additionally, contamination was monitored through the use of controls. Material modification 

studies specifically relating to a reduced reaction volume during PCR, and an increased injection 

time for Philisa were also conducted.  Each thermal cycler was assessed for total PCR run time 

per reaction. The quality of the results obtained from each study was an indication of the 

performance of each instrument. 

SENSITIVITY STUDIES 

Sensitivity studies assess the performance of the PCR machine using a standard control 

DNA sample with a known profile. These controls are provided in the short tandem repeat (STR) 

genotyping kits. Sensitivity studies define the lowest amount of template DNA that can 
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reproducibly produce a complete DNA profile, with peak heights above the analysis threshold of 

150 relative fluorescence units (RFU) for the ABI 3130 Genetic Analyzer used for this study. 

In this study, the Applied Biosystems Incorporated (ABI) AmpFℓSTR Identifiler, 

Yfiler, and MiniFiler STR amplification kits were used. The 10ng/µL 9947A control DNA 

supplied in the Yfiler kit was used with the Identifiler studies on the Philisa rapid thermal 

cycler because of the large amounts of template DNA needed for this machine. This same control 

was used with the studies performed with the GeneAmp 9700, for consistency. The 2800M 

10ng/µL male control DNA sample provided by the Promega Corporation was used for studies on 

both thermal cyclers with the Yfilerand MiniFiler kits. Three replicates of serially diluted 

template control DNA from 5ng-313pg for Philisa, and 1ng-63pg for the GeneAmp 9700, 

were used. The lowest template mass was where the average peak height for the locus with the 

smallest RFU minus three standard deviations was greater than 150RFU.24 	
  

 

DYNAMIC RANGE STUDIES 

 The dynamic range of the thermal cycler was determined as the range between the lowest 

amount of input DNA that could be reproducibly amplified on the system to produce a full profile 

with peak heights above 150RFU, and the highest amount of input DNA that produced 

fluorescent saturation for the detector on the ABI 3130, so that a higher input would no longer 

produce a linear increase in signal.24 A graph of mean peak height RFU versus amount of input 

DNA was plotted, using the loci from each dye channel for the respective STR kits. The samples 
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consisted of triplicate serially diluted sets of control samples with each amplification kit. Control 

samples used in the dynamic range study were the same as those used in the sensitivity study. 

 

STOCHASTIC STUDIES 

These studies were completed to assess the performance of each thermal cycler with the STR 

amplification kits used in three areas: stutter percentage, heterozygous peak imbalance, and allelic 

dropout/drop-in. Stutter peaks are reproducible artifacts of PCR, where an allele that is one repeat 

more or one repeat less than the true DNA allele is amplified, and has a corresponding RFU 

reading of approximately 15% of that of the true DNA allele.23 The stutter percentage was 

calculated by dividing the stutter allele peak height RFU by the true allele peak height RFU, for 

triplicate ranges of template DNA amounts for each respective thermal cycler. An example of a 

stutter peak is provided in Appendix A. This study was done to determine whether there was any 

statistically significant difference between the stutter percentages produced with each thermal 

cycler, and also to compare the stutter percentages observed with Philisa to those published by 

Applied Biosystems for the GeneAmp PCR System 9700. 

 Heterozygous Peak Imbalance is a ratio of the peak height RFU of sister alleles. Sister 

alleles are two alleles appearing together (heterozygous pair) at any locus in the genetic profile. 

An example of sister alleles at the TH01 locus in Identifiler can be found in Appendix B. The 

ratio is calculated by dividing the peak height RFU from the larger allele by the peak height RFU 

of the smaller allele of the pair. This study was done to show whether sister allele peak heights 

from template DNA amplified on Philisa were significantly different from those produced from 
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input DNA that was amplified with the traditional 9700 thermal cycler. Moreover, the template 

DNA mass corresponding to a severe peak height imbalance resulting in the loss of one allele of 

the pair was noted.  

 Allelic dropout is an assessment of the complete loss of one, or several alleles from the 

genetic profile. Drop-in is the appearance of an allele with peak height RFU above 150 that is not 

part of the known control DNA profile. The mass of template DNA where allelic dropout 

occurred was noted. Also, the number of dropout alleles was calculated. Allelic drop-in was 

calculated as the number of times extra peaks with 150RFU or more appeared throughout each 

electropherogram, for each thermal cycling platform. The mass of template DNA corresponding 

to these allelic drop in events was also noted. 

 

DNA AMPLIFICATION 

Philisa  Rapid Thermal Cycler 

Control template DNA samples for the respective STR kits were prepared for Philisa 

using a serial dilution from 5ng/µL -313pg/µL. A final sample using deionized DNase, RNase-

free water was included as a negative control. 

The Master mix for each STR kit was prepared according to the manufacturer 

recommended protocol, using 25µL final reaction volumes, with specific modifications made 

according to the kit being studied. A half-reaction volume of 12.5µL was also assessed for each 

STR kit. The Master mix 25µL preparation modifications are described in Table 1. 
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The Hot Start Q-TAT PCR Setup, a multiplex DNA quantification method using end-

point PCR described by Allen and Fuller,25 and later modified to distinguish between 

male and female nuclear DNA by Wilson et al,26 was optimized for use with this thermal 

cycler. For Q-TAT a standard curve needed to be generated. The Q-TAT standard 

curve consisted of 6 samples. Four samples were made from a 100ng/µL male DNA standard 

with concentrations of 1000pg/µL, 333pg/µL, 111 pg/µL, and 37 pg/µL. A DNase, RNase-free 

water control, served as a negative control and a 100pg/µL 9947A female control DNA sample 

from the Identifilerkit was added as a positive control sample. Dilutions were prepared using 

Table 1. Master mix set-up for three STR kits and Q-TAT for use with Philisa(Streck 
Inc., Omaha NE). 

 

Quantity in µL per reaction 

 

Identifiler  

 

Yfiler  

 

MiniFiler  

 

Q-TAT  

10X Fast Buffer II  5.5 5.1 5.5 1.25 

dNTP mixture 5.0 4.1 4.0 1.0 

Primer Mix a 5.5 5.0 5.0 1.25 

SpeedSTAR HS  0.5 0.8 0.5 0.0625 

pRL (1ng/µL) - - - 2.0 

diH20 - - - 5.9 

Template DNA 10 10 10 1.0 

a The primer mix used for each reaction was provided with each respective assay. 
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nuclease free water purchased from Teknova Corporation, Hollister, CA. 

Three different PCR methods were used to amplify the DNA samples for the three STR 

amplifications, and Q-TAT methods. A 2-step method was used with Identifiler and Yfiler, 

while a 3-step method was used with MiniFiler. A special 3-step method was optimized for the 

Q-TAT reactions.  

The 2-step PCR method consisted a denaturation step and a combined 

annealing/elongation step. Cycling occurred from step 1. The 3-step method separated the 

annealing and elongation steps, with cycling occurring from steps 1-3. The special 3-step method 

optimized for use with Q-TAT reactions had the three PCR steps separated, however, cycling 

occurred only between the annealing and elongation steps.  

The 2-step method used for Identifiler was chosen because it was the validated PCR 

protocol established by Halsell, Choquette and Kelly for use with Philisa.11 The 3-step method 

used with MiniFilerwas recommended by the manufacturers of the SpeedSTAR HS 

polymerase.27 The optimized method for Q-TAT reactions was self-developed based on a 

combination of the previous models. This method produced the highest RFU for the amplicons in 

the Q-TAT assay of several variations attempted. The denaturation hold was extended to 30 

seconds to facilitate the unwinding of the pRL plasmid. The annealing temperature was elevated 

but still within the heat-stable range of the polymerase. The extension temperature was slightly 

lowered and the hold lengthened, to increase primer-binding specificity, and to eliminate the 

amplification of non-specific fragments. These respective PCR parameters for Philisa (Streck 

Inc., Omaha NE) were as described in Table 2.  
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GeneAmp  PCR System 9700  
 
The studies were repeated with the GeneAmp PCR System 9700 (Applied Biosystems Inc., 

Foster City, CA), using final reaction volumes of 25µL.The PCR cycling parameters used for 

each STR kit were those described by the manufacturer.  Five serial dilutions of concentrations of 

1	
  ng/µL, 500pg/µL, 250pg/µL, 125pg/ µL, and 63pg/µL were made using the control DNA 

standards provided with each STR kit.	
  A final sample with DNase, RNase-free water was added 

Table 2.	
  	
  Two- step and three-step PCR parameters used on Philisa (Streck Inc., Omaha NE) 
for the respective amplification reactions. 

 

2- step (28 cycles) Temperature (°C) Time (s) 

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  95	
   	
  	
  	
  	
  	
  5	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  65	
   	
  	
  	
  	
  25	
  

	
  

3-step (30 cycles) Temperature (°C) Time (s) 

	
   98	
   5	
  

	
   55	
   10	
  

	
   72	
   5	
  

	
  

3-step (28 cyclesb) Temperature (°C) Time (s) 

	
   98	
   30	
  

	
   92	
   10	
  

	
   70	
   20	
  

	
  

b The 28-cycle repeat was from Steps 2-3. 
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as a negative control. The Hot Start Q-TAT PCR Setup described by Allen and Fuller,25 with 

the PCR cycling parameters for the improved multiplex assay that was developmentally-validated 

by Jonathan Wilson,26 was also used with the GeneAmp PCR System 9700 (Applied 

Biosystems Inc., Foster City, CA). The master mix for Q-TATamplification on this instrument 

was prepared as described by Wilson26 using Hot Start GoTaq® Colorless Mastermix (Promega 

Corporation, Madison, WI) and a final reaction volume of 12.5µL.  

The QTAT standard curve on the 9700 was prepared in the same way, as had been 

done for the rapid thermal cycler. Four serial dilutions were made of concentrations 1000pg/µL – 

37pg/ µL of the male DNA standard. The female reference standard used was the 9947A sample 

with a concentration of 0.1ng/µL. A water control sample was added to assess contamination. The 

average of three replicates of standard curve runs was subsequently used to determine the 

unknown concentrations of the forensic sample extracts.  

 

GENETIC ANALYSIS OF PCR PRODUCT 

All amplified samples were prepared for capillary electrophoresis on an ABI 3130 

Genetic Analyzer (Applied Biosystems, Foster City, CA) 4-capillary system with POP-4 polymer, 

using 1µL of amplified sample mixed with 15µL HiDi Formamide (Applied Biosystems, Foster 

City, CA) and 0.7µL GS-500 LIZ Size Standard (Applied Biosystems, Foster City, CA).  The 

samples were then electro-kinetically injected for ten seconds for Philisa samples, and five 

seconds for GeneAmp PCR System 9700 samples, and allowed to electrophorese according to 

the parameters described by the manufacturer. The Q-TATsamples were allowed to 
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electrophorese according to the parameters described by Wilson.26 The fluorescence was 

collected using a PC-based ABI 3130 Data Collection Software with 5-dye collection. The peaks 

were analyzed using the GeneMapper™ ID version 3.2 software program (Applied Biosystems, 

Foster City, CA) with manufacturer- recommended specifications for each STR kit. A macro 

developed and described by Wilson26 was used for the Q-TATsamples.  Figure 1 depicts an 

electropherogram showing the X, Y, SRY and pRL amplicons collected for the 1 ng/µL male 

DNA sample amplified on the GeneAmp PCR System 9700 (Applied Biosystems Inc., Foster 

City, CA) with Q-TAT. 	
  

 

 
 

Generation of A Standard Curve 

The Q-TAT samples were amplified using the PCR cycling parameters described previously for 

the rapid and traditional thermal cyclers respectively. The ABI 3130xl detected and collected the 

fluorescence from five amplicons in each sample, namely HPX, SRY, pRL, and Amelogenin X 

and Y; of these, the HPX amplicon was not relevant to this study and was not used, because it 

Figure 1. Electropherogram showing Amelogenin, SRY, and pRL amplicons for Q-TAT 
male	
  1000pg/µL control DNA sample amplified on the GeneAmp PCR System 9700.	
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was not needed to generate the total human standard curve. GeneMapper™ ID v. 3.2 software 

analyzed the peak area for each amplicon. A total human standard curve was generated by 

plotting the known DNA concentration of each all-male control sample against the average peak 

area for the Amelogenin X and Y amplicons of three replicates.  

Figure 2 shows an example of a total human DNA standard curve generated from the 

GeneAmp PCR System 9700. A similar standard curve was attempted for control DNA samples 

amplified with the rapid thermal cycler but could not be generated because of non-amplification 

of the internal positive control, pRL. Analysis methods, described by Wilson26, were followed to 

Figure 2. Graph of Q-TAT Total Human DNA Standard Curve plotting known DNA 
concentrations versus average total X+Y peak areas generated by GeneAmp PCR System 
9700. 
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determine the unknown concentrations of the forensically-relevant samples using the standard 

curve generated from the GeneAmp 9700. 

Human Identification Profiling of Forensically Relevant Samples 

	
   The forensically relevant samples consisted of eight total samples; five buccal swabs, one 

blood sample from a male donor, one blood sample from a female donor, and an extraction blank. 

The DNA from each sample was extracted using the phenol-chloroform extraction procedure. 

The extracts were purified and concentrated with the Zymo Clean and Concentrate system, 

resulting in approximately 30µL of DNA eluent.  

 Once quantification of these samples was achieved with the Q-TAT PCR method and 

standard curve, three male:female mixture samples of ratios 1:10, 1:1, and 10:1 were made. These 

samples were prepared by targeting 100pg/µL for amplification on the GeneAmp® 9700 thermal 

cycler, and 500pg/µL for amplification with Philisa®, prior to the samples being mixed. A 1:0 

male:female sample, as well as the 0:1 male:female sample were also amplified with the mixture 

samples so as to obtain full single-source profiles for each contributor to the mixtures. This 

information was used to assess the ability of each thermal cycler to resolve the mixtures, by 

comparing each single-source profile to the profiles obtained from the mixture samples. 

The ABI Identifilerkit was used, targeting 15 genetic markers plus Amelogenin, along 

with the MiniFilerkit, with eight target genetic markers plus the sex marker Amelogenin. Each 

amplified sample was diluted so that 100pg/µL of template DNA was targeted for profiling on the 

9700 (Applied Biosystems Inc., Foster City, CA), while 500pg/µL of template DNA were 

targeted for use with Philisa. A 12.5µL AmpFℓSTR® Identifiler™/MiniFiler/Yfiler PCR 
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amplification kit reaction volume was used on each system, using the Master mix setup and PCR 

parameters that were optimized during these studies.  

The HID-amplified products were analyzed on the ABI 3130 Genetic Analyzer (Applied 

Biosystems, Foster City, CA) using 1µL of amplified sample mixed with 15µL HiDi Formamide 

(Applied Biosystems, Foster City, CA) and 0.7µL GeneScan-500 LIZ Size Standard (Applied 

Biosystems, Foster City, CA) for the Identifiler and MiniFiler samples. The Yfiler samples 

were mixed with 20 µL HiDi Formamide and 0.7 µL GeneScan-500 LIZ Size Standard. The 

samples were electro-kinetically injected for the times previously stated. The samples then 

electrophoresed for 28 minutes, on a five-dye platform. Data was collected with the PC-based 

ABI 3130 Collection Software, and the sizes for all amplified products were estimated and 

labeled using GeneMapper™ ID v.3.2 software. Examples of the DNA profiles produced from the 

MiniFiler and Yfiler kits on the two thermal cycling platforms are contained in Appendices 

C, D, E, and F.. Electropherograms from the Identifiler kit on each platform are found in 

Figures 7 and 8. The profiling results were also tabulated to record the sixteen loci from the 

Identifiler multiplex, and the nine loci from the MiniFiler	
  multiplex kit. A dash was used for 

any locus where no alleles were size-called throughout the electropherogram. Brackets were used 

to denote any alleles with relative fluorescence units (RFU) less than 150.   

The genetic profiles from these forensically relevant DNA samples amplified with each 

thermal cycler were assessed for stutter, heterozygote peak imbalances, and mixture resolution.   
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STATISTICAL ANALYSIS 

 Statistical analyses of the results from each of the studies done for each thermal cycler 

were carried out using GraphPad Prism 6 statistics software (GraphPad Software Inc., CA) on a 

Windows-based computer. Performance comparisons in stutter and heterozygous peak 

imbalances were made with a one-way ANOVA and Tukey multiple comparison tests at a 95% 

confidence level, to determine whether there were any significant differences between the thermal 

cyclers.  

Nonlinear regression analyses were used to determine the dynamic range of each thermal 

cycler. The curves for each dye were compared against one another within each system and 

between systems using Tukey multiple comparison tests, assuming no Gaussian relationship.  
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CHAPTER IV 
 

 

FINDINGS 

The two thermal cyclers were compared in several ways, namely set-up costs, total PCR 

run time, dynamic range, sensitivity, percentage stutter, heterozygous peak imbalance and 

percentage allele dropout or drop-in.  These comparisons were made using known control DNA 

samples, as well as mock forensic samples that would typically be encountered in the context of 

the forensic DNA laboratory. Complete studies were successful with the Identifiler and 

MiniFiler STR amplification kits on the two thermal cyclers. Results from those comparisons 

and those from the forensic sample work were subjected to subsequent statistical analyses. Some 

difficulties were encountered with the Q-TAT method and the AmpFlSTR Yfiler STR 

amplification kit on Philisa; therefore, studies with these two assays were incomplete. These 

will be discussed later on in this chapter. As a result, no comparisons were drawn for these two 

methods. 

COST ANALYSIS 

The Philisa® rapid thermal cycler conventional system 8-well instrument costs 

$5,625.00.28 The cost of the Philisa® Computer and Accessories, included with the system is 

$6,000.00.28 An extended warranty is offered for $800.00.28 Additionally, special PCR tubes sold 

at 100 tubes per container for $45.0028 need to be purchased for use with this machine. Sterile 

gel-loading pipette tips are also required for use with the tubes, and those were purchased 

commercially for about $120.00.29  
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GeneAmp® PCR System 9700 96-well instruments are sold with silver- or gold-plated 

blocks, with prices ranging from $8,730 to $9,010 for new instruments.30 A refurbished 96-well 

aluminium- or silver-plated block thermal cycler can be bought for $2,750 or $2,950 

respectively.31 The 9700-system is self-contained; therefore no additional computer/accessories 

are required. Sterile 0.2 ml MicroAmp Reaction tubes with caps can be purchased for use with 

this thermal cycler from Life Technologies at $120/1000 tubes.20 Filtered pipette tips, already 

being used in the forensic DNA laboratory, can be used with the 9700 thermal cycling systems. 

No special tips need to be purchased. Table 3 shows an overall set-up cost comparison for each 

thermal cycler. It shows a slightly cheaper initial investment with the setup of Philisa. 

Table 3. A cost comparison for the setup of Philisa and the GeneAmp PCR System 
9700. 

Cost of Component Philisa - silver block GeneAmp 9700 – silver block 

Thermal Cycler ($) 6,000 8,730 

PCR Tubes ($) 45/100 120/1000 

Pipette Tips ($) 118.63/576 gel-loading tips 120.38/576 aerosol-filtered tips 

Total ($) 6,163.63 8,970.38 

Number of wells 8 96 
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PCR RUN TIME 

 Table 4 provides a comparison of the average PCR run times for the two thermal cycling 

systems specific to the analyses performed on each machine. 

 These results show considerable time-savings for each assay used with Philisa. The 

largest time difference was with the Yfiler kit, saving over 3 hours and 20 minutes per 8-

sample run. If, however, the 9700 is used to capacity, the rapid thermal cycler would have to be 

re-loaded 12 times to achieve the same throughput. The amount of time saved dramatically 

decreases to 17 minutes. The smallest time difference was observed with the Q-TATassay, at 2 

Table 4. A comparison of PCR run times for Philisa and the GeneAmp PCR System 
9700 with three STR kits and Q-TAT quantification method. 

Thermal Cycler Identifiler MiniFiler Q-TAT Yfiler 

Philisa 00:16:40 00:14:05 00:16:31 00:17:57 

 00:16:39 00:14:04 00:17:35 00:17:52 

Average run 

time 

00:16:39.5±1s 00:14:04.5±1s 00:17:06±45s 00:17:54±4s 

 ABI 9700 03:15:00 03:15:00 02:02:00 03:41:00 

 03:21:00 03:23:00 02:05:00 03:42:00 

Average run 

time 

03:18:00±4min 03:19:00±6min 02:03:00±2min 03:41:00±1min 
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hours and 46 minutes. Again, if the 9700 is ran at full capacity, it would take 3 hours and 24 

minutes to run the same 96 samples on Philisa, resulting in roughly one extra hour and 20 

minutes PCR run time. 

DYNAMIC RANGE STUDIES  

Figure 3 shows the dynamic range of 25µL Identifiler amplification determined from 

the averages of three replicates of serially diluted 9947A DNA control sample, ranging from 5ng 

to 313pg for Philisa.  
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This graph indicates a dynamic range for Philisa with Identifiler of 313pg – 1250pg. There is 

an upward trend from 313pg to 1250pg, after which the curve reaches plateau, which is indicative 

of detector saturation. No further increase in RFU was observed with increased amounts of input 

DNA. Figure 4 shows the dynamic range of 25µL Identifiler amplification determined from the 

averages of triplicate serially diluted 9947A DNA control samples, ranging from 1ng – 63pg for 

GeneAmp PCR System 9700. 

Figure 3. Graph showing the dynamic range for Philisa based on triplicate 25µL 
amplifications with Identifiler for four dye channels.  
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The dynamic range for this kit with the 9700 was 63pg – 500pg. Here, there is a marked increase 

in signal from 63pg-250pg, with a further increase in the ROX dye to 500pg. Generally, the 

signal shows an upward trend, indicating the potential for a further increase in RFU with more 

input DNA. There is a marked increase in the standard deviation at the higher input amounts 

(250pg-1ng), due to the preferential amplification of the smaller loci over the larger ones.24 This 

difference is usually observed when too much template is available for replication. 

Figure 4.  Graph showing the dynamic range for the GeneAmp 9700 based on 
triplicate 25µL amplifications with Identifiler for four dye channels.  
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The dynamic range for the MiniFiler kit with each thermal cycler was similarly determined. 

Figure 5 shows the dynamic range of 25µL MiniFiler amplification from the averages of three 

replicates of serially diluted 9947A DNA control sample, ranging from 5ng to 313pg for 

Philisa.  

There is a general upward trend in accumulated fluorescence from 313pg to 2500pg. The ROX 

and VIC dyes reach detector saturation levels after the 2500pg amount; however, the FAM and 

NED dyes show the potential for increased signal if more input DNA was added.  

 Figure 6 shows the dynamic range of 25µL MiniFiler amplification from the averages 

of three replicates of serially diluted 9947A DNA control sample, ranging from 1ng to 63pg for 

GeneAmp PCR System 9700 thermal cycler. 

Figure 5. Graph showing the dynamic range for Philisa based on triplicate 25µL 
amplifications with MiniFiler for four dye channels. 
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The dye channels in this figure achieve detector saturation after 500pg of input DNA. The best 

performing dye was VIC. The other three dyes performed similarly to one another with no 

statistically significant differences between them (p>0.05). 

 

 

 

 

 

Figure 6. Graph showing the dynamic range for GeneAmp 9700 based on triplicate 25µL 
amplifications with MiniFiler for four dye channels. 
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SENSITIVITY STUDIES 

 From the sensitivity studies conducted on Philisa, the lowest amount of template DNA 

that can reproducibly produce a complete DNA profile, with allele peak height RFUs above 150 

was 1250pg. Comparatively, the lowest amount of template DNA to produce a full profile with 

allele peak height RFU above 150 on the GeneAmp 9700 was 125pg. From the sensitivity 

studies, the optimal target input DNA amount for Philisa was 250pg. This optimal target input 

DNA amount was determined as the mass of template corresponding to the electropherogram that 

featured the least number of PCR artifacts, with all allele peak heights above 150RFU. 

Electropherograms from DNA inputs in excess of 1250pg exhibited considerable stutter and pull-

up peaks. Electropherograms from DNA inputs of 625pg and below showed alleles with peak 

heights below 150RFU. Figure 7 depicts an Identifilerelectropherogram for amplification of the 

1250pg control DNA sample from Philisa.  

 

 

 

 

 

 

Figure 7. Electropherogram for the 1250pg DNA control sample amplified on 
Philisa® with Identifiler respectively. 
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The allele peak heights from the electropherogram at 625pg bordered 150RFU, which may have 

been a result of poor mixing of serial dilution prior to PCR. Therefore, it was more prudent to use 

the 1250pg amount because the RFUs spanned 744 to 7113, which were at least three standard 

deviations from the statistical threshold of 150RFU.  
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For the GeneAmp PCR System 9700, the optimal target input DNA concentration was 250pg 

Figure 8 shows an electropherogram from Identifiler for the 250pg DNA control sample 

amplified with the GeneAmp PCR System 9700. Here, there are no artifacts recorded in the 

electropherogram and the allele peak heights span 817 to 4082, well above three standard 

deviations higher than the 150RFU threshold. Notwithstanding a few outliers, both thermal 

Figure 8. Electropherogram for the 250pg DNA control sample amplified on 
GeneAmp PCR System 9700 with Identifiler. 
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cyclers generally produced the same amount of amplified product (similar RFUs) from each 

template DNA amount. 

STUTTER ANALYSIS 

The stutter percentages were calculated for each locus for the serially diluted control 

samples amplified on Philisa or the GeneAmp 9700 with the MiniFiler STR kit. Stutter was 

calculated by dividing the peak height RFU of the stutter allele by that of the true allele. The 

highest percentages at each locus were as outlined in Table 5. These were compared with 

published stutter percentages for the amplification kit32 used in conjunction with the ABI 9700 

instrument. It is noteworthy that stutter was observed at every input DNA amount on Philisa. 

 

Table 5. Highest stutter percentages for MiniFiler on Philisa and the 
GeneAmp 9700 compared with published stutter percentages for MiniFiler. 

Locus Stutter Percentage (%) -
Philisa 

Stutter Percentage 
(%) - GeneAmp 

9700 

Published Stutter filter 
percentages (9700)32 

D13S317 28 5 14 

D7S820 2 0 11 

D2S1338 0 0 18 

D21S11 15 9 16 

D16S539 0 0 15 

D18S51 0 5 18 

CSF1PO 23 0 14 

FGA 0 0 15 
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There was a higher incidence of stutter observed with Philisa than with the GeneAmp 9700. 

The large percentages at D13S317 and CSF1P0 for Philisa were attributable to dye artifacts (pull-

up), which made the stutter peak seem considerably taller than it truly was, hence recording a 

higher peak height RFU. Notwithstanding those outliers, it is interesting to note that both 

instruments produced profiles with lower stutter percentages than the values published by 

Applied Biosystems with their instruction manuals for the multiplex kits. 

 The stutter percentages were also calculated for each locus of the serially diluted control 

samples amplified with the Identifiler STR kit on Philisa and the GeneAmp 9700. The 

highest stutter percentages at each locus were as outlined in Table 6. These were also compared 

to published highest stutter percentages for the Identifiler kit on the 9700.33 
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 In this case, Philisa did not perform as well as the GeneAmp 9700 platform, and the 

stutter was significantly higher for many loci, as revealed by a one-way ANOVA with Tukey 

multiple comparison tests (p<0.0001). The principal difference between the MiniFiler and 

Identifiler kits is the size of the PCR product produced. The MiniFiler kit uses primers that 

Table 6. Highest stutter percentages for Identifiler on Philisa and the GeneAmp 
9700 compared with published stutter percentages for Identifiler. 

Locus Highest Stutter 
Percentage (%)- Philisa 

Highest Stutter 
Percentage (%) 

GeneAmp 9700 

Published Stutter 
Percentage (GeneAmp 

9700)33 

D8S1179 14 0 8.2 

D21S11 14 0 9.4 

D7S820 0 7 8.2 

CSF1PO 0 0 9.2 

D3S1358 13 0 10.7 

TH01 0 0 5.1 

D13S317 19 0 8.0 

D16S539 0 0 10.4 

D2S1338 16 0 11.1 

D19S433 0 0 13.3 

vWA 14 0 12.6 

TPOX 0 0 4.8 

D18S51 0 0 17.0 

D5S818 16 0 6.8 

FGA 0 0 14.7 
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are closer to the tandem repeat within each allele, thereby reducing the opportunity for 

polymerase slippage during replication. 

 

ALLELIC DROP OUT 

MiniFiler  STR Amplification Kit 

There was allelic dropout observed for the Philisa thermal cycler with MiniFiler at 

the 625pg template DNA amount. There were five dropout events occurring at four loci, namely 

Amelogenin, D21S11, D18S51, and FGA. No allelic dropout was observed with the GeneAmp 

PCR System 9700 for MiniFiler. 

IdentifilerSTR Amplification Kit 

There also was no allelic dropout observed on the GeneAmp 9700 thermal cycler with 

Identifiler, but with Philisa, there was one alleleic dropout event at the D7S820 locus of the 

313pg template DNA amount. These allelic dropout results are displayed in Table 7.  

 

 

 

 

 

 

 

Table 7. Allelic dropout events for Philisa and GeneAmp 9700 for control DNA 
samples amplified with MiniFiler and Identifiler.  

 

Amplification Kit Philisa GeneAmp PCR System 9700 

MiniFiler 
(n=162 loci) 

5 0 

Identifiler 
(n=288 loci) 

1 0 
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ALLELIC DROP-IN 

The number of times drop-in alleles appeared in the electropherograms was noted for 

each thermal cycler with each STR amplification kit.  

MiniFiler  STR Amplification Kit 

There were six drop-in alleles observed for Philisa with this kit. They occurred at the 

5000pg, 2500pg, and 625pg template DNA amounts. The loci exhibiting drop-in were D13S317 

with 1 event, D2S1338 with 4 separate events, and D16S539 had 1 drop in event. There were 

three drop-in alleles observed for the GeneAmp 9700 system, with this kit, occurring at the 

1000pg and 500pg template DNA amounts. One allele appeared at D13S317, and the same allele 

appeared at D16S539 for two template DNA amounts. 

IdentifilerSTR Amplification Kit 

There was no allelic drop-in observed on the GeneAmp 9700 thermal cycler with 

Identifiler, but with Philisa, there was a single drop-in event at D19S433. These results were 

as displayed in Table 8 below. 

 

 

 

 

 

Table 8. Allelic drop-in events for Philisa and GeneAmp 9700 for control DNA 
samples amplified with MiniFiler and Identifiler. 

Amplification Kit Philisa  GeneAmp PCR System 9700 

MiniFiler 

(n=162 loci) 

D13 (7), D2(17), (29),(29), (37.2), 
D16 (11) 

D13 (7), D16 (5), D16 (5) 

Identifiler 

(n=288 loci) 

D19 (17) 0 
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Generally there were more drop-in alleles recorded for Philisa than for the GeneAmp 9700, 

especially with MiniFiler. 

HETEROZYGOUS PEAK IMBALANCE STUDIES 

Control Samples 

The ratio of peak heights for sister alleles at heterozygous loci for each STR profiling kit 

was calculated for each kit and thermal cycling platform. The average ratios for each 

heterozygous locus from triplicate serially diluted control DNA samples are compared in Figures 

9 and 10.  

Figure 9. Comparison of Heterozygous Peak Ratios for the control DNA samples amplified 
with MiniFiler on the two thermal cycling platforms (full reaction volume in triplicate). 
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Statistical analysis using a 1-way ANOVA, with a 95% confidence level, and a post Tukey 

multiple comparison test was carried out on the heterozygous peak height ratios from the two 

thermal cyclers with the MiniFiler kit. The results indicated no significant difference in the 

performance of the two machines (p=0.445). Similarly, comparison of the two thermal cyclers 

with the Identifilerkit also indicated no statistically significant difference between the ratios 

generated from the two instruments (p>0.05).  

Figure 10. Comparison of Heterozygous Peak Ratios for the control DNA samples 
amplified with Identifiler on the two thermal cycling platforms (full reaction volume in 
triplicate). 

 

 



43	
  
	
  

 

Figure 11 portrays the mean heterozygous peak ratios for each instrument with the two STR 

amplification kits. In this illustration, the average heterozygous ratios for each kit with the 

respective thermal cyclers are very similar. The ideal heterozygous peak ratio is 1.0, and the 

system and kit with a ratio closest to this standard, was the Identifiler kit used with the 

GeneAmp PCR System 9700. 

 

 

Figure 11. Summary of the average heterozygous peak ratios for control DNA samples 
amplified on Philisa and the GeneAmp 9700 with MiniFiler and Identifiler kits. 
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FORENSIC SAMPLES 

 The ratio of the peak heights of sister alleles at heterozygous loci for Samples 1-5 10, and 

11 of the forensically relevant samples, amplified with each of the STR amplification kits, was 

also calculated for the respective thermal cycling platforms. The results were compared for the 

two systems below in Figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of Average Heterozygous Peak Ratios for seven forensic 
samples amplified with Minifiler and Identifiler on the respective thermal cyclers. 
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A one-way ANOVA and Tukey post test at the 95% confidence level, to determine whether there 

was any difference in the performance of the two thermal cyclers with the respective STR 

amplification kits revealed no difference in the performance of the two thermal cyclers with the 

Identifiler kit (p>0.05). However, there was a significant difference between them with 

MiniFiler(p=0.0017). With both the control samples and the forensic samples, the two thermal 

cyclers performed equally well with Identifiler. However, the GeneAmp 9700 produced more 

ratios closer to 1.0 than Philisa did with MiniFiler. 

 

MIXTURE STUDIES 

The mixture samples, numbers 7-9, were evaluated according to the quality of the 

electropherograms produced from each ratio. Samples 1-5, 10 and 11 were single source non-

probative forensic DNA samples. Sample 6 was the extraction blank. Each mixture ratio was 

assessed to determine whether the minor contributor’s DNA was amplified, and appeared in the 

profile. Major peaks were assigned as those with peak heights of at least twice that of the smaller 

alleles (minor peaks). Major/minor peak height ratios were calculated to determine the potential 

of the mixture to be de-convoluted.  In some instances this calculation was not feasible because of 

masking by shared alleles, or the disappearance of one allele in a heterozygous pair. The results 

were as follows: 
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Sample 7 

This DNA sample was a mixture of a male: and female in a ratio of 1:10. The MiniFiler 

electropherograms generated from amplification of this sample on the GeneAmp 9700 showed 

a predominantly female profile. Minor alleles appeared at AMEL, D21S11 and D18S51 loci, with 

2 of those loci having alleles with peak height RFUs above 150. The ratio of X:Y was 41:1. 

Because this ratio is so high, it would be very difficult to obtain DNA information from the minor 

contributor to the mixture. Any statistical weight assigned to the minor component would be 

small because of such little useful DNA information above the threshold of 150RFU. Similarly, 

the electropherogram for this sample after amplification on Philisa showed a predominantly 

female profile, with no amplification of Amelogenin Y. One or more alleles from the minor 

component appeared at D13S317, D7S820, D2S1338, D16S539 and D18S51. Only those alleles 

at D16S539 and D18S51 fell below 150RFU. However, there was no Y-allele found at AMEL, 

suggesting that this sample could have been a mixture of two female individuals, had the mixture 

contributors not been previously known. 

 When this sample was amplified with Identifiler on the GeneAmp 9700 and 

Philisa, both EPs showed a predominantly female single source profile. There was a minor Y-

allele found at AMEL that amplified in the GeneAmp 9700 instrument, but the peak height was 

below 150RFU. Conversely, amplification of this sample on Philisa showed more evidence of a 

minor contributor. There was a small AMEL Y-allele, and six loci had more than 2 alleles 

present. Those minor alleles were found at D8S1179, D21S11, D3S1358, vWA, TPOX, and 

D5S8181. However, only the allele at D8S1179 had a peak height above 150RFU. Again, the 
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X:Y ratio was large, 118:1, therefore not much statistical weight could be assigned to the minor 

component.  

Sample 8 

This DNA sample was an equal mixture of male and female DNA. The MiniFiler 

electropherograms generated from the GeneAmp 9700 and Philisa did not produce alleles 

with equal peak heights. The major component of the mixture was attributable to the female 

contributor while the minor component was attributable to the male contributor. There were at 

least 3, but no more than 4 alleles at each locus. The male and female shared an allele at those 

loci with 3 alleles. There was no Y-allele in the genetic profile from Philisa. The ratio of X:Y 

on the 9700 was 5:1. All minor alleles appearing in the profiles had peak heights above 150RFU. 

The minor component resolved by the Philisa thermal cycler would prove difficult to determine 

the gender of that contributor, with the Y-allele missing, especially when the contributors to the 

mixture are unknown. There could still be considerable statistical weight assigned to that minor 

component, even without knowing the gender. 

 When this sample was amplified with Identifiler on the GeneAmp 9700 and 

Philisa, a major/minor profile again resulted. There were at least 3 (when an allele was shared), 

but no more than 4 alleles at each locus. The female was the major component, with the male as 

the minor component of the mixture. Both thermal cyclers produced X:Y ratios of 9:1. All minor 

alleles had peak heights above 150RFU, except from the Philisa-generated profile. Six loci, 

D7S820, D13S317, D2S1338, TPOX, D18S51, and FGA had minor alleles with less than 150 

RFU. This may have been due to the sizes of the loci. Those six loci are among the largest of their 
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respective dye channels. Because of the short hold time for the denaturation step of the ‘fast’ PCR 

process, those fragments may not have had sufficient time to completely unwind before the 

primers and polymerase annealed, resulting in less amplified product. Nonetheless, even with 

those six loci excluded from interpretation, nine useful sites remain for comparison and statistical 

weight assignment. 

  

Sample 9  

This sample was a male and female DNA mixture in the ratio 10:1. When this sample 

was amplified with MiniFiler on each thermal cycler, the resulting electropherogram exhibited 

a clear major/minor mixture. There were at least 3, but no more than 4 alleles at every locus. The 

major component of the mixture was attributable to the male contributor, while the minor 

component of the mixture was attributable to the female contributor. All of the peak heights were 

above the 150RFU threshold. The ratio of X:Y was 1.4:1.  

When this sample was amplified with Identifiler on the GeneAmp 9700 and 

Philisa, both electropherograms again showed clear major/minor mixture profiles. There were 

at least 3, but no more than 4 alleles at each locus. The male was the major contributor, while the 

female was the minor contributor to the mixture profiles. The ratio of X:Y from each profile was 

2:1. All minor alleles had peak heights above 150RFU, except those at D7S820 and TPOX on 

Philisa, with RFUs below 150. The electropherograms produced from this sample on both 

machines with each STR kit supplied information that could readily used to de-convolute the 

mixture and assign distinct profile to a major and minor contributor. The GeneAmp 9700 
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produced greater RFUs than Philisa and would be more useful to determine the statistical 

weight of each component. They performed equally well with MiniFiler. 

 

Material Modification 

 Amplification of the control DNA samples with each STR kit on both thermal cyclers 

was repeated using a 12.5µL total reaction volume. Complete genetic profiles were obtained from 

each thermal cycler, with allele peak heights between 500 and 4000RFU. This showed that a half-

reaction volume could be used successfully with both instruments. 

 

Contamination 

 The negative controls and blanks used in this study were injected form various places on 

the 96-well ABI 3130 plate. There were no allele peaks observed in any of the blanks or water 

control samples. Of the 36 samples ran between the two thermal cyclers, there were no instances 

of drop-in observed.  
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DISCUSSION OF FINDINGS 

Q-TATand YfilerStudies 

Studies with the Q-TATand Yfiler assays were incomplete due to issues with the 

amplification of the pRL internal positive control for Q-TAT, and the DYS389II locus for 

Yfiler with the Philisa thermal cycler. Several efforts to amplify pRL were attempted. The 

PCR method was changed to have a longer denaturation time and a longer annealing time, in 

separate instances, to give the pRL template a longer hold at each respective step. It was hoped 

that a longer denaturation time would allow the plasmid more time to unwind before exposure to 

the primers and polymerase. A longer annealing time should have improved the primer-binding.27 

Both experiments were unsuccessful. Additionally, the pRL plasmid was subjected to 

endonuclease digestion with EcoR1 in an attempt to linearize the circular configuration, and 

improve amplification. This was also unsuccessful. Future studies should be carried out to 

optimize the fast PCR parameters, possibly lowering the annealing temperature, or increasing the 

hold times at each step of PCR.  

With the AmpFℓSTR® Yfiler amplification kit, there was successful amplification of 

all the loci except the DYS389II locus. An example of a Yfiler profile from Philisa can be 

found in Appendix D. In most cases the DYS389II locus would not amplify, it would be 

incorrectly size-called, or it would have two off-ladder peaks. DYS389II, although not the largest 

locus in the assay, is the largest locus of the FAM dye channel. Large loci are more susceptible to 

degradation, thereby affecting amplification. Nonetheless, all the other loci in the assay were 

successfully amplified with RFUs above 150. Therefore, useful information can still be obtained 



51	
  
	
  

from the other 14 loci in this assay on Philisa. If a forensic DNA laboratory performs studies 

and one or more loci consistently fail to amplify, the laboratory should consider establishing a 

written policy that delineates how Yfiler results will be interpreted and reported. Other 

laboratories may be more successful with the locus and might not need to have a policy that 

eliminates it. 

 

Dynamic Range Studies 

Identifiler 

 One-way ANOVA comparing the two thermal cyclers with the Identifiler STR kit 

revealed that there was no significant difference between the performances of the four dye 

channels on each instrument (p>0.05). 

 For the GeneAmp 9700 thermal cycler, the dynamic range was 63pg – 500pg with 

Identifiler. There was no apparent flat-line for any dye channel, which indicated that the 

detector was not completely saturated. Therefore, a further increase in input DNA might still 

produce a linear increase in signal. A one-way ANOVA of the 4 curves from the different dye 

channels indicated that there was no significant difference between the curves (p=0.874). 

Moreover, a non-linear fit analysis revealed that it was possible to have one curve for all the data 

sets (dye channels). The best performing dye channel was ROX, while VIC was the poorest 

performer, with average RFU of 1278 compared to 1537 for ROX. 
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 By comparison, the dynamic range was 313pg-1250pg for the Philisa instrument. There 

was a clear indication of detector saturation after 1250pg. A one-way ANOVA for the four dye 

channels revealed no statistically significant difference between them; however, a non-linear fit 

analysis indicated that it was not possible to have one curve for all data sets (p=0.0002). The best 

performing dye channel was ROX, while VIC was the dye with the lowest average RFU of 1225, 

compared to an average of 3026 for ROX. 

 

MiniFiler 

A one-way ANOVA comparing the performance of the dye channels from the two 

thermal cyclers with this STR kit revealed that there was a statistically significant difference 

between them in the VIC dye channel (p=0.0002). The GeneAmp 9700 thermal cycler had 

larger peak heights than the Philisa cycler in this dye channel.  

For the GeneAmp 9700 thermal cycler, the dynamic range was also 63pg – 500pg with 

MiniFiler, with apparent saturation of each dye channel after the 500pg amount. A one-way 

ANOVA of the 4 curves from the different dye channels indicated that there was a significant 

difference between the FAM vs. VIC, VIC vs. NED and VIC vs. ROX channels (p=0.01). Also, a 

non-linear fit analysis revealed that it was not possible to have one curve for all the data sets (dye 

channels), since they each performed so differently. The best performing dye channel was VIC, 

while ROX was the poorest performer, having the lowest average RFU of 2141 compared to an 

average of 3628 for the VIC dye channel..  
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In comparison to the 9700, the Philisa thermal cycler performed about the same. There 

was a larger dynamic range observed with MiniFiler on Philisa than with Identifiler, 

ranging from 313pg – 2500pg. A one-way ANOVA for the four dye channels revealed a 

statistically significant difference in the FAM vs. VIC, and FAM vs ROX channels (p=0.0017). 

The FAM dye channel outperformed all the dyes with this instrument, while the ROX dye 

recorded the lowest average peak height RFU of 1529, compared to an average of 3712 for the 

FAM dye channel. . Also, a non-linear fit analysis of each curve indicated that they were each 

different (p=0.0002); therefore it was not possible to have one curve for all the data sets (dye 

channels). This improvement in performance of Philisa with the Minifiler kit may relate to 

the smaller size range of the STR alleles amplified. 

Stutter Analysis 

 Overall, the rapid thermal cycler had significantly more stutter than the traditional 

thermal cycler (p<0.05) with the Identifiler kit. There was no significant difference in the 

highest stutter percentages of the two instruments with the MiniFiler kit studies (p=0.3174). 

The Philisa thermal cycler generally had more stutter at the smaller loci with each STR kit. This 

may have been because it requires less energy to unwind a smaller template DNA fragments, in 

the short hold times at the denaturation step of the rapid PCR process. Again, amplification could 

be favored for the smaller loci, creating more opportunity for polymerase slippage resulting in 

increased reverse stutter. Reverse stutter is an allele that is one repeat less than the true DNA 

allele. There was very little stutter recorded for the GeneAmp 9700, which is indicative of the 

robustness and reliability of the instrument. 
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Identifiler 

The loci that showed the most stutter with Philisa were D13S317 (19%), D2S1338 

(16%), and D5S818 (16%). A one- way ANOVA of the highest stutter percentages with the 

Philisa thermal cycler indicated a significant difference between the stutter percentages at those 

loci (p<0.0001). This predicts a high degree of variability with the expected results from Philisa 

with this STR kit. Conversely, there was very little stutter observed with the GeneAmp 9700; 

however, the locus with the highest stutter percentage was D7 (7%). This percentage was lower 

than the filter percentage published by Applied Biosystems for that locus. 

MiniFiler 

 Both thermal cyclers revealed no significant difference in the highest stutter percentages 

among the eight loci (p>0.05). The loci with the highest stutter percentages on Philisa were: 

D13S317 (28%), CSF1P0 (23%), and D2S111 (15%). The marked increase at D13S317 and 

CSF1P0 were attributable to pull-up artifacts, which cause the peaks to record higher RFUs than 

the true peak height. On the GeneAmp 9700, the D16S539 (9%) and D21S11 (9%) loci 

recorded the highest stutter percentages. With consideration of the pull-up in the stutter on the 

rapid thermal cycler, Philisa generally had less stutter than the GeneAmp 9700 thermal cycler 

with the MiniFiler STR kit. Again, the marked improvement with stutter on Philisa may be 

related to the sizes of the STR amplicons with this kit. 
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Allelic Dropout/Drop-in 

There was no dropout observed with the GeneAmp 9700. This is again, a reflection of 

the high sensitivity of the instrument to amplify small amounts of template DNA. Despite having 

greater DNA input amounts, there was still dropout of the larger loci from the Philisa 

amplifications. This may be attributable to the fast PCR process that may be less efficient with 

amplification of larger loci due to the short hold times at the different stages of the process.                                                                                                                                                                                                                                                                                  

A possible remedy may be to extend denaturation and annealing holds by 5-10 seconds to 

improve the efficiency of PCR. 

With allelic drop-in, each of the peaks recorded were not part of the expected genetic 

profile, with peak heights above 150. Each peak was assessed to ensure that it could not be 

classified as a dye artifact such as pull-up or dye blob. Each peak displayed good peak 

morphology. Drop-in poses a challenge to DNA analysis and interpretation because it is often 

difficult to determine whether the drop-in is an artifact or a true allele peak. Extra peaks in the 

electropherogram might be interpreted as a low-level mixture. This is one of the reasons why 

validation studies are important. Expected results parameters can then be established, 

documented, and incorporated into a laboratory’s overall quality assurance plan. This plan should 

always be known and readily available. 

Heterozygous Peak Ratio Studies 

Statistical analysis of the heterozygous peak ratios (one-way ANOVA, 95% confidence 

level) from the two instruments for the respective kits indicated no significant difference between 

them (p=0.446). The system with a mean ratio closest to 1.0 was the GeneAmp 9700 with the 
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Identifiler kit. It is important to have heterozygous peak ratios near 1.0 because it is an 

indication that both alleles in a heterozygous pair are equally amplified. This is a reflection of the 

robustness and reliability of the thermal cycler to produce well-balanced profiles.  In addition, 

with well balanced sister alleles in heterozygous profiles, it is much easier to distinguish between 

single source samples and mixtures when only two alleles are visible.  

With the forensic samples, there was also no difference between ratios between peak 

height ratios for each thermal cycler with the Identifiler kit (p>0.05); however, overall the 

GeneAmp 9700 had less peak height imbalance than the rapid thermal cycler with the 

MiniFiler assay. This was largely traceable to large imbalances at the AMEL locus in one 

sample amplified with the Philisa thermal cycler. Accounting for this outlier, the peak height 

ratios from the two instruments were relatively similar. 

Other PCR Artifacts 

 An additional PCR artifact that was characteristic of rapid thermal cycling, from the 

literature, was minus A peaks. These are split peaks due to the incomplete adenylation of the 

newly synthesized DNA fragments during the extension step.16 An example can be seen in 

Appendix C. From the studies on each thermal cycler, minus A peaks were not as prevalent as 

expected from the citations in the literature. With the MiniFiler kit, minus A peaks were noted 

at the D16S539, CSF1P0, and FGA loci. Minus A peaks were only observed at the AMEL locus 

with the Identifiler kit and Philisa. 
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Mixture Studies 

From this study, each thermal cycler exhibited equally low resolution of the mixture 

profiles. Despite having quantified the samples prior to mixing, it was evident that they were not 

of equal concentration in the 1:1 mixture, since those electropherograms produced clear 

major/minor components. This affected the amplification of the samples. Nonetheless, for the 

most part, the number of contributors to the mixture could be determined.34  

Also, at most loci, the ratio of minor alleles to major alleles was between 50% and 60%, 

which are preferred ratios for mixture interpretation.23 Moreover, when minor alleles appeared in 

the profile, the peak heights were above 150 RFU, which would allow them to be used 

statistically to report a probability of the minor profile in the population.35 Overall, amplification 

of the minor component with Philisa produced higher peak height RFUs than on the 

GeneAmp 9700. For example for Identifiler with the 1:1 mixture, a range of 163-4269 RFU 

on Philisa versus 177-1147 RFU from the GeneAmp 9700. This difference may be 

attributable to the higher amounts of template DNA used with the rapid thermal cycler.
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CHAPTER V 
 

 

CONCLUSIONS 

From the sensitivity studies conducted on the two thermal cyclers, the GeneAmp 9700 

was the more sensitive instrument, having a lower input DNA mass which could produce a full 

genetic profile with allele peak heights above 150RFU.  

 For the GeneAmp 9700 thermal cycler, the dynamic range was 63pg – 500pg with 

Identifiler. The best performing dye channel was ROX, while VIC was the poorest performer. 

By comparison, the dynamic range was 313pg-1250pg for the Philisa instrument. Similar to the 

GeneAmp 9700, the best performing dye channel was ROX, while VIC was the dye with the 

lowest average RFU.  

 For the GeneAmp 9700 thermal cycler, the dynamic range was also 63pg – 500pg with 

MiniFiler. The best performing dye channel was VIC, while ROX was the poorest performer. 

The dynamic range observed with MiniFiler on Philisa was between 313pg and 2500pg. The 

FAM dye channel outperformed all the dyes with this instrument, while the ROX dye recorded 

the lowest average peak height RFU.      

 Overall, the rapid thermal cycler had significantly more stutter than the traditional 

thermal cycler (p<0.05) with the Identifiler kit. There was very little stutter recorded for the 

GeneAmp 9700.The loci with the highest stutter percentages on Philisa were: D13S317 
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(28%), CSF1P0 (23%), and D2S111 (15%). On the GeneAmp 9700, the D16S539 (9%) and 

D21S11 (9%) loci recorded the highest stutter percentages.  

There was no dropout observed with the GeneAmp 9700 for either STR kits. There was 

dropout of the larger loci from the Philisa amplifications. There were very few incidences of 

drop in on either instrument.  

There was no indication of a significant difference in the heterozygous peak ratios 

between the two thermal cyclers (p=0.446). With the forensic samples, there was also no 

difference between ratios between peak height ratios for each thermal cycler with the Identifiler 

kit (p>0.05); however, overall the GeneAmp 9700 had less peak height imbalance than the 

rapid thermal cycler with the MiniFiler assay.  

With the MiniFiler kit, minus A peaks were noted at the D16S539, CSF1P0, and FGA 

loci. Minus A peaks were only observed at the AMEL locus with the Identifiler kit and 

Philisa. Split peaks were observed at the D7S820, D2S1338, D16S539, CSF1P0, and FGA loci. 

No minus A peaks were observed with the Identifiler kit.  

Results from the mixture study, indicated that each thermal cycler exhibited equally low 

resolution of the mixture profiles. Nonetheless, for the most part, the number of contributors to 

the mixture could be determined.34  

The statistical analyses performed from the various studies on each thermal cycler 

indicated comparable performance between the two systems with the Identifiler, MiniFiler 

and Yfiler STR amplification kits, and the Q-TAT method. A marked difference was with the 
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stutter percentages, where Philisa exhibited significantly more stutter than the GeneAmp 

9700. Also, Philisa was unable to amplify the DYS389II locus in Yfiler, and the pRL 

amplicon in Q-TAT. The GeneAmp 9700 was more sensitive, and was shown to be a robust, 

reliable thermal cycler with every comparison study performed; albeit having higher setup costs. 

Philisa was considerably faster, saving over 3 hours, 23 minutes of PCR run time, and 

performed as reliably as the GeneAmp PCR System 9700 with heterozygous peak ratios and 

mixture resolution. However, with only 8 wells, additional analyst time must be factored in for 

the repetitive sample handling required getting through a casework batch of more than eight 

samples. The time-savings with Philisa are more advantageous with small batch sizes. 
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APPENDICES 
 

Appendix A. Electropherogram showing a stutter allele.  

 

 

The arrow indicates the stutter allele at the D8S1179 locus. The stutter allele is 12 and the 
true allele is 13. The stutter percentage of 12 is 90/863 = 10%.  
 

Appendix B.  Electropherogram showing two sister alleles at the TH01 locus.  

 

The heterozygous peak ratio of these two alleles is calculated as: 1684/1489 = 1.1. 
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Appendix C. Electropherogram showing a genetic profile of 2800M control DNA generated 
by the GeneAmp 9700 with MiniFiler. 

 

Minus A peaks can be seen at D7S820, D2S1338, D16S539, CSF1P0 and FGA. 
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Appendix D. Electropherogram showing a genetic profile of 2800M control DNA generated 
by Philisa with MiniFiler. 

This electropherogram shows minus A peaks at the D16S539 and FGA loci. 
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Appendix E. Electropherogram showing a genetic profile of 2800M control DNA 
generated by Philisa with Yfiler. 

 

This electropherogram shows the double off-ladder (OL) peaks at the DYS389II locus. 
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Appendix F. Electropherogram showing a complete genetic profile of the 2800M control 
DNA sample amplified with Yfiler on the GeneAmp 9700 thermal cycler. 
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