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Abstract: Highly phosphine-resistant populations of Rhyzopertha dominica (F.) 
(Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: 
Tenebrionidae) have recently been found in Oklahoma grain storage facilities. These 
findings necessitate development of a phosphine resistance management strategy for 
continued effective use of phosphine. Therefore, this study investigated the efficacies of 
two grain insecticides, namely, spinosad and chlorpyrifos-methyl + deltamethrin against 
highly phosphine-resistant R. dominica and T. castaneum. Observations showed that both 
spinosad and chlorpyrifos-methyl + deltamethrin caused 83-100% mortality in resistant 
R. dominica and caused total progeny production suppression for all post-treatment 
storage periods: 2, 84, 168, 252, and 336 d. However, in resistant T. castaneum, the 
highest mortality caused by spinosad was only 3% for all storage periods. Chlorpyrifos-
methyl + deltamethrin was effective against resistant T. castaneum only in treated wheat 
stored for 2 and 84 d where it caused 93-99% mortality. However, chlorpyrifos-methyl + 
deltamethrin achieved total suppression of progeny production in T. castaneum at all 
storage periods. Spinosad was not as effective as chlorpyrifos-methyl + deltamethrin at 
suppressing progeny production of resistant T. castaneum. Experiments were also 
conducted to measure population growth and developmental rates of phosphine-resistant 
and -susceptible populations in a phosphine-free environment in order to assess the 
fitness effects caused by phosphine resistance in these two species. Three resistant R. 
dominica populations tested exhibited lower population growth and developmental rates 
than the susceptible population indicating fitness cost in resistant insects. However, the 
only resistant T. castaneum population tested exhibited a higher population growth and 
developmental rates than the susceptible population indicating fitness benefit in resistant 
insects. This means phosphine resistance development in R. dominica populations where 
resistance has not developed can be slowed by infrequent use of phosphine, whereas it 
can be mitigated by suspending phosphine use for extended periods of time in resistant 
populations. However, the same is not true for T. castaneum. For both scenarios, the most 
appropriate option is to eliminate the resistant individuals, for example, by using spinosad 
or chlorpyrifos-methyl + deltamethrin. These two insecticides can be used in a phosphine 
resistance management strategy for R. dominica and T. castaneum in the U.S.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

Wheat is a major crop grown in Oklahoma. In 2012, Oklahoma produced 4.2 

million tons (155 million bushels) of winter wheat (Triticum aestivum L.) worth $1.2 

billion and ranked number two in the U.S. for production of this crop (National 

Agricultural Statistics Service [NASS] 2013). Wheat storage time in Oklahoma on 

average ranges from 6 to 12 months and storage occurs under relatively high temperature 

conditions thereby increasing the risk of serious infestation by stored-product insect pests 

(Cuperus et al. 1990). Therefore, insect pest management is important in mitigating 

economic losses associated with storage. In Oklahoma, phosphine (hydrogen phosphide 

or PH3) fumigation is the preferred method for the control of insect infestations, and 

stored wheat in commercial storage facilities is fumigated on average three times a year 

(Cuperus et al. 1990). Given that methyl bromide has been phased out and there are no 

alternatives with the combined advantages of phosphine, it is critical that the 

effectiveness of phosphine be maintained. Some of the advantages of phosphine include
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low cost, easy application, lack of residues, and it can be applied in many types of grain 

storage structures and on many commodities (Chaudhry 2000, Collins et al. 2001, Nayak 

and Collins 2008). 

The popularity of phosphine has had the unintended effect of resistance 

development in stored-product insect pests. Repeated inefficient fumigations, including 

fumigating leaky structures, has over the years resulted in the development of resistant 

insect populations (Taylor 1989, Chaudhry 2000, Benhalima et al. 2004). Resistance to 

phosphine started to be documented in stored-product insects worldwide in the early 

1970s (Champ and Dyte 1976). In the U.S., low levels of resistance to phosphine in 

stored-grain insects collected in Oklahoma were first reported in the 1980s (Zettler and 

Cuperus 1990). Recently strong phosphine resistance was found in, Rhyzopertha 

dominica (F.) (Coleoptera: Bostrichidae), the lesser grain borer, and Tribolium castaneum 

(Herbst) (Coleoptera: Tenebrionidae), the red flour beetle, which are key insect pests of 

stored grains in Oklahoma (Opit et al. 2012a). A population of T. castaneum that was 119 

times more resistant to phosphine compared to the susceptible population and three 

populations of R. dominica that were 254, 910, and 1,519 times more resistant than the 

susceptible population were found in insects collected from commercial grain storage 

structures in Oklahoma (Opit et al. 2012a). 

The occurrence of phosphine-resistant pest populations presents challenges to the 

continued effective use of this fumigant. As previously mentioned, phosphine is an 

important tool for the management of stored-grain insect pests. Phosphine causes 

respiratory stress in the target insect by disrupting the mitochondrial electron transport 

chain (Chefurka et al. 1976, Chaudhry 1997). The mechanisms for phosphine resistance 
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within resistant insects include active respiratory exclusion of phosphine resulting in less 

uptake of the gas, a lower respiration rate in resistant insects compared to their 

susceptible counterparts, and phosphine detoxification (Price 1984, Chaudhry and Price 

1990, Chaudhry and Price 1992, Pimental et al. 2007). Given the discovery of strong 

resistance to phosphine in stored-product insect pests in the U.S., it is important to 

develop a phosphine resistance management strategy to ensure the continued effective 

use of this fumigant and to maintain its cost-effectiveness. 

Development of a phosphine resistance management strategy, involves finding 

ways to maintain a large percentage of susceptible stored-product insect pests in grain 

storage structures (Opit et al. 2012b). In scenarios where phosphine resistance has already 

been detected, strategies are implemented to eliminate the resistant insect populations by 

use of alternative treatment methods which have a different mode of action than that of 

phosphine (Opit et al. 2012b). Spinosad is a potential alternative insecticide for the 

elimination of phosphine-resistant insects. Spinosad is a proven effective grain protectant 

that provides long-term protection against various species of stored-product insect pests 

on different grain varieties (Fang et al. 2002a, 2002b; Nayak et al. 2005, Subramanyam 

2006, Vayias et al. 2010). Spinosad is labeled for use at an application rate of 1 ppm 

(Hertlein et al. 2011). Another alternative insecticide is a mixture of chlorpyrifos-methyl 

(3 ppm) (an organophosphate) and deltamethrin (0.5 ppm) (a pyrethroid) labeled for use 

on stored wheat at an application rate of 3.5 ppm (Subramanyam 2007, 2012).  

Long-term frequent use of an insecticide exposes greater numbers of insects to 

selection pressure thereby increasing the rate of resistance development (Tabashnik 

1990). This suggests that withholding the use of phosphine for an extended period may 
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reduce the selection pressure (Opit et al. 2012b). Phosphine resistance development in 

insect populations where resistance has not developed can be slowed by infrequent use of 

phosphine, whereas it cannot be mitigated by suspending phosphine use for extended 

periods of time in resistant populations with fitness benefit (Pimental et al. 2007, Sousa et 

al. 2009, Opit et al. 2012b). However, to determine if this assertion is true, a fitness cost 

or benefit associated with phosphine resistance needs to be determined when phosphine 

resistance is present within an insect population. Withholding phosphine use for long 

periods of time does not always mitigate phosphine resistance in resistant populations, for 

example in insects where resistance confers a fitness benefit (Jagadeesan et al. 2012). 

Where insecticide resistance confers a fitness benefit, it is likely that resistance will 

stabilize and become widespread rendering the insecticide ineffective (Arnaud et al. 

2002). Insecticide resistance management seeks to maintain a large percentage of 

susceptible insects in target populations and avoid scenarios of widespread resistance 

(Opit et al. 2012b). This can be accomplished by identifying ways to prevent resistance 

from developing rapidly in susceptible populations and methods to eliminate resistant 

populations where they occur. 

An important concern in grain processing and storage facilities is detection and 

monitoring of insect pest populations which facilitates making correct management 

decisions and accurate evaluation of the effectiveness of the integrated pest management 

programs for these facilities (Barak et al. 1990, Campbell et al. 2002). Insect traps have 

been developed commercially for the detection and monitoring of stored-product insects 

such as T. castaneum which is a common pest in grain processing and storage facilities 

(Mullen 1992). However, insect pests have low response to these commercially available 
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traps (Semeao et al. 2011, Duehl et al. 2011, Campbell 2012). Low trap catches give less 

accurate information on infestation levels in monitored facilities. Investigating the 

effectiveness of traps to monitor insect pests is vital for the identification of the most 

effective traps that provide more accurate population estimate data that improve pest 

management decision making.  

Objectives 

As previously stated, resistance to phosphine in stored-product insect pests is a 

threat to grain storage in the U.S. Detection of strong phosphine resistance in key stored-

grain pests, namely, R. dominica and T. castaneum, in Oklahoma necessitates the 

development of a phosphine resistance management strategy for the U.S. to ensure 

continued effective use of phosphine. Knowledge of the fitness effects associated with 

insecticide resistance in insect populations and identification of tools that mitigate 

resistance development are necessary for developing resistance management. In addition, 

identification of effective tools that facilitate detection and monitoring of insect 

infestations in grain processing and storage facilities is essential for successful integrated 

pest management in monitored facilities (Barak et al. 1990, Campbell et al. 2002). Given 

the importance of a phosphine resistance management strategy to Oklahoma and wheat-

growing regions of the U.S. and the significance of monitoring pest populations to 

integrated pest management in grain processing and storage facilities, relevant studies 

were conducted to address these issues. 
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The objectives are: 

Objective 1: 

Evaluate efficacies of the grain protectant insecticides spinosad and chlorpyrifos-methyl 

+ deltamethrin against phosphine-resistant and -susceptible R. dominica and T. 

castaneum collected from Oklahoma. 

Objective 2: 

Measure population growth rates and developmental rates of phosphine-resistant R. 

dominica and T. castaneum collected from Oklahoma to determine whether phosphine 

resistance confers a fitness cost or benefit in a phosphine-free environment. 

Objective 3: 

Compare effectiveness of three types of traps used to monitor T. castaneum in grain 

processing and food storage facilities. 
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Abstract  

Highly phosphine-resistant populations of Rhyzopertha dominica (F.) 

(Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: 

Tenebrionidae) have recently been detected in Oklahoma grain storage facilities. These 

findings necessitate development of a phosphine resistance management strategy to 

ensure continued effective use of phosphine. This study determined the efficacies of two 

grain insecticides, namely, spinosad applied at label rate of 1 ppm and a mixture of 

chlorpyrifos-methyl and deltamethrin applied at label rates of 3 and 0.5 ppm, 

respectively, against highly phosphine-resistant R. dominica and T. castaneum. Adult 

mortality and progeny production suppression of spinosad- or chlorpyrifos-methyl + 

deltamethrin mixture-treated wheat that had been stored for 2, 84, 168, 252, and 336 d 

post-treatment were assessed. It was determined that both spinosad and chlorpyrifos-

methyl + deltamethrin were effective against phosphine-resistant R. dominica and caused 

83-100% mortality and also caused total progeny production suppression for all storage 

periods. Spinosad was not effective against phosphine-resistant T. castaneum; the highest 

mortality observed was only 3% for all the storage periods. Chlorpyrifos-methyl + 

deltamethrin was effective against phosphine-resistant T. castaneum only in treated wheat 

stored for 2 and 84 d where it caused 93-99% mortality. However, chlorpyrifos-methyl + 

deltamethrin was effective and achieved total suppression of progeny production in T. 

castaneum for all the previously mentioned storage periods. Spinosad was not as 

effective as chlorpyrifos-methyl + deltamethrin mixture at suppressing progeny 

production of phosphine-resistant T. castaneum. These two insecticides can be used in a 

phosphine resistance management strategy for R. dominica and T. castaneum in the U.S.  
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Introduction 

Oklahoma produced 4.2 million tons (155 million bushels) of winter wheat 

(Triticum aestivum L.) worth $1.2 billion in 2012 (National Agricultural Statistics 

Service [NASS] 2013). In Oklahoma, phosphine gas (hydrogen phosphide or PH3) is the 

preferred method to fumigate stored grain to manage stored-product insect pests. Stored 

wheat in commercial grain storage facilities in Oklahoma is fumigated using phosphine 

on average 3 times each year (Cuperus et al. 1990). However, low levels of resistance to 

phosphine started to be documented in Rhyzopertha dominica (F.) (Coleoptera: 

Bostrichidae), the lesser grain borer, and Tribolium castaneum (Herbst) (Coleoptera: 

Tenebrionidae), the red flour beetle collected in Oklahoma in the 1980s (Zettler and 

Cuperus 1990). Resistance levels seem to have increased over the years because in 2009-

11, strong phosphine resistance was found in R. dominica and T. castaneum collected 

from commercial grain storage structures in Oklahoma (Opit et al. 2012a). A population 

of T. castaneum that was 119 times more resistant to phosphine compared with a 

susceptible population and three populations of R. dominica that were 254, 910, and 

1,519 times more resistant than the susceptible population were detected in Oklahoma 

(Opit et al. 2012a). It is likely that resistant populations of these pest species occur in 

other parts of the U.S. as well.  

The occurrence of phosphine resistance in pest populations presents challenges to 

the continued effective use of this fumigant. Phosphine fumigation is an important tool 

for the management of stored-grain pests. Governmental regulation of pesticides has 

significantly contributed to the common use of phosphine worldwide because it led to the 

loss of older fumigants (carbon tetrachloride, carbon disulfide, ethylene dichloride, and 
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ethylene dibromide), the declining use of methyl bromide, reduced use of residual contact 

insecticides because of harmful residues they leave in food, and the lack of alternative 

fumigants that are cost-effective, easy to apply, leave no residues, and can be used in a 

wide range of storage types and commodities like phosphine (e.g., Collins et al. 2001, 

Fields and White 2002, Nayak et al. 2003, Phillips and Throne 2010). 

Phosphine kills insects by causing respiratory stress due to its disruption of the 

oxidative process occurring within living cells, a process by which the chemical energy 

of organic molecules is released in a series of metabolic steps involving the consumption 

of oxygen and the liberation of carbon dioxide and water (Chefurka et al. 1976, Chaudhry 

1997, Schlipalius et al. 2008). Resistance limits the effectiveness of phosphine as a 

stored-product insect pest management tool, and this has become a problem in various 

parts of the world (Collins et al. 2001, Pimental et al. 2010, Opit et al. 2012a). In order to 

effectively use phosphine in the future, a phosphine resistance management strategy for 

the U.S. needs to be developed in order to maintain a high proportion of susceptible 

insects in pest populations.  

An important component of phosphine resistance management involves the 

elimination of phosphine-resistant insects. Examples of ways that could be explored to 

eliminate phosphine-resistant insects include alternative fumigant gases (sulfuryl 

fluoride) and residual long-acting insecticides such as spinosad and a mixture of 

chlorpyrifos-methyl (21.6%) and deltamethrin (3.7%). Spinosad is a biologically derived 

insecticide from a soil actinomycete, Saccharopolyspora spinosa Mertz and Yao 

(Bacteria: Actinobacteridae) (Mertz and Yao 1990), which is toxic to insects by contact 

as well as ingestion (Toews and Subramanyam 2003). It acts on the nicotinic 
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acetylcholine and gamma amino butyric acid (GABA) receptor sites of the insect nervous 

system initially causing involuntary muscle contractions and tremors by hyperexcitation 

of the central nervous system, and after continuous hyperexcitation, insects become 

paralyzed due to neuromuscular exhaustion (Salgado 1998). Spinosad was registered by 

the U.S. Environmental Protection Agency (E.P.A.) for use on stored grains in 2005, but 

it has not yet been made commercially available due to the delay in approval of all 

international trade agreements (Hertlein et al. 2011). A mixture of chlorpyrifos-methyl 

(21.6%) and deltamethrin (3.7%) is labeled for use on stored wheat and for structural 

treatment of grain storages. The active ingredient chlorpyrifos-methyl is an 

organophosphate which acts as an acetylcholinesterase inhibitor causing hyperexcitation 

leading to paralysis of insect neurons (O’Brien 1966), and deltamethrin is a pyrethroid 

which affects the insect neuromuscular system by acting as a sodium channel modulator 

causing hyperexcitation and tremors followed by paralysis (Narahashi 1971). The fact 

that spinosad, organophosphates, and pyrethroids kill insects in a different manner than 

phosphine suggests they have a greater likelihood of eliminating phosphine-resistant 

insects. 

The effectiveness of spinosad as a grain protectant against various species of 

stored-product insect pests on different grains is well established (Fang et al. 2002a, 

2002b; Nayak et al. 2005, Subramanyam 2006, Vayias et al. 2010), but these studies have 

not specifically investigated efficacy against phosphine-resistant stored-product insect 

pests. Additionally, there are no published studies on efficacy of chlorpyrifos-methyl + 

deltamethrin mixture against phosphine-resistant stored-product insect pests. Therefore, 

this study was initiated to evaluate efficacies of a liquid formulation of spinosad and a 
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mixture of chlorpyrifos-methyl and deltamethrin against phosphine-resistant and -

susceptible adult R. dominica and T. castaneum collected from Oklahoma. 

Materials and Methods 

Insects. One phosphine-resistant population and one phosphine-susceptible strain 

of R. dominica and T. castaneum were used in this study. The phosphine-resistant and -

susceptible R. dominica will subsequently be referred to as Rd-res and Rd-sus, 

respectively. In the case of T. castaneum, these will be referred to as Tc-res and Tc-sus, 

respectively. Cultures of Rd-res and Tc-res were started using insects collected from 

concrete silos in Garfield Co., OK in 2009. Cultures of Tc-sus and Rd-sus were started 

using insects obtained from laboratory cultures maintained at the Center for Grain and 

Animal Health Research (CGAHR) of the USDA Agricultural Research Service, 

Manhattan, KS. Cultures of these susceptible strains have been maintained since 1958 

and 1972, respectively. T. castaneum were reared on a mixture of 95% all-purpose wheat 

flour and 5% Brewer’s yeast (wt/wt) at 28°C and 65% RH and R. dominica were reared 

on a mixture of 95% whole-wheat kernels and 5% Brewer’s yeast at 28°C and 65% RH. 

Voucher specimens of Rd-res, Rd-sus, Tc-res, and Tc-sus that were used in this study 

were deposited in the K. C. Emerson Entomology Museum at Oklahoma State University 

under lot numbers 122, 126, 129, and 136, respectively. 

Insecticides. Efficacies of spinosad (Sensat™; 88.33 AI Conc.; Bayer 

CropScience) applied at a label rate of 1 ppm and chlorpyrifos-methyl + deltamethrin 

mixture (Storcide™ II; 253 AI Conc.; 21.6% chlorpyrifos-methyl and 3.7% deltamethrin; 

Bayer CropScience) applied at a label rate 3 ppm of chlorpyrifos-methyl and 0.5 ppm of 
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deltamethrin for control of phosphine-resistant and -susceptible adult R. dominica and T. 

castaneum were evaluated. Both Sensat™ and Storcide™ II were diluted using distilled 

water and these solutions were used to treat wheat.  

Insecticide Applications. Three 3.8-liter jars and three 2.5-kg batches of wheat 

were assigned to each of the aforementioned insecticides (spinosad or chlorpyrifos-

methyl + deltamethrin). The application of spinosad or chlorpyrifos-methyl + 

deltamethrin will be referred to as “treatment”, although they are not true treatments as 

defined in statistics. Adequate insecticide treatment of each 2.5-kg batch of wheat added 

to each jar required 2.5 ml of insecticide solution (Bonjour and Opit 2011). Therefore, to 

treat 2.5 kg of wheat added to each of the jars assigned to the spinosad treatment at a 

label rate of 1 ppm, 0.6 ml of pesticide was mixed with 50 ml of water and 2.5 ml of the 

solution was taken and applied to the sides of each jar. For the chlorpyrifos-methyl + 

deltamethrin mixture treatment, 0.7 ml of pesticide was mixed with 50 ml of water and 

2.5 ml of the solution was taken and applied to the sides of each jar, to attain an 

application rate of 3 ppm of chlorpyrifos-methyl and 0.5 ppm of deltamethrin. Additional 

three 3.8-liter jars and three 2.5-kg batches of wheat were assigned to the control and 2.5 

ml of distilled water was taken and applied to the sides of each jar (Bonjour and Opit 

2011). 

After the application of 2.5 ml of insecticide solution or water to the sides of each 

3.8-liter jar, 2.5 kg of wheat was added to each jar and the jar was sealed. Each jar was 

then turned end over end 10 times and then rotated a full revolution 10 times (Bonjour 

and Opit 2011). Jars were left for 2 h and then they were turned and rotated as previously 

mentioned (Bonjour and Opit 2011). Sealed jars of treated wheat were kept in an 
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incubator maintained at 28 ± 1°C, 65% ± 5% RH, and 24 h of darkness for storage during 

the experiment. 

The experiment had five post-treatment storage periods of 2, 84, 168, 252, and 

336 d (referred to as storage periods hereafter). These storage periods corresponded to 

spinosad- or chlorpyrifos-methyl + deltamethrin mixture-treated wheat that was stored for 

2, 84, 168, 252, and 336 d post-treatment before use; wheat for the control treatment was 

also stored for the same storage periods. Prior to using treated wheat after each storage 

period, the 3.8-liter jars were rotated end over end 10 times before removing wheat for 

the experiment. For each storage period, a total of three replications for each strain or 

population of R. dominica and T. castaneum (Rd-res, Rd-sus, Tc-res, and Tc-sus) were 

set up. One replication came from the grain in each of 3.8-liter jars for each treatment (for 

example, three 3.8-liter jars were treated with spinosad and 100 g of grain were then 

taken from each of the three different 3.8-liter jars for a given treatment and separately 

placed in a 236.6 ml jar).  

Bioassays. The experimental unit utilized for each R. dominica and T. castaneum 

strain or population used in the experiment was a 236.6-ml glass jar containing 100 g of 

treated wheat. For jars receiving R. dominica, 100 g of treated whole kernels was used, 

and the jar lids were fitted with a circular piece of U.S. Standard #40 mesh copper screen 

sandwiched between two pieces of filter paper. For jars receiving T. castaneum, 95 g of 

treated whole kernels and 5 g of ground treated kernels were used, and jar lids were fitted 

with two pieces of filter paper. Ground kernels were obtained by grinding kernels for 30 s 

using an electric blender (Hamilton Beach 909 Clamshell Commercial Blender, 

HamiltonBeach/Proctor-Silex, Inc., Southern Pines, NC). 
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For each storage period, 50 adult insects were added to treated grain in each 

236.6-ml jar and held for 1 wk. Beetles were approximately 2-3 mo old and were 

obtained from laboratory colonies. Jars were randomly placed in a plastic box containing 

a saturated solution of sodium nitrite (NaNO2) below perforated false floors to maintain 

65 ± 5% RH (Greenspan 1977). The box was placed in an incubator maintained at 28 ± 

1°C. After 1 wk, adult mortality was determined. Adult insects were removed from the 

jars and counted as live, moribund, or dead. Moribund and dead adults were then placed 

in a 9-cm Petri dish containing a piece of filter paper moistened with 0.5-ml of water. 

Those insects were re-evaluated after 24 h for recovery. Jars were then held for an 

additional 6 wk at the incubator conditions mentioned above after which the number of 

progeny was counted. Environmental conditions in the incubator were monitored using a 

temperature and relative humidity sensor (HOBO® U12, Onset Computer Corporation, 

Bourne, MA) and a digital thermometer (Mini-alarm thermometer with probe, Fisher 

Scientific 15-007-32).  

Data Analyses. Control mortality did not exceed 3% in all cases and treatment 

mortalities were corrected using Abbott’s formula (Abbott 1925). All statistical 

procedures were accomplished using Statistical Analysis System software (SAS Institute 

2010). The mortality data were analyzed separately for each species using General Linear 

Model (GLM) procedure for a three-way analysis of variance (ANOVA) for treatment 

(type of insecticide), storage period, and resistance status as main effects. Percent 

mortality data were transformed using the arcsine square-root transformation to stabilize 

variances. Untransformed means and standard errors are reported to simplify 

interpretation. Least significant difference (LSD) test was used to determine differences 
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among mean adult mortalities. Despite storage period being a quantitative independent 

variable, regression analyses were not conducted. This was because regression equations 

were not particularly meaningful as responses from the experiments usually were either 

minimal or not in a pattern that were easily described by regression equations. In progeny 

production (number of progeny) data analyses, the control treatment was included. For R. 

dominica progeny production data, only the control treatment data were analyzed, 

because spinosad and chlorpyrifos + deltamethrin resulted in total suppression of progeny 

production. Spinosad and chlorpyrifos + deltamethrin were considered effective if the 

insecticides attained adult mortality and progeny production suppression of at least 80%. 

Results 

Rhyzopertha dominica. For mortality counts, all main effects and all interactions 

were significant at P < 0.05, with the exception of resistance status × treatment and 

resistance status × storage period (Fig. 1; Table 1). Spinosad (1 ppm) was effective 

against phosphine-resistant R. dominica for all storage periods and adult mortality ranged 

from 96 to 98% for all storage periods (Fig. 1A); similar results were obtained for 

phosphine-susceptible R. dominica where mortality was 99% for all storage periods (Fig. 

1A). Chlorpyrifos-methyl (3 ppm) + deltamethrin (0.5 ppm) was effective against both 

phosphine-resistant and -susceptible R. dominica for all storage periods (Fig. 1B). 

However, effectiveness of chlorpyrifos-methyl + deltamethrin declined from 100 to 83% 

from the first to last storage periods in the phosphine-resistant R. dominica and 100 to 

84% in phosphine-susceptible insects of this species (Fig. 1B). Both spinosad and 

chlorpyrifos-methyl + deltamethrin resulted in total suppression of progeny production in 

the phosphine-resistant and -susceptible R. dominica for all storage periods. In relation to 
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R. dominica progeny production in the control treatment, there were significantly more 

susceptible R. dominica than their resistant counterparts at all storage periods except 336 

d (Fig. 2; Table 2). Despite the lack of a significant difference in the 336-d storage 

period, the number of progeny in the susceptible R. dominica (135 ± 46) was numerically 

higher than in the resistant R. dominica (91 ± 10) (Fig. 2). For all storage periods, the 

number of progeny in the susceptible R. dominica ranged from 135 to 587 and in the 

resistant R. dominica from 70 to 228 (Fig. 2). 

Tribolium castaneum. For mortality counts, only treatment (type of insecticide), 

storage period, and treatment × storage period were significant at P < 0.05, i.e. resistance 

status had no effect on mortality (Fig. 3; Table 1). Spinosad (1 ppm) was not effective 

against phosphine-resistant and -susceptible T. castaneum; mortality ranged from 0.2 to 

3% for all the storage periods (Fig. 3A). Chlorpyrifos-methyl (3 ppm) + deltamethrin (0.5 

ppm) was effective against phosphine-resistant and -susceptible T. castaneum only in the 

2- and 84-d storage periods where mortality ranged from 93 to 100%; thereafter, 

mortality significantly declined and ranged between 26 and 45% (Fig. 3B). In relation to 

progeny production, all main effects and interactions were significant at P < 0.05, with 

the exception of storage period and treatment × storage period (Table 2). Chlorpyrifos-

methyl + deltamethrin resulted in total suppression of progeny production in both 

phosphine-resistant and -susceptible T. castaneum population at all storage periods. 

Spinosad caused total progeny suppression of phosphine-susceptible T. castaneum in the 

168-, 252-, and 336-d storage periods (Fig. 4A). In the 2- and 84-d storage periods, 

phosphine-susceptible T. castaneum progeny production declined with storage time from 

15 to 2 (Fig. 4A). In the spinosad treatment, phosphine-resistant T. castaneum progeny 



25 

 

were produced at all storage periods but progeny production generally declined as storage 

period increased (Fig. 4A). In the control treatment, phosphine-resistant T. castaneum 

produced significantly more progeny than their susceptible counterparts at all storage 

periods except 252 d (Fig. 4B; Table 2). Despite the lack of a significant difference in the 

252-d storage period, the number of progeny in the resistant T. castaneum (147 ± 8) was 

numerically higher than in the susceptible T. castaneum (118 ± 5) (Fig. 4B). The number 

of progeny in the former, for all storage periods, ranged from 147 to 207 and in the latter 

59 to 118 (Fig. 4B). 

Discussion 

Phosphine-resistant and -susceptible R. dominica and T. castaneum can be 

effectively controlled using a mixture of chlorpyrifos-methyl (3 ppm) and deltamethrin 

(0.5 ppm). However, only phosphine-resistant and -susceptible R. dominica can be 

effectively controlled using spinosad (1 ppm). These results are in agreement with earlier 

observations on the effectiveness of spinosad against R. dominica (Fang et al. 2002a, 

Nayak et al. 2005, Subramanyam et al. 2012). In the present study, spinosad caused high 

mortality and complete progeny suppression of phosphine-resistant and -susceptible R. 

dominica at all the five post-treatment storage periods (2, 84, 168, 252, and 336 d). 

Effectiveness of spinosad showed no significant decline over time in both phosphine-

resistant and -susceptible R. dominica. A field study conducted in Oklahoma using hard 

red winter wheat in small grain storage bins (4.6 tons or 169 bushels) demonstrated that 

stored wheat treated with 1 ppm of spinosad completely controlled R. dominica adults 

and progeny production for all the post-treatment storage periods (28, 84, 182, 252, 336, 

and 672 d) (Bonjour et al. 2006).  
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Based on the data within this study, spinosad was not effective against phosphine-

resistant and -susceptible T. castaneum. Low efficacy of spinosad against T. castaneum 

has previously been reported (Nayak et al. 2005, Subramanyam et al. 2012). Although 

spinosad (1 ppm) was not effective against adult T. castaneum, it resulted in significant 

suppression of progeny production in phosphine-resistant T. castaneum. Progeny 

production of phosphine-resistant T. castaneum in the 168-, 252-, and 336-d storage 

periods decreased by 98, 99, and 98% respectively, relative to progeny production on 

untreated wheat. In phosphine-susceptible T. castaneum, spinosad significantly reduced 

progeny production in the 2- and 84-d storage periods and caused total progeny 

suppression in the 168-, 252-, and 336-d storage periods. These results indicate that 

spinosad is toxic to T. castaneum immatures and are in agreement with data from a study 

by Toews and Subramanyam (2003). Furthermore, Bonjour et al. (2006) demonstrated 

that the effectiveness of spinosad against adult T. castaneum decreased over time but 

caused total or nearly total progeny production suppression for storage periods ≤ 252 d. 

Lastly, Subramanyam et al. (2007, 2012) have reported low progeny production by T. 

castaneum on wheat treated with spinosad; progeny production was assessed after 56 d 

and 42 d, respectively. 

The mixture of 3 ppm of chlorpyrifos-methyl and 0.5 ppm of deltamethrin was 

highly effective against phosphine-resistant and -susceptible R. dominica for all storage 

periods. Subramanyam et al. (2012) also reported that chlorpyrifos-methyl (3 ppm) plus 

deltamethrin (0.5 ppm) was effective against R. dominica on wheat with 100% adult 

mortality after both 7- and 14-d exposure, and that study did not find any adult progeny 

on the treated wheat when progeny production was assessed after 42 d. Subramanyam et 
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al. (2007) found that application of chlorpyrifos-methyl alone at 3 ppm was ineffective 

against R. dominica. Therefore, the effectiveness of chlorpyrifos-methyl + deltamethrin 

against R. dominica can probably be attributed to deltamethrin or the possibility of a 

synergistic effect of deltamethrin and chlorpyrifos-methyl.  

In the present study, it was determined that the effectiveness of chlorpyrifos-

methyl + deltamethrin against adults of both phosphine-resistant and -susceptible R. 

dominica declined significantly as post-treatment period increased. A study conducted by 

Arthur (2012) where R. dominica adults were exposed to wheat treated at 0, 25, 50, 75, 

and 100% of the label rate of a mixture of chlorpyrifos-methyl (3 ppm) and deltamethrin 

(0.5 ppm) for 2, 4, 8, 16, or 32 h showed that parental adult mortality increased as the 

concentration and exposure interval increased. Similarly for progeny production which 

was assessed after 7 wk, it decreased with increasing concentration of chlorpyrifos-

methyl + deltamethrin mixture and increasing exposure time. Given that all adult R. 

dominica in the present study were exposed to wheat treated with 100% of the label rate 

of chlorpyrifos-methyl (3 ppm) + deltamethrin (0.5 ppm) mixture for much longer than 

32 h (7 d) before mortality was assessed, the decline in effectiveness as post-treatment 

storage period increased is most likely due to insecticide degradation over time.   

Although chlorpyrifos-methyl + deltamethrin was highly effective against 

phosphine-resistant and -susceptible T. castaneum in treated wheat stored for 2 and 84 d, 

its effectiveness significantly declined over the 168, 252, and 336 d storage periods. 

Subramanyam et al. (2007) reported that the organophosphate component of chlorpyrifos 

methyl + deltamethrin where chlorpyrifos-methyl was applied at 3 ppm is effective 

against T. castaneum in stored wheat. Arthur (1994) suggested that chlorpyrifos-methyl is 



28 

 

more effective against T. castaneum compared to deltamethrin. In that study, it was 

shown that for up to 8 mo of storage, no T. castaneum adults and progeny survived on 

corn treated with twice (6 ppm) the rate of chlorpyrifos-methyl used in the present study. 

In corn treated with three different rates (0.5, 0.75 or 1 ppm) of deltamethrin, survival of 

T. castaneum adults was observed at all the storage periods; however there were no 

progeny. The significant decline observed in this study in the efficacy of chlorpyrifos 

methyl + deltamethrin as the post-treatment period increased may be due to degradation 

of chlopyrifos-methyl which breaks down rapidly at high grain temperatures and 

moisture contents; residues of deltamethrin are more persistent on grains (Noble et al. 

1982, Arthur et al. 1992, Afridi et al. 2001).  

Subramanyam et al. (2012) reported 100% T. castaneum mortality and significant 

reduction of progeny production on wheat treated using 3 ppm of chlorpyrifos-methyl 

and 0.5 ppm of deltamethrin. This study expanded on the previous study by 

demonstrating that chlorpyrifos methyl + deltamethrin resulted in total suppression of 

progeny production in both phosphine-resistant and -susceptible T. castaneum 

populations for all storage periods thereby suggesting that this insecticide mixture is 

highly effective against the immature stages.  

If T. castaneum is the key target pest of insecticide applications, this study 

suggests that another control measure be applied 3 mo after the chlorpyrifos-methyl + 

deltamethrin treatment. In the case of R. dominica, this will not be required because 

chlorpyrifos-methyl + deltamethrin maintains mortality of at least 80% for up to 336 d. 

This is based on the fact that chlorpyrifos-methyl + deltamethrin was effective against 

phosphine-resistant and -susceptible T. castaneum for only 84 d post-treatment whereas it 
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was effective against R. dominica for 336 d post-treatment. This study demonstrated that 

spinosad is more effective against phosphine-resistant R. dominica, and chlorpyrifos-

methyl + deltamethrin is effective against both phosphine-resistant R. dominica and T. 

castaneum. As previously mentioned, spinosad, chlorpyrifos-methyl, and deltamethrin 

have different modes of action than phosphine and this most likely explains their 

effectiveness against phosphine-resistant R. dominica and T. castaneum. According to 

Opit et al. (2012b), successful elimination of phosphine-resistant insects using alternative 

fumigants or grain protectant insecticides will have greater success if the alternative 

insecticides have different modes of action and there is no cross-resistance. 

In both R. dominica and T. castaneum, there was a difference in progeny 

production between the phosphine-resistant and -susceptible insects in the untreated 

wheat (control treatment). For R. dominica, the number of progeny produced by the 

phosphine-susceptible insects was significantly higher than that by the phosphine-

resistant insects for all storage periods except 336 d. The converse was true for T. 

castaneum where significantly more progeny were produced by resistant insects for all 

storage periods except 252 d. These findings may indicate that there is a fitness cost to 

having phosphine resistance genes in R. dominica, whereas there may be a fitness benefit 

to having phosphine resistance genes in T. castaneum. This preliminary observation 

needs further investigation to provide confirmation of a fitness cost and/or benefit. 

Knowledge of the fitness effects when phosphine resistance is present can aide in the 

development of phosphine resistance management strategies (Opit et al. 2012b). 

The goal of a phosphine resistance management strategy is to maintain a level of 

susceptibility within an insect population to phosphine so that a high level of mortality 
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can be attained each time phosphine is used for fumigation. The findings within this 

study show that grain protectants insecticides such as spinosad and chlorpyrifos-methyl + 

deltamethrin can be effective tools for the elimination of the phosphine-resistant R. 

dominica and T. castaneum. A phosphine resistance management strategy seeks to delay 

the development of resistance to phosphine where it has not occurred and to mitigate 

resistance in populations where it occurs by infrequent use of phosphine and withholding 

use for long enough to mitigate resistance, respectively. Infrequent or suspended use of 

phosphine can be accomplished by integrating the use of alternative chemical and non-

chemical control measures such as grain protectants, heat, aeration, sanitation, and other 

integrated pest management tools (Opit et al. 2012b).  

Based on this study, it can be concluded that chlorpyrifos-methyl + deltamethrin 

and spinosad can be used to eliminate phosphine-resistant R. dominica whereas only 

chlorpyrifos-methyl + deltamethrin can be used to eliminate phosphine-resistant T. 

castaneum. This suggests that wheat infested by phosphine-resistant R. dominica can be 

treated using chlorpyrifos-methyl + deltamethrin mixture or spinosad to eliminate 

resistant insects. Wheat infested by phosphine-resistant T. castaneum and empty storage 

structures infested by resistant insects of both species can be treated using chlorpyrifos-

methyl + deltamethrin to eliminate these pests. Therefore, spinosad and chlorpyrifos-

methyl + deltamethrin are effective insecticides for the management of phosphine-

resistant R. dominica and T. castaneum and can be used in a phosphine resistance 

management strategy developed for stored-product insect pests in the U.S. 
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Table 1. ANOVA results for main effects and interactions for mortality of 

phosphine- resistant and -susceptible populations of R. dominica and T. castaneum. 

 

Source      R. dominica  T. castaneum 

     df   F     P    F     P 

 

Resistance status   1 27.4 <0.0001     0.5   0.4999 

Treatment    1 93.2 <0.0001 791.7 <0.0001 

Resistance status × treatment  1   1.0   0.3343     0.7   0.4089 

Storage period    4 31.4 <0.0001    51.0 <0.0001 

Resistance status × storage period 4   1.0   0.4172      1.3   0.2969 

Treatment × storage period  4 22.0 <0.0001    44.3 <0.0001 

Resistance status × treatment × 4   2.7   0.0432      0.4   0.8139 

storage period 
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Table 2. ANOVA results for main effects and interactions for progeny production of 

phosphine-resistant and -susceptible populations of R. dominica and T. castaneum. 

 

Source                 R. dominica        T. castaneum 

           df          F            P df    F       P 

 

Resistance status           1      237.6     <0.0001   1   74.2 <0.0001 

Treatment            -         -             -   2 355.7 <0.0001 

Resistance status × treatment          -         -             -   2   43.7 <0.0001 

Storage period            4       35.3       <0.0002   4     1.6   0.1845 

Resistance status × storage period   4       13.3       <0.0003   4     2.6   0.0460 

Treatment × time period           -         -              -   8     1.4   0.2210 

Resistance status × treatment ×        -         -              -   8     2.5   0.0223 

storage period 
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Fig. 1. Mortality (%) (mean ± SE) of R. dominica adults on wheat treated with spinosad 

(A) and chlorpyrifos-methyl + deltamethrin (B) (for each insecticide, means with the 

same letter are not significantly different). Storage periods correspond to the duration 

wheat was stored post-treatment before use. 
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Fig. 2. Progeny production (no. of individuals per jar ± SE) of R. dominica in the control 

treatment (means with the same letter are not significantly different). Storage periods 

correspond to the duration wheat was stored post-treatment before use. 
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Fig. 3. Mortality (%) (mean ± SE) of T. castaneum adults on wheat treated with spinosad 

(A) and chlorpyrifos-methyl + deltamethrin (B) (for each insecticide, means with the 

same letter are not significantly different; where no letters exist, no significant 

differences were noted). Storage periods correspond to the duration wheat was stored 

post-treatment before use. 
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Fig. 4. Progeny production (no. of individuals per jar ± SE) of T. castaneum on wheat 

treated with spinosad (A) and in the control treatment (B) (means with the same letter are 

not significantly different). Storage periods correspond to the duration wheat was stored 

post-treatment before use. 
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ASSESSMENT OF FITNESS EFFECTS ASSOCIATED WITH PHOSPHINE 

RESISTANCE IN RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) 

AND TRIBOLIUM CASTANEUM (COLEOPTERA: TENEBRIONIDAE) 
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Abstract 

Strong phosphine resistance was reported in Oklahoma populations of 

Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) 

(Coleoptera: Tenebrionidae) in 2012. For continued effective use of phosphine, resistance 

management has to be implemented in the U.S. Knowledge of the fitness effects of 

phosphine resistance in a phosphine-free environment is important for resistance 

management. Therefore, the goal of this study was to determine if there are fitness effects 

caused by phosphine resistance in populations of R. dominica and T. castaneum. The 

population growth and developmental rates of phosphine-resistant and -susceptible 

populations of these two species were measured in a phosphine-free environment. Three 

resistant R. dominica populations tested exhibited lower population growth and 

developmental rates compared to the susceptible population, whereas the only resistant T. 

castaneum population tested exhibited a higher population growth and developmental 

rates compared to the susceptible population. These data indicate that for R. dominica and 

T. castaneum, there is a fitness cost and a fitness benefit, respectively, associated with 

phosphine resistance genes in these two species. This means phosphine resistance 

development in R. dominica populations where resistance has not developed can be 

slowed by infrequent use of phosphine, whereas it can be mitigated by suspending 

phosphine use for extended periods of time in populations with resistance. However, 

withholding phosphine use for long periods of time may not mitigate phosphine 

resistance in T. castaneum. 

KEY WORDS Stored product, lesser grain borer, red flour beetle, fitness cost, phosphine 

resistance management 
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Introduction 

A recent study by Opit et al. (2012a) found high levels of phosphine (hydrogen 

phosphide or PH3) resistance in Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) 

and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) collected from 

commercial grain storage facilities in Oklahoma. Because phosphine is greatly relied 

upon for integrated management of stored-grain pests in Oklahoma and the U.S., 

occurrence of phosphine resistance in pest populations presents challenges to its 

continued effective use. In order to maintain the cost-effectiveness of phosphine and to 

extend its useful life, it is important to develop a phosphine resistance management 

strategy for stored-product insect pests in the U.S.   

The goal of a phosphine resistance management strategy is to maintain a high 

proportion of susceptible insects in populations found in grain storage facilities so that 

high levels of mortality are attained each time phosphine is used for fumigation (Opit et 

al. 2012b). Phosphine resistance management seeks to delay the development of 

resistance to phosphine where resistance has not yet occurred and, if resistance has 

already occurred, to eliminate resistant insect populations (Opit et al. 2012b). In a 

phosphine resistance management strategy, phosphine is applied as infrequently as 

possible in order to delay resistance development; however, this is most likely to happen 

if insects possessing resistance genes suffer a fitness cost (Pimental et al. 2007, Sousa et 

al. 2009).  

Resistance to insecticides has a genetic basis and insects possessing resistance 

genes usually bear some adaptive costs whereby resources needed for physiological 
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processes such as development and reproduction are allocated for protection against the 

insecticide (Coustau et al. 2000, Berticat et al. 2002). Fitness costs associated with 

insecticide resistance may be in the form of decreased reproductive potential of 

insecticide-resistant individual in absence of the insecticide (selecting agent), suggesting 

that the number of resistant individuals will decline in the absence of the application of 

the insecticide (Coustau et al. 2000, Haubruge and Arnaud 2001, Foster et al. 2003). 

However, this is not always the case because insecticide use can result in selection of 

fitness modifier genes or selection of less costly genes which would confer a fitness 

benefit to resistant individuals (Coustau et al. 2000, Berticat et al. 2002), or there may be 

cases resulting in neutral effect where possessing resistance genes would neither have a 

fitness cost or fitness benefit (Heather 1982, Fragoso et al. 2005, Guedes et al. 2006).  

Few studies have investigated potential fitness costs associated with phosphine 

resistance (Pimental et al. 2007, Sousa et al. 2009, Jagadeesan et al. 2012). Sousa et al. 

(2009) showed there was a fitness cost to possessing resistance genes in some R. 

dominica and T. castaneum populations from Brazil, but they also found one phosphine-

resistant R. dominica population that showed there was a fitness benefit to possessing 

resistance genes. Some studies have reported lack of association between phosphine 

resistance and fitness cost in highly phosphine-resistant R. dominica (Schlipalius et al. 

2008). A study by Jagadeesan et al. (2012) reported a weak fitness cost in a single pair 

inter-strain cross between the phosphine-susceptible and strongly-phosphine resistant 

strains of T. castaneum. However, this weak resistance was not consistent because the 

genetic background of the weakly resistant strain may have suppressed the cost based on 
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the fact that no association was observed when a strongly resistant strain was crossed 

with a weak resistant strain.  

In the Opit et al. (2012a) study, highly phosphine-resistant populations of R. 

dominica and T. castaneum were found. The resistant T. castaneum population was 119 

times more resistant than the susceptible population and the three resistant R. dominica 

populations were 254, 910, and 1,519 times more resistant than the susceptible 

population. In a study on the efficacies of spinosad or chlorpyrifos-methyl + deltamethrin 

mixture on phosphine-resistant R. dominica that was 1,519 times more resistant than the 

susceptible strain, Bajracharya et al. (2013) found that the number of progeny produced 

by the phosphine-susceptible insects was significantly higher than that by the phosphine-

resistant insects. They found the converse was the case for the phosphine-resistant T. 

castaneum that was 119 times more resistant than the susceptible strain. Their data 

suggested that there may be a fitness cost to possessing resistance genes in the phosphine-

resistant R. dominica populations and a fitness benefit in the phosphine-resistant T. 

castaneum population, in insects collected from Oklahoma commercial grain storage 

facilities (Bajracharya et al. 2013). Therefore, the objective of this study was to conduct 

demographic studies that measured population growth rates and developmental rates to 

determine whether phosphine resistance genes confer a fitness cost or benefit in the 

phosphine-resistant R. dominica and T. castaneum populations found in Oklahoma. 

Materials and Methods 

Insects. One phosphine-resistant population of T. castaneum and three phosphine-

resistant populations of R. dominica were used for this study. In addition, one phosphine-
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susceptible strain of each species was also used; altogether six beetle populations were 

utilized. The phosphine-resistant population of T. castaneum is 119 times more resistant 

compared to the susceptible population and the three populations of R. dominica are 254, 

910, and 1,519 times more resistant than the susceptible population (Opit et al. 2012a). 

For this study, only those populations of T. castaneum and R. dominica with resistance ≥ 

100 times that of their susceptible counterparts, i.e. populations with strong resistance 

were used (Opit et al. 2012a). The three phosphine-resistant R. dominica and one 

phosphine-resistant T. castaneum populations were put into colony by using insects 

obtained from steel bins and concrete grain silos from three Oklahoma counties in 2009 

(Opit et al. 2012a). These will be referred to as Rd-res-G, Rd-res-L, and Rd-res-P for the 

phosphine-resistant R. dominica populations and Tc-res-G for the phosphine-resistant T. 

castaneum population. The phosphine-susceptible T. castaneum and R. dominica will 

subsequently be referred to as Tc-sus and Rd-sus, respectively. Cultures of Tc-sus and 

Rd-sus were put into colony by using insects obtained from laboratory cultures 

maintained at the Center for Grain and Animal Health Research (CGAHR) of the USDA 

Agricultural Research Service, Manhattan, KS. Cultures of these susceptible strains have 

been maintained since 1958 and 1972, respectively. R. dominica were reared on a mixture 

of 95% whole-wheat kernels and 5% Brewer’s yeast (wt/wt) at 28°C and 65% RH and T. 

castaneum were reared on a mixture of 95% all-purpose wheat flour and 5% Brewer’s 

yeast at 28°C and 65% RH. Voucher specimens of Rd-res-P, Rd-res-G, Rd-res-L, Rd-sus, 

Tc-res-G, and Tc-sus that were used in this study were deposited in the K. C. Emerson 

Entomology Museum at Oklahoma State University under lot numbers 121, 122, 125, 

126, 129, and 136, respectively. In this study, non-sexed adult insects (1- to 3-wk-old) of 
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each population were obtained from laboratory cultures. All of the adult insects were 

removed from the rearing medium, and the medium was held for 3 wk to obtain 1- to 3-

wk-old non-sexed adult insects. 

Population Growth. The experiment was conducted in a phosphine-free 

environment in 300-ml (10 oz.) glass jars that contained appropriate diet for the insects. 

For R. dominica, 200 g of a mixture of 95% whole-wheat kernels and 5% Brewer’s yeast 

was used, and for T. castaneum, 150 g of a mixture of 95% all-purpose wheat flour and 

5% Brewer’s yeast was used. Twenty non-sexed adult insects (1- to 3-wk-old) of each 

population were placed in each glass jar. For jars receiving R. dominica, the jar lids were 

fitted with a circular piece of U.S. Standard #40 mesh copper screen sandwiched between 

two pieces of filter paper. For jars receiving T. castaneum, jar lids were fitted with two 

pieces of filter paper. Experimental jars were held at 30 ± 1°C and 75 ± 5% RH. Jars 

were randomly placed in a plastic box containing a saturated solution of sodium chloride 

(NaCl) below perforated false floors to maintain 75 ± 5% RH (Greenspan 1977). The box 

was placed in an incubator maintained at 30 ± 1°C and 24 h of darkness. Environmental 

conditions in the incubator were monitored using a temperature and relative humidity 

sensor (HOBO® U12, Onset Computer Corporation, Bourne, MA) and a digital 

thermometer (Mini-alarm thermometer with probe, Fisher Scientific 15-007-32). The 

number of live adult insects in each jar was recorded at 0, 35, 50, 65, 80, 95, and 110 d 

from the start of the experiment. For example, 20 insects were placed in each glass jar 

with diet at the beginning of the experiment. After 35 d, the diet in each jar was sieved 

using U.S. Standard #40 (0.425-mm openings) and #14 (1.41-mm openings) sieves 

(Seedburo Equipment Company, Chicago, IL), and the number of live adult insects was 
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counted. All of the insects and diet were then placed back into the jar and held for an 

additional 15 d at the incubator conditions mentioned above. After 50 d, the number of 

live adult insects in each jar was again determined as previously described. This 

procedure was repeated after 65, 80, 95, and 110 d from the start of the experiment. After 

the 110-d insect count, the cumulative number of insects for each jar was calculated. The 

experiment had 12 replications, with 4 replications conducted in each of three time 

blocks. 

Developmental Rates. The experiment was conducted in a phosphine-free 

environment in plastic Petri dishes (150-mm diameter x 15-mm height) (VWR, Radnor, 

PA) which had their inner walls coated with Fluon® (polytetrafluoroethylene; Northern 

Products, Woonsocket, RI) to prevent insects from escaping. For R. dominica, the diet 

was 35 g of a mixture of 95% whole-wheat kernels and 5% Brewer’s yeast, and for T. 

castaneum, 35 g of a mixture of 95% all-purpose wheat flour and 5% Brewer’s yeast. 

Each Petri dish containing diet of the respective species was infested with thirty 1- to 3-

wk-old non-sexed adult insects and maintained at 30 ± 1°C and 75 ± 5% RH. Petri dishes 

were randomly placed in a plastic box containing a saturated solution of NaCl below 

perforated false floors to maintain 75 ± 5% RH (Greenspan 1977). The box was placed in 

an incubator maintained at 30 ± 1°C and 24 h of darkness. Environmental conditions in 

the incubator were monitored using a temperature and relative humidity sensor (HOBO® 

U12, Onset Computer Corporation, Bourne, MA) and a digital thermometer (Mini-alarm 

thermometer with probe, Fisher Scientific 15-007-32). All parental insects were removed 

from Petri dishes after 13 d to allow relative standardization of progeny development. 

After removal of the parental insects, the diet containing the developing progeny was 



53 

 

maintained at incubator conditions mentioned above until adult emergence. On alternate 

days, starting after the first emergence from each Petri dish, the number of adult progeny 

was counted and removed from the Petri dishes. Daily and cumulative emergences were 

recorded for each Petri dish. The experiment had 12 replications, with 4 replications 

conducted in each of three time blocks. 

Data Analyses. Individual population growth rate experiment data sets were 

subjected to non-linear regression analysis using TableCurve 2D (Systat Software, Inc. 

2002). Selection of an equation to describe the data was based on the coefficient of 

determination (R2), lack-of-fit P-values, and whether the curve had a shape that was 

reasonable for describing the data. Comparisons of slopes were conducted using the 

General Linear Model procedure (SAS Institute, Cary, NC) to determine whether there 

were significant differences in the population growth of the phosphine-resistant and -

susceptible populations of each species. For non-linear regression equations describing 

the relationship between cumulative population and time (d) for four populations of R. 

dominica and two populations of T. castaneum, the parameter A indicates the minimum 

value of y (the expected y-value when x = 0) and the parameter B indicates how quickly 

the values of y changes (y and x represent the cumulative population and time, 

respectively, in the non-linear regression equations) (Table 1). The parameter B gives the 

slope estimates. Comparisons of slopes were conducted to determine whether there were 

significant differences in the population growth of the phosphine-resistant and -

susceptible populations of each species. 

Non-linear regressions of daily emergence and cumulative emergence data were 

conducted using TableCurve 2D (Systat Software, Inc. 2002). Selection of an equation to 
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describe the data was based on criteria already mentioned above. To determine whether 

there were differences in emergence rates for the four populations of R. dominica and two 

populations of T. castaneum, the cumulative emergence data were used. For non-linear 

regression equations describing the relationship between cumulative emergence and time 

elapsed (d) after first adult emergence for four populations of R. dominica and two 

populations of T. castaneum, the parameter A estimates the total number of adults that 

emerged, the parameter B estimates the time required for half the insects in a given 

population to emerge as adults, and the parameter C is a growth rate parameter that 

specifies width or steepness of the curves (Table 2). Estimates of B parameters for 

cumulative emergence data were used to determine whether significant differences 

existed among times required for half of the insects to emerge as adults, starting from 

when first emergence was observed. The values of B parameters were compared with the 

use of 85% confidence intervals (Payton et al. 2003). For the non-linear regression 

equation describing the relationship between daily emergence and time elapsed (d) after 

first adult emergence for the four populations of R. dominica, the parameter A indicates 

the height of the curve's peak and estimates the total number of adults that emerged 

during peak emergence, the parameter B indicates the position of the center of the peak 

and estimates the time required for half the insects in a given population to emerge as 

adults, and the parameter C is the standard deviation (controls the width of the bell) 

(Table 3). For the non-linear regression equation describing the relationship between 

daily emergence and time elapsed (d) after first adult emergence for the two populations 

of T. castaneum, the parameter A gives the estimated number of insects in the initial time 

period and the parameter B estimates the rate at which the daily emergence is declining 



55 

 

(Table 3). Analyses of the daily emergence data were not conducted because the 

cumulative emergence data comprised the daily emergence data. Additionally, the daily 

emergence data for T. castaneum indicated that emergence should have been monitored 

at much shorter intervals of 1 or 2 h instead of 48 h. Another dataset involving field-

collected strains of T. castaneum where emergence data were taken every 2 h supports 

this assertion (J.E.T., unpublished data). 

Results 

Population Growth Rates. Population growth rates for all the four populations 

(three phosphine-resistant populations and one phosphine-susceptible population) of R. 

dominica were significantly different (P < 0.05) (Fig. 1A; Table 1). The slopes (B) for 

Rd-sus, Rd-res-G, Rd-res-L and Rd-res-P were 0.43 ± 0.03, 0.35 ± 0.03, 0.24 ± 0.02, and 

0.18 ± 0.03, respectively (Fig. 1A; Table 1). The population growth rate was lower in the 

phosphine-resistant populations of R. dominica, when compared with the phosphine-

susceptible population. Population growth rates for the four populations in decreasing 

order were Rd-sus > Rd-res-G > Rd-res-L > Rd-res-P. After 110 d, values for cumulative 

population per jar for Rd-sus, Rd-res-G, Rd-res-L and Rd-res-P were 4,691 ± 461, 4,167 

± 562, 3,025 ± 473, and 2,195 ± 487 insects per jar, respectively. 

For T. castaneum, population growth rates for the phosphine-resistant and -

susceptible populations were significantly different (P < 0.05) (Fig. 1 B; Table 1). The 

slopes (B) for Tc-res-G and Tc-sus were 250.21 ± 7.63 and 172.60 ± 6.14, respectively 

(Fig. 1B; Table 1). The phosphine-resistant population of T. castaneum exhibited a higher 

population growth rate compared to the phosphine-susceptible population. After 110 d, 
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values for cumulative population per jar for Tc-res-G and Tc-sus were 2,512 ± 69 and 

1,802 ± 48 insects per jar, respectively. 

Developmental rates. R. dominica. The period between removal of parental 

adults from Petri dishes to emergence of the first adult beetles was 16 d. The parameter B 

from non-linear regression of cumulative emergence and time elapsed after first adult 

emergence estimates the time required for half the insects in a given population to emerge 

as adults, i.e. estimates how fast insects in a given population are developing from egg to 

adult (emergence) (Table 2). The parameter A estimates the total number of adults that 

emerged in each Petri dish. Cumulative emergence-related parameter B values were used 

to determine whether significant differences existed among developmental times of the 

four R. dominica populations. Emergence was significantly faster in the phosphine-

susceptible population than in all the three phosphine-resistant populations (Fig. 2A; 

Table 2). However, there were no significant differences in the developmental times of 

insects in the three phosphine-resistant populations (Table 2). The total numbers of Rd-

sus, Rd-res-G, Rd-res-L, and Rd-res-P adults that emerged were 666 ± 78, 647 ± 65, 632 

± 47, and 552 ± 73 per dish, respectively. Daily emergence data show that for the first 12 

d after the first emergence was observed, there were numerically more susceptible than 

resistant R. dominica emerging (Fig. 3A; Table 3). Additionally, emergence was 

completed faster in the susceptible population than in the resistant R. dominica 

populations (Fig. 3A; Table 3). The faster emergence for susceptible insects is supported 

by both cumulative emergence and daily emergence data.  

T. castaneum. The period between removal of parental adults from Petri dishes to 

emergence of the first adult beetles was 14 d. T. castaneum emergence was significantly 
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faster in the phosphine-resistant population compared to the susceptible population (Fig. 

2B; Table 2). The numbers of Tc-sus and Tc-res-G adults that emerged were 659 ± 15 

and 715 ± 24 per dish, respectively. Daily emergence data show that for the first 7 d after 

the first emergence was observed, there were numerically more resistant than susceptible 

T. castaneum emerging (Fig. 3B; Table 3). Additionally, emergence was completed faster 

in the resistant than susceptible population (Fig. 3B; Table 3). The faster emergence for 

resistant insects is supported by both cumulative emergence and daily emergence data. 

Discussion 

Based on data obtained, resistant R. dominica populations exhibited lower 

population growth and developmental rates compared to the susceptible population 

indicating a fitness cost associated with phosphine resistance. In resistant T. castaneum, 

higher population growth and developmental rates compared to the susceptible 

population were found and indicated a fitness benefit associated with phosphine 

resistance in this species. Therefore, in field populations of R. dominica and T. castaneum 

collected from Oklahoma, there is a fitness cost and a fitness benefit, respectively, 

associated with phosphine resistance. 

Occurrence of fitness cost in resistant insects in an insecticide-free environment 

has been investigated in other studies as well (White and Bell 1990, Fragoso et al. 2005, 

Pimental et al. 2007, Sousa et al. 2009). Sousa et al. (2009) found that population growth 

and developmental rates were lower in some phosphine-resistant populations of R. 

dominica from Brazil than in phosphine-susceptible population, indicating that there is a 

fitness cost associated with phosphine resistance. However, they also found one 
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phosphine-resistant R. dominica population where there was a fitness benefit associated 

with phosphine resistance. A study by Pimental et al. (2007) found the existence of 

fitness costs associated with phosphine resistance in the resistant populations of R. 

dominica from Brazil.  

From a phosphine resistance management perspective, where there is a fitness 

cost to having resistance genes, apparently resistance in a population can decline if 

phosphine is withheld from being used against the resistant population for a long enough 

time (Pimental et al. 2007, Sousa et al. 2009). The same is not true for resistant 

populations where phosphine resistance genes confer a fitness benefit (Schlipalius et al. 

2008, Jagadeesan et al. 2012). For the management of phosphine-resistant individuals 

where phosphine resistance confers a fitness benefit, grain protectant insecticides such as 

spinosad and a mixture of chlorpyrifos-methyl + deltamethrin can be used to eliminate 

those resistant individuals (Bajracharya et al. 2013). Based on the present study, 

phosphine resistance development in R. dominica populations where resistance has not 

developed can be slowed by infrequent use of phosphine, whereas it can be mitigated by 

suspending phosphine use for extended periods of time in populations with resistance. 

However, withholding phosphine use for long periods of time may not mitigate 

phosphine resistance in T. castaneum. 

The long term and frequent use of an insecticide exposes more insects to selection 

pressure thereby increasing the chances of resistance development (Tabashnik 1990), 

whereas withholding use of the insecticide for an extended period will probably reduce 

the selection pressure and slow resistance development. However, it cannot always be 

assumed that resistance frequency will decline in the absence of selection pressure. In 
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order to determine if suspended or infrequent use of a pesticide is a feasible resistance 

management strategy, it is important to establish whether insecticide resistance confers a 

fitness cost or benefit (Fragoso et al. 2005, Sousa et al. 2009). Therefore, fitness studies 

are important in designing appropriate insecticide resistance management plans. 

Suspending phosphine use for extended periods of time can mitigate phosphine resistance 

development in resistant populations in which phosphine resistance is associated with 

fitness cost (Pimental et al. 2007, Sousa et al. 2009). However, for resistant populations 

in which phosphine resistance confers a fitness benefit, suspension of phosphine use may 

not be an effective management strategy (Pimental et al. 2007, Sousa et al. 2009, 

Jagadeesan et al. 2012). 

The real danger to insecticide resistance conferring fitness benefit is in the 

development and stabilization of resistance, i.e. occurrence of widespread resistance. 

Stability of resistance frequency has been observed in some insects in the absence of the 

insecticide (Beeman and Nanis 1986, Collins et al. 2001, Haubruge and Arnaud 2001). 

According to Arnaud et al. (2002), the widespread occurrence of malathion resistance and 

the almost complete replacement of malathion-susceptible population by the resistant T. 

castaneum population may have been favored by increased fecundity of resistant females. 

A similar trend was observed in malathion-resistant house flies, Musca domestica (L.) 

(Diptera: Muscidae) with increased female fecundity and resistance stability (Keiding 

1967). These examples support the earlier assertion that it cannot always be assumed 

resistance frequency will decline in the absence of selection pressure. Because 

phosphine-resistant T. castaneum in the present study have a fitness benefit from having 
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phosphine resistance genes, it is possible that the phosphine resistance in this case could 

stabilize over time.  

When insecticide resistance does not confer a fitness cost, it could be a result of 

selection of fitness modifier genes that improve the fitness of resistance genes by 

suppressing their fitness disadvantage in the absence of insecticides or selection of less 

costly genes which would confer a fitness benefit to resistant individuals (Roush and 

McKenzie 1987, Coustau et al. 2000, Raymond et al. 2001). The higher population 

growth and developmental rates observed in our phosphine-resistant T. castaneum 

population may be the effect of possessing such modifier genes or the less costly genes 

which give the resistant population a reproductive advantage compared to the susceptible 

population. The cost of insecticide resistance in insects is frequently associated with the 

cost of maintaining the defensive mechanism for the insecticide (Coustau et al. 2000, 

Guedes et al. 2006). Energy allocation to insecticide resistance mechanisms can diminish 

the reproductive capability of the resistant population in the absence of the selecting 

agent (Coustau et al. 2000, Berticat et al. 2002).  

Demographic studies conducted within this study measured population growth 

rates and developmental rates in order to determine fitness effects of phosphine resistance 

in R. dominica and T. castaneum populations found in Oklahoma. Demographic studies 

are important in providing preliminary information on potential fitness costs associated 

with insecticide resistance because they transfer individual effects on population-level 

responses (Heather 1982, Stark and Wennergren 1995, Sousa et al. 2009).  
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Based on these data for R. dominica and T. castaneum populations from 

Oklahoma grain storage facilities, phosphine resistance confers a fitness cost in R. 

dominica but confers a fitness benefit in T. castaneum. This may mean that withholding 

phosphine use for long periods of time can lower phosphine resistance in the R. dominica 

populations whereas doing the same may not mitigate phosphine resistance in the T. 

castaneum populations. This information is vital for the development of phosphine 

resistance management strategies in the U.S. Additionally, these results indicate that the 

genetic basis for phosphine resistance in R. dominica and T. castaneum populations from 

Oklahoma may be different. Research to investigate the genetic basis of phosphine-

resistance in Oklahoma populations of these two species needs to be conducted. 

 



62 

 

Acknowledgements 

Thanks go to Kandara Shakya and Nirajan Bhattarai for their technical support. 

This work was funded by the Oklahoma Agricultural Experiment Station (Project No. 

OKL02695). Trade names or commercial products mentioned in this publication is solely 

for the purpose of providing specific information and does not imply recommendation or 

endorsement by Oklahoma State University. 

 



63 

 

References Cited 

Arnaud, L., Y. Brostaux, L. K. Assié, C. Gaspar, and E. Haubruge. 2002. Increased 

fecundity of malathion-specific resistant beetles in absence of insecticide pressure. 

Heredity 89: 425-429. 

Bajracharya, N. S., G. P. Opit, J. Talley, and C. L. Jones. 2013. Efficacies of spinosad 

and a combination of chlorpyrifos-methyl and deltamethrin against phosphine-resistant 

Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: 

Tenebrionidae) on wheat. J. Econ. Entomol. (in press). 

Beeman, R. W., and S. M. Nanis. 1986. Malathion resistance alleles and their fitness in 

the red flour beetle (Coleoptera: Tenebrionidae). J. Econ. Entomol. 79: 580-587. 

Berticat, C., G. Boquien, M. Raymond, and C. Chevillon. 2002. Insecticide resistance 

genes induce a mating competition cost in Culex pipiens mosquitoes. Genet. Res. 72: 41-

47. 

Collins, P. J, G. J. Daglish, M. K. Nayak, P. R. Ebert, D. I. Schlipalius, W. Chen, H. 

Pavic, T. M. Lambkin, R. Kopittke, and B. W. Bridgeman. 2001. Combating 

resistance to phosphine in Australia, pp. 593-607. In E. J. Donahaye, S. Navarro, and J. 

G. Leesch (eds.). Proceedings of the International Conference on Controlled Atmosphere 

and Fumigation in Stored Products, October 29-November 3, 2000, Executive Printing 

Services, Fresno, CA.  

Coustau, C., C. Chevillon, and R. H. ffrench-Constant. 2000. Resistance to 

xenobiotics and parasites: can we count the cost? Trends Ecol. Evol. 15: 378-383. 



64 

 

Foster, S. P., S. Young, M. S. Williamson, I. Duce, I. Denholm, and G. J. Devine. 

2003. Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato 

aphids and houseflies. Heredity 91: 98-106. 

Fragoso, D. B., R.N.C. Guedes, and L. A. Peternelli. 2005. Developmental rates and 

population growth of insecticide-resistant and susceptible populations of Sitophilus 

zeamais. J. Stored Prod. Res. 41: 271-281. 

Greenspan, L. 1977. Humidity fixed points of binary saturated aqueous solutions. J. Res. 

Natl. Bur. Stand. A. 81: 89-96. 

Guedes, R.N.C., E. E. Oliveira, N.M.P. Guedes, B. Ribeiro, and J. E. Serrão. 2006. 

Cost and mitigation of insecticide resistance in the maize weevil, Sitrophilus zeamais. 

Physiol. Entomol. 31: 30-38. 

Haubruge, E., and A. Arnaud. 2001. Fitness consequences of malathion specific 

resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in 

the absence of malathion. J. Econ. Entomol. 94: 552-557.  

Heather, N. W. 1982. Comparison of population growth rates of malathion resistant and 

susceptible populations of the rice weevil, Sitophilus oryzae (Linnaeus) (Coleoptera: 

Curculionidae). Queensl. J. Agric. Anim. Sc. 39: 61-68. 

Jagadeesan. R., P. J. Collins, G. J. Daglish, P. R. Ebert, and D. I. Schlipalius. 2012. 

Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: 

Tenebrionidae): Inheritance, gene interactions and fitness costs. PLoS ONE 7 (2): 

e31582. (doi:10.1371/journal.pone.0031582). 



65 

 

Keiding, J. 1967. Persistence of resistant populations after the relaxation of the selection 

pressure. World Rev. Pest Contr. 6: 115-130. 

Opit, G. P., T. W. Phillips, M. J. Aikins, and M. M. Hasan. 2012a. Phosphine 

resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in 

Oklahoma. J. Econ. Entomol. 105: 1107-1114.  

Opit, G. P., P. Collins, and G. Daglish. 2012b. Resistance Management, pp. 143-155. 

In D. W. Hagstrum, T. W. Phillips, and G. Cuperus (eds.), Stored Product Protection. 

Kansas State University, KS. 

Payton, M. E., M. H. Greenstone, and N. Schenker. 2003. Overlapping confidence 

intervals or standard error intervals: What do they mean in terms of statistical 

significance? J. Insect Sci. 3: 1-6. Available online: insectscience.org/3.34. 

Pimentel, M.A.G., L.R.D’A. Faroni, M. R. Tótola, and R.N.C. Guedes. 2007. 

Phosphine resistance, respiration rate and fitness consequences in stored-product insects. 

Pest Manag. Sci. 63: 876-881. 

Raymond, M., C. Berticat, M. Weill, N. Pasteur, and C. Chevillon. 2001. Insecticide 

resistance in the mosquito Culex pipiens: what have we learned about adaptation? 

Genetica 112: 287-296. 

Roush, R. T., and J. A. McKenzie. 1987. Ecological genetics of insecticide and 

acaricide resistance. Ann. Rev. Entomol. 32: 361-380. 



66 

 

Schlipalius, D. I., W. Chen, P. J. Collins, T. Nguyen, P.E.B. Reilly, and P. R. Ebert. 

2008. Gene interactions constrain the course of evolution of phosphine resistance in the 

lesser grain borer, Rhyzopertha dominica. Heredity 100: 506-516. 

Sousa, A. H., L.R.D’A. Faroni, M.A.G. Pimentel, and R.N.C. Guedes. 2009. 

Developmental and population growth rates of phosphine-resistant and -susceptible 

populations of stored-product insect pests. J. Stored Prod. Res. 45: 241-246.  

Stark, J. D., and U. Wennergren. 1995. Can population effects of pesticides be 

predicted from demographic toxicological studies? J. Econ. Entomol. 88: 1089-1096. 

Systat Software, Inc. 2002. TableCurve 2D, version 5.01. Systat Software, Inc., San 

Jose, CA. 

Tabashnik, B. E. 1990. Modeling and evaluation of resistance management tactics, 

pp.153-182. In R. T. Roush, and B. E. Tabashnik (eds.), Pesticide Resistance in 

Arthropods, Chapman and Hall, New York, NY. 

White, N.D.G., and R. J. Bell. 1990. Relative fitness of malathion-resistant strain of 

Cryptolestes ferrugineus (Coleoptera: Cucujidae) when development and oviposition 

occur in malathion-treated and untreated wheat kernels. J. Stored Prod. Res. 26: 23-37. 

 



 

 

Table 1. Parameters for non-linear regression equations describing the relationship between cumulative population and time 

(d) for four populations of R. dominica and two populations of T. castaneum. 

 

Species         Model  Population          Parameter estimates (± SE)             F     R2 

           A   B 

R. dominica       y = A + Bx2   Rd-sus    − 49.88 ± 213.26     0.43 ± 0.03a        174.09  0.68 

  Rd-res-G  − 307.30 ± 221.77     0.35 ± 0.03b       106.41  0.56 

  Rd-res-L  − 314.42 ± 156.02*     0.24 ± 0.02c          98.23  0.55 

  Rd-res-P  − 172.29 ± 167.10     0.18 ± 0.03d         47.57  0.37 

T. castaneum     y = A + Bx0.5   Tc-sus       37.70 ± 48.42        172.60 ± 6.14a       789.64  0.91 

  Tc-res-G    − 28.48 ± 60.15        250.21 ± 7.63b     1075.16  0.93 

The parameter A indicates the minimum value of y (the expected y-value when x = 0). The parameter B indicates how quickly the 
values of y changes. The parameter B gives the slope estimates. Comparisons of slopes were conducted to determine whether there 
were significant differences in the population growth of the phosphine-resistant and -susceptible populations of each species. In all 
cases dferror = 82. Parameter A was only significant where there is an asterisk (*); in all cases for each species, all values of B were 
significant (P < 0.05). Lack-of-fit P values for Rd-sus, Rd-res-G, Rd-res-L, Rd-res-P, Tc-sus, and Tc-res-G were 0.05596, 0.85305, 
0.11749, 0.87271, 0.01486, and 0.00002, respectively. For each species, the values of B with different letters are significantly 
different. 
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Table 2. Parameters for non-linear regression equations describing the relationship between cumulative emergence and time 

elapsed (d) after first adult emergence for four populations of R. dominica and two populations of T. castaneum. 

 

Species         Model   Population            Parameter estimates (± SE)       F       R2 

                A         B          C 

R. dominica y = A/(1.0 + exp(-(x - B)/C))   Rd-sus       704.71 ± 30.67   9.17 ± 0.54a   2.38 ± 0.46  131.92     0.64 

  Rd-res-G   721.74 ± 27.20 13.02 ± 0.48b   2.95 ± 0.39  308.80     0.79 

  Rd-res-L   679.89 ± 22.46 12.69 ± 0.42b   2.84 ± 0.35  365.19     0.82 

  Rd-res-P   593.63 ± 29.03 11.94 ± 0.59b   2.55 ± 0.49  154.23     0.66 

T. castaneum y = A/(1.0 + exp(-(x - B)/C))   Tc-sus      709.40 ± 27.94  8.52 ± 0.64a   5.15 ± 0.59  250.69     0.76 

  Tc-res-G  744.43 ± 14.11  1.77 ± 0.27b   2.75 ± 0.35  160.04     0.75 

The parameter A estimates the total number of adults that emerged. The parameter B estimates the time required for half the insects in 
a given population to emerge as adults. Cumulative emergence-related parameter B values were used to determine whether significant 
differences existed among developmental times of the phosphine-resistant and -susceptible populations of each species. The parameter 
C is a growth rate parameter that specifies width or steepness of the curves. In all cases, all values of A, B, and C were significant (P < 
0.05). Respective dferror and lack-of-fit P values for Rd-sus, Rd-res-G, Rd-res-L, Rd-res-P, Tc-sus, and Tc-res-G were 147 and 
0.70752, 164 and 0.84676, 164 and 0.86144, 157 and 0.57766, 155 and 0.99855, and 109 and 0.81028, respectively. For each species, 
the values of B with the same letter are not significantly different. 
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Table 3. Parameters for non-linear regression equations describing the relationship between daily emergence and time elapsed 

(d) after first adult emergence for four populations of R. dominica and two populations of T. castaneum. 

Species         Model   Population           Parameter estimates (± SE)         F              R2 

                A               B  C 

R. dominica y = A exp(- 0.5((x – B)/C)2)   Rd-sus       150.02 ± 8.31           9.56 ± 0.23     3.53 ± 0.23     120.93 0.62 

  Rd-res-G   126.17 ± 6.09         13.23 ± 0.23     4.13 ± 0.23     154.61 0.65 

  Rd-res-L   118.55 ± 4.87         13.25 ± 0.20     4.32 ± 0.21     207.10 0.71 

  Rd-res-P   122.05 ± 7.48         12.33 ± 0.25     3.52 ± 0.25     101.21 0.56 

T. castaneum y = A + B ln(x)    Tc-sus      115.89 ± 8.58      − 28.20 ± 3.47              -       65.98 0.30 

  Tc-res-G  288.87 ± 11.95  − 107.50 ± 5.60              -     368.06 0.77 

For the non-linear regression equation describing the daily emergence patterns for the four populations of R. dominica, the parameter 
A indicates the height of the curve's peak and estimates the total number of adults that emerged during peak emergence; the parameter 
B indicates the position of the center of the peak and estimates the time required for half the insects in a given population to emerge as 
adults; the parameter C is the standard deviation (controls the width of the bell). For the non-linear regression equation describing the 
daily emergence patterns for the two populations of T. castaneum, the parameter A gives the estimated number of insects in the initial 
time period and the parameter B estimates the rate at which the daily emergence is declining. In all cases, all values of A, B, and C 
were significant (P < 0.05). Respective dferror and lack-of-fit P values for Rd-sus, Rd-res-G, Rd-res-L, Rd-res-P, Tc-sus, and Tc-res-G 
were 149 and 0.93976, 164 and 0.94351, 166 and 0.64846, 157 and 0.66940, 156 and 0.04487, and 107 and 0.40189, respectively. 
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Fig. 1. Cumulative population growth of phosphine-resistant and -susceptible populations of R. dominica (A) and T. castaneum (B) (n 

= 12). Symbols represent the observed data. Summary of the non-linear regression analyses of the curves is presented in Table 1. 
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Fig. 2. Cumulative emergence of phosphine-resistant and -susceptible populations of R. dominica (A) and T. castaneum (B) (n = 12). 

Symbols represent the observed data. Summary of the non-linear regression analyses of the curves is presented in Table 2. 
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Fig. 3. Daily emergence of phosphine-resistant and -susceptible populations of R. dominica (A) and T. castaneum (B) (n = 12). 

Symbols represent the observed data. Summary of the non-linear regression analyses of the curves is presented in Table 3. 
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CHAPTER IV 
 

 

 

 

 

 

COMPARING EFFECTIVENESS OF THREE TRAPS USED TO MONITOR 

TRIBOLIUM CASTANEUM (HERBST) (COLEOPTERA: TENEBRIONIDAE) 
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Abstract 

Integrated management of Tribolium castaneum (Herbst) (Coleoptera: 

Tenebrionidae), the red flour beetle is facilitated by use of insect traps for its detection 

and monitoring. T. castaneum is a major pest of grain processing and storage facilities. 

The goal of this study was to compare the effectiveness of three types of traps used to 

monitor T. castaneum, namely, ClimbUP® BG (Black Grip), Dome™, and Torios®. 

Three experimental sheds (2.5 m x 3 m) located at the Stored Product Research and 

Education Center (SPREC), Oklahoma State University, Stillwater, OK were used. The 

trap catches of ClimbUP® BG, which is a new type of trap, was compared with those of 

two commercially available traps, namely, Dome™ and Torios®. The ClimbUP® BG trap 

is used with a corn oil kairomone, the Dome™ trap with a kairomone and a pheromone 

lure, and the Torios® trap has a pheromone lure and a sticky surface. The experiment 

comprised 3 replications of a 3 x 3 Latin square design. In all cases, one type of trap was 

placed in each experimental shed containing 200 g of diet and 200 adult beetles. After 1 

wk the numbers of beetles in traps were counted. Based on this data, Dome™ trap caught 

the highest number of T. castaneum. However, there was no significant difference in the 

numbers of T. castaneum caught in the ClimbUP® BG and Torios® traps. Future research 

needs to assess how inclusion of visual cues to these traps, in addition to kairomone and 

pheromone enhances their effectiveness. 

KEY WORDS  Red flour beetle, ClimbUP® BG trap, Dome™ trap, Torios® trap 
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Introduction 

The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) 

is a major external-feeding pest of stored grain and other grain-based products and is 

commonly found in grain processing and storage facilities (Arbogast et al. 2000, 

Campbell et al. 2010). Insect traps have been developed commercially for the detection 

and monitoring of T. castaneum and other stored-product insects inside grain processing 

and storage facilities (Barak and Burkholder 1985, Mullen 1992). Traps provide 

monitoring data that are useful for making appropriate management decisions and 

evaluating the effectiveness of integrated pest management programs for stored-product 

insects in grain processing and storage facilities (Campbell et al. 2002).  

Several different types of traps for capturing stored-product insects that walk and 

crawl, e.g. T. castaneum, have been developed for monitoring insect infestation levels 

inside the grain processing, storage, and food facilities (Chambers 1990, Mullen 1992, 

Phillips 1997). These traps are usually positioned on the floor inside facilities and at 

locations where insects are likely captured when moving between foods sources 

(Campbell 2012). However, various studies have shown that trap catches for insects such 

as T. castaneum that have patchy distribution in grain processing and storage facilities, 

may depend on several factors such as location of traps, trap type and design, presence of 

food and shelter, temperature, and population density (Mullen 1992, Stejskal 1995, 

Campbell et al. 2002, Campbell and Arbogast 2004, Toews et al. 2005, Campbell 2012, 

Semeao et al. 2012). 
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Pheromones based traps for the stored-product insects have facilitated the 

development and availability of commercial lures for stored-product insects, and these 

have aided the improvement of monitoring populations of stored-product insects through 

the use of baited traps (Barak and Burkholder 1985, Chambers 1990, Phillips 1997). 

Traps developed for commercial use on T. castaneum use food baits such as kairomone 

and pheromone lures and are typically designed as pitfall-type traps (Barak and 

Burkholder 1985, Mullen 1992). Food-based kairomones are used as insect baits in traps 

due to their potential to attract insects as volatile chemical cues, and various studies have 

been conducted on the different materials that could be potential kairomones for 

attracting stored-product insects (Barak and Burkholder 1985, Subramanyam et al. 1992, 

Phillips et al. 1993).  

Studies have demonstrated that pheromone and kairomone baited traps have been 

successfully used for monitoring populations of T. castaneum (Mullen 1992, Campbell et 

al. 2010) in commercial grain processing and storage facilities. However, it has been 

anecdotally reported that the response of T. castaneum to these commercially available 

traps is low, perhaps resulting in lower trap catches which could give less accurate 

information on infestation levels in facilities being monitored (Semeao et al. 2011, 

Campbell 2012).  

As previously mentioned, trap type and design are important factors that influence 

trap catches. Examples of traps that have been developed for detection and monitoring of 

T. castaneum include ClimbUP® BG (Black Grip), Dome™ trap, and Torios® trap. 

Therefore, the objective of the present study was to compare the effectiveness of these 
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three types of traps to monitor T. castaneum in a simulated grain-based product storage or 

grain processing environment.  

Materials and Methods 

Insects. In this study, T. castaneum were 3- to 4-mo-old adults that were obtained 

from our laboratory cultures. T. castaneum were reared on a mixture of 95% all-purpose 

wheat flour and 5% Brewer’s yeast at 28°C and 65% RH. Voucher specimens of T. 

castaneum that were used in this study were deposited in the K. C. Emerson Entomology 

Museum at Oklahoma State University under lot number 136. 

Traps. ClimbUP® BG (Black Grip) trap is a new kind of trap produced by Susan 

McKnight, Inc, Memphis, TN (Fig. 1A). The exterior climbing surface of the ClimbUP® 

BG trap is made of rough black paper to facilitate insect climbing. The ClimbUP® BG is 

round with total diameter of 15.24 cm and height of 2.54 cm. The trap has a center well 

with a diameter of 9.55 cm. Approximately 3 drops of corn oil placed on 3.5-cm filter 

paper is used as kairomone in ClimbUP® BG trap. The oil-soaked filter paper was placed 

in the middle of the center well. The inner walls of the ClimbUP® BG trap were 

lubricated with a very thin dust-like film of commonly available talcum powder so that 

the beetles that climbed into the outside well of the trap could not climb out. The trap had 

a perforated lid with 6 holes that was used as a cover to prevent dirt from accumulating 

inside the trap. The perforated lid permitted escape of kairomone odor from the trap to 

the surrounding environment.  

Dome™ trap (Trécé Inc., Adair, OK) consisted of a trap or catch reservoir based 

on a pitfall type design and a dome cover (Fig. 1B). Both the kairomone (≈3 drops onto a 
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supplied piece of filter paper) and pheromone lure marketed with the Dome™ trap were 

used with this trap (Fig. 1B). The pheromone lure was inserted into one of the slots on the 

dome cover. The lure was inserted such that the larger end of the lure pointed down into 

the catch reservoir. The kairomone-covered filter paper was placed at the bottom of the 

catch reservoir. After the lure and kairomone were placed in their respective positions, 

the dome cover and the catch reservoir was snapped together by aligning projections on 

the dome cover with indents on the base of the catch reservoir. 

Torios® trap (Fuji Flavor Co. Ltd, Japan; marketed by Insects Limited, Westfield, 

IN) is a reusable pheromone trap for monitoring crawling stored-product insects (Fig. 

1C). A pheromone lure and a sticky inner surface marketed with the Torios® trap were 

used with this trap (Fig. 1C). The lure was set at the center of the sticky surface and then 

the sticky surface with the lure was inserted into the bottom window of the trap and the 

bottom window was closed.  

Experimental Sheds. The study was conducted in three experimental sheds (2.5 

m x 3 m) located at the Stored Product Research and Education Center (SPREC), 

Oklahoma State University, Stillwater, OK. The inside of each shed was covered with 

new plastic (6 mm thick) (Blue Hawk, Poly-America, Grand Prairie, TX) every time a 

different type of trap was used during the experiment. This was done to ensure that 

pheromone from previous tests did not interfere with subsequent tests by adhering to 

surfaces of the sheds.  
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Trap Comparison. Trap catches of the ClimbUP® BG (Black Grip) trap were 

compared with those of two previously described commercial traps - Dome™ and 

Torios®.  

Two hundred grams of all-purpose wheat flour and a similar amount of cracked 

wheat were evenly spread on the floor of each shed. Two hundred beetles were released 

in each shed, immediately after traps were placed in the sheds. The traps were placed on 

the floor and against the wall on the east side of each shed. Traps were placed at the 

center of the east side wall. For each replication, one type of trap was placed in each 

experimental shed. Traps were always placed in the same position. After 1 wk in the 

sheds, the number of beetles in each trap was counted. Plastic in each shed was then 

removed and the shed was properly cleaned to remove all the wheat flour, cracked wheat, 

and beetles. The sheds were left to “wash out” for 1 wk before they were again set up for 

sampling. The inside of each shed was then covered with new plastic. 

Environmental conditions in each shed were monitored using a temperature and 

relative humidity sensor (HOBO® U12, Onset Computer Corporation, Bourne, MA) 

during the experimental period. The experiment was initiated in May 2012 and ended in 

September 2012. The average temperature and relative humidity recorded in the sheds 

were 31 ± 2°C and 52 ± 4%, respectively. 

The experiment had a 3 x 3 Latin square design with three replications (squares). 

This involved double blocking - blocking for the shed and the sampling time when the 

traps were used to catch the beetles in the sheds. The order in which traps were placed in 

different sheds at different times for the first square is shown in Table 1. The order was 
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changed accordingly for the second and third squares (Table 1). Statistical analysis was 

accomplished using Statistical Analysis System software (SAS Institute 2010). PROC 

ANOVA was used for analysis of variance (ANOVA) to determine whether significant 

differences existed in trap catches among the three types of traps. 

Results 

Dome™ traps caught significantly more T. castaneum (49.6 ± 11.1) than 

ClimbUP® BG (28.4 ± 4.6) and Torios® (27.7 ± 6.6) traps (Table 2). There was no 

significant difference in the numbers of T. castaneum caught in the ClimbUP® BG and 

Torios® traps (Table 2). The ClimbUP® BG trap with only the kairomone performed half 

as well as the Dome™ trap with a lure + kairomone, which is commercially marketed for 

T. castaneum monitoring. The ClimbUP® BG trap with only the kairomone performed as 

well as the Torios® trap with a lure + sticky inner surface, which is commercially 

marketed for T. castaneum monitoring. 

Discussion 

Based on the results of this study, Dome™ traps were found to be comparatively 

more effective than the ClimbUP® BG and Torios® traps. Similar trap catches were found 

in the ClimbUP® BG and Torios® traps. The ClimbUP® BG trap had only the kairomone 

compared to the Dome™ trap that had a lure and kairomone and the Torios® trap that had 

a lure and sticky inner surface. 

Pheromone- and kairomone-baited pitfall traps, such as the Dome trap, have been 

commonly used inside food facilities for monitoring Tribolium species and are effective 

for tracking population trends of the infesting pests (Campbell et al. 2010, Campbell 
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2012). Phillips et al. (1993) reported that T. castaneum was attracted to wheat-germ and 

corn oils. According to Barak and Burkholder (1985), pitfall traps baited with food-based 

oils (wheat-germ oil) resulted in higher trap captures compared to mineral oil baited 

pitfall traps. In the study conducted by Barak and Burkholder (1985), they combined a 

food attractant with a synthetic male-produced pheromone (wheat-germ oil + aggregation 

pheromone) to capture T. castaneum. Food-based baits may be effective as a short 

distance attractant and possibly help in the final steps of capture with the aid of a 

pheromone attractant (Barak and Burkholder 1985, Phillips et al. 1993).  

Campbell (2012) reported that there were more frequent T. castaneum encounters 

with traps baited with pheromone or pheromone and kairomone combination when 

compared to unbaited traps or traps with kairomone only. Duehl et al. (2011a) also 

reported low attraction to only food-based volatiles. Campbell et al. (2002) found higher 

trap catches in FLITeTRAK traps that used food oil and pheromone as attractants 

compared to Pherocon traps that used only a sticky surface. Phillips et al. (1993) 

observed that although food based attractants enhanced the response of insects, there was 

low response of insects to food only or pheromone only baited traps compared to the 

response to traps baited with both food and pheromone. This could explain why the 

Dome™ traps with both pheromone and kairomone caught more beetles than ClimbUP® 

BG traps with only kairomone and the Torios® traps with only pheromone. 

Although a combination of pheromone and kairomone is supposed to increase 

trap catches, percentages of beetles caught are still relatively low. According to Campbell 

(2012), even under conditions where air was flowing, the average number of beetles 

encountering traps with the best combination of attractants was only 40% (Campbell 
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2012). Duehl et al. (2011a) also found that only approximately 50% of beetles responded 

to pheromone when used as an attractant in traps. In the present study, the Dome™, 

ClimbUP® BG, and the Torios® traps caught only 25, 14, and 14%, respectively of T. 

castaneum. These results indicate that the effectiveness of pheromone and kairomone 

baited traps need to be improved in order to provide more accurate information for pest 

management. Effective use of the chemical cues such as kairomone and pheromone could 

be improved by incorporating dark shapes (Semeao et al. 2011) and other visual cues 

such as light (Sheribha et al. 2010, Duehl et al. 2011b).  

Based on this data, the Dome™ was more effective for monitoring T. castaneum 

than the ClimbUP® BG, and the Torios® traps. However, the effectiveness of all the three 

traps in terms of the percentage of beetles caught was quite low. Perhaps inclusion of 

visual cues, in addition to kairomone and pheromone, could be used to enhance the 

effectiveness of these traps. Future research is needed to assess these potential additions 

to traps. 
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Table 1. Placement of traps in the sheds during different sampling times for the first, 

second, and third squares.  

Square 1   Shed 1      Shed 2  Shed 3 

Time 1  TORIOS®       Dome™          ClimbUP® BG 

Time 2  ClimbUP® BG     TORIOS®                Dome™ 

Time 3  Dome™      ClimbUP® BG      TORIOS® 

Square 2 Shed 1       Shed 2             Shed 3 

Time 1  ClimbUP® BG        Dome™            TORIOS® 

Time 2  TORIOS®      ClimbUP® BG Dome™ 

Time 3  Dome™      TORIOS®  ClimbUP® BG  

Square 3 Shed 1      Shed 2  Shed 3 

Time 1  ClimbUP® BG       Dome™             TORIOS® 

Time 2  TORIOS®     ClimbUP® BG Dome™ 

Time 3  Dome™      TORIOS®             ClimbUP® BG 
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Table 2. Number of T. castaneum (mean ± SE) caught in traps. 

Trap Type           Number of T. castaneum (± SE) 

ClimbUP® BG         28.4 ± 4.6a 

Dome™         49.6 ± 11.1b 

Torios®         27.7 ± 6.6 a 

Means followed by the same letter are not significantly different (P > 0.05). 
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Fig. 1. Pictures of ClimbUP® BG trap (A), Dome™ trap with a lure + kairomone (B), and 

Torios® trap with a lure + sticky inner surface (C). 
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CHAPTER V 
 

 

CONCLUSIONS 

 

 

 

The presence of highly phosphine-resistant populations of R. dominica and T. 

castaneum in Oklahoma grain storage facilities has necessitated the development of a 

phosphine resistance management strategy to ensure continued effective use of 

phosphine. For implementation of effective phosphine resistance management strategy, 

identification of tools that mitigate resistance development and knowledge of the fitness 

effects associated with phosphine resistance in insect populations are important. Given 

the significance of a phosphine resistance management strategy to the U.S. and the 

importance of detection and monitoring of stored-product insect pests in grain processing 

and storage facilities to integrated management, relevant studies were conducted to 

address these issues. The first objective was to investigate the efficacies of the grain 

protectant insecticides spinosad and chlorpyrifos-methyl + deltamethrin against 

phosphine-resistant and -susceptible R. dominica and T. castaneum collected from 

Oklahoma. The second objective assessed the fitness effects associated with phosphine
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resistance in the R. dominica and T. castaneum populations collected from Oklahoma. 

The third objective was to compare the effectiveness of three types of traps used to 

monitor T. castaneum in grain processing and food storage facilities.  

It was determined that both spinosad and chlorpyrifos-methyl + deltamethrin 

mixture were effective against phosphine-resistant R. dominica and caused 83-100% 

mortality and also caused total progeny production suppression for all post-treatment 

storage periods: 2, 84, 168, 252, and 336 d. Spinosad was not effective against 

phosphine-resistant T. castaneum; the highest mortality attained was only 3% for all 

storage periods investigated. Chlorpyrifos-methyl + deltamethrin mixture was effective 

against phosphine-resistant T. castaneum only in treated wheat stored for 2 and 84 d 

where it caused 93-99% mortality. However, the mixture of chlorpyrifos-methyl + 

deltamethrin was effective and achieved total suppression of progeny production in T. 

castaneum at all storage periods. Spinosad was not as effective as chlorpyrifos-methyl + 

deltamethrin mixture at suppressing progeny production of phosphine-resistant T. 

castaneum. 

Based on these data, both spinosad and chlorpyrifos-methyl + deltamethrin 

mixture can be used to eliminate phosphine-resistant R. dominica, whereas only 

chlorpyrifos-methyl + deltamethrin mixture can be used to eliminate phosphine-resistant 

T. castaneum. This suggests that wheat infested by phosphine-resistant R. dominica can 

be treated using spinosad or chlorpyrifos-methyl + deltamethrin mixture. Wheat infested 

by phosphine-resistant T. castaneum and empty storage structures infested by resistant 

insects of both species can be treated using chlorpyrifos-methyl + deltamethrin to 

eliminate these insect pests. Spinosad and chlorpyrifos-methyl + deltamethrin mixture are 
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grain protectant insecticides that can be effectively used for the management of 

phosphine-resistant R. dominica and T. castaneum. These two insecticides can be used in 

a phosphine resistance management strategy developed for stored-product insect pests in 

the U.S. 

The goals of phosphine resistance management are to slow resistance 

development where it has not occurred and to mitigate resistance in populations where it 

occurs by infrequent use of phosphine and withholding use for long enough periods of 

time to mitigate resistance, respectively. Knowing whether there is a fitness cost 

associated with phosphine resistance is important for the development of a resistance 

management strategy. Experiments were conducted to measure the population growth 

rates and developmental rates of phosphine-resistant and -susceptible populations of R. 

dominica and T. castaneum in a phosphine-free environment to determine the fitness 

effects caused by phosphine resistance in these two species. Based on this study, it was 

determined that three resistant R. dominica populations tested exhibited lower population 

growth rates and developmental rates compared to the susceptible population, whereas 

the resistant T. castaneum population tested exhibited a higher population growth  rate 

and developmental rates compared to the susceptible population.  

Data for R. dominica and T. castaneum indicate that there is a fitness cost and a 

fitness benefit, respectively, associated with phosphine resistance in these two species. 

This suggests that phosphine resistance development in R. dominica populations where 

resistance has not developed can be slowed by infrequent use of phosphine, whereas it 

can be mitigated by suspending phosphine use for extended periods of time in the 

phosphine-resistant R. dominica populations. Conversely, withholding phosphine use for 
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long periods of time may not mitigate phosphine resistance in the T. castaneum 

populations in Oklahoma. However, for both scenarios, the most appropriate option is to 

eliminate the phosphine-resistant individuals by using an alternative product such as 

spinosad or chlorpyrifos-methyl + deltamethrin mixture. These results also indicate that 

genes responsible for phosphine resistance in R. dominica and T. castaneum from 

Oklahoma are probably different and molecular studies need to be conducted to 

investigate the genetic basis for phosphine resistance in these two species. 

The study comparing the effectiveness of three types of traps used to monitor T. 

castaneum in grain processing and food storage facilities namely, ClimbUP® BG, 

Dome™, and Torios® showed that Dome™ traps caught the highest number of T. 

castaneum. There was no significant difference in the numbers of T. castaneum caught in 

the ClimbUP® BG and Torios® traps. Interestingly, the ClimbUP® BG trap with only the 

kairomone performed half as well as the Dome™ trap with a lure + kairomone. The 

ClimbUP® BG trap with only the kairomone performed as well as the Torios® trap with a 

lure + sticky inner surface. Future research needs to be conducted to compare the 

ClimbUP® BG trap with a lure + kairomone, the Torios® trap with a lure + sticky surface 

+ kairomone, and the Dome™ trap with a lure + kairomone. Based on published studies, 

research needs to be conducted to determine if trap captures in the three types of traps 

tested within this study can be enhanced by incorporation of visual cues such as light. 
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