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Abstract 

Capillary zone electrophoresis was used to characterize soluble gluten proteins 

extracted from six different commercial wheat samples (with protein content varying 

from 8 to 13%). The objective of this study was to describe qualitatively separation 

patterns of wheat gluten treated with four different levels of DATEM (0, 0.3, 0.6 and 

1.0%) and changes in proteins solubility, interactions and charge/mass ratio. Three 

different groups  named A, B and C based on their migration profile were observed where 

group A represents positively charged peptides with the largest charge to mass ratios, 

group B represents positively charged peptides with reduced ratios, and finally group C 

are anions with greater ratios. DATEM’s ability to induce changes in protein 

conformation was observed by (i) decrease in maximum peak intensity and (ii) an 

increase in resolution of peaks.  DATEM decreases protein solubility at a concentration 

of 0.6% for flour 1C, 4C and 6C and 0.3% for flour 2C. DATEM’s ability to increase 

interactions between gluten proteins, resulting in change in charge/mass ratio is flour 

dependent. However, flour 6C displayed a reversal in solubility at 1.0%, suggesting that 

DATEM at critical levels forms micelles, which leads to reduced interactions of DATEM 

with gluten. A proposed general mechanism by which DATEM influences overall protein 

spatial conformation is explained by a four and two stage model. 
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CHAPTER I 
 

INTRODUCTION 

1.1 Statement of problem 

 Baking industry has been using dough improvers for many years to improve bread 

quality. Numerous studies have been done to analyze the effect of surfactants upon 

wheat’s rheological and baking properties. The ability of surfacants like DATEM to 

induce improvement on loaf volume and crumb texture has been studied extensively. 

Gluten proteins are held together by various interactions such as hydrophobic, non 

covalent and disulfide bonds. DATEM helps in stabilizing the interactions between 

gluten proteins, by its ability to form gluten-DATEM complexes.  DATEM’s effect upon 

wheat gluten proteins solubility and its ability in aiding the formation of insoluble gluten 

polymer has not been studied extensively. It is widely accepted that the higher 

insolubility of gluten polymer the better the characterisitcs of gluten for yeast fermented 

products. In this study, we analyzed DATEM’s effect (i) upon protein solubility and (ii) 

changes in proteins charge/mass ratio.  

1.2 Aim of the study 

 The aim of the present study is to characterize the separation patterns of wheat 

gluten from commercial flours with varying protein concentrations (8 – 13%) by free 
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zone capillary electrophoresis. The ability of DATEM to modify wheat gluten interactions at 

four different levels (0, 0.3, 0.6 and 1.0%) will be investigated.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

2.1 Introduction 

 Grain protein composition and concentration are some of the key factors 

responsible for the baking quality of bread (Singh and Khatkar,  2005). In wheat, gluten 

proteins are important in determining the quality difference between wheat varieties 

(MacRitchie, 1984). Glutenins and gliadins are the two major proteins that contribute to 

the wheat quality. Glutenins are polymeric alcohol insoluble proteins, which when 

reduced yield two types of subunits classified as low (LMW-GS) and high molecular 

weight glutenin subunits (HMW-GS) with a molecular weight in the range of 80,000-

120,000 Da for high molecular weight and 30,000-50,000 Da for low molecular weight 

proteins (Shewry et al., 1986). Polymers of gluten are formed by intermolecular disulfide 

bonds linking the high molecular weight and low molecular weight glutenin subunits.  

2.2 Gliadins 

 Gliadins are alcohol soluble monomeric proteins in which the disulfide bonds 

when present, link one cysteine of the polypeptide chain to another cysteine of the same 

chain, i.e., they form intramolecular disulfide bonds. 
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Gliadins contribute to the extensibility of the dough system (Wall, 1979). Gliadins are 

classified into 4 classes namely α-, ß-, γ- and ω-gliadins based on the electrophoretic 

mobility on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

(Shewry et al., 2003). Gliadin contains mainly repetitive sequences of glutamine (Q) and 

proline (P) (e.g., PQQPFPQQ) (Wieser, 2007).   

 ω-gliadins have higher concentration of glutamine and proline compared to α-, ß-, 

and γ- gliadins. ω-gliadins (49-55 KDa) have molecular weight higher than that of α-, ß-, 

and γ- gliadins (28-35 KDa). Most of the ω-gliadins lack cysteine residues, hence they 

are unable to form disulfide bonds (Wieser, 2007).  The N-terminal domain of gliadins 

mainly consists of repetitive sequence of glutamine (Q), proline (P), phenylalanine (F), 

and tyrosine (Y) (for e.g. QPQPFQQPYP). The C-terminal domains of gliadins are 

homologous, and have amino acid sequences that are non-repetitive with lower 

concentration of glutamine and proline when compared to N- terminal. (Wieser, 2007). 

The α-, ß- gliadins contains six cysteines and the γ- gliadins contain about 8 cysteine 

residues. The presence of cysteine residues helps in the formation of 3 or 4 homologous 

intrachain crosslink (Grosch and Wieser, 1999). The structure of α- , γ- gliadins and the 

position of cysteine are represented in Figure 1. 
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Figure 1. Schematic representation of the position of disulfide bonds structures in α-, γ- 

gliadins (from Grosch and Wieser, 1999). 

2.3 High Molecular Weight glutenin subunits (HMW-GS) 

 The HMW-GS are encoded at the Glu-1 loci on the long arms of group1 

chromosomes (1A, 1B and 1D) (Bietz, 1975; Payne et al., 1980). Each locus comprises of 

two genes that are linked together encoding two different types of HMW-GS namely x 

and y-type subunits (Payne and Corfield, 1979; Payne et al., 1987; Shewry et al., 1992). 

The x-type has slower mobility than the y-type as determined from SDS-PAGE 

electrophoresis, suggesting that x-type has higher molecular weight compared to y-type 

subunits.  The x-type contains four cysteine residues whereas the y-type contains seven 

cysteine residues (Shewry et al., 1992).  A summary of the molecular weight of x and y- 

type HMW-GS and their amino acids composition are shown in Table 1 (Shewry et al., 

1992). 

 The HMW-GS consist of 3 major domains namely 1) domain A (a non repetitive 

N-terminal domain contains 80-105 residues), 2) domain B (repetitive central domain 

contains 480-700 residues), and 3) domain C (C-terminal domain contains 42 residues) 
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(Shewry et al., 1992). Domains A and C are hydrophobic in nature whereas domain B is 

hydrophilic in nature. Domain B is rich in amino acids like proline and glycine. However 

no sulfur is present in domain B.  Most or all of the cysteines are present in either domain 

A or C (Figure 2) (Wieser, 2007). Cysteine residues form disulfide bonds between 

HMW-GS and LMW-GS leading to the formation of large protein polymers. Domain A 

is quite conservative in which the first 16 amino acids are consistent. Only small changes 

in amino acid sequences can be found such as E (glutamic acid) at position 6 

(EGEASEQLQCERELQE) in x-type HMW-GS, which is replaced by R (arginine) in y-

type HMW-GS (EGEASRQLQCERELQE). The x-type HMW-GS has 4 cysteines, one in 

C-terminal and 3 in N-terminal, whereas the y-type HMW-GS subunit has 5 cysteines in 

N terminal domain and one in B and C terminal domain each (Shewry et al., 1992) 

(Figure 2). Among the five cysteines present y-type HMW-GS two are linked together by 

intrachain link (domain A), the other two (domain A and C) are suggested to form 

intermolecular interaction. In y-type HMW-GS interchain bond formation are found only 

for adjacent cysteine present in domain A. The cysteine in repetitive domain of y-type 

HMW-GS is linked to cysteine of LMW-GS (Wieser, 2007; Gianibelli et al., 2001). 
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Figure 2. Schematic representation of 3 domains of HMW-GS (from Shewry et al., 2003) 

2.4 Low Molecular Weight glutenin subunits (LMW-GS) 

 LMW-GS are 40% of the wheat gluten proteins (Payne et al., 1984). When 

glutenins are reduced two types of subunits are released HMW-GS and LMW-GS. The 

LMW-GS are more complex and the relationship of LMW-GS to wheat quality is still an 

enigma.  

 The N-terminal amino acid sequence study on LMW-GS reveals 3 subgroups of 

typical LMW-GS namely LMW-s, LMW-m and LMW-i., where s, m and i represent the 

first amino acid present in the sequence (serine, methionine and isoleucine) (Gianibelli et 

al., 2001). LMW-s type is the most predominant with a molecular weight in the range of 

35,000-50,000 Da. LMW-m and LMW-i type have molecular weight in the range of 

30,000-40,000 Da (Tao, 1989; Masci et al., 1995). The N-terminal domain of LMW-GS 

are rich in glutamine and proline and the C-terminal domain of LMW-GS is homologous 

to α-, ß-, and γ- gliadins. LMW-GS contain 8 cysteines of which 6 residues are present in 

position similar to α-, ß-, and γ- gliadins and 2 additional cysteine are present in N 

A (hydrophobic) 

 

B (hydrophilic) 

 

C (hydrophobic) 

 

           Domains  
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Proportions

Type MW *10
3

     (%) Partial amino acid composition (%)

MW *10-3 proportions (%) Gln Pro Phe Tyr Gly

ω5-Gliadins 49-55 03-06 56 20 9 1 1

ω1,2 -Gliadins 39-44 04-07 44 26 8 1 1

α, ß Gliadins 28-35 28-33 37 16 4 3 2

γ- gliadins 31-35 23-31 35 17 5 1 3

x-HMW-GS 83-88 04-09 37 13 0 6 19

y-HMW-GS 67-74 03-04 36 11 0 5 18

LMW-GS 32-39 19-25 38 13 4 1 3

terminal and C terminal II domain (Figure 3). The total cysteine and cysteines involved in 

the formation of inter, intra molecular disulfide bonds are shown in Table 2. The 

molecular weight and amino acid composition of α-, ß-, and γ- gliadins, LMW-GS and 

HMW-GS (x and y type) are shown in Table 1. 

 

 

 

 

 

 

Figure 3. LMW-GS representing the disulfide structure of gluten proteins (A) LMW-m 

and LMW-s type (B) LMW-i type. S: Signal peptide; cysteine are represented by (*) 

(from D’Ovidio and Masci, 2004).  

 

Table 1. Molecular weight distribution and amino acid composition of gliadins and 

glutenins (from Wieser, 2007). 
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 Cysteine forming Intra and inter molecular links

Total Cysteins Intra Inter

ω5-Gliadins  -  -  -

ω1,2 -Gliadins  -  - -

α, ß Gliadins 6 6 -

γ- gliadins 8 8 -

x-HMW-GS 4 2 2

y-HMW-GS 7 5 2

LMW-GS 8 6 2

Table 2.  Total cysteines and cysteines capable of forming intra and intermolecular 

disulfide bonds (Wieser, 2007) 

 

 

 

 

 

2.5 Genetics of wheat gluten proteins 

Bread wheat can contain up to six different HMW-GS from 3 chromosomes A, B 

and D and 2 genes x and y; however only 3 to 5 HMW-GS are commonly expressed.  

Hexaploid wheats contain at least 1Bx, 1Dx and 1Dy subunits, while some cultivars also 

contain a 1By and 1Ax subunits as well. LMW-GS genes are found on the short arms of 

chromosomes 1AS, 1BS and 1DS. These genes are located at Glu-A3, Glu-B3 and Glu-

D3 loci (Gianibelli et al., 2001).  LMW-GS comprise 40% of wheat proteins (Payne et 

al., 1984); however they are very poorly studied or understood. Some of the LMW-GS 

tend to overlap with gliadin subunits (Gianibelli et al., 2001), making them very difficult 

to study. Numerous researches over the past 30 years have shown that the allelic variation 

among the HMW-GS and LMW-GS has significantly impacted the wheat baking quality. 

However the mechanism by which the gluten proteins influence the wheat quality is still 

yet to be fully understood. 
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2.6 Qualitative analysis of wheat gluten proteins 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 2-

Dimensional electrophoresis and ion exchange chromatography are some of the many 

methods of chromatography used to analyze wheat gluten proteins (Bietz and Simpson, 

1992). However these methods have serious disadvantages including long separation time 

and labor intensive. High pressure liquid chromatography (HPLC) seems to be the 

answer to the above mentioned limitations; however some gluten separations were not 

satisfactorily achieved (Bietz and Schmalzried, 1995). It has been stated that no one 

technique would be good enough to provide us with complete information about gluten 

proteins (Gianibelli et al., 2001).  

2.7 Analysis of wheat gluten proteins using Capillary Electrophoresis  

Capillary electrophoresis is an analytical technique that separates ions based on 

their electrophoretic mobility, with the use of applied voltage. It is capable of very fast 

separations. High performance capillary electrophoresis (HPCE) is a poweful tool used 

for separating proteins based on their size (sodium dodecyl sulfate-capillary 

electrophoresis (SDS-CE)),  iso electric point (capillary iso electric focussing (CIEF)) 

and charge /mass ratio (free zone capillary electrophoresis (FZCE)) (Bean et al., 1998). 

Capillary elecrophoresis has been successfully used in separating proteins from various 

cereals, including wheat, oat, rice and maize (Bean et al., 1998). Capillary electrophoresis 

is rapidly becoming the most sought method to analyze proteins in cereal grains because 

of their ability to analyze samples rapidly and also its ability to render results with low 

concentration of analytes. 
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 Capillary electrophoresis has been used extensively for separation of wheat 

proteins and also for analyzing wheat storage proteins since the 1990’s. Capillary 

electrophoresis has been used to analyze gluten and gliadin subunits of wheat gluten 

proteins (Bean and Lookhart, 2000; Di Luccia et al., 2009; Yan et al., 2004; Piergiovanni, 

2013). Capillary electrophoresis along with SDS-PAGE, Acid-Polyacrylamide gel 

electrophoresis (A-PAGE) has been used to identify and separate wheat proteins as water 

soluble (Bean and Tilley, 2003), HMW-GS (Gao et al., 2010) and gliadins (Yan et al., 

2003; Yan et al., 2004).  

Free zone capillary electrophoresis (FZCE) has been the most efficient and 

developed form of capillary electrophoresis. Many modifications have been done to the 

methods and instrumentation used for FZCE, including the usage of low pH buffers 

(phosphate glycine) (Bean and Tilley, 2003), and modifications in the capillary diameters 

have improved the resolution of peaks in the last 20 years.  

2.8 Effect of emulsifiers 

 Emulsifiers are amphiphilic substances that possess both hydrophilic and 

hydrophobic properties. They are commonly used in bakery products to enhance dough 

properties by increasing the dough strength or crumb softness. Due to the amphiphilic 

nature of emulsifiers, it enables them to migrate to interfaces between two physical 

phases of the dough and lowering the surface tension. Hydrophobic or lipophilic region 

of the emulsifier molecule interacts with the non-polar lipid phase, whereas the 

hydrophilic regions interact with the polar aqueous components (Stauffer, 1999). 
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Figure 4. Structure of DATEM  (from Gomez et al., 2004) 

DATEM is used throughout the world as improver for bread making. It has been 

shown to improve bread texture and volume (Köhler and Grosch, 1999). Numerous 

studies have shown that DATEM prevents bread staling and yield better dough properties 

during proofing (Gomez et al., 2004). DATEM is produced by the reaction of mono and 

diacetyltartaric acid anhydride with monoacylglycerols or mixture of mono and 

diacylglycerols (Köhler and Grosch, 1999).  

2.9 Protein quality and DATEM 

Wheat flour quality plays a key role in determining the quality of baked products.  

Dough additives have been used for years in food industry to compensate for the non-

uniform quality of wheat flours (Ambardekar, 2009). DATEM at a concentration of 0.6% 

has the maximum ability to improve loaf volume of flours with varying protein 

concentrations. However, the ability of DATEM to improve loaf volume and elastic 

nature of gluten is stalled at a concentration of 1.0% DATEM (Ambardekar, 2009). The 

strength of weak gluten and the visocoelastic properties of flour with different protein 

content were improved with higher concentration of DATEM (Ambardekar, 2009). 
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DATEM increased the loaf volume of bread at a concentration of 0.6%, suggesting that 

DATEM influences protein quality and baking characteristics  by its ability to modify the 

gluten structure.  Two flours with similar protein content e.g only a 0.2% difference 

showed a significant differenec in  loaf volumes compared, suggesting that along with 

protein content quality also influences loaf volumes (Ambardekar, 2009).  Contrast in  

stability time in flours with similar protein concentration, also suggested that protien 

quality plays an important role in affecting dough mixing properties in wheat flour 

(Ambardekar, 2009). The diference in protein quality among flour with similar protien 

concentration could be attributed to the presence of  low molecular weight glutenin 

polymers, which plays a major role in determining wheat dough strength (Scanlon & 

Dexter, 2003). 

Protein aggregation studies observed that at DATEM’s ability to induce protein 

aggregation was observed at a low concentration of flour compared to increased ranges of 

flour required for samples without DATEM (Lim, 2011). It was suggested that  DATEM 

decreased the surface tension between starch, lipid and protein leading to decrease in 

gluten strength which is dependent on protein quality (Lim, 2011). Fermentation 

properties of dough revealed that addition of DATEM increased the dough development 

height and volume of gas retained. DATEM  at a concentration of 0.3 and 0.6% 

positively impacted maximum height of dough development. However, increaseing the 

concentration to 1.0% decreased its ability (Visireddy, 2011). 

 DATEM’s ability to influence dough quality has been linked to its components. It 

contains hydrophilic radicals such as diacetyl radicals and hydroxyl group that interact 

with water, which in turn is conducive for water retention (Cambell et al., 2001). 
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DATEM with one carboxyl group component had superior baking performance compared 

to one with two carboxyl groups, (Kohler, 2001).  

DATEM been suggested to interact strongly with gluten thus favoring the 

formation of the gluten-starch-lipid network. DATEM at a concentration of 0.2% showed 

an increase in stability time (p < 0.05) suggesting the ability of DATEM to increase 

dough strength. DATEM (0.2%) is suggested to improve the elasticity of wheat dough by 

influencing dough’s resistance to extension. It is suggested that DATEM acts by 

distributing itself evenly within the gluten network, between the starch and gluten, 

leading to the formation of gluten film that is more expandable (Ding et al., 2013).  
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CHAPTER III 
 

 

CAPILLARY ELECTROPHORESIS ANALYSIS OF THE EFFECT OF DIACETYL 

TARTARIC ACID ESTER OF MONOGLYCERIDES (DATEM) UPON WHEAT 

GLUTEN  

3.1 Abstract 

Capillary zone electrophoresis was used to characterize soluble gluten proteins 

extracted from six different commercial wheat samples (with protein content varying 

from 8 to 13%). The objective of this study was to describe qualitatively separation 

patterns of wheat gluten treated with four different levels of DATEM (0, 0.3, 0.6 and 

1.0%) and changes in proteins solubility, interactions and charge/mass ratio. Three 

different groups  named A, B and C based on their migration profile were observed  

where group A represents positively charged peptides with the largest charge to mass 

ratios, group B represents positively charged peptides with reduced ratios, and finally 

group C are anions with greater ratios. DATEM’s ability to induce changes in protein 

conformation is observed by (i) decrease in maximum peak intensity and (ii) an increase 

in resolution of peaks. DATEM decreases protein solubility at a concentration of 0.6% 

for flour 1C, 4C and 6C and 0.3% for flour 2C. DATEM’s ability to increases 

interactions between gluten proteins, leading to a change in charge/mass ratio is flour 

dependent. However, flour 6C displayed an increase in solubility and resolution at 0.3%, 
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and a reversal in solubility was observed at 1.0%, suggesting that DATEM at critical 

levels forms micelles, which leads to reduced interactions of DATEM with gluten. A 

proposed general mechanism by which DATEM influences overall protein spatial 

conformation is explained by a four and two stage model. Our study suggests that the 

ability of gluten to form insoluble gluten polymers is dependent on protein quality and 

concentration.  

 The objective of the study was to analyze the effect of DATEM treatments upon 

wheat gluten obtained from flours with varying concentrations and to investigate the 

ability of DATEM to influence protein interactions, leading to changes in protein 

solubility. Capillary electrophoresis analysis of the separation pattern of control and 

treatments suggested that DATEM changes protein solubility, resulting in an 

electropherogram with increased resolution and changes in proteins charge/mass ratio. 

However, the concentration of DATEM required to induce changes upon protein 

solubility is flour dependent. 

3.2 Materials and Methods 

3.2.1 Wheat sample  

 Six different commercial wheat flours were used for this study. The wheat flour 

samples (enriched and malted) had protein content ranging from 8-13%. Four levels of 

DATEM (Caravan Ingredients, Lenexa, KS 66515) were added to the flour (0, 0.3, 0.6 

and 1.0%) (w/w) flour basis.  
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3.2.2 Sample preparation (Gluten preparation) 

Wet gluten was isolated by washing the flour (10g) with 2% NaCl (w/v) for 5 

minutes using a Glutomatic 2200 instrument (Perten Instruments, Sweden). DATEM 

(0.3, 0.6, and 1.0%) was added directly and mixed with flour samples and subjected to 

gluten separation. Proteins were extracted from 10mg of gluten using 1ml of 50% n-

propanol containing 1% dithiothreitol (DTT). Samples were sonicated at 60˚C for 45 

minutes, filtered using 0.45 µm filters (Sun Sri, Rockwood, TN) and immediately 

injected into capillary electrophoresis apparatus. 

3.2.3 Sequential extraction of gliadins and glutenins 

To distinguish the separation of patterns of gliadins and glutenins on capillary 

electrophoresis, a sequential method of extraction for gliadins and glutenins is followed 

based on protocol developed by Singh et al., (1991). 

Gliadins were extracted for 30 minutes in 1.0 ml of solution A (50% 1-propanol). 

Samples were placed in water bath maintained at 65ºC. Samples were vortexed 

intermittently followed by centrifugation for 15 min at 12,500 rpm. The supernatant is 

discarded and the extraction is repeated again. The residue is washed with 0.5 ml of 

solution A and the liquid were removed by aspiration 

Glutenins were extracted for 30 minutes in solution B (50% 1-propanol in 0.08 M 

Tris HCl pH 8.0) containing 1% (w/v) freshly prepared dithiothreitol (DTT). Samples 

were centrifuged at 12,500 rpm for 5 minutes. 0.1 ml of Solution B containing 1.4% (v/v) 

vinyl pyridine is added to each tubes and incubated for 15 minutes at 65ºC. Samples were 

centrifuged for 5 minutes at 12,500 rpm and the supernatant were filtered using 0.45 µm 
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filters (Sun Sri, Rockwood, TN) and immediately injected into capillary electrophoresis 

apparatus. 

3.2.4 Free Zone Capillary Electrophoresis (FZCE) 

Free zone capillary electrophoresis separations were run on a Beckman P/ACE 

MDQ (Beckman- Coulter, San Ramon, CA) according to protocol described by Patel 

(2003). Samples were injected for 5 seconds and separated on a 27cm (20 cm to the 

detector, 50µm I.D) uncoated fused silica capillaries (Polymicro Technologies, Phoenix, 

AZ). An operating voltage of 15 kV at a temperature of 30˚C was used for analyzing 

samples using absorbance at 214 nm. Samples were separated using a freshly prepared 

running buffer containing 100 mM phosphate (pH 2.5), 20% (v/v) acetonitrile, 0.4% 

(w/v) glycine and 0.05% (w/v) hydroxypropylmethylcellulose (HPMC). 

3.3 Results  

 Protein, moisture and ash (%) content of the six flours used in this study is 

exhibited in Table 3. 

  Gluten proteins from six different commercial wheat flours were separated based 

on their charge/mass ratio using FZCE. Proteins were extracted using phosphate buffer at 

acidic pH (2.5), as studies have shown that it helps in better resolution and reproducibility 

(Bean et al., 1998). The extracted proteins represent soluble gluten proteins from both 

monomeric (mostly gliadins) and polymeric proteins (HMW-GS and LMW-GS). 

However, the soluble proteins can aggregate easily after extraction even in the presence 

of 1% DTT, which prevents oxidation to form disulfide bonds.  
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FZCE separated gluten proteins into multiple peaks (Figure 5a – 10e). The 

electropherogram represents a fingerprint of the gluten proteins present in flour. The 

presence of numerous peaks represents the multiple component nature of gluten proteins 

present in wheat. The peptides migrating earlier represent proteins that contain positively 

charged peptides with the largest charge to mass ratios, followed by positively charged 

peptides with reduced ratios, neutral peptides, followed by anions with smaller charge to 

mass ratios, and finally anions with greater ratios. 

It has been shown that FZCE separations of glutens at acidic pH differentiated 

peaks into 4 different zones. The peaks migrating in the first minutes of the 

electropherograms were assumed or proposed to be as LMW-GS and the rest of the peaks 

as HMW-GS (Di Luccia et al., 2009). HMW-GS can further be separated into three 

different categories. The 1
st
 set of peaks migrating after the LMW-GS were identified to 

be the y-type HMW-GS, followed by intermediate HMW-GS and finally by x-type 

HMW-GS (Sutton and Bietz, 1997; Yan et al., 2003; Yan et al., 2004). The x-type 

HMW-GS has molecular weight greater than that of the y-type (Di Luccia et al., 2009). 

HMW-GS and LMW-GS separation patterns for hard red spring cultivar Butte 86 

suggested that most of the LMW-GS migrated within the first twelve minutes. The 

electropherogram for HMW-GS indicates that complete separation of HMW-GS was 

achieved around 18 minutes (Patel, 2003). LMW-GS obtained by sequential method of 

extraction showed that LMW-GS proteins have similar electrophoretic mobility as 

HMW-GS proteins, as overlapping protein peaks could be seen (Patel, 2003). Di Luccia 

et al., (2009), suggested that group A contains peptides that are mostly low in molecular 

weight with higher positive charge, which can be attributed to LMW-GS as they are 



20 
 

positively charged at pH 2.5. LMW-GS comprises at least 38% glutamine, 13% proline, 

4% phenylalanine, 1% tyrosine and 3% glycine (Table 1). It is also possible that gliadins 

mainly α-, ß- and γ- gliadins could have similar electrophoretic mobility with LMW-GS 

as they have similar amino acid composition and molecular weight compared to LMW-

GS (Table 1). The x-type HMW-GS contains tri, hexa and nona peptide motifs however; 

the y-type contains only hexa and nona peptide motifs. The amount of arginine present in 

tri, hexa and nona peptides of x-type HMW-GS glutenin are 6, 4 and 7% compared to y-

type HMW-GS that contains 4% in both hexa and nona peptides (Shewry et al., 2003). 

The higher composition of arginine in x-type HMW-GS compared to y-type LMW-GS 

leads to a faster migration of y-type compared to x-type (Di Luccia et al., 2009). 

 In our study, we separated the electropherograms into three different groups A, B 

and C, where group A represents proteins with highest charge to mass (z/m) ratios. 

Proteins with more positive charge (cations) and small molecular mass migrate faster 

than group B and C. Group B represents proteins with lower charge to mass ratio 

compared to group A. Proteins with less positive charge (cations) and larger molecular 

mass migrate slower than group A towards the cathode. Group C represents proteins with 

lowest z/m ratio. Proteins with less negative charge and large molecular mass and 

proteins with low molecular weight and higher negative charge could cause them to 

repeal from migration to cathode.  

Our method of extractions were based on whole gluten extract, which also contain 

gliadins, hence making it difficult to infer whether the proteins are LMW-GS, y-type 

HMW-GS or x-type HMW-GS as suggested by Di Luccia et al., (2009). The FZCE 

patterns of 6 flours treated with 0.3, 0.6 and 1.0% DATEM are shown in (Figure 5a-10e). 
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It has been previously reported that all the gliadins, LMW-GS and HMW-GS migrated 

within the first 20 minutes (Lookhart and Bean, 1995; Bean et al., 1998; Patel, 2003; Di 

Luccia et al., 2009), similar to the migration patterns obtained from our samples. The 

peak heights steadily increased from 8 minutes and started decreasing after 20 minutes 

which is consistent with most of the samples analyzed (Figure 5a-10e). Some 4-5 peaks 

migrated well after 30 minutes and no peaks were seen after 50 minutes. Very little 

information is available regarding gluten proteins profile migrating after 30 minutes as 

most separation protocols were limited to 30 minutes (Piergiovanni, 2013; Bean and 

Lookhart, 2000). In order to avoid any proteins that might become undetected, we 

established a protocol in which gluten separation was carried for a period of 60 minutes.  

Sequential extraction protocol was used to separate gliadin and glutenin fraction 

from flour 3C, without the addition of DATEM.  Sequential method of extraction 

revealed that all the gliadin and glutenins were separated completely around 30 minutes. 

The gliadin protein extract of this sample showed a group of protein migrating earlier 

than five minutes, suggesting that this group has highly positive charge species with low 

molecular weight than the next group of migration peaks (Figure 11b). However, many of 

the gliadin and glutenin migration patterns overlap suggesting the presence of many 

proteins with same charge/mass ratio (Figure 11a and 11b). 

. The electropherograms are presented in two formats to facilitate comparisons. 

The first format is individual electropherogram that reveal more detail and the 

comparison of control and treatments need to be done by individual graph comparison. 

The second format is a compiled and overlay of electropherograms that facilitates the 

comparisons of peak resolution and heights.  
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i) Flour 1C  

 The electropherogram of gluten extract from 1C (control, 7.95% protein content) 

and treatments exhibited a total of 19 and 18 peak, respectively (Figure 5a-d). The 

separations were arbitrarily named group A, B and C, where group A represents the 

major group which were represented by “trade mark” big peaks with higher intensity and 

wide base, group B represents peaks that separate from the slope of large peaks. Group C 

represents peaks that migrate after 30 minutes and indicates proteins that have less 

positive charge and/or higher mass compared to control. 

Effect on protein solubility 

 In Flour 1C, the intensity of maximum peak increased at least five fold for 0.3 and 

0.6% DATEM and four fold with 1.0% DATEM (Table 4 and Figure 5a-d) compared to 

the control (0% DATEM). An extra peak could be noted in 1C control migrating at 

around 45
th

 minute (Figure 5a), which is absent in the DATEM treatments. The presence 

of a large peak migrating at around 45
th

 minute indicates presence of large gluten 

aggregates leading to protein agglomeration. Such aggregates were not formed in the 

presence of DATEM suggesting the protein must have been insoluble and not extracted 

with 0.3, 0.6 and 1.0% DATEM.  

Effect on protein resolution 

 Flour 1C treated with 0.3 and 0.6% DATEM, showed an improvement in 

resolution and separation by new protein (7a), migrating next to protein 7 at around 18 

minutes (Figure 5b and 5c). The presence of protein 7a, indicates that DATEM at a 

concentration of 0.3 and 0.6% induces changes in protein conformation, by its ability to 
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increase the interactions of proteins by means of hydrophobic, hydrophilic interactions, 

leading to detection of a new peptide with decreased charge/mass ratio. The decreased 

intensity of peak 7a in sample treated with 1.0% DATEM (Figure 5d), suggest that 

DATEM at this concentration, causes conformational changes in proteins, resulting in 

formation of peptides that has lower charge and higher mass compared to control. 

 Flour 1C treated with 0.3 and 0.6% DATEM showed an increased resolution in 

peaks separation compared to control (Figure 5e). However, treatment 1.0% had a 

decrease in protein resolution. The ability of DATEM to decrease the solubility of gluten 

proteins, leads to a decrease in amount of soluble gluten proteins (lower absorbance 

compared to control) migrating in the column, leading to a highly resolved 

electropherogram. The decrease in amount of protein soluble corresponds to decreased 

amount of protein migrating in the column at a given time, hence leading to separation of 

peaks with increased resolution and sharpness. 

Summary of the electropherograms of flour 1C control and treatments from 

Figure 5e suggests 

a) An improvement in resolution of peaks with 0.3 and 0.6% DATEM treatment 

b) A decrease of amount of extracted soluble proteins with 1.0% DATEM. The 

latter one is suggested by the reduction in absorbance (214 nm) which is 

directly proportional to soluble proteins. 

 

 



24 
 

ii) Flour 2C  

Effect on protein solubility 

 The electropherogram of gluten extract from 2C (control, 10.4% protein content) 

and treatments (0.3, 0.6 and 1.0%) exhibited 18, 16, 18 and 17 peaks, respectively 

(Figure 6a-d). The intensity of maximum peak decreased at least 60% for sample with 

treatments (0.3, 0.6 and 1.0%) compared to control (Table 4 and Figure 6a-d). A decrease 

of peak intensity for peak 7 in 0.3% DATEM treated sample, suggest that DATEM 

influences the protein interactions leading to the formation of gluten polymers with 

decreased charge/mass ratio. This is visualized as peak “7a” (Figure 6b).   

Effect on proteins migrating after 20 minutes 

The electropherogram of group C for 0.3% DATEM indicates an increase in the 

formation of insoluble gluten polymers as the peaks look broader and lower in resolution 

compared to the peaks migrating before 20 minutes (Figure 6b). The migration profile 

around 50
th

 minute indicates the beginning of separation of a large peak, which could 

have been detected with increased time, suggesting that for this flour, DATEM at 0.3% 

enables gluten interactions to form insoluble polymers in an aggregated form, supported 

by the peaks migrating with an broad base and shallow heights (Figure 6b). 

In sample treated with 0.6 and 1.0% DATEM, an increase in agglomeration of 

gluten polymers are evident with a migration of a large peak around the 50
th

 minute 

(Figure 6c and 6d). This confirms the ability of gluten to increase the interaction of gluten 

proteins leading to a formation of polymers which have a higher negative charge and 

lower charge/mass ratio compared to control.  
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  Summary of the electropherograms of 2C control and treatments from Figure 6e 

reveals 

a) A decrease of amount of extracted soluble proteins with 0.3, 0.6 and 1.0% 

DATEM revealed by the decrease of intensity of maximum peak height. 

iii) Flour 3C  

Effect on protein solubility  

The electropherogram of gluten extract from 3C (control, 10.5% protein content) 

and treatments (0.3, 0.6 and 1.0%) exhibited 16, 19, 19 and 17 peaks respectively (Figure 

7a-d). Comparing sample 3C (control) and treatments, the maximum peak intensity 

decreased for sample treated with 1.0% DATEM (Table 4 and Figure 7a-d). 

In flour 3C treated with 0.3 and 0.6% DATEM, the peaks are better resolved 

compared to control (Figure 7a-c). In 0.3% DATEM treatment, three new peaks are 

observed in treatments, namely “17”, “18” (migrating as a doublet) (Figure 7a and 7b). 

This suggests that 3C treated with 0.3 and 0.6% DATEM induced protein interactions 

leading to formation of peptides with increased negative charge and lower charge/mass 

ratio compared to control. The peak migrating at 45 minutes compared to control (Figure 

7a and 7b), indicates that the DATEM at this concentration induces the formation of 

protein agglomeration.  

Effect on protein resolution 

In flour 3C treated with 1.0% DATEM, an electropherogram with a decreased 

resolution was displayed (Figure 7e). This suggests that at this DATEM concentration 
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majority of the gluten are present in polymeric or insoluble form leading to a large 

decrease in population of gluten proteins that are soluble. These observations are 

supported by a decrease in maximum peak intensity (Table 4) and a poor resolution of 

peaks separated compared to treatments (0.3 and 0.6% DATEM) (Figure 7e).   

Effect of protein migration after 20 minutes 

The presence of a large peak migrating around 50
th

 minute suggest the formation 

of protein agglomeration. Gluten protein formation is accompanied by constant stretching 

and breaking of bonds between proteins and DATEM plays a key role in stabilizing and 

facilitating the formation of high molecular weight gluten polymers. The strong 

agglomeration is a key factor in determining gluten development.  

Summary of the electropherograms of 3C control and treatments from Figure 7e reveals. 

a) An improvement in resolution of peaks with 0.3 and 0.6% DATEM treatment. 

b) A decrease of amount of extracted soluble proteins with 1.0% DATEM. 

iv) Flour 4C  

Effect on protein solubility and charge/mass ratio 

The electropherogram of gluten extract from 4C (control, 11.1% protein content) 

and treatments (0.3, 0.6%) exhibited a total of 21 peaks compared to 18 peaks for sample 

treated with 1.0% DATEM (Figure 8a-d). In flour 4C (control) and treatments, the 

intensity of maximum peak increased at least six fold and three fold for sample treated 

with 0.3 and 0.6% DATEM respectively (Table 4 and Figure 8a-d).  
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 Flour 4C and treatments (0.3, 0.6 and 1.0% DATEM), exhibited a new peak “5a” 

(Figure 8a-c). However, the peak intensity for peak “5a” was decreased in 1.0% DATEM 

(Figure 8d). The decrease in intensity of peak “5a” and the entire protein profile in 1.0% 

DATEM treated sample, suggest that at this concentration DATEM’s ability to form 

insoluble gluten protein complexes is increased significantly, leading to the decrease in 

the population of soluble gluten proteins. The decrease in peak intensity also suggest that 

DATEM at this concentration enables the formation of high gluten polymer formation, 

which leads to proteins with lower charge/mass ratio (proteins with more negative charge 

and increased mass), which leads to the formation of protein agglomerates , as seen with 

a large peak migrating around 50
th

 minute (Figure 8d) 

Effect on protein resolution 

Sample treated with 0.3 and 0.6% DATEM also showed an increased resolution in 

peaks separation compared to control (Figure 8e). However, treated with 1.0% DATEM 

had a decrease in protein resolution (Figure 8e). The ability of DATEM to increase the 

formation of insoluble gluten polymers, leads to decrease in the amount of soluble gluten 

proteins migrating in the column, leading to a highly resolved electropherogram for 

samples treated with 0.3 and 0.6 % DATEM. However DATEM at a concentration of 1.0 

% increase the ability of formation of insoluble gluten polymers, leading to large 

decrease in soluble gluten polymers that can be detected, leading to a poorly resolved 

electropherogram. 
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Effect of protein migration after 20 minutes 

The presence of a large peak migrating around 50
th

 minute for sample containing 

1.0% DATEM (Figure 8d), confirms our suggestion that DATEM at 1.0% increases the 

formation of insoluble gluten polymers, that has a tendency to aggregate and form protein 

with higher mass and increased negative charge compared to proteins migrating before 20 

minutes. The slow moving proteins could also be aggregates of highly negatively charged 

proteins of low molecular weight. They move slower because the higher density of 

negative charges would make them repulse from the cathode.   

Summary of the electropherograms of 4C control and treatments from Figure 8e 

reveals 

a) An improvement in resolution of peak with 0.3 and 0.6% DATEM treatment 

b) A decrease of amount of extracted soluble proteins with 0.6 and 1.0% 

DATEM. 

v) Flour 5C  

Effect on protein solubility 

 The electropherogram of gluten extract from 5C (control, 11.3% protein content) 

and treatments exhibited a total of 17 peaks (Figure 9a-d). In sample 5C (control) and 

treatments, the intensity of maximum peak was similar between control and treatments 

(Table 4 and Figure 9a-d).  
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Effect on protein resolution 

 In 0.3% DATEM treatment, the peaks were well separated and were distinguished 

with an increase resolution compared to control (Figure 9a). However, a new peak (17a) 

migrates at around 40
th

 and 50
th

 minute, suggesting the process of agglomeration taking 

place (Figure 9a-b). The absence of these peaks in control samples confirms the ability of 

DATEM to induce protein changes leading to increased protein polymer formation which 

can be attributed to an increase peak seen in electropherogram of 0.3% DATEM 

treatment (Figure 9a). This suggests that DATEM induces changes in protein interaction 

leading to formation of high molecular weight gluten polymers with an increase mass and 

lower negative charge.  

 An electropherogram with similar resolution and was obtained for sample treated 

with 1.0% DATEM. However, compared to 0.3% DATEM, a clear separation of 

agglomerated peaks (17a) (Figure 9b) was not seen. This suggest that DATEM at 1.0% 

decreases the population of gluten proteins that are soluble, which can further be 

confirmed with a peak starting to separate around 50
th

 minute, leading to decrease in 

intensity of peak 17a in 1.0% DATEM treatment (Figure 9d). 

In 0.6% DATEM treatment, the peaks were not well resolved compared to control 

and 0.3% treatment (Figure 9e). The maximum peak intensity shows a trend to decrease, 

however, the loss of resolution and decreased intensity suggest that DATEM at this 

concentration induces change in protein conformation. The presence of large peak 

migrating at 50
th

 minute suggests the formation of protein agglomerates.  

Summary of the electropherogram of 5C control and treatments from Figure 9e reveals 
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a) An improvement in resolution of peak with 0.3 and 1.0% DATEM treatment 

b) A decrease of amount of extracted soluble proteins 0.6% DATEM. 

vi) Flour 6C  

Effect on protein solubility and charge/mass ratio 

The electropherogram of gluten extract from 6C (control) and treatments (0.6, 

1.0%) exhibited a total of 18 peaks compared to 17 peaks for sample treated with 0.3% 

DATEM (Figure 10a-d).   

In flour 6C (control) and treatments, the maximum peak intensity were similar 

between control, and 0.3 and 1.0% DATEM. Flour 6C treated with 0.3% DATEM, 

introduced a new peak “8a” separating in group B (Figure 10b). The presence of peak 8a 

decreased the intensity of peak 8, suggesting the ability of DATEM to modify protein-

protein interactions. Peak 18 migrating in control sample is absent in 0.3% treatment 

suggesting that DATEM’s ability to form insoluble gluten polymers caused an increased 

charge/mass ratio, suggesting  that the peptide might migrate later (Figure 10a and 10b). 

Flour 6C treated with 0.6% DATEM, displayed two new peaks “3a” and “3b” 

compared to control. This suggest that DATEM at this concentration, induces changes in 

protein conformation and interactions, leading to formation of a peptide that has a lower 

charge/mass ratio compared to peak “3” (Figure 10a and 10c). Flour 6C treated with 

1.0% DATEM, showed new peaks “6a”, “9a” and “10a” (Figure 10d). The presence of 

new peaks suggests the increase in separation of proteins with a lower charge/mass ratio 

which could be attributed to the ability of DATEM to influence protein interactions.  
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Effect on protein resolution 

Control and treatments 0.3 and 0.6% showed a better resolution compared to 

control (Figure 10a and 10e).  The electropherogram of 1.0% DATEM displayed an 

improvement in resolution of peaks in group A and a reduction in resolution of peaks in 

group B compared to control. This suggests that 1.0% DATEM in sample 6C increases 

interactions between peptides thus modifying their charge to mass ratio. The increase in 

maximum peak intensity for samples treated with 1.0% DATEM suggests that DATEM 

at this level has reached a critical level or critical micellar concentration (CMC). At this 

level, the affinity of DATEM towards formation of micelle is increased, thus leading to 

decreased interaction with proteins. 

Summary of the electropherograms of 6C control and treatments from Figure 10e 

reveals 

a) An improvement in resolution of peak with 0.3 and 0.6% DATEM treatment. 

b) An increase in soluble protein with 0.3 and 1.0% and a decrease of amount of 

extracted soluble proteins with 0.6% DATEM. 

3.4 Discussion 

(i) Flour 1C, 3C and 4C  

In our study with flour 1C and 4C (Figure 15), showed a semi-quantitative 

increase in protein solubility at 0.3% of DATEM, which is evident from the increase in 

maximum peak intensity (Figure 15). However, the limitation of this study is the number 

of samples and representation of protein concentration. This study also observed that 
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flour 1C and 4C with protein concentration of 7.9 and 11.2% had a similar semi-

quantitative solubility characteristic when treated with 0.6 and 1.0% DATEM. Flour 1C 

and 4C, treated with 0.6 and 1.0% DATEM (Figure 15and Table 4), showed increased 

protein solubility compared to control and a decrease in protein solubility compared to 

0.3% DATEM treatment suggesting the formation of insoluble gluten polymers. Flour 3C 

when treated with 0.3 and 0.6% DATEM did not change the gluten solubility compared 

to control. However, at a concentration of 1.0% DATEM, the protein solubility decreased 

(Figure 15). DATEM’s ability to induce changes in protein conformation leading to 

formation of soluble gluten polymers appears to be independent of protein concentration. 

A four stage model is proposed to explain the mechanism of action by which 

DATEM induces changes in solubility of proteins and induces the complex formation 

leading to insoluble gluten polymers. Stage 1 (Figure 12), represent gluten proteins in its 

native state. Stage 2 (Figure 12) represents DATEM at 0.3% indicates a low level of 

interaction with amino acids side chains. DATEM’s interaction with amino acid residues 

of protein side chains can involve hydrophobic, hydrophilic interactions that are 

necessary for hydrated gluten leading to an increased solubility (Khatkar, 2004). Stage 3 

(Figure 12) indicates that increase in DATEM concentration (0.6%) leads to an increase 

in interactions with proteins, leading to formation of gluten polymers. However at this 

concentration the population of proteins that forms insoluble gluten polymers is relatively 

lower compared to DATEM at a concentration of 1.0%. 

Stage 4 (Figure 12) indicates that DATEM at 1.0% increases the interaction with 

amino acids chains thereby enabling the formation of protein complex. This supports the 

findings that DATEM has been suggested to interact mainly with hydrophobic domain of 
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gluten proteins, leads to the formation of protein polymers (which imparts gluten 

strength) and increased protein aggregation (Orthoefer, 1997; Shiau, 2004; Gomez et al., 

2012). It is also suggested that DATEM at a concentration lower than 0.5% leads to 

formation of hydrophobic interaction of DATEM with amino acids of gluten proteins, 

however the interaction was weak due to low aggregation, compared to increased 

aggregation caused when DATEM was present at concentration of 1.0% (Gomez et al., 

2012). 

DATEM also plays a facilitating role in the formation of disulfide bonds between 

protein chains which would otherwise have cysteines away from each other, i.e., 

physically separated (Figure 12, Stage 1 and 2). DATEM’s ability to bind to hydrophobic 

amino acid side chains, along with constant mixing during hydration of flour leads to 

opening up of the proteins hydrophobic domains. Most likely changes in the secondary 

structure lead to alignment of sulfhydryl groups in close proximity whereby they can 

form disulfide bonds, which is represented in our model (Figure 12, Stage 3 and 4), 

whereby at low DATEM concentrations the -SH groups are aligned away from one 

another (Figure 12, Stage 1 and 2). The presence of two  cysteine residues in y-type 

HMW-GS capable for forming interchain disulfide bonds with LMW-glutenins (Wieser, 

2007) (Table 2) enables the gluten to form large chain polymers with HMW-GS, that are 

rendered insoluble. 

(ii) Flour 2C and 5C 

 The mechanism of action of DATEM upon wheat gluten proteins exhibited 

similar mode of action in flour 2C and 5C with a protein concentration of 10.4 and 
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11.4%. In flour 2C and 5C (Figure 15), DATEM at concentration of 0.3% reduced the 

amount of gluten that is soluble. The decrease in solubility of gluten proteins suggest the 

formation of insoluble high molecular weight polymers which cannot be extracted. The 

electropherogram of samples treated with DATEM also showed an increased resolution 

compared to control (sharper peaks). This suggest that the decrease in amount of soluble 

proteins leads to an decrease in population of samples migrating in the column, thus 

enabling the samples to be separated with a greater resolution.  The decrease in solubility 

of gluten proteins at 0.3% DATEM, confirms our suggestion that the amount of DATEM 

required to induce changes in protein conformation is dependent mainly on protein 

quality. Our data confirms the findings by Ambardekar (2009) using the same flour set 

and DATEM treatments than this study who reported that flours with similar protein 

concentration have different rheological properties, suggesting protein quality plays an 

important role compared to quantity. 

 In order to explain the mechanism of action in relation to flour 2C and 5C (Figure 

15), we propose a two stage model. According to this model, unlike for flour 1C, 3C and 

4C (Figure 15) the proteins are tightly arranged and are compact in nature (Figure 13, 

Stage 1). At this molecular arrangement, 0.3% of DATEM is sufficient to induce changes 

in conformation of proteins, by its ability to induce interactions between amino acid side 

chains and align sulfhydryl groups in close proximity (Figure 13, Stage 2). At 0.6% 

concentration, it is also assumed that DATEM has reached its saturation level to induce 

any effect upon protein conformation, and further increase in DATEM concentration 

would not yield any significant changes in protein interactions.  
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(iii) Flour 6C 

 In Flour 6C, the mechanism of action of DATEM upon wheat gluten proteins 

exhibited some similar mode of action compared to 1C, 3C and 4C (Figure 15) up to a 

concentration of 0.6%. An increase in solubility of proteins was observed when DATEM 

was present at a concentration of 0.3 and 0.6%. However, an increase in DATEM 

concentration to 1.0%, suggested a reversal in the solubility of proteins. Proteins that 

remained insoluble were deemed soluble at a DATEM concentration of 1.0%. A decrease 

in peak resolution for flour treated with 1.0% also suggests that more soluble proteins are 

extracted at 1.0% DATEM concentration. Similar behavior was observed in other flours 

(5C) where the non-linear response of protein solubility could be attributed to a property 

exclusive to surfactants called as critical micellar concentration. It is defined as the 

concentration of surfactants, beyond which all the additional surfactants added to the 

system is devoted to forming micelles (Mukerjee et al., 1971). At a concentration greater 

than 0.6%, for this particular flour, DATEM has reached critical level, beyond which any 

addition of DATEM yields or forms micelle with themselves, leading to an increased 

solubility of gluten proteins. The process of micelle formation is explained in (Figure 14). 

DATEM and protein solubility based on maximum peak absorbance 

 From the electropherograms, the maximum peak absorbance was used for a semi-

quantitative evaluation of the solubility of gluten proteins when treated with DATEM 

(Figure 15). The effect of DATEM on solubility was overall not linear except for sample 

5C which suggest no change in the maximum peak. The response can be generalized as 

polynomial (with the exception of 5C) and confirms the practical knowledge of the 
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baking industry personnel that practice an overall expectation of improvement of specific 

parameters of quality such as improved volume and crumb texture but acknowledges 

treatment levels tailored for each particular flour. Taking sample 6C as an example, 

reflects a particular response more classical polynomial then the rest of the samples. This 

suggests a more complex interactions of gluten-DATEM compared to the rest of the 

samples.  The effect of DATEM on samples 1C, 4C and 6C is a trend to increase the 

protein solubility followed by a decrease in solubility. It is expected that when increased 

gluten solubility is observed, insoluble protein has increased since they are negatively 

correlated.  Higher insolubility of gluten proteins is generally assumed the result of the 

formation of large polymers that are key to larger aggregates and entanglements with 

elastic and extensible properties compared to lower insoluble gluten. The effect of 

DATEM on sample 2C is a decrease in protein solubility (Figure 15) and no effect on 

sample 5C. Sample 3C shows a decrease in soluble protein with 1% DATEM and no 

change with 0.3 and 0.6% DATEM. 

3.5 Conclusion  

 Capillary electrophoresis analysis suggests that DATEM’s ability to induce 

changes in protein conformation results in a change in protein solubility. The ability of 

DATEM to modify protein interactions were observed with both decrease and increase in 

maximum peak intensity and an increase in resolution of proteins detected.  The 

concentration of DATEM influencing change in protein solubility varied in the set of six 

commercial flours with varying protein concentration as determined from maximum peak 

intensity. The mechanism of action and the concentration of DATEM varied with flours 

with similar protein concentration (Flour 4C and 5C, 2C and 3C). DATEM’s ability to 
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induce changes in protein solubility was evident from improved and decrease resolution 

of peaks separated. Overall DATEM’s ability to induce polymer formation leading to a 

change in protein solubility is flour dependent. The experiments were performed in 

relatively small set of samples to conclude that is only due to quality of flour. More 

studies are needed to elucidate the role of DATEM treatments and the effect on protein 

profiles and solubility. 
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Figure 5a. FZCE patterns of gluten extract obtained from control flour 1C. 
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Figure 5b. FZCE patterns of gluten extract obtained from flour 1C treated with 0.3% 

DATEM. 
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Figure 5c. FZCE patterns of gluten extract obtained from flour 1C treated with 0.6% 

DATEM. 
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Figure 5d. FZCE patterns of gluten extract obtained from flour 1C treated with 1.0% 

DATEM. 
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Figure 5e. Compiled and overlay graph of untreated Flour 1C (control) and Flour 1C 

treated with 0.3, 0.6 and 1.0% DATEM. 
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Figure 6a. FZCE patterns of gluten extract obtained from control flour 2C. 
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Figure 6b. FZCE patterns of gluten extract obtained from flour 2C treated with 0.3% 

DATEM. 
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Figure 6c. FZCE patterns of gluten extract obtained from flour 2C treated with 0.6% 

DATEM.  
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Figure 6d. FZCE patterns of gluten extract obtained from flour 2C treated with 1.0% 

DATEM. 
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Figure 6e. Compiled and overlay graph of untreated Flour 2C (control) and Flour 2C, 

treated with 0.3, 0.6 and 1.0% DATEM. 
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Figure 7a. FZCE patterns of gluten extract obtained from control flour 3C.  
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Figure 7b. FZCE patterns of gluten extract obtained from flour 3C 0.3, treated with 0.3% 

DATEM. 
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Figure 7c. FZCE patterns of gluten extract obtained from flour 3C, treated with 0.6% 

DATEM. 
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Figure 7d. FZCE patterns of gluten extract obtained from flour 3C, treated with 1.0% 

DATEM. 
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Figure 7e. Compiled and overlay graph of untreated flour 3C (control) and flour 3C, 

treated with 0.3, 0.6 and 1.0% DATEM. 
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Figure 8a. FZCE patterns of gluten extract obtained from control flour 4C.   
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Figure 8b. FZCE patterns of gluten extract obtained from flour 4C treated with 0.3% 

DATEM. 
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Figure 8c. FZCE patterns of gluten extract obtained from flour 4C treated with 0.6% 

DATEM. 
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Figure 8d. FZCE patterns of gluten extract obtained from flour 4C treated with 1.0% 

DATEM. 
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Figure 8e.  Compiled and overlay graph of untreated flour 4C (control) and flour 4C, 

treated with 0.3, 0.6 and 1.0% DATEM. 
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Figure 9a. FZCE patterns of gluten extract obtained from control flour 5C. 
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Figure 9b. FZCE patterns of gluten extract obtained from flour 5C, treated with 0.3% 

DATEM. 
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Figure 9c. FZCE patterns of gluten extract obtained from flour 5C treated with 0.6% 

DATEM.  
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Figure 9d. FZCE patterns of gluten extract obtained from flour 5C treated with 1.0% 

DATEM. 
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Figure 9e. Compiled and overlay graph of untreated Flour 5C (control) and flour 5C, 

treated with 0.3, 0.6 and 1.0% DATEM. 
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Figure 10a. FZCE patterns of gluten extract obtained from control flour 6C. 
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Figure 10b. FZCE patterns of gluten extract obtained from flour 6C treated with 0.3% 

DATEM. 
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Figure 10c. FZCE patterns of gluten extract obtained from flour 6C treated with 0.6% 

DATEM.  
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Figure 10d. FZCE patterns of gluten extract obtained from flour 6C treated with 1.0% 

DATEM.  
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Figure 10e.  Compiled and overlay graph of untreated flour 6C (control) and flour 6C, 

treated with 0.3, 0.6 and 1.0% DATEM. 
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Figure 11a. FZCE patterns of gliadin extract obtained from control flour 3C. 

a) ω-gliadins are assumed to migrate earlier than 5 minutes. 
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Figure 11b. FZCE patterns of gluten extract obtained from control flour 3C. 
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Stage 1. Soluble proteins chains at their native conformations in 50% n-propanol + 1% 

DTT 

 

Stage 2. Interactions between gluten proteins and DATEM (0.3%) 50% n-propanol + 1% 

DTT 
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Stage 3. Interactions between gluten proteins and DATEM (0.6%) 50% n-propanol + 1% 

DTT 

 

Stage 4. Interactions between gluten proteins and DATEM (1.0%) in 50% n-

propanol+1% DTT

 

Figure 12. Proposed four stage model for 1C, 3C and 4C flour treated with DATEM 
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Stage 1. Proteins chains at their native conformations in 50% n-propanol + 1% DTT 

 

 

Stage 2. Interactions between gluten proteins and DATEM (0.3%) in 50% n-propanol + 

1% DTT

 

 Figure 13. Proposed two stage model for 2C and 5C flour treated with DATEM 
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Figure 14. Interactions between gluten proteins and 1.0% DATEM in 50% n-propanol + 

1% DTT 
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Figure 15. Effect on different levels of DATEM (0, 0.3, 0.6 and 1.0%) upon protein 

solubility (absorbance, 214 nm) based on maximum peak intensity from CE 

electropherograms 
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Table 3. Proximate analysis of flours (means ± 2, n=2). (Adapted from Ambardekar, 

2009) 

Flours Protein (%) Moisture (%)    Ash (%)

1C 7.95 ± 0.05 11.69 ± 0.02 0.29 ± 0.01

2C 10.40 ± 0.10 12.54 ± 0.02 0.47 ± 0.00

3C 10.59 ± 0.07 12.57 ± 0.00 0.48 ± 0.01

4C 11.19 ± 0.07 10.51 ± 0.03 0.38 ± 0.01

5C 11.38 ± 0.01 12.98 ± 0.04 0.58 ± 0.01

6C 13.68 ± 0.02 10.14 ± 0.02 0.41 ± 0.00
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Table 4. Maximum peak intensity (absorbance, 214 nm) from electropherogram of gluten 

samples of commercial flours treated with 0, 0.3, 0.6 and 1.0% DATEM  

Flour DATEM (%) Rep 1 Rep 2 Rep 3  Mean S.D

1C 0 7.00E-03 5.00E-03 5.00E-03 5.67E-03 1.15E-03

0.3 2.50E-02 2.60E-02 2.60E-02 2.57E-02 5.77E-04

0.6 2.70E-02 2.40E-02 2.30E-02 2.47E-02 2.08E-03

1.0 1.80E-02 2.00E-02 1.90E-02 1.90E-02 1.00E-03

2C 0 3.00E-02 3.00E-02 3.10E-02 3.03E-02 5.77E-04

0.3 1.10E-02 1.10E-02 1.00E-02 1.07E-02 5.77E-04

0.6 1.30E-02 1.20E-02 1.00E-02 1.17E-02 1.53E-03

1.0 1.00E-02 1.20E-02 1.00E-02 1.07E-02 1.15E-03

3C 0 1.00E-02 1.30E-02 1.40E-02 1.23E-02 2.08E-03

0.3 1.20E-02 1.40E-02 1.30E-02 1.30E-02 1.00E-03

0.6 1.20E-02 1.00E-02 1.00E-02 1.07E-02 1.15E-03

1.0 4.00E-03 3.00E-03 2.00E-03 3.00E-03 1.00E-03

4C 0 4.00E-03 3.50E-03 4.00E-03 3.83E-03 2.89E-04

0.3 2.40E-02 2.50E-02 2.50E-02 2.47E-02 5.77E-04

0.6 1.00E-02 1.20E-02 1.10E-02 1.10E-02 1.00E-03

1.0 4.00E-03 5.00E-03 5.00E-03 4.67E-03 5.77E-04

5C 0 8.00E-03 1.00E-02 1.10E-02 9.67E-03 1.53E-03

0.3 8.00E-03 8.00E-03 1.00E-02 8.67E-03 1.15E-03

0.6 8.00E-03 9.00E-03 8.00E-03 8.33E-03 5.77E-04

1.0 7.00E-03 9.00E-03 8.00E-03 8.00E-03 1.00E-03

6C 0 2.00E-02 2.00E-02 2.30E-02 2.10E-02 1.73E-03

0.3 2.70E-02 2.80E-02 2.70E-02 2.73E-02 5.77E-04

0.6 1.30E-02 2.00E-02 2.00E-02 1.77E-02 4.04E-03

1.0 2.50E-02 2.50E-02 2.10E-02 2.37E-02 2.31E-03
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CHAPTER IV 

 

 

FUTURE STUDIES 

To our knowledge, this study was the first in using capillary electrophoresis to 

examine the effect of DATEM upon wheat gluten interaction and charge/mass ratio. We 

hypothesize that DATEM’s ability to promote protein interactions leading to change in 

solubility of gluten is dependent on flour with some factors such as protein quality and 

concentration.  This study suggested that DATEM acts by influencing protein interactions 

promoting interactions among gluten proteins through hydrophobic and hydrophilic 

interactions.   

 In this study, DATEM‘s ability to interact with proteins was enabled during the 

mixing stages of the glutomatic. It would be of interest to increase the interaction time 

between DATEM and gluten to test if it affects the properties analyzed. I suggest resting 

the sample for 5 minutes after initial mixing using glutomatic and compare the protein 

separations with current data to analyze the effect of interaction time on changes in gluten 

proteins interaction. Alternatively, a study can be designed to find the optimum time of 

mixing and or resting that produced maximum changes produced by DATEM. 

Sequential extraction protocol to separate gliadins, HMW-GS and LMW-GS 

could be used to separate proteins into individual fractions. Each fraction obtained could 
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be analyzed using 2D gel electrophoresis and mass-spectrometry. This would enable us to 

identify individual proteins based on their pI, and the sequence of individual proteins can 

then be obtained from mass spectrometry and identification to confirm the type of 

proteins. DATEM’s ability to induce protein interactions would result in a change in 

molecular mass and pI which can be visualized in 2D when compared to a control.  

Recently, HMW-GS has been successfully identified using SDS-CE, whereby the 

separation is based upon molecular mass and not by charge. Comparing the separation 

pattern of control with published standards used would enable us to identify individual 

subunits of HMW-GS and any changes resulting in DATEM treatment could be 

identified. The studies with LMW-GS separation using SDS-CE is in initial stages due to 

complexities in analyzing the large number of LMW-GS present in gluten. However, a 

modified protocol for extraction of LMW-GS and separation of LMW-GS using HPLC-

MS would shed more light onto LMW-GS composition, that composition can be related 

to functionality properties. 

 Even though four different levels of DATEM were used in this study, it would be 

essential to identify optimum DATEM concentration required, which could be achieved 

by statistical modeling and by appropriate experimental design. It is essential to prepare 

samples for capillary electrophoretic separation fresh before each run, in order to avoid 

any changes in protein separation pattern caused due to protein agglomeration. Rinsing 

the column for at least 30 minutes with sodium hydroxide, acetic acid and phosphate 

buffer before each run will helps to remove any protein left behind in the capillary 

column. This will help in obtaining an electropherogram with good resolution and 

consistency.  
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APPENDIX I 

 
Table 1. Partial composition analysis (Protein, moisture and ash) flour sample from Ambardekar 

(2009) to this study 

 

Flours Ambardekar (2009) Protein (%) Moisture (%)    Ash (%)

1C 1A 7.95 ± 0.05 11.69 ± 0.02 0.29 ± 0.01

2C 1B 10.40 ± 0.10 12.54 ± 0.02 0.47 ± 0.00

3C 2B 10.59 ± 0.07 12.57 ± 0.00 0.48 ± 0.01

4C 2A 11.19 ± 0.07 10.51 ± 0.03 0.38 ± 0.01

5C 3B 11.38 ± 0.01 12.98 ± 0.04 0.58 ± 0.01

6C 3A 13.68 ± 0.02 10.14 ± 0.02 0.41 ± 0.00  
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