
   MAPPING POWER PLANT INEQUALITIES 

 

 

 

 

   By 

   SARAH KOSMICKI 

   Bachelor of Arts in Environmental Studies  

   Knox College 

   Galesburg, Illinois 

   2010 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE 

   May, 2013  



ii 
 

   MAPPING POWER PLANT INEQUALITIES 

 

 

 

 

   Thesis  Approved: 

 

   Dr. Michael Long 

 Thesis Adviser 

   Dr. Duane Gill 

 

   Dr. Tamara Mix 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

ACKNOWLEDGEMENTS 

 
I would like to thank my committee chair, Dr. Michael Long, for all of his assistance and 

insight throughout the research process. I am incredibly grateful for his time and patience and the 

research skills I obtained under his guidance. 

 I would also like to thank Dr. Tamara Mix and Dr. Duane Gill for their significant 

contributions and critiques. 

 Lastly, I am grateful for my colleagues Andrew Raridon, Jenny Nguyen, Julie 

Schweitzer, Destinee McCollum, Sonni Kolasinac, Alma Garza, Kevin Johnson and Shaun 

Elsasser and for their unending support.  



iv 
 

 

Name: SARAH KOSMICKI   

  

Date of Degree: MAY, 2013 

  

Title of Study: MAPPING POWER PLANT INEQUALITIES 

 

Major Field: SOCIOLOGY 

 

Abstract: This study seeks to unveil how the siting of nuclear power plants differs from 

the siting of coal-fired power plants in the United States. More specifically, it addresses 

how the demographics of surrounding communities differ according to the type of 

facility, and explores the possible causes of these discrepancies. Utilizing the United 

States Environmental Protection Agency’s Emissions & Generation Resource Integrated 

Database (eGRID), the locations of all coal and nuclear powered plants in the country 

were identified. Employing the 50 percent areal containment methods outlined by Mohai 

and Saha (2006), census tracts were categorized as non-host, coal host, nuclear host, or 

both host tracts. Multinomial logistic regression was used to compare 2010 demographic 

census data among the different tract types. Discussion draws from environmental 

inequality, green criminology, and risk perception literature to address the socio-

structural implications of disparate demographics hosting coal and nuclear powered 

plants. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Employing one of the world’s most advanced electricity generating and distributing systems, 

the United States consumed approximately 3,856 billion kilowatt-hours of electricity in 2011 

(USEIA, 2012a). While there are clear benefits to our nation’s widespread energy accessibility, 

this resource comes at a cost to public and environmental health. Over 60 percent of our national 

electricity is produced from coal and nuclear power which often employ environmentally 

hazardous methods of sourcing, extracting, and generating electricity (USIEA, 2012a). Coal-fired 

power plants require massive amounts of coal, most commonly extracted on U.S. soil through 

surface mining techniques including mountain top removal (USEIA, 2012b). This mining method 

requires blasting open mountains with explosive material to uncover coal beneath the earth’s 

surface. The repercussions of mountaintop removal include the ecological devastation of entire 

habitats through the leveling of landscapes and the poisoning of ecosystems and human 

communities from chemical runoff (Epstein and Reinhart, 2010). When coal is burned for the 

production of electricity, greenhouse gases are released into the atmosphere where they contribute 

to changes in global climate patterns. Further, pollutants such as particulates and noxious gasses 

released during combustion from coal-fired energy production have grave implications for public 

health. For instance, exposure to particulates has been associated with heart attacks, strokes, and 

premature death (Keating, 2004). Additionally, gasses such as nitrous oxides and sulfur dioxide 
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contribute to cardiovascular and respiratory diseases and mortality (Samoli et al., 2006; Sunyer et 

al., 2003). 

Nuclear power production poses potentially greater risks than those of coal-fired energy. The 

process begins with the mining of uranium, which is harmful to human health and has been 

associated with adverse effects of the cardiovascular and nervous systems (Taylor and Taylor, 

1997). Next, research has found that communities living in close proximity to a nuclear powered 

facility have higher rates of infant mortality and are at an increased risk of suffering from breast 

cancer and leukemia (Gould, 1996; Swings et al., 1989; Mangano, 2002). Further, as revealed by 

Three Mile Island, Chernobyl, and more recently, Fukushima, the production of nuclear power 

has the potential for devastating impacts in the form of nuclear melt-downs. Lastly, nuclear waste 

is a continually growing hazard for which there are currently no viable solutions for safe disposal. 

As a result of the dangers posed by our nation’s energy cycle, researchers (Brulle and Pellow, 

2006; Bullard 1990; Bryant and Mohai, 1992; Grineski et al., 2010; Faber and Krieg, 2002), 

advocates (Energy Justice Network, 2012; Energy Action Coalition, 2012; Indigenous 

Environmental Network, 2012) and locally impacted citizens are seeking energy justice. Like 

other environmentally hazardous activities, the mining of coal and uranium and the disposal of 

nuclear waste and coal ash have attracted the attention of many environmental justice scholars. 

Many of these researchers have determined that poor, minority, and rural populations, including 

Native American communities, are disproportionately impacted by uranium mining and nuclear 

waste storage sites (Brugge and Goble, 2002; Malin and Petrzelka, 2010; Markstrom and Charley, 

2003; Taliman, 1992; Gerrard, 1994). Similarly, findings suggest that poor and rural communities 

are more likely to live in U.S. coal fields and suffer negative impacts associated with mountaintop 

mining (Hendryx, 2011; Evans, 2010; McGinley, 2004). In contrast, to research on mining and 

disposal, environmental justice researchers have largely ignored inequalities concerning 
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electricity generating power plants. Given the public health impacts associated with exposure to 

coal and nuclear powered stations, this gap in the literature is rather surprising.  

While limited research has found that poor and minority communities are unequally impacted 

by coal-fired power plants, it is not clear whether these populations are disproportionately 

burdened by nuclear power plants (Faber and Krieg, 2002; Keating and Davis, 2002). One study 

seeking to identify populations most likely to host nuclear power plants found no environmental 

injustice at the national level (Alldred and Shrader-Frechette, 2009). This finding may suggest 

that variables beyond income and race help account for disproportionate exposure to 

environmental hazards. It may also indicate that nuclear power plants are not conceptualized as 

dangerous sites in a way that other hazardous facilities are.  

Therefore, this research addresses how the demographics of surrounding communities differ 

according to the type of facility and explore the possible causes of discrepancies through the 

theoretical literature. By evaluating the percent of the population of people of color and income 

and poverty rates in host census tracts, I will identify relationships between race, class, and 

proximity to power plants. Additionally, as research has indicated that children are 

disproportionately impacted by environmental hazards, both in terms of proximity and health 

outcomes, I examine whether communities with higher percent of the population that is children, 

are more likely to be located near power plant sites (Grineski et al., 2010; Perlin et al., 2001; Hill 

and Keating, 2002). 

Accordingly, this research seeks to answer the following questions: 

1.)  Are minority populations more likely to live near a coal-fired or nuclear power plant?  

2.) Are poverty and income indicators of living in close proximity to coal-fired or nuclear 

power plants? 

3.) Are children more likely to live near a power plant? 
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4.) How does the aggregation of demographic data shift with changes in the scale of 

analysis? 

I begin this study by drawing from sociological theories to craft a framework useful for 

evaluating unequal exposure to risks arising from these coal-fired and nuclear power plants. Risk 

society theory is used to situate the formation and acceptance of risks from our nation’s coal and 

nuclear power plants. Next, risk perception literature offers an understanding of how perceptions 

of risk influence populations’ decisions to live near or move away from hazardous facilities. 

Then, I examine coal and nuclear power plant emissions as a form of environmental crime fueled 

by the treadmill of production. Lastly, I utilize environmental inequality theories to address unjust 

distributions of these risks and postulate mechanisms through which inequalities may arise. 

With this framework established, I collected demographic data to determine whether 

disparities exist between power plant host and non-host communities. Using the United States 

Environmental Protection Agency’s Emissions & Generation Resource Integrated Database 

(eGRID), I located all nuclear and coal-fired plant sites in the nation. After generating a map of 

U.S. census tracts containing plant site coordinates I employed the 50 percent areal containment 

methods outlined by Mohai and Saha (2006) to determine the qualifying census tracts. Using 

census data from 2010, multinomial logistic regression was employed to compare all coal host, 

nuclear host, both nuclear and coal host, and non-host tracts in the U.S. Because this study 

evaluates environmental inequalities based on distance from hazardous sites alone, it does not 

provide information regarding health impacts of plants on local communities. Plume-based 

methods are employed by researchers to evaluate dispersal patterns and estimate specific health 

outcomes however, the focus of this study is to identify demographics within close proximity to 

plant sites. Such distance-based findings are best equipped to measure various inequalities arising 

from hazardous sites including noise disturbances, declining property values, increased traffic, 

and stigmatization associated with living near an undesirable location (Mohai et al., 2009). 
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Additionally, as buffer sizes in this study were selected according to research identifying health 

impacts occurring within given radii of coal and nuclear power plants, it can be inferred that local 

communities identified in this study are at greater risk of specific diseases described in chapter 

two.   

 Results of this study suggest that while tracts hosting coal-fired power plants are more 

likely to have greater percentages of people of color and families living below the poverty line 

compared to non-host tracts, there is little evidence of environmental inequalities in tracts hosting 

nuclear power plants, particularly at smaller scales of analysis. However, as relationships between 

tract type and demographic variables shift with changes in buffer size, few findings are consistent 

over all distances. Although findings regarding demographics of nuclear host tracts are not 

surprising given the study by Alldred and Shrader-Frechette (2009), it remains unclear why 

nuclear host tracts do not exhibit the same demographic characteristics as other hazardous sites. 

The ambiguous nature of nuclear plant emissions, employment opportunities, and factors 

influencing risk perception are explored as possible explanations for the unique nature of these 

plants.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Introduction 

 This chapter pulls from sociological theories to explore the formation and distribution of 

risks arising from coal-fired and nuclear power plants in the United States. First, risk society and 

risk perception theories are examined to evaluate how acceptable levels of risk are determined 

and factors which influence this perception of risk. Next, I examine the role of coal and nuclear 

power plants in the treadmill of production and environmental crime. Lastly, I identify the public 

health concerns associated with living in close proximity to nuclear and coal-fired power plants 

and explore the environmental justice literature to evaluate mechanisms through which unequal 

distributions of risks arise. With this theoretical framework established, I craft the hypotheses of 

this study. 

Risk Society and Risk Perception  

Although the production of electricity from coal and nuclear power has serious impacts on 

human and ecosystem health, these costs are generally deemed acceptable in light of the energy 

intensive lifestyle of our nation. Risk society theory informs us that with increasing 

modernization there follows an increase in the number and severity of accompanying risks. From 

the widespread use of hazardous chemicals to the changes in global weather patterns, risks from 



7 
 

 

our increasingly industrialized society are growing exponentially. Ulrich Beck (1992) coined the 

phrase “risk society” to refer to a society that is economically dependent upon intensive 

modernization, and consequently, vulnerable to the possible negative outcomes. Thus, given the 

consumption patterns of our nation, risks posed from energy production tend to be viewed as 

necessary consequences of our modern lifestyles. In order to maintain a particular standard of 

living, energy demands must be satisfied and the consequent risks are outweighed by the 

advantages of modernization. Therefore, it is within this context that we can understand the assent 

of harms associated with the production of U.S. energy. 

Risk society theory is further useful in understanding the impacts of energy production as 

power plants pose risks that are not entirely understood and have the potential to be catastrophic. 

While in the past it was believed that the consequences of modernization could be controlled 

and compensation could be provided to those harmed by negative externalities, it has become 

evident that the hyper modernization of our present day has led to the formation of risks which 

cannot be so easily managed (Beck, 2006). These risks are distinct from those in earlier societies 

in that they are de-localized temporally, spatially, and socially, and are incalculable and non-

compensable (Beck, 2006). Nuclear and coal-fired power plants provide striking examples of the 

sources of risk arising from modernity.  

For instance, the impact of a nuclear meltdown would transcend geographic and political 

boundaries. Additionally, certain radionuclides would persist in affected areas over several 

generations. For example, some of the radionuclides released during a nuclear accident would 

decay over a period of several days or weeks while others such as plutonium-239 and plutonium-

240 have half-lives of thousands of years (Nuclear Energy Agency, 2002). Further, this risk is de-

localized socially as the ambiguity of impacts from a nuclear accident makes it difficult to 
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identify and hold liable responsible parties. Secondly, the potential impact of an accident cannot 

be calculated and thus it cannot be known whether the potential consequences outweigh the 

benefits of nuclear power. For instance, scientists are unable to determine how many people 

would suffer specific adverse health outcomes as a result of a nuclear meltdown. Indeed, this feat 

is impossible even after an accident has occurred as there is no way to definitely determine that a 

specific individual’s compromised health was a direct result of exposure to radiation. Lastly, a 

nuclear meltdown is non-compensable as harmed individuals cannot be compensated for loss of 

life or health.  

The localized, incalculable, and non-compensable risks characteristic of risk society are also 

found in the production of coal powered electricity. To begin with, coal-fired stations pose 

spatially de-localized risks as they are major emitters of greenhouse gas emissions and thus 

contribute to global climate change. Changes in global climate patterns may be irreversible, thus 

impacts of coal plants are temporally de-localized. Further, coal plant companies are only one of 

many greenhouse gas contributors, and thus risks from coal plants are socially de-localized as 

companies will not be held socially or financially responsible for the consequences of emissions. 

Next, risks from coal plant releases are incalculable since shifting weather patterns are not fully 

understood and cannot be reliably quantified. Lastly, the impacts of these emissions may be non-

compensable as changes in the global climate may create a planet no longer hospitable to human 

life.      

Given the severity of the risks described within Beck’s society, it would seem that humanity 

blindly accepts many forms of risk in the name of increasing modernity. However, there are 

factors aside from maintaining modern lifestyles which help explain decisions regarding risk. 

Risk perception literature offers explanations for how individuals, both expert and lay, perceive 
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and weigh risks. For instance, risk perception informs us that when people receive benefits from a 

source of risk, they are more likely to selectively overlook information regarding the dangers of 

that risk (Margolis, 1996). Thus, those individuals responsible for determining acceptable levels 

of risk may be biased by potential benefits. Likewise, people may select to live in close proximity 

to a hazardous site such as a power plant to obtain benefits offered by the facility including 

employment, improved infrastructure, or lowered housing costs. Next, research has found that 

people tend to view risks as either significant, with a high probability of occurrence, or as 

insignificant and implausible (Margolis, 1996). In the case of nuclear power plants experts may 

determine that the occurrence of a nuclear meltdown is unlikely and thus rationalize that the plant 

poses no threat. These tendencies to minimize perceptions of risk may help to explain how 

individuals make choices which perpetuate risk society.  

Green Criminology and the Treadmill of Production 

 As a result of the hyper-modernization characteristic of risk society there arose 

previously unforeseen consequences to the environment. These acts can be understood as green 

crimes which may be primary, such as direct environmental degradation and resource depletion, 

or secondary implying the breaking of laws or the formation of regulations which result in 

increased environmental harm (Carabine et al., 2004). Because there has not been widespread 

consensus among scholars concerning what constitutes a green crime the definition of green 

criminology is somewhat ambiguous. White (2007) explains that this ambiguity is due in part to 

the fact that environmental crimes have less to do with legal status and more to do with values 

and beliefs. Thus, it may be legal for a coal-fired power plant company to emit a specified 

amount of pollutants annually, but the consequent public health impacts can be defined as an 
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environmental crime against surrounding communities. Although green crimes are not a recent 

occurrence, the extent and severity of these crimes has increased with the technological advances 

of our risk society. This modernization is also a critical component of the treadmill of production 

theory which has been used by environmental criminology scholars (Stretesky et al., 2013; Long 

et al., 2012) to situate the role of the political economy in crimes against nature.   

The treadmill of production theory was crafted by Schnaiberg (1980) to describe how the 

political economy drives the destruction of the natural environment. This treadmill is propelled by 

five primary objectives (Schnaiberg et al., 2002). First, our capitalist society demands constant 

economic expansion, and thus, producers must maximize efficiency and increase their profits in 

order to survive in the system. With no ceiling for economic growth, the primary objective of a 

capitalist society is to increase profits. Second, much of this growth is expected to result from 

large firms who have the capital to invest in further growth and supply jobs to consumers, who 

then have the means to increase their personal consumption. Third, as economic growth occurs 

from the increased production of goods, the system requires an increase in consumption to 

perpetuate the cycle. Fourth, this cycle is kept in balance from alliances between capital, workers 

and the government. Fifth, the system seeks to resolve environmental and social dilemmas 

through further economic expansion. For example, speeding the treadmill can reduce 

unemployment by increasing the number of available jobs while environmental damages are 

expected to be repaired by the development of new technologies (Schnaiberg et al., 2002). These 

goals cannot be achieved without increasing the amount of energy produced, and thus power 

plants play a vital role in the sustenance and perpetuation of the treadmill and, consequently, in 

harms against nature.   
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 Ecological welfare is not a primary goal of the treadmill of production, thus there 

occurred a shift in the relationship between humans and the environment with the implementation 

of this system. As economic objectives took precedent over environmental concerns, the system 

required the withdrawal of resources and the additions of waste into the ecosystem. Schnaiberg 

(1980) explains that modern factories demand increased raw materials for production and the 

withdrawal of these materials from the environment can lead to resource depletion. Additionally, 

modern factories use advanced and “efficient” technologies which generate the addition of 

harmful pollutants along with the finished product. 

 Coal and nuclear power plants are an important component of the treadmill of production 

not only because the product they generate literally fuels the system, but their operations are 

associated with extensive withdrawals and additions. The primary withdrawal associated with 

coal-fired power plants is the mining of coal. While the USEIA (2012c) projects that the United 

States possesses enough coal to meet the nation’s energy needs for 200 years, the treadmill 

assumes increasing rates of production and therefore the finite amount of coal within the earth’s 

surface will be unable to sustain the system for this period of time. Additionally, resource 

depletion is not the only consequence of coal extraction. For example, the mining of coal is often 

achieved through surface mining techniques including mountain top removal that results in the 

leveling of mountains, extensive deforestation, and the contamination of local streams (Epstein et 

al., 2011). Similarly, the mining of uranium required for the production of nuclear energy requires 

massive withdrawals from the environment. As uranium exists in small concentrations within the 

earth’s surface, collecting a single ton of uranium requires the mining and processing of 98,000 

tons of rock (Hughes, 2006). Additionally, uranium is a finite resource which is expected to be 
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exhausted in 20 years should worldwide nuclear power production double as some have predicted 

(Hughes, 2006). 

This research, however, is more concerned with the additions associated with coal and 

nuclear power plant operations because populations living near plant sites are more likely to be 

impacted by additions than by withdrawals. For instance, when coal is burned at a power plant, 

undesirable byproducts are produced along with the finished product, electricity. These additions 

include particulate matter, noxious gasses, and mercury which have been associated with adverse 

health outcomes including heart attacks, strokes, neurological disorders and premature death 

(Keating, 2004; Samoli et al., 2006; USEPA, 2012b). Similarly, the production of nuclear power 

requires the addition of hazardous substances, primarily in the form of radioactive waste. Most of 

this waste is stored in large steel and concrete pools at nuclear plant sites where it is expected to 

be safely stored for 120 years (Nuclear Energy Institute, 2012). However, leaks occur during 

routine plant operations including the storage of waste and these small amounts of radiation have 

been associated with increased incidences of cancer and infant mortality (Gould, 1996; Clapp et 

al., 1987; Mangano, 2008). 

While the benefits of energy accessibility are shared by most citizens, the harmful 

additions associated with electricity production are not so equally distributed. Like many 

activities in the treadmill of production, the generation of electricity through coal-fired and 

nuclear power plants has greater impacts on select populations. In the case of power plant sites, 

communities living in close proximity suffer an unequal burden of adverse health outcomes from 

pollutant exposure. 
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Environmental Justice 

Coal Fired Power Plants  

In 2011 coal-fired power plants produced approximately 42 percent of the electricity 

consumed in the United States (USEIA, 2012a). Not only is coal the least expensive source of 

electricity production in the nation, it is also abundant in the United States. (USEIA, 2012a). 

However, generating electricity by burning coal has severe environmental and public health 

ramifications. Coal-fired plants produce approximately 27 percent of carbon dioxide (CO2) 

emissions in the nation, making it a major contributor of greenhouse gas emissions (USEPA, 

2012a). These plants are also responsible for emitting approximately 4,000,000 tons of nitrous 

oxides (NOx), 9,800,000 tons of sulfur dioxide (SO2), 217,000 tons of particulate matter with a 

diameter of less than 10 microns (PM10) and 110,000 tons of particulate matter with a diameter of 

less than 2.5 microns (PM2.5) per year (Schneider, 2004).  

While the synergistic effects of these pollutants combined is not yet fully understood, 

research has found adverse health outcomes associated with exposure to each of these pollutants 

individually. For example, exposure to particulate matter, especially finer particulates, has been 

shown to cause inflammation of the cardiovascular and  

respiratory systems and consequently, has been linked to heart attacks, strokes and premature 

death (Keating, 2004; USEPA, 2012b). Particulate matter exposure has also been associated with 

premature and low birth weight infants and sudden infant death syndrome, making pregnant 

women and children particularly vulnerable to adverse health outcomes (Keating, 2004). Coal-

fired power plants further impact the health of women and children living in close proximity as 

they are responsible for producing more than 40 percent of our nation’s mercury emissions. 
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Exposure to mercury has been associated with disruptions in neurological development in fetuses, 

babies and children and irregular pulse and blood pressure and neurologic and kidney disorders in 

adults (Keating, 2004; USEPA, 2012b). 

Hazardous gas emissions from coal powered plants also possess serious implications for 

public health. Research has found a strong association between exposure to NOx and 

cardiovascular and respiratory mortality (Samoli et al., 2006). Children exposed to the gas may 

experience adverse health effects such as colds, coughs, and sore throats (Pilotto et al., 1997). 

When released into the atmosphere nitrous dioxide (NO2) may react with hydrocarbons and 

sunlight to form a secondary pollutant, tropospheric ozone (Brunekreef and Holgate, 2002). 

Exposure to ozone has been associated with diminished lung function, respiratory illnesses, and 

cardiovascular and respiratory deaths (Galizia and Kinney, 1999; Gryparis et al., 2004). 

Similarly, exposure to another power plant gas, SO2, has been positively correlated with 

cardiovascular disease related hospital admissions in Europe (Sunyer et al., 2003; Ibald- Mulli et 

al., 2001). Additionally, the release of SO2 results in the formation of acidic particulates which 

have been linked to an increased incidence of bronchitis in children (Dockery et al., 1996). 

Given the dangers associated with coal-fired power plant pollutants, it is not surprising that 

these facilities have been called the most harmful industrial air polluters in terms of impacts on 

human health and the natural environment (Keating and Davis, 2002; Schneider and Banks, 

2010). Emissions from coal-fired power plants alone are estimated to have resulted in 9,700 

hospital admissions, 12,300 emergency room visits for asthma, 20,400 non-fatal heart attacks and 

13,200 mortalities in the year 2010. The monetary cost of these health outcomes is estimated at 

$100 billion per year (Schneider and Banks, 2010). The brunt of this health and economic burden 

is shouldered by communities living in close proximity to coal plants. 
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Nuclear Power Plants 

While nuclear power plants serve a similar function to coal-fired plants, they have several 

important distinctions. Nuclear plants provide approximately 20 percent of U.S. electricity. 

However, this energy is generated at only 64 sites in the nation and thus, compared to the 560 

coal-fired plants in the U.S., far fewer communities are exposed to nuclear facilities (USEIA, 

2012b). Additionally, hazards posed by nuclear facilities are distinct from risks posed by coal-

fired plants. Theoretically, nuclear power generation should not produce any emissions, although 

there are some releases of carbon dioxide that result from activities involving the maintenance of 

the facility. Rather, the public health dangers posed by nuclear power plants involve errors in 

some part of the production and storage of nuclear waste. These accidental releases are rarely 

catastrophic and generally involve small amounts of escaped radiation during routine procedures 

or leaks in storage containers (USEIA, 2012b). While these releases may be minute, this does not 

imply that they are harmless to human health. A report by the National Academy of Science 

(2005) determined that there is no safe threshold for exposure to radiation, and even very small 

amounts of exposure have the potential to result in cancer. This finding has grave implications for 

those living near nuclear power facilities as various studies have found increased rates of breast 

cancer, leukemia, childhood cancers and infant mortality in communities surrounding nuclear 

reactors (National Academy of Sciences, 2005; Gould, 1996; Swings et al., 1989; Clapp et al., 

1987; Mangano, 2008).  

Over the past three decades, the growing body of environmental justice research has 

increasingly found that poor and minority communities in the United States are disproportionately 

impacted by the risks posed from hazardous environmental sites. For instance, studies have 
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revealed that these populations are unequally located near hazardous waste facilities, incinerators, 

manufacturing facilities and landfills (Faber and Krieg, 2002; Downey, 2005; Bullard, 1990; 

Mohai and Bryant, 1992; Pellow, 2000). However, studies have yet to evaluate disproportionate 

exposure to nuclear power plants despite the fact that hazards associated with living near a 

nuclear plant are well documented. One exception is the work of Alldred and Shrader-Frechette 

(2009) who examined whether zip codes containing nuclear plants had higher percentages of poor 

and minority populations than non-host zip codes with results indicating no environmental 

injustice at the national level. Otherwise, the majority of studies examining communities living in 

close proximity to nuclear plants focus on risk perceptions (Sjober, 2003; Hung and Wang, 2011; 

Stone, 2001; Eiser et al., 1995; Venables et al., 2009).  

Conversely, previous research, although limited, indicates that coal-fired plants are unequally 

located in lower socioeconomic and minority communities (Faber and Krieg, 2002). Indeed, one 

study found that 68 percent of African Americans in the United States live within 30 miles of a 

coal-fired power plant compared to only 56 percent of whites (Keating and Davis, 2002). Further, 

research suggests that poor and minority populations are more likely to live near heavier polluting 

facilities compared to whiter and wealthier populations (Faber and Krieg, 2002). Additionally, 

certain minority groups are at a greater risk of exposure given lifestyle activities. For instance, 

African Americans and Hispanic Americans are more likely than whites to regularly engage in 

fishing for personal consumption and tend to eat fish in larger quantities and more frequently than 

whites (Keating and Davis, 2002; Tilden et al., 1997; Keating, 2004). As approximately half of 

our nation’s total mercury emissions are produced by coal-fired plants, and the primary pathway 

of exposure to this mercury is through consumption of fish, communities of color are particularly 
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vulnerable to mercury poisoning (USEPA, 2012; Burger et al., 1999). Given these factors, the 

Clean Air Task Force determined that minority populations are more likely than whites to suffer 

health impacts associated with exposure to plant emissions including asthma related 

hospitalizations and mortality (Keating and Davis, 2002).  

In addition to poor and minority populations, children are also particularly susceptible to coal 

plant emissions. For example, research has indicated that hazardous facilities tend to be located in 

communities with populations containing high percentages of children (Grineski et al., 2010; 

Perlin et al., 2001). Children are further vulnerable as their lungs are still developing and are 

larger in volume relative to body size than adults. Additionally, their immune systems are not 

fully developed and thus their bodies may react differently to pollutants compared to a healthy 

adult. Further, children have higher rates of respiration than adults and are more likely to spend 

time outside engaging in physical activity, both of which increase the inhalation of air pollutants 

(Hill and Keating 2002). For these reasons, children are of particular concern when addressing 

health impacts arising from plant emissions as they are not only more likely to be located near a 

hazardous facility, they are also more likely to suffer from associated adverse health outcomes. 

Given the relationship between certain populations and exposure to environmental hazards, it 

follows that environmental justice scholars are concerned with whether the community or the 

facility was first situated in a location. The economic model of environmental inequality reasons 

that environmentally hazardous facilities tend to be located in areas where property values are 

low (Downey, 2005; Mohai and Bryant, 1992). Therefore, facilities are located within low 

income communities inhabiting these areas. Race is also an indicator of class, thus minorities are 

also more likely than whites to live near environmental hazards. Further, when polluting facilities 
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are placed in a neighborhood, the prices of surrounding properties drop. Consequently, wealthier 

individuals with the resources to relocate, move away from these areas while poorer populations 

move in to take advantage of the lower cost of housing (Downey, 2005; Been, 1994; Hamilton, 

1995). Other scholars argue that the increased likelihood of environmentally hazardous sites near 

communities of color is not related to housing markets but rather reflects deliberate, racist siting 

practices (Downey, 2005). Whether the figurative chicken or egg came first is an important 

question in determining the source of environmental inequalities, nevertheless this debate should 

not detract from the findings that poor and minority communities are disproportionately at risk as 

a result of discrimination, whether blatant or institutionalized.  

While addressing whether the facility or the demographic composition of an area came first is 

beyond the scope of this study, models of environmental inequality may offer insight when 

making predictions concerning disparate exposure to undesirable facilities. For instance, given 

the hazards associated with coal-fired plants it is not surprising that property values are lower in 

areas surrounding these facilities (Blomquist, 1974). In contrast, research indicates that property 

prices are minimally if at all impacted by close proximity to nuclear plants (Gamble and 

Downing, 1982). This finding is both counterintuitive and rife with socioeconomic implications. 

Areas surrounding coal-fired plants tend to have lower property values, thus implying, in 

accordance with previous literature, that greater percentages of poor and minority communities 

live in these areas. However, the economic model of environmental inequality would suggest that 

given the unaffected property prices of areas in close proximity to nuclear plants, greater 

percentages of poor and minority populations would not be located in these areas. This suggestion 

is particularly intriguing in light of the racist intent model of environmental inequality which 
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indicates that hazardous facilities will be placed in communities of people of color (Downey, 

2005). If poor and minority populations are less likely to live near nuclear plants, the racist intent 

model would suggest that nuclear plants are generally not understood as hazardous facilities. 

Clearly, models of environmental inequality are crucial in forming hypotheses and interpreting 

outcomes in this study.   

 

 

Hypotheses 

Although there has been extensive debate as to whether race or class is the greater indicator 

of unequal exposure to environmental dangers, the large body of environmental justice literature 

determines that both play a role (Faber and Krieg, 2002; Keating and Davis, 2002). Consequently, 

I formed the following hypotheses: 

Hypothesis 1: Tracts hosting coal-fired power plants contain greater percentages of minorities 

compared to non-host tracts.  

Hypothesis 2: Tracts hosting coal-fired power plants contain lower median household 

incomes compared to non-host tracts.  

Hypothesis 3: Tracts hosting coal-fired power plants contain greater percentages of families 

living below the poverty line compared to non-host tracts.  
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In contrast, although the environmental justice literature repeatedly indicates a connection 

between environmental hazards and poor and minority populations, I did not anticipate this 

relationship to be found in communities living near nuclear plants. I based this assumption on the 

study by Alldred and Shrader-Frechette (2009) which found no relationship between poor and 

minority communities and nuclear plant proximity at the national level. Further, previous research 

has indicated that property prices are minimally affected by close proximity to nuclear power 

plants (Gamble and Downing, 1982), and therefore, employing an economic model of 

environmental inequality (Downey, 2005) I predicted the following: 

Hypothesis 4: Tracts hosting nuclear power plants do not contain greater percentages of 

minorities compared to non-host tracts. 

Hypothesis 5: Tracts hosting nuclear power plants do not contain lower median household 

incomes compared to non-host tracts.  

Hypothesis 6: Tracts hosting nuclear power plants do not contain greater percentages of 

families living below the poverty line compared to non-host tracts. 

Finally, previous studies have indicated that children are disproportionately impacted by 

environmental hazards and are more vulnerable to the effects of pollutant exposure (Grineski et 

al., 2010; Perlin et al., 2001) and thus I predicted: 

Hypothesis 7: Tracts hosting coal-fired plants contain higher percentages of children than 

non-host communities. 
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Hypothesis 8: Tracts hosting nuclear plants contain higher percentages of children than non-

host communities. 

By addressing these hypotheses with the methods described in the following chapter, this 

study will help to fill in the gap in the environmental justice literature regarding power plant 

inequalities. While coal-fired power plant inequalities have been examined at the state level 

(Faber and Krieg, 2002) there have been no studies evaluating coal plant inequalities at the 

national level. The one study which has evaluated nuclear plant inequalities employed a unit 

hazard coincidence method and found no incidence of national environmental injustice (Alldred 

and Shrader-Frechette, 2009). This research will offer greater insight into power plant inequalities 

in the United States by evaluating the issue at the national level and employing the 50 percent 

areal containment method, which as explained in the following chapter, is a more reliable 

measure of identifying impacted communities than the unit hazard coincidence method (Mohai 

and Saha, 2006). 
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CHAPTER III 
 

 

METHODOLOGY 

 

Introduction 

 This chapter covers the data, methods, and analyses employed in this study. I begin with 

an overview of methods commonly used in environmental justice distance-based studies and an 

explanation of why the 50 percent areal containment method was selected for this research. Next, 

I describe the data collected and identify dependent and independent variables. Then, I outline the 

process of conducting the 50 percent areal containment method and the tools required for data 

collection. Lastly, I explain the selection of statistical analyses employed in this study. 

Spatial Studies  

As environmental justice scholars seek to answer questions regarding the relative 

importance of race and class and proximity to hazardous sites, there are considerable divergences 

in their findings. Not only is there incongruence in the environmental justice literature regarding 

the connection between race, class, and environmental inequities, but the intensity of these 

relationships is also widely debated. Some of the discrepancies found within the literature can be 

explained by the variations in the methods utilized. Mohai and Saha (2006) determined that many 

of these disparities can be attributed to the unit hazard coincidence method which is commonly 

used in studies evaluating different populations’ proximity to undesirable facilities. In this 
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method researchers compare a unit of analysis containing a specified hazard with a control unit. 

Often, the unit of analysis is a geographic census unit such as a county, tract, or block group. The 

problem with this type of analysis is that these units may vary dramatically in size, shape, and 

population. Therefore, a hazardous facility located in the center of a large census tract may not 

affect the populations located along the edge of the tract, however as a resident of the tract their 

demographic data is included. Further, small census tracts may contain facilities that pose hazards 

beyond the boundary of the tract and therefore the unit hazard coincidence does not account for 

the entire affected population. Similarly, facilities may be located along the edge of a tract and 

have a greater impact on communities in neighboring tracts. Given these limitations it is not 

surprising that researchers employing unit hazard coincidence methods generate very different 

results.  

Mohai and Saha (2006) offer three alternative methods for spatial analysis using census data 

that help to overcome some of the restrictions found within unit hazard coincidence. These 

methods include the 50 percent areal containment, the boundary intersection, and the areal 

apportionment method and all involve drawing buffer zones around an environmental hazard. The 

boundary intersection is the least reliable of the distance-based methods as all census units 

contained within or touching a buffer zone are included as impacted units and thus, this method 

faces many of the same limitations found within the unit hazard coincidence. The 50 percent areal 

containment method is a more robust alternative in which the demographic information for all 

units with 50 percent of their area contained within the buffer are considered impacted units. The 

areal containment method is similar however, instead of discounting units with less than half of 

their area within a buffer, researchers employing this method calculate the portion of the included 

population according to the portion of the unit contained within the buffer. As the 50 percent 

areal containment and areal apportionment methods yield similar results I employ the 50 percent 

areal containment method for its relative ease of computation (Mohai and Saha, 2006). 
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Although the type of method employed for determining qualifying census units helps to 

explain some of the discrepancies found within the environmental justice literature, the variation 

in researchers’ geographic units of analysis may also play a role. Environmental justice 

researchers often employ units crafted by census data as they are easily accessible and readily 

available for analysis. The problem with these units is that their boundaries are not synonymous 

with the borders of a hazardous facility’s impact. For example, researchers often assume that 

impacted communities fall within a given distance from a plant and thus the boundary of the 

impacted area forms a circle. However, aggregations of census units do not take this form.  Thus, 

distance-based studies employing geographic units will likely exclude portions of the impacted 

community while including irrelevant data, and as a result, produce findings incongruent with 

other studies.  

Additionally, findings may vary according to the scale of the unit being analyzed. Generally, 

smaller units are preferable in environmental justice studies as analyzing larger units increases the 

likelihood that heterogeneity of the population will result in misrepresentation of the effected 

communities (Sheppard et al., 1999, Maantay, 2002). Unfortunately, using blocks, the smallest 

census unit, is generally not feasible as demographic data is not consistently available at this 

level. Thus, block groups are generally considered an appropriate choice for analyzing 

environmental inequities (Sheppard et al, 1999). 

 Another possible explanatory factor for the divergences found in the environmental 

justice literature is the selection of the scale of impact. In studies employing analytic buffering, 

the choice of a buffer distance will inevitably impact the strength of relationships between 

facilities and the demographics of surrounding communities. Thus, it is essential that researchers 

carefully select buffer areas representative of impacted regions based on previous studies or 

theory. However, even an appropriately selected buffer size will influence the aggregation of data 

and consequently the results of the study in unknown ways (Mennis, 2002). For this reason 
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researchers often employ multiple buffers around a hazardous site to determine how scale size 

influences the relationship between demographic characteristics and proximity to hazards 

(Shepard et al., 1999; Maantay, 2002). 

Data 

My dependent variable was Tract Type with categories non-host tract, coal host tract, 

nuclear host tract, and both host tract. Host tracts were operationalized as census tracts with 50 

percent or more of their area falling within a selected buffer around plant sites. All other tracts 

were categorized as non-host tracts.   

The data for the independent variables was derived from the 2010 census provided by 

American Fact Finder and included percent of the population that is minority, median household 

income, percent of families living below the poverty line, and percent of the population that is 

children. To evaluate the relationship between race and proximity to power plants, percent of the 

population that is minority was calculated for every census tract in the nation. For the purposes of 

this study, any race other than white was categorized as minority. Additionally, individuals 

identified as ethnically Hispanic in the census data were categorized as racially Hispanic and 

included as minorities. In order to evaluate relationships between class and proximity to coal and 

nuclear power plants, this study examined median household income and percentage of families 

living below the poverty line for each tract. Lastly, as previous studies have indicated that 

children are disproportionately impacted by environmental hazards, I calculated the percent of the 

population that is children aged 15 years and younger for each census tract (Grineski et al., 2010; 

Perlin et al., 2001).  

This study also necessitated additional control variables. To begin with, urban areas are 

associated with both higher percentages of people of color and the presence of environmentally 

hazardous facilities. Thus, population density, reported as people per square mile, was included as 

a control variable.  Additionally, certain socioeconomic variables have been indicated as 
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significant predictors of proximity to environmentally hazardous facilities and were accounted for 

in this study. For instance, Anderton et al. (1994) found that employment in the manufacturing 

industry was more closely associated with living near hazardous waste treatment, storage, and 

disposal facilities than race and income. Thus, my research controlled for relationships between 

occupation and proximity to plant by including the variable percent of the population employed in 

the utilities sector to account for employees of coal and nuclear powered plants. This variable 

represents the percent of the employed civilian population 16 years and older that have 

occupations in the transportation, warehouse, and utility sectors. Additionally, level of education 

has been associated with unequal exposure to environmental harms with less educated 

communities at greater risk (Mohai and Saha, 2006). Bullard (1990) postulates that populations 

with greater resources including education are better able to successfully fight the placement of 

hazardous facilities in their communities. Therefore, to control for level of education I examined 

the percent of the population with a bachelor’s degree or above for all census tracts. Lastly, as 

Alldred and Shrader-Frechette (2009) found disparities in demographics surrounding nuclear 

plants in the south, region was included as a variable in this study. Tracts were categorized as 

being in the West, Midwest, Northeast, or South according to the regions defined by the U.S. 

census. 

Methods 

To spatially analyze the data, I used a map of all census tracts in the United States 

containing demographic census data (United States Census Bureau 2010 Census TIGER/Line 

Shapefiles, 2012). Coordinate information for all coal-fired and nuclear power plants in the nation 

was accessed through the eGRID database and plotted on the base map. Using ArcMap 10 buffer 

tool, buffer zones were drawn around each of the plants (Figures 1 and 2). Three buffer zones 

were selected for this research based on studies evaluating the distances at which health impacts 

occur from plant emissions. One study calculated that people living within 30 miles of a coal-
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fired power plant are 3 to 4 times more likely to die a premature death compared to populations 

living further from the plant (Epstein, 2010). Additionally, a study evaluating particulate matter 

emissions from coal plants in Illinois determined that 40 percent of primary exposure occurred 

within approximately 30 miles of the facilities (Levy et al., 2002). Similarly, research on the 

health impacts of living near a nuclear plant reveal increased incidences of childhood cancer and 

infant mortality for populations living within 30 miles of a facility (Mangano, 2008; Chang et al., 

2003). While communities living further than 30 miles from a nuclear plant are at risk of adverse 

health outcomes in the case of a nuclear meltdown, populations living closer to the plant will 

suffer the greatest burden of impact. Therefore, a buffer of 30 miles was selected to evaluate 

populations whose health may be impacted by coal-fired and nuclear plants. As multiscale 

analysis offers insight into the influence of buffer size on data outcomes, additional buffer zones 

of 20 and 10 miles were also utilized in this study (Mennis, 2002). Using the same buffer sizes at 

both coal and nuclear plant sites is not only appropriate according to literature examining health 

impacts, it also enables comparisons across plant type. 

Figure 1. Coal-fired power plants in census tract map of U.S. with 30, 20, and 10 mile buffer 

zones. 
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Figure 2. Nuclear powered plants in census tract map of U.S. with 30, 20, and 10 mile 

buffer zones. 

 

 

After drawing buffers around plant sites, I used the ARCMap Clip function to extract the 

census data from all tracts with any of their area included in a buffer. Using SPSS, I determined 

qualifying tracts by comparing the size of the original tract to the size of the clipped tract 

fragment. Census tracts with half of their area falling within a buffer zone were labeled as coal 

host, nuclear host, or both host tracts if the buffer was surrounding a coal plant, nuclear plant, or 

both a coal and nuclear plant respectively. All other tracts were be labeled as non-host tracts. The 

data extracted from this map contained demographic information including race and age which 

were used to calculate percent population minority and children for every tract. Additional census 

tract information including median household income, percent families living below the poverty 

line, percent population with a bachelor’s degree and percent population employed in the utilities 

sector were then merged with the demographic data according to the tract’s unique geographic 

identifier. Thus, the raw data contained the geographic identifier of each tract in the United 
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States, my independent and control variables for every tract, and whether the tract was a non-host, 

coal host, nuclear host, or both host tract.   

Although smaller geographic census areas tend to be preferable in spatially analyzing 

environmental inequalities, census tracts were utilized in this study. This was an appropriate unit 

of analysis as the selected buffer zones were large enough to entirely encompass multiple tracts at 

most of the power plant sites and thus using smaller units simply would have been inefficient 

(Sheppard et al., 1999). Further, various studies have found similar results by analyzing data at 

both the census tract and block group level, many of which employed smaller buffer zones or 

distances from sites (Cutter et al., 2005; McMaster et al., 1997; Mennis, 2002). Therefore, given 

the 10, 20 and 30 mile buffer zones, it is unlikely that analyzing the data at a smaller unit such as 

a block group would have a strong effect on my outcome. 

 

 

Analyses 

Descriptive, bivariate, and multivariate statistics were used in this study. Bivariate 

analyses utilized one-way ANOVA tests to examine the effect of each demographic variable, with 

the exception of region, on the tract type independently. Next, Scheffe’s post hoc tests were 

employed to determine where differences exist among tract types. Scheffe’s test was selected as 

all dependent variables, excluding region, are continuous variables and the dependent variable, 

tract type, is categorical and contains more than two categories. Chi- square was used for 

evaluating the effect of region as this variable is also categorical with four categories. 

Multinomial logistic regression was selected for multivariate analyses as the dependent variable 

in this study contained more than two categories, (Hoffman, 2004). 10, 20 and 30 mile buffer 

zones were evaluated independently. While multinomial logistic regression does not assume 
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normality, linearity or homoscedasticity, it does require a categorical dependent variable and 

continuous or categorical independent variables (Anderson, 1982). All of the independent 

variables in this study were continuous, with the exception of the categorical variable region, and 

thus were appropriate for use in multinomial logistic regression. South was selected as the base 

category for the effect of region following the work of Alldred and Shrader-Frechette (2009) who 

found that poor communities in the South may be disproportionately burdened by nuclear power 

plants. 

Initially, regressions for all buffer zones were generated with non-host as the base 

category. Next, coal host and nuclear host bases were employed to evaluate the relationships 

between all categories for each buffer distance. Thus, three models were generated for each buffer 

zone for a total of nine models. Measures of model fit utilized in this study include Likelihood 

Ratio (LR) Chi Square, Cragg-Uhler’s R
2
, Bayesian information criterion (BIC) and Akaike’s 

information criterion (AIC). The results of these analyses are presented in the following chapter. 
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CHAPTER IV 
 

 

FINDINGS 

 

Introduction 

 This chapter contains results of all statistical analyses. I begin by providing descriptive 

statistics including, means, standard deviations, and minimum and maximum values for 

independent variables and frequencies and percentages for dependent variables. Next, I provide 

results of bivariate analyses including ANOVA tests, Scheffe’s tests, and Pearson’s Chi-square 

test by buffer size. Lastly, I present the results of multinomial logistic regressions, for each buffer 

size. 

Descriptives 

A total of 72,068 tracts contained the information for all independent variables used in 

this study. The average percent population minority for all tracts was 36.07 with a minimum and 

maximum of 0 and 100 percent respectively (Table 1). Average median household income was 

$55,506.30 for all tracts with a minimum of $5,000 and a maximum of $249,194. Mean percent 

families living below the poverty line was 11.38 for all tracts with a minimum and maximum of 0 

and 100 percent respectively. Mean percent population with a bachelor’s degree or above was 

27.00 for all tracts with a minimum of 0 percent and a maximum of 100 percent. The average 

percent of the population that is children for all tracts was 20.72 with a minimum and maximum 
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of 0 and 57.62 percent respectively. Mean population density for all tracts was 5,254.96 people 

per square mile with a minimum of 0.03 and a maximum of 508,698 people per square mile. 

Average percent population employed in the utilities sector for all tracts was 5.12 with a 

minimum and maximum of 0 and 63.20 percent respectively. 

At the 10 mile buffer, nearly 80 percent of all tracts were non-host tracts while another 20 

percent were coal-host tracts. Nuclear host tracts and both host tracts accounted for less than two 

percent of all tracts. When the buffer was widened to 20 miles, over half of the tracts remained 

non-host however coal-host tracts increased to 40 percent. Nuclear and both host tracts continued 

to account for only a few percent of all tracts. At the 30 mile buffer, the majority of the tracts 

were host tracts with coal host accounting for nearly 50 percent, both host accounting for 11 

percent and nuclear host tracts accounting for 3 percent of all tracts. Only 40 percent of tracts at 

the 30 mile buffer were non-host tracts. 
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Table 1. Descriptive Statistics for Independent and Dependent Variables. 

Independent Variables 
Mean SD Min Max 

Description 
Minorities 36.07 30.12 0 100 Percent Population Minorities 
Median Income 55,506.30 26,885.80 5,000 249,194 Median Household Income 
Poverty 11.38 11.15 0 100 Percent Families Living Below Poverty 

Line 
Bachelors 27.00 18.22 0 100 Percent Population With Bachelor's Degree 

Children 20.72 5.70 0 57.62 Percent Population Children 
Population Density 5,254.96 11,747.80 0.03 508,698 People Per Square Mile 
Utilities 5.12 3.45 0 63.20 Percent Population Employed in the 

Utilities Sector 
Region      
     West 0.22 0.42 0 1 West=1, Else=0 
     Midwest 0.23 0.42 0 1 Midwest=1, Else=0 
     South 0.36 0.48 0 1 South=1, Else=0 
     Northeast 0.19 0.39 0 1 Northeast=1, Else=0 
Dependent Variables Frequency Percent       
Buffer 10           
     Non-Host Tract 56,662 78.62       
     Coal Host Tract 14,514 20.14       
     Nuclear Host Tract 571 0.79       
     Both Host Tract 321 0.45       
     Total 72,068 100       
Buffer 20            
     Non-Host Tract 38,760 53.78       
     Coal Host Tract 29,037 40.29       
     Nuclear Host Tract 1,663 2.31       
     Both Host Tract 2,608 3.62       
     Total 72,068 100       
Buffer 30            
     Non-Host Tract 28,187 39.11       
     Coal Host Tract 33,541 46.54       
     Nuclear Host Tract 2,157 2.99       
     Both Host Tract 8,183 11.35       
     Total 72,068 100       
Note: N=72,068, Data comes from 2010 United States Census. 

Bivariate Analyses 

10 Mile Buffer ANOVA 

One-way ANOVA was employed to test for differences among tract types for each 

demographic variable. As seen in Table 2, percent population minority was significantly different 

among tract types at the 10 mile buffer, F=125.23, p<0.001. Scheffe’s pairwise comparison post 

hoc tests reveal differences between non-host tracts (M=35.45, SD=29.65) and coal host tracts 

(M=39.30, SD=31.90), nuclear host tracts (M=24.26, SD=24.34), and both host tracts (M=19.70, 
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SD=19.26) at the p<0.001 level (Table 3). Additionally, coal host tracts contained significantly 

different percent population minority than nuclear and both host tracts, p<0.001. There was no 

difference between nuclear and both host tracts, p=0.192. 

Table 2. Means and One-way ANOVA Results Examining Differences in 

Demographics Among Tract Types for the 10 Mile Buffer. 

  Non-Host Coal Nuclear Both ANOVA/Chi2 

Minorities 35.45 39.30 24.26 19.70 125.23*** 

 

(29.65) (31.90) (24.34) (19.26) 268.4207*** 

Median Income 56.42 51.53 61.07 63.33 145.72*** 

 

(27.17) (25.56) (23.72) (22.55) 117.4954*** 

Poverty 10.91 13.45 8.05 6.79 237.86*** 

 

(10.56) (13.12) (8.31) (7.34) 1,300*** 

Bachelors 26.85 27.54 27.38 28.55 6.46*** 

 

(17.83) (19.78) (15.49) (15.00) 308.2995*** 

Children 20.82 20.31 20.55 21.19 32.02*** 

 

(5.65) (5.91) (5.33) (4.65) 73.0268*** 

Population Density 4.33 9.09 1.74 1.81 679.57*** 

 

(9.09) (18.53) (2.29) (2.01) 17,0000*** 

Utilities 5.03 5.41 6.08 6.17 70.76*** 

  (3.35) (3.77) (3.72) (3.51) 358.1630*** 

Standard deviations reported in parentheses. Chi2 reported below ANOVA. 

*p<0.05, **p<0.01, ***p<0.001. 

 

Table 3. 10 Mile Buffer Summary of Scheffe's Post Hoc Statistically Significant Results 

at the p<0.05 level. 

  
Non-Host 

vs. Coal 
Non-Host 

vs. Nuclear 
Non-Host vs. 

Both Host 
Coal vs. 

Nuclear 
Coal vs. 

Both Host 
Nuclear vs. 

Both Host 
Minority Coal Non-Host Non-Host Coal Coal * 
Median Income Non-Host Nuclear Both Host Nuclear Both Host * 
Poverty Coal Non-Host Non-Host Coal Coal * 
Bachelors Coal * * * * * 
Children Non-Host * * * * * 
Population Density Coal Non-Host Non-Host Coal Coal * 
Utilities Coal Nuclear Both Host Nuclear Both Host * 
Tract type reported contained the higher mean. Asterisks indicate no significant 

difference between tract types.  
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Median household income at the 10 mile buffer varied significantly among tract type, F= 

145.72, p<0.001. Similar to percent population minority, Scheffe’s test reveal that median 

income was significantly different between non-host tracts (M=56.42, SD=27.17) and coal host 

tracts (M=51.53, SD=25.56), nuclear host tracts (M=61.08, SD=23.72), and both host tracts 

(M=63.34, SD=22.55) at the p<0.001 level. Further coal host tracts had significantly different 

median incomes than nuclear and both host tracts, p<0.001. There was no difference between 

nuclear and both host tracts, p=0.691. 

Percent families living in poverty also varied significantly by tract type F= 237.86, 

p<0.001. Scheffes’ test reveal that poverty follows the same trend as median income with 

significant differences between non-host tracts (M=10.91, SD=10.56) and coal host tracts 

(M=13.45, SD=13.12), nuclear host tracts (M=8.05, SD=8.31), and both host tracts (M=6.79, 

SD=7.34) at the p<0.001 level. Additionally, coal host tracts contained significantly different 

percent families living in poverty than nuclear and both host tracts, p<0.001. There was no 

difference between poverty levels between nuclear and both host tracts, p=0.444. 

At the 10 mile buffer, percent population with a bachelor’s degree varies significantly by 

tract type F= 6.46, p<0.001. Pairwise post hoc test reveals that the only significant difference 

among tract types exists between non-host (M=26.85, SD=17.83) and coal host tracts (M=27.54, 

SD=19.78), p<0.001. 

Percent population children was significantly different among tract types, F= 32.02, 

p<0.001. Scheffe’s tests determine that this difference exists between non-host (M=20.82, 

SD=5.65) and coal host (M=20.31, SD=5.91) tracts, p<0.001. No significant differences existed 

between percent children in nuclear host tracts (M=20.55, SD=5.33) and other tract types. 
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Further, there was no difference between both host (M=21.19, SD=4.65) and coal host tracts, 

p=0.060. 

At the 10 mile buffer, population density varied significantly by tract type F= 679.57, 

p<0.001. These differences existed between non-host tracts (M=4.33, SD=9.09) and coal host 

tracts (M=9.09, SD=18.53), nuclear host tracts (M=1.74, SD=2.29), and both host tracts (M=1.81, 

SD=2.01) at the p<0.001 level. Additionally, coal host tracts contained significantly different 

population densities than nuclear host tracts and both host tracts, p<0.001. There was no 

difference between population density between nuclear and both host tracts, p=1.000. 

Percent population employed in the utilities sector also varied significantly by tract type 

F= 70.76, p<0.001. These differences existed between non-host tracts (M=5.03, SD=3.35) and 

coal host tracts (M=5.41, SD=3.77), nuclear host tracts (M=6.08, SD=3.72), and both host tracts 

(M=6.17, SD=3.52) at the p<0.001 level. Further, coal host tracts contained significantly 

different population densities than nuclear host tracts, p<0.001, and both host tracts, p=0.002. 

There was no difference between population density between nuclear and both host tracts, 

p=0.989. 

10 Mile Buffer Chi-Square 

Pearson’s chi-square test reveals differences in location among tract types at the 10 mile 

buffer, X
2
=6,700, p<0.001. Non-host tracts were most likely to be located in the South, followed 

by the West, Midwest and lastly, Northeast (Table 4). Coal host tracts tended to be sited in the 

Midwest, followed by the Northeast, South, and West. Nuclear plants were most likely to be 

located in the South and Northeast and were found less frequently in the Midwest and West. Both 

host tracts tended to be located in the Northeast, followed by the South, Midwest and lastly West.     
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Table 4. 10 Mile Buffer Tract Type Frequency by Region. 

  Non-Host Coal Host Nuclear Host Both Host 

West 14,908 985 22 0 

 

(26.31) (6.79) (03.85) (0) 

Midwest 10,541 6,205 88 85 

 

(18.60) (42.75) (15.41) (26.48) 

South 21,966 3,436 254 100 

 

(38.77) (23.67) (44.48) (31.15) 

Northeast 9,247 3,888 207 136 

 

(16.32) (26.79) (36.25) (42.37) 

Total 56,662 14,514 571 321 

  (100) (100) (100) (100) 

Percentages reported in parentheses. 

  

 

20 Mile Buffer ANOVA 

As shown in Table 5, percent population minority at the 20 mile buffer varied 

significantly among tract type, F=131.21, p<0.001. Scheffe’s tests reveal significant differences 

between all tract types at the p<0.001 level with coal host tracts containing the greatest percent 

population minority (M=37.37, SD=31.54), followed by non-host (M=35.98, SD=29.35), then 

nuclear host (M=31.48, SD=27.17), and lastly both host (M=25.87, SD=24.34) tracts (Table 6). 
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Table 5. Means and One-way ANOVA Results Examining Differences in 

Demographics Among Tract Types for the 20 Mile Buffer. 

  Non-Host Coal Nuclear Both ANOVA/Chi2 

Minorities 35.98 37.37 31.47 25.87 131.21*** 

 

(29.35) (31.54) (27.17) (24.34) 416.4107*** 

Median Income 55.06 55.38 60.44 60.41 51.52*** 

 

(26.30) (27.51) (29.95) (25.60) 121.8792*** 

Poverty 11.24 11.85 10.02 8.99 67.60*** 

 

(10.39) (12.10) (10.79) (10.86) 785.3135*** 

Bachelors 25.62 28.50 28.61 29.69 163.87*** 

 

(17.22) (19.39) (17.26) (18.01) 482.7273*** 

Children 20.94 20.45 19.94 20.90 52.30*** 

 

(5.81) (5.57) (6.00) (5.20) 107.2308*** 

Population Density 3.45 8.02 3.05 2.67 937.24*** 

 

(5.74) (16.85) (3.76) (3.36) 42,000*** 

Utilities 4.95 5.32 5.29 5.31 70.06*** 

  (3.29) (3.64) (3.49) (3.31) 359.3931*** 

Standard deviations reported in parentheses. Chi2 reported below ANOVA. 

*p<0.05, **p<0.01, ***p<0.001. 

 

Table 6. 20 Mile Buffer Summary of Scheffe's Post Hoc Statistically Significant Results at 

the p<0.05 level. 

  
Non-Host 

vs. Coal 
Non-Host 

vs. Nuclear 
Non-Host vs. 

Both Host 
Coal vs. 

Nuclear 
Coal vs. 

Both Host 
Nuclear vs. 

Both Host 
Minority Coal Non-Host Non-Host Coal Coal Nuclear 
Median Income * Nuclear Both Host Nuclear Both Host * 
Poverty Coal Non-Host Non-Host Coal Coal * 
Bachelors Coal Nuclear Both Host * Both Host * 
Children Non-Host Non-Host * Coal Both Host Both Host 
Population Density Coal * Non-Host Coal Coal * 
Utilities Coal Nuclear Both Host * * * 
Tract type reported contained the higher mean. Asterisks indicate no significant difference 

between tract types. 
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Median income at the 20 mile buffer followed the same trend as the 10 mile buffer with 

significant differences in median income found among tract types F= 51.52, p<0.001. Pairwise 

comparison post hoc tests reveal significant differences between non-host tracts (M=55.06, 

SD=26.30) and nuclear host tracts (M=60.44, SD=29.95), and both host tracts (M=60.41, 

SD=25.60) at the p<0.001 level. Further, median income varied significantly from coal host tracts 

(M=55.38, SD=27.51) and nuclear and both host tracts, p<0.001. There was no difference 

between median income in nuclear and both host tracts, p=1.000, or between non-host and coal 

host tracts, p=0.479.  

Percent families living in poverty varied significantly across tract types F= 67.60, 

p<0.001. Post hoc tests reveal significant differences in percent poverty between all tract types 

with coal host tracts containing the greatest poverty (M=11.86, SD=12.10) followed closely by 

non-host tracts (M=11.25, SD=10.39), then nuclear host tracts (M=10.02, SD=10.79), and finally 

both host tracts (M=8.99, SD=10.87). These differences were significant at the p<0.001 level 

between all tract types with the exception of nuclear and both host tracts, p=0.034.  

At the 20 mile buffer, percent population possessing a bachelor’s degree or above was 

significantly different among tract types F= 163.87, p<0.001. Scheffe’s test reveal that non-host 

tracts (M=25.62, SD=17.22), vary significantly from coal host (M=28.50, SD=19.39), nuclear 

host (M=28.61, SD=17.26), and both host (M=29.69, SD=18.01) tracts at the p<0.001 level. 

Further, coal host and both host tracts contained significantly different percent population with a 

bachelor’s degree, p=0.016. However, there was no difference between coal host and nuclear host 

tracts, p=0.996 and both host and nuclear host tracts, p=0.312. 

Percent population children also varied significantly by tract type F= 52.30, p<0.001. 

Significant differences were found between non-host tracts (M=20.94, SD=5.81) and coal host 

tracts (M=20.45, SD=5.57) and nuclear host tracts (M=19.94, SD=6.00) as well as both host 
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tracts (M=20.90, SD=5.20) and nuclear host tracts at the p<0.001 level. Further, coal host tracts 

contained significantly different population densities than nuclear host tracts, p=0.005 and both 

host tracts, p=0.002. There was no significant difference in percent population children between 

non-host and both host tracts, p=0.986. 

At the 20 mile buffer, population density was significantly different among tract types F= 

937.24, p<0.001. Scheffe’s test reveal that non-host tracts (M=3.45, SD=5.74), vary significantly 

from coal host (M=8.02, SD=16.85), p<0.001 and both host (M=2.67, SD=3.36), p=0.110 tracts. 

Further, coal host tracts contained significantly different population densities than nuclear host 

(M=3.06, SD=3.76), and both host tracts at the p<0.001 level. There was no difference in 

population densities between non-host and nuclear host tracts, p=0.595 and both host and nuclear 

host tracts, p=0.770. 

Percent population employed in the utilities sector also varied significantly among tract 

types F= 70.06, p<0.001. Post hoc tests reveal differences between non-host tracts (M=4.95, 

SD=3.29) and coal host tracts (M=5.33, SD=3.64), nuclear host tracts (M=5.29, SD=3.49), and 

both host tracts (M=5.31, SD=3.31) at the p<0.001 level. There were no significant differences 

between coal host tracts and nuclear host tracts, p=0.983 and both host tracts, p=0.998. Further, 

there was no difference in population employed in the utilities sector between nuclear host and 

both host tracts, p=0.998. 

20 Mile Buffer Chi-Square 

Differences were found in location among tract types at the 20 mile buffer, X
2
=14,000, 

p<0.001. Similar to the 10 mile buffer, non-host tracts continued to be located primarily in the 

South, followed by closely by the West, Midwest and lastly, Northeast (Table 7). Coal host tracts 

tended to be sited in the Midwest, followed by the South, Northeast and West. Nuclear plants 

were most likely to be located in the South and Northeast and were found less frequently in the 



41 
 

 

Midwest and West. Both host tracts tended to be located in the Northeast, followed by the South, 

Midwest and lastly West. 

 

Table 7. 20 Mile Buffer Tract Type Frequency by Region. 

  Non-Host Coal Host Nuclear Host Both Host 

West 13,845 1,854 216 0 

 

(35.72) (06.38) (12.99) (00.00) 

Midwest 5,634 10,446 215 624 

 

(14.54) (35.97) (12.93) (23.93) 

South 15,281 8,821 761 893 

 

(39.42) (30.38) (45.76) (34.24) 

Northeast 4,000 7,916 471 1,091 

 

(10.32) (27.26) (28.32) (41.83) 

Total 38,760 29,037 1,663 2,608 

  (100) (100) (100) (100) 

Percentages reported in parentheses. 

     

30 Mile Buffer ANOVA 

At the 30 mile buffer, percent population minority was significantly different among tract 

types (Table 8), F= 174.83, p<0.001. Scheffe’s test reveal significant differences between all tract 

types at the p<0.001 level with nuclear host tracts containing the greatest percent population 

minority (M=41.97, SD=31.28), followed by non-host (M=38.53, SD=29.83), then coal host 

(M=34.72, SD=30.36), and lastly both host (M=31.56, SD=28.84) tracts (Table 9). 
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Table 8. Means and One-way ANOVA Results Examining Differences in 

Demographics Among Tract Types for the 30 Mile Buffer. 

  Non-Host Coal Nuclear Both ANOVA/Chi2 

Minorities 38.52 34.72 41.97 31.56 174.83*** 

 

(29.83) (30.36) (31.28) (28.83) 44.4366*** 

Median Income 53.86 55.91 56.04 59.40 95.62*** 

 

(25.34) (27.62) (27.34) (28.38) 290.3275*** 

Poverty 11.71 11.35 11.46 10.34 32.40*** 

 

(10.46) (11.45) (11.38) (12.07) 376.8444*** 

Bachelors 25.11 28.03 27.36 29.18 176.81*** 

 

(17.01) (19.06) (17.63) (18.25) 396.5617*** 

Children 20.98 20.56 19.81 20.72 47.02*** 

 

(6.02) (5.50) (5.65) (5.34) 326.6746*** 

Population Density 3.83 6.39 4.27 5.76 255.12*** 

 

(6.29) (14.43) (5.72) (14.29) 21,000*** 

Utilities 4.95 5.24 5.48 5.11 43.76*** 

  (3.34) (3.55) (3.97) (3.17) 312.0416*** 

Standard deviations reported in parentheses. Chi2 reported below ANOVA. 

*p<0.05, **p<0.01, ***p<0.001. 

 

 

Table 9. Buffer 30 Summary of Scheffe's Post Hoc Statistically Significant Results at the 

p<0.05 level. 

  
Non-Host vs. 

Coal 
Non-Host 

vs. Nuclear 
Non-Host vs. 

Both Host 
Coal vs. 

Nuclear 
Coal vs. 

Both Host 
Nuclear vs. 

Both Host 
Minority Non-Host Nuclear Non-Host Nuclear Coal Nuclear 
Median Income Coal Nuclear Both Host * Both Host Both Host 
Poverty Non-Host * Non-Host * Coal Nuclear 
Bachelors Coal Nuclear Both Host * Both Host Both Host 
Children Non-Host Non-Host Non-Host Coal * Both Host 
Population Density Coal * Both Host Coal Coal Both Host 
Utilities Coal Nuclear Both Host Nuclear Coal Nuclear 
Tract type reported contained the higher mean. Asterisks indicate no significant difference 

between tract types. 
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Median household income also varied significantly among tract types F=95.62, p<0.001. 

Post hoc tests determine that median income in both host tracts (M=59.40, SD=28.38) is 

significantly different from non-host (M=53.86, SD=25.34), coal host (M=55.91, SD=27.62), and 

nuclear host (M=56.05, SD=27.34) tracts at the p<0.001 level. Further non-host tracts were 

significantly different than coal host tracts, p<0.001 and nuclear host tracts, p=0.004. There was 

no significant difference in median income between nuclear host and coal host tracts at the 30 

mile buffer, p=0.997. 

There were significant differences in percent families living below the poverty line 

among tract types F= 32.40, p<0.001. Scheffe’s test reveal that poverty in both host tracts 

(M=10.34, SD=12.08) is significantly different from non-host (M=11.71, SD=10.46), coal host 

(M=11.35, SD=11.45), and nuclear host (M=11.46, SD=11.38) tracts at the p<0.001 level. 

Additionally, coal host tracts were significantly different than non-host tracts, p=0.001. There 

was no difference in poverty between nuclear host tracts and non-host, p=0.787 and coal host 

tracts, p=0.982. 

Percent population holding a bachelor’s degree or above also varied significantly among 

tract types F= 176.81, p<0.001. Post hoc tests determine that percent population with a bachelor’s 

degree in both host tracts (M=29.18, SD=18.25) is significantly different from non-host 

(M=25.11, SD=17.01), coal host (M=28.03, SD=19.06), and nuclear host (M=27.36, SD=17.63) 

tracts at the p<0.001 level. Further non-host tracts were significantly different than coal host 

tracts and nuclear host tracts at the p<0.001 level. Percent population with a bachelor’s degree 

did not vary significantly from coal host to nuclear host tracts, p=0.437.  

At the 30 mile buffer, percent population children was significantly different among tract 

types F= 47.02, p<0.001. Scheffe’s test reveal that percent population children in nuclear host 

tracts (M=19.81, SD=5.65) is significantly different from non-host (M=20.98, SD=6.02), coal 

host (M=20.56, SD=5.50), and both host (M=20.72, SD=5.34) tracts at the p<0.001 level. 
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Additionally, non-host tracts differed from coal host tracts, p<0.001 and both host tracts, 

p=0.005. There was no significant difference in percent population children between both host 

and coal host tracts, p=0.132. 

Population density also varied significantly among tract types at the 30 mile buffer F= 

255.12, p<0.001. Post hoc tests determine population density in both host tracts (M=5.76, 

SD=14.29) is significantly different from non-host (M=3.83, SD=6.29), coal host (M=6.39, 

SD=14.43), and nuclear host (M=4.27, SD=5.72) tracts at the p<0.001 level. Additionally, coal 

host tracts differ from non-host and nuclear tracts at the p<0.001 level. There was no significant 

difference between nuclear and non-host tracts, p=418.  

Percent population employed in the utilities sector also varied significantly among tract 

types at the 30 mile buffer F= 43.76, p<0.001. Scheffe’s tests reveal significant differences 

between all tract types at the 0.05 level with nuclear host tracts containing the greatest percent 

population employed in the utilities sector (M=5.48, SD=3.97), followed by coal host (M=5.24, 

SD=3.55), then both host (M=5.11, SD=3.18), and lastly non-host (M=4.95, SD=3.34) tracts. 

30 Mile Buffer Chi-Square 

Pearson’s chi-square test reveals differences in location among tract types at the 30 mile 

buffer, X
2
=23,000, p<0.001. In contrast to the smaller buffer sizes, non-host tracts at the 30 mile 

buffer were most likely to be located in the West, followed by the South, Midwest and lastly, 

Northeast (Table 10). Coal host tracts tended to be sited in the South, followed closely by the 

Midwest, Northeast and West. Nuclear host tracts continued to be located primarily in the South, 

followed by the West, Midwest and Northeast. Both host tracts tended to be located in the 

Northeast, followed by the Midwest, South, and lastly West. 
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Table 10. Buffer 30 Tract Type Frequency by Region. 

  Non-Host Coal Host Nuclear Host Both Host 

West 13,014 2,387 514 0 

 

(46.17) (07.12) (23.83) (00.00) 

Midwest 3,078 11,401 252 2,188 

 

(10.92) (33.99) (11.68) (26.74) 

South 10,335 12,121 1,160 2,140 

 

(36.67) (36.14) (53.78) (26.15) 

Northeast 1,760 7,632 231 3,855 

 

(06.24) (22.75) (10.71) (47.11) 

Total 28,187 33,541 2,157 8,183 

  (100) (100) (100) (100) 

Percentages reported in parentheses. 

  

 

Summary of Bivariate Results    

Coal Host Tracts vs. Non-Host Tracts  

Coal tracts contained greater percent of the population that is minority and percent of 

families living in poverty than non-host tracts at the 10 and 20 mile buffers although, at the 30 

mile buffer this relationship was inverted. Median income was higher in non-host tracts compared 

to coal host tracts at the 10 mile buffer however this relationship disappeared at the 20 mile buffer 

and was inverted at the 30 mile buffer. Coal host tracts contained greater population density, 

percent of the population that is employed in the utilities sector and percent of the population with 

a bachelor’s degree and fewer percent of the population that is children at all buffer sizes. 

Nuclear Host Tracts vs. Non-Host Tracts 

 Median income and percent of the population that is employed in the utilities sector was 

higher in nuclear host tracts compared to non-host tracts at all buffer sizes. Nuclear host tracts 

contained less percent of the population that is minority and percent of families living in poverty 
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at the 10 and 20 mile buffers. At the 30 mile buffer, there was no difference between poverty 

rates and nuclear tracts contained more percent of the population that is minority. Nuclear host 

tracts contained less population density at the 10 mile buffer however this relationship 

disappeared at the larger buffer sizes. While there was no difference between percent of the 

population with a bachelor’s degree and children at the 10 mile buffer, nuclear host tracts 

contained more percent of the population with a bachelor’s degree and fewer percent of the 

population that is children compared to non-host tracts at the 20 and 30 miles buffers. 

Coal Host Tracts vs. Nuclear Host Tracts 

 At the 10 and 20 mile buffers, coal host tracts contained greater percent of the population 

that is minority, and families living in poverty, and less median income than nuclear host tracts. 

At the 30 mile buffer these relationships disappeared with the exception of percent of the 

population minority which was greater in nuclear host tracts. In all buffer sizes, population 

density was greater in coal host tracts and there was no difference in the percent of the population 

with a bachelor’s degree. There was no difference in the percent of the population that is children 

at the 10 mile buffer however at the 20 and 30 mile buffers, coal host tracts contained more 

children. Lastly, at the 10 and 30 mile buffers, nuclear host tracts contained greater percent of the 

population that is minority compared to coal host tracts, although this relationship was not found 

at the 20 mile buffer.  

Multivariate Analyses 

10 Mile Buffer Multinomial Logistic Regression 

Tables 11 through 16 provide the outcomes, including coefficients, relative risk ratios, 

and significant findings of all multinomial logistic regression models. As shown in Table 11, the 

LR chi-square was significant at the p<0.001 level in models examining the 10 mile buffer 
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(9979.07), indicating a relationship between the dependent variable and the combination of 

independent variables in each model. AIC and BIC for these models were 72,860.04 and 

73,163.16 respectively. Cragg and Uhler’s R
2 
was 0.19 for the 10 Mile buffer.  

Model 1 estimates the effects of demographic variables on the probability of tracts being 

located within a 10 mile radius of a plant compared to being located outside the buffer. As 

predicted, this model indicates that communities which contain higher percent population 

minority are more likely to be located in a coal host tract versus a non-host tract (Relative Risk 

Ratio=1.008; p<0.001). Additionally, populations living within a coal host tract are more likely to 

have lower median household incomes (RRR=0.992; p<0.001) and higher percent population 

families living below the poverty line (RRR=1.011; p<0.001) than non-host tracts. Tracts with 

greater percent population with a bachelor’s degree or above are expected to be coal host versus 

non-host tracts (RRR=1.018; p<0.001). Coal host tracts are also more likely to have greater 

population densities (RRR=1.015; p<0.001) and higher percent population employed in the 

utilities industry (RRR=1.038; p<0.001) compared to non-host tracts. Attributes for region reveal 

that living in the West versus living in the South decreases the likelihood of living in a coal host 

tract compared to a non-host tract (RRR=0.399; p<0.001). Conversely, the likelihood of being 

located in a coal host tract compared to a non-host tract increases if living in the Midwest 

(RRR=4.453; p<0.001) or the Northeast (RRR=2.394; p<0.001), compared to living in the South. 

At the 10 mile buffer, percent population minority, median household income, percent 

population children, and population density are not significant determinants of being located in a 

nuclear versus non-host tract. However, tracts with lower percent population poverty are expected 

to be nuclear host tracts compared to non-host tracts (RRR=0.980; p<0.001). Additionally, 

population density is expected to be lower in nuclear host tracts compared to non-host tracts 

(RRR=0.878; p<0.001). Further, tracts with greater percent population employed in the utilities 

sector are expected to be nuclear host tracts compared to non-host tracts (RRR=1.092; p<0.001). 
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Dummy variables for region indicate that tracts are less likely to be nuclear host than non-host if 

located in the West (RRR=0.159; p<0.001) or Midwest (RRR=0.702; p<0.01) compared to the 

South. Conversely, tracts are more likely to be nuclear host than non-host if they are located in 

the Northeast compared to the South (RRR=2.361; p<0.001). 

Model 1 reveals that both host tracts are less likely than non-host tracts to contain higher 

percent population minority (RRR=0.991; p<0.05) and percent families living below the poverty 

line (RRR=0.956; p<0.001). Conversely, both host tracts are more likely than non-host tracts to 

contain higher percent population children (RRR=1.080; p<0.001) and percent population 

employed in the utilities sector (RRR=1.119; p<0.001). At the 10 mile buffer, tracts with greater 

population density are more likely to be non-host tracts than both host tracts (RRR=0.912; 

p<0.001). Region variables show that tracts located in the Midwest (RRR=1.483; p<0.05) and 

Northeast (RRR=3.795l; p<0.001) compared to the South, are more likely to be both host tracts 

than non-host tracts. Median household income, percent population with a bachelor’s degree or 

above and living in the West compared to the South are not significant determinants of being a 

both host tract versus a non-host tract. 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

 

Table 11. Multinomial Logistic Regression Analysis Examining the Effect of 

Demographic Variables on the Probability of Living in a Tract Located Within 10 

Miles of a Coal Plant, Nuclear Plant, or Both. 

Model 1
a
 

  Coal Host  Nuclear Host   Both Host 

  Β SE Β SE Β SE 

Minority 0.00762*** 0.00044 -0.00108 0.0024 -0.00870* 0.0035 

 

(1.008) 

 

(0.999) 

 

(0.991) 

 Median Income
b
 -0.00802*** 0.00073 0.00121 0.0029 -0.00668 0.0041 

 

(0.992) 

 

(1.001) 

 

(0.993) 

 Poverty 0.0105*** 0.0013 -0.0205** 0.0075 -0.045*** 0.011 

 

(1.011) 

 

(0.980) 

 

(0.956) 

 Bachelors 0.0181*** 0.00092 0.00140 0.0043 0.00919 0.0059 

 

(1.018) 

 

(1.001) 

 

(1.009) 

 Children -0.0123*** 0.0022 0.0122 0.011 0.0765*** 0.015 

 

(0.988) 

 

(1.012) 

 

(1.080) 

 Population Density 0.0148*** 0.00090 -0.130*** 0.020 -0.0916*** 0.024 

 

(1.015) 

 

(0.878) 

 

(0.912) 

 Utilities 0.0377*** 0.0030 0.0879*** 0.010 0.113*** 0.014 

 

(1.038) 

 

(1.092) 

 

(1.119) 

 West
c
 -0.920*** 0.039 -1.839*** 0.22 -16.161 417.86 

 

(0.399) 

 

(0.159) 

 

(9.58e-8) 

 Midwest
c
 1.494*** 0.026 -0.354*** 0.13 0.394* 0.16 

 

(4.453) 

 

(0.702) 

 

(1.483) 

 Northeast
c
 0.873*** 0.030 0.859*** 0.11 1.334*** 0.15 

 

(2.394) 

 

(2.361) 

 

(3.795) 

 Constant -2.368*** 0.057 -4.824*** 0.24 -6.650*** 0.34 

LR Chi
2
(30) 9979.07***           

Cragg-Uhler R
2
 0.189           

AIC 72860.042           

BIC 73163.159           
a
Coefficients vs. the base category of non-host. Relative risk ratios are in parentheses.  

b
Median Income and Population Density are reported in thousands. 

c 
Effect of region  

with South as base category. *p<0.05, **p<0.01, ***p<0.001. 
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When compared to coal host tracts, nuclear host tracts (see Table 12) are more likely to 

contain populations with lesser percent minorities (RRR=0.991; p<0.001) and families living 

below the poverty line (RRR=0.969; p<0.001). Similarly, tracts with higher median incomes are 

expected to be located in nuclear host tracts compared to coal host tracts (RRR=1.009; p<0.01). 

Interestingly, tracts with higher percent population holding a bachelor’s degree are expected to be 

coal host tracts compared to nuclear host tracts. Compared to coal host tracts, nuclear tracts are 

expected to be tracts with higher percent population children (RRR=1.025; p<0.05) and percent 

population employed in the utilities sector (RRR=1.051; p<0.001). Additionally, tracts with 

higher population densities are expected to be coal host tracts versus nuclear host tracts 

(RRR=0.865; p<0.001). Variables for region reveal that tracts are more likely to be coal host 

tracts than nuclear host tracts if located in the West (RRR=0.399; p<0.001) and Midwest 

(RRR=0.158; p<0.001) versus the South. Being located in the Northeast versus the South is a not 

a significant determinant of being a coal host versus nuclear host tract. 

Model 2 shows the relationship between coal host tracts and nuclear and both host tracts. 

Similarly to nuclear host tracts, both host tracts are less likely than coal host tracts to contain 

higher percent population minorities (RRR=0.984; p<0.001), percent families living below the 

poverty line (RRR=0.946; p<0.001), and population density (RRR=0.899; p<0.001). Conversely, 

both host tracts are more likely than coal host tracts to contain higher percent population children 

(RRR=1.093; p<0.001) and percent population employed in the utilities sector (RRR=1.078; 

p<0.001). Regional variables indicate that tracts located in the Midwest compared to the South 

are more likely to be coal host tracts versus both host tracts (RRR=0.333; p<0.001). In contrast, 

tracts in the Northeast compared to the South are more likely to be both host tracts than coal host 

tracts (RRR=1.585; p<0.01). Living in the West versus the South, median household income, and 

percent population with a bachelor’s degree or above are not significant determinants of being a 

both host tract versus a coal host tract.
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Table 12. Multinomial Logistic Regression Analysis Examining the Effect of 

Demographic Variables on the Probability of Living in a Tract Located Within 10 

Miles of a Nuclear Plant or Both a Coal and Nuclear Plant. 

  Model 2
a
 Model 3

b
 

  Nuclear Host Both Host Both Host 

  Β SE β SE β SE 

Minority -0.00870*** 0.0024 -0.0163*** 0.0036 -0.00761 0.0043 

 

(0.991) 

 

(0.984)  (0.992) 

 
Median Income

c
 0.00922** 0.0030 0.00134 0.0041 -0.00789 0.0050 

 

(1.009) 

 

(1.001) 

 

(0.992) 

 
Poverty -0.0310*** 0.0075 -0.0558*** 0.012 -0.0248 0.014 

 

(0.969) 

 

(0.946) 

 

(0.976) 

 
Bachelors -0.0167*** 0.0044 -0.00889 0.0059 0.00780 0.0072 

 

(0.983) 

 

(0.991) 

 

(1.008) 

 
Children 0.0245* 0.011 0.0889*** 0.015 0.0643*** 0.018 

 

(1.025) 

 

(1.093) 

 

(1.066) 

 
Population Density -0.145*** 0.020 -0.106*** 0.024 0.0388 0.031 

 

(0.865) 

 

(0.899) 

 

(1.040) 

 
Utilities 0.0502*** 0.011 0.0751*** 0.015 0.0249 0.017 

 

(1.051) 

 

(1.078) 

 

(1.025) 

 
West

d
 -0.919*** 0.23 -15.241 417.86 -14.322 417.86 

 

(0.399) 

 

(2.40e-7) 

 

(6.03e-7) 

 
Midwest

d
 -1.847*** 0.13 -1.100*** 0.16 0.748*** 0.21 

 

(0.158) 

 

(0.333) 

 

(2.112) 

 
Northeast

d
 -0.0140 0.11 0.461** 0.15 0.475** 0.18 

 

(0.986) 

 

(1.585) 

 

(1.607) 

 
Constant -2.455*** 0.25 -4.282*** 0.35 -1.826*** 0.42 
a
Coefficients vs. the base category of coal host. 

b 
Coefficients vs. the base category of nuclear 

host. Relative risk ratios are in parentheses.
 c
Median Income and Population Density are reported 

in thousands. 
d 
Effect of region with South as base category. *p<0.05, **p<0.01, ***p<0.001.  
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Interestingly, when comparing nuclear tracts to both host tracts, percent population 

minority, percent population with a bachelor’s degree, percent population living in poverty, 

median household income, population density and living in the West compared to the South are 

not significant determinants of tract type. However, tracts with higher percent population children 

are expected to be both host tracts compared to nuclear host tracts (RRR=1.066; p<0.001). 

Additionally, tracts in the Midwest (RRR=2.112; p<0.001) and Northeast (RRR=1.607; p<0.01) 

compared to the South are also more likely to be both host tracts than nuclear host tracts. 

20 Mile Buffer Multinomial Logistic Regression 

Models 4 through 6 provide the outcomes of multinomial logistic regression models 

employing the 20 mile buffer. The LR chi-square was significant at the p<0.001 level in models 

examining the 20 mile buffer (20805.95), indicating a relationship between the dependent 

variable and the combination of independent variables in each model (Table 13). AIC and BIC for 

these models were 109,978.84 and 110,281.96 respectively. Cragg and Uhler’s R
2 
was 0.300 for 

models employing the 20 Mile buffer.  

Model 4 examines the effect of demographic variables on the probability of tracts being 

located within 20 miles of a coal plant, nuclear plant, or both, compared to being non-host tracts. 

This model reveals that coal host tracts are more likely than non-host tracts to contain higher 

percent population minorities (RRR=1.007; p<0.001), percent population with a bachelor’s 

degree (RRR=1.016; p<0.001), population density (RRR=1.058; p<0.001), and percent 

population employed in the utilities sector (RRR=1.048; p<0.001). Conversely, tracts with higher 

percent population children are more likely to be non-host tracts than coal host tracts 

(RRR=0.996; p<0.05). Additionally, variables for region indicate that tracts in the West 

compared the South, are more likely to be non-host tracts than coal host tracts (RRR=0.157; 

p<0.001). In contrast, coal host tracts are more likely than non-host tracts to be located in the 
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Midwest (RRR=3.684; p<0.001) and Northeast (RRR=2.481; p<0.001) compared to the South. 

Median household income and percent families living below the poverty line are the only 

demographic variables not significant determinants of being a coal host versus non-host tract. 

 Similarly to coal host tracts, nuclear host tracts are more likely than non-host tracts to 

contain greater percent population minorities (RRR=1.004; p<0.01). Further, nuclear host tracts 

are more likely than non-host tracts to contain higher median household incomes (RRR=1.010; 

p<0.001), percent families living below the poverty line (RRR=1.008; p<0.05), and percent 

population employed in the utilities industry (RRR=1.049; p<0.001). In contrast, tracts with 

higher percent population children are more likely to be non-host tracts compared to nuclear host 

tracts (RRR=0.965; p<0.001). Additionally, nuclear host tracts are more likely than non-host 

tracts to be located in the Northeast compared to the South (RRR=2.217; p<0.001). Conversely, 

tracts located in the West (RRR=0.287; p<0.001) and the Midwest (RRR=0.845; p<0.05) 

compared to the South are more likely to be non-host tracts than nuclear host tracts. The only 

independent variable that is not a significant determinant of living in a nuclear host versus non-

host tract is the percent population holding a bachelor’s degree or above. 

 In contrast to nuclear host tracts, both host tracts are less likely than non-host tracts to 

contain higher median incomes (RRR=0.993; p<0.001) and percent families living in poverty 

(RRR=0.989; p<0.001). Tracts with higher percent population children (RRR=1.048; p<0.001), 

percent population with a bachelor’s degree (RRR=1.025; p<0.001), and percent population 

employed in the utilities sector (RRR=1.070; p<0.001) are more likely to be both host tracts than 

non-host tracts. Additionally, both host tracts are more likely than non-host tracts to be located in 

the Midwest (RRR=1.945; p<0.001) and Northeast (RRR=4.991; p<0.001) compared to the 

South. Interestingly, at this 20 mile buffer, percent population minority and population density are 

not significant determinants of living in a both host tract versus a non-host tract. 
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Table 13. Multinomial Logistic Regression Analysis Examining the Effect of 

Demographic Variables on the Probability of Living in a Tract Located Within 20 

Miles of a Coal Plant, Nuclear Plant, or Both. 

Model 4
a
 

  Coal Host Nuclear Host Both Host 

  Β SE β SE Β SE 

Minority 0.00726***
 
 0.00043 0.00352** 0.0013 0.0000960 0.0011 

 

(1.007) 

 

(1.004) 

 

(1.000) 

 Median Income
b
 0.000923 0.00062 0.0103*** 0.0015 -0.00675*** 0.0015 

 

(1.001) 

 

(1.010) 

 

(0.993) 

 Poverty 0.00155 0.0012 0.00840* 0.0034 -0.011** 0.0032 

 

(1.002) 

 

(1.008) 

 

(0.989) 

 Bachelors 0.0161*** 0.00085 0.00259 0.0024 0.0248*** 0.0020 

 

(1.016) 

 

(1.003) 

 

(1.025) 

 Children -0.00429* 0.0020 -0.0354*** 0.0055 0.0466*** 0.0051 

 

(0.996) 

 

(0.965) 

 

(1.048) 

 Population Density 0.0560*** 0.0018 -0.0110 0.0065 -0.0224*** 0.00591 

 

(1.058) 

 

(0.989) 

 

(0.978) 

 Utilities 0.0468*** 0.0028 0.0479*** 0.0074 0.0673*** 0.0065 

 

(1.048) 

 

(1.049) 

 

(1.070) 

 West
c
 -1.851*** 0.031 -1.248*** 0.081 -19.417 574.78 

 

(0.157) 

 

(0.287) 

 

(3.69e-9) 

 Midwest
c
 1.304*** 0.023 -0.168* 0.082 0.665*** 0.058 

 

(3.684) 

 

(0.845) 

 

(1.945) 

 Northeast
c
 0.909*** 0.027 0.796*** 0.067 1.608*** 0.054 

 

(2.481) 

 

(2.217) 

 

(4.991) 

 Constant -1.621*** 0.049 -3.341*** 0.13 -4.304*** 0.12 

LR Chi
2
(30) 20805.95*** 

  

    

 Cragg-Uhler R
2
 0.300 

  

    

 AIC 109978.84           

BIC 110281.96           
a
Coefficients vs. the base category of non-host. Relative risk ratios are in parentheses. 

b
Median 

Income and Population Density are reported in thousands. 
c 
Effect of region with South as base 

category. *p<0.05, **p<0.01, ***p<0.001. 
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Model 5 examines the effect of independent variables on the probability of tracts being 

nuclear hosts and both hosts compared to being coal host tracts at the 20 mile buffer (Table 14). 

This model reveals that tracts with higher percent population minorities are more likely to be coal 

host tracts versus nuclear host tracts (RRR=0.996; p<0.01). However, tracts with higher median 

income (RRR=1.009; p<0.001) and percent families living in poverty (RRR=1.007; p<0.05) are 

more likely to be nuclear host tracts. Nuclear host tracts are also less likely than coal host tracts to 

contain higher percent population children (RRR=0.969; p<0.001), percent population with a 

bachelor’s degree or above (RRR=0.987; p<0.001) and population density (RRR=0.935; 

p<0.001). Regional variables determine that while nuclear host tracts compared to coal host tracts 

are more likely to be located in the West compared to the South (RRR=1.828; p<0.001), coal host 

tracts are more likely to be located in the Midwest compared to the South (RRR=0.229; 

p<0.001). Percent population employed in the utilities sector and living in the West compared to 

the South are not significant determinants of being a nuclear host tract compared to a coal host 

tract. 

 However, all demographic variables (excluding West) are significant determinants of 

being a both host tract versus a coal host tract at the 20 mile buffer. To begin with, tracts with 

greater percent population minority (RRR=0.993; p<0.001), percent families living in poverty 

(RRR=0.988; p<0.001), median household income (RRR=0.992; p<0.001), and population 

density (RRR=0.925; p<0.001) are more likely to be coal host tracts compared to both host tracts. 

However, both host tracts are more likely than coal host tracts to contain higher percent 

population children (RRR=1.052; p<0.001), percent population with a bachelor’s degree or above 

(RRR=1.009; p<0.001), and percent population employed in the utilities sector (RRR=1.021; 

p<0.001). Lastly, tracts located in the Midwest compared to the South are more likely to be coal 

host tracts than both host tracts (RRR=0.528; p<0.001) while tracts located in the Northeast are 

more likely to be both host tracts than coal host tracts (RRR=2.012; p<0.001). 



56 
 

 

Table 14. Multinomial Logistic Regression Analysis Examining the Effect of Demographic 

Variables on the Probability of Living in a Tract Located Within 20 Miles of a Nuclear Plant or 

Both a Coal and Nuclear Plant. 

  Model 5
a
 Model 6

b
 

  Nuclear Host Both Host Both Host 

  Β SE β SE  β SE 

Minority -0.00374**
 
 0.0013 -0.00717*** 0.0011 -0.00342* 0.0016 

 

(0.996) 

 

(0.993) 

 

(0.997) 

 
Median Income

c
 0.00940*** 0.0015 -0.00767*** 0.0015 -0.0171*** 0.0020 

 

(1.009) 

 

(0.992) 

 

(0.983) 

 
Poverty 0.00685* 0.0034 -0.0123*** 0.0032 -0.0192*** 0.0045 

 

(1.007) 

 

(0.988) 

 

(0.981) 

 
Bachelors -0.0136*** 0.0024 0.00866*** 0.0020 0.0222*** 0.0030 

 

(0.987) 

 

(1.009) 

 

(1.022) 

 
Children -0.0311*** 0.0056 0.0509*** 0.0051 0.0820*** 0.0073 

 

(0.969) 

 

(1.052) 

 

(1.085) 

 
Population Density -0.0670*** 0.0064 -0.0784*** 0.0058 -0.0114 0.0085 

 

(0.935) 

 

(0.925) 

 

(0.989) 

 
Utilities 0.00115 0.0074 0.0205*** 0.0064 0.0194* 0.0094 

 

(1.001) 

 

(1.021) 

 

(1.020) 

 
West

d
 0.603*** 0.085 -17.566 574.78 -18.169 574.78 

 

(1.828) 

 

(2.35e-8) 

 

(1.29e-8) 

 
Midwest

d
 -1.472*** 0.082 -0.639*** 0.058 0.834*** 0.097 

 

(0.229) 

 

(0.528) 

 

(2.301) 

 
Northeast

d
 -0.113 0.067 0.699*** 0.054 0.812*** 0.082 

 

(0.893) 

 

(2.012) 

 

(2.252) 

 
Constant -1.720*** 0.14 -2.684*** 0.12 -0.964*** 0.17 
a
Coefficients vs. the base category of coal host. 

b 
Coefficients vs. the base category of nuclear 

host. Relative risk ratios are in parentheses.
 c
Median Income and Population Density are reported 

in thousands. 
d 
Effect of region with South as base category. *p<0.05, **p<0.01, ***p<0.001
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The effect of demographic variables on the probability of tracts hosting a nuclear plant 

versus tracts hosting both a nuclear and coal plant at the 20 mile buffer is examined in model 6. 

This model reveals that tracts hosting a nuclear plant are more likely than both host tracts to 

contain higher percent population minorities (RRR=0.997; p<0.05), percent families living below 

the poverty line (RRR=0.981; p<0.001), and median household income (RRR=0.983; p<0.001). 

In contrast, tracts with higher percent population with a bachelor’s degree (RRR=1.022; 

p<0.001), percent population children (RRR=1.085; p<0.008), and percent population employed 

in the utilities sector (RRR=1.020; p<0.05) are more likely to be both host tracts than nuclear 

host tracts. Regional variables indicate that tracts in the Midwest (RRR=2.301; p<0.001) and 

Northeast (RRR=2.252; p<0.001) compared to the South are more likely to be both host tracts 

than nuclear host tracts. Population density is not a significant determinant of living in a both host 

tract compared to nuclear host tract at the 20 mile buffer. 

30 Mile Buffer Multinomial Logistic Regression 

Models 7 through 9 provide the outcomes of multinomial logistic regression models 

employing the 30 mile buffer. The LR chi-square was significant at the p<0.001 level in models 

examining the 30 mile buffer (27109.53), indicating a relationship between the dependent 

variable and the combination of independent variables in each model (Table 15). AIC and BIC for 

these models were 127,927.05 and 128,230.17 respectively. Cragg and Uhler’s R
2 
was 0.355 for 

the 30 Mile buffer.  

 Model 7 examines the effect of demographic variables on the probability of tracts being 

located within 30 miles of a nuclear plant, coal plant, or both, compared to being non-host tracts. 

This model shows that coal host tracts are more likely than non-host tracts to have greater percent 

population minorities (RRR=1.004; p<0.001), median household income (RRR=1.007; p<0.001), 

percent population holding a bachelor’s degree (RRR=1.013; p<0.001), percent population 
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children (RRR=1.004; p<0.05), percent population employed in the utilities sector (RRR=1.038; 

p<0.001), and population density (RRR=1.039; p<0.001). Additionally, variables for region 

determine that tracts in the Midwest (RRR=3.375; p<0.001) and Northeast (RRR=2.733; 

p<0.001) compared to the South are more likely to be coal host tracts than non-host tracts.  In 

contrast, tracts in the West compared to the South are more likely to be non-host tracts versus 

coal host tracts (RRR=0.111; p<0.001). Percent families living below the poverty line is not a 

significant determinant of being a coal host versus non-host tract in this model. 

 Similar to coal host tracts, nuclear host tracts are more likely than non-host tracts to 

contain greater percent population minorities (RRR=1.012; p<0.001), median household income 

(RRR=1.011; p<0.001), population density (RRR=1.010; p<0.05), and percent population 

employed in the utilities sector (RRR=1.049; p<0.001). Conversely, tracts with greater percent 

population children are more likely to be non-host tracts than nuclear host tracts (RRR=0.951; 

p<0.001). Additionally, tracts located in the West compared to the South are more likely to be 

non-host tracts than coal host tracts (RRR=0.270; p<0.001). Percent families living in poverty, 

percent population possessing a bachelor’s degree, and living in the Midwest and Northeast 

compared to the South are not significant predictors of being a nuclear host tract versus a non-

host tract. 

 Both host tracts closely resemble coal and nuclear host tracts compared to non-host tracts 

at the 30 mile buffer. For instance, both host tracts are more likely than non-host tracts to contain 

greater percent population minorities (RRR=1.004; p<0.001), median household income 

(RRR=1.006; p<0.001), percent population with a bachelor’s degree or above (RRR=1.045; 

p<0.001), percent population children (RRR=1.030; p<0.001), population density (RRR=1.024; 

p<0.001), and percent population employed in the utilities sector (RRR=1.030; p<0.001). In this 

model, both host tracts are also more likely than non-host tracts to be located in the Midwest 

(RRR=3.708; p<0.001) and Northeast (RRR=9.266; p<0.001) compared to the South. Percent 
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families living in poverty is the only variable which is not a significant determinant of being a 

both host tract versus a non-host tract at the 30 mile buffer. 

 

Table 15. Multinomial Logistic Regression Analysis Examining the Effect of 

Demographic Variables on the Probability of Living in a Tract Located Within 30 

Miles of a Coal Plant, Nuclear Plant, or Both. 

Model 7
a 

 
Coal Host Nuclear Host Both Host 

 
Β SE β SE β SE 

Minority 0.00414*** 0.00045 0.0123*** 0.0010 0.00446*** 0.00067 

 
(1.004) 

 
(1.012) 

 
(1.004) 

 Median Income
b 0.00701*** 0.00068 0.0110*** 0.0014 0.00647*** 0.0010 

 
(1.007) 

 
(1.011) 

 
(1.006) 

 Poverty 0.00189 0.0013 0.000922 0.0029 -0.00233 0.0019 

 
(1.002) 

 
(1.001) 

 
(0.998) 

 Bachelors 0.0124*** 0.00091 0.00363 0.0020 0.0145*** 0.0014 

 
(1.013) 

 
(1.004) 

 
(1.015) 

 Children 0.00424* 0.0021 -0.0507*** 0.0046 0.0299*** 0.0033 

 
(1.004) 

 
(0.951) 

 
(1.030) 

 Population Density 0.0387*** 0.0019 0.00972* 0.0040 0.0241*** 0.0021 

 
(1.039) 

 
(1.010) 

 
(1.024) 

 Utilities 0.0375*** 0.0030 0.0481*** 0.0062 0.0292*** 0.0045 

 
(1.038) 

 
(1.049) 

 
(1.030) 

 West
c -2.201*** 0.029 -1.311*** 0.059 -20.339 431.75 

 
(0.111) 

 
(0.270) 

 
(1.47e-9) 

 Midwest
c 1.216*** 0.026 -0.104 0.074 1.311*** 0.038 

 
(3.375) 

 
(0.901) 

 
(3.708) 

 Northeast
c 1.005*** 0.032 0.0696 0.081 2.226*** 0.040 

 
(2.733) 

 
(1.072) 

 
(9.266) 

 Constant -1.059*** 0.052 -2.572*** 0.12 -3.246*** 0.080 
LR Chi

2
(30) 27109.532***           

Cragg-Uhler R
2 0.355 

     AIC 127927.05 
     BIC 128230.167           

 
a
Coefficients vs. the base category of non-host. Relative risk ratios are in parentheses. 

b
Median Income and Population Density are reported in thousands. 

c 
Effect of region 

with South as base category. *p<0.05, **p<0.01, ***p<0.001. 
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Model 8 provides the effect of the demographic variables on the probability of tracts 

being nuclear host and both host tracts compared to being coal host tracts (Table 16). This model 

reveals that nuclear host tracts are more likely than coal host tracts to contain greater percent 

population minorities (RRR=1.008; p<0.001) and median household income (RRR=1.004; 

p<0.01). Nuclear host tracts are also more likely than coal host tracts to be located in the West 

compared to the South (RRR2.436; p<0.001). In contrast, coal host tracts are more likely than 

nuclear host tracts to contain greater percent population with a bachelor’s degree (RRR=0.991; 

p<0.001), percent population children (RRR=0.947; p<0.001), and population density 

(RRR=0.971; p<0.001). Additionally, tracts located in the Midwest (RRR=0.267; p<0.001) and 

Northeast (RRR=0.392; p<0.001) compared to the South are more likely to be coal host tracts 

than nuclear host tracts. Percent families living in poverty and percent population employed in the 

utilities sector are not significant predictors of being a nuclear host tract versus a coal host tract in 

this model. 

 In contrast to nuclear host tracts, both host tracts compared to coal host tracts are more 

likely to contain greater percent population children (RRR=1.026; p<0.001). However, coal host 

tracts are more likely than both host tracts to contain greater percent families living below the 

poverty line (RRR=0.996; p<0.05), population density (RRR=0.986; p<0.001), and percent 

population employed in the utilities sector (RRR=0.992; p<0.05). Regional variables determine 

that both host tracts are more likely than coal host tracts to be located in the Midwest 

(RRR=1.099; p<0.01) and Northeast (RRR=3.391; p<0.001) compared to the South. 

Interestingly, percent population minorities, median household income, and percent population 

with a bachelor’s degree are not significant determinants of being a both host tract compared to a 

coal host tract at the 30 mile buffer.
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Table 16. Multinomial Logistic Regression Analysis Examining the Effect of Demographic 

Variables on the Probability of Living in a Tract Located Within 30 Miles of a Nuclear Plant or 

Both a Coal and Nuclear Plant.  

  Model 8
a Model 9

b 
  

  Nuclear Host Both Host Both Host 
  β SE β   β SE 

Minority 0.00815*** 0.00099 0.000317 0.00058 -0.00783*** 0.0011 

 
(1.008) 

 
(1.000) 

 
(0.992) 

 Median Income
c 0.00402** 0.0014 -0.000531 0.00086 -0.00455** 0.0016 

 
(1.004) 

 
(0.999) 

 
(0.995) 

 Poverty -0.000965 0.0029 -0.00421* 0.0017 -0.00325 0.0032 

 
(0.999) 

 
(0.996) 

 
(0.997) 

 Bachelors -0.00882*** 0.0020 0.00201 0.0012 0.0108*** 0.0022 

 
(0.991) 

 
(1.002) 

 
(1.011) 

 Children -0.0549*** 0.0046 0.0257*** 0.0030 0.0806*** 0.0053 

 
(0.947) 

 
(1.026) 

 
(1.084) 

 Population Density -0.0290*** 0.0039 -0.0145*** 0.0012 0.0144*** 0.0040 

 
(0.971) 

 
(0.986) 

 
(1.015) 

 Utilities 0.0106 0.0061 -0.00825* 0.0040 -0.0189** 0.0070 

 
(1.011) 

 
(0.992) 

 
(0.981) 

 West
d 0.890*** 0.062 -18.138 431.75 -19.0286 431.75 

 
(2.436) 

 
(1.33e-8) 

 
(5.44e-9) 

 Midwest
d -1.321*** 0.073 0.0941** 0.034 1.415*** 0.078 

 
(0.267) 

 
(1.099) 

 
(4.117) 

 Northeast
d -0.936*** 0.078 1.221*** 0.033 2.157*** 0.082 

 
(0.392) 

 
(3.391) 

 
(8.643) 

 Constant -1.513*** 0.12 -2.187*** 0.072 -0.675*** 0.13 
a
Coefficients vs. the base category of coal host. 

b 
Coefficients vs. the base category of nuclear 

host. Relative risk ratios are in parentheses.
 c
Median Income and Population Density are reported 

in thousands. 
d 
Effect of region with South as base category. *p<0.05, **p<0.01, ***p<0.001.  
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Model 9 presents the effect of demographic variables on the probability of tracts being 

located within a 30 mile radius of both a coal and nuclear plant versus tracts being nuclear host 

alone. This model shows that both host tracts are more likely than nuclear host tracts to contain 

greater percent population with a bachelor’s degree or above (RRR=1.011; p<0.001), percent 

population children (RRR=1.084; p<0.001), and population density (RRR=1.014; p<0.001). 

Conversely, tracts with greater percent population minorities (RRR=0.992; p<0.001), median 

household income (RRR=0.995; p<0.01), and percent population employed in the utilities sector 

(RRR=0.981; p<0.01) are more likely to be nuclear host tracts than both host tracts. Regional 

variables determine that tracts located in the Midwest (RRR=4.117; p<0.001) and Northeast 

(RRR=8.643; p<0.001) compared to the South are more likely to be both host tracts than nuclear 

host tracts. In this model percent families living below the poverty line is the only variable which 

is not a significant predictor of being a both host tract compared to nuclear host tract at the 30 

mile buffer. 

Summary of Multivariate Findings 

Coal Host Tracts vs. Non-Host Tracts 

At the 10 mile buffer, multinomial logistic regression equations reveal that compared to 

non-host tracts, coal host tracts contained significantly greater percent of the population that is 

minority, percent families living in poverty, percent of the population with a bachelor’s degree or 

above, population density and percent of the population that is employed in the utilities sector. In 

contrast, coal host tracts had lower median household income and percent of the population that is 

children compared to non-host tracts. Coal host tracts were more likely than non-host tracts to be 

located in the Midwest and Northeast versus the South. 

At the 20 mile buffer, coal host tracts continued to have greater percent of the population 

that is minority, percent of the population with a bachelor’s degree, percent of the population 
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employed in the utilities sector and population density than non-host tracts. However, coal tracts 

no longer contained more poverty and lower incomes than non-host tracts. Coal host tracts 

continued to be more likely than non-host tracts to be located in Midwest and Northeast 

compared to the South. Additionally, coal host tracts were less likely than non-host tracts to be 

located in the West versus the South. 

At the 30 mile buffer, coal host tracts continued to have greater percent of the population 

that is minority, percent of the population with a bachelor’s degree, population density, and 

percent of the population that is employed in the utilities sector compared to non-host tracts.  

Additionally, at this buffer size median household income and percent of the population that is 

children was also greater in coal host tracts compared to non-host tracts. Coal host tracts were 

more likely than non-host tracts to be located in the Midwest and Northeast and less likely to be 

located in the West versus the South. 

Nuclear Host Tracts vs. Non-Host Tracts 

Multivariate analyses reveal that nuclear host tracts at the 10 Mile buffer possessed lower 

rates of poverty and population density and higher percent of the population employed in the 

utilities sector than non-host tracts. Nuclear tracts were less likely than non-host tracts to be 

located in the Northeast and West. Additionally, nuclear tracts more likely than non-host tracts to 

be located in the Midwest compared to the South. 

At the 20 mile buffer, nuclear host tracts contained greater percent of the population that 

is minority, median household income, percent of families living in poverty, and percent of the 

population employed in the utilities sector than non-host tracts. Additionally, nuclear tracts 

contained fewer children than non-host tracts. Compared to non-host tracts, nuclear host tracts 

were less likely to be located in the West and Midwest and more likely to be located in the 

Northeast versus the South. 
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Nuclear host tracts at the 30 mile buffer had greater percent of the population that is 

minority, median household income, and percent of the population that is employed in the utility 

sector compared to non-host tracts. Additionally, nuclear host tracts had lower percent of the 

population that is children. Compared to non-host tracts, nuclear tracts were less likely to be 

located in the West versus the South.  

Coal Host Tracts vs. Nuclear Host Tracts 

 At the 10 mile buffer, multinomial logistic regression equations reveal that compared to 

nuclear host tracts, coal host tracts contained significantly greater percent of the population that is 

minority, percent families living in poverty, percent of the population with a bachelor’s degree or 

above, and population density and lower percent of the population that is children. Coal host 

tracts also had lower median household income and percent of the population that is employed in 

the utilities sector than nuclear host tracts. Compared to nuclear host tracts, coal host tracts were 

more likely to be located in the West, Midwest, and Northeast versus the South.  

 At the 20 mile buffer, coal host tracts continued to have greater percent of the population 

that is minority and population density than nuclear tracts. Median income and percent population 

with a bachelor’s degree also remained greater in nuclear tracts compared to coal tracts, however, 

at this buffer nuclear tracts also contained more poverty and less percent population children. 

Compared to nuclear host tracts, coal host tracts were more likely to be located in the Midwest 

and less likely to be located in the West versus the South. 

 At the 30 mile buffer coal host tracts contained lower percent of the population that is 

minority and median household income than nuclear host tracts. Coal host tracts also had greater 

percent of the population with a bachelor’s degree, percent of the population that is children, and 

population density. Compared to nuclear host tracts, coal host tracts at the 30 mile buffer were 
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more likely to be located in the Midwest and Northeast and less likely to be located in the West 

versus the South. 
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CHAPTER V 
 

 

CONCLUSION 

 

Discussion of Findings 

This study sought to determine whether race, class, and percent of the population that is 

children are indicators of power plant injustices. Hypothesis 1 was supported with coal host tracts 

containing greater percent of the population that is minority than non-host tracts at all buffer sizes 

(Table 17). Further, as predicted in Hypotheses 2 and 3 median incomes were lower and poverty 

rates were higher in coal host tracts compared to non-host tracts at the 10 mile buffer, although 

this finding did not persist at the 20 and 30 mile buffers. These findings are congruent with other 

studies examining inequalities concerning the location of coal-fired power plants in particular 

(Keating and Davis, 2002; Faber and Krieg, 2002) and the environmental justice literature more 

broadly (Downey, 2005; Bullard, 1990; Mohai and Bryant, 1992; Pellow, 2000). 

Nuclear host tract demographics tell a very different story. As predicted in Hypothesis 4, 

and corresponding to the results of Alldred and Shrader-Frechette (2009), there were no 

differences in the percent of the population that is minority between nuclear and non-host tracts at 

the 10 mile buffer. Interestingly, at the 20 and 30 mile buffers this hypothesis was rejected as 

nuclear host tracts contained significantly greater percent of the population that is minority 

compared to non-host tracts. 
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Table 17. Supported hypotheses by buffer size. 

    10 Mile 20 Mile 30 Mile 

Hypothesis 1 
* * * 

Coal tracts contain more minorities 
a.
  

Hypothesis 2 
* 

  Coal tracts contain lower incomes 

Hypothesis 3 
* 

  Coal tracts contain more poverty 

Hypothesis 4 
* 

  Nuclear tracts do not contain more minorities 

Hypothesis 5 
* * * 

Nuclear tracts do not contain lower incomes 

Hypothesis 6 
* 

 
* 

Nuclear tracts do not contain more poverty 

Hypothesis 7 

  
* 

Coal tracts contain more children 

Hypothesis 8 

   Nuclear tracts contain more children 
a. 

Compared to non-host tracts. 
    

 

As anticipated given the economic model of environmental inequality (i.e. Hypothesis 5), 

median household incomes were not lower in nuclear host tracts compared to coal host tracts at 

all buffer sizes. In fact, median incomes were higher in nuclear tracts at the 20 and 30 mile 

buffers. Further, as predicted in Hypothesis 6, poverty rates were not greater in nuclear host tracts 

compared to non-host tracts at the 10 mile and 30 mile buffers. These finding were expected as 

nuclear plants, unlike coal plants, do not appear to have a strong impact on property values in 

surrounding areas (Farber, 1998). It should be noted however, that while the 30 mile buffer 

showed no difference in poverty rates between nuclear host tracts and non-host tracts, at the 10 

mile buffer nuclear host tracts contained significantly lower rates of poverty. Thus, these tracts 

are not simply unaffected by their host tract status, they appear to be benefitting from decreased 

rates of poverty. This may suggest that nuclear plants provide economic benefits distinct from 



68 
 

 

other types of hazardous facilities. In contrast, Hypothesis 6 was not accepted at the 20 mile 

buffer and therefore these benefits dissolve at larger buffer sizes. 

Although the aforementioned hypotheses were largely supported by the data, predictions 

concerning the percent of the population children were unexpected. Hypothesis 7 was only 

supported at the 30 mile buffer where coal host tracts contained greater percent of the population 

that is children compared to non-host tracts. In contrast, at the 10 and 20 mile buffers there were 

lower percent of the population that is children compared to non-host tracts. Hypothesis 8 was 

rejected at all buffer types with no differences found between percent of the population that is 

children at the 10 mile buffer and less children found in nuclear tracts at the 20 and 30 mile 

buffers. These findings are in contrast to previous studies which have indicated children as a 

group disproportionately exposed to environmental hazards (Grineski et. al., 2010; Perlin et al., 

2001). 

 Findings from both host tracts may offer further insight into the influence of being a coal 

and nuclear host tract on population demographics. To begin with, both host tracts have fewer 

minorities and less poverty than non-host tracts at the 10 mile buffer, and thus it can be assumed 

that the advantaged populations in both host tracts have the agency to move to a non-host tract if 

desired. Additionally, nuclear host tract demographics closely resemble both host demographics 

at the 10 mile buffer, possibly indicating that it is the presence of the nuclear plant and not the 

coal plant that is influencing the demographics of the surrounding community. If this is the case, 

then it may be assumed that the benefits of living near a nuclear reactor are so great that residents 

are willing to tolerate the presence of a coal-fired facility in exchange for nuclear plant 

advantages. However, the benefits of living in a both host tract may not originate from either type 

of power plant as some findings suggest both host tracts possess distinct characteristics. For 

instance, both host tracts contain more children than all other tract types at all buffer sizes. The 
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fact that children are not disproportionately exposed to nuclear or coal-fired plants alone suggests 

that both host tracts contain unique features not controlled for in this study. 

While it was hypothesized that nuclear host tracts would be more affluent than coal host 

tracts, given the dangers of radiation exposure associated with living nearby a site, it remains 

unclear why people with the resources to relocate would select to live near a nuclear powered 

plant. One possible explanation is that local residents simply do not view nuclear plants as 

hazardous facilities. The types of additions which result from coal and nuclear plants may help to 

explain why the former may be viewed as noxious while the latter are not. Emissions from coal-

fired power plants can be seen rising from smoke stacks and decreasing visibility, smelt in the air, 

and felt in the throats and lungs of nearby residents. Community members can make connections 

in their daily lives between the density of haze in the air and immediate impacts on their local 

environment and health. For instance, nearby residents may notice increases in coughing, asthma 

attacks, and exacerbation of respiratory illnesses on days with decreased visibility from coal 

emissions. Thus, the costs associated with living near a coal plant are undeniable, they can be 

perceived with human senses and health impacts are both long term and acute. 

 In contrast, the additions resulting from nuclear powered plants are far more 

imperceptible and are associated with delayed adverse health effects. The only visible releases 

from nuclear facilities are clouds of steam. Although escaped radiation has the potential to result 

in cancer in nearby residents, this exposure cannot be perceived by the affected individual and 

does not interfere with their daily lives. Additionally, connections between radiation exposure 

occurring over many years and negative health outcomes such as cancer are not as apparent as 

suffering from asthma attacks on a day with high levels of smog. Thus, nearby residents of 

nuclear plants do not experience the same day to day consequences associated with coal plants, 

although the long term health impacts may be comparable.  
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While residents of nuclear host tracts may not be as acutely aware of the emissions 

resulting from nuclear plants as they might be from coal fired plants, the risks associated with 

living near a nuclear facility remain well documented. Therefore, it is still not entirely clear why 

residents with the agency to relocate would select to remain in these hazardous areas. Risk 

perception theory may offer insight into this perplexity. Perhaps most importantly, risk perception 

literature informs us that when people receive benefits from a source of risk, they are more likely 

to selectively overlook information regarding the dangers of that risk (Margolis, 1996). If this 

explains why wealthier communities live in close proximity to nuclear power sites, then we 

would expect that nuclear plants provide amenities to the community that are not provided by 

coal-fired plants. One clear advantage of any power facility is the availability of jobs. However, 

the work environments and number of jobs available to the local community will likely vary by 

facility type. For instance, a study examining mental health in nuclear and coal plant workers 

found that coal plant employees perceived more problems with workplace exposure than nuclear 

plant employees (Parkinson and Bromet, 1983). Additionally, jobs provided from construction 

and operation of coal-fired plants tend to be overestimated and communities receive little 

economic benefit from hosting a facility (Ochs Center for Metropolitan Studies, 2009). While 

coal-fired plants provide increasingly limited numbers of jobs to local residents and most 

employment benefits go outside of the host county, this is not clear in the case of nuclear plant 

employment. Multivariate analyses from this study support this notion as nuclear and both host 

tracts possessed greater percent population employed in the utilities industry than coal host tracts 

at the 10 mile buffer. Additionally, while both host tracts continued to contain more utility sector 

employees at the 20 mile buffer, this finding was inverted at the 30 mile buffer, further supporting 

the finding that coal plants employ workers outside the immediate community. While there are 

other financial advantages of living near a nuclear facility, such as opportunities for trade and 

improved infrastructure including better road maintenance, the availability of jobs is likely the 
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most influential benefit in terms of risk perception within nuclear plant host communities (Eiser 

et al., 1995).    

However, benefits alone do not necessarily explain why communities would expose 

themselves to the severe risks posed by nuclear plants. Studies of risk perception offer other 

possible explanations for why people would willingly accept or engage in a risky activity such as 

living near a nuclear facility. To begin with, researchers have found that people tend to be 

influenced by the knowledge of experts in situations in which they feel they know little about the 

subject matter (Siegrist and Cvetovich, 2000). In the case of nuclear power, it seems unlikely that 

the majority of the population is familiar with the process of nuclear energy production and the 

corresponding probability of a plant melt down. Thus, if the federal government and professionals 

in the field assure local communities that the operations at a nuclear plant pose little to no threats 

to public health, residents may rest assured in the expertise of specialists.  Another explanatory 

finding is that people tend to view voluntary activities as being less risky than activities which are 

involuntary (Finucane, 2000). As populations living within 10 miles of a nuclear plant have lower 

rates of poverty than non-host tract populations, it can be assumed that these individuals have the 

ability to relocate and thus voluntarily live in areas surrounding the plant. Additionally, familiar 

risks are perceived as less of a concern than newly introduced risks (Finucane, 2000). As the 

average age of U.S. nuclear reactors is 32 years, it is possible that people have become 

accustomed to the presence of the plants and therefore experience a diminished perception of 

nuclear plant risk (USEIA, 2012a). Further, people tend to view risks as either significant with a 

high probability of occurrence, or as insignificant and implausible (Margolis, 1996). Thus, 

residents may determine that the hazards posed by the plant are unlikely and thus rationalize that 

the plant poses no threat.  

Lastly, perception of risk may be influenced by a community’s sense of place. Venables 

et al., (2012) found that with closer proximity to a nuclear facility, there is an increase in 
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resident’s sense of place and consequently a decrease in the perceived level of risk posed by the 

plant. This may explain why no incidences of environmental injustice and nuclear power plants 

were found at the 10 mile buffer yet existed at the 20 and 30 mile buffers. Community members 

living closest to the facility may not perceive the plant as an environmentally hazardous facility 

and thus electively remain in the area while communities 20 and 30 miles from the site do not 

experience a diminished sense of risk and thus contain demographics similar to communities 

surrounding other undesirable sites.  

In addition to the aforementioned influences of risk perception, there is another important 

factor influencing how individuals understand risk. Previous literature informs us that risk 

perception is not only a measure of how people rationalize acceptable levels of risk; it is also a 

matter of who is doing the rationalizing. Risk perception studies have found that race, gender, 

age, and education are all influential factors in determining how risks are understood. For 

instance, females, minorities, younger individuals, and individuals with less education are more 

likely to perceive risks as serious (Savage, 1993; Flynn et al. 1994; Davidson and Freudenberg, 

1996; Finucane et al., 2000). Consequently, research has found that white males view 

environmental risks as less significant than their female and non-white counterparts. Interestingly, 

studies have found that this “white male effect” results from only a third of the white male 

population and these individuals tend to possess a higher socioeconomic standing and identify as 

more politically conservative (Flynn et al., 1994). Therefore, it is suggested that this lesser 

concern of risk is the result of the sociocultural status of white males in our society and their 

diminished perception of risk can be attributed to their less vulnerable position in society and the 

fact that they are more likely to receive benefits from environmental risks than non-whites and 

females (Marshall, 2004; Slovic, 1997). Given the whiter, wealthier communities in nuclear host 

tracts compared to coal host tracts, these findings may contribute to an understanding of why a 
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community with agency would be more likely to accept the risks of living near a nuclear power 

facility. 

Limitations and Future Research 

There are several limitations to this study that warrant comment. To begin with, the 50 

percent areal containment method does not guarantee that all communities contained within a 

buffer area are categorized as impacted populations. This is particularly true for communities 

living in large tracts or tracts located along the boundary of a buffer zone as these factors increase 

the likelihood that less than 50 percent of the units’ area will be contained in the buffer. For this 

reason, a census tract may contain a coal or nuclear plant and yet not be categorized as a host unit 

as the majority of its area falls outside the selected buffer zone. Similarly, communities living 

outside the buffer zone may be included as host communities if more than half of their 

corresponding tract is contained within the buffer.    

 Another concern with this approach is that all facilities are treated as equal. In reality, 

emissions from coal-fired power plants vary greatly according to plant. Further, local weather 

patterns and geography may influence pollutant dispersion meaning that emission data alone does 

not account for ambient air quality in a given community (Levy et al., 2009). Similarly, for 

nuclear facilities, the number of reactors, the plant’s operating capacity and the age and design of 

the plant may influence the exposure and risk for surrounding communities. Therefore, the 

implications of living near a plant vary by facility and location. As research has indicated that 

heavier polluting coal power plants are more likely to be located in poor and minority 

communities than plants with lower emissions (Faber and Krieg, 2002), more research is needed 

to determine whether this trend is found nationally, and whether demographics differ in nuclear 

host communities according to the size and age of nuclear reactors. 

It is also worth mentioning, that this study would have benefitted from the incorporation 

of additional, smaller buffer sizes. Some researchers recommend employing a finer spatial 
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resolution such as analyzing data at the block group level to avoid homogenization of the 

contained population (Sheppard et al., 1999). While the 30 mile buffer was selected because it 

represents an area encompassing the possible dispersal of pollutant health impacts, residents 

living along the edges of this buffer likely do not experience many of the nuisances associated 

with facilities including increased traffic, noise disturbances, visual blight, and stigmatization of 

living in close proximity to an undesirable facility. Particularly for coal plants, which tend to be 

located in urban areas and are thus obstructed from view by surrounding structures, residents 

living along the boundary of the 30 mile buffer may not even be aware of the presence of the 

facility. Therefore, while all buffer sizes indicate potentially impacted populations, smaller buffer 

zones likely provide more accurate information regarding populations most impacted by the 

presence of plants. 

Further, it should be noted that this study does not address whether tract demographics 

were influenced by the presence of power plants, or whether power plants were sited in tracts as a 

result of their demographic composition. Therefore, this research is unable to answer, for 

instance, whether certain minorities are disproportionately exposed to coal power plant risks as a 

result of racist siting decisions or white flight and lower housing costs associated with undesirable 

facilities. To determine causality, future research should incorporate historic census data and 

plant construction dates. These methods would offer insight into the types of mechanisms through 

which power plant inequalities occur. Nevertheless, whether the racism is blatant or 

institutionalized, the outcome remains the same; minority populations are unequally burdened by 

the presence of coal power plants in the United States.   

Lastly, caution must be used when extrapolating conclusions from this type of distance-

based method of measuring environmental inequalities. Determining the population within a 

given distance from a polluting facility does not necessarily correspond to the population most 

impacted by the hazards. Plume- based methods are more appropriate for measuring affected 
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populations as they evaluate dispersion of pollutants. Further, even if pollutants did disperse from 

point sources in perfect concentric circles such as buffer zones, it is difficult to determine public 

health impacts from exposure. While associations have been made between various 

environmental hazards and adverse health outcomes, it is nearly impossible to determine that an 

individual’s poor health is the direct result of a particular source of pollution. Thus, distance-

based methods are unable to offer a concrete understanding of the health impacts of hazardous 

facilities.  

While it is essential to understand the limitations of these methods, this is not to imply 

that distance-based methods are obsolete. Rather, Mohai et al. (2009) asserts that risk-based 

modeling methods will not replace distance-based methods as both strategies have unique 

advantages. While plume models are superior at estimating health impacts on local communities, 

distance-based methods are better equipped to evaluate communities impacted by “noises, odors, 

traffic congestion, risks to children, visual blight, falling property values, and social 

stigmatization associated with polluting industrial facilities and hazardous waste sites” (413).  

Further, there is certainly a correlation between exposure and proximity to hazardous facilities 

and even the most rudimentary distance-based methods can offer substantial insights regarding 

specific environmental inequalities. 

 

Conclusion 

While environmental justice scholars have examined various parts of the energy 

production lifecycle including the mining of uranium and disposal of nuclear waste (Brugge and 

Goble, 2002; Malin and Petrzelka, 2010; Markstrom and Charley, 2003; Taliman, 1992; Gerrard, 

1994), and the extraction of coal through mountaintop removal (Hendryx, 2011; Evans, 2010; 

McGinley, 2004), little attention has been paid to power plant inequalities. The few exceptions 
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indicate that while populations surrounding coal-fired plants tend to be poorer and contain more 

people of color than non-host communities (Faber and Krieg, 2002; Keating and Davis, 2002), 

there is no evidence of environmental inequalities concerning nuclear plants at the national level 

(Alldred and Shrader-Frechette, 2009). This study sought to help fill the gap in the environmental 

justice literature by examining whether relationships exist between race, class, and proximity to 

coal-fired and nuclear power plants in the United States.  

Results of this research indicate that at smaller scales (i.e. 10 miles) coal-fired power 

plants appear to be disproportionately located in communities with more people of color and 

fewer economic resources. In contrast, nuclear power plants appear to be located in areas with 

less poverty with no suggestion of racial inequalities. This discrepancy may be explained by 

perceptions of risk and the undetectable quality of nuclear plant emissions. Interestingly, both 

host tracts are distinct in their demographics and tend to contain less poverty and people of color 

and more children. This finding may suggest that these tracts have unique characteristics not 

accounted for in this study. It is important to note that few of these relationships were static over 

increasing buffer sizes and thus determining what size buffer is most appropriate for evaluating 

specific hazards is essential in making claims about environmental inequalities. 

While the relationships between race, class, and exposure to power plants shift with 

changes in the scale of analysis, one thing remains clear: power plant risks are not the issue of 

isolated communities. More than 60 percent of all tracts in the United States fall within a 30 mile 

buffer from a coal-fired or nuclear power plant, the distance at which most health risks have been 

reported. While certain populations may be particularly vulnerable at close distances, the hazards 

from these plants are clearly an issue of national extent. Unfortunately, in our society public 

health is not prioritized over the objectives of the treadmill of production, which requires a 

massive supply of economically produced electricity.  
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This treadmill demands exponentially increasing expansion and requires producers to 

increase profits in order to survive in the system. Coal and nuclear energy are popular methods of 

electricity production because they are relatively cheap to produce and thus maximize profits. 

Coal is particularly appealing in the United States as it is an abundant, and thus inexpensive, 

domestic resource. Nuclear powered electricity costs even less to produce than electricity 

generated from burning fossil fuels and is expected to be even cheaper in the future (World 

Nuclear Association, 2012). Producers are further enticed by economic incentives resulting from 

alliances formed between capital, workers, and the government. Policies advocating energy 

security and “clean energy” (i.e. energy produced with little to no greenhouse gas emissions) have 

made nuclear power particularly attractive in the United States. While the negative externalities 

arising from these forms of electricity production are immense, the treadmill promises to resolve 

issues of environmental concern including greenhouse emissions, and the safe disposal of nuclear 

waste through the development of new technologies. Meanwhile, nearby communities exposed to 

the risks of power plant operations pay a heavy portion of the price of generating low-cost 

electricity.     

Risk society theory informs us that risks from power plants are the expected 

consequences of our modern lifestyle. However, this does not suggest that these risks are 

necessary nor that intensive modernization is desirable. Given the large portion of the United 

States which is potentially impacted by the daily operations of energy production, a reevaluation 

of the costs and benefits of current energy consumption is needed. Such an analysis must take 

into consideration the ambiguity in identifying the extent of risks arising from our modern world. 

It must also consider the players most vulnerable to these risks. While producers may be able to 

measure the costs of power plant risks in dollar amounts, local communities are vulnerable to the 

delocalized, non-compensable, and incalculable risks arising from plant operations including 

long-term contamination of local environments, the loss of life from exposure to emissions, and 
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the unknown health outcomes of a plant accident. Thus, policy makers and government officials 

responsible for determining acceptable levels of emissions and safety controls should consider not 

only the cost of the materials necessary for electricity production, but also the cost of medical 

bills and lost work days arising from power plant emissions. If producers, rather than local 

communities, were responsible for these costs, then perhaps our society would place a higher 

priority on public health. 
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