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ABSTRACT: 

Due to the growing need for Medical Physicists, many universities are implementing a Medical 
Physics program into their academic catalog. To help establish a new program, feasible 
equipment may be needed to help academic departments provide a hands-on experience for 
students and help teach the basic concepts of Medical Physics. For example, clinical Digital 
Radiography Systems (DRS) are used to help teach the basic concepts of digital imaging. 
However, such systems can cost in excess of $100,000, creating a financial obstacle that will be 
difficult to overcome. Hence, the development of a cost efficient digital radiography system may 
be desired in order to eliminate the financial obstacle and give students a hands-on learning 
experience. This DRS uses three main components to develop an image, an x-ray source, an 
intensifying plate, and a charge-coupled device (CCD) camera. All three components are housed 
in a lead-lined box. The purpose of this project is to find the limitations of our DRS and compare 
the price between our DRS and commercially available DRSs. At optimal settings, a SNR of 25 
is shown across the intensifying screen that can identify objects as small as 0.42mm. A Contrast-
detail phantom shows the ability to decipher the varying thickness of foam rubber squares. The 
total cost of our DRS comes to ~$17,000.00, a fractional price tag compared to a commercially 
available DRS. 
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Chapter 1: Designing a Low Cost Digital Imaging System 

 

1.1 Brief History of Radiography 

In Germany in 1895, Willhelm Roentgen stumbled upon the discovery of x-rays when he 

was experimenting with cathode rays (electron beams) and soon after, produced the world’s first 

radiographic image (Figure 1-1). While conducting research using Crooke’s tubes, a barium 

platinocyanide screen (which was within eyesight of Roentgen) began fluorescing while cathode 

rays were being emitted in the Crooke’s tube. The glowing screen showed Roentgen that 

something (x-rays) originating from the Crook’s tube must be interacting with the chemical 

make-up of this screen (Hill, 1975). This x-ray luminescence phenomenon helped quickly lead to 

the development of radiography. The combination of the fluorescing screen and film gave way to 

the first radiography system. 

 

 

Figure 1-1: The first radiograph 
taken of Roentgen’s wife in 1895.  
As one can see, the contrast of 
different substances (bone, ring, fat) 
is due to the attenuation of x-rays 
through Mrs. Roentgen’s hand and 
ring (USNLM, 2012). 
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The ability to use x-rays, which attenuate through different materials at different rates, 

has revolutionized patient care. The benefits of using x-rays for imaging (easily produced, low 

cost, noninvasive, etc…) were immediately apparent and radiography systems were implemented 

into hospitals soon after their discovery by Roentgen. Radiography systems have become the 

foundation for diagnosing many different injuries and diseases that occur inside the body. Along 

with radiography’s obvious benefits, comes the risk of using radiation safely. As time has 

passed, it has been shown that dealing with the radiation output of such systems can be 

dangerous and should be handled with the upmost of care. The duty of supervising the radiation 

output of different medical devices in a hospital fall onto the shoulders of a Medical Physicist. 

Two standard types of radiographic imaging are used for medical imaging: screen film 

radiography (SFR) and a digital radiography system (DRS). Standard screen-film radiography 

(Figure 1-2) uses a cassette made of film sandwiched between two intensifying plates. The x-ray 

beam is first attenuated by the object/patient being imaged. The beam then interacts with the 

intensifying plates creating visible light and causing the sandwiched film to darken, forming an 

image; however, the image that is formed on the film is not complete. Additional chemical 

processing is needed in order to fully develop the film and fix the final image. With a DRS, the 

film cassette is replaced by a digital receptor (Figure 1-3). This digital receptor measures the x-

ray beam intensity after it passes through the object/patient being imaged. The measured data is 

then read and processed by specialized digital imaging software to produce the final image. This 

final, corrected image is projected on the display control. Image processing is where the 

advantage of DRSs comes into play. The digital information in the image can be manipulated by 

digital imaging software allowing users to vary the characteristics of the digital images and to 

extract needed information from the image that would be otherwise unnoticeable. 
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Figure 1-2: A typical setup for a screen-film radiography system. The film is  
sent to be developed into an image after being exposed (Siemens).  
 
 
 
 
 
 

 

 

Figure 1-3: The x-rays strike the detector (receptor) and are converted into a 
digital intensity value matrix. An image processor then assigns grayscale values to 
the matrix so it can be displayed as an image. This image is then saved to a file 
for easy retrieval. Once the image is saved, it can be sent to any network dubbed 
appropriate with a simple click of the button (Sprawls).  
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After the image is processed, the image is then stored as digital data, for quick and easy retrieval. 

The images may then be easily shared among different locations across communication 

networks. 

As recently as 2008, the majority of health clinics still used screen-film based 

radiography (van der Stelt, 2008). If hospitals have already invested the time, money, and effort 

into a SFR system, they may not want to deal with the upfront cost of a DRS. However, if a 

health care facility is newly built and looking for a radiography system to purchase, DRS would 

be the favored choice. In recent years, health care facilities have begun rapidly switching to 

digital radiography systems due to the same reason associated with building an educational 

digital radiography system: first, fixed non‐linear grey scale response, SFR is limited to a fixed 

dose latitude, and limited potential for reducing dose to the patient (Bansal, 2006). While this is a 

beneficial reason for a clinical setting to switch to DRS, an educational DRS would not use a 

patient for imaging; therefore, limiting dose to the object would only be a secondary concern for 

system design. Second, DRSs enhances the quality of an image over film radiography. For 

example, images taken from a DRS can be mathematically filtered to bring out key features in an 

image. Third, film needs to be processed with hazardous chemicals to develop and fix the image. 

A DRS will get rid of these chemicals along with time and space required in processing the film. 

Fourth, film can only be used once; consequently, if the film is lost, damaged, or poorly 

developed, another image must be taken. These errors can cost a facility time and money, while 

costing a patient time and delivering additional dose for unnecessary reasons. Finally, after the 

film has been developed, space is needed for storage. A system then needs to be set up for easy 

retrieval of the stored film. A DRS will eliminate the clutter of a file room and make retrieval of 

images much faster and convenient with a simple click of a button. On top of easy retrieval, 
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sending images to a different location (facility to facility) will be as simple as sending an e-mail.  

These limitations of SFR can be a hassle, costing time, money, and safety. As stated above, dose 

does not come into effect when choosing an educational radiography system, but keeping up 

with the technological advances of the future is necessary for educational programs.  

 

1.2 Purpose of this Project 

Many universities are adding Medical Physics programs into their academic catalog due 

to the growing need for Medical Physicists. To help establish a new program, feasible equipment 

may be needed to help academic departments provide a hands-on experience for students and 

help teach the basic concepts of Medical Physics. Clinical digital radiography systems are used 

to help teach the basic concepts of digital imaging. However, such systems can cost in excess of 

$100,000, creating a financial obstacle that will be extremely difficult for a university to 

overcome. For example, Absolute Medical Equipment sells a Source-Ray SR-130D/55G Direct 

digital portable X-Ray System for $118,745, a price tag that is well above the limits of most 

academic physics departments. Hence, the development of a cost efficient digital radiography 

system is desired that can eliminate the financial obstacle and give students a hands-on learning 

experience. Along with being cost efficient, the system design needs to be capable of producing 

images with adequate characteristics concerning noise, spatial resolution, and contrast.  

The raw components of a digital radiography system are commonly found within existing 

labs in academic Physics and Engineering departments or are readily available for consumer 

purchase. If items such as a CCD camera, intensifying screen, or x-ray source are not already 

available in the department, then one can easily purchase these components via the internet or 

local electronic store for a reasonable price.  The purpose of this Masters of Science project was 
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to construct a working educational DRS from component pieces that were either readily 

available in the Oklahoma State University department of Physics or could be easily purchased. 
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Chapter 2 – Physics of Digital Radiography 

 

2.1 Overview of Digital Radiography Systems 

 All radiography systems have two pieces of equipment in common, an x-ray source and a 

detector. These two items are used in different ways in order to capture an image. Generally, all 

x-ray sources used in radiography systems behave in the same way. The difference in x-ray 

sources in radiography systems is the capacity of voltage and current supplied to the source. On 

the other hand, detecting x-rays can be done in a variety of ways to produce an image. Using the 

different characteristics of different detectors lets one set up a variety of radiography systems. 

However, a DRS set-up becomes advantageous when wanting to extract a variety of different 

information from the same image and wanting to gather that information quickly.  

 

2.1.1 X-ray Source 

X-rays are created by bombarding a dense piece of metal (anode), such as tungsten 

(Figure 2-1) with high energy electrons. This bombardment of electrons causes two different 

types of x-ray reactions to occur.  First, most of the incident electrons interact by traveling 

through an atom and coming into close contact with the nucleus.  Once the electrons approach 

the nucleus, they are attracted to each other due to the opposing forces of the nucleus (positive) 

and electrons (negative).  The nuclear force field causes the electron to slow down, change 

course, and lose energy.  The decelerating electrons emit a spectrum of x-rays known as 

bremsstrahlung (Figure 2-2).  The energy of the x-ray photon that is created from the 
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deceleration of the incident electron is the difference between the electron’s energy entering and 

exiting the tungsten atom.  Second, the electrons may collide with the tungsten’s electron cloud 

and ionize an electron from the inner shell.  As the electron is ejected from the inner-shell, a 

higher orbiting electron will come to fill the void space.  This creates a cascade of electrons 

filling in the void shells from the different orbits.  In the act of filling the ionized electron shell, a 

characteristic x-ray is emitted.  The energy of the characteristic x-rays are equal to the difference 

of binding energies of the filled shells (Figures 2-3, 2-4). Even though the two target interactions 

occur, diagnostic x-ray tubes are very inefficient by wasting 99% of the incident electron energy 

on heat. Only about one percent of target interactions that occur produce x-ray photons. 

 

 

 

 

Figure 2-1: Simplistic diagram of an x-ray source. (Suetens, 2002) 
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Figure 2-2: The incident electrons enter the tungsten atom and approach the 
nucleus.  The nucleus “brakes” the electrons and sends them on a different course.  
The “braking” of the electrons causes a loss of energy and results in a spectrum of 
x-rays. (Carlton, 2001) 
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Figure 2-3: The incident electron collides with the electron cloud of the tungsten.  
The collision ionizes an electron of a particular shell.  The ionization causes 
higher orbiting electrons in the cloud to replace the ionized electron, thus creating 
a characteristic x-ray. (Carlton, 2001) 
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Figure 2-4: The binding energy differences between the different shells of an 
atom (Griffiths).  
 

 

The two settings that control the output of the x-ray source are voltage and the filament 

current. The voltage applied between the anode and cathode of the x-ray tube accelerates the 

electrons toward the anode target. As the potential between the anode and cathode increases, the 

accelerating force felt by the electron increases, resulting in an increased electron energy striking 

the target and an increased maximum in the energy of the x-rays emitted. As the x-ray energy is 

increased, the penetrating capability of the x-ray is increased. In addition to the high voltage 

across the x-ray tube, a separate voltage is applied across the cathode filament. This voltage 

produces a current in the filament (cathode), which dictates the number of electrons available to 

be accelerated to the anode. As the current flows through the filament, it heats up, resulting in 

electrons being “boiled off” for acceleration. As the filament current increases, more electrons 

are boiled off and accelerated, which in turn increases the number of x-rays produced. 
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2.1.2 X-ray Detection 

 Several different x-ray detectors have been used for radiographic imaging. Photographic 

film was first used by Roentgen with the addition of intensifying screens. The photographic film 

is a strip of transparent plastic that has been coated on one side with microscopically small silver 

halide crystals. The silver halide crystals begin to darken when exposed to light. The film is 

inserted into a cassette with two intensifying screens as show in Figure 2-5. Once the cassette is 

exposed to x-rays, the x-rays penetrate the cassette, strike the intensifying screens, the 

intensifying screens convert the x-rays into visible light, and the light strikes the film. Once an 

appropriate x-ray exposure has been delivered, the film displays various amounts of information 

about the object that is being imaged.  

Other x-ray detectors that use electronic detection can be divided into two classes, direct 

and indirect detection.  Direct methods convert x-rays into an electric charge without using a 

medium. The x-rays strike a photoconductor (such as selenium or silicon) directly and are 

converted into an electric charge which in return is digitized into an intensity matrix and 

converted into an image. Indirect methods use a medium, such as a scintillator, that convert the 

incident x-rays into visible or ultraviolet light that can be detected by a CCD or photodiode, as 

shown in Figure 2-6 (Chotas, 1999). Whether the direct or indirect method is used, images can 

be produced instantaneously when converting the detected x-rays to a digital image. 

 



 

Figure 2-5: A typical cassette composed of two intensifying screens inside of a 
light-tight container. The film is inserted between the screens a
rays penetrate the cassette, strike the intensifying screens, and are collected onto 
the film by way of visible light from the screens.

  

 

 

Figure 2-6: A comparison of direct and indirect methods used when detecting x
rays and converting them into a digital image. Direct method uses a 
photoconductor that converts the x
transitional stage. Indirect methods use some form of medium that converts the 
incident x-rays into a different wavelength, such as vis
can be detected by other forms of detectors (Chotas
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A typical cassette composed of two intensifying screens inside of a 
tight container. The film is inserted between the screens and closed. The x

rays penetrate the cassette, strike the intensifying screens, and are collected onto 
the film by way of visible light from the screens. 

A comparison of direct and indirect methods used when detecting x
them into a digital image. Direct method uses a 

photoconductor that converts the x-rays into an electric charge with no 
transitional stage. Indirect methods use some form of medium that converts the 

rays into a different wavelength, such as visible light, which in return 
can be detected by other forms of detectors (Chotas, 1999). 

 

A typical cassette composed of two intensifying screens inside of a 
nd closed. The x-

rays penetrate the cassette, strike the intensifying screens, and are collected onto 

 

A comparison of direct and indirect methods used when detecting x-
them into a digital image. Direct method uses a 

rays into an electric charge with no 
transitional stage. Indirect methods use some form of medium that converts the 

ible light, which in return 
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For radiographic imaging, the x-ray beam is directed at an object located on a stand in 

front of an x-ray detector. X-ray energies used in typical radiography systems are anywhere from 

15-150 keV. As the beam penetrates an object, x-rays are able to pass through the object with no 

interactions, or interact via three different processes (Figure 2-7). These three x-ray interactions 

in radiographic imaging are as follows: photoelectric effect, Compton scattering, and pair 

production.  Since radiographic x-rays have maximum energies below the threshold for pair 

production (1.022 MeV), it can be ruled out as an interaction process. Photoelectric and 

Compton split the probability of x-ray interactions. At lower photon energies, photoelectric 

interactions are predominant due to the fact that the photon energies are closer to the electron 

binding energies of different materials. As the energy increases, Compton scattering begins to 

become the principal interaction as seen in Figure 2-8. However, Compton scattering attenuates 

photons of different composition at roughly the same rate since it is nearly independent of Z (
�

��
), 

while the photoelectric effect is proportional to both Z and energy (
��

���) (Bushberg et al., 2002). 

Figure 2-9 shows how each interaction attenuates incident photons for different materials. 

Given that Compton scattering is present in virtually every radiographic procedure, 

scattered x-ray photons will occur within the imaged object. These scattered photons are not 

wanted in radiographic imaging since they can blur images. Nonetheless, x-rays from the 

imaging beam strike the object, and different regions of the beam are attenuated at different rates 

due to the density and atomic composition of the object. For example, the human body is 

composed of bone, fat, water, and muscle; all of which vary in density and composition and 

attenuate an x-ray beam differently.  This varying attenuation provides us with information 

needed to produce an image of the densities and compositions of tissues in the body without need 

for surgery.  
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After the x-ray beam passes through the object being imaged, it strikes an x-ray detector.  

The detector used in our system is an intensifying screen, originally used for film radiography. 

Rather than use the addition of film with the intensifying screens, the screens are removed from 

the cassette and used solely for their ability to convert x-rays into the visible light spectrum. The 

film itself is relatively insensitive to radiation; hence, more x-rays are needed to properly expose 

the film to produce a quality image (Bushberg, 2002).  Although film is able to be directly 

exposed with x-rays and gives the highest resolution possible, intensifying screens are used 

diagnostically to decrease the dose delivered to patients and can create a higher contrast image. 

 

 

 

 

Figure 2-7: As incident x-ray photons interact in the body, some will be able to 
pass through without interacting, while other will interact in the body via 
photoelectric effect and/or Compton scattering (Sprawls).  
 

 



 

                           

Figure 2-8: The probability of a Compton 
as a function of photon energy 

 

Figure 2-9: At approximately 30 keV, the probability of Compton scattering and 
the photoelectric effect are split evenly (Sprawls). 
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The probability of a Compton and photoelectric interaction changes 
as a function of photon energy (Bushberg et al., 2002).  

 

At approximately 30 keV, the probability of Compton scattering and 
the photoelectric effect are split evenly (Sprawls).  

photoelectric interaction changes 

At approximately 30 keV, the probability of Compton scattering and 
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The three factors for the resolving power of intensifying screens are phosphor layer 

thickness, phosphor size, and phosphor concentration of the intensifying screen (Carlton, 2001).  

The resolution effects of intensifying screens can be seen in Table 2-1. A typical intensifying 

screen is made of four main components: phosphor, base, reflective layer, and a protective 

coating (Figure 2-10). Phosphors absorb x-ray energy and emit visible light. The phosphors 

absorb the initial energy which causes the electrons of the phosphor atom to “jump” to an excited 

state.  Since the electrons want to be in their ground state, they fall from this excited state back to 

their original ground state by emitting a visible photon.  If the process of relaxing from the 

excited state is fast (~1/100,000 of a second), then the process is called fluorescence (Oldnall, 

1999).  The phosphor layer is where the physical interactions take place, converting x-rays to 

visible light.  A high atomic number is preferred when using phosphors to help increase the 

probability of an interaction by the incident x-rays.  The base is typically made of a polyester 

plastic, coated with phosphors that will absorb the incident x-ray energy.  The most important 

function of the base is to be radiolucent. This allows the transference of x-rays to the phosphor 

without scattering them, which it turn creates artifacts in the image.  When the x-ray photons hit 

the phosphors, light is emitted isotropically. To preserve the visible light, the reflective layer 

reflects the visible photons back into one direction (Figure 2-11). A protective plastic coat is then 

applied to the top of the phosphor layer.  This protective coat mainly helps keep the phosphors 

from being damaged.  Since the screens have to be handled physically, the protective coat stops 

scratches, abrasions, stains etc… (Carlton, 2001). 
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Table 2-1: The benefit of increasing the phosphor size, layer thickness, and 
phosphor concentration is that it will increase the odds of incident x-ray photons 
interacting with the phosphors.  This helps the dose distribution since the more x-
rays that interact with the phosphors, the more light output there will be from the 
intensifying screen.  However, a give and take is needed to produce a quality 
image and a safe dose distribution for patients (Carlton, 2001).  
 

 

 

 

Figure 2-10: Cross-section of an intensifying screen (Carlton, 2001). 

 

 

Phosphor Change Effect on Image 

Resolution 

Effect on Patient Dose Effect on Density 

Phosphor size    
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Phosphor concentration 

(Packing Density) 

   

Increases Increases Decreases Increases 

Decreases Decreases Increases Decreases 
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Figure 2-11: The reflective layer of intensifying screens directing the visible light 
photons in the correct direction (Carlton, 2001).  

 

   

During most of the 20th century, calcium tungstate phosphors were used for intensifying 

screens. However, rare earth phosphors such as gadolinium oxysulfide (Gd2O2S) have taken over 

due to the enhanced conversion efficiency of x-ray to visible light (~5% and ~15% respectively).  

The rare-earth phosphors have higher atomic numbers (57-71), resulting in a higher x-ray 

interaction cross-section. The intensity of light output by the intensifying screen is directly 

related to the intensity of incident x-rays that come in contact with the screen. Hence, the more 

efficient the screen is at converting x-rays to visible light, the fewer x-rays needed to produce an 

image and thus the reduction of dose delivered to a patient. Therefore, screens should detect as 

many x-rays as possible for a more efficient radiograph (Bushberg, 2002).  
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2.1.3 Digital Image Construction 

 As the incident x-rays are attenuated in an object, different intensity values of the x-rays 

are detected to produce an image. This collection of varying intensity x-rays are converted to an 

electric charge and digitized to an intensity matrix. Each element of the matrix is then assigned a 

grayscale value for the purpose of displaying the final image. An image relies on three distinct 

properties to gather as much information as possible: noise, spatial resolution, and contrast. The 

unique aspect about digital imaging is the fact that digital images are able to be manipulated. 

When an image is captured on film, there is nothing that can be done after developing to help 

improve different aspects of that image. Since a digital image is basically a matrix of different 

intensity values, it can be mathematically altered to enhance different characteristics. 

Characteristics include magnification, varying contrast, or clarity. Portions of an image can be 

enhanced so that specific information can be extracted. The ability to manipulate images gives 

digital radiography the possibility of extracting more information from a single image than SFR. 
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Chapter 3 – Constructing an Educational Digital Radiography System 

 

3.1 Educational DRS 

The core components for this educational DRS include an x-ray source, intensifying 

plate, and a CCD camera as a detector, as shown in Figure 3-1. Since x-rays are a type of 

ionizing radiation, the x-ray source must be encompassed in a lead-lined housing unit. Additional 

software must be used (not pictured) to help acquire and correct the images produced by the 

CCD camera.  

 

 

Figure 3-1: An Inside view of the educational 
digital radiography system set-up. 

1) X-ray source.   
2) Object stand.   
3) Intensifying screen.   
4) CCD camera.   
5) Lead shielding.   

 



 

 
 

3.1.1 DRS Housing 

The DRS needed to be large enough to contain all digital radiography components, yet 

small enough to be easily accessible. A surplus table (28’’x 59’’) located in the lab 

determined to be the size needed for the DRS. Thus, a

constructed to be used for classes such as “Introduction to Medical Imaging.” The frame was 

first put together using eighteen 2x4s of different length 

They were screwed together using standard metallic decking screws. Once the frame was built,

plywood panels with attached lead

3-2). This was done as a means of shielding 

lead used was 1/8 inch thick, enough

 

Figure 3-2: The frame dimensions posted above are with the lead panels attached. 
The lead panels are attached to the outside of the frame as shown above. 
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The DRS needed to be large enough to contain all digital radiography components, yet 

small enough to be easily accessible. A surplus table (28’’x 59’’) located in the lab 

determined to be the size needed for the DRS. Thus, an educational tabletop DRS was 

constructed to be used for classes such as “Introduction to Medical Imaging.” The frame was 

2x4s of different length purchased from a local hardware store. 

They were screwed together using standard metallic decking screws. Once the frame was built,

with attached lead sheeting were then secured to the outside of the frame

as a means of shielding the users from primary and scattered x

lead used was 1/8 inch thick, enough to stop 99.99% of all x-rays emitted from the 50kV source. 

The frame dimensions posted above are with the lead panels attached. 
The lead panels are attached to the outside of the frame as shown above. 

 

The DRS needed to be large enough to contain all digital radiography components, yet 

small enough to be easily accessible. A surplus table (28’’x 59’’) located in the lab was 

tabletop DRS was 

constructed to be used for classes such as “Introduction to Medical Imaging.” The frame was 

local hardware store. 

They were screwed together using standard metallic decking screws. Once the frame was built, 

were then secured to the outside of the frame (Figure 

the users from primary and scattered x-rays. The 

ys emitted from the 50kV source.  

 

The frame dimensions posted above are with the lead panels attached. 
The lead panels are attached to the outside of the frame as shown above.  
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The thickness of lead needed to stop 99.99% of x-rays can be calculated using the following 

equation: 

I

I�
	 e�� 

where 
�

��
 is the fraction of x-rays that escape the lead shielding, μ is the attenuation coefficient, 

and x is the lead thickness. According to the National Institute of Standards and Technology 

(NIST), a 50keV energy x-ray has the mass attenuation coefficient (µ�� of 730.4 
���

�
. Using the 

relationship of µm and lead’s density (ρ = 11.3
�

���),we find that: 

µ = µm �  ρ 	
����.��

��
 

Therefore, using the above equation and an attenuated intensity ratio of  
�

��
 = 0.0001, the 

thickness of lead (x) needed to shield for 50 keV x-rays is x = 0.00112cm or 0.0004 inches. 

Thus, 1/8 inch (0.125 inch) of lead shielding far exceeds the thickness required for most incident 

x-rays. Since the max energy of the x-ray spectrum is 50keV, 1/8 inch of lead shielding far 

exceeds the amount of shielding needed to stop 99.99% of incident x-rays. 

Nevertheless, radiation protection protocols are put in place by different radiation safety 

committees to help keep both the public and occupational workers as safe as possible. 

“Introduction to Radiation Safety for Research Personnel” for Oklahoma State University states 

that a minimum of 1/8 inch of lead must be used for low energy photon sources such as Cr-51 

and I-125 as shown in Figure 3-3. Approximately 1 µrem/hour was measured by the OSU 

radiation safety officer outside the housing unit for the DRS, which complies with the 2 

mrem/hour limit that is enforced by the OSU radiation safety manual. We found that this 

minimum shielding requirement was adequate to shield for the 50 keV maximum x-ray energy 
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emitted from our source. Therefore, the shielding for the housing of our DRS system was found 

to meet and exceed institutional requirements of shielding low energy x-rays. 

 

 

Figure 3-3: The tables for I-125 (left) and Cr-51 (right) give the different photon 
energies that are emitted from these sources. These energies are on the range of 
about 30 keV which is very close to max energy of the source used in the DRS 
(USNRC, 2006). 

 

 
 

The lid to the housing unit was cut into two portions to lighten the load when opening the 

unit. Hinges were attached to the portion of the lid that overlooked the x-ray source and object 

stand. A lead window (approximately equivalent to 1/8 inch of lead) was also inserted into the 

lid, as shown in Figure 3-4. The design of the lid consisted of a 1/8 inch thick piece of lead 

sandwiched between 2 sheets of plywood, as shown in Figure 3-5. 

 

 



 

Figure 3-4: Hinges and handles were added to help open the heavy, lead lined lid. 
The portion of the lid that uses hinges to open is roughly 1/3 the length of the lid. 
The lead window gave an easy 
in place, once the lid was closed
 
 
 
 
 

Figure 3-5: The lead was sandwiched between two wooden panels for the lid.
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: Hinges and handles were added to help open the heavy, lead lined lid. 
The portion of the lid that uses hinges to open is roughly 1/3 the length of the lid. 
The lead window gave an easy view of the object stand to make sure everything is 

, once the lid was closed. 

 

The lead was sandwiched between two wooden panels for the lid.

: Hinges and handles were added to help open the heavy, lead lined lid. 
The portion of the lid that uses hinges to open is roughly 1/3 the length of the lid. 

view of the object stand to make sure everything is 

 

The lead was sandwiched between two wooden panels for the lid. 
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3.1.2 Safety Measures 

In order to operate any x-ray source, safety precautions need to be taken to avoid 

confusion and accidental exposure. To ensure that everyone in proximity to the source knows 

that x-ray source is in use, two different stimuli must be present. In this case, a blinking caution 

light and an audible beeping noise are used when the x-ray source is in operation. Anyone that is 

near the DRS will be able to hear the noise and see the flashing caution light when the source is 

in use. Another precautionary step that is taken is adding interlocks. Since the lid to the DRS has 

two different entries, two interlocks were placed just underneath each lid. These interlocks 

prevent the x-ray source from operating if either section of the lid is open or being opened. 

Additionally, a precautionary "do not cross" parameter was set up approximately two feet from 

the DRS while the x-ray source is in operation. 

 

3.1.3 DRS Core Components 

The DRS uses a MINI-X Miniature X-ray Tube, made by Amptek. The range of voltage 

and current are 5-50kV and 10-200µA respectively. The maximum combination of voltage and 

current is 50kV/79µA. The x-ray tube is directed towards the object stand located at the center of 

the housing unit and directly in front of an intensifying screen. The intensifying screen was taken 

from a Dupont Cronex 10" X 12" Xtra Life Intensifying Screens X-Ray Film Cassette. Instead of 

putting a film inside the cassette to capture an image, an intensifying screen was removed from 

the cassette and placed in the center of the DRS housing unit. During the absorption of x-ray 

energy, the visible light emitted from the intensifying screen must be captured and saved to 

create the radiographic image. For our DRS, a CCD camera is used to capture the incoming light 

from the intensifying screen. In order to prevent the camera from being exposed to ionizing 



 

radiation, the set-up in Figure 3-6 was used. The camera used with our system is a Luca S 

EMCCD produced by Andor Technology. Attached to the Luca S is a Japan Computar TV Lens 

with an f-number of 1.4. 

 

 

Figure 3-6: Diagram of educational DRS. The placement of the camera was used 
in order to avoid the circuitry being hit by ionizing radiation. 

 

 

 

3.1.4 Image Processing 

Once the image data has been captured and digitized by the CCD camera, it is loaded into 

an image pre-processing program written with the Labview data acquisition software. This image 

pre-processing program is used to correct for any characteristics of the

components of the system and not due to attenuation of the x

instance, electronic noise in the CCD camera occurs in each element of the CCD chip. 

image is being acquired, this so-called “d
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6 was used. The camera used with our system is a Luca S 

EMCCD produced by Andor Technology. Attached to the Luca S is a Japan Computar TV Lens 

of educational DRS. The placement of the camera was used 
in order to avoid the circuitry being hit by ionizing radiation.  

Once the image data has been captured and digitized by the CCD camera, it is loaded into 

processing program written with the Labview data acquisition software. This image 

processing program is used to correct for any characteristics of the images arising due to the 

components of the system and not due to attenuation of the x-ray beam in the imaged object. 

instance, electronic noise in the CCD camera occurs in each element of the CCD chip. 

called “dark noise” results in randomly located spikes in the 

6 was used. The camera used with our system is a Luca S 

EMCCD produced by Andor Technology. Attached to the Luca S is a Japan Computar TV Lens 

 

of educational DRS. The placement of the camera was used 

Once the image data has been captured and digitized by the CCD camera, it is loaded into 

processing program written with the Labview data acquisition software. This image 

images arising due to the 

ray beam in the imaged object. For 

instance, electronic noise in the CCD camera occurs in each element of the CCD chip. As an 

ark noise” results in randomly located spikes in the 



 

pixel data. In order to remove the 

(D(x,y)) must be acquired without the x

All acquired D(x,y) images are averaged together, 

image (  acquired by the CCD camera

without any objects present. A dark noise subtracted image G’(x,y

relationship 

 

 

Figure 3-7: The image on the left shows the random dark noise that occurs when 
using a CCD camera. The image on the right has been corrected by subtracting
the dark image from the 
profile from the G’(x,y)
intensifying screen. 
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the dark noise from a final acquired image, several “dark images” 

(D(x,y)) must be acquired without the x-ray source operating (a completely dark environment). 

D(x,y) images are averaged together, and then subtracted from the raw background 

acquired by the CCD camera (Figure 3-7). This raw background image 

dark noise subtracted image G’(x,y) is produced according to the 

. 

The image on the left shows the random dark noise that occurs when 
using a CCD camera. The image on the right has been corrected by subtracting

from the raw background image. However, the arc in the plot 
rom the G’(x,y) remains due to the non-uniform light output by the 

 

final acquired image, several “dark images” 

ray source operating (a completely dark environment). 

then subtracted from the raw background 

background image is taken 

) is produced according to the 

 

The image on the left shows the random dark noise that occurs when 
using a CCD camera. The image on the right has been corrected by subtracting 

image. However, the arc in the plot 
uniform light output by the 



 

Ideally, the intensifying screen

surface when irradiated. However, as shown in Figure 3

produce a uniform image profile.

images. Due to the physical condition and age of the intensifying screen (dating back t

1970’s), it is reasonable to believe that intensity of visible photons is not u

entire screen.  In order to correct for this, the below equation 

Where I(x,y) is the final corrected image of an

object measured by the CCD camera. Using this procedure produces a final image with a 

uniform response across the entire surface of the image, as shown in Figure 3

 

Figure 3-8: By using the above 
eliminating the noise present with CCD cameras and non
the intensifying screen. 
 

29 

intensifying screen should produce a uniform intensity across its entire 

. However, as shown in Figure 3-7, correcting for the dark noise 

produce a uniform image profile. Therefore, further corrections need to be made to the 

images. Due to the physical condition and age of the intensifying screen (dating back t

1970’s), it is reasonable to believe that intensity of visible photons is not uniform across the 

.  In order to correct for this, the below equation may be used: 

 

Where I(x,y) is the final corrected image of an object and Iraw(x,y) is the raw image data of an 

measured by the CCD camera. Using this procedure produces a final image with a 

uniform response across the entire surface of the image, as shown in Figure 3-8. 

 

By using the above equations, the image has been corrected by 
eliminating the noise present with CCD cameras and non-uniform light output of 

uniform intensity across its entire 

7, correcting for the dark noise does not 

further corrections need to be made to the G’(x,y) 

images. Due to the physical condition and age of the intensifying screen (dating back to the 

niform across the 

the raw image data of an 

measured by the CCD camera. Using this procedure produces a final image with a 

 

equations, the image has been corrected by 
uniform light output of 
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  After correcting the image in the image processing programs, the image is saved as a 2D 

matrix of pixel intensity values. A program called ImageJ (NIH, 2013) is then used to convert 

this pixel intensity matrix back into a grayscale image. This is done by taking the pixel intensity 

values and applying a grayscale transformation. For instance, an 8-bit image is composed of an 

allowed pixel value range (0-256). When a pixel with a value of 0 is displayed, it is set to black. 

Pixels with a value of 256 are set to white and pixels in between 0-256 are set to a specific shade 

of gray.  

 

3.2 Characterizing the DRS 

Ideally, in a medical setting, every image taken from a DRS should contain enough 

information for a physician to make highly educated diagnoses. In order to characterize the DRS, 

three different quantities need to be measured: noise, contrast, and spatial resolution. These three 

elements of a DRS are crucial to understanding the information that can be extracted from a DRS 

image. However, due to the characteristic contrast, noise, and spatial resolution of each DRS, the 

total information that can be extracted by the physician may vary. Therefore, knowing and 

understanding these quantities for each individual DRS is extremely important. 

 

3.2.1 Noise 

Noise is a stochastic component of an image. It can originate from several different 

locations, such as the analog to digital conversion of an image, random fluctuations from the x-

ray source, or random fluctuations in the cameras electronic components. This random 

background signal is detected but does not add to the quality of an image. It can most closely be 

associated with the static “white noise” heard when switching between different radio stations 
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(Carlton, 2001). The standard deviation (noise) can be denoted as (thanks to the Poisson 

distribution): 

σ = √N 

where N is the mean number of photons per pixel. Relative noise is what is perceived in an 

image by a human observer. This noise is also called coefficient of variance (COV) and denoted 

by: 

Relative Noise = COV = 
!

"
 

The inverse of COV is what is known as the signal-to-noise ratio and given by: 

SNR = 
"

!
 = 

"

√"
 = √N 

 As N increases, the noise (σ) will increase as well, but at a slower rate. Table 3-1 shows that as 

photons increase per pixel, the SNR will increase due to the noise increasing at a slower rate than 

N (Bushberg et al., 2002).  

 

 

Table 3-1: As N increases, the SNR increases thus giving a better quality image 
(Bushberg 2002). 

 

 

 

 



 

The quantity SNR is used to measure ratio of signal compared to noise. A high SNR signifies 

little noise can be seen in the image while a SNR below 5 deems objects in the image are not 

100% discernible. This SNR limit of 5 is known as Rose’s Criterion 

Figure 3-9, the concept of noise is shown through an isometric display.  In order to evaluate the 

noise levels of the educational DRS, nine different sections of an intensifying screen

recorded as shown in Figure 3-10. Th

deviation of the signal. The noise in each of these sections was then analyzed to determine the 

noise levels across the entire image acquired with our educational DRS.

 

 

 

 

Figure 3-9: As the SNR d
to distinguish. In medical imaging, the difficulty in distinguishing an image due to 
noise can result in a physician not being able to accurately diagnose patients or 
miss vital information (Bushberg
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The quantity SNR is used to measure ratio of signal compared to noise. A high SNR signifies 

little noise can be seen in the image while a SNR below 5 deems objects in the image are not 

100% discernible. This SNR limit of 5 is known as Rose’s Criterion (Bushberg et al., 2002)

9, the concept of noise is shown through an isometric display.  In order to evaluate the 

noise levels of the educational DRS, nine different sections of an intensifying screen

10. The noise in the images produced by our DRS is the standard 

deviation of the signal. The noise in each of these sections was then analyzed to determine the 

noise levels across the entire image acquired with our educational DRS. 

As the SNR decreases, the object in question becomes more difficult 
medical imaging, the difficulty in distinguishing an image due to 

noise can result in a physician not being able to accurately diagnose patients or 
Bushberg, 2002). 

 

The quantity SNR is used to measure ratio of signal compared to noise. A high SNR signifies 

little noise can be seen in the image while a SNR below 5 deems objects in the image are not 

hberg et al., 2002). In 

9, the concept of noise is shown through an isometric display.  In order to evaluate the 

noise levels of the educational DRS, nine different sections of an intensifying screen image were 

e noise in the images produced by our DRS is the standard 

deviation of the signal. The noise in each of these sections was then analyzed to determine the 

 

re difficult 
medical imaging, the difficulty in distinguishing an image due to 

noise can result in a physician not being able to accurately diagnose patients or 



 

Figure 3-10: The noise was measured in each yellow box across the intensifying 
screen. 

 

3.2.2 Contrast 

The ability to distinguish between various substances in a radiograph is important when 

gathering pertinent information. 

components that attenuate x-rays at different rates (fat, muscle, air, bone, etc…). Therefore, the 

ability to characterize a DRS to identify 

density components of the body is

DRS, we imaged a sheet of paper with foam rubber squares of varying thickness and size as 

shown in Figure 3-11. We then evaluated how the contrast in the image changed as a function of 

the size and thickness of the foam rubber squares. This allowed us to evaluate the limitations in 

object size and thickness that could be accurately identified within images taken with our 

educational DRS. 
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he noise was measured in each yellow box across the intensifying 

The ability to distinguish between various substances in a radiograph is important when 

information. For example, the body is composed of many different 

rays at different rates (fat, muscle, air, bone, etc…). Therefore, the 

ability to characterize a DRS to identify which pixel values are associated with the different 

body is beneficial. To characterize the contrast in our educational 

DRS, we imaged a sheet of paper with foam rubber squares of varying thickness and size as 

11. We then evaluated how the contrast in the image changed as a function of 

size and thickness of the foam rubber squares. This allowed us to evaluate the limitations in 

object size and thickness that could be accurately identified within images taken with our 

he noise was measured in each yellow box across the intensifying 

The ability to distinguish between various substances in a radiograph is important when 

body is composed of many different 

rays at different rates (fat, muscle, air, bone, etc…). Therefore, the 

the different 

beneficial. To characterize the contrast in our educational 

DRS, we imaged a sheet of paper with foam rubber squares of varying thickness and size as 

11. We then evaluated how the contrast in the image changed as a function of 

size and thickness of the foam rubber squares. This allowed us to evaluate the limitations in 

object size and thickness that could be accurately identified within images taken with our 
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Figure 3-11: The foam squares are attached to a piece of copy paper by generic 
stick glue. Column 1 begins at a thickness of 10mm and decreases by 2mm each 
column thereafter. Square sizes are in millimeters. 

 

 

3.2.3 Spatial Resolution 

Finally, we need to understand the limitations on how small of an object that can be 

accurately identified in images taken with our DRS. This can be measured using a “line pair 

phantom” that contains a series of parallel lines with decreasing distance between them as shown 

in Figure 3-12. This increasing spatial frequency is often measured in line pairs (LP) per unit 

length (e.g. LP/mm). In the case of our DRS, spatial frequency is measured in LP/mm. It is a 

useful way to express the resolution of an imaging system. A simple way to relate line pairs to 

spatial frequency is to think of a sound wave and temporal frequency. As the sound waves begin 

to be separated by shorter periods of time, the frequency of each wave will increase (Figure 3-

13). Similarly to the distance between line pairs, as objects become closer together, the spatial 



 

frequency increases. As the line pairs continue getting closer together, they become harder to 

differentiate on an image.  

 

 

 

Figure 3-12: A line pair phantom 
pairs. A line pair consists of both the black and white squares together. Therefore, 
the first row has four line pairs and the last row has thirteen line pairs.

 

 

Once spatial frequency reaches the point at which they can no longer be distinguished as 

two separate lines, we can then define this as the upper limit of spatial resolution for

Spatial resolution for a DRS is often measured by determining the modulati

phantom and is given by: 
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frequency increases. As the line pairs continue getting closer together, they become harder to 

 

A line pair phantom slowly increasing its spatial frequency
A line pair consists of both the black and white squares together. Therefore, 

the first row has four line pairs and the last row has thirteen line pairs. 

spatial frequency reaches the point at which they can no longer be distinguished as 

define this as the upper limit of spatial resolution for

Spatial resolution for a DRS is often measured by determining the modulation of 

 

frequency increases. As the line pairs continue getting closer together, they become harder to 

 

spatial frequency of line 
A line pair consists of both the black and white squares together. Therefore, 

spatial frequency reaches the point at which they can no longer be distinguished as 

define this as the upper limit of spatial resolution for our DRS. 

on of the line pair 



 

 

Figure 3-13: The concept of spatial frequency given by a sine wave. 
half of a sine wave; therefore, in order to find the frequency of any spatial 

domain: Frequency (F) = 

 

 

As the line pairs move closer in proximity, the Modulat

decreases until the line pairs are unable to be differentiated as two separate lines. This 

modulation is often normalized to the value obtained for 

Modulation(0), where the normalized maxim

known as the Modulation Transfer Function (MTF) and is given by the relationship

2012): 

For testing of our DRS, we used a phantom with line pairs cut into a copper pl

(produced by the OSU Physics department machine shop) and a commercial line pair phantom 

made by Fluke Biomedical. Instead of vertical line pairs as shown in Figure 3
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The concept of spatial frequency given by a sine wave. ∆ indicates 
half of a sine wave; therefore, in order to find the frequency of any spatial 

  (Bushberg et al., 2002). 

As the line pairs move closer in proximity, the Modulation of the image gray scale value 

decreases until the line pairs are unable to be differentiated as two separate lines. This 

modulation is often normalized to the value obtained for f = 0 (lines infinitely spaced), 

Modulation(0), where the normalized maximum value is 1. This normalized Modulation value is 

known as the Modulation Transfer Function (MTF) and is given by the relationship

. 

For testing of our DRS, we used a phantom with line pairs cut into a copper pl

(produced by the OSU Physics department machine shop) and a commercial line pair phantom 

made by Fluke Biomedical. Instead of vertical line pairs as shown in Figure 3-12

The concept of spatial frequency given by a sine wave. ∆ indicates 
half of a sine wave; therefore, in order to find the frequency of any spatial 

ion of the image gray scale value 

decreases until the line pairs are unable to be differentiated as two separate lines. This 

= 0 (lines infinitely spaced), 

um value is 1. This normalized Modulation value is 

known as the Modulation Transfer Function (MTF) and is given by the relationship (MMD, 

For testing of our DRS, we used a phantom with line pairs cut into a copper plate 

(produced by the OSU Physics department machine shop) and a commercial line pair phantom 

2, the 
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commercial line pair phantom contained a fan-like pattern (as seen in Figure 3-14) for 

determining the resolution of the system. 

 

 

             Figure 3-14: A fan-like line pair phantom that has the boundaries of 0.5-5 LP/mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

 

 

 

Chapter 4 – Results and Discussion 

 

4.1 Noise Results 

As shown in Figure 4-1 (and Figure 3-10), nine separate sections of the intensifying plate 

were analyzed and the median signal (gray scale value) and noise (standard deviation) were 

measured. Rose’s Criterion (Bushberg et al., 2002) states that at a SNR of 5 or greater for an 

object in the image will be discernible from the image background with a 100 % probability. 

When the background SNR of an imaging system falls below 5, it is possible that some objects in 

the image (especially low contrast objects) may not be easily discernible. This results in a loss of 

information that could be extracted from the image. Therefore, any image taken that has a 

background SNR above 5 will satisfy Rose’s Criterion and produce an image from which 

accurate information can be extracted. The goal of the noise study is to find the lower limits of 

both the x-ray energy and beam current at which our DRS will produce images with a 

background SNR value that satisfies Rose’s Criterion. As Table 3.1 indicates, the noise can be 

correlated with the amount of photons that are emitted from the intensifying screen. Therefore, as 

the energy and quantity of x-rays is reduced, the images’ SNR will approach 5 (Rose’s 

Criterion).  



 

Figure 4-1: Each yellow square indicates where a signal and noise measurement 
was taken. The image above is of an intensifying screen at 50kV/79

 

Figure 4-2: As the quantity of x
are fewer photons being acquired by the CCD camera. However, all three above 
settings adhere to Rose’s Criterion exc
intersects a SNR of 5 is where objects are 100% discernible. Above the line 
indicates images comply with Rose’s Criterion.
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Each yellow square indicates where a signal and noise measurement 
e image above is of an intensifying screen at 50kV/79µA. 

As the quantity of x-rays is reduced, the SNR decreases since there 
are fewer photons being acquired by the CCD camera. However, all three above 
settings adhere to Rose’s Criterion except for the circled data. The black line that 
intersects a SNR of 5 is where objects are 100% discernible. Above the line 
indicates images comply with Rose’s Criterion. 
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Each yellow square indicates where a signal and noise measurement 

 

rays is reduced, the SNR decreases since there 
are fewer photons being acquired by the CCD camera. However, all three above 
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Figure 4-3: As the voltage is reduced, the energy of the x
in turn reduces the number of photons being emitted from the intensifying screen. 
As the light output decreases, the image signal is reduced and the noise increases. 
All but the three circled data groups adhere to Rose’s Criterion (black lin

 

Figure 4-4: All of the images given above 
SNR of 5. There are not enough photons coming from the intensifying screen in 
order to make images 100% discernible. Consequently, at the exposure times 
given, Rose’s Criterion (black line) is not met and should not be used with this 
DRS. 
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As the voltage is reduced, the energy of the x-rays is reduced which 
in turn reduces the number of photons being emitted from the intensifying screen. 
As the light output decreases, the image signal is reduced and the noise increases. 
All but the three circled data groups adhere to Rose’s Criterion (black lin

All of the images given above do not exceed the line intersecting a 
SNR of 5. There are not enough photons coming from the intensifying screen in 
order to make images 100% discernible. Consequently, at the exposure times 

riterion (black line) is not met and should not be used with this 
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in turn reduces the number of photons being emitted from the intensifying screen. 
As the light output decreases, the image signal is reduced and the noise increases. 
All but the three circled data groups adhere to Rose’s Criterion (black line).  
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From Figures 4-2, 4-3, and 4-4, it is apparent that the number of x-rays striking the intensifying 

screen has a large impact on the SNR. As the quantity of x-rays is reduced, the SNR is decreased 

until it approaches Rose’s Criterion, which we have defined as the lower limit of the SNR for 

producing useful images with our DRS. Therefore, a 10kV energy should not be used with our 

DRS since it cannot produce images with a SNR of or greater than 5 for any usable exposure 

time. Since dose is not a factor in our DRS, longer exposure times could be tested to find if 10kV 

could produce a discernible image. However, operating the x-ray source for extended periods of 

time heats up the x-ray filament and can cause the beam to be unstable or worse; the circuitry to 

malfunction. Therefore, from these results we can determine that energies ranging from 30kV to 

50kV and a tube current of above ~79 microAmps (10-20 second exposure) should be used with 

our DRS.  

 

 

4.2 Spatial Resolution Results 

When defining spatial resolution, Modulation Transfer Function (MTF) is often used to 

quantify the transfer of contrast from the object to the image. That is to say, how well can our 

detection system reproduce the detail of an object that is being imaged? Using the MTF curve 

along with a line pair test phantom (as described in Chapter 3) will give us an idea of the 

limitations of the spatial resolution of a DRS. 
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Figure 4-5: An image of the line pair phantom using 50kV/79µA. At about 1.2 
LP/mm (red line) the lines blur together such that they are no longer 
distinguishable as separate lines. This observation is biased by the viewers’ 
perspective and differences in their vision. 

 

 

 

Figure 4-6: The Modulation Transfer as a function of spatial frequency (line pairs 
per millimeter). The intersection of the horizontal and vertical black lines 
indicates where the lines begin to visually blur together on Figure 4-5 (1.2 
LP/mm).  
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An image of a line pair phantom taken at the optimal SNR settings determined in section 4.1 

(50kV/79µA and 20 second exposure), is shown in Figure 4-5, with the MTF for this image 

plotted in Figure 4-6. A MTF value of 1 indicates all of the contrast has been transferred from 

the object to the image, while 0 indicates no contrast is transferred. This means that at a spatial 

frequency of 1.2 LP/mm approximately 3% of contrast is transferred, which represents the 

minimum contrast needed to resolve small objects with our DRS. At 1.3LP/mm, no contrast has 

been transferred and the lines from Figure 4-5 begin to blur together. 

The spatial resolution limitations of our DRS are illustrated in Figure 4-5 and 4-6. Using 

optimal settings, (50kV/79µA with a 20 second exposure) the line pair phantom shows the 

maximum spatial resolution capabilities that can be resolved using our DRS given by the 

relationship: 

f = 
�

�#
 = 1.2 LP/mm 

Object Size = 
�

�$
 = 0.42mm. 

As the x-ray energy (and thus penetrating power of the x-rays) is reduced, the transfer of contrast 

and spatial resolution decreases as seen in Figures 4-7 and 4-8. This decrease in contrast is due to 

a sharp decrease in measured signal. As the x-ray energy is reduced, the signal decreases to a 

point that the noise in our system becomes overwhelming at ~20kV/79µA, as shown in Figure 4-

9. At 10kV-79µA, the x-rays are unable to penetrate the lead/plastic mixture of the line pair 

phantom and the images (not shown) appeared as one darkened rectangle. 
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Figure 4-7: As the penetrating power of the x-rays decrease, the ability to identify 
smaller objects becomes more difficult. This image at 30kV/79µA has a slightly 
lower resolution limit (red line) than seen for 50kV/79µA. 

 

 

 

 

 

Figure 4-8: As we continue to reduce the penetrating power of the x-ray beam 
(20kV/79µA), the noise continues to increase. The white specs (noise) and the 
increase of blurring between line pairs in the image greatly reduces the upper 
limit of resolvable spatial frequency. At about 0.85 LP/mm (red line) is where the 
lines begin blurring together making objects of about 0.6 mm the smallest that are 
identifiable. 
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Figure 4-9: As the penetrating power of the x-rays decrease, the line pairs starts 
to become indifferentiable at increasing spatial frequency.  

 

 

The smallest object that can be indentified in an image produced by our DRS is approximately 

0.42mm with an x-ray tube setting of 50kV and 79µA. As the energy and quantity of x-rays 

decrease, fewer photons from the intensifying screen will strike the CCD camera, thus increasing 

the noise and reducing the acheivable spatial resolution. As the light output from the screen 

decreases, images become nosier, making it more difficult to extract useful information. 

Therfore, if small objects need to be identified in an image, it would be useful to use the 

50kV/79µA  setting to increase the the light output from the intinsifying screen, in turn 

increasing the spatial resolution acheivable with the DRS.  
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4.3 Contrast Results 

When determining the different levels of contrast in an image, it is important to have an 

image that contains objects of a known thickness and density giving different levels of contrast. 

This will help show how the contrast provides a clear image and what the minimum contrast an 

object may have and still be visible when taken with our DRS. A contrast-detail phantom is 

shown in Figure 4-10. This phantom contains a series of foam rubber squares  

(density = 0.0001 
�

���) ranging in size from 3x3 mm2 to 40x40 mm2 and with a thickness 

ranging from 2 mm to 10 mm. Contrast is based on object composition, and since the foam 

rubber used for this contrast-detail phantom has a very low density, the low energy x-rays from 

the DRS can easily penetrate through it. As the voltage is decreased, the contrast between the 

foam squares increased. This is due to x-rays being absorbed by the foam (Figure 4-11). As the 

x-ray tube voltage is continually reduced, the absorption of the x-rays in the foam square 

phantom continues to increase but the clarity of the image begins to falter (Figure 4-10). Even 

though the contrast is increasing to help better define the low density squares, the noise is 

increasing and the spatial resolution is decreasing, making the image quality be reduced. Image 1 

in Figure 4-10 shows the variety of thickness between each column of squares, whereas image 2 

shows a stronger contrast between each column. Image 3 becomes too difficult to extract 

information from due to the increased noise and decreased spatial resolution.  Therefore, when 

extracting information about low density materials, a compromise must be met in order to find 

the appropriate settings for a quality image. 

 

 



 

 

Figure 4-10: As the x-ray energy is decreased (50kV/79µA (1), 30kV/
20kV/79µA (3)) more x
contrast.  

 

Figure 4-11: As the x-ray energy is reduced, the contrast between each square is 
increased. The energy n
comprised of, as well as the size of the object.
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ray energy is decreased (50kV/79µA (1), 30kV/79
20kV/79µA (3)) more x-rays are absorbed by the foam, thus increasing the 

ray energy is reduced, the contrast between each square is 
increased. The energy needed for an image depends on what the object is 
comprised of, as well as the size of the object. 
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4.4 Combining the Three Tests (Noise, Spatial Resolution, and Contrast) 

Once the images have been acquired; noise, spatial resolution, and contrast are used 

together to gather information from an image. The images of two objects, shown in Figure 4-12, 

are used to show how noise, spatial resolution, and contrast have an effect on extracting 

information. Figure 4-12 shows a motherboard from a Dell PC (left) and an outline of Pistol Pete 

with an OSU emblem (right). These objects have been imaged with our DRS to see if the 

intensity values give any information as to the identity of the objects. 

 

 

Figure 4-12: Images of a computer motherboard (Object 1) and a foam rubber 
“Pistol Pete” cutout (Object 2). Labeled are the sizes of several objects 
identifiable in images taken of these objects with the DRS. 
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Figure 4-13: In this 20 second exposure, the x
right) and the noise increases to a point where the image is difficult to identify. 
Also, due to the foam absorbing more x
contrast is increased and may offer a clearer image, such as in image 2
outline of Pistol Pete in image 3 is recognizable as compared to image 1. 

 

 

 

 

 

 

 

(1) 50kV/79µA 
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: In this 20 second exposure, the x-ray energy is reduced (from left to 
right) and the noise increases to a point where the image is difficult to identify. 
Also, due to the foam absorbing more x-rays as the energy is decreased, the 

d may offer a clearer image, such as in image 2
outline of Pistol Pete in image 3 is recognizable as compared to image 1. 

(2) 30kV/79µA (3) 10kV/79

 

ray energy is reduced (from left to 
right) and the noise increases to a point where the image is difficult to identify. 

rays as the energy is decreased, the 
d may offer a clearer image, such as in image 2. Only an 

outline of Pistol Pete in image 3 is recognizable as compared to image 1.  

0kV/79µA 



 

 

 

 

Figure 4-14: The quantity of x
to 10 seconds. The contrast changes as the energy decreases to a point where only 
an outline is observable (image 3). The noise increases as the energy is decreased 
to a point where the image is difficult to extract any kind of informati

 

 

 

 

 

 

 

(1) 50kV/79µA 
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: The quantity of x-rays was reduced by decreasing the exposure time 
to 10 seconds. The contrast changes as the energy decreases to a point where only 
an outline is observable (image 3). The noise increases as the energy is decreased 
to a point where the image is difficult to extract any kind of information. 

(2) 30kV/79µA (3) 10kV/79 

 

the exposure time 
to 10 seconds. The contrast changes as the energy decreases to a point where only 
an outline is observable (image 3). The noise increases as the energy is decreased 

 

0kV/79µA 
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Object 2 from Figure 4-12 uses mainly contrast to help extract the image of Pistol Pete 

when using our DRS. Known for his thick mustache, cowboy hat, and handkerchief; Pistol Pete 

is highlighted in foam using thicker foam segments for his signature look. As the output of light 

from the intensifying screen decreases, Pistol Pete becomes more difficult to distinguish.  

Object 1 is a Dell PC motherboard comprised of various components. Image 1 (Figure 4-

15) shows the different attenuation through the different components of the motherboard. Also, 

the spatial resolution is greater at 50kV/79µ, as seen in Figure 4-5; therefore, smaller objects are 

able to be indentified in image 1 and 4 (Figures 4-15 and 4-16). As the energy of the x-rays 

decrease, the images begin to be unidentifiable and just an outline is able to be distinguished. 

The smallest object that is identifiable in image 1 and 4 is a 2mm gap between the memory card 

holders. Arrows in image 1 and 4 show the small portions of the motherboard that are observable 

and are measured in Figure 4-12. The x-rays are continually being attenuated through the 

different components of the motherboard, decreasing the light output from the intensifying 

screen until each component of the motherboard is reduced to the same pixel value (image 5). It 

is difficult to point out the different components in image 5 as opposed to image 1 due to the 

light output of the screen. Also, as the light output of the intensifying screen decreases, the noise 

will increase to a point where the image is unrecognizable, such as image 3 and 6. 

 

 

 

 



 

Figure 4-15: A 20 second exposure at different voltages was taken to determine 
what information could be extracted from each image. 

 

(1) 50kV/79µA 

52 
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Figure 4-16: The exposure time was lowered to 10 seconds to see if the 
information could be extracted as Figure 4

 

 

 

 

 

(4) 50kV/79µA 

53 

 

 

 

 

: The exposure time was lowered to 10 seconds to see if the 
information could be extracted as Figure 4-15. 
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Chapter 5 – Conclusion 

 

5.1 Goal of this Project 

The primary goal of this study was to provide a cost efficient digital radiography system 

that can be used in an educational setting. The ability to build teaching instruments such as a 

DRS can provide valuable hands-on experience for students learning the basic physical 

principles of Diagnostic Imaging. The simple tests shown in previous chapters were designed to 

test and characterize the limits of our DRS. At optimal settings (50kV/79µA, 20 second 

exposure), our DRS can detect roughly 0.42mm sized objects with a SNR of approximately 25. 

As for contrast, the composition of the object must be taken into consideration when choosing 

what settings are necessary for extracting information from an image. As the x-ray energy is 

increased, fewer x-rays are being absorbed by the object; thus changing the contrasts between 

components of different composition and density in the object. The optimal settings are able to 

provide images with the best levels of noise, spatial resolution, and contrast. However, when the 

energy and quantity of x-rays are altered, the principles of medical imaging start to become 

evident. For example, as the energy or amount of x-rays is decreased, it can be shown that the 

noise and the attenuation through the sample foam phantoms used for the experiment increases. 

These principles are crucial to understanding how a DRS is able to provide an informative 

image. If the energy or quantity of x-rays is lowered to a point where the SNR falls below 5, we 

know that from Rose’s Criterion the object will not necessarily be identifiable 100% of the time. 

Therefore, the DRS would not be capable of producing reliable and usable images. 
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5.2 Cost of DRS 

The total cost of our DRS was approximately $17,000.00 with the majority of the 

expenses going into the Luca S CCD camera (~$10,000). The x-ray source was purchased from 

Amptek for $6,500.00. The intensifying screens and lens for the CCD camera were available as 

surplus items within the department of Physics at OSU. The final $500 in expenses went to the 

lead and wood used to construct the housing unit. All imaging analysis software was either free, 

such as imageJ, or available through the OSU site license such as Microsoft Excel and Labview. 

Andor provided a labview program to run the camera and save the images. The images from our 

DRS could be exported from Labview to imageJ for analysis and the extracted data finally 

imported into Microsfot Excel to help further analyze the characteristics of our DRS. Therefore, 

all software used to help analyze our DRS images is easily accessible and for the most part free. 

The Luca S camera could be operated using a variety of programs; however, since a copy of 

Labview was already installed in the lab and ready to use, it was chosen to operate the camera. 

5.3 Building a More Cost Efficient DRS 

Although the cost for our DRS was around $17,000.00, a variety of changes in designing 

a DRS can be made to significantly lower the cost. Replacing the main components of our DRS 

(x-ray source, intensifying screens, and camera) can reduce the cost, and possibly the limitations. 

For example, when looking for affordable x-ray sources, Ebay offers a variety of portable dental 

x-ray machines for sale. Currently an x-ray source, as seen in Figure 5-1, is listed on the Ebay 

website for approximately $600.00, although prices may vary. 



 

Figure 5-1: Ebay offers a variety of dental
The limitations of the above x
the Amptek x-ray source provided in our DRS. This x
energy potential (70kVp) a set current (0.5mA) and a maximum expo
10 seconds. The DRS would need to be set up according to the limitations of both 
the x-ray source and camera.

 

 

 

Figure 5-2: The Orion Starshoot Autoguider is a CCD camera typically used for 
imaging the night sky. However, ignoring the autog
be set up on any basic PC in order to take immobile images. Lenses can be 
purchased on the Orion website 
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Ebay offers a variety of dental x-ray machines (example seen above). 
The limitations of the above x-ray source are quite different than the limitations of 

ray source provided in our DRS. This x-ray source has a higher 
energy potential (70kVp) a set current (0.5mA) and a maximum exposure time of 
10 seconds. The DRS would need to be set up according to the limitations of both 

ray source and camera. 

The Orion Starshoot Autoguider is a CCD camera typically used for 
imaging the night sky. However, ignoring the autoguider feature, the camera can 
be set up on any basic PC in order to take immobile images. Lenses can be 
purchased on the Orion website to accommodate the setup required for the DRS.

 

chines (example seen above). 
ray source are quite different than the limitations of 

ray source has a higher 
sure time of 

10 seconds. The DRS would need to be set up according to the limitations of both 

 

The Orion Starshoot Autoguider is a CCD camera typically used for 
uider feature, the camera can 

be set up on any basic PC in order to take immobile images. Lenses can be 
accommodate the setup required for the DRS. 
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To further reduce the cost of the DRS, the next option is to replace the CCD camera. An 

assortment of CCD cameras can be used to collect the light coming from the intensifying screen. 

First, the CCD camera needs to have an exposure time equal to or greater than the exposure time 

of the x-ray source. Second, the camera needs the ability to be controlled by a PC that is located 

at a safe distance from the x-ray source. The online retailer Amazon sells astronomy CCD 

cameras for approximately $240.00 (Figure 5-2). 

 Finally, the intensifying screens can be acquired from several sources for a relatively 

inexpensive price. A cassette used for film radiography can be purchased as well on Ebay for 

roughly $50.00. Cassettes can range in size and can be selected according to the dimensions of 

the DRS. The housing and wiring of the DRS, essentially does not range greatly in price; 

therefore, the price of both will depend on the size of the DRS. Assuming that the newly 

assembled DRS will be approximately the same size as our DRS, the total cost would come to be 

around $500.00. The total cost of this newly acquired, cost efficient DRS is ~8.8% of the cost of 

our current DRS and ~1.2% of the cost of the commercial portable x-ray system offered by 

Absolute Medical Equipment described in Chapter 1. 

5.4 Future Work 

 Future experiments with our DRS consist of transforming it into what is essentially a CT 

scanner. By doing this, the only additional physical component needed would be a variable 

rotating stage where the object can be located. Instead of the x-ray source rotating around the 

object, as per normal CT scanners, the object would rotate while the x-ray source is in a fixed 

location.  The object would rotate and images would be taken. Additional software would be 

needed to reconstruct the 2D intensity images into a tomographic attenuation image.  
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Also, additional work should include characterization of the amount of light output per 

energy/current and exposure time. This would help find the limitations of noise as a function of 

photons hitting the CCD chip. Therefore, if the number of photons hitting the camera were 

known, then the minimum settings could be found to produce an image with an SNR of or above 

5. Additionally, most of the photons coming from the intensifying screen are wasted due to the 

fact that they are emitted isotropically and only a small portion of photons from the intensifying 

screen interact with the CCD chip. In conclusion, to make the DRS more efficient, a setup 

involving construction of an apparatus directing the maximum amount photons onto the CCD 

chip would be beneficial. 
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