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ABSTRACT 
   

The heat and mass transport in a porous medium induced by buoyancy from a 

buried heated pipe has been examined in this study.  Due to the complexity and 

irregularity of geometry involved, body-fitted coordinate systems along with finite 

difference scheme were employed.  First, the solutions for conduction and natural 

convection in a homogeneous porous medium were obtained and compared with the 

results available in the literature.   

Realizing that the properties of porous medium immediate around the pipe are 

usually different from those of the surrounding medium, the objective of this 

particular study is to investigate how a step change in the permeability of the backfill 

would affect the flow patterns and heat transfer results.  Numerical solutions have 

been obtained for natural convection in a heterogeneous porous medium induced by a 

buried heated pipe.  The concept of imaginary nodal points has been used to derive 

the interface conditions.  A wide range of governing parameters (e.g., base Rayleigh 

number and permeability ratio) for various backfill thicknesses have been covered in 

the computations.  It is found that a more permeable backfill can minimize the heat 

loss and confine the flow to a region near the pipe.  

Another area of interest is to predict how heat and mass transport when there 

is a breakage in the pipe.  Numerical solutions are thus obtained for combined heat 

and mass transfer by mixed convection induced from a buried pipe with leakage.  

Two locations of leakage are considered in this study: one is on top of the pipe and 

the other is at the bottom of the pipe.  The effects of Rayleigh number, Peclet number, 

Lewis number, and buoyancy ratio on the heat and mass transfer results have been 
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examined.  The results suggest that both the Nusselt number and Sherwood number 

increase for the aiding flows and decrease for the opposing flows.  For aiding flows, 

Sherwood number increases with an increase in the Lewis number but Nusselt 

number behaves otherwise. 

Flow visualization experiments were conducted using two Hele-Shaw cells, 

which simulated a porous medium with distinct permeabilities, subjected to different 

pipe temperature for both permeable and impermeable top boundaries.  Using time-

elapsed photographs, it revealed that the flow fields for permeable and impermeable 

top boundaries displayed distinct characteristics.  The flow fields predicted by 

numerical work for the impermeable top boundary were in good agreement with those 

observed in experiment.   



Chapter 1.2  Studies in Porous Media: A Brief Discussion 
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   CHAPTER I  
   

 

INTRODUCTION AND LITERATURE REVIEW 
 
 

1.1  Introduction 
 

Porous materials are frequently encountered in our daily life.  With a closer 

look, one realizes that from natural to manmade materials, a great constituent part of 

these materials are porous media.  Examples of porous media include sand, crushed 

rocks, soils, fabrics, and biological tissues.  Hence, one should not be surprised to 

find that heat transfer and fluid flow in porous media is involved in various 

applications of engineering disciplines such as agriculture, geological, petroleum, 

environmental, and mechanical engineering.  

One of the oldest disciplines, which involves transport phenomena in porous 

media, is perhaps the soil physics.  The knowledge of soil structure and its properties, 

air and water infiltration in soil, and uptake of soil moisture by plants are all parts of 

the study in soil physics (Hillel, 1982; Reddi and Inyang, 2000; Reddi, 2003).  The 

study of soil physics is closely related to the applications in agricultural sector.  From 

an agricultural engineer standpoint, crops production is directly related to water 

irrigation, as for how effective water is delivered and supplied to meet the needs of 

plant growth.  Water irrigation is essential for countries with dry climates.  Presently 

70% of the global fresh water is accounted for irrigation usage according to the World 

Water Report (Ehrenman, 2003).  Due in part to the increase of world populations and 

the pressure of producing more crops, the demand for water usage in irrigation is
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expected to increase continuously.  So is the increasing competition for freshwater 

from the industrial and domestic usage.  Therefore, it is the responsibility for 

agricultural engineers to design and build more effective irrigation systems which 

consume less water.  One possible technique is subsurface irrigation through 

perforated pipes for avoiding open water loss from evaporation (Withers and Vipond, 

1980).  In addition to water irrigation, drainage system and infrastructure to remove 

excess water from the agricultural land to prevent flooding, water-logging and salinity 

is equally important.  Understanding the transport phenomena in soil is certainly 

beneficial for designing such water irrigation or drainage infrastructures. 

Freshwater is one of the most precious resources on earth, and the soils 

underneath the earth are saturated with water.  The task of exploring the presence and 

distributions of groundwater or aquifers lies in the hands of hydrologists and 

geological engineers.  Monitoring and predicting the migration of the groundwater 

relies on our understanding of flow through porous media.  For example, Donaldson 

(1962) examined convective water flows in the upper layers of the earth’s crust.  

Geothermal reservoirs, where invaluable heat can be extracted economically for 

power generation or process heat, also exist underground.  Countries such as the 

United States (e.g., the Geysers in northern California), Italy, New Zealand and Japan 

have converted geothermal energy to electricity through hydrothermal power plants.  

An alternative energy source such as geothermal energy relieves the burden of our 

dependence on fossil fuels.  In such application, temperature becomes an important 

parameter in determining the capacity and useful lifespan of the geothermal reservoir. 

A more detailed discussion on geothermal energy resources is provided in a handbook  
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by Edwards et al. (1982). 

In addition to water resources, invaluable energy resources such as crude oil 

or natural gas can also be found underneath the earth.  To harvest the crude oil, oil is 

first driven from a reservoir to oil wells purely based on the existing high hydrostatics 

pressure inside the reservoir.  This is referred to as the primary technique, and it 

generally accounts for the production of roughly 25% of the oil existing in the 

reservoir.  The secondary technique involves the injection of fluid into the reservoir to 

maintain the reservoir pressure and further increases the oil production.  In order to 

increase the extraction rate from oil fields, tertiary enhanced oil recovery (EOR) 

techniques (Schumacher, 1978 and Boberg, 1988) such as miscible flooding and 

thermal recovery are often employed.  Take thermal recovery technique for example.  

The basic idea of this technique is to reduce the viscosity of oil by adding heat 

accompanied the gas or water injection, and thus increase the amount of oil displaced 

from the reservoir.  The simulation and modeling of the oil reservoir obviously has 

become more complicated as it involves multiphase flow (Wang and Cheng, 1997), 

nevertheless it is still a transport phenomenon in porous media. 

As the world’s industries are booming and expanding, pollution gradually 

becomes a major concern and presents a threat to human health.  As noted by 

Ehrenman (2003), pollution is one critical factor for the decline in the availability of 

freshwater resources.  The transfer of pollutants from hazardous waste sites (e.g., 

municipal dump sites or underground nuclear waste repositories) and sanitary 

landfills to water aquifers or the irrigation backflow of pesticides and fertilizers from 

the agricultural runoff are undesirable.  Sometimes the water source itself may have 
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contaminated with waterborne viruses.  If the water is not properly treated before 

consumption, human is then exposed to the risks of viral disease outbreaks.  In 

addition, hazardous waste materials and toxic substances from the industry may be 

introduced to the environment accidentally and threatened the quality of our lives.  

Environmental engineers are interested in understanding the transport of 

contaminants or pollutants in soil and how to safeguard us from the pollutants.   

When the soil or groundwater has been contaminated, restoration and 

remediation processes are needed in the contaminated site for the protection of human 

health.  In-situ techniques are often preferred over ex-situ techniques to avoid large 

scale excavation and transportation of contaminated soils for clean-up.  Smith and 

Hinchee (1993) provided a summary of the in-situ thermal technologies presently 

available for site remediation.  The review article of Dhir (2000) focuses on the 

remediation of soils contaminated with hydrocarbons due to oil spills.  Species and 

solute transport as well as heat transfer in soil become an important issue for these 

treatments (Yong et al., 1992; Knox et al., 1993). 

For applications in mechanical engineering, porous media are often found in 

insulation and barrier materials.  Take the transportation of crude oil through buried 

pipelines for example.  In order to reduce the pumping load and cost, crude oil is 

often heated to a higher temperature to reduce its viscosity for transport, and the 

pipelines are often surrounded by an insulation layer to reduce heat loss.  For 

underground disposal of nuclear waste, natural and engineered barriers are often 

employed to prevent radiation leak.  Transport phenomena in porous media also find 

its application in soil heating.  In regions with cold climates, heated pipes are used to 
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prevent soil freezing.  Fritton and Martsolf (1980) investigated the use of heated 

buried pipes for soil heating in orchard to prevent frosting.  In addition, heat pipes can 

also be used to prevent the roadway or airport runway from freezing.  The modeling 

for such applications is much more complicated and challenging due to the phase 

change in porous media. 

The above-mentioned are just several examples of transport phenomena in 

porous media involved in various engineering disciplines.  Other engineering 

applications, which involve porous media, include sintered bearings in tribology and 

lubrication (Khonsari and Booser, 2001), drying process and technology (Whitaker, 

1998), and porous electrodes in fuel cell (Bejan et al., 2004).  In addition, porous 

media also find applications in bioengineering.  For example, Lew and Fung (1970) 

examined the possibility of using flow through deformable porous solid to model 

blood flow in the network of capillary blood vessels.  Wulff (1974) modeled tissue as 

a porous medium and proposed a new bioheat equation which replaced the blood 

perfusion term in the original bioheat equation (Pennes, 1948) by a modified 

convective term in terms of Darcy blood velocity.  As illustrated, transport 

phenomena in porous media have endless applications in our real world.  A more in-

depth discussion of porous media flow in modern technologies is given by Bejan et al. 

(2004). 

 

1.2  Studies in Porous Media: A Brief Discussion  
 

The study of heat transfer and fluid flow in porous media has received 

considerable attention in the past few decades, and it has gradually evolved into a 
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unique field of its own.  This is evident through the amount of textbooks and 

handbooks published in recent years.  The general discussion of the subject has been 

given by Bear (1972), Scheidegger (1974), Collins (1990), Bear and Bachmat (1990), 

Kaviany (1995), Holzbecher (1998), Nield and Bejan (1999), Vafai (2000), Pop and 

Ingham (2001), Ingham and Pop (1998, 2002) as well as Bejan et al. (2004).  A 

remarkable account of the history, major milestones and development of the porous 

media studies in chronological order, has been provided by Kaviany (1995) and 

Reddi (2003).  This section only presents a brief introduction of the study of porous 

media.      

As mentioned in the previous section, the study of transport phenomena in 

porous media has diverse engineering applications as natural and manmade porous 

materials are encountered frequently in our daily life.  But, what constitutes a porous 

medium and how to define it?  A porous material is a medium consisting of a solid 

matrix with interconnected voids filled with fluids, as shown in Figure 1.1.  Examples 

of porous materials include soils, sands, and lung tissues.  The porosity (φ) of a  

 

Porous Media

Solid Fluid
 

 

Figure 1.1  Flow through a porous medium. 
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porous medium is defined as the volume occupied by the voids over the total volume.

volumetotal

voidsofvolume
=φ                [1.1] 

For packing of uniform spheres, the porosity ranges from 0.255 for rhombohedral 

packing to 0.476 for cubic packing (Nield and Bejan, 1999). 

The most fundamental equation governing fluid flow in porous media was 

derived by Darcy (1856) while he worked on the public fountains of Dijon in France.  

An excellent review of Darcy’s original report was given by Lage (1998).  According 

to Darcy’s law, the volume-averaged velocity (u) is directly proportional to the 

pressure gradient ( p∇ ) and permeability (K) but inversely proportional to the fluid 

viscosity (µ). 

p∇
µ

−=
K

u                 [1.2] 

Generally, permeability is an anisotropic property (directional-dependent), thus make 

it a tensor.  If the material is assumed isotropic, permeability is then reduced to a 

scalar.   

The permeability can be related to the porosity of a porous medium, and one 

widely used model is the Kozeny-Carman equation (Dullien, 1992) based on the 

hydraulic radius theory. 

2

32

p

)1(180

D
K

φ−

φ
=                [1.3] 

where Dp is the effective average particle diameter.  The Kozeny-Carman equation 

provides the best estimate of the permeability value when a packed bed is formed by 
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spherical particles with narrow range of size distributions.  Typical permeability 

values are: 10
-7

-10
-9

 m
2
 for clean gravel, 10

-9
-10

-12
 m

2
 for clean sand, and 10

-11
-10

-13
 

m
2
 for peat (Nield and Bejan, 1999).  In the study of hydrology, permeability is often 

lumped with other fluid properties and forms the hydraulic conductivity ( K ), which 

is defined as 

µ

ρ
=

K
K

g
                [1.4] 

where ρ and µ are the density and viscosity of the fluid, respectively. 

Although Darcy’s law has been used extensively to describe fluid flow in 

porous media, it has been recognized that Darcy’s law is only valid for very low 

inertial flows (i.e., the order of Reynolds number based on the pore scale is much less 

than unity).  As such, Darcy’s law is applicable for most groundwater flows (Bear and 

Verruijt, 1987) and weak convective flows.  For highly convective flows, the 

following equation, generally referred to as the Brinkman-Forchheimer-extended 

Darcy equation which accounts for the viscous and inertial effects, is more 

appropriate (Vafai and Tien, 1980 and 1981; Hsu and Cheng, 1990). 

( ) uu
K

u
K

uuu
u

5.0

F2

e2

c
p

1

t

1 ρ
−

µ
−∇µ+−∇=








∇⋅

φ
+

∂

∂

φ
ρ             [1.5] 

where µe is the effective viscosity and cF is the dimensionless form-drag coefficient.  

The local time-derivative and advective inertial terms are on the left-hand-side of 

Eqn. [1.5].  The Laplacian term is called the Brinkman viscous term while the last 

term on the right-hand-side of Eqn. [1.5] is the Dupuit-Forchheimer term.  In general, 

both form-drag coefficient and effective viscosity depend on the geometry of the 
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porous medium.  Note that when the permeability goes to infinity, Eqn. [1.5] reduces 

to the Navier-Stokes equation.  The discussion of the significant of each term is 

described in details by Nield (2002) and Alazmi and Vafai (2000), and it is omitted 

here for brevity. 

 

1.3  Literature Review 
 

 For research involving porous media, some comprehensive reviews and 

monographs on specific engineering application are well-documented in the literature.  

For example, Cheng (1978) and McKibbin (1998) provided comprehensive reviews 

on transport phenomena in geothermal systems.  The literature review reported in this 

dissertation is only focused on the studies related to a buried pipe in a porous medium.  

It is the author’s wish to provide an up-to-date comprehensive review on the research 

progress made in this area.  To do so effectively, the materials are organized 

according to the mode of heat transfer involved (i.e., conduction, natural, mixed, 

double-diffusive convection, etc.), and they are presented in the following sections. 

 

1.3.1  Conduction 
 

One of the earliest and most fundamental studies of heat transfer from a 

cylinder buried in a semi-infinite medium was reported by Eckert and Drake (1959).  

Analytical solutions for steady-state heat conduction were obtained using the source 

and sink method, and heat transfer from the cylinder can be evaluated by 

,
)r/d2ln(

)TT(kL2
Q

i

ch −π
=                 [1.6] 

where d and ri are the depth and radius of the buried cylinder, respectively.  The 
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above equation is valid only when d/2ri is much less than unity, and this result is often 

expressed in terms of the conduction shape factor given in most heat transfer 

textbooks (for example, Incropera and DeWitt, 1996; Mills, 1999).  Eqn. [1.6] can

also be expressed in terms of the thermal resistance as 

kL4

1
r

d
r

d21
r

d2ln

R

2

ii

2

i

π













−















+







−








=             [1.7] 

and for large d/ri the above expression is reduced to  

i

dln 2
r

R
2 kL

 
 
 

=
π

                              [1.8] 

Carslaw and Jaeger (1959) provided analytical solutions for transient 

temperature profiles in an infinite medium subject to a point heat source.  The 

dimensionless temperature distribution was given in terms of the error function as  










τπ
=Θ

5.02

R
erfc

R4

1
                [1.9] 

The expression for thermal resistance of a buried cylinder heated with 

constant flux was derived by Thiyagarajan and Yovanovich (1974).  Analytical 

solutions were obtained by the method of separation of variables using bicylindrical 

coordinates.  The thermal resistance for this case was given by 

( )∑
∞

=

η−









η

π
+

π

η
=

1n

o

n2

o ntanh
n

e

k

1

k2
R

o

            [1.10] 

where 







=η
−

i

1

o r
dcosh .  By comparing the thermal resistances of these two heating 

conditions (i.e., Eqns. [1.7] and [1.8]) at various values of d/ri, Thiyagarajan and 
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Yovanovich (1974) concluded that, for a burial depth of 5 pipe radii or deeper, the 

thermal resistance obtained from both models differed only by one percent. 

Bau and Sadhal (1982) also provided analytical solutions for heat losses from 

a buried pipe.  However, more realistic boundary conditions were applied to the pipe 

surface: (1) mixed convective boundary condition with uniform heat transfer 

coefficient was applied, which was best described when the fluid flowing inside the 

pipe was turbulent, and (2) fully-developed laminar flow was assumed, and the 

temperatures inside and outside of the pipe surface were determined simultaneously.  

The heat transfer results were expressed in terms of the shape factor given by  

For case (1):  
( )

5.0

oo

2

o

2 cothBi2Bi1

Bi
S

αα+α+

=             [1.11] 

For case (2):   
( )

( ) ( )[ ]
∑

∞

=

α−

+α
+α+=

1n 12o

n2

12
o

2

1

k/kncothn

ek/k
2)

k

k
(

24

11
S

o

          [1.12] 

where Bi is the Biot number. 

 

1.3.2  Natural Convection 
 

Natural convection in porous media has been a vital part of the contemporary 

heat transfer research for the past few decades.  Considerable work has been done in 

this area which included various types of porous enclosures.  Oosthuizen (2000) has 

provided a comprehensive review on the subject.  The literature review presented in 

this section only serves as a supplement to the earlier review and only focuses on the 

natural convection induced by a heated cylinder buried in a porous medium.    

Wooding (1963) initiated the study of convection in a porous medium induced 
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by a point source and obtained similarity solutions for sufficiently large Rayleigh and  

Peclet numbers.  Boundary layer approximation was employed to simplify the study 

such that the vertical gradients of velocity and temperature were neglected.  He 

pointed out that the flow and temperature fields far away from the heat source closely 

resembled the solution for a laminar incompressible two-dimensional round jet 

obtained by Schlichting (1960).  However, Yih (1965) argued that for similarity 

transformation which has the form of η = (r/x)
n
, the omission of the terms involving 

vertical gradients was not justified for n ≥ 1.  To clarify the contradiction found in the 

literature, Lai (1990) reexamined the problem and obtained closed-form solutions 

using different set of similarity transformation parameters.  The validity of the 

boundary layer approximation was examined through an order of magnitude analysis.  

It was concluded that Wooding’s solution (1963) based on the boundary layer 

approximation was valid and applicable for Ra >> 1 and Yih’s concerns (1965) were 

redundant after all. 

Unlike Wooding’s study (1963) which is valid for highly convective flows, 

Bejan (1978) employed perturbation method to analyze heat transfer from a 

concentrated heat source in an infinite porous medium at low Rayleigh numbers.  

Both transient and steady-state temperature and flow patterns in the vicinity of the 

point source were obtained.  Bejan’s results (1978) were valid for low Rayleigh 

numbers (i.e., Ra < 10 for transient solution and Ra < 20 for steady-state solution), 

and he emphasized that the limitation imposed was appropriate and consistent with 

the low inertial flow assumption of Darcy model.  Similar to the work by Wooding 
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(1963), Merkin (1979) examined natural convection boundary layers on axisymmetric 

and two-dimensional bodies of arbitrary shape embedded in an infinite porous 

medium using similarity method, and he showed that similarity solution exists for all 

two-dimensional isothermal bodies of arbitrary shapes.  Cheng (1980) modified 

Merkin’s approach (1979) and obtained a Nusselt number relation specifically for 

natural convection from an isothermal horizontal cylinder as 

,Ra565.0Nu 5.0

D=               [1.13] 

where the Rayleigh number is based on the diameter D.  This unpublished class notes 

of Cheng (1980) were reproduced in a paper by Fand et al. (1986). 

Hickox and Watts (1980) generalized the earlier work of Wooding (1963) and 

Bejan (1978) such that their results were good for any Rayleigh number.  The 

governing equations were reduced to a set of nonlinear ordinary differential equations 

using similarity transformation suggested by Yih (1965).  Although the differential 

equations were greatly simplified through the transformation, no exact solution was 

available.  Approximate numerical solutions were sought using computer codes 

developed at Sandia National Laboratories (Scott and Watts, 1976 and 1977).  The 

results indicated that heat conduction was the dominated mode at low Rayleigh 

numbers, while plume-like boundary layer behaviors were observed for high 

Rayleigh number flows, as reported by Wooding (1963). 

The literature reviewed thus far mostly considered free convection from a 

concentrated heat source in an infinite porous medium.  As time progressed, more 

research efforts were devoted to and centered on modeling the porous medium as a 
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semi-infinite medium.  This was partly due to an increasing interest in examining the 

possibility of disposal of nuclear wastes in oceanic basins (Bishop and Hollister, 

1974).  The emphasis of Hickox’s study (1981) was on the analysis of nuclear waste 

disposal in the sediment below a seabed.  He first performed perturbation analysis to 

study convection from a concentrated heat source in an unbounded porous medium by 

retaining only the leading terms of the power series expansion.  The solutions 

obtained were thus linear and valid for low Rayleigh numbers.  Because of the 

linearity, solutions for natural convection from a concentrated heat source buried in a 

semi-infinite porous medium with a permeable top boundary could then be obtained 

by the method of superposition.  For the case of the nuclear waste disposal in a 

generic site located in the Central North Pacific, the anticipated Rayleigh number was 

approximately 10
-3

, which satisfied the assumption of the mathematical model. 

Fernandez and Schrock (1982) performed both experimental and numerical 

study to investigate natural convection from a heated cylinder buried in a porous 

medium bounded above by an isothermal liquid layer.  To the best knowledge of 

author’s, this was the first known attempt to experimentally study convection from a 

deeply buried heat source.  The porous medium was simulated using two standard and 

reproducible sands (Monterey Crystal Amber and Ottawa Silica).  The sands were 

saturated with water, and a water column of 15 cm was retained above the sand 

surface.  The heated cylinder was simulated using a heater of various lengths (L) and 

radii (ri) with 5 different burial depths (d).  Temperature distributions were measured 

using thermocouples.  To numerically model the interface between the porous 

medium and the fluid layer, a boundary condition similar to that of transpiration 
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cooling was imposed to account for the energy transferred.  The numerical and 

experimental data were in qualitatively good agreement.  The correlation for the 

Nusselt number was given by 

  



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
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Nu , M is the largest integer 

≤ L/2ri, 
2

i

2
rda −= , and f = 0.015+1.23 exp(-0.534 ηS).  Here, ηS is the bi-

cylindrical coordinate at the source surface.  The standard deviation of the 

experimental and numerical data from the correlation was 11.4%.  The ranges of 

variables covered in the study were 42
10Ra10 ≤≤

− , ∞≤≤

ir2

L
1 , and 7.23

r2

d
8.0

i

≤≤ .  

Note that the Rayleigh number presented in this study was based on the length scale 

of 2

i

2
rd − . 

Bau (1984) studied natural convection from a pipe buried in a semi-infinite 

porous medium.  Both impermeable and permeable inclined top surfaces were 

considered in his study.  The problem was formulated using bi-cylindrical coordinates 

to solve for the temperature and flow fields at low Rayleigh numbers using 

perturbation method.  A correlation for the Nusselt number was obtained in the form 

of a power series in terms of the Rayleigh number. 
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where 
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2
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)d005.0d148.0d865.1599.1(10Na
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3
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− ,          [1.15c] 

θ is the inclined angle and d is the burial depth.  The correlation given in Eqn. [1.15a]

is valid for impermeable top surface, 
2

0
π

<θ≤ , 14d2 ≤≤ , and 60
r

d
Ra

i

≤







.  

Shanks’s nonlinear transformation (1955) was applied to obtain Eqn. [1.15a] to 

increase the range of validity of the correlation.  Bau (1984) revealed the existence of 

an optimal burial depth at which heat transfer from the pipe is minimal.  This finding 

can be applied in the design of pipelines to save energy.  Later, Himasekhar and Bau 

(1987) conducted a similar study, but for which the top surface was assumed to be 

impermeable and Robin convective condition was imposed.  Again, by means of 

Shanks’s transformation (1955), the Nusselt number can be given as a function of the 

Rayleigh number, Biot number and the burial depth: 
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RaBRaA1
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= ,             [1.16a] 

where 2a

1daA = ,                                      [1.16b] 
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Analogous to the finding of previous work by Bau (1984), the existence of an optimal 

burial depth was also observed for the boundary condition of a convective top surface.  

The magnitude of this optimal burial depth decreases with the Biot number.  

An in-depth experimental investigation was conducted by Fand et al. (1986) to 

study heat transfer from a horizontal cylinder buried in randomly packed glass 

spheres saturated by either water or silicone oil.  Two flow regimes, where the 

Nusselt number behaves differently, were identified based on the Reynolds numbers.  

Darcy flow regime corresponds to low Reynolds number flows while Forchheimer 

flow regime represents high Reynolds number flows.  The change of properties with 

temperature and the wall effect on porosity were also considered in this study.  The 

following correlations were obtained based on their experimental results. 

(a) Darcy Flow Regime (0.001 < Remax ≤ 3) 

)Ra(sechGe1097.9Ra653.0PrNu 6649.0124.0
×+=   for εw, j = 0.5        [1.17a] 

)Ra(sechGe1054.8Ra618.0PrNu 6698.00877.0
×+=   for εw, j = 0.32       [1.17b] 

(b) Forchheimer Flow Regime (3 < Remax ≤ 100) 
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where Ge is the Gebhart number, εw is the wall corrected porosity, j is a numerical 

constant determined the reference temperature, D is the diameter of the cylinder, C1 

and C2 are the Forchheimer coefficients. 

Nakayama and Koyama (1987) presented similarity solutions for free

convective heat transfer from a nonisothermal body of arbitrary shape embedded in a 

porous medium using boundary layer approximation with Kármán-Pohlhausen 

integral method.  The obtained ordinary differential equation is identical to that of 

natural convection from a vertical flat plate with exponential wall temperature 

distribution, which has been solved by Cheng and Minkowycz (1977).   

Ingham and Pop (1987) studied natural convection induced from a heated 

cylinder in an unbounded porous medium.  Numerical solutions were obtained for 

finite Rayleigh numbers.  The variation of the average Nusselt number with the 

Rayleigh number is determined to be 

5.05.0
Ra9.178.0Ra3995.0Nu

−
−+=              [1.19] 

The numerical results agreed well with the experimental data of Fand et al. (1986) for 

Rayleigh number on the order of unity.  However, there was discrepancy between the 

numerical and experimental results when Rayleigh number increases to 10
2
, an 

indication that Darcy’s law may be no longer applicable. 



Chapter 1.3  Literature Review 

 

 19 

It was the objective of Farouk and Shayer (1988) to perform numerical 

analysis to obtain steady-state solution for natural convection around a heated 

cylinder in a semi-infinite porous medium.  A combination of grid systems, which 

involved both polar and Cartesian meshes, has been employed for the computations.  

The semi-infinite porous medium was bounded above by a liquid layer; hence both 

permeable and convective conditions were applied to this medium surface.  It has 

been found that the flow behavior and the variation of Nusselt number at various 

burial depths were quite different for conduction and convection cases.    

Himasekhar and Bau (1988) investigated natural convection around a cylinder

heated with constant flux buried in a box filling with porous materials.  Both 

experimental and numerical solutions were obtained.  The experimental results 

indicated the existence of a critical Rayleigh number below which the flow was two-

dimensional and time independent.  Once this critical Rayleigh number was exceeded, 

the flow became three-dimensional and time dependent.  For numerical computations, 

the physical domain of the problem was transformed to a rectangular domain via 

boundary-fitted coordinates.  Once again, both numerical and experimental results 

agreed well at low Rayleigh numbers, and deviated as Rayleigh number was 

increased.  

The consistent discrepancy between experimental data and theoretical results 

found in the literature has prompted Hsiao et al. (1992) to investigate the non-uniform 

porosity and thermal dispersion effects on convection from a heated cylinder in an 

enclosed porous medium using finite difference method with body-fitted coordinates.  

Both isothermal and constant flux heating conditions were imposed on the surface of 
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the cylinder.  It was concluded that by including the effects of thermal dispersion and 

non-uniform porosity simultaneously, the predicted heat transfer results were in better 

agreement with the experimental data.  The discussion of this subject could also be 

found in a recent review article by Chen and Hsiao (1998). 

More recently, Christopher and Wang (1993) examined the non-Darcy effects 

by using Forchheimer-extended Darcy flow model.  Finite element code MARIAH 

(Gartling and Hickox, 1980) was used to solve for the flow and temperature fields.  It 

was concluded that the Dupuit-Forchheimer term should be included when the 

Reynolds number was five and above. 

The majority of the literatures reviewed thus far have all assumed steady-state 

in their analysis.  Ingham et al. (1983) investigated the unsteady collision effects of 

free convection boundary layers arise from a heated cylinder in a porous medium 

with particular interest on the flow behavior near the top and bottom stagnation points.  

No singularity in the solution was observed within a finite time, which was contrary 

to the findings of other studies dealing with a similar problem (Simpson and 

Stewartson, 1982; Brown and Simpson, 1982).  

Using the method of matched asymptotic expansions, Pop et al. (1993) studied 

transient natural convection from an isothermal cylinder embedded in a porous 

medium at small times.  Later, they extended the study to consider constant surface 

flux condition (Pop et al., 1996).  In both studies, it was found that the solutions 

contain terms that were not included in the solutions based on boundary layer 

approximation.  The formation of vortices was also observed at both sides of the 

cylinder.  Bradean et al. (1997) then solved the problem numerically and their 
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solutions were valid for all times.  Their numerical results at small times compared 

well with the analytical solutions of Pop et al. (1993).  At very large times, the results 

at the vicinity of the cylinder agreed reasonably well with the steady-state solution of 

Ingham and Pop (1987). 

 

1.3.3  Mixed Convection 
 

In the last section, the literature reviewed was focused on the studies of free 

convective flow.  Other than natural convection, mixed convection in porous media is 

also of practical interest.  As pointed out by Lai (2000), research in mixed convection 

was called for in the early 1960s because of the need for better understanding of the 

movement of the groundwater in the geothermal region of Wairakei, New Zealand.  

In addition, the knowledge of convective transport around a nuclear waste repository 

was also desired, which eventually prompted the study of mixed convection.  Since 

Lai (2000) has provided a comprehensive review on mixed convection in porous 

media for different flow regimes and geometries, the literature reviewed in this 

section is only focused on mixed convection around a cylinder buried in a porous 

medium 

Using a similarity transformation previously employed by Merkin (1979) for 

natural convection, Cheng (1982) obtained similarity solutions with boundary layer 

approximation for mixed convection induced from an isothermal cylinder or a sphere 

in a fluid saturated porous medium.  The transformed equations were found to be 

identical to those of an earlier study by Cheng (1977) about mixed convection from a 

vertical surface in a porous medium.  Huang et al. (1986) also conducted a similar 
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study with uniform heat flux condition imposed on the surface of the cylinder and 

sphere.  Minkowycz et al. (1985) extended the study of Cheng (1982) and considered 

non-isothermal surface temperature for a cylinder and a sphere in their model.  

Numerical solutions up to three levels of truncation were obtained based on the local 

non-similarity method.  All these three theoretical studies (Cheng, 1982; Minkowycz 

et al., 1985 and Huang et al., 1986) have invoked boundary layer approximation.   

Fand and Phan (1987) reported an experimental study on combined forced and 

natural convection from a cylinder in a porous medium.  The porous medium was 

composed of randomly packed glass spheres saturated with water, and only horizontal 

cross flow condition was simulated in their experiment.  It has been found that the 

predominant heat transfer mechanism is forced convection for 5.0Re/Gr 2

DK ≤ , and 

the effects of natural convection are important for 4Re/Gr5.0 2

DK ≤≤ .  Their results 

were consistent with the findings of another study by Fand and Keswani (1973) on 

mixed convection from a heated cylinder in water. 

Badr and Pop (1988) investigated both aiding and opposing flows (i.e., 

parallel and counter flows) over a heated cylinder in a porous medium.  Finite 

difference scheme with modified polar coordinates was employed to obtain the 

transient solutions.  The numerical results agreed well with the theoretical results 

obtained by Cheng (1982) and Minkowycz et al. (1985) except for a region near θ = 0, 

where the boundary layer approximation failed.  In view of the unusual temperature 

profiles and flow patterns reported by Badr and Pop (1988), Zhou and Lai (2002) 

reexamined the problem using body-fitted coordinates, and their results were in good 
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agreement with those of Badr and Pop (1988) for small Reynolds numbers and Gr/Re.  

However, there was a significant discrepancy between the studies for large Re or 

Gr/Re.  Also, oscillatory solutions, which contradicted to the steady-state solutions 

obtained by Badr and Pop (1988), were observed for opposing flows at Re ≥ 50 and 

Gr/Re ≥ 4.  They suspected that the discrepancy may be attributed to the truncation 

errors from the series solutions reported by Badr and Pop (1988). 

In 1993, Sano investigated mixed convection around a cylinder immersed in a 

Darcy flow at small Peclet number with Gr/Re on the order of unity.  Solutions have 

been obtained using the method of matched asymptotic expansions.  Bradean et al. 

(1998) performed both analytical and numerical analysis on mixed convection around 

a suddenly heated cylinder buried in a porous medium.  A series solution with the 

matched asymptotic expansion was employed to determine the solutions at small 

times while a finite difference scheme was used to obtain the solutions at all times. 

 

1.3.4  Double-Diffusive Convection 
 

Another type of convection, which involves simultaneous heat and mass 

transfer, can be frequently found in nature as well as in engineering applications.  

These include seawater flow, mantle flow in the earth’s crust, casting and 

solidification of metal alloy, transport of contaminant in soils and exploitation of 

geothermal reservoir.  This type of convection is also referred to as thermohaline, 

thermosolutal or double-diffusive convection. 

Trevisan and Bejan (1990) presented a comprehensive review on combined 

heat and mass transfer by natural convection in a porous medium, which summarized 
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the research work conducted in the 1970s and 1980s.  Mojtabi and Charrier-Mojtabi 

(2000) and Mamou (2002) also reviewed the work on double-diffusive convection.  

The majority of the work they reviewed was related to convection in a cavity or 

enclosure.  Hence, the literature review presented in this section will only supplement 

these earlier reviews by focusing on double-diffusive convection induced from a 

cylinder in a porous medium.  Other areas such as combined heat and mass transfer 

from a cylinder immersed in a pure fluid (the phenomenon of fingering), Neilson and 

Incropera (1987) have presented a comprehensive review.  Similarly for double 

diffusive convection in an unsaturated porous medium, interested readers can refer to 

the work by Chang and Weng (2002). 

Equally important in engineering applications are the transport phenomena of 

double diffusive convection, where the buoyancy due to the concentration difference 

is as significant as the thermal buoyancy.  Unfortunately, there are only limited 

studies reported in the literature that deal with double diffusive convection from a 

buried cylinder.   

Slegel and Davis (1977) looked into the idea of using waste heat from power 

plants for soil heating and subsurface irrigation to maintain the temperature and 

moisture of the soils.  Finite difference scheme has been employed to solve for 

temperature and moisture content subject to typical weather conditions of the 

Willamette Valley in Oregon.  It was concluded that irrigation through perforated 

pipe provided better soil warming and higher moisture content compared with surface 

irrigation.  They suggested that a further analysis was needed to find the optimum 

pipe spacing, depth and size for increasing crop yield, but they also realized such 
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analysis could be difficult to perform.  Fritton and Martsolf (1980) also proposed 

using soil heating technique to prevent frosting for growing orchards. 

As an extension to Bejan’s work (1978) on natural convection in an infinite 

porous medium with a concentrated heat source, Poulikakos (1985) studied the effects 

due to the added concentration point source using perturbation analysis of Darcy flow 

model.  It was determined that the transport of chemical species induced from a 

concentration gradient has a great impact on the buoyancy flow.  The flow resulted 

from a concentration difference can either oppose or aid the flow induced by a 

thermal gradient.  However, the results obtained in this study were only valid for low 

Rayleigh numbers.  Ganapathy (1994) performed a similar analysis as Poulikakos 

(1985) but using the Brinkman model.  He recommended that the inclusion of both 

the viscous shear and the local acceleration terms was important in capturing all the 

salient features of the early stages of flow development, especially for small and 

moderate values of Prandtl numbers. 

Phillips (1991) discussed the modeling of the dispersal of solutes using a point 

source at the boundary of a permeable layer by assuming the distribution is 

axisymmetry.  According to the solutions obtained by Bird et al. (1960), the solute 

decreased with the distance from the source in an exponential manner.  As pointed 

out by Stoessell (1987), this solution was pertinent to the concentration distribution 

around a small dissolving grain, particularly for the dissolution of plagioclase grains 

and the precipitation of kaolinite in an asymmetrical halo frequently found in 

limestones.   
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Nakayama and Ashizawa (1996) employed boundary layer analysis to 

investigate the coupled heat and mass transfer by natural convection from 

concentrated point and line sources embedded in porous media.  The Lewis number 

(Le) and buoyancy ratio (N) were identified as the two critical parameters governing 

this double diffusive flow.  It was also reported that the Lewis number was more 

sensitive to concentration field than the velocity and temperature fields.      

Later, Cheng and Lai (1997) obtained a first order solution of combined heat 

and mass transfer from a buried pipe in a semi-infinite porous medium using the 

perturbation method.  Both permeable and impermeable top surfaces were considered 

in their study.  The analysis was conveniently done in bi-cylindrical coordinates.  

More recently, Yih (1999) performed a numerical study on coupled heat and mass 

transfer by natural convection adjacent to a permeable horizontal cylinder in an 

infinite porous medium.  Finite difference scheme along with the modified Keller box 

method was employed in his study.  The results were presented in terms of the 

Nusselt number and Sherwood number.  The Nusselt number obtained in this study 

compared well with those obtained by Merkin (1979). 

Two years later, Chamkha and Quadri (2001) extended the study of Yih (1999) 

to include the external magnetic field and internal heat generation or absorption 

effects.  The governing equations were transformed using non-similarity form and 

were solved using finite difference method.  It was found that both Nusselt and 

Sherwood numbers increased with the suction/injection parameter and buoyancy ratio, 

but decreased with the Hartmann number and the inertia parameter. 
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1.3.5  Homogeneous versus Heterogeneous Medium 
 

All previous work reviewed thus far have considered homogeneous porous 

media.  However, a heterogeneous or a layered porous medium is encountered more 

frequently in engineering applications.  Considerable efforts have been made by 

numerous researchers to investigate flow and heat transfer in planar porous layers.  

For example, Rana et al. (1979) studied the effect of layered structure in rock 

formation on natural convection in a geothermal reservoir.  A planar system 

comprising three porous layers with different permeabilities was used to represent the 

reservoir.  The middle layer was assumed the least permeable; this layer has imposed 

a restriction on the flow producing a multi-cellular convection pattern and a lower 

overall heat transfer rate.  It was found that the convection pattern was dependent on 

the permeability ratio and the boundary conditions.    

McKibbin and O’Sullivan (1980) investigated the onset of convection in a 

system with an arbitrary number of layers.  Linear stability analysis was performed in 

their study.  The results showed that with an increase in the non-homogeneity in 

permeability, a transition of the flow patterns was observed with the convection cells 

tending to localize in the more permeable layers.  Later McKibbin and O’Sullivan 

(1981) extended their earlier study to examine convection at slightly supercritical 

Rayleigh numbers.  It was concluded that for a layered system, the heat transfer was 

strongly dependent on the cell width. 

Poulikakos and Bejan (1983) studied natural convection in vertically and 

horizontally layered porous media heated from the side.  Particular attention was 
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placed on the effects of inhomogeneity in permeability and thermal diffusivity on the 

overall heat transfer results.  A correlation for the Nusselt number was developed via 

a general scaling law.  These are just a few of the studies dealing with a layered 

planar porous system.  A detailed literature review on this subject has been given by 

Ngo (1999); hence it is not repeated here for brevity. 

Previous studies that were most closely resembled the problem of interest 

were those reported by Muralidhar et al. (1986) and Ngo and Lai (2000) in which a 

layered porous annulus was considered.  Muralidhar et al. (1986) numerically and 

experimentally studied natural convection in a horizontal annulus with a step change 

in permeability.  The agreement between numerical solution and experimental data 

has been satisfactory in general.  However, when the porous layer next to the heated 

surface has a higher permeability, the Nusselt number predicted using Darcy’s law 

was consistently lower than that of experimental data.  They attributed the deviation 

to the non-Darcy effects.  Ngo and Lai (2000) reexamined the study and attempted to 

find an effective permeability such that a lumped system approach can be employed 

for a layered porous annulus.  Three averaging techniques (i.e., arithmetic, harmonic, 

and volumetric) were proposed for the evaluation of the effective permeability in their 

numerical study.  The results showed that the harmonic technique has the best 

prediction in heat transfer rate among the three examined. 

 

1.3.6  Superimposed Fluid and Porous Layers  
 

Another research subject of interest is for a fluid layer overlying a layer of 

porous medium.  Nield (1977) performed linear stability analysis for a system 
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comprising of a fluid layer and a porous medium layer heated from below.  He 

included the possibility of Marangoni effect at the deformable upper surface.  Beavers 

and Joseph (1967) condition was applied at the interface.  The results obtained in this 

study for constant heat flux condition were qualitatively useful for estimating the 

stability criterion for other cases involving different thermal boundary conditions. 

Somerton and Catton (1982) also considered a superposed system in their 

study with the objective of predicting the onset of convection.  In this analysis, 

Brinkman viscous term was retained in the porous medium model along with the 

interface conditions suggested by Neale and Nader (1974).  Normal stability 

manipulations were carried out to obtain the governing equations, which were 

approximated using the Galerkin method.  An external Rayleigh number based on the 

fluid layer was identified as the sole stability parameter.  It was concluded that either 

a large thermal conductivity ratio (fluid to porous layer) or a small Darcy number lead 

to a more stable fluid layer.     

Motivated by the application of solidifying casting, Beckermann et al. (1987) 

conducted both numerical and experimental study on natural convection in an 

enclosure vertically divided into fluid and porous layers.  The porous layer was 

modeled using the Brinkman-Forchheimer-extended Darcy equation, and solved 

numerically using the SIMPLER algorithm (Patankar, 1980).  The continuity of 

temperature, heat flux, normal and tangential velocities, pressure, normal and shear 

stresses was implemented at the fluid-porous interface.  Their experiment used 

spherical glass beads saturated with glycerin and water.  The flow visualization 

results obtained from experiment compared well with the numerical results.  The 
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penetration by convection in the porous layer from the fluid layer became significant 

when the product of Rayleigh number and Darcy number was greater than 50.  

Chen and Chen (1988) performed linear stability analysis on the onset of salt-

finger convection in a superposed fluid and porous layers.  The porous layer was 

modeled using the Darcy’s law while Beavers and Joseph (1967) condition was 

applied at the interface.  A critical depth ratio, the thickness of fluid layer to porous 

layer, was identified by the linear stability analysis.  The theoretical predictions 

obtained in this study were later confirmed by an experimental study (Chen and Chen, 

1989).  The convective cells were found to be three-dimensional in general.  The 

same authors (Chen and Chen, 1992) then extended their studies to include a 

numerical investigation.  The porous medium layer was modeled using the Brinkman-

Forchheimer-extended Darcy equation.  A combined Galerkin and finite difference 

scheme was employed.  The numerical results were in good agreement with the 

experimental results obtained earlier (Chen and Chen, 1989). 

More recently, Choi and Waller (1997) examined water flow over porous 

media using the Brinkman-Forchheimer-extended Darcy equation.  Five different 

porous media typically found in natural and engineered systems were selected for the 

study.  The interface conditions implemented were the continuity of longitudinal and 

transverse velocities, pressure, normal and shear stresses.  The effective viscosity was 

assumed to be the same as the viscosity (i.e., µeff = µ).  Finite difference method was 

employed to solve the partial differential equations expressed in terms of the stream 

function and vorticity.  It was concluded that Darcy number of the porous medium 
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played an important role in determining the degree of flow penetration, and Darcy’s 

law alone would not provide a full description of the flow field near the interface.  

Previous work which closely resembled the present work was the study of 

Oosthuizen and Naylor (1996).  They studied free convection from a cylinder in an 

enclosure partly filled with a porous medium.  The cylinder was buried in the porous 

medium while the top portion of the enclosure was saturated with air.  The objective 

of the study was to determine how heat transfer rate from the cylinder was affected by 

the air gap on top.  The governing equations were solved using a Galerkin based finite 

element procedure.  It has been found that there exists a critical thickness of air layer 

which will minimize the heat transfer rate from the cylinder. 

 

1.3.7  Interfacial Conditions 
 

A layered system is encountered quite frequently in engineering applications.  

In general, there are two types of layered systems: (a) porous-porous layer, and (b) 

porous-fluid layer, as shown in Figure 1.2.  Over the years, the conditions needed to 

be satisfied at these interfaces have been a subject of research interest.  An 

outstanding review was reported by Nield (2002) recently, which provided an updated 

development and implement of the interface conditions.  The literature review in this 

section only summarizes the milestones achieved on this subject over the past few 

decades.   

One of the pioneer studies in the determination of the interface condition 

between a fluid and a porous medium was conducted by Beavers and Joseph (1967).  

Viscous flow over a porous medium was considered.  Navier-Stokes equations
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Figure 1.2  Common layered systems: (a) porous-porous layers,  

                  and (b) porous-fluid layers. 

 

governed the flow in the fluid layer while Darcy’s law applied to the flow in the 

porous medium.  Based on their experimental study, they have proposed a slip-flow 

model as the interface condition for flow over a porous medium, which is given 

below (Figure 1.3b). 
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where uf is the velocity of fluid; upm is the velocity in the porous medium; K is the 

permeability; and αBJ is the Beavers and Joseph slip coefficient.  In general, the slip 

coefficient needs to be determined through experiments, and it depends on the 

structure of the medium, flow direction, Reynolds number, etc.  The Beavers and 

Joseph condition has been further verified and confirmed through experiments by 

Beavers et al. (1970, 1974).  Taylor (1971) and Richardson (1971) also independently  
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Figure 1.3  Schematic for illustrating (a) the actual velocity profile, and  

            (b) Beavers-Joseph condition. 

 

studied the Couette-type flow bounded by a permeable material analytically and 

experimentally.  Their results obtained from the slip velocity model agreed well with 

the experimental data. 

Neale and Nader (1974) employed the extended-Brinkman equation to 

simulate flows in porous media in conjunction with the implementation of continuity 

in both velocity and velocity gradient at the interface.  They found that the velocity 
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profile near the boundary obtained herein was identical to those using Darcy’s law 

along with the Beavers-Joseph (1967) conditions.  Their interfacial conditions were 

expressed in terms of effµ µ  instead of the Beavers and Joseph slip coefficient 

(αBJ).  However, the proper value of µeff/µ was not available at the time but it was 

said that the results compared reasonably well by setting it as unity.  Note that the 

determination of accurate effective viscosity has been a challenging subject over the 

years (Lundgren, 1972; Kolodziej, 1988; Givler and Altobelli, 1994). 

One of the first comprehensive studies on interface conditions was performed 

by Vafai and Thiyagaraja (1987).  They analyzed the flow and heat transfer 

conditions for three types of interfacial conditions (i.e., porous medium-porous 

medium, fluid-porous medium, and impermeable solid-porous medium).  Explicit 

analytical expressions for the velocity and temperature distributions at the interface 

were derived based on matched asymptotic perturbation expansions.  It was found 

that the analytical results were in excellent agreement with the numerical results.   

In a time span of six years, Vafai and Kim (1990 and 1995) had a series of 

discussions with Nield (1991 and 1996) on the treatment of interface conditions 

between porous medium and fluid.  Vafai and Kim (1990) provided an exact solution 

for the description of flow at the interface between a fluid layer and a porous medium, 

which accounted for both the boundary and inertial effects but with a constant 

porosity assumption.  Nield (1991) argued that Vafai and Kim (1990) have over-

determined the physical problem by using the continuity of tangential and normal 

stresses interface conditions.  Further, the variation of the porosity should be 
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accounted for when Brinkman formulation was employed to model a dense porous 

medium.  He also suggested that the interface between a porous medium and a fluid 

layer interface could be best handled by dropping the Brinkman term and using the 

Beavers-Joseph (1967) interface condition.  In response to Nield’s comments (1991), 

Vafai and Kim (1995) emphasized and reconfirmed that the Brinkman model with the 

continuity of velocities and stresses at the interface were appropriate, and the 

previous numerical solutions based on this formulation have been shown to be 

consistent with the experimental results (Beckermann et al., 1987).  Furthermore, 

according to Vafai and Kim (1995), the slip coefficient in the Beavers-Joseph (1967) 

condition is a function of too many parameters, which make this condition difficult to 

implement.  They agreed with Nield (1991) that a variable porosity might be needed 

to model a dense porous medium, but a constant porosity was sufficient for 

simulating a porous medium with high porosity.  In a closure statement on the issue, 

Nield (1996) stood by his earlier comments (Nield, 1991), and recommended that 

more experimental studies in this area were needed to distinguish between the models.  

Sahraoui and Kaviany (1992) examined the slip and no-slip boundary 

conditions for velocity at the interface of porous and plain media.  Their two-

dimensional model was simulated using porous medium made of cylinders arranged 

in periodic fashion, which allowed both parallel and oblique flows as opposed to only 

parallel flows (i.e., Poiseuille or Couette flow) considered previously (e.g., Beavers 

and Joseph, 1967; Neale and Nader, 1974).  The numerical results suggested that the 

Beavers-Joseph slip coefficient was not just a function of the porous structure but also 

dependent on the flow direction, Reynolds number, the extent of the plain medium, 
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and the non-uniformities in the arrangement of the surface particles.  It was also 

shown that Brinkman formulation along with a constant effective viscosity did not 

describe the flow field near the interface accurately.  A variable effective viscosity 

model was recommended.  As an extension of their earlier study, Sahraoui and 

Kaviany (1994) then proceeded to examine the temperature interface condition in a 

similar manner.  Slip and no-slip temperature conditions with a constant and variable 

transverse total diffusivity were examined, respectively.  The thermal slip coefficient 

was determined to be a function of the bulk Peclet number, the thermal conductivity 

ratio (solid-to-fluid), and the gap width of the medium.   

Between 1995 and 1997, Ochoa-Tapia and Whitaker (1995a, 1995b and 1997) 

conducted a series of studies on the momentum and heat transfer at the interface of a 

porous medium and a fluid.  First, they (1995a) derived a jump condition in stress 

using a non-local form of volume averaged momentum equation.  This jump 

condition connected the Darcy’s model with the Brinkman correction to the Navier-

Stokes equations and produced a smooth transition of velocity profile at the interface.  

The jump interface condition was expressed in terms of a coefficient, which is 

determined by experimental measurements.  In their follow-up study (Ochoa-Tapia 

and Whitaker, 1995b), they compared stress jump condition with the experimental 

results provided by Beavers and Joseph (1967), and showed that they were in good 

agreement.  The possibility of using a variable porosity model for the stress jump 

condition was also evaluated in their study.  However, the comparison between the 

theory and experimental data was not successful, and more detailed experimental and 

numerical studies were needed to yield a significant improvement on the present
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model. 

Ochoa-Tapia and Whitaker (1997) then developed a flux jump condition at the 

interface between a porous medium and a fluid where the condition of local thermal 

equilibrium was invalid.  The heat transfer between the two phases (i.e., fluid and 

solid phases) was accounted for by inclusion of an excess heat exchange term.  

However, the excess surface heat exchange coefficient needed to be determined by 

experiments.   

As an extension to the analytical approach proposed by Vafai and Kim (1990) 

and addressing the concerns raised by Nield (1991), Kuznetsov (1997) analytically 

obtained a new set of interface conditions utilizing the stress jump condition proposed 

by Ochoa-Tapia and Whitaker (1995a, b).  It was shown that the difference between 

effective viscosity and fluid viscosity played an important role in determining the 

velocity profile. 

In a recent paper by James and Davis (2001), flow at the interface of a model 

fibrous porous medium (i.e., a channel partially filled with an array of widely spaced 

circular cylinders against one wall) was investigated.  For the spacing considered, 

singularity methods were employed to obtain solutions for both Couette and 

Poiseuille flows at the interface region.  It was suggested that the Brinkman model 

was not suitable to predict flow at the interface of a low-solidity porous medium.  

By far the most comprehensive and detailed review on the interface conditions 

between a porous medium and a fluid layer was given by a recent work of Alazmi and 

Vafai (2001).  They critically examined different types of interfacial conditions for 

fluid flow and heat transfer that have been used in the previous work.  In general, it 
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has been found that the variances (e.g., Darcy number, inertial parameter, Reynolds 

number, porosity and slip coefficient) have a more prominent effect on the velocity 

than the temperature distribution.  For most practical applications, the results 

produced by all the interfacial conditions examined were quite close to each other 

with the discrepancy only appeared for large Reynolds or Darcy numbers. 

  

1.4  Motivation and Objective of Present Study 
 

   For applications in underground pipelines for the transportation of natural gas 

and crude oil, power cables and the disposal of nuclear wastes, the pipe or canister 

temperature is usually higher than the surroundings due to artificial (viscosity 

reduction for oil transportation) or natural causes (ohm heating for transmission 

cables and decay heating for nuclear wastes).  As a result, a buoyancy-induced flow is 

initiated in the soils. 

 From the literature review presented in the previous sections, most of the 

previous studies have considered a homogeneous porous medium despite that 

heterogeneous or layered porous media are encountered more frequently.  For buried 

pipes, the soil structure near the buried site is usually modified from its original state 

in the excavation process.  A similar situation is found in the mining process for a 

nuclear waste repository.  In addition to the changes brought about by the 

excavation/mining process, it is customary to add backfill to the buried pipes and 

waste canisters.  As a result, the soil or bed rock that hosts the pipes and waste 

canisters is never homogeneous, but heterogeneous instead.   

 For the problem considered (Figure 1.4), the properties of the excavation 
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disturbed zone and backfill around the buried pipe would be different from those of 

the soil far away from the pipe.  Among the properties involved, permeability is 

perhaps the most important one because of its direct influences on the convective 

flow.  Therefore, it is the objective of the present study to examine the effects of 

permeability contrast in the porous medium on the fluid flow and heat transfer results. 

Another area of interest is when leakage from the pipe is induced accidentally 

(i.e., oil spill) or artificially (i.e., subsurface irrigation).  In the event of a leakage 

developed from the crude oil pipeline, one would be interested to know the spreading 

patterns of the crude oil over the surrounding environment.  Another application is the 

usage of waste heat for soil heating.  Sometimes it is also desirable to let water seep 

through the buried pipe to provide subsurface irrigation and maintain the moisture 

level in the soil (Slegel and Davis, 1977).  For either application, a prior knowledge 

of the flow, temperature and concentration distributions would certainly improve the

 

 

Figure 1.4  A horizontal pipe embedded in a porous medium with a backfill layer. 
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effectiveness in confining the pollutants or providing heating and irrigation to soil.  

Hence, the objective of the present study is to investigate the coupled heat and mass 

transfer by mixed convection induced by a leakage from a buried pipe (Figure 1.5).  

In addition to the numerical studies, experimental flow visualization using Hele-Shaw 

analogy is conducted to obtain the flow field for comparison.   

 

1.5  Dissertation Overview 
 
 This dissertation is consisted of three major studies (Chapters 4-6) with each 

focused on different aspects of heat transfer and fluid flow induced by a heated 

cylinder buried in a porous medium.  Some of the results have been presented at 

national heat transfer conferences and subsequently published in the corresponding 

conference proceedings or archival journals.  This dissertation is written with the 

intention to be a good reference source for students, researchers and engineering 

practitioners in this specific subject. 

 

 
Figure 1.5  Leakage from a horizontal pipe embedded in a porous medium. 
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 Chapter 1 presents a first glimpse at the research interests in porous media and 

their engineering applications.  A brief introduction to the study of heat transfer and 

fluid flow in porous media is included here.  The literature review presented in this 

chapter summarizes all the important work that has been done in the past.  It also 

discusses the trend of the current research.  The scope and objectives of the present 

study are also clearly defined in this chapter. 

 In Chapter 2, the concept and fundamental theory of body-fitted coordinates 

system is briefly introduced.  Since an elliptic grid generation is the preferred 

technique for the present study, it is discussed in more detail here.  The effects of the 

grid control functions are demonstrated through various examples.        

 Chapter 3 is centered on conduction and natural convection from a cylinder 

buried in a homogeneous porous medium.  Mathematical formulation along with the 

finite difference method is presented here in detail.  The results obtained are 

compared with and validated by those of previous studies.  The proper size of the 

computational domain for studies reported in the subsequent chapters is determined 

based on the analysis presented here.    

 Chapter 4 examines natural convection from a buried pipe with a layer of 

backfill.  Flow patterns and heat transfer results subject to a step change in the 

permeability of the backfill are presented.  Numerical calculations have been 

performed to cover a wide range of governing parameters (i.e., 10 ≤ Ra1 ≤ 500 and 

0.1 ≤ K1/K2 ≤ 10) for various backfill thicknesses (0.5 ≤ t/ri ≤ 2) (Ngo and Lai, 2005). 

 Chapter 5 addresses the numerical study on combined heat and mass transfer 

by mixed convection induced from a buried pipe with leakage.  A parametric study 
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has been performed to investigate the effects of Rayleigh number, Peclet number, 

Lewis number, and buoyancy ratio (i.e., Ra ≤ 500, Le ≤ 10, Pe ≤ 10, and N  ≤ 5) on 

the heat and mass transfer results.  The results have already been published in the 

Proceedings of the 2003 National Heat Transfer Conference (Ngo and Lai, 2003). 

 The flow visualization experiment conducted in the present study is presented 

in Chapter 6.  Flow patterns in a porous medium induced by a heated cylinder are 

visualized using Hele-Shaw cell and qualitatively compared to the numerical results.  

In this chapter, a brief introduction of the available experimental techniques is 

presented.  A review of literature on the Hele-Shaw analogy is also included in this 

chapter. 

 The final chapter summarizes the conclusions drawn from the present study 

and provides recommendations for the future work. 
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CHAPTER II 

   

BODY-FITTED COORDINATES 
  

 
2.1  Introductory Remarks  
 

Flow and heat transfer problems encountered in engineering practice often 

involve complex geometries.  Closed-form analytical solutions are, therefore, difficult 

and nearly impossible to obtain for most real world problems.  One alternative 

approach is to mathematically model and predict the physical processes using 

numerical methods such as finite difference method (FDM) and finite element 

method (FEM).  Owing to its simplicity in computations, FDM is the preferred 

method when the problem involved has a simple geometry which can be readily 

modeled using coordinate systems such as the Cartesian, cylindrical and spherical 

coordinates.  On the other hand, FEM is better suited for problems with irregular 

geometries.  The drawback associated with FEM is that the coding can be tedious and 

lengthy in time.       

 One numerical technique which is capable of dealing with complex and 

irregular geometries and yet maintaining the computational simplicity of FDM is by 

way of the body-fitted coordinates.  Due to its flexibility, body-fitted coordinates 

have been used to tackle a variety of engineering problems.  Just to name a few, Yost 

(1984) analyzed fluid flow and solidification problems in arbitrarily shaped domains; 

Koo and Leap (1998) modeled three-dimensional groundwater flows; and Strohle et 

al. (2000) performed numerical simulations for radiation from coal-fired furnaces.  

All have used body-fitted coordinates.  In additions, most commercial computational 
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fluid dynamics (CFD) software such as FLUENT, FLOW-3D and ALGOR provide 

grid generator with body-fitted coordinates.   

The concept of the body-fitted coordinate method is to obtain a curvilinear 

coordinate system by mapping an arbitrary shape in the physical domain onto a 

regular shape in the computational domain.  The curvilinear coordinates in the 

physical domain are generally not orthogonal.  Figure 2.1 shows a simply connected 

physical domain and its corresponding computational domain.  As the name of the 

body-fitted coordinate implies, the chosen boundary points in the physical domain 

intersect with the coordinate lines in the computational domain.  Segments AB and 

DC correspond to constant ξo and ξm lines, respectively.  The value of η varies 

monotonically (from ηo to ηn) along segments AB and DC.  Likewise, η is constant on 

segments AD and BC (i.e., ηo for AD and ηn for BC), and ξ varies monotonically

y
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Figure 2.1  Physical and computational domains of the body-fitted  

                coordinate transformation. 
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along them.  In the physical domain, the Cartesian coordinates x and y are the 

independent variables whereas the curvilinear coordinates ξ and η are the dependent 

variables.  The dependent and independent variables are interchanged in the 

computational domain.  The computational domain consists of uniform square grids.  

Therefore, the discretization process becomes greatly simplified and straightforward.  

This chapter presents a brief introduction of the body-fitted coordinates with 

the focus on the elliptic grid generation.  For an in-depth discussion of other 

numerical grid generation methods, one may refer to Thompson (1982), Thompson et 

al. (1982, 1999) and Knupp and Steinberg (1993) for more information.   

 

2.2  Elliptic Grid Generation 

Elliptic grid generation is widely used in computational fluid mechanics 

problems.  It is preferred over other methods for the following reasons, (a) the grid 

generated is fairly smooth, and (b) the boundary slope discontinuities are not 

propagated into the interior nodes.  In addition, this approach has been successfully 

used in the previous studies by Himasekhar and Bau (1988) and Hsiao et al. (1992) 

involving a similar geometry.  As such, it is chosen over other available coordinate 

transformations for the present study. 

   The simplest form of an elliptic generating system is the Laplace equation: 
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It has been shown that this coordinate transformation is unique (one-to-one mapping)

and has a non-vanishing Jacobian for any simply connected domain mapped onto 

rectangular domain (Knupp and Steinberg, 1993; Mastin and Thompson, 1978).  The 

grid generated using Laplace equation is evenly spaced and by far the smoothest, but 

the major drawback is that one has little control over the distributions of the interior 

nodes.  As a result, grid generation using the Laplace equation is not practical for 

most engineering problems.   

The preferred coordinate transformation is through an elliptic Poisson-type 

generating system given as follows 

,P
yx 2

2

2

2

=
∂
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+

∂
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              [2.2a] 

,Q
yx 2

2

2

2
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∂

η∂
+

∂

η∂
              [2.2b] 

where P  and Q  are the grid control functions.  The non-homogeneous nature of the 

Poisson-type grid generation allows for the control of the grid line distributions.  

Having introduced the grid control functions, the uniqueness of the coordinate 

transformation is no longer preserved; hence one should be cautious to make sure that 

the grid generated is not overlapped or folded (i.e., points fall outside of the 

prescribed domain).  More discussion on this subject will be given at the end of this 

chapter.   

   By interchanging the dependent and independent variables in Eqn. [2.2], the 

transformed equations in the computational domain become 
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J is the Jacobian of the coordinate transformation.  α , β  and γ  are the coefficients of 

the transformation.   

The grid control function is an attractive feature that elliptic Poisson-type 

generating system has to offer.  It provides the much needed flexibility for the users 

to control and adjust the grid distribution.  One type of grid control is through an 

adaptive control system where the distribution of the grid is coupled with the physical 

solution.  As the region with high gradient of field variables (e.g., temperature, 

concentration and pressure) changes with time, the grid distribution is adjusted 

accordingly.  Adaptive grid control is ideal for problems involving a moving 

boundary (e.g., solidification and high speed compressible flows).  The grid can be 

reconstructed and concentrated in regions near the freezing front or shock wave.  
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Another type of grid control is pre-specified by the users so that the regions, where 

high gradients of field variables are anticipated, have concentrated grid distributions.

The prescribed grid control functions employed in the present study are given by 
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Thompson et al. (1982) introduced these grid control functions to attract grids to 

selected coordinate lines and points.  Grid control function P  is to attract coordinate 

lines in the direction of ξ.  In particular, the amplitude factors 
i

ap  and jbp  move the 

ξ-coordinate lines towards line ξi and point (ξj, ηj), respectively.  The extent of 

attraction effect is determined by both the amplitude factors (
i

ap  and jbp ) and decay 

factors ( icp  and jdp ).  The “sign” operator ensures that the attraction of coordinate 

lines acts from both sides of line ξi and point (ξj, ηj).  Similarly, grid control function 

Q  attracts coordinate lines in the direction of η.  The selection of adequate amplitude 

and decay factors is based on a trial and error process until a reasonable grid is 

obtained.  The effects of the grid control functions will be illustrated in Chapter 2.4.   

 

2.3  Numerical Methods 

Finite difference method is used to discretize the partial differential equation
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given in Eqn. [2.3].  Based on the Taylor series expansion, the central difference 

approximations for the first and second derivatives are given as follows, 
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where Φ represents either the coordinate x or y.  ∆ξ and ∆η are the grid spacing in ξ- 

and η-direction, respectively.  The nodes involved in Eqn. [2.5] are illustrated in 

Figure 2.2.  Similarly, the mixed derivative is approximated by applying the first 

derivative in the η-direction and then in the ξ-direction, 
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Figure 2.2  Nodes involved in the finite difference equation. 
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For the present study, uniform grid is used.  As such, ∆ξ and ∆η are assumed unity.  

Notice that the accuracy of the above approximations can be improved by including 

additional terms from the Taylor series expansion if necessary.  

The discretized equations are then obtained as follows, 
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The above algebraic equations are then programmed using Fortran90 and solved with 

Gauss-Seidel iterative scheme (Chapra and Canale, 2002) subject to the specified 

boundary locations. 

  A successive over-relaxation parameter is employed to accelerate or improve 

the convergence of the results. 
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where  k:  iteration level, 

:1k

j,i

+
φ  the most recent value calculated from the Gauss-Seidel 

procedure, 

  :k

j,iΦ  the adjusted value from the previous iteration, 

  :1k

j,i

+
Φ  the newly adjusted value at the k+1 iteration level, and 

   r: relaxation parameter.  

The selection of adequate relaxation parameter is more of an art; it depends on 

experience and some insights to the problem.  Over-relaxation parameter (values 

between 1 and 2) is used in the present study to generate the grid.    

To determine if a solution has converged, the following convergence criterion 

is employed: 

,max k

j,i

1k

j,i δ≤Φ−Φ
+                 [2.9] 

where the quantity Φ represents either x- or y-coordinate, k is the iteration level, and 

δ is the allowable error, which is set to be 10
-8

 in the present study.  The iteration 

process is terminated once this criterion is met.  The solution procedures are 

summarized in the flow chart shown in Figure 2.3.  

 

2.4  Effects of Grid Control Function 
 

To demonstrate the effects of grid control function, let’s take the geometry 

considered in the present study (as shown in Figure 2.4) for example.  The mapping is 

chosen such that segments EF and DC are constant ξ-coordinate lines while segments
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Figure 2.3  Flow chart of the numerical procedures for grid generation. 
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Figure 2.4  Physical and computational domains of the geometry considered. 

 

 

ED and FABC represent constant ηo and ηn lines, respectively.  Sample meshes are 

then constructed with different combinations of the grid control functions. 

For the purpose of comparison, the meshes shown in Figure 2.5(a) and 2.6(a) 

are generated using the Laplace equation (i.e., P  = Q  = 0).  The following grid 

control functions (a special case of Eqn. [2.4]) are introduced: 
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where the amplitude and decay factors used to generate the mesh are summarized in
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Figure 2.5  Mesh generated with (a) no grid control function ( P  = Q  = 0); 

          (b) grid control function P  attracted to line ξ = 61;  

          (c) grid control function Q  attracted to line η = 101;  

          (d) both grid control functions P  and Q  attracted to lines ξ = 61 and η = 101      

          [number of nodes = 121×121]. 

(a) (b) 

(c) (d) 
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Figure 2.6  Mesh generated with (a) no grid control function ( P  = Q  = 0); 

            (b) grid control function P  attracted to point (ξ = 61, η = 101);  

            (c) grid control function Q  attracted to point (ξ = 61, η = 101);  

            (d) both grid control functions P  and Q  attracted to point (ξ = 61, η = 101) 

            [number of nodes = 121×121]. 

(a) (b) 

(c) (d) 



Chapter 2.4  Effects of Grid Control Function  

 

 56 

Table 2.1.  Figure 2.5(b) illustrates the attraction of ξ-coordinate lines towards ξ = 61 

while Figure 2.5(c) shows the attraction of η-coordinate lines towards η = 101.  The 

simultaneous effects of both grid control functions P  and Q  are shown in Figure 

2.5(d).  

On the other hand, the attraction of coordinate lines towards a single point (ξ 

= 61, η = 101) is illustrated in Figure 2.6.  In particular, the grid control function P  is 

employed to attract ξ-coordinate lines towards point (ξ = 61, η = 101) in Figure 2.6(b) 

while grid control function Q  is employed to attract η-coordinate lines towards point 

(ξ = 61, η = 101) in Figure 2.6(c).  Both grid control functions are used in Figure 

2.6(d) for the concentration of coordinate lines.  In this section, the concentration of 

coordinate lines towards a specified line or point is demonstrated separately.  It is 

noted that they can be employed simultaneously to obtain the level of grid 

concentration needed. 

 

Table 2.1  Amplitude and decay factors employed in Figures 2.5, 2.6 and 2.8. 

 

Figure No. ap  bp  cp  dp  aq  bq  cq  dq  Remarks 

          
2.5a --- --- --- --- --- --- --- --- No Grid Control Functions 

2.5b 10 --- 0.25 --- --- --- --- --- Line Attraction with P  

2.5c --- --- --- --- 10 --- 0.25 --- Line Attraction with Q  

2.5d 10 --- 0.25 --- 10 --- 0.25 --- Line Attraction with P  & Q  

2.6a --- --- --- --- --- --- --- --- No Grid Control Functions 

2.6b --- 20 --- 0.2 --- --- --- --- Point Attraction with P  

2.6c --- --- --- --- --- 20 --- 0.2 Point Attraction with Q 

2.6d --- 20 --- 0.2 --- 20 --- 0.2 Point Attraction with P  & Q  

2.8 --- 30 --- 0.1 --- 30 --- 0.1 Point Attraction with P  & Q  
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2.5  Grid Quality 
 

For a given geometry, often there is more than one way to generate the mesh.  

Two different meshes are constructed and shown in Figure 2.7 for the geometry 

considered in the present study.  The first mesh is constructed as described in Chapter 

2.4 (same as Figure 2.4).  That is, the mapping is chosen such that segments EF and 

DC are constant ξ-coordinate lines while segments ED and FABC represent constant 

ηo and ηn lines, respectively.  The grid is generated with only grid control function Q  

to attract η-coordinate lines towards ηo and ηn lines:  

,0),(P =ηξ                 [2.11a] 

( ) ( ) ( ) ( ){ }nnoo cqexpsigncqexpsignaq),(Q η−η−η−η+η−η−η−η−=ηξ  

       [2.11b] 

where aq  and cq  are set to 10 and 0.25, respectively.  The second mapping is 

constructed such that segments AB and FEDC are constant ξ-coordinate lines while 

segments AF and BC represent constant η-coordinate lines.  No grid control function 

is employed to obtain this grid.   

Since there are several possible ways of generating meshes for a given 

geometry, the question is what guidelines one should follow in generating the mesh.  

Generally the grid construction is problem dependent.  The rule of thumb is to 

construct a grid which closely resembles the actual flow conditions (i.e., grid profile 

aligned with streamlines or isotherms).  For the present study, the first mesh would be 

ideal for simulating flows induced from a heated cylinder with an impermeable top 

boundary (segment BC).  On the other hand, the mesh generated using the second
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Figure 2.7  Two different mappings for a given geometry 

                       [number of nodes = 121×121]. 
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mapping would be better suited for a permeable top boundary. 

Generally speaking, the accuracy of the numerical results depends highly on 

the grids.  The generated grid should not be highly distorted or with extreme 

skewness.  It is also desirable to maintain the grid as much orthogonal as possible.  

The computational results obtained should be independent of the grid.  It is always a 

good practice to undergo a grid refinement test to find the optimal number of nodes 

so that one can achieve a balance between the accuracy of the results and 

computational efficiency in terms of time and cost.    

As briefly mentioned in Chapter 2.2, grid generation using Poisson equation 

no longer guarantees the mapping is one-to-one.  The selection of the amplitude and 

decay factors becomes an important factor to avoid overlapped or folded grid.  Figure 

2.8 shows a folded grid generated using grid control functions P  and Q  to attract the 

coordinate lines to point (ξ = 61, η = 101).  This is essentially the same functions 

employed in Figure 2.6(d) but with different values of the amplitude and decay 

factors ( bp  = bq  = 30, dp  = dq  = 0.1).  As seen from Figure 2.8, this combination 

of the amplitude and decay factors greatly amplifies the extent of the grid attraction.  

As a result, a folded grid with overlapped coordinate points is generated. 
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Figure 2.8  Folded grid generated with both grid control functions  

          P  and Q  for attracting the coordinate lines to point (ξ = 61, η = 101)  

          [number of nodes = 121×121]. 
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CHAPTER III  
   

 

HEAT CONDUCTION AND NATURAL 
CONVECTION FROM A PIPE BURIED IN A 

HOMOGENEOUS POROUS MEDIUM 
 

 
3.1  Introductory Remarks  
 

 Heat transfer from a buried pipe has been a subject of great interest for many 

decades because of its important applications in engineering, which include the 

underground pipelines for gas and oil, power cables and the disposal of nuclear 

wastes.  For these applications, the surface temperature of pipe or canister is usually 

higher than that of surroundings due to artificial (reduction of viscosity for oil 

transportation) or natural (ohm heating for transmission cables and decay heating for 

nuclear wastes) causes.  In this chapter, the numerical results of heat conduction are 

first presented.  The study of natural convection is then conducted to investigate the 

flow and heat transfer induced by buoyancy in a porous medium.  The numerical 

schemes employed to tackle the present problem are described in details.  The 

conclusions are expressed in generic terms such that they can also be applied to other 

similar situations (e.g., mixed convection study in Chapter 5).  Through the studies of 

heat conduction and natural convection, one can determine the appropriate domain 

size for the porous medium which can accurately represent a semi-infinite medium.  

The results obtained in this chapter not only validate the present numerical approach 

but also serve as a basis for comparison with the results obtained from subsequent 

studies in the later chapters.  
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3.2  Heat Conduction 
 

One of the earliest studies concerning heat transfer from a buried pipe was 

performed by Eckert and Drake (1959), in which they determined the analytical 

solutions using the heat source and sink method.  For the present study, it is 

appropriate to begin with solving the conduction problem numerically.  The results 

thus obtained can be served as a validation of the proposed mathematical model and 

used as a reference in the determination of the proper dimensions for the present 

model to represent a semi-infinite medium.    

 
3.2.1  Problem Statement and Mathematical Formulation 

 

Consider a cylindrical heat source with a radius of ri embedded in a porous 

medium at a depth of d beneath the top surface (Figure 3.1).  This cylindrical heat 

source may represent a heated pipe for crude oil transportation, a heated electric

 

Figure 3.1  A horizontal heated pipe embedded in a porous medium. 
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cable or a nuclear waste storage container.  Both isothermal and convective 

conditions are considered for the top surface while insulated conditions are applied to 

all other boundaries.  Since heat conduction is the primary heat transfer mode of 

interest here, the two-dimensional steady-state heat conduction equation expressed in 

Cartesian coordinates is given by 

.0
y

T

x

T
2

2

2

2

=
∂

∂
+

∂

∂
                [3.1] 

The above equation can be written in dimensionless form as 

   ,0
YX 2

2

2

2

=
∂

Θ∂
+

∂

Θ∂
                [3.2] 

where the temperature is normalized by the temperature difference between the pipe 

and the top surface for isothermal top boundary (or the temperature difference 

between the pipe and the ambient air for convective top boundary, 
ch

c

TT

TT

−

−
=Θ ).  The 

radius of the buried pipe is taken as the characteristic length.  The heat conduction 

equation can then be transformed to the computational domain using the 

transformation described in Chapter 2, and the equation becomes  

  ,02
=Θ∇

ξη
               [3.3a] 

where  
η∂

∂
+

ξ∂

∂
+

η∂

∂γ
+

η∂ξ∂

∂β
−

ξ∂

∂α
=∇

ξη
QP

JJ

2

J
2

2

2

2

22

2

2

2                        [3.3b] 

is the Laplacian operator in the computational domain.  Grid control function Q  is 

employed to control the grid line distribution in the direction of η toward the 

boundaries η0 and ηn (Thompson, 1982), 
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η−η−η−η−=
                [3.4]  

where A1 and A2 are the amplitude and decay factors, respectively.  No grid control is 

needed in the direction of ξ (i.e., P  = 0).  The values of A1 and A2 for various domain 

sizes (w/ri) are summarized in Table 3.1.  The grid generated for a domain size of w/ri 

= 30 is shown in Figure 3.2 using 121 x 121 nodes. 

  

      Table 3.1  Amplitude factor A1 and decay 

                                       factor A2 values employed in this study. 
  

                           w/ri            A1    A2         

          15          10.0          0.25        

           20               8.0          0.50         

           25            5.0          0.50         

           30               4.0          0.50         

 

 

  
 

Figure 3.2  Grid for the domain with w/ri = 30 and 121 x 121 nodes. 
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3.2.2  Boundary Conditions and Numerical Methods 

For the present study, the dimensionless burial depth is fixed at five (i.e., d/ri 

= 5).  Various geometry dimensions (i.e., w/ri = 15, 20, 25 and 30) are tested to obtain 

the optimum size for the domain to represent a semi-infinite medium.  The cylindrical 

heat source is assumed to maintain at a higher temperature while both isothermal and 

convective conditions are considered for the top surface.  Insulated conditions are 

applied to all other boundaries.  Only one half of the domain (-w ≤ x ≤ 0 and -w ≤ y ≤ 

d) is considered for computations due to symmetry.  The dimensionless boundary 

conditions are illustrated in Figure 3.3. 
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Figure 3.3  Dimensionless boundary conditions for the study of heat 

  conduction from a buried pipe. 
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For the convective boundary condition on the top surface, it is expressed in 

terms of the Biot number, which is defined as follows, 

 ,
k

hr
Bi i

=                    [3.5] 

where h is the convective heat transfer coefficient and k is the thermal conductivity of 

the medium.  The Biot number represents the ratio of heat convection at the top 

surface to heat conduction within the porous medium. 

The discretization of the governing equation (Eqn. [3.3]) follows the finite 

difference method described in Chapter 2.3.  The discretized equation for the 

temperature is given by 

   
,)QAA()QAA(

)PAA()PAA()(A

S43N43

W42E42NWSWNESE1P

Θ−+Θ++

Θ−+Θ++Θ+Θ−Θ−Θ=Θ
       [3.6]  

where the A coefficients are defined in Eqn. [2.7].  The numerical procedure for 

solving the above algebraic equation has been given previously; hence the discussion 

is omitted here for brevity.  The algorithm for the numerical procedure is summarized 

using the flow chart in Figure 3.4. 

The heat transfer results are expressed in the dimensionless forms as follows 

 ,d
R

Q
2

1R

in ∫
π

π
=

θ
∂

Θ∂
−=                [3.7a] 

and  ,dX
Y

Q
0

rw
rdY

out
i

i

∫−
=

∂

Θ∂
−=               [3.7b] 

where Qin is the heat transfer through the pipe and Qout represents heat loss through 

the top surface.  Since all other boundaries are insulated, Qin should equal to Qout in
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Figure 3.4  Flow chart of the numerical procedures for the study of  

               conduction from a buried pipe. 

 

 

order to achieve an energy balance. 

 

3.2.3  Results and Discussion 

The results for the isothermal top surface are first examined.  Based on the 

analytical study of Eckert and Drake (1959), it has been found that for d/2ri >>1, the 

heat transfer from the cylinder can be evaluated by 
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.
)r/d2ln(

)TT(kL2
Q

i

ch −π
=                 [3.8] 

This result is often expressed in terms of the conduction shape factor given in most 

heat transfer textbooks (e.g., Incropera and DeWitt, 1996; Mills, 1999).  For 

comparison with the present numerical results, the equation is recast into a 

dimensionless form.  For d/ri = 5 the dimensionless heat transfer rate from a half 

cylinder can be calculated by 

 36.1
)10ln()r/d2ln(k)TT(L2

Q
Q

ichdomainhalf

ess,dimensionl =
π

=
π

=
−

=             [3.9] 

The dimensionless heat transfer results obtained from the present study for different 

physical domain sizes are summarized in Table 3.2.  The energy balance is satisfied 

within 1% and the amount of heat transfer approaches 1.43 as the domain size is 

increased.  The results agree quite well with the analytical solution by Eckert and 

Drake (1959), with only 5% deviation.  The temperature distributions around a buried 

heat source obtained analytically by Eckert and Drake (1959) are reproduced in 

Figure 3.5.  It is noted that the temperature fields are represented by concentric circles.  

The centers of these circular isotherms shift downward as the radii increase.  Same

  

                           Table 3.2  Heat conduction results for different  

                           physical domain size. 

 

                       w/ri      Qin          Qout        % Err 

      15      1.35         1.34         0.4 

       20             1.42         1.41         0.7 

       25      1.43         1.42         0.5 

       30             1.43         1.43         0.3 
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Figure 3.5  Analytical temperature distribution around  

    a buried heat source [Eckert and Drake (1959)]. 
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 Figure 3.6  Temperature field for conduction with  

                              isothermal top surface (∆Θ = 0.1). 
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trend can be observed from the present numerical results shown in Figure 3.6.  In this 

chapter, only partial results are presented in the figures (-10 ≤ X ≤ 0, -10 ≤ Y ≤ 5) in 

order to better observe the temperature field at the vicinity of the buried pipe. 

 Once again as indicated in Table 3.2, the heat transfer approaches an 

asymptotic value of 1.43 as the domain size is increased.  However, it is not 

conclusive to state that a domain with w/ri = 30 is sufficient to represent a semi-

infinite medium based on the conduction results alone.  The results obtained herein at 

least provides clues for the necessary domain size, confirmation still awaits the study 

of natural convection. 

 The results for convective top surface are discussed next.  The temperature 

fields for various Biot numbers are presented in Figure 3.7.  When the convective 

heat transfer is sufficiently small (i.e., Bi ≤ 1), virtually no heat is transferred through 

the medium.  As the Biot number increases (i.e., a highly convective top surface), the 

temperature at the top surface approaches that of the ambient air.  The convective 

condition essentially reduces to an isothermal boundary condition when the Biot 

number becomes infinitely large.  Based on the heat transfer results (Table 3.3) and 

the isotherms (Figure 3.7), it is realized that when Biot number has a value of 10 or 

greater, the results depict those of isothermal top condition.  Note the similarity of 

temperature distributions in Figure 3.7(f) and Figure 3.6.  The dimensionless heat 

transfer rate also approaches 1.43 as the Biot number increases. 

 

 3.3  Natural Convection 
  

 Heat conduction involving a buried heated pipe in a semi-infinite porous
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  Figure 3.7  Temperature fields for conduction with convective top surface 

(a) Bi = 0.01, (b) Bi = 0.05, (c) Bi = 0.1, (d) Bi = 1, (e) Bi = 10, (f) Bi = 100     

(∆Θ = 0.1). 

 

 

     Table 3.3  Heat transfer results for conduction 

                                   with convective top surface (w/ri = 30). 

                        Bi             Qin       Qout          % Err 

                  0.01 0.24           0.24           0.7 

                   0.05 0.71           0.71           1.2 

                   0.1             0.93           0.94           1.7 

                   1.0              1.35           1.35           0.3 

                                       10.0              1.41           1.44           1.5 

                                     100.0              1.43           1.44           1.1 

(d) Bi = 1 (e) Bi = 10 (f) Bi = 100 

(b) Bi = 0.05 (a) Bi = 0.01 (c) Bi = 0.1 
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medium has been considered in the previous section.  However, since the porous 

medium is saturated with fluid, a buoyancy-induced flow is likely to initiate when the 

temperature difference is large.  Therefore, it is crucial to take into the account of the 

buoyancy effects.  Previous studies have considered various configurations and 

models of porous media.  For example, Bau (1984) has obtained analytical solutions 

for heat convection from a pipe buried in a semi-infinite porous medium using the 

perturbation method.  Farouk and Shayer (1988) as well as Christopher and Wang 

(1993) have obtained numerical results using Darcy and non-Darcy formulations, 

respectively.  Experimental results have been reported by Fernandez and Schrock 

(1982) as well as Fand et al. (1986).  Particularly, an excellent review of this subject 

has been presented by Nield and Bejan (1999). 

 
3.3.1  Problem Statement and Mathematical Formulation 
 
 The model considered here is the same as shown previously in Figure 3.1.  

The top surface is impermeable and isothermal (Tc) while the pipe is maintained at a 

higher temperature Th.  Again, only one half of the physical domain is considered for 

computations due to symmetry.  For the present study, it is assumed that the 

properties of the fluid and porous medium are homogeneous and isotropic.  The solid 

matrix of the porous medium is in local thermodynamics equilibrium with the 

saturating fluid.  It is further assumed that Darcy’s law is applicable and thus the 

inertial and viscous effects are neglected.    

 The governing equations based on Darcy’s law in Cartesian coordinate system 

are given by     
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Continuity:   ,0
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              [3.10] 
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−=               [3.11] 

Y-Momentum:  ,g
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           [3.13] 

In accordance with Darcy’s law, the volume-averaged velocity is directly 

proportional to the pressure gradient and the permeability K, but inversely 

proportional to the viscosity of the saturating fluid µ.  α in the energy equation 

represents the thermal diffusivity of the porous medium.   

All physical properties are assumed constant except the density in the body 

force term of the y-momentum equation.  Boussinesq approximation is invoked to 

account for the changes in density due to temperature difference, and it is assumed 

that density is a linear function of the temperature difference: 

( )[ ] ,TT1 cTc −β−ρ=ρ                          [3.14] 

where βT is the coefficient of thermal expansion.  This approximation is valid only for 

small temperature difference, i.e., )1(O)TT( c ≤− (Gebhart el al., 1988). 

 The following dimensionless parameters are introduced to normalize the 

governing equations. 
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,
TT

TT

ch

c

−

−
=Θ   

( )
.

rTTKg
Ra ichT

αν

−β
=        [3.15e, f] 

The characteristic length is the radius of the buried pipe while the velocity is 

normalized using α/ri.  Temperature is normalized with the temperature difference 

between the buried pipe and the top surface.  Ra is the modified Rayleigh number, 

and it represents the ratio of buoyancy force to viscous force.   

 Then, stream function is introduced to further simplify the governing 

equations, 

,
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U
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=   .
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∂

Ψ∂
−=        [3.16a, b] 

The continuity equation is satisfied automatically by introducing stream function. 

   After cross-differentiating the momentum equations (Eqn. [3.11] and [3.12]) 

to eliminate the pressure terms, one obtains the dimensionless governing equations in 

terms of stream function as follows. 

,
X

Ra
YX 2

2

2

2

∂

Θ∂
−=

∂

Ψ∂
+

∂

Ψ∂
                         [3.17] 

.
YXYXXY 2

2

2

2

∂

Θ∂
+

∂

Θ∂
=

∂

Θ∂

∂

Ψ∂
−

∂

Θ∂

∂

Ψ∂
             [3.18] 

 The above governing equations are transformed to the computational domain 

by employing the elliptic transformation described in Chapter 2.  The resultant 

equations are given by 
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3.3.2  Boundary Conditions 
 

The governing equations are then solved with respect to the prescribed 

boundary conditions.  For this study, the buried pipe is assumed to be impermeable; 

hence the normal velocity vanishes while a slip velocity is allowed along the pipe 

surface according to Darcy’s formulation.  The pipe is maintained at a higher 

temperature while the top surface is impermeable and isothermal.  In view of the 

symmetry of the mathematical model, only half of the domain is considered for 

computations.  Hence, symmetrical conditions are applied to the vertical mid-plane.  

For the far-field boundaries (i.e., left and bottom boundaries), it is assumed that the 

domain considered is sufficiently large so that adiabatic conditions are appropriate, 

and the tangential velocities vanish.  This is essentially implying that these 

boundaries are permeable (constant pressure) such that fluid flows past the 

boundaries perpendicularly.   

Mathematically, the boundary conditions are stated as follows. 

At ,rr i=  ,2π≤θ≤π                ,0u r =  .TT h=     [3.22a, b]  

At ,dy =  ,0xw ≤≤−               ,0v =   .TT c=     [3.22c, d] 

At ,wx −=  ,dyw ≤≤−            ,0v =   .0
x

T
=

∂

∂
     [3.22e, f] 
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At ,wy −=  ,0xw ≤≤−             ,0u =   .0
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    [3.22g, h] 

At ,0x =   ,dyri ≤≤       ,0u =   .0
x

T
=
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∂
      [3.22i, j] 

At ,0x =   ,wyri −≤≤−       ,0u =   .0
x

T
=

∂

∂
     [3.22k ,l] 

   Figure 3.8 shows a schematic of the dimensionless boundary conditions.  The 

boundary conditions in terms of the dimensionless parameters and stream function are 

given below. 

At ,1R =  ,2π≤θ≤π                ,0=Ψ  .1=Θ      [3.23a, b] 

At ,r/dY i=  ,0Xr/w i ≤≤−   ,0=Ψ  .0=Θ     [3.23c, d] 
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At ,r/wY i−=  ,0Xr/w i ≤≤−   ,0
Y

=
∂

Ψ∂
 .0

Y
=

∂

Θ∂
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      [3.23i, j] 
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=
∂

Θ∂
     [3.23k, l] 

Similar to the governing equations, the boundary conditions are transformed 

to the computational domain using the elliptic transformation described in Chapter 2 

and they become, 

At ,oη=η   ,mo ξ≤ξ≤ξ    ,0=Ψ   .1=Θ      [3.24a, b] 

At ,nη=η   ,1o ξ≤ξ≤ξ    ,0
XX

=
η∂

∂

ξ∂

Ψ∂
−

ξ∂

∂

η∂

Ψ∂
        [3.24c] 



Chapter 3.3  Natural Convection 

 

 77 

0
X

Θ
====

∂∂∂∂

∂∂∂∂

0
X

====
∂∂∂∂

ΨΨΨΨ∂∂∂∂

0
X

  0, ====
∂∂∂∂

ΘΘΘΘ∂∂∂∂
====ΨΨΨΨ

0  0, ====ΘΘΘΘ====ΨΨΨΨ

0
Y

  0,
Y

====
∂∂∂∂

ΘΘΘΘ∂∂∂∂
====

∂∂∂∂

ΨΨΨΨ∂∂∂∂

1  ,0 ====ΘΘΘΘ====ΨΨΨΨX

Y
R

0
X

  0, ====
∂∂∂∂

ΘΘΘΘ∂∂∂∂
====ΨΨΨΨ

 
 

Figure 3.8  Dimensionless boundary conditions for the study of natural  

            convection from a buried pipe. 
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3.3.3  Numerical Methods  
 

In this section, the numerical techniques used to discretize the governing 

equations will be discussed in details.  The derivations will be expressed in a generic 

form so that the results obtained here can be applied to the related studies that will be 

discussed in the later chapters with minimum modifications.  As such, the numerical 

details will not be repeated elsewhere in the dissertation.   

The transformed governing equations along with the boundary conditions are 

reduced to a set of algebraic equations using the finite difference and finite volume 

method (Coulter and Güceri, 1985; Yost, 1984).  Successive algebraic equations for 

the field variables such as the temperature, concentration and stream function at 

discrete points in the selected domain are sought.  A computer program is then 

written and executed to solve for the solutions.  The control volume approach is used 

to derive the finite difference equations.  A schematic of the control volume for the 

computational domain is shown in Figure 3.9.  The shaded area represents the control 

volume centered at node P.  For diffusion terms, a central difference approximation is 

employed.  The convective terms in the energy or transport equation are discritized 

using the upwind scheme.  The derivations given here are based on uniform grids (i.e., 

η∆=ξ∆ ).   
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   Figure 3.9  A control volume in a two-dimensional computational  

               domain. 

 

3.3.3.1  Discretization of Momentum Equation 

The discretization of the momentum equation (Eqn. [3.19]) is fairly 

straightforward, and it can be obtained using the central-difference approximation 

expressed in Eqn. [2.5].  After considerable manipulations, the stream function at 

node P is given by the following algebraic equation,   

[ ],FFFFF
)(2

1
54321

PP

P ++++
γ+α

=Ψ           [3.25a] 

where ( ),F WEP1 Ψ+Ψα=               [3.25b] 

( ),F SNP2 Ψ+Ψγ=               [3.25c] 

( ),
2

F SWNWSENE
P

3 Ψ+Ψ−Ψ−Ψ
β

−=             [3.25d] 
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⋅
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The transformation coefficients PPPP Jand,, γβα  are given in Eqn. [2.7].  Note that 

the discretized momentum equation can also be obtained by integration over a control 

volume (finite volume method).  However, it is realized that both approaches yield 

the same results when uniform grids are used (as in the present study).  Also, the 

accuracy of the above approximations can be improved by including additional terms 

from the Taylor series expansion if necessary. 

 

3.3.3.2  Discretization of Energy Equation 

In general, central difference scheme can also be used to discretize the energy  

equation including the convective terms on the right-hand side of Eqn. [3.20].  

However, as pointed out by Lai (1988), for high Reynolds or Peclet numbers (as in 

the study of forced and mixed convection), this discretization approach may lead to 

numerical instabilities.  To overcome this drawback, upwind scheme is one of the 

numerical schemes that provide the advantages of simplicity and numerical stability 

for convection-dominated problems.  In the present study, the upwind scheme is only 

applied to the convective terms.   

The energy equation is integrated over the control volume as shown in Figure 

3.9. 
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The treatment of diffusion and convective terms will be described separately in the 

following sections.  Now, let’s consider the convective terms on the right-hand side 

of the energy equation.  

 

(a) Convective Terms 
 

The integrand in the convective terms can be recast in the following manner. 
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where the Jacobian for the given control volume is evaluated at the central node P.  

By taking the integration once, Eqn. [3.27] becomes, 
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          [3.28] 

Now, consider the first term in Eqn. [3.28], 

.dI
n,

s,
e

e1C η








η∂

Ψ∂
Φ= ∫

η

η

             [3.29] 

Based on the second theorem of mean for integrals (Chapra and Canale, 2002), it is 

known that there exists a value eΦ  in the interval between the values of eΦ  at upper 

and lower integration limits, such that 
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           [3.30] 

which leads to the following simplifications, 

.)(I senee1C Ψ−ΨΦ≈               [3.31] 

In accordance with the upwind scheme, eΦ  only takes the value of eΦ  at the 

upstream face of the control volume, which can be stated mathematically as follows. 

,Pe Φ=Φ   if  ;0sene >Ψ−Ψ          [3.32a] 

,Ee Φ=Φ   if  .0sene <Ψ−Ψ          [3.32b]  

The above argument can be written in a more compact form and combined with Eqn. 

[3.31] to give 

     
( ) ( )

.
22

I
senesene

P

senesene

E1C 






 Ψ−Ψ+Ψ−Ψ
Φ+







 Ψ−Ψ−Ψ−Ψ
Φ≈           [3.33] 

Other convective terms (IC2, IC3, and IC4) can be obtained in a similar fashion. 

Further, by assuming the stream function at the corner of the control volume 

takes the average value of those at the four neighboring nodes, one can obtain   

      ,
4

NPENE
ne

Ψ+Ψ+Ψ+Ψ
≈Ψ        ,

4

SPESE
se

Ψ+Ψ+Ψ+Ψ
≈Ψ      [3.34a, b] 

      ,
4

WPNNW
nw

Ψ+Ψ+Ψ+Ψ
≈Ψ      .

4

WPSSW
sw

Ψ+Ψ+Ψ+Ψ
≈Ψ                 [3.34c, d] 

Combine these results for all four convective terms, one obtains the following 

expression. 
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,)(A)(A)(A)(ATermsConvective SPSNPNWPWEPE Φ−Φ+Φ−Φ+Φ−Φ+Φ−Φ=><

                     

       [3.35a] 

where [ ],)(
J8

1
A NNESSENNESSE

P

E Ψ−Ψ−Ψ+Ψ+Ψ−Ψ−Ψ+Ψ=                    [3.35b] 

[ ],)(
J8

1
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W Ψ−Ψ−Ψ+Ψ+Ψ−Ψ−Ψ+Ψ=         [3.35c] 

[ ] ,)(
J8

1
A WNWENEWNWENE

P

N Ψ−Ψ−Ψ+Ψ+Ψ−Ψ−Ψ+Ψ=         [3.35d] 

[ ].)(
J8

1
A SEEWSWSEEWSW

P

S Ψ−Ψ−Ψ+Ψ+Ψ−Ψ−Ψ+Ψ=         [3.35e] 

 
(b) Diffusion Terms 
 

Now, let’s turn our attention to the diffusion terms given as follows 
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                      [3.36] 

 

 

The integration of diffusion terms will be explained term-by-term in the following 

sections.   

 

(i) 1st Term 
 

The first diffusion term can be rewritten as follows, 
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The first diffusion term can be divided into two separate terms ID1A and ID1B.  By 

integrating once with respect to ξ, the term ID1A becomes, 
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It has been assumed that the quantities 
2

J

α
 and Φ vary only in the direction of ξ.  As 

mentioned before, uniform grid is employed in the present study (i.e., 1=η∆=ξ∆ ).  

Once again, with the assumption that 
2

J

α
 and Φ vary only in the direction of ξ, the 

second integral of the first diffusion term can be obtained as follows, 
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Combining the results of both integrations, the first diffusion term is given by 

( ) ( ) ( ).BBBI WEB1PWAW1PEAE11D Φ−Φ−Φ−Φ+Φ−Φ=            [3.40] 

 

(ii) 2nd Term 
 

Rewrite the second diffusion term as follows, 
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By integrating once and assuming 
2J

2β
−  and Φ vary in the direction of ξ and η, 

respectively.  The first integral ID2A can be obtained as follows, 
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where ,
JJ4

1
B

P

2

E

2AE2 














 β
−+







 β
−=  and .

JJ4

1
B

P

2

W

2AW2 














 β
−+







 β
−=     [3.42b, c] 

Note that the values of Φne, Φse, Φnw and Φsw are taken as the average value of the 

neighboring nodes.  Perform the integration of the second integral ID2B, one yields 
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The second diffusion term is thus given by 
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(iii) 3rd Term 
 

Similar to the treatment of the first diffusion term, rewrite the third diffusion 

term in the following manner.  
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Now, with the assumption that 
2J

γ
 and Φ vary only in the direction of η, both 

integrations of the third diffusion term can be obtained as follows, 
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where .
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
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=              [3.47b] 

Finally, the third diffusion term is given by 

( ) ( ) ( ).BBBI SNB3PSAS3PNAN33D Φ−Φ−Φ−Φ+Φ−Φ=            [3.48] 

 

(iv) 4th Term 
 
 Once again, rewrite the fourth diffusion term using the product rule of 

differentiation. 
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By integrating once with respect to ξ and assuming the quantity ( ΦP ) varies linearly 

in the direction of ξ only, the first integral is obtained as follows, 
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where ,P
2

1
B EAE4 =  and  .P

2

1
B WAW4 =         [3.50b, c] 

Similarly, the second integral can be integrated to yield, 
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where ( ),PP
4

1
B WEBP4 −=  and .B

4

1
B BP4B4 =        [3.51b, c] 

Combine and rearrange terms, the fourth diffusion term becomes, 

 ( ) .BBBBI PBP4ESWNB4WAW4EAE44D Φ−Φ+Φ+Φ+Φ−Φ−Φ=           [3.52] 

 

(v) 5th Term 

 

Follow the same procedures as described above for the fourth diffusion term, 

the last diffusion term can be obtained as follows,  
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The first integral is determined to be 
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where ,Q
2

1
B NAN5 =  and .Q

2

1
B SAS5 =         [3.54b, c] 

 

And the second integral is given by 
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where ( ),QQ
4

1
B SNBP5 −=  and .B

4

1
B BP5B5 =        [3.55b, c] 

 

The 5
th

 diffusion term is then given by 

 ( ) PBP5ESWNB5SAS5NAN55D BBBBI Φ−Φ+Φ+Φ+Φ−Φ−Φ=          [3.56] 
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 Thus far, all the diffusion terms have been discretized term-by-term.  

Combine the results of all five diffusion terms, one yields 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
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         [3.57] 

Equate and rearrange the results obtained for both diffusion and convective terms, the 

temperature at the central node is then determined to be   

,
T

T

1SUM

2SUM
P =Θ              [3.58a] 

where  ,BAT 1SUMT1SUMT1SUM +=              [3.58b] 

,BAT 2SUMT2SUMT2SUM +=                        [3.58c] 

,AAAAA SNWE1SUMT +++=            [3.58d] 

,BBBBBBB BP5BP4AS3AN3AW1AE11SUMT +++++=          [3.58e] 

( ),BBBB WEB1WAW1EAE11T Θ−Θ−Θ+Θ=             [3.58f] 

 
( ) ( )

( ),B

BBB

SNB2

SWSNNWAW2SESNNEAE22T

Θ−Θ−

Θ−Θ−Θ+Θ−Θ−Θ−Θ+Θ=
        [3.58g] 

( ),BBBB SNB3SAS3NAN33T Θ−Θ−Θ+Θ=            [3.58h] 

( ),BBBB ESWNB4WAW4EAE44T Θ+Θ+Θ+Θ−Θ−Θ=           [3.58i] 

( ).BBBB ESWNB5SAS5NAN55T Θ+Θ+Θ+Θ−Θ−Θ=            [3.58j]                
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A Fortran90 code has been developed to perform the numerical calculations 

using Gauss-Seidel iterative scheme incorporated with the relaxation parameters (Eqn. 

[2.8]).  The numerical iteration is terminated once the convergence criterion (Eqn. 

[2.9]) is met.  The allowable error δ is set to be 10
-4

 in the present study for all field 

variables (i.e., temperature, concentration and stream function).  The algorithm for the 

present numerical procedures is summarized in Figure 3.10.    

The heat transfer results are expressed in terms of the overall Nusselt number, 

and it is defined below (in the physical domain). 

∫ −
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Θ∂
−=

0

r
w

rdYi i

.dX
Y

Nu              [3.59] 

The Nusselt number represents the total heat flux through the top wall.  As an 

additional check on the accuracy of the results obtained, an overall energy balance 

has been performed after each calculation.  The relaxation parameters were adjusted 

to reduce the relative errors to within 3%.  The definitions of the relative errors are 

given as follows,   
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In the expression of Eqn. [3.60b], it has been assumed that the velocities U and V are 

in the positive direction.  When performing the energy balance, the directions of the 

velocities were obtained prior to the determination if the energy transfer was going 

into or coming out of the control volume. 
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Figure 3.10  Flow chart of the numerical procedures for  

                        the study of natural convection from a buried pipe. 
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3.3.4  Results and Discussion 
 

 One immediate concern of the present study that needs to be addressed is to 

determine the width (w/ri) of the physical domain so that the present model can 

adequately represent a semi-infinite porous medium.  For the case of natural 

convection due to thermal buoyancy alone, heat transfer results have been obtained 

for various Rayleigh numbers, and they are summarized in Table 3.4.  It is noted that 

for all Rayleigh numbers, the total heat transfer approaches an asymptotic value as the 

width of the domain increases.  When a small domain is employed, the flow field 

becomes unstable and no converged solution can be obtained for high Rayleigh 

numbers.  Based on the analysis, it is concluded that a dimensionless width w/ri of 30 

is sufficient for the present model to represent a semi-infinite medium.  This finding 

is also consistent with the experimental observation by Fand et al. (1986).  Based on 

their experimental results, they established that for a burial depth (d/ri) of 22.2, a 

horizontal dimensionless width of 17.6 and a vertical dimensionless width of 22.2 are 

adequate for the enclosed porous medium to be considered as infinite.    

 
Table 3.4  Heat transfer results for various physical domain size. 

 

       w/ri     Nuin       Nuout   % Err    Nuin      Nuout    % Err    Nuin       Nuout    % Err 

                            Ra = 25       Ra = 50          Ra = 75 

        15      5.069     5.063    0.1      7.148     7.179    0.4       8.741     8.659    0.9 

        25      5.188     5.200    0.2      7.459     7.409    0.7       9.090     9.111    0.2 

        30      5.214     5.198    0.3      7.499     7.482    0.2       9.149     9.166    0.2   

                           Ra = 100        Ra = 200          Ra = 500 

        15    10.201     9.855    3.4            Not Converged             Not Converged 

        25    10.485   10.479    0.1     14.499   14.505    0.0          Not Converged 

        30    10.549   10.542    0.1     14.586   14.695    0.7     21.459   21.498    0.2 
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Once the dimensions of the physical domain are fixed, a grid refinement test is 

performed to determine the effect of grid size.  For the present study, a mesh of 

121×121 is used.  A further grid refinement does not produce any significant 

improvement in the heat transfer results. 

Next, the present results are compared with those reported by Himasekhar and 

Bau (1987) as well as Merkin (1979) for the case of natural convection from a heated 

pipe embedded in a porous medium.  The heat transfer results in terms of the Nusselt

number are shown in Figure 3.11.  For the present study, heat transfer results can be

correlated as 

.RaNu 5.0
=                            [3.61] 

As seen from Figure 3.11, the numerical results obtained from the present 

study compared very well with the analytical solutions reported by Himasekhar and
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      Figure 3.11  Validation of the present numerical code for the study of natural     

      convection from a buried pipe. 
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Bau (1987) at low Rayleigh numbers (Ra ≤ 20).  This is expected since the correlation 

of Himasekhar and Bau (1987) was obtained from the perturbation analysis, which is 

only good for small Rayleigh numbers.   

Merkin (1979) has also obtained a correlation of the Nusselt number from 

natural convection from a cylinder buried in an infinite porous medium using 

similarity method, 

,Ra565.0Nu 5.0

D=               [3.62] 

where Nu is the average Nusselt number and the Rayleigh number is based on the

diameter D.  By comparing the correlation from Merkin (1979) with the present study, 

it is noted that for both correlations, the Nusselt number is proportional to the square 

root of the Rayleigh number.  The only difference is the proportional constants, which 

may be attributed to the difference in the modeled problem domain (i.e., semi-infinite 

porous medium vs infinite porous medium).    

   The streamlines and isotherms for various Rayleigh numbers are shown in 

Figure 3.12 and 3.13, respectively.  As observed, heated fluid rises along the pipe 

surface to the top boundary and then discharges to the left boundary.  The flow field is 

replenished by cold fluid entering from the lower boundaries.  Due to thermal 

buoyancy, there is a large recirculating cell.  The strength of this recirculating cell 

increases with the Rayleigh number.  Corresponding to this flow motion, a thermal 

plume is observed to develop from the top surface of the buried pipe, especially at 

high Rayleigh numbers.  Quantitatively, the plots of the streamlines and isotherms

agree well with those reported by Himasekhar and Bau (1987). 
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  Figure 3.12  Flow fields for natural convection from a buried heated pipe  

           (a) Ra = 10, (b) Ra = 50, (c) Ra = 80, (d) Ra = 100, (e) Ra = 200,  

           (f) Ra = 500 (∆Ψ = 1). 

 

 

3.4  Concluding Remarks  
 

 Based on the results obtained for conduction and natural convection induced 

from a pipe buried in a homogeneous porous medium, it is concluded that a 

dimensionless width (w/ri) of 30 is appropriate for the model to represent a semi-

infinite medium.  The validity of the present model has been confirmed by the

(b) Ra = 50 (a) Ra = 10 (c) Ra = 80 

(e) Ra = 200 (d) Ra = 100 (f) Ra = 500 
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Figure 3.13  Temperature fields for natural convection from a buried heated pipe  

    (a) Ra = 10, (b) Ra = 50, (c) Ra = 80, (d) Ra = 100, (e) Ra = 200, (f) Ra = 500  

    (∆Θ = 0.1). 

 

 

excellent agreement between the present numerical solutions and those of the 

previous analytical work.  The conductive heat transfer for an isothermal top surface 

is determined to be 1.43, which is within 5% of the analytical solution provided by 

Eckert and Drake (1959).  As for the convective top surface, the heat transfer results 

approach those of isothermal top surface when the Biot number is equal to or greater 

(b) Ra = 50 (a) Ra = 10 (c) Ra = 80 

(e) Ra = 200 (d) Ra = 100 (f) Ra = 500 
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than 10.  As for the study of natural convection, Nusselt number is found to be a 

function of the square root of the Rayleigh number.  The results also compare well 

with the perturbation solutions provided by Himasekhar and Bao (1987) for small 

Rayleigh numbers.    
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CHAPTER IV  
   

 

NATURAL CONVECTION FROM A PIPE 
BURIED IN A HETEROGENEOUS  

POROUS MEDIUM 
 

4.1  Introductory Remarks  

 In Chapter 3, heat conduction and natural convection induced from a heated 

pipe buried in a porous medium has been examined.  The porous medium considered 

has been assumed to be homogeneous; however in reality heterogeneous or layered 

porous media are encountered more frequently in engineering applications.  For 

buried pipes, the soil structure near the buried site is usually modified from its 

original state in the excavation process.  A similar situation is found in the mining 

process for a nuclear waste repository.  In addition to the changes brought about by 

the excavation/mining process, it is customary to add backfill to the buried pipes and 

waste canisters.  As a result, the soil or bed rock that hosts the pipes and waste 

canisters are never homogeneous, but heterogeneous instead. 

A review of the literature reveals that only limited deal with heat convection 

from a buried pipe in a heterogeneous porous medium (Hsiao et al., 1992).  Previous 

studies that most closely resemble the problem at hand are those reported by 

Muralidhar et al. (1986) and Ngo and Lai (2000) in which a layered porous annulus 

was considered.  For the problem considered here, the properties of the excavation 

disturbed zone and backfill around the buried pipe would be different from those of 

the soil far away from the pipe.  Among the properties involved, permeability is
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perhaps the most important because of its direct influence on the convective flow.  

Therefore, it is the objective of the present study to examine the effects of 

permeability variation in the porous medium on the heat transfer results. 

 
4.2  Mathematical Formulation 

 The geometry considered is a horizontal pipe with a radius of ri buried in a 

saturated porous medium at a depth of d beneath the top surface (Figure 4.1).  The top 

surface is assumed impermeable and maintained at a constant temperature Tc while 

the buried pipe is maintained at a higher temperature Th.  The excavation disturbed 

zone and backfill immediate around the buried pipe is assumed to form a layer of 

thickness t and which has a distinct permeability from the soil outside of this region 

(far field).  Since the physical domain is symmetric, only one half of the domain (-w 

≤ x ≤ 0 and -w ≤ y ≤ d) is considered for computations. 

 

Figure 4.1  A horizontal pipe with a backfill layer in a saturated porous medium. 
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 The governing equations based on Darcy’s law in the computational domain 

are the same as those presented in Chapter 3. 
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and the subscript i (= 1, 2) denotes the inner and outer regions of the porous medium, 

respectively.  The mesh for both physical and computational domain is shown in 

Figure 4.2.  Only grid control function Q  is employed in the outer region of the 

porous medium to control the grid line distributions in the direction of η toward the 

boundary ηn (Thompson, 1982), i.e., 

 ,0P =                                    [4.4]

 ( ) [ ],AexpsignAQ n2n1 η−η−η−η−=                   [4.5] 

with A1 = 4 and A2 = 0.5.  

 

 

4.3  Boundary and Interface Conditions 

 The boundary conditions for this problem are given as follows: 

At ,rr i=  ,2π≤θ≤π               ,TT h1 =     .0u 1r =       [4.6a, b] 

At ,dy =  ,0xw ≤≤−              ,TT c2 =     .0v2 =       [4.6c, d] 

At ,wx −=  ,dyw ≤≤−           ,0
x

T2
=

∂

∂
    .0v2 =        [4.6e, f]  
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Figure 4.2  Mesh generated in the physical and computational domain. 
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At ,wy −=  ,0xw ≤≤−            ,0
y

T2
=

∂

∂
     .0u2 =       [4.6g, h] 

At ,0x =   ,)tr(yr ii +±<≤±     ,0
x

T1
=

∂

∂
     .0u1 =         [4.6i, j] 

   ,dy)tr( i ≤<+          ,0
x

T2
=

∂

∂
   .0u2 =        [4.6k, l] 

   ,wy)tr( i −≤<+−     ,0
x

T2
=

∂

∂
    .0u2 =      [4.6m, n] 

For better understanding, the dimensionless boundary conditions are shown in 

Figure 4.3. 
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Figure 4.3  Dimensionless boundary conditions for the study of natural 

            convection from a buried pipe with a backfill layer. 
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In addition to the boundary conditions, appropriate conditions need to be 

specified at the interface between the two porous regions and they are the continuity 

of pressure, temperature, radial flow and heat flux: 

,pp 21 =                [4.7a] 

,TT 21 =                [4.7b] 

,uu 2r1r =                [4.7c] 

.
r

T
k

r

T
k 2

2
1

1
∂

∂
=

∂

∂
                         [4.7d] 

The justification of these interface conditions has been given by Rana et al. (1979) as 

well as by McKibbin and O’Sullivan (1981).  In a separate study by Pan and Lai 

(1996), it has been shown that the application of these interface conditions does 

produce a better agreement with experimental results. 

 The boundary conditions in the transformed domain are given below. 
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where the subscript “int” refers to the location of the interface. 

 Similarly, the transformed dimensionless interface conditions are, 
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4.4  Numerical Methods 

 The governing equations along with the boundary conditions are solved by 

finite difference method (see Chapter 3 for the derivation).  The expressions of the 

discretized stream function and temperature for the inner and outer regions are given 

by Eqn. 3.25 and Eqn. 3.58, respectively.  The interface conditions are implemented 

using imaginary nodal points (Figure 4.4) as described by Rana et al. (1979).  The 

location of the interface is indicated by ηint, along with solid circles representing the 

actual grid points and open circles as the imaginary nodal points.  The interface 

conditions for stream function and temperature can be reduced to the following 

algebraic forms: 
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Figure 4.4  Imaginary nodal points for the implementation of interface conditions.  
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Also, note that the grids near the interface have been constructed carefully to preserve 

the smoothness and near orthogonality, as can be seen from Figure 4.5.   

For the present study, the dimensionless buried depth is fixed at five (d/ri = 5) 

and the thermal diffusivity ratio is set to unity (α1/α2 = 1).  Since the porous medium 

is assumed to be saturated with the same fluid, the thermal diffusivity ratio is equal to 

the thermal conductivity ratio (α1/α2 = k1/k2).  Numerous trial runs have been 

conducted to ensure that the heat transfer results obtained from the present study are 

independent of the physical domain and mesh size.  It has been found that a 

dimensionless width (w/ri) of 30 is sufficient to represent the domain as a semi- 

infinite medium (see Chapter 3).  A uniform grid of 121×161 in the computational 

domain (i.e., 121×41 for the inner region and 121×121 for the outer region) is the best

                              

Figure 4.5  Magnified view of the computational mesh near the interface. 
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choice for all calculations in terms of the computational efficiency and accuracy.  It 

should be noted that a further increase in the physical domain size or grid refinement 

does not produce any significant improvement in the heat transfer results (< 1%).  As 

an additional check on the accuracy of the numerical results, an overall energy 

balance has been performed.  All the results obtained are satisfied within 3%.  The 

solution procedures are summarized by the flow chart shown below. 
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the Relaxation Parameters

Input the Boundary 

Conditions

Solving for the Stream Function and 
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Figure 4.6  Flow chart of the numerical procedures for the study of  

               natural convection from a buried pipe with a backfill layer. 
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To validate the numerical code, the present results have been tested against 

those reported in the literature for natural convection in a layered porous annulus.  

With a minimum modification of the present code, results can be readily obtained and 

they are in good agreement with those reported by Ngo and Lai (2000), which can be 

clearly observed from Figure 4.7. 

 
4.5  Results and Discussion  

To this end, numerical calculations have covered a wide range of the 

governing parameters (i.e., 10 ≤ Ra1 ≤ 500 and 0.1 ≤ K1/K2 ≤ 10) for various backfill 

thicknesses (0.5 ≤ t/ri ≤ 2), and they are summarized in Table 4.1. 

When the excavation disturbed zone or backfill is considered, the resulting 

flow and temperature fields (Figures 4.8 - 4.11) are very different from those of the 

homogeneous one.  To better observe the flow structure and temperature field at the 

vicinity of the buried pipe, only partial results are presented in these figures (10 ≤ X ≤  

0
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Figure 4.7  Validation of numerical results for natural convection in a 

              layered porous annulus. 
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      Table 4.1  Range of the parameters considered in the study of natural  

                 convection from a buried pipe with a backfill layer. 

 

          Parameters                 Range 

                      Rayleigh Number (Ra) 10, 20, 50, 80, 100, 200, 500 

                      Permeability Ratio (K1/K2) 0.1, 1, 10 

                      Backfill Thickness (t/ri) 0.5, 1, 2 

 

 

0, -10 ≤ Y ≤ 5).  For K1/K2 = 10, it is observed that the heat transfer mode is mainly 

by conduction at low Rayleigh numbers (e.g., Ra1 = 10), which is evident from the 

isotherms displayed in Figure 4.9.  As the Rayleigh number (thermal buoyancy) 

increases, convective flow is first initiated from the inner layer (i.e., the more 

permeable layer) and then gradually penetrates the outer region (Figure 4.8).  Due to 

the added flow resistance in the outer region, the flow fields for K1/K2 = 10 are 

weaker than those of the homogeneous case.  As a result, the eye of the convective 

cell is confined mostly in the inner layer.  For a fixed Rayleigh number, the strength 

of the convective cell increases with the inner layer thickness (t/ri).  A thicker inner 

layer provides more room for the convective cell to develop. 

 On the other hand, for K1/K2 = 0.1, the outer region is more permeable than 

the inner layer, and consequently convection is promoted.  It can be observed from 

Figure 4.10 that convection is initiated even at a low Rayleigh number and the 

strength of the convective cell is notably strong when compared with that of the 

homogeneous case.  It is interesting to note that the eye of the convective cell in this 

case always locates at the outer region.  From the isotherms shown in Figure 4.11, it 
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Figure 4.8  Flow fields for a buried pipe with a backfill of K1/K2 = 10  (∆Ψ = 0.5). 
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Figure 4.9  Temperature fields for a buried pipe with a backfill of K1/K2 = 10  

       (∆Θ = 0.1). 
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Figure 4.10  Flow fields for a buried pipe with a backfill of K1/K2 = 0.1 (∆Ψ = 2). 
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Figure 4.11  Temperature fields for a buried pipe with a backfill of K1/K2 = 0.1  

      (∆Θ = 0.1). 
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is ascertained that heat transfer is always by convection for K1/K2 < 1.  For a fixed 

Rayleigh number, the temperature gradient across the inner layer decreases with an 

increase in the inner layer thickness.  The strength of the convective flow in the outer 

layer is weakened accordingly.  

For the present study, heat transfer results are evaluated in terms of the 

Nusselt number at the top surface,  

,dX
Y

Nu
0

r
w

r/dYi i

∫−
=

∂

Θ∂
−=              [4.12] 

which also represents the total heat flux through the top surface.  For a homogeneous 

porous medium, the heat transfer results can be correlated by the following equation,   

  .RaNu 2

1

=                [4.13] 

The Nusselt numbers obtained for the present study are shown in Figure 4.12 as a 
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Figure 4.12  Heat transfer results for natural convection from a buried pipe  

         with and without backfill. 
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function of the Rayleigh number.  It is observed that the Nusselt number for a buried 

pipe with a backfill of K1/K2 < 1 is always larger than that of a homogeneous one 

while it is always smaller for a buried pipe with a backfill of K1/K2 > 1.  It should be 

mentioned that for K1/K2 < 1, no converged solution has been obtained for high 

Rayleigh numbers (Ra1 ≥ 500) due to the nature of a highly convective flow field.  It 

is interesting to note that the trend observed here is similar to that for a layered porous 

annulus (Ngo and Lai, 2000) despite that the configurations for these two cases are 

very different. 

 
4.6  Concluding Remarks 

 The present study has considered a very fundamental problem in heat transfer.  

Although the problem has received considerable attention in the past, the present 

study addresses some critical aspects of the problem, particularly related to its 

applications to energy utilization and environmental protection.  Based on the results 

obtained, one can conclude that, for the transportation of crude oil, it may be 

desirable to have a layer of backfill or excavation disturbed zone that is more 

permeable than the hosting soil (K1/K2 > 1) so that the heat loss can be minimized.  In 

fact, this is also the most desirable condition for the purpose of environmental 

protection since the contamination will be confined mostly in the disturbed zone or 

the backfill layer in the event that a leak should develop from a pipeline or a nuclear 

waste canister.  On the other hand, for the applications in electric power transmission, 

a backfill with K1/K2 > 1 may be used if overheating of transmission lines or power 

cables is to be avoided.  
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CHAPTER V  
   

 

COUPLED HEAT AND MASS TRANSFER  
BY MIXED CONVECTION FROM A BURIED 

PIPE WITH LEAKAGE 
 
 

5.1  Introductory Remarks 
 

In the previous two chapters, heat transfer and fluid flow near a buried pipe in 

both homogeneous and heterogeneous porous medium have been examined from the 

natural convection perspective.  Coupled heat and mass transfer resulting from a 

leakage on a buried pipe is the main interest in this chapter.  This type of convection 

is frequently referred to as the double-diffusive mixed convection, where the 

buoyancy due to the concentration difference is as significant as that produced by the 

temperature difference.  Despite the importance of this transport phenomenon in 

engineering applications, only limited reports are available in the literature that deal 

with double diffusive convection from a buried cylinder.  One of the pioneering 

studies was performed by Poulikakos (1985) as he tackled the problem with 

perturbation method using a heat and concentration point source in an infinite porous 

medium.  Later, Cheng and Lai (1997), Yih (1999) as well as Chamkha and Quadri 

(2001) investigated the double-diffusive transport phenomena from a buried cylinder.  

However, their studies did not consider a leakage from the pipe.  

The objective of the present study is to investigate the coupled heat and mass 

transfer by mixed convection induced by a leakage from a cylinder buried in a porous 

medium.  The engineering application that is closely related to this study is the 
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transportation of crude oil through buried pipelines.  In order to reduce the pumping 

load and cost, crude oil is often heated to a higher temperature to reduce its viscosity 

for transport.  In the event of a leak developed from the pipeline, one would be 

interested in predicting the spreading patterns of the crude oil from the accident site to 

the surrounding environment.  Another application related to the present study is the 

usage of waste heat for soil heating.  Sometimes it is desirable to let water seep 

through a buried pipe to provide subsurface irrigation and maintain the moisture level 

in the soil (Slegel and Davis, 1977).  For either application, a prior knowledge of the 

flow, temperature and concentration distributions would certainly improve the 

effectiveness in confining the pollutants or providing subsurface heating and 

irrigation. 

The geometry considered is a horizontal pipe with a radius of ri embedded in a 

saturated porous medium at a depth of d (d/ri = 5 for the present study) beneath the 

top surface (Figure 5.1).  A crack developed on the pipe is assumed to have an 

angular span of 9
o
 to produce leakage from the pipe.  Two locations of the leakage are 

considered in the present study: one is on top and another at the bottom of the pipe.  

The fluid is assumed to discharge from the horizontal pipe at a radial velocity of uR 

and a higher concentration of hC .  The impermeable top surface is maintained at a 

lower temperature Tc and concentration cC  while the pipe itself is maintained at a 

higher temperature Th.  Since the geometry of the present problem is symmetric to the 

center line that contains the vertical diameter of the pipe, only one half of the physical 

domain is considered for computation.  As illustrated in Chapter 3, the value of w/ri
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Figure 5.1  A leaking horizontal pipe embedded in a porous medium. 

 

 

has been set to 30 as this ensures the domain is large enough to represent a semi-

infinite medium. 

 

5.2  Mathematical Formulation 
 

  Similar to the studies previously discussed in Chapter 3 and 4, the properties 

of the fluid and porous medium are assumed homogeneous and isotropic.  The solid 

matrix is in local thermodynamics equilibrium with the saturating fluid.  It is also 

assumed that the Darcy’s law is applicable and thus the inertial and viscous effects 

are neglected.  The governing equations for the double-diffusive convection based on 

Darcy’s law in Cartesian coordinate system are given by     
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where D in the species transport equation represents the mass diffusivity.   

   In this study, the Boussinesq approximation is employed to account for the 

changes in density due to temperature and concentration difference in the body force 

term in the y-momentum equation.  It is further assumed that density is a linear 

function of both temperature and concentration difference: 

( ) ( )[ ],CCTT1 cCcTc −β−−β−ρ=ρ                [5.6] 

where βT and βC are the coefficient of thermal and concentration expansion, 

respectively.  This approximation is valid only for small temperature and 

concentration differences, i.e., )1(O)CC(and)1(O)TT( cc ≤−≤−  (Gebhart et al., 

1988). 

   Next, the following dimensionless parameters are introduced for the 

normalization of the governing equations, 
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The radius of the buried pipe is chosen as the characteristic length.  Note that the 

characteristic velocity is different from that in the previous chapters for natural 

convection.  The radial velocity of the leakage is used as the characteristic velocity in 

the present study.  Temperature and concentration are normalized with the 

temperature and concentration difference between the cylinder and the top surface.  

Ra is the modified Rayleigh number as it represents the ratio of buoyancy force to 

viscous force.  Le is the Lewis number, the ratio of thermal to mass diffusivity.  Pe is 

the Peclet number as it is the measure of bulk heat transfer to diffusive heat transfer.  

N is the buoyancy ratio, the ratio of buoyancy due to concentration difference to that 

due to temperature difference.  It is obvious that N is zero for pure thermal driven 

flows, infinite for mass driven flows, negative for opposing flows and positive for 

aiding flows. 

 Stream function is introduced to further simplify the governing equations, 
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By introducing the stream functions, the continuity equation is satisfied automatically. 

 After cross-differentiated the momentum equations to eliminate the pressure 

terms, the dimensionless governing equations in terms of stream function are given 

by 
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 The above governing equations are then transformed to the computational 

domain by employing the elliptic transformation described in Chapter 2.  The 

resultant equations are given as follows, 
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∂
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∂
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where  ,QP
JJ

2

J 2

2

2

2

22

2

2

2

η∂

∂
+

ξ∂

∂
+

η∂

∂γ
+

η∂ξ∂

∂β
−

ξ∂

∂α
=∇

ξη
            [5.15] 

 is the Laplacian operator in the computational domain. 

 

 

5.3  Boundary Conditions 

   The corresponding boundary conditions for the present study are given as 

follows, 

(a) cylinder surface:  ,0u r =  ,TT h=  .0
r

C
=

∂

∂
 [5.16a, b, c] 
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(b) leakage location:   ,uu Rr =  ,TT h=  .CC h=  [5.16d, e, f] 

(c) top surface:   ,0v =   ,TT c=  .CC c=  [5.16g, h, i] 

(d) left boundary:   ,0v =   ,0
x

T
=

∂

∂
 .0

x

C
=

∂

∂
  [5.16j, k, l] 

(e) bottom boundary:   ,0u =   ,0
y

T
=

∂

∂
 .0

y

C
=

∂

∂
        [5.16m, n, o] 

(f) top right boundary:  ,0u =   ,0
x

T
=

∂

∂
 .0

x

C
=

∂

∂
 [5.16p, q, r] 

(g) bottom right boundary:  ,0u =   ,0
x

T
=

∂

∂
 .0

x

C
=

∂

∂
  [5.16s, t, u] 

   Figure 5.2 shows a schematic of the dimensionless boundary conditions.  The 

boundary conditions in terms of the dimensionless parameters and stream functions 

are given below. 

(a) cylinder surface:  (i) o2 θ−π=Ψ  (upward leakage),         [5.17a] 

(ii) θ−θ=Ψ o  (downward leakage),         [5.17b] 

    ,1=Θ      .0
R

C
=

∂

∂
      [5.17c, d] 

(b) leakage location:   (i) θ−π=Ψ 2  (upward leakage),          [5.17e] 

    (ii) θ−θ=Ψ o  (downward leakage),          [5.17f] 

,1=Θ      .1C =       [5.17g, h] 

(c) top surface:   ,0=Ψ      ,0=Θ       .0C =   [5.17i, j, k] 

(d) left boundary:   ,0
X

=
∂

Ψ∂
     ,0

X
=

∂

Θ∂
      .0

X

C
=

∂

∂
    [5.17l, m, n] 

 



Chapter 5.3  Boundary Conditions 

 

 125 

0
X

Θ
====

∂∂∂∂

∂∂∂∂

0
X

Θ
====

∂∂∂∂

∂∂∂∂

0
X

C
====

∂∂∂∂

∂∂∂∂

0
X

====
∂∂∂∂

ΨΨΨΨ∂∂∂∂

0
X

C
====

∂∂∂∂

∂∂∂∂

0
X

C
  0,

X
  0, ====

∂∂∂∂

∂∂∂∂
====

∂∂∂∂

ΘΘΘΘ∂∂∂∂
====ΨΨΨΨ

0C  0,  0, ========ΘΘΘΘ====ΨΨΨΨ

 1====ΘΘΘΘ0,
R

C
====

∂∂∂∂

∂∂∂∂

0
Y

C
  0,

Y
  0,

Y
====

∂∂∂∂

∂∂∂∂
====

∂∂∂∂

ΘΘΘΘ∂∂∂∂
====

∂∂∂∂

ΨΨΨΨ∂∂∂∂

,2 oθθθθ−−−−ππππ====ΨΨΨΨ

1 ====ΘΘΘΘ

1C ====

θθθθ−−−−ππππ====ΨΨΨΨ 2

X

Y R
θθθθ

θθθθ
οοοο

o2 θθθθ−−−−ππππ====ΨΨΨΨ

 

0
X

Θ
====

∂∂∂∂

∂∂∂∂

0
X

Θ
====

∂∂∂∂

∂∂∂∂

0
X

C
====

∂∂∂∂

∂∂∂∂

0
X

====
∂∂∂∂

ΨΨΨΨ∂∂∂∂

0
X

C
====

∂∂∂∂

∂∂∂∂

0
X

C
  0,

X
  0, ====

∂∂∂∂

∂∂∂∂
====

∂∂∂∂

ΘΘΘΘ∂∂∂∂
====ΨΨΨΨ

0C  0,  0, ========ΘΘΘΘ====ΨΨΨΨ

 1====ΘΘΘΘ0,
R

C
====

∂∂∂∂

∂∂∂∂

0
Y

C
  0,

Y
  0,

Y
====

∂∂∂∂

∂∂∂∂
====

∂∂∂∂

ΘΘΘΘ∂∂∂∂
====

∂∂∂∂

ΨΨΨΨ∂∂∂∂

,0====ΨΨΨΨ

1 ====ΘΘΘΘ

1C ====

θθθθ−−−−θθθθ====ΨΨΨΨ o

X

Y R
θθθθ

θθθθ
οοοο

ππππ−−−−θθθθ====ΨΨΨΨ o

 
 

Figure 5.2  Dimensionless boundary conditions: (a) upward leakage and 

           (b) downward leakage. 

(a) 

(b) 
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(e) bottom boundary:   ,0
Y

=
∂

Ψ∂
     ,0

Y
=

∂

Θ∂
      .0

Y

C
=

∂

∂
    [5.17o, p, q] 

(f) top right boundary:  ,0=Ψ      ,0
X

=
∂

Θ∂
       .0

X

C
=

∂

∂
     [5.17r, s, t] 

(g) bottom right boundary:  (i) o2 θ−π=Ψ  (upward leakage),          [5.17u] 

    (ii) π−θ=Ψ o  (downward leakage),                    [5.17v] 

,0
X

=
∂

Θ∂
     .0

X

C
=

∂

∂
     [5.17w, x] 

 

   The boundary conditions are also transformed to the computational domain 

using the elliptic transformation described in Chapter 2 and they are given as follows, 

(a) cylinder surface: (i) o2 θ−π=Ψ  (upward leakage),                  [5.18a] 

(ii) θ−θ=Ψ o  (downward leakage),                     [5.18b] 

    ,1=Θ                            [5.18c] 
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Y

sin
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
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θ−

η∂

∂
θ

ξ∂
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               [5.18d] 

(b) leakage location:  (i) θ−π=Ψ 2  (upward leakage),           [5.18e] 

   (ii) θ−θ=Ψ o  (downward leakage),           [5.18f] 

,1=Θ      .1C =                   [5.18g, h] 

(c) top surface:  ,0=Ψ      ,0=Θ      .0C =                       [5.18i, j, k] 

(d) left boundary:  ,0
YY

=
ξ∂

∂

η∂

Ψ∂
−

η∂

∂

ξ∂

Ψ∂
             [5.18l] 
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.0
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           [5.18n] 

(e) bottom boundary:   ,0
XX

=
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ξ∂
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,0
XX

=
η∂

∂

ξ∂

Θ∂
−

ξ∂

∂

η∂

Θ∂
           [5.18p] 

       .0
XCXC
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η∂

∂
            [5.18q] 

(f) top right boundary:  ,0=Ψ                  [5.18r] 
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η∂

Θ∂
−
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            [5.18s] 
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η∂
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η∂

∂

ξ∂

∂
            [5.18t] 

(g) bottom right boundary: (a) o2 θ−π=Ψ  (upward leakage),          [5.18u] 

 

          (b) π−θ=Ψ o  (downward leakage),         [5.18v] 

,0
YY

=
ξ∂

∂

η∂
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−

η∂

∂
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Θ∂
                         [5.18w] 

.0
YCYC

=
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∂

η∂

∂
−

η∂

∂
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∂
           [5.18x] 

 

5.4  Numerical Methods  

The transformed governing equations (Eqns. [5.12] - [5.15]) along with the 

boundary conditions (Eqns. [5.18]) are solved using a finite difference method similar 
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to those previously reported by Coulter and Güceri (1985) and Yost (1984).  The 

control volume approach is used to derive the finite difference equations.  For 

diffusion terms, central-difference approximation is employed.  The convective terms 

in the energy and transport equations are discritized using the upwind scheme.  A 

detailed description of the numerical schemes has been discussed in Chapter 3, thus 

only the discretized results are summarized here for brevity. 

For a uniform grid (i.e., 1=η∆=ξ∆ ), the stream function is given by the 

algebraic equation 

[ ],FFFFFF
)(2

1
654321

PP

P +++++
γ+α

=Ψ           [5.19a] 

where ( ),F WEP1 Ψ+Ψα=               [5.19b] 

( ),F SNP2 Ψ+Ψγ=               [5.19c] 

( ),
2

F SWNWSENE
P

3 Ψ+Ψ−Ψ−Ψ
β

−=                        [5.19d] 

( ) ( )[ ],QP
2

J
F SNWE

2

P
4 Ψ−Ψ+Ψ−Ψ=             [5.19e] 

( )( ) ( )( )[ ],YYYY
Pe4

JRa
F WESNSNWE

P
5 −Θ−Θ−−Θ−Θ

⋅
=           [5.19f] 

( )( ) ( )( )[ ].YYCCYYCC
Pe4

JNRa
F WESNSNWE

P
6 −−−−−

⋅⋅
=          [5.19g] 

The transformation coefficients PPPP Jand,, γβα  are given in Eqns. [2.7].   

The temperature at the central node is determined to be   

,
T

T

1SUM

2SUM
P =Θ                           [5.20a] 
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where  ,BAT 1SUMT1SUMT1SUM +=              [5.20b] 

,BAT 2SUMT2SUMT2SUM +=             [5.20c] 

,)AAAA(PeA SNWE1SUMT +++=             [5.20d] 

,BBBBBBB BP5BP4AS3AN3AW1AE11SUMT +++++=           [5.20e] 

,)AAAA(PeA SSNNWWEE2SUMT Θ+Θ+Θ+Θ=            [5.20f] 

,BBBBBB 5T4T3T2T1T2SUMT ++++=           [5.20g] 

( ),BBBB WEB1WAW1EAE11T Θ−Θ−Θ+Θ=            [5.20h] 

( ) ( )

( ),B

BBB

SNB2

SWSNNWAW2SESNNEAE22T

Θ−Θ−

Θ−Θ−Θ+Θ−Θ−Θ−Θ+Θ=
         [5.20i] 

( ),BBBB SNB3SAS3NAN33T Θ−Θ−Θ+Θ=             [5.20j] 

( ),BBBB ESWNB4WAW4EAE44T Θ+Θ+Θ+Θ−Θ−Θ=          [5.20k] 

( ).BBBB ESWNB5SAS5NAN55T Θ+Θ+Θ+Θ−Θ−Θ=            [5.20l] 

Other coefficients such as A’s (e.g., AE, AW, AN and AS) and B’s (e.g., B1AE, B1AW, 

B1B etc.) are given in Chapter 3.  

The concentration at the central node is given by 

 ,
C

C
C

1SUM

2SUM
P =               [5.21a] 

where  ,BAC 1SUMC1SUMC1SUM +=              [5.21b] 

,BAC 2SUMC2SUMC2SUM +=             [5.21c]

 ,)AAAA(PeLeA SNWE1SUMC +++⋅=           [5.21d]

 ,BBBBBBB BP5BP4AS3AN3AW1AE11SUMC +++++=          [5.21e] 
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,)CACACACA(PeLeA SSNNWWEE2SUMC +++⋅=          [5.21f] 

,BBBBBB 5C4C3C2C1C2SUMC ++++=           [5.21g] 

( ),CCBCBCBB WEB1WAW1EAE11C −−+=           [5.21h] 

 
( ) ( )

( ),CCB

CCCCBCCCCBB

SNB2

SWSNNWAW2SESNNEAE22C

−−

−−+−−−+=
       [5.21i] 

( ),CCBCBCBB SNB3SAS3NAN33C −−+=           [5.21j] 

( ),CCCCBCBCBB ESWNB4WAW4EAE44C +++−−=          [5.21k] 

( ).CCCCBCBCBB ESWNB5SAS5NAN55C +++−−=          [5.21l] 

Coefficients A’s and B’s are the same as those shown in Eqns. [5.20].  Also, note the 

similarity between the discretized formulations of temperature and concentration.   

A Fortran90 code has been programmed to perform the numerical calculations 

using Gauss-Seidel iterative scheme.  In addition, a relaxation parameter has been 

employed to accelerate or improve convergence.  Either under-relaxation or over-

relaxation could be used.  The selection of an adequate relaxation parameter depends 

on experience and some insights into the problem.  For the present study, an under-

relaxation parameter generally provides better results.  The iteration process is 

terminated once the maximum error between two consecutive iterations is less than or 

equal to 10
-4

. 

The heat and mass transfer results are expressed in terms of the overall 

Nusselt and Sherwood numbers, respectively.  They are defined below in the physical 

domain, 
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The Nusselt number represents the total heat flux through the top surface, and the 

Sherwood number is the net mass flux through the same surface.  To further assess 

the accuracy of the numerical results obtained, an overall energy and mass balance 

has been performed after each calculation.  For the present study, attempts have been 

made to reduce the relative errors to less than three percent.  The definitions of the 

relative errors are given below. 
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.dX
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out ∫ 








∂

∂
−=                 [5.29] 

In the above expressions, it has been assumed that the velocities U and V are in the 

positive direction.  When performing the energy and mass balances, the direction of 

the velocities were obtained prior to the determination if the energy or mass transfers 

were going into or coming out of the control volume. 

 A grid refinement test has been performed to determine the proper grid size 

for the production runs.  For the present study, a mesh of 121×121 is sufficient to 

produce acceptable results within a reasonable time frame.  It is noted that a further 

grid refinement does not produce any significant improvement in the numerical

results. 

 
5.5  Results and Discussion 

 

Numerical calculations for combined heat and mass transfer by mixed 

convection induced from a buried pipe with leakage have been performed in the 

present study.  A parametric study has been performed over a wide range of 

governing parameters and they are summarized in Table 5.1.  The variation of the 

flow structures, temperature and concentration profiles due to the effects of the 

buoyancy ratio N, Lewis number Le, Peclet number Pe, and leakage locations are 

presented and discussed in the following sections. 

 

5.5.1  Effects of Buoyancy Ratio N 

 The effects of buoyancy ratio N on the flow, temperature and concentration
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                 Table 5.1  Range of the parameters considered in the study of mixed  

                 convection from a buried pipe with leakage. 

 

          Parameters                 Range 

                          Rayleigh Number (Ra) 10, 20, 50, 80, 100, 200, 500 

                          Buoyancy Ratio (N) -5, 1, 5 

                          Lewis Number (Le) 0.1, 1, 10 

                          Peclet Number (Pe) 0.1, 1, 10 

                          Leakage Locations Top, Bottom 

 

 

fields are first examined.  As stated earlier, N is the ratio of buoyancy due to 

concentration difference and temperature difference.  Therefore, N is zero for pure 

thermal driven flows, infinite for mass driven flows, negative for opposing flows and 

positive for aiding flows.  When N is unity, the solute and thermal buoyancy forces 

have equal strength.  For comparison and discussion that follow, the results of pure 

thermal convection with no leak from the pipe (Figure 3.12 - 3.13) are used as the 

reference. 

When the leakage location is on top of the buried pipe, the plots of streamlines, 

temperature and concentration profiles are given in Figures 5.3, 5.4 and 5.5, 

respectively.   Since the concentration profiles are mostly confined to a region near 

the leakage location, only the results at the vicinity of the buried pipe are shown (i.e., 

5Y10,0X10 ≤≤−≤≤− ).  For N = 1, the resulting flow and temperature fields are 

quite similar to those of the thermal buoyancy driven flows presented in Figures 3.12 

and 3.13.  As the Rayleigh number increases, the convection becomes more 

pronounced.  With an increase in the buoyancy ratio (i.e., aiding flows), the strength 

of the convective cell increases considerably due to the additional contribution from 



Chapter 5.5  Results and Discussion 

 

 134 

 

 

 
 

 
 

 Figure 5.3  Effects of buoyancy ratio (N) on the flow fields with upward leakage,  

     Le = 0.1, Pe = 1; (a) Ra = 10, (b) Ra = 50, (c) Ra = 100 (∆Ψ = 1). 

 

(a) Ra = 10 (b) Ra = 50 (c) Ra = 100 

N = 5 

N = 1 

N = -5 



Chapter 5.5  Results and Discussion 

 

 135 

 

 
 

 
 

 
 

Figure 5.4  Effects of buoyancy ratio (N) on the temperature fields with upward  

     leakage, Le = 0.1, Pe = 1; (a) Ra = 10, (b) Ra = 50, (c) Ra = 100 (∆Θ = 0.1). 

 ( 

(a) Ra = 10 (b) Ra = 50 (c) Ra = 100 

N = 5 

N = 1 

N = -5 
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Figure 5.5  Effects of buoyancy ratio (N) on the concentration fields with upward 

    leakage, Le = 0.1, Pe = 1; (a) Ra = 10, (b) Ra = 50, (c) Ra = 100 (∆C = 0.1). 

 

(a) Ra = 10 (b) Ra = 50 (c) Ra = 100 

N = 5 

N = 1 

N = -5 
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the solute buoyancy.  A steeper temperature gradient at the lower portion of the 

buried pipe is observed, and the concentration plumes are lifted upward.  For 

opposing flows at N = -5, the solute buoyancy force is in the opposite direction of the 

thermal buoyancy, which leads to a more complicated flow field with multicellular 

convection.  As seen in Figure 5.3(c), three recirculating cells are observed at a high 

Rayleigh number (Ra = 100).  The convective cell closest to the buried pipe and the 

outermost cell rotate in the clockwise direction whereas the one in between those two 

cells circulates in the counterclockwise direction.  From the isotherms shown in 

Figure 5.4, reversed thermal plumes are observed to appear near the leak.  Also from 

the isoplets shown in Figure 5.5, areas influenced by both temperature and 

concentration fields are shifted downward.  In general, the buoyancy ratio has a more 

pronounced influence on the temperature field than the concentration field. 

 When the leakage occurs at the bottom of the buried pipe, the plots of flow, 

temperature and concentration fields are presented in Figures 5.6, 5.7 and 5.8, 

respectively.  Again it is observed that convection becomes stronger with an increase 

in the Rayleigh number and buoyancy ratio.  As the buoyancy ratio increases (aiding 

flows), both the temperature and concentration profiles are lifted upward.  Also, note 

the similarity between the flow and temperature fields despite the change of the 

leakage location from top to bottom of the pipe.  On the other hand, for the opposing 

flows (N < 0), the concentration profile is shifted downward.  Since the leakage 

location is now at the bottom of the buried pipe, another thermal plume is issued out 

of the buried pipe near the leakage.  For N < 0, the primary flow is in reversed 

(clockwise) direction and it first descends towards the buried pipe and then discharges  
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Figure 5.6  Effects of buoyancy ratio (N) on the flow fields with downward leakage,  

 Le = 0.1, Pe = 1; (a) Ra = 10, (b) Ra = 50, (c) Ra = 100 (∆Ψ = 1). 
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Figure 5.7  Effects of buoyancy ratio (N) on the temperature fields with downward  

  leakage, Le = 0.1, Pe = 1; (a) Ra = 10, (b) Ra = 50, (c) Ra = 100 (∆Θ = 0.1). 
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Figure 5.8  Effects of buoyancy ratio (N) on the concentration fields with downward  

 leakage, Le = 0.1, Pe = 1; (a) Ra = 10, (b) Ra = 50, (c) Ra = 100 (∆C = 0.1). 
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to the lower boundary.  There is a secondary cell rotating in the counterclockwise 

direction near the top of the buried pipe.  The strength of the secondary cell increases 

with the Rayleigh number. 

 

5.5.2  Effects of Lewis Number Le 

 In this section, the effects of Lewis number on the flow, temperature and 

concentration fields are examined.  Lewis number is a physical property, a measure of 

the ratio of thermal diffusivity to mass diffusivity.  For upward leakage, the flow, 

temperature and concentration fields are shown in Figures 5.9, 5.10 and 5.11, 

respectively, for various Lewis numbers and buoyancy ratios. 

When N = 1, it is observed that the change in Lewis number has little effect 

on both flow and temperature fields, but it has a more pronounced effect on the 

concentration fields.  The concentration profiles are shifted upwards and confined to a 

narrow region near the centerline as the Lewis number increases.  For aiding flows (N 

= 5), an increase in the Lewis number leads to a slightly weakened flow field.  As the 

Lewis number increases, the temperature profiles are shifted downwards while the 

concentration profiles are shifted upwards.  For opposing flows (N = -5), the trend is 

just reversed.  An increase in the Lewis number leads to a temperature profile lifted 

upward and a concentration profile shifted downward. 

For downward leakage (Figures 5.12 - 5.14), a similar trend is observed in the 

variation of the flow, temperature and concentration fields with the Lewis number 

despite the change in the leakage location.  A particular phenomenon that is worth 

mentioning is that for opposing flows, the strength of the secondary cell on top of the
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Figure 5.9  Effects of Lewis number (Le) on the flow fields with upward leakage,  

    Ra = 10, Pe = 1; (a) N = -5, (b) N = 1, (c) N = 5 (∆Ψ = 0.5). 
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Figure 5.10  Effects of Lewis number (Le) on the temperature fields with upward  

    leakage, Ra = 10, Pe = 1; (a) N = -5, (b) N = 1, (c) N = 5 (∆Θ = 0.1). 
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Figure 5.11  Effects of Lewis number (Le) on the concentration fields with upward     

  leakage, Ra = 10, Pe = 1; (a) N = -5, (b) N = 1, (c) N = 5 (∆C = 0.1). 
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Figure 5.12  Effects of Lewis number (Le) on the flow fields with downward leakage, 

 Ra = 10, Pe = 1; (a) N = -5, (b) N = 1, (c) N = 5 (∆Ψ = 0.5). 
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Figure 5.13  Effects of Lewis number (Le) on the temperature fields with downward  

 leakage, Ra = 10, Pe = 1; (a) N = -5, (b) N = 1, (c) N = 5 (∆Θ = 0.1). 

 

(a) N = -5 (b) N = 1 (c) N = 5 

Le = 0.1 

Le = 1 

Le = 10 



Chapter 5.5  Results and Discussion 

 

 147 

 

 
 

 
 

 
 

Figure 5.14  Effects of Lewis number (Le) on the concentration fields with 

downward leakage, Ra = 10, Pe = 1; (a) N = -5, (b) N = 1, (c) N = 5 (∆C = 0.1). 

 

(a) N = -5 (b) N = 1 (c) N = 5 
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buried pipe increases with the Lewis number, indicating that the solute buoyancy is 

suppressed by the thermal buoyancy.  In general, for a fixed buoyancy ratio, Lewis 

number has a more dominant effect on the flow and concentration fields than the 

temperature field.  It should be noted that with the combination of high Rayleigh 

numbers and Lewis numbers, the flow field for opposing flows becomes extremely 

unstable, and no converged solution is obtained. 

 
5.5.3  Effects of Peclet Number Pe 
 
 To examine the effects of Peclet number, the plots of flow, temperature and 

concentration fields are presented in Figures 5.15 - 5.17 for upward leakage and 

Figures 5.18 - 5.20 for downward leakage.  For a fixed buoyancy ratio, the strength of 

convective flow becomes more pronounced with an increase in the Peclet number 

(Figure 5.15 and 5.18), particularly for the opposing flows.  From the isotherms in 

Figures 5.16 and 5.19, it is observed that the temperature profiles are not greatly 

affected by the Peclet number for aiding flows.  Since the crack is relatively small, 

the flow inertia of the discharged fluid has little effect on the buoyancy.  However, 

for opposing flows with an upward leakage, the flow inertia of the discharged fluid 

can effectively suppress the thermal plume which normally arises from the pipe 

(Figure 5.16a).  As a result, the temperature profiles are shifted downward with an 

increase in the flow inertia.  For opposing flows with a downward leakage, the 

thermal plume although survives but its area of influence is confined to a smaller 

region as seen in Figure 5.19a. 

The effects of Peclet number are most obvious from the concentration fields
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Figure 5.15  Effects of Peclet number (Pe) on the flow fields with upward leakage, 
   Le = 1, Ra = 10; (a) N = -5, (b) N = 1, (c) N = 5 (∆Ψ = 5, 0.5 and 0.05 for Pe = 0.1,     

   1 and 10, respectively).Co 
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Figure 5.16  Effects of Peclet number (Pe) on the temperature fields with upward  

    leakage, Le = 1, Ra = 10; (a) N = -5, (b) N = 1, (c) N = 5 (∆Θ = 0.1). 
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Figure 5.17  Effects of Peclet number (Pe) on the concentration fields with upward   

  leakage, Le = 1, Ra = 10; (a) N = -5, (b) N = 1, (c) N = 5 (∆C = 0.1). 
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Figure 5.18  Effects of Peclet number (Pe) on the flow fields with downward leakage,  

Le = 1, Ra = 10; (a) N = -5, (b) N = 1, (c) N = 5 (∆Ψ = 5, 0.5 and 0.05 for Pe = 0.1,  

1 and 10, respectively). 
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Figure 5.19  Effects of Peclet number (Pe) on the temperature fields with downward   

 leakage, Le = 1, Ra = 10; (a) N = -5, (b) N = 1, (c) N = 5 (∆Θ = 0.1). 
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   Figure 5.20  Effects of Peclet number (Pe) on the concentration fields with     

   downward  leakage, Le = 1, Ra = 10; (a) N = -5, (b) N = 1, (c) N = 5 (∆C = 0.1). 
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(Figures 5.17 and 5.20).  With an increase in the Peclet number, there is an upward 

spreading of the concentration profiles for aiding flows no matter where the leakage 

location is, and a downward contraction for opposing flows.  It is interesting to 

observe that the contaminant is mostly confined to a small region near the crack for 

opposing flows; it never reaches the top surface even when the Peclet number is 

significantly increased. 

 
5.5.4  Heat and Mass Transfer Results 
 
 For the present study, heat and mass transfer results are expressed in terms of 

the Nusselt and Sherwood numbers at the top surface, respectively.  Basically the 

Nusselt number is a measure of the total heat flux across the top surface whereas the 

Sherwood number is the total mass flux across the same surface.  The plots of Nusselt 

and Sherwood numbers as a function of the Rayleigh and Lewis numbers are 

presented in Figures 5.21 and 5.22 for upward leakage and in Figures 5.23 and 5.24 

for downward leakage. 

For upward leakage, the change in the buoyancy ratio has a more significant 

effect on the Nusselt number when the Lewis number is less than or equal to unity.  In  

general, the Nusselt number increases for aiding flows and decreases for opposing 

flows.  It is apparent that for opposing flows, the solute buoyancy suppresses the

thermal buoyancy and hence reduces the heat transfer.  A similar trend is observed 

when the leakage location is at the bottom of the pipe.  For aiding flows with upward 

and downward leakage, the cases with Le < 1 yield a higher heat transfer rate than 

those with Le > 1.  Notice that, from Figure 5.21(c), converged solutions are only 
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Figure 5.21  Heat transfer results with upward leakage, (a) Le = 0.1, (b) Le = 1, 

     (c) Le = 10. 
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Figure 5.22  Mass transfer results with upward leakage, (a) Le = 0.1, (b) Le = 1, 

     (c) Le = 10. 
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       Figure 5.23  Heat transfer results with downward leakage, 

(a) Le = 0.1, (b) Le = 1, (c) Le = 10. 
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Figure 5.24  Mass transfer results with downward leakage, 

                      (a) Le = 0.1, (b) Le = 1, (c) Le = 10. 
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possible at low Rayleigh numbers for opposing flows with upward leakage and Le = 

10.  The flow fields become highly unstable when the Rayleigh number is large.  The 

instability is attributed to the unbalanced interactions among flow inertia, thermal 

buoyancy and solute buoyancy.  Under the same conditions, the flow is more stable 

when the leakage occurs at the bottom of the buried pipe.  For both leakage locations, 

the effects of the flow inertia (Peclet number) are more obvious when Le ≤ 1.  

Generally, heat transfer is enhanced when the leakage location is moved from the top 

to the bottom of the buried pipe. 

For the mass transfer results (Figures 5.22 and 5.24), the data are more 

scattered than the heat transfer results, which indicates that the effects of the 

governing parameters such as N, Le, Pe and the leakage location are more significant 

on the concentration field than the temperature field.  For both upward and downward 

leakages, the Sherwood number increases for aiding flows but decreases for opposing 

flows.  It is observed that the effects of Lewis number are more dominant on the 

Sherwood number than the Nusselt number.  The Sherwood number increases 

significantly with the Lewis number for aiding flows, but approaches zero for 

opposing flows.  When the leakage is on top of the buried pipe, the solute buoyancy is 

acting downwards for opposing flows; hence only a small fraction of the mass fluxes 

crosses the top boundary.  Virtually no mass is transferred through the top surface 

when the leakage is at the bottom of the buried pipe for opposing flows.  This result is 

consistent with the observation from the isoplets shown previously.  Again, the 

effects of Peclet number are more pronounced on the Sherwood number than the 

Nusselt number.  For aiding flows with Le ≥ 1, the mass transfer increases with the 
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Peclet number regardless of the location of the leakage.  In general, mass transfer rate 

is greater when the leakage is on top of the buried pipe than at the bottom of the 

buried pipe. 

 

5.6  Concluding Remarks 

Combined heat and mass transfer by mixed convection from a buried pipe 

with leakage has been numerically examined in this study.  The effects of buoyancy 

ratio, Lewis number, Peclet number and leakage location on the heat and mass 

transfer results are examined.  It has been found that Nusselt and Sherwood number 

increases for aiding flows, but decreases for opposing flows.  The solute buoyancy is 

in the opposite direction of the thermal buoyancy for opposing flows, hence it 

suppresses the thermal buoyancy and reduces the heat and mass transfer rates across 

the top surface. 

Lewis number has a more dominant effect on the mass transfer than the heat 

transfer.  The changes of the concentration profiles with Lewis numbers are more 

obvious than those of the isotherms.  For aiding flows, Nusselt number increases but 

Sherwood number decreases for Le < 1 while the trend is reversed for Le > 1. 

Peclet number also has a more significant effect on the mass transfer than the 

heat transfer.  Sherwood number increases with the Peclet number for aiding flows 

with Le ≥ 1.  On the other hand, the variations of Nusselt number with Peclet number 

are more obvious for Le ≤ 1.  The mass transfer rate increases when the leakage is on 

top of the buried pipe while the heat transfer rate is enhanced when the leakage is at 

the bottom of the buried pipe. 
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CHAPTER VI 

   

FLOW VISUALIZATION EXPERIMENT 
  

 
6.1  Introductory Remarks 
 

Flow visualization methods have been employed extensively in the study of 

transport phenomena occurred in nature.  Pioneers such as Osborne Reynolds, 

Ludwig Prandtl and Ernst Mach have all conducted flow visualization experiments in 

developing fundamental theories of fluid mechanics and aerodynamics.  Reynolds 

(1883) studied the transition from laminar to turbulent flow by injecting dye into the 

water flowing through a long circular pipe.  Through this study, he identified a critical 

parameter, the Reynolds number, which governs this flow transition.  Prandtl (1904) 

investigated flow along a flat plate using tracing particles, and his results ultimately 

led to the development of boundary layer theory.  Mach mastered visualization 

techniques such as the shadowgraph and Schlieren photography method in studying 

supersonic flow.  In 1877, he presented his infamous paper “Photographische 

Fixierung der durch Projektile in der Luft eingeleiten Vorgange,” which showed a 

historic photograph of shock waves formed by the nose of a bullet traveling faster 

than the speed of sound, to the Academy of Sciences in Vienna.  

Yang (1994, 2001) provided a summary of both the conventional (i.e., the first 

generation method) and computer-assisted (i.e., the second generation method) flow 

visualization techniques.  He also demonstrated how these visualization techniques 

can be utilized in science and technology.  Some remarkable photographs of fluid 

flow in fundamental research and engineering applications can be found in an album
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compiled by the Japan Society of Mechanical Engineers (1988).  To the best 

knowledge of the author, Bear (1972) provided the most comprehensive discussion on 

the experimental methods for flow through porous media, which include the sand box 

analogy, the electric analogy, the membrane analogy and the Hele-Shaw analogy.   

Each of the analogies mentioned above has its pros and cons.  For example, 

the sand box analogy is basically a model simulates a reduced scale of the natural 

porous medium (e.g., an aquifer) while maintains its similarity (i.e., geometric, 

kinematic and dynamic similarity).  This analogy has been used quite substantially in 

petroleum reservoir engineering to investigate different fluid drives (e.g., water, gas 

and solvent) in oil fields.  Electric analogy is another technique employed in studies 

related to flow in porous media, and it includes (a) the continuous electric analogy, (b) 

the discrete electric analogy and (c) the ion motion analogy.  The underlying principle 

of these techniques is based on the similarity between Darcy’s law (which governs 

the flow through a porous medium) and Ohm’s law (which governs the electric 

current flow through a conductor).  By the same token, the differential equation for 

equilibrium of forces acting on a uniformly stretched membrane is analogous to the 

equation for flow through a porous medium, and this method is referred to as the 

membrane analogy.  Owing to the difficulty associated with the visualization of 

actual fluid motion in porous media, the Hele-Shaw analogy perhaps is the most 

suitable to obtain the flow pattern.  Hence it has been adopted in the present study.  

The discussion of the Hele-Shaw analogy is presented in the next section in greater 

details.   
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6.2  Hele-Shaw Analogy 
 

Henry Selby Hele-Shaw, an English engineer, first considered a viscous flow 

in a narrow gap of a cell consisting of two parallel plates.  He suggested that such 

flow was analogue to a two-dimensional potential flow (Hele-Shaw, 1898a, b).  This 

method was later named after him, and it was referred to as the Hele-Shaw analogy, 

also known as the viscous flow analogy.  Since then, the Hele-Shaw analogy has been 

related to linear potential flow analysis (i.e., Laplace equation) and used widely in 

various applications, namely the reservoir engineering, seepage study and 

groundwater research.  A brief literature review that outlines the usage of Hele-Shaw 

cell is given herein.  

Wooding (1960) performed stability analysis for a viscous fluid with variable 

density in a Hele-Shaw cell.  The critical Rayleigh number at neutral stability based 

on asymptotic expansion was derived for flow in a long vertical rectangular channel.  

The experimental result obtained from the Hele-Shaw cell was roughly 4% higher 

than the predicted value.  Horne and O’Sullivan (1974) examined the stability of 

natural convective flow in a porous medium heated uniformly and non-uniformly 

from below.  Both steady and fluctuating flows were reported for uniform heating 

condition whereas the convective flow due to the non-uniform heat source was found 

to be periodically oscillatory.  The experimental result using a Hele-Shaw cell was 

consistent with the numerical work.  Hartline and Lister (1977) visualized the 

convective flow in a Hele-Shaw cell using Baker’s (1966) pH-indicator technique.  

This technique has the capability to obtain the flow patterns and velocity 
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measurements.  The experimental results validated the Rayleigh number prediction 

for the onset of convection. 

Koster (1982, 1985) collaborated with his colleague Müller (Koster and 

Müller, 1982 and 1984) and conducted a series of studies related to convective flow 

in a Hele-Shaw cell heated from below.  The temperature fields were obtained using 

the holographic real-time interferometry along with local measurements by 

thermocouples.  Two Hele-Shaw cells were considered: (a) Hele-Shaw gaps, with 

large horizontal extent (Koster, 1982; Koster and Müller, 1982), and (b) Hele-Shaw 

slots, with larger vertical than horizontal extent (Koster, 1985; Koster and Müller, 

1984).  In the Hele-Shaw gap experiments, the time-dependent flow was initiated and 

driven by the instability of the horizontal thermal boundary layer.  The exhibition of 

complicated flow structures was also observed in the Hele-Shaw slot.  The flow 

pattern could be periodic, quasi-periodic or completely stochastic. 

More recently, Vorontsov et al. (1991) performed both theoretical and 

experimental analysis on natural convection in a Hele-Shaw cell subjected to constant 

wall temperature and uniform wall heat flux.  Thermocouples were used to measure 

the temperature profiles near the thermal boundary layer on the heated wall.  The 

thermograms of the Hele-Shaw convective flow were obtained using an 

optomechanical infrared imaging system.  The theoretical results based on the 

similarity analysis with boundary layer approximation were in good agreement with 

the experimental results.  Furthermore, the similarity equations were in the same form 

as those considered by Cheng and Minkowycz (1977) for porous media.  Once again, 

it confirmed that natural convection in a porous medium is analogue to free 
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convective flow in a Hele-Shaw cell.  In the same year, Safonov (1991) investigated 

mixed convection around a heated cylinder in a Hele-Shaw cell using finite difference 

method.  A correlation was proposed for the heat transfer results from the cylinder 

when the free-stream velocity was perpendicular to the gravitational force.  The 

numerical solutions agreed with the proposed correlation within 7%. 

Among the literature reviewed thus far, Cheng’s experimental work (1996) 

was most closely related to the present study.  Using a Hele-Shaw cell, he obtained 

the flow patterns induced by a buried heated pipe in a porous medium subject to both 

permeable and impermeable top boundaries.  The focus of his study was to 

investigate the effects of aiding and opposing external cross-flow on the convective 

flow patterns.  However, the natural convection results (i.e., in the absence of cross-

flow) was also presented, and it showed two distinct symmetrical recirculating cells 

formed above the heated pipe.  The flow fields (Figure 3.12) obtained from the 

present numerical study compared quantitatively well with Cheng’s visualized results 

(1996) despite the absence of the simulated Rayleigh number value.   

The Hele-Shaw analogy is not limited for its use in visualizing the flow 

pattern of potential flows (such as those in porous media reviewed thus far), it has 

other significant scientific value.  Polubarinova-Kochina (1945a, b and 1962) was 

among those researchers who applied Hele-Shaw flow to study groundwater flow.  

However, she realized that there was a need to separate the saturated and dry region 

with a free boundary when modeled groundwater flows.  Polubarinova-Kochina 

(1945a and b) and Galin (1945) developed a complex-variable method to obtain the 

exact solution for this Stefan-type moving boundary problem.  Polubarinova-Kochina 
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(1945b) also obtained a close agreement between the exact solutions and the flows 

visualized in her Hele-Shaw cell.  The fact that this nonlinear problem can be readily 

analyzed using the Hele-Shaw analogy has become the basis for studies involving 

melting and freezing of materials in industrial processes such as steel making, laser 

welding, and semiconductor fabrication.  In a recent paper, Ockendon and Howison 

(2002) paid tribute to Polubarinova-Kochina and Hele-Shaw, and examined the 

impact of their work on modern mathematics, natural science and applications in 

industry.   

In a classical paper, Saffman and Taylor (1958) presented the penetration of a 

fluid into a porous medium (or Hele-Shaw cell) containing a more viscous liquid.  

They discovered the viscous fingering phenomena in the Hele-Shaw cell when two 

immiscible fluids with different viscosity come into contact with one other.  This 

instability of interface is now commonly known as the Saffman-Taylor instability 

although the first instability analysis of the viscous fingering should be attributed to 

Hill (1952), and a similar study was also reported by Chuoke et al. (1959) around the 

same period.  All these works laid the foundation and stimulated numerous studies 

which were significant from both theoretical and practical point of view.  From the 

theoretical aspect, the Saffman-Taylor instability represented the ill-posedness of 

problem considered by Polubarinova-Kochina (1945a and b) and Galin (1945), hence 

it posed challenges and sparked tremendous research efforts in the branch of applied 

mathematics.  From the practical viewpoint, the understanding of the interface 

between two fluids (e.g., water and oil) is essential in advancing applications such as 

the secondary and tertiary oil recovery methods used in the petroleum industry.  For a 
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more detailed review on the subject of viscous fingering phenomena in Hele-Shaw 

cell, readers are referred to Howison (1986) and Saffman (1986).  Homsy (1987) also 

reviewed the fingering phenomena with an emphasis on the mechanisms involved in 

porous media.   

The Hele-Shaw analogy also finds its applications in bioengineering and 

microelectromechanical systems (MEMS).  For example, Pozrikidis (1994) studied 

the motion of particles in a Hele-Shaw cell with an interest in its application to the 

motion of red blood cells through the interalveoral septum (Fung, 1984).  In particular, 

the force and torque exerted on the particles due to the flow, and the effect of the 

particle shape on the flow structure as well as particle motion were examined.  Lorenz 

and Zahn (2003) explored the potential applications of ferrofluid in the magnetic-

field-driven microfluidic devices using a Hele-Shaw cell.  Also, since electrowetting 

has become a popular mechanism for microfluidic actuations (Cho et al., 2003; Lu et 

al., in press) proposed a diffuse interface model to predict the motion of 

electrowetting droplets in a Hele-Shaw cell.   

In short, the Hele-Shaw analogy has been a well established practice in 

various fields over the years due to its simplicity.  The ease of relating Hele-Shaw 

flows to other linear potential flows and the capability of revealing flow patterns are 

important characteristics of this analogy.      

 

6.3  Motivation and Objective of Present Study 
 

 As stated in the last section, the comparison between the present numerical 

work (Chapter 3) and Cheng’s Hele-Shaw experimental work (1996) has shown 
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excellent agreement in the flow patterns for natural convection in a homogeneous 

porous medium induced from a heated pipe.  The Hele-Shaw analogy is thus adopted 

in the present study to visualize flow in a heterogeneous porous medium.  The 

objective is to construct a Hele-Shaw cell with different gap widths to simulate a 

porous medium with distinct permeabilities.  The flow patterns can then be visualized 

using time-elapsed photography with the aid of tracing particles.  It is hoped that the 

experimental work conducted here can lend support to the numerical work presented 

in Chapter 4.  The visualization experiment is set up to investigate how a step change 

in the permeability of the backfill would affect the flow patterns from a heated buried 

pipe.  Both permeable and impermeable top surfaces with different buoyancy 

strengths are considered in this experiment.   

 
6.4  Porous Medium and Hele-Shaw Cell 
 
 To illustrate mathematically that the governing equation for an incompressible 

viscous flow in a Hele-Shaw cell is analogous to Darcy’s law for flow in a porous 

medium, let’s consider the Hele-Shaw cell shown in Figure 6.1.  The cell consists of 

Cell Plate

Cell Plate

h x

h/2

-h/2

z

0

 
 

Figure 6.1  Flow in a Hele-Shaw cell. 
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two parallel plates separated by a gap width h.  The coordinate system employed is 

also indicated in the figure. 

For an incompressible flow, the governing equations are based on the Navier-

Stokes equations given as follows, 
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The flow is assumed to be steady and two-dimensional (w = 0).  For creeping or 

highly viscous flows, the viscous terms on the right hand side is more dominant; 

hence the convective terms on the left hand side are neglected.  In the absence of 

body forces, the Navier-Stokes equations are reduced to 
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Since the gap width is sufficiently small, it is reasonable to assume that the second 

derivatives of the velocity with respect to x and y are small compared to those with 

respect to the z-direction.  The governing equations for the Hele-Shaw flow can be 

further reduced to 
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Integrating the above equations twice and subjecting to the following no-slip 

boundary conditions, 

  At ,
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the velocity components are determined to be 
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 The average velocities in the Hele-Shaw cell are given by 
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Combining Eqns. [6.5] and [6.6], one yields 
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 According to Darcy’s law, the volume-averaged velocities for flow in a 

porous medium are given by  

  
K p
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 By comparing the expressions for the velocities in Eqns. [6.7] and [6.8], one 

can obtain the following relationship  

  .K12h =                   [6.9] 

Hence, the analogy between the flow in a Hele-Shaw cell and Darcy’s flow in a 

porous medium is established.  With this analogy, one can model a porous medium 

with a given permeability by properly selecting the gap width of the Hele-Shaw cell.  

However, there are some limitations associated with the Hele-Shaw analogy.  For 

example, this analogy is only valid for laminar flows, and it cannot accommodate any 

lateral dispersion and instabilities effects.  Obviously, the pros of Hele-Shaw analogy 

are its simplicity in design and relatively inexpensive to construct the experimental 

setup. 

 In this study, Hele-Shaw cells with different gap widths (Figure 6.2) were 

constructed to simulate a porous medium with distinct permeabilities around a buried 

pipe.  For cell A, the gap width immediate around a copper pipe was set to be 3/8 inch 

(h1) and that for the outer region was 1/8 inch (h2).  Hence, a buried pipe with a 

backfill of K1/K2 = 9 was modeled in this setup.  The top portion of the Hele-Shaw 

cell has the widest gap width (h3 = 1 inch) such that a permeable top boundary can be
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 Figure 6.2  Cross-sectional view of the Hele-Shaw cells constructed for the 

               present study. 

 

 

modeled.  The cell can then be sealed to set up an impermeable top boundary.  On the 

other end, cell B was constructed to simulate a backfill of K1/K2 = 0.11 around a 

buried pipe.  The details of experimental setup and apparatus are discussed next. 

 

6.5  Experimental Setup and Apparatus 
 

 The experimental apparatus for the present study consists of four main units: 

(a) Hele-Shaw cell unit, (b) Heated pipe unit, (c) Reservoir unit, and (d) Imaging unit.  

A complete description of components and specifications is listed in Table 6.1.  The 

details of each unit of the experimental setup are described as follows.  
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Table 6.1  List of the components of the experimental apparatus and their 

          specifications. 
          

Component Specification/Manufacturer Unit 

   

Hele-Shaw Cell  Cell A: Two 1/2 in. thick and 32 in. x 22 in. 

Plexiglas; One 1/8 in. thick and 1 in. wide U-

shape Plexiglas (Figure 6.4)  

Cell B: Two 1/2 in. thick and 32 in. x 22 in. 

Plexiglas; One 3/8 in. thick and 1 in. wide U-

shape Plexiglas; Two 1/8 in. thick, 3 in. OD x 1 

in. ID donut-shape Plexiglas (Figure 6.5)  

Weld-On #16 clear, medium bodied solvent 

cement for joining acrylic; GE Silicone II 100% 

clear silicone sealant; ColorPlace fast dry spray 

paint (black); Four Watts PL-200 1/4 in. x 1/4 in. 

nylon barb splicers; Midwest Fastener Corp. 

Phillips pan machine screws zinc 8-32 x 2 in. & 

8-32 x 1-1/2 in.; machine screw hex nuts coarse 

thread zinc 8-32; #8 flat washers zinc  

Cell 

Tracing Particles Gliterex  Corp. Poly Flakes polyester glitter Cell 

Silicone Oil 10 bottles of Fisher Scientific 500 ml silicone oil Cell 

Base Support Two 1/2 in. thick and 4 ft. x 2 ft. plywood; Two 

sets of shelf brackets (10 in. x 12 in. and 9 in. x 

11 in.); 8x 1/2in. Phillips sheet metal screws 

Cell 

Copper Pipe Two 6 in. long of 1 in. diameter copper tubing Heated Pipe 

Tubing 4 ft. of 1/2 in. OD x 3/8 in. ID vinyl tubing Heated Pipe 

Tube Fittings Four Watts PL-741 nylon barb to MIP adapters  

1 in. x 1/2 in. 
Heated Pipe 

Hose Clamps Four 1/2 in. hose clamps  Heated Pipe 

Isothermal Bath Fisher Scientific Isotemp 3013P Heated Pipe 

Funnel Flotool multipurpose funnel Reservoir 

Valve Kbi 1/2 in. chlorinated poly vinyl chloride ball 

valve (CBV-0500-S) 
Reservoir 

Tubing 6 ft. of 3/8 in. OD x 1/4 in. ID vinyl tubing Reservoir 

Tube Fittings 3/8 in. comp x 3/8 in. MPT Co; 3/8 in. HB x 3/8 

in. MPT Barb 
Reservoir 

Support 13 in. x 3.5 in. x 1.5 in. wooden block; 3 ft. x 3.5 

in. x 0.75 in. wooden sheet; 8x 2 in. flat head 

Phillips sheet metal screws; Two 1/2 in. RIG pipe 

straps; One 3/8 in. RIG pipe strap 

Reservoir 

Camera Minolta Maxxum 7000i autofocus SLR camera Imaging 

Films Kodak Professional BW400CN ISO400 35mm 

black and white 24-exposure film 
Imaging 

Tripod Samsonite Imaging 
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(a) Hele-Shaw cell unit:  Two Hele-Shaw cells were constructed using four 

pieces of Plexiglas of 1/2 inch thickness cut to a dimension of 32 inches by 22 inches.  

They were machined using a computer numerical control (CNC) machine.  The 

dimensions and assembly of the Hele-Shaw cells A and B are shown in Figure 6.3 

and 6.4, respectively.  The dimensions of the Hele-Shaw cells were selected such that 

they could be handled using the CNC machine in the machine shop of the School of 

Aerospace and Mechanical Engineering.  Once the Plexiglas was machined using the 

CNC machine, it lost its transparency.  The front Plexiglas wall was polished using 

sand papers and liquid polishers (Table 6.2) to restore its transparency for the flow 

visualization purpose while the back Plexiglas wall was painted black to enhance the 

visibility of the tracing particles.   

A one-inch-diameter hole was drilled at the center of the cell for the 

installation of a copper pipe to simulate a buried heated pipe.  Two 1/4 inch holes 

were drilled at the back side of the Hele-Shaw cell for connecting tubing to the 

reservoir unit.  Three edges of the Hele-Shaw cell were also drilled with 1/4 inch 

holes to accommodate bolts and nuts for fastening purpose.  The front and back 

Plexiglas walls along with the spacer were then aligned and glued together using

 
Table 6.2  Items used to restore the transparency of Plexiglas. 

    

Novus Plastic Polish No. 3: Heavy Scratch Remover 

Novus Plastic Polish No. 2: Fine Scratch Remover 

Novus Plastic Polish No. 1: Plastic Clean & Shine 

Kleenmaster Brillianize Plastics Polish & Fine Finish 

GatorGrit Waterproof Sandpaper 600-b (Ultra Fine) 

GatorGrit Waterproof Sandpaper 1500-b (Mirror Fine) 
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(a)          (b) 
 

              
 
 

(c)          (d) 
 

Figure 6.3  The dimensions of Hele-Shaw cell A (in inches): (a) the front/back wall,  

 (b) the spacer, (c) the assembly components and, (d) the assembled cell. 

 
 

0.5

1 

1 

32 

1 

1 

30 

0.125 

1 
0.4375 

0.125 

21 

16 

2.5 

3.5 φ3 

φ1 



Chapter 6.5  Experimental Setup and Apparatus 

 

 177 

 

 

 

                      
 
 
(a)          (b) 

 

                  
 

(c)          (d) 
 

Figure 6.4  The dimensions of Hele-Shaw cell B (in inches): (a) the front/back wall,  

 (b) the spacers, (c) the assembly components and, (d) the assembled cell. 
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Weld-On #16 clear solvent cement to form a complete Hele-Shaw cell.  In addition, 

they were bolted together and sealed with silicon sealant such that the cell could 

withstand the pressure build-up once it was filled with silicone oil.  The same 

assembling procedures were applied to construct the second Hele-Shaw cell.  The 

components of Hele-Shaw cell B included two donut-shape spacers (Figure 6.4c): one 

transparent and one painted black.  Extra care was exercised to glue the transparent 

spacer to the front Plexiglas wall as it would become part of the test section (viewing 

area).  Clear Weld-On #16 solvent cement was applied evenly on the transparent 

spacer and then pressed firmly to the Plexiglas front wall to avoid bubbles being 

formed.  The assembled cells were left to cure for 24 hours, and were tested for leaks 

using water. 

The next step was to build a base support for the Hele-Shaw cell.  Four 

triangle brackets were secured to a 4-feet by two-feet plywood such that the Hele-

Shaw cell could be placed into the slot.  For the present experiment, the Hele-Shaw 

cells were filled with silicone oil.  The silicone oil was chosen because of its high 

viscosity.  Glitter was used as the tracing particles.  Most glitter available on the 

market tends to be heavy and they settle when immersed in a liquid.  Glitter with high 

reflective index and capable of remaining suspended in the silicone oil was selected.  

Photographs of the Hele-Shaw cell units are shown in Figure 6.5.   

(b) Heated pipe unit:  A one-inch copper pipe was inserted through the center 

of the Hele-Shaw cell to simulate a buried pipe.  Due to the tight tolerance of the 

drilled center hole and copper pipe, it was important not to exert pressure on the 

Plexiglas when installing the pipe to avoid alteration in the designed gap widths.  A 
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Figure 6.5  Hele-Shaw cells A and B. 
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1/2 inch OD vinyl tubing was connected to the copper pipe through proper tube 

fittings and allowing the water from the constant temperature bath to circulate 

through a loop.  The water temperature controlled by the Fisher Scientific Isotemp 

bath served as a heat source to produce thermal buoyancy for the formation of 

convective cells.  Copper was chosen as the material for the pipe for its high thermal 

conductivity.  Silicon sealant was applied to the interconnections of components, and 

hose clamps were used to secure the tubing to prevent leak.  The assembly of the 

heated pipe unit is shown in Figure 6.6. 

(c) Reservoir unit:  The main purpose of the reservoir unit was to supply the 

silicone oil and tracing particles to the gap of the Hele-Shaw cell.  This unit consisted 

of a funnel with vinyl tubing attached to the back of the Hele-Shaw cell unit.  The 

flow of silicone oil and tracing particles was regulated using a ball valve.  Two tube 

fittings were needed to connect the valve to the funnel, and from the valve to the 

vinyl tubing.  All these components were then secured to a base using three pipe

 

       

Figure 6.6  Heated pipe unit.  
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straps (Figure 6.7).  Another function of the reservoir unit is for the drainage of 

silicone oil. 

(d) Imaging unit:  The flow patterns were captured using an autofocus single-

lens reflex (SLR) camera with black and white films.  The camera was mounted on a 

tripod to obtain still images.  Figure 6.8 shows the imaging unit used in this 

experiment.  The lighting of the laboratory and appropriate light sources 

were adjusted for best image quality.  The optimum combination of aperture size and 

shuttle speed was determined by trials.  By manually adjusting these settings, one has 

full control of exposure.  The aperture size is related to the sharpness of the object.  

Generally, a large aperture (e.g., f/2 or f/2.8 etc.) will isolate the object in focus from 

its background while a small aperture (e.g., f/22 or f/16 etc.) will provide sharpness 

on both foreground and background.  On the other hand, the shuttle speed is related to 

how fast the shuttle curtain opens and closes during an exposure.  Having the option

 

                        
 
Figure 6.7  Reservoir unit.       Figure 6.8  Imaging unit. 
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of manually setting the shuttle speed is ideal when taking picture of an object in 

motion.  The shuttle speed ranges from 1/4000 of a second to a full 30 seconds.  One 

can freeze the object in motion using a fast shuttle speed such as

1/4000 or 1/2000 of a second while a slower shuttle speed (e.g., 15 or 30 seconds) 

will blur the motion and make the object appears to be flowing.  This becomes an 

essential part of this visualization experiment as our objective is to capture the motion 

of the tracing particles and present the overall flow field.       

    

6.6  Experimental Procedures 
 

 The experimental procedures are outlined as follows: 

1. The first step of the experiment was to make sure that all units were connected 

and secured properly.  A complete experimental setup is shown in Figure 6.9. 

 

 
 

Figure 6.9  Hele-Shaw flow visualization setup. 
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2. The Hele-Shaw cell was filled with silicone oil and tracing particles using the 

reservoir unit.   

3. The water inside the constant temperature bath was filled up to its appropriate 

level.  The constant temperature bath was then turned on, and the temperature 

was set to 70 
o
C.   

4. Once the temperature reached the preset value, one needed to ensure that the 

tracing particles were distributed evenly and fully suspended in the cell by 

stirring the silicone oil with a thin rod.  Undesired air bubbles trapped in the cell 

were also removed.   

5. The Hele-Shaw cell was left for the flow within the cell to reach steady-state.   

6. Meanwhile, the light of the laboratory was turned off, and appropriate light 

sources were directed to the Hele-Shaw cell. The light sources were adjusted to 

produce the most reflections from the tracing particles. 

7. Photographs were taken using an aperture of f/8 and a shuttle speed of 15 seconds.  

These settings were pre-determined by trials to obtain the best image quality.  

8. Steps 4-7 were repeated for a pipe temperature of 95 
o
C to simulate different 

strength of buoyancy.   

9. The same procedures (Steps 1-8) were then repeated for Hele-Shaw cell B. 

The Hele-Shaw cells constructed were first used to simulate a porous layer 

with a permeable top boundary.  Once that portion of the experiment was completed, 

the top was sealed using a top plate to model a porous layer with an impermeable top 

boundary.  The same experiment procedures were then repeated for both sealed Hele-

Shaw cells. 
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6.7  Results and Discussion 
 

The buoyancy induced convection in Hele-Shaw cell due to a heated pipe 

were examined for both permeable and impermeable top boundary.  As mentioned 

previously, Hele-Shaw cell with different gap widths was constructed to model a 

porous layer with distinct permeabilities.  For Hele-Shaw cell A, the gap width 

immediate around the copper pipe was 3/8 inch (h1) while the gap width for the outer 

region was 1/8 inch (h2).  Hence, a buried pipe with a backfill of K1/K2 = 9 was 

modeled in this particular setup.  On the other end, Hele-Shaw cell B was constructed 

to model a backfill of K1/K2 = 0.11 around a buried pipe.   

 

6.7.1  Results for Hele-Shaw Cells with Permeable Top Boundary 
 

Figure 6.10 (a) shows the flow field in Hele-Shaw cell A with a permeable top 

boundary subjected to a pipe temperature of 70 
o
C.  The heated fluid rises along the 

pipe, and a jet stream of fluid can be observed at the top of the pipe issuing upwards 

through the permeable boundary.  As the fluid hits the free surface, two symmetrical 

recirculating cells are formed in the top layer.  From the figure, it can be seen that 

most fluid is drawn from the top region of the cell towards the pipe.  As the pipe 

temperature is increased from 70 
o
C to 95 

o
C (Figure 6.10(b)), the strength of the 

buoyancy cells increases.  More fluid away from the pipe is affected and drawn to the 

inner region. 

On the other hand, the flow field in Hele-Shaw cell B with a permeable top 

boundary subject to a pipe temperature of 70 
o
C and 95 

o
C is shown in Figure 6.11.  

Both flow fields share the same characteristics.  Since the permeability immediate 
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Figure 6.10  Experimental results for Hele-Shaw cell A with permeable top  

        boundary subject to pipe temperature of (a) 70 
o
C and (b) 95 

o
C. 
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Figure 6.11  Experimental results for Hele-Shaw cell B with permeable top  

        boundary subject to pipe temperature of (a) 70 
o
C and (b) 95 

o
C. 
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around the pipe is less permeable than the outer region, most tracing particles stay in 

the more permeable layer and rise along the interface to the top.  Few particles are 

able to penetrate the less permeable layer.  The formation of two symmetrical 

recirculating cells of equal strength is also observed in the top layer.  The strength of 

the buoyancy cells increases with the pipe temperature.  Unlike the flow field in Hele-

Shaw cell A, less fluid is drawn from the top layer. 

Particular attention is also focused on the fluid flowed through the permeable 

top boundary.  It can be seen from both Figures 6.10 and 6.11 that the slopes of 

streamlines traced by the particles are not continuous and deflected as they cross the 

top boundary.  This phenomenon was caused by the change in the velocity due to the 

abrupt alteration in the gap width of the Hele-Shaw cell.  Recall that for the Hele-

Shaw flow to adequately represent the flow in a porous medium, the velocity in the z-

direction is assumed to be zero (i.e., w = 0).  Hence, if the change in the gap width is 

not gradual enough, this assumption is no longer valid, which in turn causes the flow 

field near that interface not depicting a real flow situation.  The Hele-Shaw cells 

constructed for this experiment are intended to simulate a fluid layer overlying on top 

of a porous medium.   

 

6.7.2  Results for Hele-Shaw Cells with Impermeable Top Boundary 
 

 The flow field in a heterogeneous porous medium with an impermeable top 

boundary is examined next.  The numerical study for this case of convective flow was 

discussed in Chapter 4, and the result corresponding to the experimental condition 

was reproduced for comparison.  Due to symmetry, the numerical result is shown on 
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the left while the visualized flow field is shown on the right.  The properties of 

silicone oil (Leong, 2002) as well as the simulated parameters are listed in Tables 6.3 

and 6.4, respectively.   

 
Table 6.3  Physical properties of the silicone oil. 

    

Thermal diffusivity (α) 7 x 10
-8

 m
2
/s 

Coefficient of thermal expansion (βΤ) 0.00104 
o
C

-1
 

Kinematic viscosity (ν) 50.3 x 10
-4

 m
2
/s 

   

 
 

Table 6.4  Simulated parameters for the flow visualization experiment. 
    

Hele-Shaw cell A:  

Gap width of the inner layer (h1) 0.0095 m 

Gap width of the outer layer (h2) 0.0032 m 

Permeability of the inner layer 
2

1
1

h
K

12

 
= 

 
 7.56 x 10

-6
 m

2
 

Permeability ratio (K1/K2) 9 

Radius of the copper pipe (ri) 0.013 m 

Ambient temperature (Tc) 27 
o
C 

Rayleigh number 
( )1 T h c i

1

K g T T r
Ra

β − 
= 

αν 
 

 

 For pipe temperature (Th) = 70 
o
C: 120 

 For pipe temperature (Th) = 95 
o
C: 189 

   

Hele-Shaw cell B:  

Gap width of the inner layer (h1) 0.0032 m 

Gap width of the outer layer (h2) 0.0095 m 

Permeability of the inner layer 
2

1
1

h
K

12

 
= 

 
 8.4 x 10

-7
 m

2
 

Permeability ratio (K1/K2) 0.11 

Radius of the copper pipe (ri) 0.013 m 

Ambient temperature (Tc) 27 
o
C 

Rayleigh number 
( )1 T h c i

1

K g T T r
Ra

β − 
= 

αν 
 

 

 For pipe temperature (Th) = 70 
o
C: 13 

 For pipe temperature (Th) = 95 
o
C: 21 
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  As clearly shown in Figure 6.12, the predicted flow field is similar to that 

observed from the experiment.  The pipe temperature in this case was set to 70 
o
C 

while the corresponding numerical result was presented for Ra1 = 120 and K1/K2 = 9.  

It can be seen that the fluid rises along the pipe wall due to buoyancy while drawing 

fluid from the less permeable region.  Because of the impermeable top boundary, the 

fluid alters its course and redirects downwards, but is carried away almost 

immediately by the buoyancy force and thus forming a circulating convective cell.  

This circulating cell is confined mostly in the more permeable inner layer.  As the 

pipe temperature is increased to 95 
o
C, the strength of the buoyancy increases 

correspondingly as seen in Figure 6.13.   

For Hele-Shaw cell B, the outer region is more permeable than the inner 

region, and the results are shown in Figures 6.14 and 6.15 for different pipe 

temperatures.  The flow field obtained from the experiment resembled that predicted 

by the numerical study.  Convection remains in the layer with a higher permeability.  

Although the location of the eye of the recirculating cell observed from the 

experiment is lower than that predicted by numerical simulation, both results indicate 

that the circulating cell prevails in the outer region.  It is also noted that the overall 

strength of the buoyancy cell in this case is stronger than those seen from Hele-Shaw 

cell A.   

Another observation from the experiment is that the overall settling velocity 

of tracing particle in Hele-Shaw cell B is faster than that in cell A due to a wider gap 

width.  The capillary force within Hele-Shaw cell A with a smaller gap width is

greater, hence slows down the settling velocity.  As such, the streamline traced by the 



Chapter 6.7  Results and Discussion 

 

 190 

 

 

 
 

(a) (b) 
  

Figure 6.12  Comparison of convective flow fields of Hele-Shaw cell A 

between (a) numerical result at Ra1 = 120 and K1/K2 = 9  (∆Ψ = 0.5), and (b) 

experimental result observed at a pipe temperature of 70 
o
C. 

 

 

 

 
 

(a) (b) 
  

Figure 6.13  Comparison of convective flow fields of Hele-Shaw cell A 

between (a) numerical result at Ra1 = 189 and K1/K2 = 9  (∆Ψ = 0.5), and 

(b) experimental result observed at a pipe temperature of 95 
o
C. 
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(a) (b) 
  

Figure 6.14  Comparison of convective flow fields of Hele-Shaw cell B 

between (a) numerical result at Ra1 = 13 and K1/K2 = 0.11  (∆Ψ = 1), and 

(b) experimental result observed at a pipe temperature of 70 
o
C. 

 
 
 

 
 

(a) (b) 
  

Figure 6.15  Comparison of convective flow fields of Hele-Shaw cell B 

between (a) numerical result at Ra1 = 21 and K1/K2 = 0.11  (∆Ψ = 1), and 

(b) experimental result observed at a pipe temperature of 95 
o
C. 
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particles shown here may not depict the actual velocity of the particles due solely to 

buoyancy effect. 

 
6.8 Concluding Remarks 
 

Hele-Shaw cells with various gap widths were constructed to simulate porous 

media with distinct permeabilities.  Visualization experiments were conducted for 

both permeable and impermeable top boundary subjected to various pipe 

temperatures.  The Hele-Shaw flow patterns formed by tracing particles were 

captured successfully using time-elapsed photography.    

The flow field observed for the permeable top boundary has distinct 

characteristics and is different from that with impermeable top boundary.  Interaction 

between the fluid layer on top of the permeable boundary and the simulated porous 

region constitutes a vital part of the convective flow.  This can be seen evidently 

through the formation of the circulating cells in the fluid layer on top of the cell.  The 

numerical work presented for the cases with an impermeable top boundary compares 

well with the visualized flow field.  The presence of a recirculating cell in the more 

permeable layer is predicted, and the flow patterns based on the numerical study 

closely resemble the actual flow field.   
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CHAPTER VII 

   

CONCLUSIONS AND FUTURE WORK 
  

 
7.1  Introductory Remarks  
 

Heat and mass transfer from a buried pipe has been a subject of great interest. 

Its engineering applications include the underground pipelines for gas and oil, power 

cables and the disposal of nuclear wastes.  For these applications, the temperature of 

pipe or canister is usually higher than that of surroundings due to artificial (reduction 

of viscosity for oil transportation) or natural (ohm heating from transmission cables 

and decay heating from nuclear wastes) causes.  Heat conduction and natural 

convection induced from a heated pipe buried in a homogeneous porous medium has 

been examined in Chapter 3.   

However in reality, the soil structure near the buried site is usually modified 

from its original state in the excavation process or in the mining process for a nuclear 

waste repository.  Backfill is also often added to the buried pipes and waste canisters.  

Thus, the soil or bed rock that hosts the pipes and waste canisters are heterogeneous 

in nature.  The effects of permeability variation in the porous medium on the heat 

transfer results have been investigated in Chapter 4. 

Another application of interest is in the event of a leak developed from the 

pipeline.  The prediction of the spreading patterns of the crude oil from the accident 

site to its surroundings is essential for environmental protection.  Also closely related 

to this study is the usage of waste heat for soil heating and providing subsurface 

irrigation by letting water seep through the pipe.  Chapter 5 investigates the coupled 
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heat and mass transfer by mixed convection induced by a leakage from a pipe buried 

in a porous medium. 

The Hele-Shaw analogy is adopted in Chapter 6 to model flow in a 

heterogeneous porous medium by constructing Hele-Shaw cells with various gap 

widths.  Using time-elapsed photography with the aid of tracing particles, the flow 

patterns can be revealed.  The objective of this experimental work is to lend support 

to the numerical work presented in Chapter 4.   

 
7.2  Summary of Results 
 

The numerical solutions obtained for conduction and natural convection in the 

present study are in excellent agreement with the previous analytical work.  The 

conductive heat transfer for an isothermal top surface is determined to be 1.43, which 

is within 5% of the analytical solution provided by Eckert and Drake (1959).  As for 

the study of natural convection, Nusselt number is found to be a function of the 

square root of the Rayleigh number, which also compares well with the perturbation 

solutions provided by Himasekhar and Bao (1987) for small Rayleigh numbers.    

 
7.2.1  Effects of Backfill on Heat Transfer from a Buried Pipe 
 

Chapter 4 addresses some critical aspects in engineering applications related 

to energy utilization and environmental protection.  The numerical results suggest that 

the heat loss can be minimized by having a layer of backfill or excavation disturbed 

zone that is more permeable than the hosting soil (K1/K2 > 1).  This is the best 

scenario for the transportation of crude oil.  In fact, this is also the most desirable 
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condition for environmental protection since the contamination will be confined 

mostly in the backfill layer in the event that a leak should develop from a pipeline or 

a nuclear waste canister.  On the other hand, a backfill with K1/K2 < 1 may be 

preferred if overheating of transmission lines or power cables is to be avoided.   

 
7.2.2  Double-Diffusive Mixed Convection Induced by Leakage 
 

Numerical study on double-diffusive mixed convection from a buried pipe 

with leakage has been performed in Chapter 5.  The effects of governing parameters 

such as the buoyancy ratio, Lewis number, Peclet number and leakage location on the 

heat and mass transfer results are examined.  The results suggest that Nusselt and 

Sherwood numbers increase for aiding flows, but decrease for opposing flows.  It is 

also found that Sherwood number increases when the leakage is on top of the buried 

pipe while Nusselt number increases when the leakage is at the bottom of the pipe.  

Both Lewis number and Peclet number have a more dominant effect on the mass 

transfer than heat transfer.  For aiding flows, Nusselt number increases but Sherwood 

number decreases for Le < 1 while the trend is reversed for Le > 1.  Sherwood 

number increases with the Peclet number for aiding flows with Le ≥ 1.  On the other 

hand, the variations of Nusselt number with Peclet number are more obvious for Le ≤ 

1. 

 
7.2.3  Hele-Shaw Flow Visualization Experiment   
 

Flow visualization experiments were conducted using two Hele-Shaw cells 

with different gap widths, which simulated a porous medium with a backfill layer of 
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different permeability.  Both permeable and impermeable top boundaries subjected to 

different pipe temperatures were considered in the experiment.  The flow patterns 

formed by tracing particles were revealed through time-elapsed photography.  The 

numerical results for the impermeable top boundary presented in Chapter 4 compared 

well with the visualized flow fields from experiments.  The presence of the 

recirculating cell in the more permeable layer was confirmed, and the flow patterns 

closely resembled the actual flow field.   

 
7.3  Recommended Future Work  
 

Although the present study has addressed some fundamental problems related 

to buoyancy transport in porous media near a buried pipe, additional work is needed 

for the advancement of knowledge in this field.  With the success from the 

visualization experiment, one notices that the flow patterns for the permeable top 

boundary were quite different from those of an impermeable top boundary.  Hence, 

the next logical step is to develop a numerical model and compare the computational 

results to the observed flow fields.  In fact, for many applications in geophysics and 

porous insulation, a fluid layer is often found to superimpose on a porous layer.  Let’s 

consider a simpler problem in which the porous medium is homogeneous instead of 

heterogeneous, as shown in Figure 7.1.  The problem of interest is to determine the 

extent that heat generated from the buried pipe will affect the superimposed fluid 

layer.   

The governing equations for the fluid layer are based on Navier-Stokes 

equations, and they are expressed in terms of the stream functions and vorticity ( Ω )
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Figure 7.1  Superimposed fluid and porous layers with a  

                        buried horizontal pipe. 

 

 

in the computational domain as follows 

2

f f ,
ξη

∇ Ψ = −Ω                                       [7.1] 

2 f f f f f f
f

Ra Y Y 1
,

J J Pr
ξη

   ∂Θ ∂Θ ∂Ω ∂Ψ ∂Ω ∂Ψ∂ ∂
∇ Ω = − − + −   

∂ξ ∂η ∂η ∂ξ ⋅ ∂ξ ∂η ∂η ∂ξ   
        [7.2] 

2 f f f f
f

1
,

J
ξη

 ∂Θ ∂Ψ ∂Θ ∂Ψ
∇ Θ = − 

∂ξ ∂η ∂η ∂ξ 
                         [7.3] 
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JJ
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2

2

22

2

2

2

η∂

∂
+

ξ∂

∂
+
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              [7.4] 

and the subscript “f” indicates fluid layer.  The Prandtl number and Rayleigh number 

are defined as 

f

Pr ,
ν

=
α

       and 
( )

3

T h c i

f

g T T r
Ra .

β −
=

α ν
        [7.5a, b] 
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For the porous layer, the governing equations are based on Darcy-Extended 

Brinkman model (Oosthuizen and Naylor, 1996), and they are expressed in the 

computational domain as follows 

2

pm pm ,
ξη

∇ Ψ = −Ω                                                   [7.6]  

pm pm pm pm pm pm pm2

pm

Ra Y Y 1
,

J Da J Pr
ξη

∂Θ ∂Θ Ω ∂Ω ∂Ψ ∂Ω ∂Ψ   ∂ ∂
∇ Ω = − − + + −   

∂ξ ∂η ∂η ∂ξ ⋅ ∂ξ ∂η ∂η ∂ξ   
         

                                                                                                                                  [7.7] 

pm pm pm pm2 f
pm

pm

1
,

J
ξη

∂Θ ∂Ψ ∂Θ ∂Ψ α
∇ Θ = − 

α ∂ξ ∂η ∂η ∂ξ 
                          [7.8] 

where the Darcy number is defined by Da = K/ri
2
, and the subscript “pm” indicates 

porous medium layer.  It is noted that when the porous layer is saturated with the 

same fluid as the fluid layer, the ratio αf/αpm reduces to kf/kpm.  With minimum 

modification, the numerical techniques described in Chapter 2 can be applied here to 

obtain the discretize equations. 

The appropriate conditions need to be specified at the interface between the 

porous and fluid layers are the continuity of temperature, heat flux, normal and 

tangential velocity, shear stress and pressure: 

f pm
,Θ = Θ                [7.9a] 

pm pmf

f

k
,

Y k Y

∂Θ∂Θ
=

∂ ∂
              [7.9b] 

pmf ,
Y Y

∂Ψ∂Ψ
=

∂ ∂
              [7.9c] 

f pm
,Ψ = Ψ                                   [7.9d] 
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f pm
,Ω = Ω                [7.9e] 

pm pmf
1

.
Y Y Da Y

∂Ω ∂Ψ∂Ω
= +

∂ ∂ ∂
              [7.9f] 

The concept of the imaginary nodal point presented in Chapter 4 will be needed to 

implement the interface conditions.  However, a more complicated derivation is 

expected.  With the completion of this new study, one should be able to compare the 

numerical results with the flow patterns observed in the present study. 
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 APPENDIX: NOMENCLATURE 
   

 

Bi    Biot number, hri/kpm 

C      dimensionless concentration, )CC/()CC( chc −−  

C  concentration, [kg/m
3
] 

cp    heat capacity, [J/kg⋅K] 

d    burial depth, [m] 

D    mass diffusivity, [m
2
] 

Da Darcy number, K/ri
2
 

E energy transfer, [J] 

g    gravitational acceleration, [m/s
2
] 

h    heat transfer coefficient, [W/m
2
⋅K] 

h gap width of Hele-Shaw cell, [m] 

J    Jacobian of the coordinate transformation 

k thermal conductivity, [W/m⋅K] 

K    permeability, [m
2
] 

K     hydraulic conductivity, µρ K/g , [m
2
] 

Le    Lewis number, α/D 

m mass flow, [kg/s] 

N    buoyancy ratio, )TT(/)CC( chTchC −β−β  

Nu    Nusselt number, hri/kf 

p    pressure, [Pa] 
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P     grid control function in the ξ-direction 

Pe    Peclet number, uRri/α 

Pr    Prandtl number, ν/α 

Q heat transfer, [J] 

Q  grid control function in the η-direction 

r    radial direction in polar coordinate, [m] 

ri radius of buried pipe, [m] 

R dimensionless radial distance 

Ra Rayleigh number, KgβT(Th - Tc)ri/αν 

Sh    Sherwood number, hri/D 

T    temperature, [K] 

t    backfill layer thickness, [m] or time, [s] 

u, v, w    Darcy velocity in the x-, y- and z-direction, [m/s] 

v,u  average velocity in Hele-Shaw cell, [m/s] 

U, V, W dimensionless velocity in the X-, Y- and Z-direction 

uR    discharged radial velocity from the leakage, [m/s] 

w    width of the physical domain, [m] 

x, y, z   Cartesian coordinates, [m] 

X, Y, Z   dimensionless Cartesian coordinates 

 

Greek Symbol 
 
α thermal diffusivity of porous medium, k/(ρcp)f, [m

2
/s] 
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γβα ,,  coefficients of coordinate transformation 

αBJ Beavers and Joseph slip coefficient 

βC coefficient of concentration expansion, [m
3
/kg] 

βT coefficient of thermal expansion, [1/K] 

δ allowable error 

φ porosity of porous medium 

Φ field variables such as C, Θ and Ψ  

µ dynamic viscosity, [kg/m⋅s] 

µe effective viscosity in Brinkman-Forchheimer-extended Darcy equation, 

[m
2
/s] 

 

ν kinematic viscosity, [m
2
/s]  

θ angular direction in polar coordinate 

Θ dimensionless temperature, )TT/()TT( chc −−  

ρ density, [kg/m
3
] 

τ dimensionless time 

ξ, η body-fitted coordinates 

Ψ dimensionless stream function 

Ω dimensionless vorticity 

 

Subscript 

c cold surface 

f fluid 
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h hot surface 

i index of sublayer 

int interface 

pm porous medium 

1 index of inner sublayer 

2 index of outer sublayer 

 
Mathematical Symbol 
 
exp( ) exponential function 

erfc( ) error function 

O( ) order of magnitude 

sign( ) sign function operator 

∇  gradient operator 

2

ξη
∇  Laplacian in body fitted coordinates 

 




