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Abstract:  Geophysical and geochemical methods were used at Grand Terre 1 

(GT1) Island off the coast of Louisiana, an island that had been heavily contaminated 

with crude oil associated with the April 2010 BP Deepwater Horizon oil spill. 

Electrical methods and aqueous geochemistry have proven sensitive in the detection 

of contaminates, as well as the biological and chemical processes associated with the 

biodegradation of hydrocarbons in the subsurface.  However, to the author’s knowledge, 

all of these studies have dealt with mature (or aged) spills within a freshwater 

environment.  The BP Deepwater Horizon oil spill therefor provided a unique 

opportunity to not only use traditional geophysical and geochemical methods to 

characterize and  delineate fresh crude oil in a highly saline environment and to capture 

the early time biogeophysical signals resulting from the physical, chemical, and microbial 

transformation of crude oil in a highly saline environment. 

Electrical resistivity and electromagnetic methods were used.  Barometric pressure, 

temperature, electrical conductivity, and water level values for the shallow groundwater 

were continuously logged.  Geochemical analysis was performed on water samples 

collected from piezometers networks installed in the impacted, transitional, and 

background areas.  Sediment cores were retrieved throughout the site and used for grain 

size analysis, magnetic susceptibility, total organic and inorganic carbon, and x-ray 

fluorescence.  Soil samples were collected for microbial analyses from the impacted and 

background areas.  Microcosms were set up to determine the microbial diversity analysis 

was used to determine microbial community composition, and biodegradation potential 

of indigenous populations. 

Based on the geochemical, microbial, and soil analysis, the relatively higher apparent 

resistivity anomaly observed between the depths of 0.20 m to 1.20 m bgs could be 

explained by two scenarios(1): elevated resistivity was caused by gas in the subsurface 

produced by the degradation of organic matter coupled to sulfate and iron reduction. (2): 

from variations in salinity.  This research demonstrates the sensitivity of geophysical and 

geochemical methods commonly used to detect contaminates in freshwater environment 

can also be utilized in a saline, coastal environment. 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Problem Statement 

Crude oil regularly escapes into the environment during extraction, transportation, and 

while in storage.  The final destination of many of these contaminants will be the infiltration into 

a freshwater aquifers. The potential contamination of aquifers has been a primary driving force 

behind the extensive research in the detection and characterization of non-aqueous phase liquids 

(NAPL) using geophysical, chemical, and biological methods.  While the field locations for this 

branch of research are globally diverse, most of this research to date has been conducted in a 

freshwater environment characterizing weathered or mature oil (where the contamination has 

been in existence for decades).  In the last 15 years ~ 2.25 billion liters (CEDRE, 2012) of crude 

oil have been spilled near a salt water coast line impacting coastal aquifers and wetlands. The two 

worst oil spills in United State history: the Exxon Valdez spill in 1989 off the coast of Prince 

William Sound, Alaska and the BP Deepwater Horizon spill in 2010 in the Gulf of Mexico 

released a total over 870 thousand liters of crude oil.   

The characteristic geophysical response of hydrocarbon-contaminated media has been 

attributed to a variety of physical, chemical, and biological mechanisms (Che-Alota et al., 2009).  

The anomalous increase in the bulk electrical conductivity of areas contaminated with NAPL has 

been extensively researched) using electrical methods to characterize the extent of contamination 
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(e.g., Sauck et al., 1998; Atekwana et al., 2000; Werkema et al., 3003; Atekwana et al., 

2004a, b, and c; Atekwana et al., 2005, Benson et al., 1997; Halihan et al., 2005; Kaugmann and 

Deceuster, 2007; Yang et al., 2007).  Electrical methods in particular are sensitive to variable 

changes in soil properties, including the nature of the solid constituents, and of voids, degree of 

water saturation, electrical resistivity of the fluid (chemistry of the pore fluid), and temperature 

(Archie, 1942; Samouëlian et al., 2005).  All of the variables previously mentioned have been 

shown to be influenced by biologic activity adding to the complexity of the subsurface 

environment.  Geophysical studies suggest the weathering of aquifer solids by the organic and 

carbonic acids produced during biodegradation results in an increase in the concentration of 

dissolved solutes which increase the bulk electrical conductivity (Sauck et al., 2000, Atekwana et 

al., 2000). 

A conceptual model of petroleum hydrocarbon contamination developed by Che-Alota et 

al. (2009) illustrates the temporal behavior of bulk electrical conductivity from contaminant mass 

reduction by biodegradation, natural attenuation, or potentially engineered remediation (Figure 

1).  Although Che-Alota et al., (2009) uses bulk conductivity in their model to represent the 

geophysical response, the trend is valid for the application of either electrical resistivity (ER) or 

electromagnetic (EM) to hydrocarbon contamination.  Figure 1 suggests multiple stages in the 

breakdown of hydrocarbons by microbial activity with coincident geophysical response: the first 

stage (Stage A) displays a decrease in the bulk conductivity relative to uncontaminated 

background due to the high electrical resistivity of the fresh petroleum hydrocarbon (Yang et al., 

2007).  However, over time, the excess organic carbon is expected to stimulate the activity of 

indigenous microorganism that breakdown the hydrocarbons producing a variety of metabolic 

byproducts such as organics acids and CO2 (Baedecker et al., 1993; Bennett et al., 1996). The 

organic acids and carbonic acids result in enhanced mineral weathering (Stage B), releasing ions 

into solution and elevating the pore fluid conductivity. The end result is an enhancement of the 
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Figure 1. Conceptual model of the temporal bulk conductivities of behavior petroleum hydrocarbon due to 

contaminant mass reduction by natural attenuation, biodegradation, or engineered remediation.  (Adapted 

from Che-Alota, 2009) 
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bulk electrical conductivity (Sauck, 2000; Atekwana et al., 2004a; Atekwana et al., 2004c; 

Atekwana et al., 2004d).  As time progresses, the availability of terminal electron acceptors, 

organic-carbon-source concentration, and the microbial activity determines the reaction rate and 

production of ions in solution that contribute to the peak value of the bulk conductivity (Stage C).  

With the continuous removal of the contaminant masses by natural attenuation or engineered 

intrinsic remediation, Che-Alota et al. (2009) predicts a decrease in microbial activity and 

therefore a decrease in the bulk electrical conductivity to values close to pre-spill conditions 

(Stage D).  It is important to note that the temporal frame required for these changes to occur 

depends on several factors, including the type and volume of hydrocarbon contamination, relative 

ease of contaminant degradation,  presence of indigenous microorganisms, availability of 

terminal electron acceptors, as well as both the hydrology and hydrogeology of the site.  

The application of the same geophysical technique at different sites, and even at different 

locations on the same site can produce dramatically different results (Atekwana and Atekwana, 

2010).  Che-Alota et al. (2009) model has been repeatedly enforced by past and current 

geophysical research.  However, as previously stated, little to no research has been done in a 

saline environment that could be applied to this model.  The BP Deepwater Horizon oil spill 

provided an unprecedented opportunity to characterize and delineate the crude oil in a saline 

environment.  The study objective was to capture the early time biogeophysical signals resulting 

from the physical, chemical, and microbial degradation of the crude oil in a highly saline 

environment, thus describe the evolution of biogeophysical signals from a young to more mature 

crude spills.  In this study, we interpret the geophysical results within the constraints of the 

biological and geochemical data acquired in order to better understand the geophysical signature 

of a fresh crude oil in a saline environment. 
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1.2 Site History 

On April 20, 2010, oil and gas escaped from BP’s Deepwater Horizon exploratory 

Macondo well located 130 miles to the SE of the southern tip of the Mississippi Delta 

(Operational Science Advisory Team. 2011).  The blowout prevention (BOP) device at the well 

head and all the emergency shut-off equipment failed leading to the largest marine oil spill in the 

United States’ history (Operational Science Advisory Team. 2011).  The Nation Incident 

Command’s Flow Rate Technical Group (FRTG) estimated 4.1 million barrels of oil were 

released into the water column and 2.1 million gallons of dispersants were applied at the ocean 

surface and wellhead (Operational Science Advisory Team. 2011).  The FRTG Oil Budget 

calculator estimated that by July 14, 2010, an expected 17% was captured, 13% was naturally 

dispersed, 23% was evaporated or dissolved, 16% was chemically dispersed, 5% was burned, 3% 

was skimmed, and 23% was considered “remaining oil” either at the surface as light sheen or 

weathered tar balls, has been biodegraded, or has already come ashore (FRTG). 

Crude oil began washing up on the beaches of Gulf Islands on June 1, 2010. By June 4 oil 

had been sited on 125 miles of Louisiana coast, and began washing up along Mississippi and 

Alabama barrier islands (Operational Science Advisory Team. 2011). In early July 2010, the first 

physical evidence of crude oil began to be seen in the form of tar balls washing up on the shores 

of Grand Isle, Louisiana (Operational Science Advisory Team. 2011).  Remediation efforts 

provided by BP on the shores of Grand Isle and Grand Terra consisted of spatial delineation of 

the crude oil by auguring holes ~100m apart and marking if any crude oil was visible in the soil 

till.  This was followed by separating the visually contaminated sediment from the 

uncontaminated either by shovel or by mechanical sifting equipment and shipping it off to be 

decontaminated. 

 Water sampling preformed at Grand Isle, LA by Allan et al. (2012) measuring the 

fraction of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs). 
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Samplers were in the water column during heavy shoreline oiling in the month of June.  Followed 

by a sharp decrease in concentration during August and September and the measurements had 

approximately returned to pre-oil spill concentrations by March 2011. 

While spilled oil does naturally disperse in the coastal environment by storms and 

currents, chemical dispersants (such as Corexit 9500 and Dispersit SPC1000 used in the 

Deepwater Horizon spill are commonly used to accelerate the dispersal process. With respect to 

the remediation at the Deepwater Horizon site, these dispersants were initially sprayed directly on 

the surface of water over the well head by military aircrafts (Operational Science Advisory Team. 

2011). This was followed by directly injecting the dispersant at the wellhead end of the riser pipe 

at a water depth of 1500 m in an attempt to prevent large slicks from forming directly at the 

surface above the wellhead and to reduce the magnitude of oil to impact the shoreline 

(Operational Science Advisory Team. 2011).  The dispersant was injected into the deep-sea at 

high pressure and temperature causing physical dispersion and the creation of two zones with the 

highest concentrations of oil (Atlas and Hazen, 2011).  Large droplets of oil floated to the surface 

while droplets between 10 and 60 µm were neutrally buoyant and were picked up by the current 

between the depths of 900 and 1300 m creating a suspended “cloud” of crude oil (Camilli et al., 

2010). 

1.3 Selection of Field Site 

Maps on the website:  Geoplatform.gov/gulfresponse (generated using data collected by NOAA 

(Figure 2)) showing the areas which had the highest recorded levels of crude oil impact were 

updated daily by NOAA.  According to these maps, barrier islands in southern Louisiana (located 

~ 180 miles to the NW of the blowout) Grand Isle, Grand Terre 1 (GT1), and Grand Terre 2 

(GT2) was shown to be some of the most heavily impacted shores throughout the entire Gulf 

coast.  It was discovered that GT1 to be a state protected wildlife reserve and therefore did not 

permit public access, making it the ideal site to install geophysical and geochemical 
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instrumentation required for the long term monitoring aspect of this research.  A low lying area 

approximately 75 m from shore in the NE corner of GT1 was visually darker than any other area 

on the beach and was thought to be due to contamination. This area is referred to as the Elevated 

Resistivity Area (ERA) (Figure 3).  A vegetative berm began 20 m from the westerly edge of the 

ERA; the area between the edges of the impacted zone to the berm is designated the transitional 

zone.  The background zone is located an additional 60 m to the southwest of the transition zone 

in a sandy clearing within the vegetation. 

1.4 Geology, Hydrology and Climate  

 GT1 is a barrier island composed entirely of sediments, most of which are terrigenous. 

Surface sediments of the island are primarily fine- to very fine-grained sand, some silt and with 

some clay. 

The hydrographical network of the site is most influenced by the Gulf of Mexico and the 

Mississippi River to the East.  In addition, there are small isolated bodies of water within the 

island that act as hyper-saline pools due to ocean water washing in coupled with partial 

evaporating. 

The distribution of rainfall is characterized by highest values during the hurricane season 

of July and August with lows during May and November. The annual precipitation averages 

around 1600 mm.  The climate is humid, mesothermic.  Seasonal tide is characterized by a 

gradual increase starting in January and ending with the highs in the months of July, August, and 

September.  Followed by a very sharp fall in sea level till January and the tides start the cycle 

again. The total change in the height of the sea level in reference to maximum sea level (MSL) is 

approximately 45 cm 



8 
 

Figure 2.  Map showing the concentration of contamination of crude oil due to the Deepwater Horizon oil 

spill.  The black arrow is pointing towards the northeast corner of Grand Terra 1 where we chose to use as 

our site.  
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Figure 3. Location of the site starting with a) the state of Louisiana, followed by b) a satellite image of the 

northwestern tip of the island Grand Terra 1,while c) is the study map showing locations of instruments and 

sampling areas. 
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CHAPTER II 
 

 

METHODOLOGY 

2.1 Introduction 

Electrical resistivity (ER) and electromagnetic (EM) methods are frequently applied to soil 

mapping and the detection of contaminated areas. The most common methods are based on the 

temporal and spatial observation of electrical parameters, including electrical resistivity in direct 

current, electrical permittivity, and magnetic susceptibility.  Electrical techniques are sensitive to 

the petrophysical and hydrologic properties of soil (porosity, fluid content, salinity) and to the soil 

texture and structure (grain size, arrangement, and pore space) (Godio et al., 2010).  

In the absence of clays, Archie’s Law (1942), describes the bulk conductivity of consolidated 

sediments: 

                                                                   
   

                                                      (1) 

where σe is the bulk conductivity of the sediments, a is an empirical factor, ϕ is the fractional pore 

volume (porosity), m is a cementation factor, Sw is the fraction of the pores containing fluid, n is a 

saturation coefficient, and σw is the electrical conductivity of the pore fluid.  Archie’s Law 

suggest that three main components control the bulk conductivity of sediments; the petrophysical 

characteristic of the sediments (a, ϕ
m
), fluid saturation (  

 ), and the electrical properties of the 

fluid (  ). 
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2.2 Geophysics 

2.2.1. Electrical Resistivity and Electromagnetic Surveys:  Two surveys were conducted in 

connection with this research: the acquisition of eight ER lines to spatially detect and delineate 

the presence of crude oil and a companion study by Rutgers University using long-term ER 

survey to capture the biogeophysical signals resulting from the physical, chemical, and microbial 

transformation of crude oil in a highly saline environment.  In total, nine 2-D ER lines were 

acquired over a span of fourteen months.  A IRIS Syscal Pro was used to acquire ER data 

utilizing a dipole-dipole array.  Line 1 was installed for the purpose of long term monitoring by a 

companion study by Rutgers University. This line was installed November 2010 and (besides a 

couple breaks due to technical issues) collected data twice a day until January of 2012.  It was 

orientated SW-NE and cut a crossed the area of elevated resistivity. The array consisted of 46 

stainless steel electrodes with a 0.5 m spacing.  Data from lines 2 through 6 were acquired over a 

two-day period in mid-January 2011.  Lines 2 through 5 were parallel to line 1 with a SW-NE 

orientation and were each separated by 10 m.  Data from line 6 was acquired with a SE-NW 

orientation, perpendicular to lines 1 through 5.  The array for lines 2 through 6 consisted of 63 

stainless steel electrodes with a spacing of 0.5 m.  Data from lines 7 through 9 were acquired May 

19
th
 2011 and ran parallel to line 6 with a SE-NW orientation.  The array for lines 7 through 9 

consisted of 72 stainless steel electrodes with a spacing of .5m. 

EM data was acquired on January 11
th
, 2011 using an AeroQuest GEM2.  The GEM2 is a 

multi-frequency EM instrument equipped with a GPS.  Data was collected over a large area that 

encompassed both the main study area as well as our background area using four frequencies: 

1050, 5010, 20010, and 60030Hz.   

2.2.2 Computer Processing: Apparent-resistivity data were inverted using AGI EarthImager, 

and a least-squares inversion technique was used for the inversion subroutine.   
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2.3 Geochemistry 

2.3.1 Piezometer Installation: A piezometer network was installed at 4 different locations 

within the survey site.  Piezometer locations 1, 2, and 3 are located along ER lines 1 and 2, while 

piezometer 4 is located in the background area.  Multilevel piezometers (MPLs) were installed at 

each location for groundwater sampling.  The MLPs were constructed of 1/8 inch inner diameter 

polyvinyl tubing fitted with a 10 cm screens.  The piezometers were installed at intervals of 25 

cm from the surface and reached a maximum depth of 200 cm. 

2.3.2 Groundwater Sampling and Analysis: Water samples were collected at all piezometer 

clusters (MPLs) locations on May 19
th
 and 20

th
 2011.  Water temperature, specific conductance 

(SPC), dissolved oxygen (DO), oxidation-reduction potential (ORP), and pH were measure for 

each piezometer using a Yellow Springs Instrument (YSI) multi parameter probe calibrated 

according to the manufacturer’s instructions.  The YSI probe was immersed into a flow through 

cell into which water was pumped using a peristaltic pump.  Readings were recorded after the pH, 

conductivity, and temperatures stabilized and before samples were collected for chemical and 

isotope analyses.  Samples collected for chemical analyses were filtered through 0.45 µm syringe 

filters. Aliquots of the filtered water were stored in HDP bottles unacidified for anion analysis 

and acidified with nitric acid to pH < 2 for cations and metal analysis. Samples were transported 

on ice and stored at 4°C until analyses.  ).  Immediately after filtration in the field, aliquots of the 

water were used to determine total alkalinity by acid titration (Hach Company, 1992) and ferrous 

iron (Fe
2+

) by colorimetry using the Phenanthroline method (CHEMetrics Inc., 2004).  Samples 

for DIC extraction and δ
13

CDIC measurements were filtered directly into pre-ecacu8ated vials 

loaded with 85% phosphoric acid and magnetic stir bars (Atekwana and Krishnamurthy. 1998. 

Anions were analyzed by ion chromatography and cations and metals were analyzed by an 

inductively coupled plasma optical emission spectrometry (ICPOES).  DIC was extracted from 

samples in the laboratory under vacuum and the concentration determined empirically from 



14 
 

measured CO2 pressures (Atekwana and Krishnamurthy, 1998). The extracted CO2 was stored in 

Pyrex tubes and later analyzed for δ
13

C by isotope ratio mass spectrometry.  The δ
13

C is reported 

in the delta notation in per mill (‰) relative to Vienna Pee Dee Belemnite (VPDB) carbon 

standard with a precision of better than 0.1‰. 

2.3.3 Barometric, Water Level, Temperature, and Electrical Conductivity:  Barometric, water 

level, and temperature data was collected every 25 minutes from 1/11/2011 till 8/15/2011.  An 

electrical conductivity logger was placed at a depth of 0.25 m bgs and collected data twice a day 

(at 8:00 am and 8:00 pm) from 8/15/2011 through 1/11/2012.  

2.4 Soil Sampling and Analysis 

2.4.1 Sediment Core Extraction and Preparation: Sixteen soil cores were collected from eight 

locations at the site.  One core was collected in November 2010 in the depressed area. Five cores 

were collected in January 2011; three (1A, 1B, and 1C) from the area of elevated resistivity, one 

(6E) from the transitional, and one (8A) from the background area.  Ten cores were collected in 

May 2011; three (2A, 2B, 3A) from the area of elevated resistivity, three (4A, 5A, 7A) from the 

transitional area, and four (6A, 6B, 6C, 6D) from background.  Cores were collected by manually 

driving 1 m long, 1½ inch diameter clear polycarbonate tubing into the ground. After extraction 

they were cut, capped, sealed, and placed on ice for transport.  Once at Oklahoma State 

University they were transferred into a large freezer for storage.  Six cores ( 1A, 2A, 3A, 4A, 5A, 

and 6A) were chosen based on there location within area of elevated resistivity, the transitional, 

and the background area, as well as proximity to resistivity lines and piezometers locations.  Soil 

samples from these cores were extracted in 2 cm intervals, were dried, and ground by hand using 

an agate mortar and pestle.  These samples were used for grain size analysis, magnetic 

susceptibility. Total organic and inorganic carbon analysis, and x-ray fluorescence. 
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2.4.2 Grain Size Analysis: Sediment grain-size distribution was determined for Cores 1A, 3A, 

4A, and 5A to better understand distribution throughout the impacted and transitional areas.  The 

percent of medium (0.5-0.25 mm), fine grain (0.25-0.125 mm), and very-fine grained (0.125-

0.062 mm) sand were determined by sieve analysis after drying the sediments to a constant 

weight and sieving using screens NO. 60, 100, 120, and 140.  Sediment samples used for sieving 

were extracted using a 2 cm or 4 cm interval. 

2.4.3 Microbiology: Soil and sediment samples were collected in sterile plastic containers at 

various locations and at different depths above the water table at the site.  Three of the samples 

locations (B1, B3, and B4) were located in the depressed area of the site and one (B2) in the 

background area. Samples were analyzed for microbial diversity and for hydrocarbon degrading 

potential by Dr. Babu Fathpure at Oklahoma State University Department of microbiology and 

molecular genetics  

2.4.4 Magnetic Susceptibility: Variable concentrations of magnetizeable materials such as 

ferromagnetic, paramagnetic, and diamagnetic minerals present in sediments affect the strength of 

magnetism in a given sample (Ellwood et al., 2004). Magnetic susceptibility (MS) is a technique 

used to determine the concentration of magnetizeable materials in a sample. Low frequency 

magnetic susceptibility (Xlf) was measured for each sample collected from the six cores from the 

site using a Bartington MS2 magnetic susceptibility meter with an MS2B dual frequency sensor.   

2.4.5 Total Organic and Inorganic Carbon: Total inorganic carbon (TIC) and total organic 

carbon (TOC) concentrations were determined using a CM5014 coulometer equipped with a 

CM5130 Acidification Module and CM5300 Furnace Module.  For TIC analysis, a pre-weighed 

sample was reacted with 2N HClO4 to release CO2, which was titrated electronically.  Total 

carbon (TC) was determined by combusting a pre-weighed sample in the furnace module at 

950°C.  TOC was determined by calculated the difference between the TC and TIC values.  Pure 
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calcite was analyzed each day to ensure instrument stability.  Calcite concentrations were 

measured within 95%.  Measured concentrations of the calcite standards were used to correct 

measured sample concentrations for any instrumental inaccuracies. 

2.4.6 X-Ray Fluorescence (XRF): Iron (Fe), Manganese (Mn), and Sulfur (S) concentrations 

were measured using the handheld Thremo Scientific Niton XL3t x-ray fluorescence analyzer.  

The standard (USGS SCo-1) was used to correct each measured concentration for any errors 

associated with matrix effects in the XRF.  The measured concentrations from the standard were 

compared to the certified values.  The differences between measured and certified values were 

used to calculate correction factors which were then applied to all analyses for a given day.  

2.5 Control Experiments 

2.5.1 Column Setup:  Two in laboratory experiments were conducted using columns to gain 

insights into how variations in the percent of oil saturation and salinity concentration govern the 

electrical properties at our site.  The measurement columns for both experiments were constructed 

of polyvinyl chloride pipe (PVC), column height was 5 cm with an interior diameter of 3.3 cm.  

Two coiled silver-silver chloride (Ag-AgCl) current electrodes were placed at the end of each 

column. The coil technique allows for a greater current distribution throughout the sample. Two 

Ag-AgCl potential electrodes were placed equidistant along the long axis in a Wenner array, with 

an a-spacing of 2 cm between each electrode.  All Columns were packed with sand (U.S. Silica, 

Ottawa Standard, 20 – 30 (850 – 520 μm) mesh), “clean” sands were used for the column 

measurements due to the inability of sacrificing cores from the location at the time when these 

measurements were performed.   

2.5.2 Variations in Salinity:  To measure the variations in electrical response due to salinity, a 

mixture of DI water and varying amounts of NaCl were used to create a “salinity range” spanning 
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20-34 mg/l, one of these salinity solutions was then mixed with the sand grains.  Once the grains 

were coated, they were packed and sealed into a column and flushed with the salinity solution 

until the column was completely saturated, followed by a measurement.   

2.5.3 Oil Saturation:  To measure how the electrical resistivity would change with variations 

in the percent oil saturation columns were created.  First an average salinity of 30.5 mg/l was 

determined by averaging the salinities seen at W#1.  A total volume of 30.00 ml was used when 

determining the different rations of crude oil to salt water which would produce the percent of 

crude oil to be added.  The salt water was first added to clean sand grains in order to establish that 

the “salt water” was in the wetting phase, this was followed by the addition of the crude oil.  This 

was thoroughly mixed and placed in a column for measurements. 
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CHAPTER III 
 

 

RESULTS 

3.1 Geophysical 

3.1.1 Geophysical Results:  The resistivity inversion results of selected profiles (L2, L3, L5, 

L6, L9) are presented in Figures 4 and the rest of the profiles (L4, L7, and L8) are located in the 

appendix. Three distinct layers can be observed throughout the majority of the 2D resistivity lines 

shown in Figure 4. Layer 1 is occurs between 0.0 to 0.5m bgs with a resistivity ranging from 0.65 

m – 1.2 m; 2) layer 2 is found between depths of 0.25 m and 1.20 m bgs with resistivity 

ranging from 1.5 m -2.3 m, layer 3 extends to the base of the 2D apparent resistivity section 

with resistivity values < 1 m  Regardless of the depth of layer 2), a transition of decreasing 

resistivity with depth is always present.  The 2
nd

 layer of resistivity can be seen though out all of 

L2 (Figure 4a) at a depth of 0.20m to 1.10m.  A similar structure is seen in L3 (Figure 4b) with 

the only real difference being the magnitude of the anomalous resistivity response which appears 

to be slightly attenuated compared to that of L2.  The response of the 2
nd

 layer in L5 is found in 

the first and last 6 m of the line, while the middle 25m appears to have a uniformly low apparent 

resistivity response of 0.65 m at all depths (Figure. 4c). 

Line 6 shows the 2
nd

 layer, centered at a depth of 0.8 m and increasing in magnitude to the 

NW from 0.89m at the beginning of the line (southeast end) to 2.3 m near the end of the line 

to the NW, the anomalous electrical resistivity increase becomes more pronounced at the 20 m 

mark (right before L6 intersects L3) of L6 (Figure 4d). 
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Figure 4. 2D electrical resistivity (ER) images of a) L2, b) L3, c) L5, d) L6, and e) L9 
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Apparent resistivity depth slices (Figure 5) were created by exporting each processed ER line 

in a XYZ format and contouring the apparent resistivity data at the depths of 0.5 m, 1.0 m, 1.5m, 

and 2.0 m (Figure 5 a, b, c, and d, respectively).  The layer of relatively higher resistivity between 

the depth of 0.25 m and 1.20 m is seen in the 2D ER lines (Figure 4) while the depth slices 

(Figure 5) help illustrate the increase in apparent resistivity as you progress from SE to NW.  

The contour images of EM data shown in Figure 6 show an increase in conductivity with 

depth through the site.  There is an area of consistently higher conductivity, regardless of the 

depth within the area of elevated resistivity.  It is spatially the largest in the lowest measured 

frequency of 1050 Hz (Figure 6a) and appears to be centered approximately where L5 and L6 

intersect, just to the SE of the area of elevated resistivity.  As the measured frequency increases 

(the skin depth decreases) this conductivity anomaly gradually pinches out as it approaches the 

surface (Figure 6d).The conductivity within the area of elevated resistivity of Figure 6 decreases 

starting at a range of 750 to 1050mS/m at a skin depth of 2.67m (Figure 6a) to a range of 450 to 

750mS/m at a skin depth of 0.97m (Figure 6d).  This shows as the depth decreases, the 

conductivity of the entire site decrease with the lowest recorded conductivity observed towards 

the NW. 

3.2 Geochemistry 

3.2.1 Physical, Chemical, and Isotopic Properties of Groundwater:  The salinity measured at 

the site ranged from 14.07 to 80.98 mg/l in the ground water, with the highest values recorded at 

the background location (Table 1; Figure 7). Piezometers inside the area of elevated resistivity 

show a similar trends; the highest value recorded in piezometer cluster 1 and 2 occur at a depth of 

25 cm of 31.5 and 33.8 mg/l respectively, with a lower value within each piezometer cluster at a 

depth of 50 cm of 24.9 mg/l for well 1 and 30.0 mg/l. This is followed by a slow increase in 

salinity with depth for both piezometer clusters 1 and 2 (Table 1; Figure 7).
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Figure 5.  Depth slices created from contouring of data extracted from electrical resistivity lines. L1 to L9 

represent the locations of electrical resistivity profiles shown in Figure 4. The area within the dotted line 

represents the area of elevated resistivity. 
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Figure 6. Bulk electrical conductivity data at different frequencies obtained from the GEM2 system and the 

calculated depths with lines representing the location of electrical resistivity line. a) bulk electrical conductivity 

at 1050 Hz, skin depth of 2.67 m b) 5010 Hz, skin depth of 1.87 m c) 20010 Hz, skin depth of 1.29 m and d) 

60030 Hz, skin depth of 0.97m. The dashed line represents the extent of the area of elevated resistivity. 
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Figure 7. Vertical profiles of Salinity, total dissolved solids (TDS), dissolved oxygen (DO) pH, and alkalinity in 

the groundwater for locations in the area of elevated resistivity (W#1/W#2), for the transition area (W#3), and 

for the background area (W#4).   
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The total dissolved solids (TDS) show an identical trend observed in salinity (Table 1; Figure 7).  

Piezometer cluster 1 shows two distinct decreases in the dissolved oxygen (DO) values 

approaching 0mg/L at depths 25 cm and 100 cm while the rest of the values were between 50 to 

80 %saturation (Table 1; Figure 7).  The DO values of piezometer cluster 2, 3, and 4 show similar 

trends, with values greater than 25 %saturation above 50 cm bgs while lows (less than 8 

%saturation)  from a depth of 75 cm to 150 cm with a spike of 61 %saturation at 125cm 

bgs(Table 1; Figure 7).  Piezometer clusters 1 and 2 inside the area of elevated resistivity have the 

highest pH which ranged from 6.92-7.33.  Standing water at the site had a pH value of 8.54 and 

piezometer cluster 4 had the lowest range of all wells of 6.62-7.2 and displayed a general trend of 

increasing pH with depth(Table 1; Figure 7).  The groundwater samples within the impacted zone 

were lower in alkalinity than those of the transition and background (Table 1; Figure 7).  Fe(II) 

values for the area of elevated resistivity were greater than the transitional and background 

between 25 cm to 50 cm bgs, at which the trend is reversed with both wells 3 and 4 showing 

values much greater than those piezometer clusters 1 and 2 (Table 1; Figure 8).  Groundwater at 

piezometer cluster 1 and 2 show increases in dissolved inorganic carbon between depths of 50 cm 

to 120 cm of 204 to 375 mg CO2/l and 321 to 480 mg CO2/l  respectively, while the background 

location were between 730 to 2340 mg CO2/l (Table 1; Figure 8).  Concentrations of Mn in 

groundwater at piezometer clusters 1 and 2 are highest at a depth of 50cm and were elevated with 

respect to groundwater at piezometer clusters 3 and 4 (Figure 8).  Sulfate values for groundwater 

piezometer clusters in the area of elevated resistivity were lower between 50 cm to 125 cm bgs 

with their lowest value at a depth of 75 cm (Table 1).  Ions Mg, Na, K, and Cl all show similar 

depth variations of the area of elevated resistivity and transitional area and are substantially lower 

in the concentration compared to the background (Table 1) 

3.2.2 Hydrocarbon Analysis:  All soil and groundwater samples sent out for analysis to both 

laboratories came back below practical quantitative limit (BPQL) for TPH (Tables 2, 3, and 4).
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Figure 8. Vertical profiles of Fe(II)), dissolved inorganic carbon (DIC), Mn(II), ,   
  , and    

 , and isotopic 

ratio of dissolved inorganic carbon (δ13CDIC) in the groundwater for locations in the area of elevated resistivity 

(W#1/W#2), for the transition area (W#3), and for the background area (W#4).   
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Table 2. Results of soil samples collected on 11/17/2010 and 01/12/2011 from various areas within the elevated 

resistivity area, transitional, and background areas. 
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Table 3. Results of water samples taken on 1/11/201 from various depths using the piezometers at well location 

1 within the area of elevated resistivity, as well as a sample from the background area. 
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Table 4. Results of soil samples taken on 8/15/2011 from areas within the area of elevated resistivity (well 

locations 1 and 2) as well as samples from the background area. 
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3.2.3 Electrical Conductivity:  The electrical conductivity logger data in Figure 9 shows two 

distinct areas of measured EC separated by a sharp decrease. The first is from 08/15/2011 to 

11/10/2011, where the average measured EC is 2002 mS/m.  The second spans from  

11/30/2011 to 1/11/2012 where the average EC is 1075 mS/m.  The data between 11/11/2011 and 

11/29/2011 shows an average decrease in conductivity of approximately 85 mS/m per day (Figure 

9). 

3.3 Soil Sampling and Analysis 

3.3.1 Grain size Distribution: All cores tested were predominately composed (>69%) of fine 

grain sand (Figure 10). Core 1A had a higher percent of very fine grain sand ranging from 10%-

26% throughout the core, while cores 4A and 3A ranged from 1%-6% (Figure 10c) and 4%-

10%Figure 10b) respectively.  Based on visual analysis during the sieving, any medium grain size 

peak in all sampled cores was the result of high amount of shell fragments. 

3.3.2 Magnetic Susceptibility:  Cores 1A, 2A, and 3A located in the area of elevated 

resistivity. Core 1A has two peaks at 66 cm and 72 cm of 31 (10
-5 

SI/cm
3
/g) and 30 (10

-

5
SI/cm

3
/g), from 70 cm through the end of the core at 90 cm the average reading is 23 (10

-

5
SI/cm

3
/g) (Figure 11a). Core 2A displays a large sharp peak of 77 (10

-5 
SI/cm

3
/g) at a depth of 4 

cm followed by a nearly constant value of 10 (10
-5 

SI/cm
3
/g) to a depth of 50 cm where a strong 

peak of 39 (10
-5
SI/cm

3
/g) is centered at a depth of 58 cm, this is followed by an elevated average 

reading of approximately 22 (10
-5 

SI/cm
3
/g) starting at 64 cm till the end of the core at 96 cm 

(Figure 11b). Core 3A has two noticeable spikes at 62 cm and 76 cm registering 42 (10
-5 

SI/cm
3
/g) and 38 (10

-5
SI/cm

3
/g) respectively (Figure 11c). Cores 4A and 5A are located in the 

transitional area of the site. Core 4A displays peaks at depths of 6 cm, 64 cm, and 76 cm, of 46 

(10
-5 

SI/cm
3
/g), 46 (10

-5
SI/cm

3
/g), and 42 (10

-5 
SI/cm

3
/g) respectively (Figure 11d). The area 
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between depths of 18cm through 54 cm averages 10 (10
-5 

SI/cm
3
/g). Core 5A has two distinct 

peaks at 4 cm and 26 cm of 34 (10
-5 

SI/cm
3
/g) and 22 (10

-5 
SI/cm

3
/g) respectively (Figure 11e). 

These variations with depth produce three trends that can be spatially traced through cores in 

Figure 11.  Core 6A, located in the background, shows an increasing MS values beginning at a 

depth of 12 cm to the largest peak of the core at 36 cm of 46 (10
-5 

SI/cm
3
/g) followed by a steep 

drop in MS over the next 4cm to a depth of 40 cm where it levels out averaging approximately 12 

(10
-5 

SI/cm
3
/g) (Figure 11f).  All cores have elevated MS within the top 10 cm, with cores 4A, 

5A, and 2A registering the highest values within that depth range.  Cores 1A, 2A, 3A, 5A, and 6A 

all show an increase in MS within the range of 20 to 45 cm bgs.  Cores 1A, 2A, 3A, and 4A 

display an average increase in MS between the depths 55 to 85 cm 

3.3.3 Inorganic and Organic Carbon:  Core 6A shows a TOC sharp peak of 3.2 weight 

percent carbon (W%C) centered around 20 cm bgs while no significant variation was seen in TIC 

measurements above and below (Figure 12b).  TIC is core 1A shows two peaks of 0.71 W%C and 

0.94 W%C at 40 cm bgs and 66 cm bgs respectively (Figure 12a).  The TOC for core 1A 

exhibited two peaks (of 1.5W %C and 1.6W %C at depths of 32 cm bgs and 72 cm bgs, 

respectively as well as an area from 50-58 cm bgs  where essentially no TOC (<.07 W%C) was 

recorded (Figure 12a).  

3.3.4 X-Ray Fluorescence: Two zones with elevated concentrations of iron, manganese, and 

sulfur are represented by the gray boxes cutting through Figure 13a, b, and c.  The first zone is 

located between the depths of 18 cm and 42 cm bgs, while the second is found between the 

depths of 60 cm to 76 cm bgs.  Zones with elevated iron and manganese can be seen in core 2 

between the depths 48 cm to 68 cm bgs (Figure 13d and e) as well as two zones within core 3 

between the depths of 20 cm to 46 cm bgs and a slightly smaller zone located between 54 cm and 

72 cm bgs (Figure 13g and h).  All three of these zones in core 2 and core 3 do not show any 

increase in the concentration of sulfur (Figure 13f and I respectively) at the previously mentioned 
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Figure 12. Total organic carbon (TOC) and total inorganic carbon (TIC) for a) core 1A and b)core 6A.   
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Figure 13. Iron, manganese, and sulfur concentrations determined by x-ray fluorescence for core 

1A, 2A, and 3A from within the area of elevated resistivity. 
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.

Figure 14. Iron, manganese, and sulfur concentrations determined by x-ray fluorescence for 

core 4A and 5A from the transitional area and core 6A from the background 
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depths.   Core 4 displays two zones of increased iron and manganese which can be seen between 

the depths of  14 cm to 48 cm bgs and from 52 cm to 70 cm bgs (Figure 14a and b).  While both 

of these zones are quite large, elevated sulfur concentration is only seen as a quick spike at a 

depth of 28 cm (Figure 14c).  Two smaller zones are seen in core 5, the first is between the depths 

of 20cm to 28 cm and is characterized by smaller increases in both iron and manganese (Figure 

14d and e respectively) while a quick, sharp increase in sulfur is seen just a the depth of 24 cm 

(Figure 14f).  The second zone displays dramatic oscillation of highs and lows between the depths 

of 32 cm and 46 cm in iron, manganese, and sulfur (Figure 14d, e, and f respectively).  Core 6 

from the background area shows a broad zone between 12 cm and 56 cm where iron, manganese, 

and sulfur all display elevated concentrations relative to the rest of the core (Figure 14g, h, and i).  

The sulfur concentrations (Figure 14i) seen between 20 cm to 24cm bgs are the highest sulfur 

concentrations seen through the cores sampled at this site.  

3.3 Control Experiments 

3.3.1 Oil Saturation:  The experiments investigating the resistivity response due to variations in 

oil saturation with a premade solution consisting of 30.5 g/l NaCl is presented in Figure 15a. The 

data shows a very small increase in resistivity (within a narrow range in resistivity) due to a 

change in the percent of oil saturation (Figure 15a).  The true resistivity response of a sample with 

no crude oil measured at 0.782 m, while the resistivity response of a sample with 20% crude oil 

saturation measured at 0.944 m (Figure 15a).  The percent change of the percent oil saturation 

was 17.16% with the tested range of 0-20% crude oil saturation 

3.3.2 Variations in Salinity:  The purpose of this experiment was to gain insight into the 

relationship between the magnitude of salinity in pore space and the corresponding apparent ER 

response by creating an equation (Eq. 2) from a linear best fit line, calculated using data from the 

eight measurements taken within the range of 20-34 mg/l (Figure 15b). 
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Figure 15. a) Variations in resistivity as function of crude oil saturation at a constant concentration of 

30.5g/l NaCl; b) variations in resistivity as a function of salinity concentration. 
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                                                                                                            (2) 

Where y is the salinity value and x is the apparent resistivity value (post correction with geometric 

factor).  This equation was applied to the 1D depth data of ER line 2 by inputting the apparent 

resistivity values determined from above as “x” into the y=mx+b equation and solving for y 

yielded a projected salinity range of 10-25 mg/l at well 2 with the lowest values at a depth of 60-

85 cm (Figure 16b).  The same procedure was done to the 1D depth data of ER line 6 that was 

nearest well location 1, the projected range was 5-27 mg/l with the lowest values at a depth of 60-

85 cm (Figure 16a). 
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Figure 16. a) b) variations in bulk resistivity converted to salinity values with depth using the equation 

from Figure 13 b 
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CHAPTER IV 
 

 

DISCUSSION 

4.1 Electrical Variation:  An examination of the geoelectrical images shows that the variation 

in resistivity is very small and ranges between 0.65-2.5 m. This is expected due to the high 

salinity and hence high conductivity of the sediments of barrier islands (salinity ranges from 

14.07 – 80.98 Mg/L, table 1; Figure 7). Nonetheless, there is a distinct layer ~ 1 m thick found 

between the depths of 0.25 and 1.20 m that shows slightly elevated resistivities with values > 1.5 

m (Figure 4). To assess the lateral extent of this layer, a map of resistivity variations as a 

function of depth (depth slices) (Figure 5a-d) was produced and compared to EM images at four 

different frequencies (Figure 6a-d). The resistivity depth slices and EM depth maps show that the 

relatively higher resistivity (lower conductivity) layer found between the depths of 0.25 and 1.20 

m is found within the impacted zone and increases in magnitude and thickness towards the 

shoreline (to the NW).  

A companion study at the site by collaborators at Rutgers University investigated the 

sensitivity of electrical resistivity on of biogeochemical processes associated with the 

biodegradation of hydrocarbons in the subsurface using surface and borehole resistivity arrays.  

Pixel time series analysis of an inverted time sequence of resistivity sections highlighted differing 

responses between the areas defined in this study as the impacted and transitional areas. The area 

of elevated resistivity exhibit persistent resistivity decreases over time, whereas the transitional 

area exhibit relatively uniform resistivity. This information coupled with the presence of 

hydrocarbon degrading microbes suggests the decrease in the observed electrical response is 
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thought to be due to the biodegradation of the relatively higher resistivity layer of oil.   

4.2 The Presence and Potential Role of Microbes at the Site:  A complementary examining the 

possible presence of microorganisms able to degrade hydrocarbons at the site was completed by Dr. Babu 

Fathepure’s laboratory at Oklahoma State University. Previous investigations have documented the fact 

that hydrocarbons can be easily degraded under low salinity environments typically found in terrestrial 

and marine habitats (< 3% salinity) (Le Borgne et al. 2008; Pérez-Pantoja et al. 2010). However, limited 

studies exist on the degradation of hydrocarbons under high salinity conditions (>10 % salinity) as found 

in coastal zones and salt marshes as was the case of our field site. 

4.3 Microbial Diversity:  Analysis of 16S rRNA genes revealed the presence of highly diverse 

microbial community regardless of oil presence. Important to note is the diversity observed between 

samples collected in the background and the area of elevated resistivities; the background area provided a 

more diverse population of microbes, whereas the area of elevated resistivity showed a less diverse 

population (Figure 17).  

4.4 Hydrocarbon Degrading Potential of Microbes found at Site:  In addition microcosm experiments 

set up to investigate the hydrocarbon degrading potential showed that benzene and toluene in microcosms 

prepared with soil/sediment samples collected from the impacted zone were completely degraded within 2 

weeks (Figure 18). Subsequent addition of the hydrocarbons to these samples resulted in an increased rate 

of degradation with complete degradation occurring within 7 days suggesting that enrichment of 

hydrocarbon degrading microorganisms had occurred (Figure 18). Surprisingly, experiments with samples 

from the background location showed negligible amount of benzene and toluene degradation in 3 weeks, 

despite the fact that the microbial diversity results suggested the presence of hydrocarbon degrading 

microorganisms (Figure 18).  

4.5 Presence of High Saline Hydrocarbon Degrading Genes:  The study also tested for the presence 

of important hydrocarbon-degrading genes such as catechol 1, 2-dioxygenase (1, 2-CTD) and 
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Figure 17. a) Microbial community composition within the the area of elevated resistivity.  Members of Pseudomonas sp. 

dominated the community (20% of clones).  Many Pseudomonas strain have the capacity to degrade petroleum 

compounds.  Analysis also included the presence of Marinobacter sp. and Halomonas sp. members of these genera are 

known hydrocarbon degraders at high salinity.  b) Microbial community composition within the background area is much 

more diverse then the area of elevated resistivity.  Multiple hydrocarbon degrading halophlic organisms seen within the 

area of elevated resistivity are also present in the background, including Marinobacter sp. and Halomonas sp 
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Figure 18. Biodegradation of hydrocarbons from soils extracted from within the area of elevated resistivity.  

Benzene and toluene degrade quickly in active bottles compared to autoclaved bottles suggesting biological 

degradation 
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protocatechuate 3, 4-dioxygenase (3, 4-PCA) in all samples collected. The data showed the presence of 

these conserved genes in all samples collected from the area of elevated resistivity suggesting the genetic 

potential of hydrocarbon degradation by native microorganisms. However, no genes were detected in 

samples collected from sites considered background.  Finally, further experiments to determine the 

hydrocarbon degradation potential under high salinity conditions (up to 15% salinity) showed that 

Marinobacter dominated the community representing >80% of clones.  Marinobacter sp have been 

isolated from various hydrocarbon-contaminated high salinity environments (Berlendis et a. 2010; Duran, 

2010) as well as from BP oil –impacted beach sands collected from Pensacola Beach, FL (Kostka et al. 

2011). .Although it is not possibly to conclusively determine that the high resistivity layer is due to the 

presence of the oil, the microbial results suggest that our impacted zones had native microbial populations 

capable of degrading aromatic hydrocarbons at salinities ranging from 6 to 15 % NaCl.  

4.6  Electrical Properties of the Pore Space:  In order to gain insight into what is causing this 

electrical anomaly, we use Archie’s Law (1942), which in the absence of clays, describes the bulk 

conductivity of consolidated sediment.  First we evaluate the effect of spatial variation in grain size 

(lithology) on the electrical response. Figure 11 suggests that the grain size throughout the entire site is a 

mixture of medium, fine, and very fine sand grains, with little clay or silt detected. The electrical 

conductivity is related to the particle size by the electrical charge density at the surface of the solid 

constituents (Samouëlian et al. 2005). In clay soil, the electrical charges located at the surface of the clay 

particles produce a greater electrical conductivity than in more coarse-textured soils like sand due to the 

magnitude of the specific surface area (Samouëlian et al. 2005).  Within the anomalous area the grain size 

is dominated by fine grain sand with little to no evidence coarse grain particles.  Due to the lack of 

lithographic variations the electrical charges produced by an increase in coarse grain sediments can be 

ruled out as a potential factor contributing to the electrical anomaly observed.  The resistivity anomaly 

occurred within an interface where the sediments appeared fully saturated, although do to the high 

microbial presence and geochemical measurements, the production of gas derived from organic matter 
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degradation could be used to explain the variations in the bulk resistivity  The electrical properties of the 

pore fluid could also be a controlling factor in the generation of the increased apparent resistivity anomaly 

observed in the area of elevated resistivity due to dynamic ranges seen through the site in the aqueous 

geochemistry data. 

4.7 Electrical Response to Variations in Percent Oil Saturation:  To assess if the 1.2 to 2.3 m 

resistivity layer was due to the presence of oil, we conducted a controlled experiments to determine how 

much oil saturation would be required to explain the resistivity data.  The data collected from the column 

experiments that measured the resistivity response due to variations in the percent of oil saturations were 

compared to the apparent resistivity values from the post inversion 2D lines collected at the site.  This 

was to predict what the percent oil saturation values would be expected in our extracted cores in order to 

produce the values associated with the relatively higher resistivity layer observed through the area of 

elevated resistivity.  The results suggest that the 1.2 to 2.3 m range of apparent resistivity as observed in 

L2 and L6 at a depth of 0.25 to 1.25 m (Figure 4a and 4d) would be due to hydrocarbon saturation greater 

than 20%.  In order to determine if the oil was strongly sorbed to the sand grains, sediment samples were 

sent off to labs for TPH analysis.  While all samples came back BPQL, only one sample was extracted 

within the depth range that the electrical anomaly is found throughout the site:  S#1-12 was the deepest 

sample extracted at a depth of 0.3048 m bgs. 

4.8 Electrical Response to Variations in Salinity:  Because the geochemistry is unable to fully support 

the presence of hydrocarbons at the depth where the apparent resistivity anomaly was observed, an 

alternative explanation was pursued using variations in the salinity measured at the site.  Applying the 

salinity equation (Eq.2) determined by measuring the resistivity response to variations in salinity to the 

measured salinity range 14.07 to 38.21 mg/L of wells within the impacted and transitional areas (W1, W2, 

and W3)  produces a proposed apparent resistivity range of 0.51 to 1.23m.  Therefore, variations in 

salinity could potentially produce a plausible explanation as a controlling factor in the generation of the 

increased apparent resistivity anomaly seen in the area of elevated resistivity.  The salinity range over the 
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entire site is 14.07 through 80.98 units and is caused by the extremely diverse hydrologic environment of 

a barrier island.  Precipitation rates and tidal variations; including the tidal height and infiltration rates 

would change the spatial distribution of salinity in the near subsurface therefore altering the electrical 

response of the fluid. 

4.9 Interpretation of Geochemical Data:  In saturated sediments contaminated with hydrocarbon, the 

reduction of the contaminant mass by microbes can be determined by the presence of multiple factors: 1) 

microbes capable of degrading the hydrocarbon, 2) terminal electron acceptors processes (TEA’s), 3) 

production of by-products of hydrocarbon degradation such as organic acids (Cozzarelli et al., 1990), 4) 

the production of carbon dioxide (Sauck 2000) and 5) the shifts in the isotope ratio of dissolved inorganic 

carbon (DIC) (Aggarwal and Hinchee, 1991). 

The geochemical data within the site suggest the contamination of the groundwater may have 

been in the dissolved form. Depth profiles show evidence of biodegradation of organic carbon; DIC 

concentrations within the area of elevated resistivity were found to be relatively lower, with values 

between 204 to 480 mg CO2/l at depths of 10 to 100 cm compared to the background area with values 

between 730 to 2340 mgCO2/l from depths between 25 to 125 cm.  W1 and W2 within the area of 

elevated resistivity show higher dissolved Fe(II) and Mn (between the depths 0.50-1.20 m bgs) compared 

to the background indicating reduction of Fe(III) and Mn (IV) from solids coupled to microbially 

mediated degradation (Atekwana et al., 2005) was greatest within the area of elevated resistivity. In 

vertical profiles, the depths with higher Fe(II) and Mn coincide with the location and depth of the resistive 

anomaly seen in ER line 2 (Figure 4a).  Variability and lower values of    
  and    

   in the vertical 

profiles for W1 and W2 are most likely due to utilization by microbes during the degradation of organic 

matter. W4 in the background area shows relatively low pH values compared to the area of elevated 

resistivity; this can be due to an accumulation of organic acids produced from decomposition of organic 

material from microbial activity. 
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4.10 X-Ray Fluorescence:  The presence of tar layers near the shoreline were considered when 

initially choosing the field site. Although no such tar layers were visually observed for the area of 

elevated resistivity, the area had a dark coloration on the surface (Figure 19a); a dark layer seen between 

the depths of 20 cm to 45 cm bgs (Figure 19b) was seen in the sediment in the extracted cores within the 

area of elevated resistivity.  Due to the depth of this layer and the visual representation of a smear zone 

(Figure 19c) it was initially believed that this layer was the cause of the zone of higher resistivity of the 

ER lines within the area of elevated resistivity and was caused by either hydrocarbon deposited by the 

tides, the product of biodegradation of petroleum hydrocarbon, or potentially organic matter degradation 

coupled to sulfate and iron reduction.  The elevated concentrations of iron, manganese, and sulfur seen 

between seen between 20 cm to 44cm bgs in core 1A (Figure 20a, b, and c respectively), the increase in 

TOC content seen in core 1A (Figure 20e) at the same depths, depleted DO values seen at 25 cm bgs in 

W1 (Figure 20d), and the strong presence of hydrocarbon degrading microbial gene suggests the presence 

of sulfate reducing bacteria (SRB) (Chapelle and Lovley 1992).  The black layer at approximately 30-32 

cm bgs in core 1A correlates perfectly to the large manganese and sulfur spikes from the XRF, as well as 

the TOC (Figure 20b, c, and e respectively), further supporting that the black layer seen in core 1A is due 

to the active biodegradation of the soils in response to increased carbon loading, potentially from spill 

hydrocarbons.   

Core 6A from the background area displays (although sporadic with depth) elevated concentrations of 

iron, manganese, sulfur, and DO from 12 cm to 56 cm bgs (Figure 20f, g, h, and i respectively).  The 

sulfur peak seen at 20 cm to 24 cm bgs in core 6A correlates to the TOC spike seen at 20 cm bgs (Figure 

20j).  The increased concentrations in iron, manganese, sulfur, and TOC in core 6A can be interpreted as 

the product of SRB, yet the abundance of dissolved oxygen within the same depth interval reveals that 

although SRB degradation may have taken place, it was not active during the time when water samples 

were collected (Chapelle and Lovley 1992).  
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4.11 Crude Hydrocarbon Contamination due to Natural Oil Seeps:  Although, the presence 

of oil cannot be conclusively demonstrated at the site, the microbial population data points to the 

fact that the exposure of the site to oil from the BP spill or some previous spills had resulted in 

the enrichment of native populations capable of degrading oil within the area of elevated 

resistivity.  This can be explained by comprehensive remote sensing surveys indicate that there 

are approximately 350 constant oil seeps in the Gulf of Mexico (MacDonald and Leifer 2002), of 

these, 63 individual seeps were identified using multiple data sets as perennial oil slicks 

(MacDonald et al., 1996).  Seep rates were calculated to give a total Gulf of Mexico seep rate of 

about 140,000 metric tons (~42 million gallons) per year and a seep rate of 73,000 metric tons 

(~21.9 million gallons) per year for just the northern Gulf of Mexico (Kvenvolden and Cooper 

2003) where this research’s site is located.  The lack of the enrichment of native populations of 

oil degrading microbes at the background site suggests an absence of significant quantities of oil 

in the background site.  This could be the result of a range of scenarios: rapid degradation 

possibly enhanced by the dispersants used by BP at the Maconda well site, or possibly the general 

lack of infiltration of contaminant as far inland as the background area. 

4.12 Evidence of Rapid Degradation of Hydrocarbon: The majority of petroleum 

hydrocarbons are hydrophobic; causing any biodegradation to take place at the hydrocarbon – 

water interface, therefore the ratio between surface area to the volume of the oil to significantly 

impact the rate of biodegradation (Atlas and Hazel, 2011).  The use of a chemical dispersant to 

increase emulsification of the oil slick improves bioavailability of the contaminant and has been 

shown to enhance oil biodegradation (Wolfe et al., 1998).  Another variable influencing the 

intensity of biodegradation is temperature, an increase results in a decrease in viscosity, thereby 

affecting the degree of distribution, and an increase in diffusion rates of organic compounds 

(Margesin and Schinner, 2001).  Therefore, at the elevated temperature range (23.87 to 33.69°C) 
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observed within the area of elevated resistivity one would expect higher reaction rates will occur 

due to smaller boundary layers (i.e. increased solubility). 

Independent laboratory test results for the presence of hydrocarbons are inconclusive.  This 

could be attributed to several possible scenarios, one being the sampling depth for the presence of 

hydrocarbons, was shallower (<35 cm) whereas, the dark layer seen in extracted cores extends to 

a depth greater than 0.45m (Figure 14b). Nonetheless, non-detect levels of hydrocarbon could be 

explained in terms of rapid biodegradation of the oil if the site was originally contaminated.  

Other recently published studies have suggested very rapid rates of degradation of the crude oil in 

the area of this researches site.  Water samplings performed by Allen et al. (2012) show the 

highest amounts of PAH detected were recorded by samplers in the water column during heavy 

shoreline oiling in the month of June.  This was followed by a sharp decrease in concentration 

during August and September and the measurements had approximately returned to pre-oil spill 

concentrations by March 2011.   This is complemented by research showing that upwards of 40% 

of the oil was lost in the water column between the wellhead and the surface as a result of 

dissolution and mixing as the oil moved through the water column towards the surface (OSAT 

2011). 

Geochemical data for this study was obtained in the field May 2012, after the research by 

Allen et al (2012) found the area to be back to pre-oiling conditions.  This information could be 

used to explain the absence of detectable TPH from the water samples that were collected January 

11
th
, 2011 and sent out to an independent lab for analysis. 
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CHAPTER V 
 

 

CONCLUSION 

The BP Deepwater Horizon oil spill provided an unprecedented opportunity to 

characterize and delineate the crude oil, as well as capture the early time biogeophysical signals 

resulting from the physical, chemical, and microbial degradation of the crude oil in a highly 

saline environment, aiding in the development of models that describe the evolution of 

biogeophysical signals from a young to more mature crude spills.  In this paper, we interpret the 

geophysical results within the constraints of the biological and geochemical data acquired in 

order to better understand the geophysical signature of a fresh crude oil in a saline environment.  

The main results and discussion are listed in the following bullets: 

 Electric methods show a distinct layer ~ 1 m thick found between the depths of 0.25 and 

1.20m that shows slightly elevated resistivities with values > 1.5 m. 

 Further examination of the geoelectrical images shows that the variation in resistivity is 

very small and ranges between 0.65-2.5 m. This is expected due to the high salinity and 

hence high conductivity of the barrier island. 

 The presence of microbes capable of hydrocarbon degradation could where found in all 

areas of the site. 

 Only the samples collected from the area of elevated resitivity  displayed the genes for 

active degradation while the samples from the background area were dormant even when 

spiked in microcosm experiments. 
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 The presence of the microbes suggests that oil has been present at the site, the 

experiments cannot determine the time at which the oil was present as well as the 

character of the oil.  The reason for the enrichment of hydrocarbon degrading microbial 

genes at the site is further supported if the presences of oil from natural oil seeps are 

taking into account. 

 Elevated DIC, sulfate, and higher dissolved Fe(II) and Mn found within the area of 

elevated resistivity between the depths of 0.25 to 1.25m bgs are indicative of 

hydrocarbon contamination, these could also be explained by the degradation of non-

hydrocarbon organic matter; supported by the depletion of TOC seen in core 1A between 

50 cm to 58 cm bgs. 

 Increased variability and lower values of    
  and    

   in the vertical profiles for W1 

and W2 are most likely due to utilization by microbes during the degradation of organic 

matter. 

 It is unlikely to know how the site geochemically evolved through time as only one set of 

geochemical data was acquired, making it difficult to differentiate between data that 

supports hydrocarbon degradation versus the background, or pre-oiling environment of 

the barrier island. 

 Elevated iron, manganese, sulfur, and TOC from core 1A, coupled with depleted DO 

concentrations from W1, between the depths of 20 cm to 44 cm bgs are indicative of 

hydrocarbon degradation by sulfate reducing bacteria.  This is further supported by the 

high concentration of microbes capable of hydrocarbon degradation found within the area 

of elevated resistivity and the presence of black sands from possible iron sulfide 

precipitation. 
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 The electrical response seen within the area of elevated resistivity could be explained by 

the production and ebullition of gas in the sub surface by the degradation of hydrocarbon 

by sulfate reducing bacteria.   

 All soil and water samples sent out to independent laboratories to test for the presence of 

hydrocarbons came back below practical quantitative limit.  This could be explained by 

extremely rapid levels of degradation of crude oil in the area of this research. 

 The application of the salinity equation to the measured salinity range of wells within the 

impacted and transitional areas (W1, W2, and W3) produced an apparent resistivity range 

of 0.51 to 1.23 m.  While this range is not an exact match to the range seen in the 2D 

ER lines, the lab experiment only took into consideration variations in salinity and their 

effects on resistivity.  This is not to say that other physical, chemical, and biological 

processes cannot influence the range of apparent resistivity values. 

 This research site can be characterized as having low organic content, moderately low 

total porosities, and high hydraulic conductivities (Lisle and Comer, 2011).  These 

conditions provide an environment that is capable of rapid and efficient degradation of 

low to moderate concentrations of crude oils without nutrient and or oxygen 

enhancement. 

 The rate of degradation was also affected by the dispersants ability to alter the inherent 

chemical and physical properties of oil, allowing the microbes to digest hydrocarbon 

more quickly (Atlas and Hazen 2011).   

 With the seawater containing adequate concentrations of oxygen and nutrients to 

facilitate microbial degradation of crude oil, coupled with wave action driving into and 

flushed out of the pore spaces of the sediments, an elevated rate of biodegradation is 

produced (Lisle and Comer, 2011). 
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Based on the geochemical, microbial, and soil analysis, the relatively higher apparent 

resistivity anomaly observed between the depths of 0.25 m to 1.20 m bgs could be explained by 

two scenarios.  The first and most likely explanation is the area of elevated resistivity was caused 

by the ebullition of gas in the subsurface produced by the degradation of petroleum hydrocarbon 

or some other organic matter coupled to sulfate and iron reduction. Due to inconclusive test 

results for the presence of hydrocarbons from independent laboratories, analysis into the electrical 

response derived from variations in salinity produced a resistivity range very similar to that seen 

throughout the site.  Further research is needed  

 



58 
 

 

 

REFERENCES 
 

 

Abdel Aal, G. Z. E. A. Atekwana, L. D. Slater, and E. A. Atekwana, 2004, Effects of microbial  
processes on electrolytic and interfacial electrical properties of unconsolidated sediments: 

Geophysical Research Letters, 31, L12505.  

 
Aeppli, C., Carmichael, C. A., Nelson, R. K., Lemkau, K. L., Graham, W. M., Redmond, M. C.,  

Valentine, D. L., Reddy, C. M., 2012, Oil Weathering after the Deepwater Horizon 

Disaster Led to the Formation of Oxygenated Residues: Environ. Sci. Technol., 46, 8799-

8807. 
 

Allan, S. E., Smith, B. W., Anderson, K. A., 2012, Impact of Deepwater Horizon Oil Spill on  

Bioavailable Polycyclic Aromatic Hydrocarbons in Gulf of Mexico Coastal Waters:  
Environ. Sci. Technol. 46, 2033-2039. 

 

Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir 
characteristics. Tran. AIME 146, 54–67.. 

 

Aggarwal, P.K. and Hinchee, R.E., 1991, Monitoring in situ biodegradation of hydrocarbons by  
using stable carbon isotopes: Environ. Sci. Technol., 25(6), 1178-1180 

 

Atekwana, E. A. W. A. Sauck, Werkema, D.D., 1998, Characterization of a complex refinery  

groundwater contamination plume using multiple geoelectric methods: Proceedings of 
the Symposium on the Application of Geophysics to Engineering and Environmental 

Problems (SAGEEP 1998), Environmental and Engineering Geophysical Society, 427- 

436. 
 

Atekwana, E. A., and R. V. Krishnamurthy, 1998, Seasonal variations of dissolved inorganic  

carbon and δ13C of surface waters. Application of a modified gas evolution technique: 

Journal of Applied Geophysics, 205, L23603. 
 

Atekwana, E. A. W. A. Sauck, and D. D. Werkema, 2000, Investigations of geoelectrical  

signatures at a hydrocarbon contaminated site: Journal of Applied Geophysics, 44, 
167– 180. 

 

.



59 
 

Atekwana, E. A., E. A. Atekwana, F. D. Legall, and R. V. Krishnamurthy, 2004a, Field evidence  

for geophysical detection of subsurface zones of enhanced microbial activity: 
Geophysical Research Letters, 31, L23603. 

 

Atekwana E. A, D. D. Werkema, J. W. Duris, S. Rossbach, E. A. Atekwana, W. A.Sauck, D. P.  

Cassidy, J. Means, and F. D. Legall, 2004b, In-situ apparent conductivity measurements 
and microbial population distribution at a hydrocarbon contaminated site: Geophysics, 

69, 56-63. 

 
Atekwana, E. A. E. A. Atekwana, R. S. Rowe, D. D. Werkema, and F. D. Legall, 2004c, Total  

dissolved solids in groundwater and its relationship to bulk electrical conductivity of soils 

contaminated with hydrocarbon: Journal of Applied Geophysics, 56, 281-294. 
 

Atekwana E. A, E. A. Atekwana, D. D. Werkema J. P. Allen L. A. Smart, J. W. Duris, D.P.,  

Cassidy, W. A. Sauck, and S. Rossbach, 2004d, Evidence for microbial enhanced 

electrical conductivity in hydrocarbon-contaminated sediments: Geophysical Research 
Letters, 31, L23501. 

 

Atekwana, E. A, Slater, L. D., 2009, Biogeophysics: A New Frontier in Earth Science Research:  
Reviews of Geophysics, 47, RG4004 

 

Atekwana, E. A., Atekwana, E. A., 2009a, Geophysical Signatures of Microbial Activity at  
Hydrocarbon Conatminated Sites: A Review: Surv. Geophys., 31, 247-283. 

 

Atekwana, A. E., Fonyuy, E. W., 2009b, Dissolved inorganic carbon concentrations and stable  

carbon isotope ratios in streams polluted by variable amounts of acid mine drainage: 
Journal of Hydrology, 372, 136-148. 

 

Atekwana, E. A., E. A. Atekwana, F. D. Legall, R. V. Krishnamurthy, 2005,Biodegradation and  
mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon 

contaminated aquifer: Journal of Contaminant Hydrology, 80, 149-167. 

 

Atlas, R. M., Hazen, T. C., 2011, Oil Biodegradation and Bioremediation: A Tale of the Two  
Worst Spills in U.S. History: Environ. Sci. Technol., 45(16), 6709-6715. 

 

Benson, A.K., Pyne, K.L., Stubben, M.A., 1997, Mapping groundwater contamination using dc  
 resistivity and VLF geophysical methods – A case study, Geophysics, vol. 62, pp. 80-86. 

 

Berlendis. S., J-L.Cayol., F. Verhé., S. laveau., J-L. Tholozan., D. Ollivier., R. Auria., 2010, First  
Evidence of Aerobic Biodegradation of BTEX Compounds by Pure Cultures of 

Marinobacter. Appl Biochem Biotechnol. 160, 1992-1999 

 

Camilli, R.: Reddy, C.M.; Yoerger, D. R.; Van Mooy, B.A.A.; Jakuba, M. V.; Kinsey, J. C.;  
McIntyre, C. P.; Sylva, S. P.; Maloney, J. V., 2010, Tracking hydrocarbon plume 

transport and biodegradation at Deepwater Horizon. Science, 330, 201-204. 

 
CEDRE 2010, Oil spill, Chronological classification, Centre of Documentation, Research and  

Experimentation on Accidental Water Pollution (CEDRE), 29218 BREST CEDEX 2 

France, viewed 1
st
, September, 2012, <http://www.cedre.fr/en/spill/chronological-

classification.php>. 
 



60 
 

Chapelle, F. H., Levley, D. R., 1992 Competitive Exclusion of Sulfate Reduction by Fe(III)- 

reducing Bacteria: A Mechanism for Producing Discrete Zones of High-Iron Ground 
Water: Ground Water, 30(1), 29 – 36. 

 

Che-Alota, V., Atekwana, E. A.,E. A. Atekwana, Sauck, W. A., Werkema, D. D., 2009 Temporal  

 geophysical signature from contaminant-mass remediation: Geophysics, 74, B113-B123 
 

Conatser, W. E., 1971. Grand Isle: A Barrier Island in the Gulf of Mexico, Geological Society of  

AmericaBulletin, 82, 3049-3068 
 

Cozzarelli, I.M., Eganhouse, R. P., and Baedecker, M.J., 1990, Transformation of monoaromatic  

hydrocarbons to organic acids in anoxic groundwater environment: Environ. Geol. Water 
Sci., 16, 135-141 

 

Duran, R. 2010, Marinobacter. P. 1726-1735. In K. N. Timmis (ed.), Handbook of Hydrocarbon  

and Lipid Microbiology. Springer-Verlag, Berlin Heidelberg 
 

Edwards, B. R., Reddy, C. M., Camilli, R., Carmichael, C. A., Longnecker, K., Van Mooy, B.  

A.S., 2011, Rapid microbial respiration of oil from the Deepwater Horizon spill in 
offshore surface waters of the Gulf of Mexico: Environ. Res. Lett., 6, 035301 

 

Eganhouse, R. P., Calder, J. A., 1976, The solubility of medium molecular weight aromatic  
hydrocarbons and the effects of hydrocarbon co-solutes and salinity: Geochim 

Cosmochim Acta, 40, 555-561 

 

Ellwood, B. B., F. B. Harrold, et al. (2004). "Magnetic susceptibility applied as an age–depth– 
climate relative dating technique using sediments from Scladina Cave, a Late Pleistocene 

cave site in Belgium." Journal of Archaeological Science, 31(3), 283-293. 

 
Environmental Response Management Application (ERMA) Deepwater Gulf Response, viewed  

 30
th
, August 2012 <http://www.gomex.erma.noaa.gov> 

 

The Federal Interagency Solutions Group: Oil Budget Calculator Science and Engineering Team,  
2010. Oil Budget Calculator Technical Documentation. http://restorethegulf.gov/-

sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf (accessed 

August 15, 2012) 
 

Fonyuy, E.W. and Atekwana E.A., 2008a. Effects of acid mine drainage on dissolvedinorganic  

carbon and stable carbon isotopes in receiving streams. Appl. Geochem. 23, 743-764. 
 

Godio, A., Arato, A., Stocco, S., 2010, Geophysical characterization of a nonaqueous-phase  

liquid-contaminated site: Environmental Geosciences, v.17, p. 141-161. 

 
Gong, C., Milkov, A.V., Grass, D., Sullivan, M., Searcy, T., Dzou, L., Depret, P., 2010, The  

significant impact of weathering on MC252 oil chemistry and it’s fingerprinting of 

samples collected from May to September 2010, Paper presented at SETAC North 
America 31

st
 Annual Meeting, Portland, OR, November 7 – 11 , 2010. 

Hach Company, 1992. Water Analysis Handbook. Hach Company, Loveland, Co. 

 
Halihan, T., Paxton, S., McPhail, M., McSorley, H., and Riley, M., 2005a, Final Report for:  

http://restorethegulf.gov/-
http://restorethegulf.gov/-


61 
 

Environmental Characterization and Monitoring of LNAPL Using Electrical Resistivity 

Tomography (ERT) and Hydraulic Push Techniques, Oklahoma Corporation 
Commission. 

 

Halihan, T., Paxton, S., Graham, I., Fenstemaker, T., and Riley, M., 2005b, Post-Remediation  

Evaluation of a LNAPL Site Using Electrical Resistivity Imaging, Journal of 
Environmental Monitoring, v. 7, p. 1−6. 

 

Hazen, T. C., 2011: Oil Biodegradation and Beioremediation, A Tale of the Two Worst Spills in  
U.S. History: Environ. Sci. Technol. 45, 6709-6715 

 

Kaufmann, O., and J. Deceuster, 2007, A 3D resistivity tomography study of a LNAPL plume  
near a gas station at Brugelette (Belgium): Journal of Environmental and Engineering 

Geophysics, 12, 207-219.  

 

Kostka. J.E., O. Prakash.,  W.A. Overholt., S. J. Green., G. Freyer.,  A. Canion.,  J.  

Delgardio., N. Norton., T. C. Hazen, M. Huettel., 2011, Hydrocarbon-Degrading 

Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands 

Impacted by the Deepwater Horizon Oil Spill. Appl. Environ. Microbiol. 77, 962–

7974 

 

Kvenvolden, K. A., and Cooper, C. K., 2003, Natural seepage of crude oil into the marine  

environment: Geo-Mar Lett, 23, 140-146 

 

Le Borgne. S., D. Paniagua., and R. Vazquez-Duhalt, 2008, Biodegradation of organic  

pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol. 15,74-

92 

 

Lisle, J. T., Comer, N. N., 2011, Characterization of sediments from the Gulf of Mexico and  

Atlantic shorelines, Texas to Florida: Open-File Report. U.S. Geological Survey, 

no.2011-1199, pp 12 

 

MacDonald, I.R., Reilly, J.F. Jr, Best, W.E., Venkataramaiah , R., Sassen, R., Gusnasso, N.R. Jr,  

Amos, J., 1996, Remote sensing inventory of active oil seeps and chemosynthetic 

communities in the northern Fulf of Mexico. In: Schumacher D, Ab rams MA (eds) 

Hydrocarbon migration and its near-surface expression. Am Assoc Petrol Geol Mem, 66, 

27-37. 

 

MacDonald, I.R., Leiger, I., 2002, Constraining rates of carbon flux from natural seeps on  

northern Gulf of Mexico Slope. In: Abstr Vol 7
th
 Int Conf Gas in Marine Sediments, 7-12 

October 2002, Baku, Azerbaijan. Nafta Press, Baku, pg 119. 

 

Margesin, R., Schinner, F., 2001, Biodegradation and bioremediation of hydrocarbons in extreme  

environments: Appl Microbiol Biotechnol, 56, 650-663. 

 



62 
 

Mazác, O., Benes, L., Landa, I., Maskova, A., 1990, Determination of the extent of oil  

contamination in groundwater by geoelectrical methods: Ward SH (ed) Geotechnical and 

environmental geophysics, 2,107-112 

 

Minsley, B. J., J. Sogade, and F. D. Morgan 2007, Three-dimensional self-potential inversion  

for subsurface DNAPL contaminant detection at the Savannah River Site, South 

Caroline, Water Resour. Res., 43, W04429, doi:10.1029/2005WR003996. 

 

Natter, M., Keeven, J., Wany, Y., Keimowitz, A. R., Okeke, C. O., Son, A., Lee, M., 2012, Level  

and Degradation of Deepwater Horizon Spilled Oil in Coastal Marsh Sediments and 

Pore-Water: Environ. Sci. Technol., 46, 5744-5755. 

 

Operational Science Advisory Team. 2011. Summary Report for Fate and Effects of Remnant Oil  

in the Beach Environment. New Orleans: Gulf Coast Incident Management Team. 

http://www.restorethegulf.gov/sites/default/files/u316/OSAT2%20report%20no%20-

ltr.pdf (accessed August 15, 2012) 

 

Pérez-Pantoja. D., B. González., and D.H. Pieper, 2010, Aerobic Degradation of  

Aromatic Hydrocarbons. p. 799-837. In K. N. Timmis (ed.), Handbook of 

Hydrocarbon and Lipid Microbiology. Springer-Verlag Berlin Heidelberg. 

 

Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G., 2005, Electrical resistivity  

survey in soil science: a review: Soil and Tillage Research, 83, 173-193  

 

Sauck, W. A., E. A.  Atekwana, and M. S. Nash 1998, High conductivities associated with an  

LNAPL plume imaged by integrated geophysical techniques, J. Environ. Eng. Geophys,. 

2(3), 203-212. 

 

Sauck, W., 2000, A model for the resistivity structure of LNAPL plumes and theirenvirons in  
sandy sediments: Journal of Applied Geophysics, 44, 151-165 

 

Schemel, L.E., 2001, Simplified conversions between specific conductance and salinity units for  

use with data from monitoring stations: IEP Newsletter, 14, 17−18 
 

Werkema, D. D., E. A. Atekwana, L. E. Anthony, W. A. Sauck, and D. P. Cassidy, 2003, 

investigating the geoelectrical response of hydrocarbon contamination undergoing 
biodegradation: Geophysical Research Letters, 30, 49-1-49-4.  

 

Whitehouse, B. G., 1984, The effects of temperature and salinity on the aqueous solubility of  
polynuclear aromatic hydrocarbons: Mar Chem, 14(4), 319-332. 

 

Wolfe, M. F., Schwartz, G. J. B., Singaram, A., Mielbrecht, E. E., Tjeerdema, R. S., Sowby, M.  

L., 1998, Effects of salinity and temperature on the bioavailability of dispersed petroleum 
hydrocarbons to the golden-brown algae Isochrysis galbana: Arch Environ Contam 

Toxicol, 35, 268-273. 

 



63 
 

Yang, L., Lai, C., Shieh, W. K., 2000, Biodegradation of dispersed diesel fuel under high salinity  

conditions: Wat. Res. V.34, no.13, 3303-3314. 
 

Yang, C. H., C. Y. Yu, and S. W. Su, 2007, High resistivities associated with a newly formed  

LNAPL plume imaged by geoelectric techniques-A case study: Journal of the Chinese 

Institute of Engineers, 30, 53-6 
 



64 
 

APPENDICES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Figure 21 2D electrical resistivity (ER) images of a) L4, b) L7, and c) L8 



  

F
ig

u
re

 2
2
. 
a)

 2
D

 a
p
p
ar

en
t 

re
si

st
iv

it
y 

se
ct

io
n

 o
f 

li
n

e 
6
 s

h
o
w

in
g

 t
h

e 
re

la
ti

v
el

y 
h

ig
h

er
 r

es
is

ti
v
it

y 
la

ye
r,

 a
n

d
 h

o
w

 i
t 

sp
at

ia
ll

y 
co

in
ci

d
e
s 

w
it

h
 t

h
e 

b
) 

d
ar

k
en

ed
 l

ay
er

 

o
f 

so
il

 s
ee

n
 i

n
 e

x
tr

ac
te

d
 c

o
re

s 
fr

o
m

 t
h

e 
th

e 
ar

ea
 o

f 
el

ev
at

ed
 r

es
is

ti
v
it

y.
 



  

 

VITA 

 

Cameron Stuart Ross 

 

Candidate for the Degree of Geology 

 

Master of Science 

 

Thesis:   GEOPHYSICAL AND GEOCHEMICAL CHARACTERIZATION AND 

DELINEATION OF A CRUDE OIL SPILL IN A HIGHLY SALINE 

ENVIRONMENT 

 

 

Major Field:  Geology 

 

Biographical: 

 

Born Traverse City, Michigan, February 22, 1985 to Mr. and Mrs. Tracy and Judy Ross 

 

Education: 

 

Completed the requirements for the Master of Science in Geology at Oklahoma 

State University, Stillwater, Oklahoma in May, 2013. 

 

Completed the requirements for the Bachelor of Science in Geology at Grand 

Valley State University, Allendale, Michigan in April 2009 

 

Experience:  

Geologist, Columbine Logging Inc., Midland TX (02/2013-Present) 

Student Contractor, Environmental Protection Agency under the supervision of 

Dr. Dale Werkema and Dr. Estella Atekwana (08/2011-06/2012) 

Teaching Assistant, Boone Pickens School of Geology (08/2011-04/2012) 

Research Assistant, Boone Pickens School of Geology (08/2010-04/2011) 

Geologist, Bay Geophysical Inc., Traverse City, MI (09/2009-07/2010) 

 

Professional Memberships:   

 

Geological Society of America (GSA) 

American Association of Petroleum Geologist (AAPG) 

Society of Exploration Geophysicists (SEG) 

Environmental and Engineering Geophysical Society (EEGS) 

Geology Graduate Student Association (GSSA) 


