
   SECURE KEY TRANSFER PROTOCOL USING 

GOLDBACH SEQUENCES 

 

 

   By 

   KRISHNAMA RAJU KANCHU 

Bachelor of Technology in Computer Science 

Sir M. Visvesvarayya Institue of Technology 

 Bangalore, Karnataka, India  

2011 

 

 

   Submitted to the Faculty of the 

Graduate College of the 

Oklahoma State University 

in partial fulfillment of 

the requirements for 

the Degree of 

MASTER OF SCIENCE 

May, 2013 



 

ii 
 

   SECURE KEY TRANSFER PROTOCOL USING 

GOLDBACH SEQUENCES 

 

 

   Thesis  Approved: 

 

   Dr. Subhash Kak 

 Thesis Adviser 

    Dr. Nophill Park  

 

    Dr. David Cline  



 

iii 
 

Name: KRISHNAMA RAJU KANCHU  

 

Date of Degree: MAY, 2013 

  

Title of Study: SECURE KEY TRANSFER PROTOCOL USING GOLDBACH 

SEQUENCES 

 

Major Field: COMPUTER SCIENCE 

 

Abstract: This thesis presents a method of communicating keys using sequences obtained 

from the partitions of even numbers as primes, which is the Goldbach conjecture. We 

have investigated the randomness properties of these sequences. New variants of the 

prime partitions are examined and it is found that the sequences so obtained also have 

excellent cross correlation properties. An algorithm is devised where the Goldbach 

partitions are used to exchange keys via a certification authority. 

 

 



 

iv 
 

 

 

 

TABLE OF CONTENTS 

 

 

 

Chapter          Page 

 

I. INTRODUCTION ......................................................................................................1 

 

 Protocols for Security ..............................................................................................1 

  

 

 

II. REVIEW OF LITERATURE....................................................................................3 

  

 Goldbach sequences .................................................................................................3 

  

 

 

III. METHODOLOGY ..................................................................................................7 

 

 Goldbach Partitions and their behavior ....................................................................7 

 Goldbach circles and ellipses .................................................................................13 

 Goldbach concentric circles ...................................................................................17 

 Cross correlation between various sequences ........................................................19 

 

 

IV. COMMUNICATION PROTOCOL ......................................................................24 

 

 Protocol ..................................................................................................................24 

 Analysis..................................................................................................................27 

  

 

V.  CONCLUSION ......................................................................................................30 

 

  

 

REFERENCES ............................................................................................................31 

 



 

v 
 

LIST OF TABLES 

 

 

Table           Page 

 

   1...................................................................................................................................4 

   2...................................................................................................................................8 

   3.................................................................................................................................10 

   4.................................................................................................................................12 

   5.................................................................................................................................12 

   6.................................................................................................................................14 

   7.................................................................................................................................15 

   8.................................................................................................................................16 

   9.................................................................................................................................17 

   10...............................................................................................................................21 

   11...............................................................................................................................27 

    



 

vi 
 

LIST OF FIGURES 

 

Figure           Page 

 

   1...................................................................................................................................5 

   2...................................................................................................................................6 

   3...................................................................................................................................8 

   4.................................................................................................................................10 

   5.................................................................................................................................13 

   6.................................................................................................................................14 

   7.................................................................................................................................16 

   8.................................................................................................................................17 

   9.................................................................................................................................18 

   10...............................................................................................................................19 

   11...............................................................................................................................20 

   12...............................................................................................................................22 

   13...............................................................................................................................23 

   14...............................................................................................................................26 

   15...............................................................................................................................28 

   



 

1 
 

 

 

 

 

CHAPTER I 
 

  

INTRODUCTION 

  

Protocols for security 

Different techniques and protocols are used for security applications. Some of these are based on 

number theory [1]-[7], whereas others are based on physics [8]-[12].  Some applications use 

hashing algorithms such as SHA-1, SHA-2, GOSH, HAVAL, MD-5. For key distribution 

symmetric and asymmetric methods are used. Amongst the protocols and hierarchies proposed 

for secure communication are: Internet Key Service layered on Secure DNS, Session key 

distribution in three party setting of Needham and Schroeder, Password-based protocols for 

authenticated key exchange against a dictionary attack and methods for reliable multicast [1]. 

Cryptography has been most successfully deployed in protocols where a client-server 

relationship exists, such as Secure Socket Layer (SSL) and Transport Layer 

security(TSL).  A data can be encrypted using an encryption algorithm along with a 

public key. This encrypted data could be read by the node which has the private key of 

this encrypted data which can decrypt the message. A signature is formed together with a 

message digest and a private key. It makes it impossible to detect the message digest 

given a key and also it would be impossible to detect the key given a message digest. 

Other variations are given in [13],-[14]. 
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In this thesis we consider a new way to develop a key distribution protocol using the 

standard Goldbach conjecture and its constrained forms. According to this conjecture any 

even number can be represented as a sum of two prime numbers. We have looked at 

random sequences obtained from the count of partitions of different even numbers and 

we have derived new variant sequences of this partition random sequence.  Random 

sequences can be good candidates for cryptographic keys [15]-[18] and they have other 

applications in cryptography. When random sequences from different sources are used, 

their independence may be checked by a cross correlation analysis [19]-[21].  

Goldbach partitions will be shown to have excellent cross correlation properties. We also 

present the use of Goldbach partitions for a key exchange protocol.  

 

. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Goldbach sequences 

In 1742, Goldbach stated that every even number can be represented as the sum of three 

prime numbers, at that time he considered one as a prime number. Later, Euler restated 

Goldbach hypothesis as any even number greater than four can be represented as a sum 

of two prime numbers [22],[23]. This is also called as strong conjecture. And the 

numbers of such prime pairs are called as partitions. Examples are: 

 6 = 3+3    (one partition)  

 8 = 3+5    (one partition) 

 10 = (3+7) or (5+5)   (two partitions) 

 12= (5+7)               (one partition) 

 

Below is the count for partitions for n up to 36 where g(n) is the partition count. This 

table shows how the partitions grow randomly as the numbers increase.  
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Table1. Number of partitions of g(n) for an even number n 

N 20 22 24 26 28 30 32 34 36 

g(n) 2 3 3 3 2 3 2 4 4 

                                                                          

Several number theoretic techniques are used for the generation of random numbers. We 

wish to introduce another method that generates pseudo-random numbers using Goldbach 

partitions. Note, further, to prove the falsity of the Goldbach conjecture it requires that 

for n, all instances of n-pi for consecutive odd primes pi up to n/2 be non-prime. But, 

prime number theorem says that the probability of a selected number m being prime is 

given by 1/ ln m therefore, the probability of not being prime is (1- 1/ln m) and hence the 

conjecture being false is π(1- 1/pi) which decreases as n increases.  

Goldbach series are the those number sequences which are generated as a result of 

Goldbach conjecture that all even numbers greater than two can be expressed as a sum of 

two prime numbers. Figure 1 presents the partitions for numbers less than 1,000,000.  
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Figure 1. Goldbach partitions for the even number less than 1,000,000 (Source Wikipedia  

Commons). 

The points may be grouped into several regions as observed from the bold regions in the 

above graph. It is also likely that even numbers with distinct partitions could be found as 

the value of the number increases. It is also observed that there are peak values as the 

numbers increase. These peak values occur for numbers that are product of several small 

prime numbers. 
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   Figure 2. Graph showing distinct peaks for numbers that are integral multiples of prime. 

The peaks start from 15, 30, 60 , 90, 210,.. and they range up to largest product of prime 

numbers within our set. 
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CHAPTER III 
 

 

METHODOLOGY 

 

Goldbach Partitions and their Behavior 

Goldbach partitions represent the number of ways an even number can be represented as 

a sum of two prime numbers. The Goldbach partitions when observed on close quarters 

would produce some interesting behaviors. One of those, which enable the use of 

Goldbach partitions in cryptography, is the local peaks values and autocorrelation 

property. 

In order to study the local peak values we need to understand the partition count for each 

even number. The partition count of all even numbers consists of series of independent 

values of even and odd numbers whose occurrences can be ascertained through the 

autocorrelation properties which describe the correlation between the variable across 

different ranges of separation.   

When a graph of partitions versus count is plotted, it is seen as below. 
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Figure3. Graph representing partitions for even numbers 

The partition count of the even numbers till 188 is shown in the table below, 

Table2. Partition count for numbers less than 190 

n g(n) n g(n) n g(n) 

4 1 66 6 128 3 

6 1 68 2 130 7 

8 1 70 5 132 9 

10 2 72 6 134 6 

12 1 74 5 136 5 

14 2 76 5 138 8 

16 2 78 7 140 7 

18 2 80 4 142 8 

20 2 82 5 144 11 

22 3 84 8 146 6 
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26 3 88 4 150 12 
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28 2 90 9 152 4 

30 3 92 4 154 8 

32 2 94 5 156 11 

34 4 96 7 158 5 

36 4 98 3 160 8 

38 2 100 6 162 10 

40 3 102 8 164 5 

42 4 104 5 166 6 

44 3 106 6 168 13 

46 4 108 8 170 9 

48 5 110 6 172 6 

50 4 112 7 174 11 

52 3 114 10 176 7 

54 5 116 6 178 7 

56 3 118 6 180 14 

58 4 120 12 182 6 

60 6 122 4 184 8 

62 3 124 5 186 13 

64 5 126 10 188 5 

 

When a graph is plotted for this count up to a sequence of 2000 numbers we would get a 

graph as follows 
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Figure4. Pattern representing the partition count for 20000 even numbers 

We see a set of local peaks existing for each number as the range increases. The peaks 

occur for the numbers which are multiple prime and a product of the prime numbers and 

its multiples. 

We observe peaks for 2×3 = 6; 2×3×5 = 30; 2×3×5×7= 210; 2×3×5×11=330; 

2×3×5×13=390; 2×3×5×7×11=2310; 2×3×5×7×11×13=30030; 

2×3×5×7×11×13×17=510510; 2×3×5×7×11×13×17×19=9699690…  

Table3. Peak values for prime numbers’ product and its adjacent numbers 

n g(n) n g(n) n g(n) n g(n) 

30020 318 60050 524 90080 741 1021010 5567 

30022 240 60052 397 90082 577 1021012 4163 

30024 470 60054 798 90084 1119 1021014 8402 

30026 223 60056 406 90086 578 1021016 4518 
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30028 237 60058 410 90088 552 1021018 4127 

30030 905 60060 1564 90090 2135 1021020 17075 

30032 225 60062 387 90092 552 1021022 4401 

30034 224 60064 394 90094 547 1021024 4140 

30036 466 60066 846 90096 1110 1021026 8228 

30038 232 60068 400 90098 594 1021028 4179 

 

This above table represents the partition value of the number which is a product of the 

prime numbers and partition values of its adjoining numbers. It is clear that the peak 

values are two to three folds greater than its adjacent numbers. This observation may be 

mathematically represented as follows 

 

g(6k) > g(6k+2) 

g(30k) > g(30k+2) 

g(210k) > g(210k+2) 

and so on… 

Now we consider the autocorrelation property of the binary map of the sequence of 

partitions. The autocorrelation function is mathematically given by 

𝐶(𝑖) =
1

𝑛
  𝑎𝑚 𝑎𝑚+𝑖 
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In order to study the autocorrelation properties, we take first 2000 even numbers starting 

from 4 and count the number of partitions for each even number. We divide the partitions 

into two groups which are the 0 group and the 1 group. Numbers which have an even 

partition count are represented as 0 and numbers which have an odd partition count as 1. 

Hence, the table would be as follows. 

Table4. Representation for binary (0,1) mapping of partitions of even number n 

n 20 22 24 26 28 30 32 34 36 

g(n)  0 1 1 1 0 1 0 0 0 

   

This set of sequences is thus converted to a sequence containing -1 and 1 where 0 

represents -1 and 1 represent itself. This is represented in Table 3. 

Table5. Representation for binary (1,-1) mapping partitions of even number n 

n 20 22 24 26 28 30 32 34 36 

g(n)  -1 1 1 1 -1 1 -1 -1 -1 

 

The autocorrelation sequence thus obtained when plotted on a graph is shown in Figure 5. 

The peak value |C(k)| for non-zero k is 0.0745 which is quite low and which attests to the 

excellent randomness property of the Goldbach partition sequence. These sequences can 

thus be used in cryptographic applications. 

In a variant of the above scheme each even number may be represented as a difference of 

two numbers. On determination of the number of partitions and the autocorrelation 
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function, we see that the autocorrelation function is a mirror image of the graph for which 

even number is considered as a sum of prime numbers.  

 

Figure5. Autocorrelation graph for a sequence of 2000 even numbers 

Goldbach Circles and Goldbach Ellipses 

We now consider partitions which are equidistant to the given number from both sides of 

a number. That is, an even number is represented as 2n and among all the possible 

partition; we select the partition which is nearest to n and equidistant from both sides of 

n. As example if we consider 28, then we have two partitions for it (5, 23) and (11, 17). 

We see that latter partition is closest and equidistant to 14. Hence we say its Goldbach 

radius as 3. A Goldbach circle with equal valued axes is termed a Goldbach circle.  

We can generalize the notion of Goldbach circle to an ellipse where the axes are of 

different values.  We consider an ellipse (l, k) for an even number n such that n and k are 

co-primes. That is n is a multiple of either 1 or k. Here is the number line representation 

of the ellipse for a k value equal to 5 
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  1    2    3    4    5    6     7    8    9   10  11  12  13  14   15  16  17  18   19  20  21  22   23 

Figure 6. The Goldbach ellipse of numbers 6, 8, 12 and 14 for k=5  

One of the characteristic numbers in the Goldbach ellipse is 4n + (k-1)m. Hence, when 2n 

is mapped on 4n+(k-1)m we see a cryptographic application in the form of determining m 

sequence. For different values of k we get different m sequences. We show how the m 

sequence varies for different k sequences in the following table. 

Table 6. Ellipse characteristic values for k =7 

 

 

 

 

 

 

 

 

 

2n 2n-m 2n+km M 4n+(k-1)m 
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Similarly, a table for k = 3 may be drawn. 

Table7. Ellipse sequence for k = 3 

 

 

 

  

 

 

 

 

 

In both the tables we observe that there is no presence of integral multiples of k in the 2n 

column. This is because there can’t be any ellipse generated for these numbers. 

The cryptographic application of these ellipses can be found by analyzing the m 

sequences generated for each sequence with different k values. Let us consider the 

sequence where k = 7 in Table 6. In this case we have an m sequence with values like 1, 

3, 5, 15… we can categorize these values into two groups by performing a mod 4 

operation. Thus we get only numbers with 1 and 3 as shown below 

2n 2n-m 2n+km m 4n+(k-1)m 

4  

8 

10 

14 

16 

20 

22 

26 

30 

32 

34 

3 

7 

7 

13 

11 

19 

19 

19 

19 

29 

31 

7 

11 

19 

17 

31 

23 

31 

47 

43 

41 

43 

1 

1 

3 

1 

5 

1 

3 

7 

3 

3 

3 

10 

18 

26 

30 

42 

42 

50 

66 

62 

70 

74 
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Table8. m sequence which is categorized into 2 groups with k value =7 

2n 4 6 8 10 12 16 18 20 22 

m mod 4 1 1 3 3 1 3 1 3 3 

  

Hence we can represent all 1 with 1 and all 3 with -1 and perform an autocorrelation 

function which gives the probability of predicting the numbers. The result is shown in 

Figure 7. 

 

Figure 7. Autocorrelation function for an ellipse sequences with k = 7 

The maximum probability of predicting the sequence is found to be 11% and it is 

observed that the probability of predicting the sequence decreases as the value of k 

increases because of more possible numbers and more data set and its associated ranges. 
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Goldbach Concentric circles 

Unlike Goldbach circles, Goldbach concentric circles differ in its definition. In, Goldbach 

circles, we define the radius as the shortest equidistant partition from both the sides of the 

number. In this concentric circles, we define the possible number of Goldbach circles that 

are possible for a given even number. 

The Goldbach circles for the first few even numbers are as shown below 

 

Figure8. Number line showing Goldbach concentric circles 

Hence, we have a maximum bound on the number of such Goldbach concentric circles 

for each even number. The number of Goldbach circles is less than or equal to the 

number of prime numbers less than that number. We represent this sequence with the 

function k(n) of Table 9. 

Table 9. Number of concentric circles k (n), n from 4 to 36 

n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

k(n) 1 1 2 2 3 2 2 4 3 3 5 3 3 6 5 2 6 

k(n) mod 2 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 
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As the even numbers in consideration increases the concentric circles count also increases 

with it progressively. The graphical analysis of this count gives interesting results. 

 

Figure 9. Concentric Circles graph against an even number for a count of 1500 numbers 

On close observation we see the presence of peaks which are repeating at regular 

intervals. A few other local peaks repeat at equal intervals. This property is similar to the 

peaks for a Goldbach partition count. The peak value is at its peak for the numbers which 

are multiple of prime numbers and their integral multiples: 
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2×3 = 6;  ; 2×3×5 = 30; 2×3×5×7= 210; 2×3×5×11=330; 2×3×5×13=390; 

2×3×5×7×11=2310; 2×3×5×7×11×13=30030; 2×3×5×7×11×13×17=510510; 

2×3×5×7×11×13×17×19=9699690, etc. 

We also find that the values of these numbers are greater than its adjacent numbers. And 

also these values are three to four folds greater than its adjacent numbers: 

k(6n) > k(6n+2) 

k(30n) > k(30n+2) 

k(210n) > k(210n+2) and so on… 

 

Figure10. Autocorrelation of the Binary Goldbach concentric count sequence. 

Cross Correlation between various sequences 

We now present results on the cross correlation of these sequences. The cross correlation 

of two sequences represents the interdependence of the two strings. The closer the values 

of it to zero, the lesser is the dependence.   
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If sequences are represented by a and b, then for a period of n the cross correlation 

between the two is given by the formula  𝐶(𝑘) = 1/𝑛 ∑ 𝑏𝑖 ∗ 𝑎𝑖+𝑘
𝑛−1
𝑘=0 . 

The strings represented here are converted from their original values to 1, -1 

representation as described above. 

Here we present the cross correlation for the following sequences: Ellipse sequence on 

circle sequence; Ellipse sequence on ellipse sequence (with different k values);  Goldbach 

concentric circle sequences on Goldbach circles. 

1. Ellipse Sequence on Circle Sequence 

We consider the Goldbach Ellipse sequence with k =7 and a Goldbach circle sequence. 

We consider the length of the test string to be 1700. Converting the test strings in a binary 

1, -1 format we compute the cross correlation function as shown in Figure 11. 

 

 

Figure11. Cross correlation between Goldbach Ellipse and Goldbach Circle. 
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The maximum cross correlation value, |max C(b,a)| is found to be 7%. As shown in Table 

10, the peak varies with the length of the sequence, which is to be expected.  

   Table10. Table showing the variation of peak C(b,a) for different length(n) strings. 

n Range 

10 0.4  

50 0.411  

100 0.3267  

250 0.1784  

500 0.1497  

750 0.1318 

1000 0.1248  

1250 0.0983 

1500 0.1045 

1750 0.0725 

2000 0.0764 

2500 0.0715 

3000 0.0583 

3500 0.0591 

4000 0.0605 

4500 0.0567 

5000 0.0486 

 

The peak value decreases as the length of the test string increases. 
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2. Ellipse sequence on Ellipse Sequence (With different k values) 

Now we present the cross correlation between two ellipse with different k values of 5 and 

7. The cross correlation is as shown below. 

 

Figure12. Cross correlation between Ellipse k=5 and k=7. For 5000 numbers 

Here the peak cross correlation value is 3%. 

3. Goldbach Concentric circle sequences on Goldbach circles. 

Next we consider the relationship between the Goldbach concentric circle in relation with 

Goldbach circles. The resulting cross correlation graph is as shown in Figure 13. Its peak 

value is less than around 4% for a sequence of length 5000.  

 

-0.06

0.14

0.34

0.54

0.74

0.94

0 1000 2000 3000 4000 5000

c(
k

)

k

Ellipse Sequence (p=5) v/s Ellipse Sequence (p=7)



 

23 
 

  

 Figure13. Cross correlation between Concentric Circles and Goldbach Circles. 
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CHAPTER IV 
 

 

COMMUNICATION PROTOCOL 

 

We now present a secure communication protocol. Consider two peers that wish to 

communicate with each other in the presence of a Certification Authority who helps in 

authenticating the communicating parties with each other. The Certification Authority 

also enables to transfer the session key between the communicating parties.  

It is assumed that secret keys of communicating parties A and B is a, b respectively. CA 

computes n= a + b which is used in the communication stage. 

Protocol 

When either of the communication party wishes to start a communication with its peer, a 

message is sent to the Certification Authority (CA) to set up the communication. At this 

stage, peer A sends a request message along with value k to the CA as shown below. 

Peer A sends: k   h(a) 

Where h(.) represents a hashing function and   represents a modulus 2 addition of the 

numbers in the binary form. CA can determine the value k since it has the secret key of A 

which is a. Hence, the key k is determined by CA which is used to generate the binary 
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sequence by C.A. Thus, a Goldbach ellipse sequence, Goldbach concentric circles 

sequence or a Goldbach radius sequence is used to generate the binary sequence by C.A. 

The sum n, which is generated by the sum of the two secret keys  A and B is added with a 

random number to generate a new even number. The number of Goldbach partitions for 

this even number is determined and one of those Goldbach partitions are used as an index 

for selecting the binary sequence from the newly generated binary sequence which is 

generated by the Goldbach ellipse sequence. This binary sequence thus selected is sent to 

both the peers which are to communicate with each other with the help of their secret 

keys as follows, 

Peer A receives: key   h(a) 

Peer B receives: key   h(b) 

where h(.) represents a hashing function and   represents a modulus 2 addition of the 

numbers in the binary form. Peers in the communication can determine only if it has the 

secret key with it. This ensures a secure communication between the communicating 

peers.  

This key thus sent to both the peers could be used as a seed for the generation of some random 

number which can initiate the communication between the two parties. 

The steps could be explained as shown below, 

1. Peer A sends a request to CA along with k as k h(a). 
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2. At the CA, k is rendered using the secret key of A 

3. Generate binary sequence using Goldbach ellipse equation with k value. 

4. n = a + b 

5. d(even number) = n + random number. 

6. One of the many partition pairs of m is selected say p and q. 

7. Binary key is generated using the index p and q. 

8. This binary key is sent to both A and B using their secret key a and b as 

  h(a)  key and h(b) key respectively 

 

Figure14. Sequential execution of the protocol 
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Here, it is seen that the both the peers in the communication are unaware of the secret key 

of each other but are distributed the binary secret key safely.  

Analysis 

Goldbach partitions are partitions that are generated as a set of prime numbers and hence 

the secret binary key that is generated is dependent on the selected pair. For example if 

we consider the first 500 even numbers that is up to 1000, we see that the for an even 

number 1000, the Goldbach partitions ranges from (3, 997)  to (491, 509). Hence, the 

binary key length varies from 997 to 18.  

Table 11. Table showing the time to create Goldbach partitions  

Number Time to Encode(sec) 

4 0.000003123 
 

6 0.000002677 
 

8 0.000002677 
 

10 0.000006247 
 

12 0.000010709 
 

14 0.000008478 
 

16 0.000024542 
 

 

The time complexity to create the Goldbach partition is observed to be of the order of  

O(n2) but the time complexity to break the binary key will only be equal to O(2k), where 
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k is the length of the random number used in the first stage of the protocol. This is 

because, since the Goldbach partitions are created with the sequential search of two 

primes, the complexity of the program to create the partitions is of the order of O(n2).  

When a graph is plotted with these values ranging up to 1000, we see that the time taken to 

calculate the Goldbach partition increases in the order of n2. It is also seen that the maximum time 

taken for the largest number is less than a second. Hence, this shows that any Goldbach partition 

less than 1000 could be generated less than 0.01 seconds. 

 

Fig 15. Graph showing the time required to create the Goldbach partitions. 

 

But as mentioned before the complexity of the code for the eavesdropper would be related 

directly to the length of the random sequence used in the initial exchange. If the eavesdropper did 

not know the details of the system, then the complexity will increase to the length of the m 

sequence used in the latter part of the protocol. 
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Although the use of the partitions themselves do not lead to increased security, the partitions can 

be used as a kind of puzzle in devising other challenge-resolution cryptographic systems [3],[4].
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CHAPTER V 
 

  

CONCLUSION 

 

This thesis presents a method of communicating keys using sequences obtained from the 

partitions of even numbers as primes, which is the Goldbach conjecture. We have 

investigated the randomness properties of these sequences. New variants of the prime 

partitions are examined and it is found that the sequences so obtained have excellent 

cross correlation properties. An algorithm is devised where the Goldbach partitions are 

used to exchange keys via a certification authority.
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