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CHAPTER I

INTRODUCTION

Wireless sensor networks act as building blocks for smart environments which help in automating
various systems like transportation, home, utilities and industries. Smart environments require
sensory data from real world. This sensory data is collected by distributed wireless sensor
networks and is processed to retrieve important information. A wireless network consists of
hundreds or thousands of autonomous devices, called sensor nodes, which are spatially
distributed. Each sensor node has a radio transceiver for communicating at short ranges and a
microcontroller that is capable of processing data. Various applications of wireless sensor
networks are tracking, environmental monitoring, patient health monitoring and traffic
monitoring and animal monitoring. Sensor nodes also find applications in battle field

surveillance.

Each node has limitations on their resources such as memory, energy, computational power and
communication range. Each sensor node should have the ability to self-organize, coordinate with
other sensor nodes and perform in extreme weather conditions. A sensor network should be in a
position to add new nodes and also withstand the loss of some nodes. In a sensor network, each
node collects data from the surroundings and tries to send it to the base node from which it is sent

to satellites and supercomputers for analyzing and processing data.



The wireless communication between the nodes takes place through radio transceiver introduces a
possibility of interception of messages by an adversary. Moreover, due to cost consideration,
tamper resistant hardware is not used to protect the keys or other critical data. With the threat of
interception, one has to take care to minimize this impact of such loss on the neighboring nodes
and the network. Since these networks can be deployed in hostile environments, they may have to
face attacks such as masquerade attacks, spamming with erroneous information, and information
retrieval by listening to the traffic and even physical attacks. In order to minimize the effect of
these attacks, the messages transferred between two communicating nodes must be properly
encrypted and authenticated. In order to start a communication, two nodes must share a common
key and thus the problem reduces to that of key management. Much research has been done in
how efficiently the keys are to be generated [1] or pre-distributed [2],[3] by considering the
limitations on energy, memory and cost of sensor nodes. Since nodes are battery powered, key
management scheme should have low communication costs. Nodes have limited memory, so key

management scheme should be designed to minimize memory requirements.

In this thesis we propose a key self-establishment scheme using Primitive Pythagorean triples
(PPTs) as suggested by Kak [4]. Pythagorean triples are the lengths of sides of a right angled
triangle (a, b, ¢). The generation of events of specific probability is of importance in cryptography
and in applications such as e-commerce [5], [6]. Such events may be generated by a variety of
methods that include prime reciprocals [7], [8], [9] or by the use of specific modular operations
[10]. The generation of random events is also tied up with the question of algorithmic probability
[11]. Pythagorean triples can generate probability events and we can generate infinite number of
Pythagorean triples i.e. X (a, b, ¢) where x>1. A primitive Pythagorean triple is the one in which

neither of the three numbers have any common factor.



CHAPTER II

PYTHAGOREAN TRIPLES

Pythagorean triple is a triple of positive integers a, b, and ¢ such that a right triangle exists with
legs a, b and hypotenuse c¢ by the Pythagorean Theorem. This is equivalent to finding positive
integers a, b and c satisfying

a2 +b?=c?
which acts as the basis for trigonometry. We can generate infinity number of Pythagorean triples
i.e. X (a, b, ¢) where x>1. A primitive Pythagorean triple is the one in which neither of the three

numbers have any common factor.

Note: For a PPT, a, b, ¢ cannot all be even. Also, a, b cannot both be odd and c even, because
then a? + b? is divisible by 2, whereas c? is divisible by 4. One of a and b must, therefore, be odd,
and we will use the convention that b is even. Also note that the factors (c - b) and (¢ + b) of (¢ -
b?) must both be squares because they cannot have common factors other than 1 for otherwise

they would not be primitive. We can write a, b, ¢ as

a=st

b=(s2-1)/2


http://mathworld.wolfram.com/Triple.html
http://mathworld.wolfram.com/PositiveInteger.html
http://mathworld.wolfram.com/RightTriangle.html
http://mathworld.wolfram.com/Hypotenuse.html
http://mathworld.wolfram.com/PythagoreanTheorem.html
http://mathworld.wolfram.com/PositiveInteger.html
http://mathworld.wolfram.com/PositiveInteger.html

c=(s*+t)/2

where s, t are odd and co-primes to each other and ¢ + b= s? and also c-b=t?. There exist an
infinity of PPTs. The coordinate (a/c, b/c) may be seen as a point on the unit circle, implying that
a countably infinity of these points are rational. A sequence that generates a subset of PPTs is

(2n+1, 2n*+2n, 2n*+2n+1) forn =1, 2, 3...

For example for the smallest and perhaps best known triple is (3, 4, 5), where s=3 and t=1. The
Pythagorean triples a, b, ¢ are divisible by either 3 or 4 or 5 separately or jointly so as the
Primitive Pythagorean triples. This property is used and divided all the PPTs into six classes by
Kak [4], who also presents their historical background. For additional background to Greek
geometry, see [12],[13]. The Pythagorean result was known in India before the Greeks, and for a
background on this information, see [14]-[17]. Random PPTs may also be used in lieu of other

randomizing functions such as [18],[19].

Indexing Using s and t Numbers
For a convenient indexing one may use relatively prime s and t numbers in an array where s > t.

This may be seen in the diagram shown below:

S
3 5 7 9 11 13.......
1 @3 @, 5) 1,7) 1,9 1, 11) (1,13)...
3 (3.5) 3.7) 3,9) (3, 11) (3.13)...
t5 5.7) (5, 9) (5. 11) (5.13)...
7 (7,9 (7, 11) (7, 13)...
9 9, 11) 9,13)...
11 (11,13)...

Table 1.Array of PPTs ordered by s and t numbers



If the indexing were done according to columns of Table 1, we have the following PPTs in the

array across the first seven generations (where the duplicate values have been removed):

(3,4,5)

(5,12,13)  (15,8,17)
(7,24,25) (21,20, 29)
(9,40,41) (45, 28,53)
(11,60,61) (33,56, 65)

(13,84,85) (39, 80, 89)

(15, 112, 113) (105, 88, 137) (165, 52, 173)

(35, 12, 37)
(63, 16, 65)
(55, 48, 73)

(65, 72, 97)

(77,36,85) (99, 20, 101)
(91,60, 109) (117, 44, 125) (143, 24, 145)

(195, 28, 197)

Table 2.Example generations of PPTs ordered by s and t numbers

The fourth row has only three entries as (2, 9) of Table 1, which corresponds to the triple (27, 36,

45) can be reduced to the PPT (3, 4, 5).

Indexing of the PPTs in Table 2 may be done according to increasing a, b, or c.



CHAPTER IlI

DIFFERENT WAYS OF REPRESENTING THE TRIPLE

A. Euclidean Pythagorean primitive triples:

The Euclidean Pythagorean primitive triples [12], [13] may be obtained using the formula
a=m?—n?
b =m?2+n?
c=2mn

Where m, n are relatively prime to each other and only of them is even and the other is odd.

B. Representing Pythagorean Triples as Gopal-Hemachandra Numbers:
Consider the Gopala-Hemachandra (GH) quadruple (g, €, f, h). The GH sequence, named after
two mathematicians who lived before Fibonacci [4], is the sequence
g e gte g+2e 2g+3e,3g+5e, ...

for any pair g, e. When g=1, e=1, we obtain the Fibonacci sequence.
In the GH quadruple (g, €, f, h), if

a=gh

b=(c-a)f/e

c=eh+fg

then (a, b, c) is a Pythagorean triple. If the quadruple has no common factors and g is odd, then

6



(a, b, c)isaPPT. The values b, and ¢c may also be written as b=2ef, and c= 2 + 2,

C. A Variant of the Classical Formula
The Classical Greek formula: (r? - s2, 2rs, r? + s?) is a Pythagorean Triple whenever
0<s<rr,s &Z" The generating pair of integers in this case is denoted by [r, s] where, [r, s] =
(r>-s2, 2rs, r>+s?). The triple is primitive iff (r, s) =1 (are relatively prime) and (r —s) is odd. While
(r, s) = 1 is a necessary condition for producing primitives, we must also require that (r - s) be
odd. We shall refer to the collection of triples generated by [r, s] as the classical triples or
classically generated triples.

The classical Pythagorean Triples can be generated by the relationships

[P+a.al=((P+9)°—0%2(pp+0)q, (p+a)?+09?.

= (p? + 2pq, 29° + 2pq, p* + 20° + 2pq) 1)

where,p.q € Z".

D. Families of Triples

For each p € Z, we can define three continuous functions in the variable t as follows:

A, (t) = 2pt + t2; By (t) =2t + 2pt; Cy(t) =2t + 2pt + p? (2)

These three functions are a variant of the three functions in (1) replacing q with the more
commonly used parameter t.

For fixed values of p, Ay(t) is a linear function in while both By(t) and Cy(t) are quadratic

functions in t.

E. Representing Pythagorean Triples using [ K M t] System:
If (a, b, c) is a Pythagorean Triple, then ¢ - b is called its hypotenuse-leg difference and is

denoted by K. The triple can be expressed as



(a, (@ - K?)/2K, ((a% - K?)/2K) + K)
where
K =D. E2. L, where
D = {product of the distinct odd factors of K}; each odd factor occurs exactly once,
E2 = {product of even powers of the remaining factors including 2} expressed as [ 13
each factor has power 2N (N an integer, N > 0), and
L = {product of the factors still left}; each factor occurs at most once.
Using this factorization of K, we define a new integer value M =2 D E. M is called the co-value

of K. We get the triple,

(Mt + K, (M? £ + 2KMt)/2K, ((M? 2+ 2KMt)/2K) + K) (3)

F. Comparing the Variant System [p + q, q] with the [K M t] System:

Like the formulas (2) for the Variant system, the formulas (4) for the [K M t] system can be
parameterized so that they produce families of triples for each positive integer K:

Ap (1) = MK +t; Bp (1) = (M? 2 + 2KMU)/2K; Cp (t) = ((M? t2 + 2KMt)/2K) + K ------- 4)
The generation of Pythagorean Triples using (2) can lend itself to the area of cryptology very
nicely because two distinct related generating sets, such as { 1, 2,1} and { 2, 2, 1} will yield the
‘same’ triple (allowing transposition), in this case (3, 4, 5) . The various families of (4) (indexed
by K) can be thought of as an infinite number of code wheels with each wheel (family) having
infinite ways to code each letter of the alphabet — ‘¢’ could be coded with some value t = Smod
26 for instance. Together, a value chosen for K (wheel) plus the value selected for t will produce
atriple (a,b, ¢); remember that K will determine its necessary co-value M. If ‘e’ is the plaintext
message, the representative cipher sent will be the first two terms of the triple, namely (ae, be).
The third value of the triple can easily be calculated from the other two terms and then Ke and te

can be calculated to decode the cipher.



Example:

Preliminaries
e Create a table of M-values (one time only)
e Assign numeric values to the letters of the alphabet and single digits — t-values (one
time only)
e Create a plain text code
Encryption
e Translate the plain text into its numeric equivalent (t-values)
e Corresponding to the first number(letter/t-value), select a random value for K
e Using (K, t, M), generate a corresponding PT triple (a, b, ¢)
e The encrypted text for the first letter is (a, b) or singly as (hex(a) hex(b))

Encrypt the remaining letters (numbers) of the plain text

Plain Text: H |

Assign t-values:

Plaintext H |

t —value 3 5

H - randomly choose K=3 (M=6)
then [K M t] = (3, 6, 3) > (21, 72, 75)
I = randomly choose K=2 (M=2)
then [K M t] = (2, 2, 5) >(12, 35, 37)

Cipher Text: 21 72 12 35 (al, b1, a2, b2)



CHAPTER IV

RANDOMNESS PROPERTIES OF SEQUENCES FROM SIX CLASSES

Six Classes of PPTs

Theorem. Primitive Pythagorean triples come in 6 classes based on the divisibility of a, b, ¢ by 3,
4, and 5.

The six classes are defined as follows:

1. Class A in which a is divisible by 3 and c divisible by 5.

A (L¢
Divi Divi \
sibl sibl
e A e
by by

3 5

10



2. Class B in which a is divisible by 5 and b is divisible 3.

Divi

Divi
sibl sibl i/
e i e
bv bV

3. Class C in which a is divisible by 3 and 5.

Divi
sibl
e
by

4. Class D in which b is divisible by 3 and ¢ by 5.

by

Divi
Divi sibl
sibl e




5. Class E in which a is divisible by 3 and b by 5.

Divi

Divi
sibl sibl i/
€ i e
bv bv @

6. Class F in which is b divisible by 3 and 5

The List of first 34 PPTs and the classes they belong to:

PPT
(3, 4, 5)
(5,12, 13)
(15, 8, 17)
(7, 24, 25)
(21, 20, 29)
(35, 12, 37)
(9, 40, 41)
(45, 28, 53)
(11, 60, 61)
(33, 56, 65)
(63, 16, 65)
(55, 48, 73)

<
@®>>TMommmMmooO®>R

12



(13, 84, 85)
(77, 36, 85)
(39, 80, 89)
(65, 72, 97)
(99, 20,101)
(91, 60,109)
(15,112,113)
(117, 44, 125)
(105, 88,137)
(17,144,145)
(143, 24,145)
(51,140,149)
(85,132,157)
(119,120,169)
(165, 52,173)
(19,180,181)
(57,176,185)
(153,104,185)
(95,168,193)

WP TMOTMmMOOO>OTTMEMOO

These are arranged in increasing order of hypotenuse length (c). If the hypotenuse lengths are
equal then they placed according to the increasing order of ‘a’. The corresponding sequence of

classes for the above 34 PPTs is ABCDEBECFAABDDEBEFCACDDEBFCFAABCDD.

The six classes may also be shown to be defined as the end nodes of the binary branching tree of

figure 1.

13



PPT

/\

c divisible by 5 c not divisible by 5

a divisible by 5 a not divisible by 5

a divisible by 3 a not divisible adivisible by 3 anot divisible b divisible by 3 b not
by 3 by 3 divisible by 3
A D B C E F

Figure 1.A graphical representation of the 6 classes of PPTs

An experiment was done where 4448 PPTs were generated and indexed by increasing a, b, and c,

respectively.

Indexed by increasing a:
ABDEFDCCDFEEDBAFFAABBDEEFDCCDFEEDBBAAFFAABBDEEFDCCDDFEDBBAA
FFFAABBDEEFDCCCCDFEEDBBAAFFFAABDEEFDDCCDFEEDDBBAAFFAABBDEEFF
DCCCCDFEBBAAFFAABB...

Indexed by increasing b:
ACBBAEEDDCCCDDEEAABBCCAAFFFFACCBBAAEEDDDDCCCCDDEEAABBCCAAF
FFFAACBBBBAAEEEEDDCCCCDDDDEEAABBBBCCAAFFFFAACCBBAAEEDDDDCC
CCDDEEEEAABBBCCAAFF...

Indexed by increasing c:
ABCDEBECFAABDDEBEFCACDDEBFCFAABCDDEEFCFCDDEBEFCAABCDDBFCAAB
CCEBEFFAABDDEBEFFAABBDDEECCFAACDDEBCFBCDEEECFBCDDEEBBEFAABD

DBEFCAABBEFFAABCDD...

14



Randomness Properties of Sequences from the Six Classes

We obtain separate sequences related to the occurrence of As, Bs, Cs, Ds, Es, and Fs by
considering the distance between occurrences of the letters. Thus in the listing by increasing ¢, A
occurs, after its first value, at the 10th, 11th, 20th, positions, which corresponds to the numbers 9,
1,9, .... These sequences will be called Baudhayana sequences after the author who used

Pythagorean triples several centuries before Pythagoras [14],[15],[16],[17].

Baudhayana sequences ordered by a:

Sequence of As:1431171311714119141181312013118210111119310291
111021111221221110211213113191111110112111132112813191112
1011211918219 ...

Sequence of Bs:1261131711318115181517116171154829575847561149
31041186849411391131184115581127386811182846773116584
814619314126...

Sequence 0f Cs:11912112211122123111221111310111011101111111014
121111111311101112111211121911310110111111111217118114110
11111139171299...

Sequence of Ds: 3349434114313124541141341115541114536102161421
12225715947528141851410132994955641610317131427314241734
672714224317 ...

Sequence of Es: 71111711318141911318114110114198311567575757438
1147115859675771157714741231115118711121910231562411712
113691315156...

Sequence of Fs:561858186711878117691817819755141617541282695
1413459510761122152812134187156112848531126154361928441

96513119311327 ...

15



Baudhdayana sequences ordered by b:

Sequence of As:41215155115151516117171515117171517211515191
1717151117116583155114512745155451113113851554717381641
111214319101710112111415 ...

Sequence of Bs:1151121191121112111113121111131112411511121111
151111911121711101114111011171181119121117111011191211131
121151151117120111011...

Sequence of Cs:8119181111119191311113191111111319114111131911
111111151111131111010911189111161111196131910111116111111
1910711910711279114 ...

Sequence of Ds:141241115128151112711151321115111311511135151
1122113112211211241152411311241131124115112114112241191
111121116114122121122...

Sequence of Es: 18120111122111111231111112411113111251111112711
11118119111881118119111811920119111811111117911817111311
11112191811711817111711 ...

Sequence of Fs:1113011136111351113811139111341111112711261127
1127111111271129111111231111112212611201111123112411111
2412111111211111120111...

Baudhayana sequences ordered by c:

Sequence of As:919911818191911012618181919181181111191718119
18171911612119151111611111711161118130117191181718311816
1101 11911717...

Sequence of Bs : 464961364546461143861536184910687412310181581
51710531651211114666611101691211691454107117485518141135
4189761113472..

16



Sequence 0of Cs:511265627454124145353175816355141211165861810
1031684951615741641616748564451024191117145138611219151
2711716154446 ...

Sequence of Ds:9181101711011711019178110118171101171119118191
71911017127181811191911611611211811818161111116111116119
181115191201 ...

Sequence of Es:2827111721728291971171388110721811010921728810
1118718381211619111519215112911711021627111162116108129
1115210171199 ...

Sequence of Fs:982927910191119810891918182811912911962810108
271101115121171161271028126191111116218818111107181111613
711181025121 ...

We consider the autocorrelation function, C (k), of these sequences when written as a(i):

n

C(k) = %z a(a(i + k)

i=0
70
60
50
B L
30
20
10
0
AN MN N AN N AN A SN MO OO AN N A NN N o
NI NOMNMWNMN OO MWOW-TAMmUWLOO AT OOATNTIN AN N
A AT A NN ANANOONON NN NN OO

Figure 2.The typical autocorrelation function for Baudhayana sequences
ordered by a and b

17



The autocorrelation function for each of the six classes of Baudhayana sequences ordered by a
and b is qualitatively the same (Figure 2). Since there are 6 classes, the average distance between
consecutive points will be 6. This, in turn, makes the function for non-zero values of the

argument to be approximately 36 as we find in the plots.

The autocorrelation functions of the six random Baudhayana sequences for ordering by C is
shown in Figure 3. Notice that the value of the autocorrelation function for zero lag is not the
same for all sequences. The functions for classes B, C, E, and F are similar to the results in Figure
2. However when the Baudhayana sequences are arranged by order of ¢, As and Ds bunch
together as there are more than one solution for values of ¢ that are divisible by 5. These are
represented by classes A and D. This is the reason why the plots for these two classes are
different from the others as shown in Figure 3. This means that the correlation of Baudhayana
sequences ordered by ¢ as shown in Figure 3a and Figure 3d is an artifact of the ordering process
and the six sequences have excellent randomness properties if we order them by a or b or if we

consider the classes B,C, E, and F when they are ordered by c.

100
90 l ¢
80
70
60
50
40
30
20
10

32

63

94
125
156
187
218
249
280
311
342
373
404
435
466
497
528
559
590
621
652

Figure 3a.Autocorrelation of Class A Baudhayana sequences ordered by ¢
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Figure 3b.Autocorrelation of Class B Baudhayana sequences ordered by ¢

70
60 7
50
Y R R R
30
20
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Figure 3c.Autocorrelation of Class C Baudhayana sequences ordered by C
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Figure 3d.Autocorrelation of Class D Baudhayana sequences ordered by €
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Figure 3e.Autocorrelation of Class E Baudhayana sequences ordered by €
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Figure 3f.Autocorrelation of Class F Baudhayana sequences ordered by ¢
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The A to F sequences may alternatively also be mapped into binary sequences and their
properties remain qualitatively similar to the results of Figures 2 and 3. For example the

autocorrelation of the binary sequence for Class E is shown in Figure 4 below.
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Figure 4.Autocorrelation of Class E for binary sequence
Cross Correlation Properties of the Baudhayana sequences

We consider the autocorrelation function, H (k), of these sequences when written as x (i) and y

(i):

N
1
Hey =5 ) 2@Dy(i +K)
i=0

Where,

x,y € Six Classes
Computation of the cross correlation functions reveals that the cross correlation is relatively high
between A and D (Figure 5) when the Baudhayana sequences are ordered according to C as is to

be expected. The cross correlation values between other pairs of Baudhayana sequences
are low (typically like that of Figure 6). This validates our assessment that the sequences

possess excellent randomness properties.
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Figure 5.Cross correlation between A and D (the values range

between 20 and 53)
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Figure 6.Cross correlation between B and C (the values range

between 34 and 39)
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CHAPTER V

CLASSIFICATION USING RESIDUES

The PPTs may be put into different equivalence classes using residues with respect to different
primes.We have determined the autocorrelation function of the residue classes and as the graphs

below show these sequences have excellent randomness properties.

Example 1.Consideringresidues of a with respect to 3 in the increasing order of ¢

If amod3==0; Class A,
If amod3==1;Class B,

If amod3==2;Class C

The sequence obtained when indexed by increasing c:
ACAACAABAACACABAAACCACAAACAAABACACAABAAAACCAAACAAAABCAA
CCACABAACCAAAABAAAACABCACAAAAAAACCAAACCCABAAACAAACBAAAC

ABCAACACABBAAAACACAAAAA......
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Autocorrelation for A:
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Figure 7.Autocorrelation of Class A for residue with respect to 3

Autocorrelation for B:

30

25

20

10

41

81
121
161
201
241
281
321
361
401
441
481
521
561
601
641
681
721
761
801
841
881
921

961
1001

Figure 8.Autocorrelation of Class B for residue with respect to 3
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Autocorrelation for C:
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Figure 9.Autocorrelation of Class C for residue with respect to 3

Example 2.Consider residues of a with respect to 5 in the increasing order of ¢

If amod5==0; Class A,
If amod5==1; Class B,
If amod5==2; Class C,
If amod5==3; Class D,

If amod5==4; Class E,

The sequence obtained when indexed by increasing c:
DAACBAEABDDADCEAEBACACDBAEAECDAACDBBBAEACDEABBACDAADDAEA
CCAAAEAEBECCADCBABBEDDAACCEEAABDDADDBAABAACEBEAEAACCBBAAB

EDCACDAEBADDAAAEEEBDCAADCAEBECDDDEABBBACC........
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Autocorrelation for A:
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Figure 10.Autocorrelation of Class A for residue with respect to 5

Autocorrelation for B:

70

60

50

40

30

20

10

27

53

79
105
131
157
183
209
235
261
287
313
339
365
391
417
443
469
495
521
547
573
599
625
651

677

Figure 11.Autocorrelation of Class B for residue with respect to 5
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Autocorrelation for C:
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Figure 12.Autocorrelation of Class C for residue with respect to 5

Autocorrelation for D:
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Figure 13.Autocorrelation of Class D for residue with respect to 5
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Autocorrelation for E:
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Figure 14.Autocorrelation of Class E for residue with respect to 5

Example 3.Consider residues of a with respect to 7 in the increasing order of ¢

If amod7==0; Class A,
If amod7==1, Class B,
If amod7==2;Class C,
If amod7==3; Class D,
If amod7==4;Class E,
If amod7==05; ClassF,
If amod7==6; Class G,

The sequence obtained when indexed by increasing c:

DFBAAACDEFAGGAECBABFADDCBAEFBGEGFAADEAGDCCGDAAFEAEFBBAFBGA

CCCADAGBDDFADBFCDECAGBGAEGBAFFCEEDABDFAACCFAABADCCBGDAAAE

EEBGAEFGAGFACDCGGEECGDAAFDDAFBBDFGEAG
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Autocorrelation for A:
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Figure 15.Autocorrelation of Class A for residue with respect to 7

Autocorrelation for B:
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Figure 16.Autocorrelation of Class A for residue with respect to 7
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Autocorrelation for C:
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Figure 17.Autocorrelation of Class C for residue with respect to 7

Autocorrelation for D:
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Figure 18.Autocorrelation of Class D for residue with respect to 7
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Autocorrelation for E:
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Figure 19.Autocorrelation of Class E for residue with respect to 7

Autocorrelation for F:
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Figure 20.Autocorrelation of Class F for residue with respect to 7
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Autocorrelation for G:

140

120

100

80

60

40

20

0

i

™ o
N < O o0

101
121
141

161
181
201
221
241
261
281
301
321
341

361
381
401
421
441
461
481

501

Figure 21.Autocorrelation of Class A for residue with respect to 7

All the class sequences of the PPTs are generated by various methods show excellent randomness

properties and therefore can be used in many cryptographic applications.

Furthermore, in the above cases the average auto-correlation values for class A sequence is
almost one-fourthof the average autocorrelation values of the rest of the classes. In order to find

the reason behind it, we first compute the frequency of various residues.

Number of A’s in the sequence for residues of a
Length of sequence

with respect to 3 with respect to 5 with respect to 7
1000 514 341 255
2000 1035 672 505
3000 1537 1004 751
4000 2017 1349 992

Table 3.Number of A’s in the sequence for residues of a with respect to 3, 5 and 7.
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OBSERVATIONS:

Consider residues of a’s with respect to 3:

For n long sequences, the number of A’s in the sequence is almost n/2. Therefore, the average
distance between two As is 2.The autocorrelation is given as C(k) = %ZQ;O a(i)a(i + k) which

makes the function for non-zero values of the argument to be approximately 4as we find in the
plots. The same is the case with the number of Bs and Cs in the sequence where the average
distance between two Bs and Cs is 4. Thismakes the function for non-zero values of the argument

to be approximately 16as we find in the plots.

Consider residues of a’s with respect to 5:

For n long sequences, the number of A’s in the sequence is almost n/3. Therefore, the average
distance between two As is 3. The function for non-zero values of the argument will be
approximately 9as we find in the plots. The function for non-zero values of the Bs, Cs, Ds and E’s

will be approximately 36as we find in the plots.

Consider residues of a’s with respect to 7:

For n long sequences, the number of A’s in the sequence is almost n/4. Therefore, the average
distance between two As is 4. The function for non-zero values of the argument will be
approximately 16as we find in the plots.The function for non-zero values of the Bs, Cs, Ds, Es, Fs

and Gs will be approximately 64 as we find in the plots.
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CHAPTER VI

KEY DISTRIBUTION USING PPTs

Consider an odd number which can be represented by a sum of two numbers such that the two
numbers are co-primes. i.e., the gcd of these numbers should be 1. These two numbers are (s, t)
from which the primitive Pythagorean triple can be calculated as follows:

b=2st

c=s*+12

a=s%-t
For a secure communication between two nodes, a secret key is to be agreed between the two

nodes. By using the Sequences generated by the PPTs this secret key can be generated as followS

Method:

1. Assuming the central authority knows Alice's and Bob's secret key.

2. The central authority tries to send the secret key to both Alice and Bob using three different
parameters namely, the sequence, the mod value generating the sequence and one of the 's' values
used to generate the key(odd number).

3. These parameters can be encrypted as follows:

Sequence: the sequence can be encrypted using Transposition.
Transposition cipher: simple data encryption scheme in which plaintext characters

are shifted in some regular pattern to form cipher-text.
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Mod value and 's' value: these can be encrypted by performing xor operation of the secret key and
the private key.

4. Once these parameters have been encrypted and sent, these values will be decrypted by Alice
and Bob.

5. The key is calculated by generating all possible t values such that t < s and gcd(s, t) = 1. Sum
the (s, t) value to generate odd number. For this odd number generate all possible (s, t) pairs and
respective PPTs and their resulting sequence and cross verify this sequence with the sequence

sent by the central authority. If it matches then that the sum of (s, t) is the secret key.

Example:

Consider the Secret key selected by the CA is 11.

For 11, the (s, t) values, PPTs and Classes are:

The Class for the PPT is generated by using (a mod 5):
if amod 5 == 0, then Class A,

if amod 5 == 1, then Class B;

if amod 5 == 2, then Class C;

if a mod 5 == 3, then Class D;

if amod 5 == 4, then Class E;

KEY ) PPT Class
6, 5) (11, 60, 61) B
(7. 4) (33, 56, 65) D
11 ®.3) (55, 48, 73) A
©,2) (77, 36, 85) C
(10,1) (99, 20, 101) E
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Selecting the s value to be 8, the CA will encrypt the three parameters as follows

Encryption:

Sequence: Transposition Cipher

First select a key.

Write the message letters out over a number of rows then read off cipher column by column. Fill
out the empty spaces with *.

Suppose the key is: 3 1 2 (this key is supposed to be secret)

Plain-text is: BDACE

The Arrangement would be:

3 1 2
B A E
D C *

Cipher Text is: ACE*BD

Modulo and s value encryption:

Here we have considered the modulo value to be 5 and the secret key is 11. Therefore the
encrypted modulo value passed will be (secret key) @ (Private key)

Secret key: 1011

Alice Private Key: @ 101

1101

In the same way the modulo value is sent to Bob. The s value selected is also sent in the same

manner.
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Thus,
Parameters sent to Alice will be: (ACE*BD, 1101, 1101)

Parameters sent to Bob will be: (ACE*BD, 1101, 1110)

Decryption:

Once Alice and Bob receive the ciphered parameters from the CA, they decrypt it as follow:
Sequence:

Using the secret key 3 2 1, the sequence is decrypted by filling out the columns in sequential

manner in the following way:

3 1 2
B A E
D C *

Modula and s value:

Modulo/ s = (passed modulo/ s) @ (private key)

Now to generate the key:

Both Alice and Bob need to generate (s, t) pairs: (8, 7), (8, 5),(8, 3), (8,1) from the given s value
i.e., 8. Once they find all the possible pairs, sum each pair to generate the odd number. For this
odd number, all possible (s, t) pairs are generated and PPTs are generated. For each a value in the
PPT,(a mod (mod value passed by CA)) is calculated to generate a class sequence for the odd
number. If this generated class sequence matches the sequence sent by the CA, the odd number

generating this sequence is the key.
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Analysis:

Transposition Cipher:

A plaintext will be given as P = {ai, a» ...ap}. The transposition cipher permutes a block of n
consecutive characters of Plaintext according to an n-permutation P, to produce a cipher text
block(c, ...cn). Therefore the number of permutations depends on the number of columns chosen
to encrypt the plain-text. Besides using a key, multiple transpositions could be performed.This
would be an example of “multiple stages” encryption.The result is a more complex permutation
that is not easy to determine. To make transposition ciphers a bit more secure, it is usual to
remove all punctuation marks from the plaintext first. It is quite often the case that all spaces are

also removed.

Time taken to Generate (s, t) pairs:

The secret key used for communication by the nodes is sent using three different parameters by
the CA. This increases the difficulty of the eavesdropper as he needs to know all the three
parameters in order to retrieve the key. Knowing only one or even two parameters, will be of no
use to the eavesdropper as the key can be generated only if all the three parameters will be
known. Furthermore the parameters sent to the nodes by the CA are encrypted using different

techniques.
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Time taken generated the (s, t) pairs to know the key:
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Figure 22.Time taken generated the (s, t) pairs

X - Axis: s values ranging from 0-500.

Y - Axis: Time taken to generate (s, t) pairs in nanoseconds.
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CHAPTER VII

CONCLUSION

This thesis initially shows how the six classes of PPTs can be put into two larger classes.
Specifically, autocorrelation and cross-correlation functions of the Baudhayana sequences of the
six classes have been computed. It is shown that Classes A and D (in which the largest term is
divisible by 5) are different from the other four classes in their randomness properties if they are
ordered by c. But if the Baudhayana sequences are ordered by a or b, each of the six classes
exhibits excellent randomness properties. This remains true if binary mappings of the
Baudhayana sequences are considered. Further when we divide the PPTs into residue classes they
show excellent randomness properties for all the classes. This thesis also explains how this
random Baudhayana sequences can be used in key exchange protocols and how the level of
difficulty in knowing the key is enhanced by passing the key as three different parameters. The

random sequences obtained using PPT may also be used in other communication systems.
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