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Short term load forecasting (STLF) is important, since it is used to maintain optimal per-
formance in the day-to-day operation of electric utility systems. The autoregressive inte-
grated moving average (ARIMA) model is a linear prediction method that has been used
for STLF. However, it has a weakness. It assumes a linear relationship between current
and future values of load and a linear relationship between weather variables and load con-
sumption. Neural networks have the ability to model complex and nonlinear relationships.
Therefore, they can be used as a robust method for nonlinear prediction, and they can be
trained with historical hourly load data. The purpose of this work is to describe how neural
networks can transform linear ARIMA models to create short term load prediction tools.
This thesis introduces a new neural network architecture - the periodic nonlinear ARIMA
(PNARIMA) model. In this work, first, we make linear predictions of the daily load using
ARIMA models. Then we test the PNARIMA predictor. The predictors are tested using
load data (from May 2009 - April 2011) from Batam, Indonesia. The results show that
the PNARIMA predictor is better than the ARIMA predictor for all testing periods. This
demonstrates that there are nonlinear characteristics of the load that cannot be captured
by ARIMA models. In addition, we demonstrate that a single model can provide accu-
rate predictions throughout the year, demonstrating that load characteristics do not change
substantially between the wet and dry seasons of the tropical climate of Batam, Indonesia.
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CHAPTER 1

INTRODUCTION

Load forecasting plays an important role as a central and integral process in the planning

and operation of electric utilities. If the load forecasting is accurate, there will be a great

potential savings in the control operations and decision making, such as dispatch, unit com-

mitment, fuel allocation, power system security assessment, and off-line analysis. Errors

in forecasting the electric load demand will increase operating costs. Bunn and Farmer [1]

pointed out that in the UK, a 1% increase in forecasting error implied a £10 million increase

in operating costs. If the predicted electric load is higher than the actual demand, the oper-

ating cost will increase significantly, and it wastes scarce resources. On the other hand, if

the predicted electric load is less than the actual demand, it can cause brownouts and black-

outs, which can be costly, especially to large industrial customers. In addition, reliable load

forecasting can reduce energy consumption and decrease environmental pollution.

In general, based on the time horizon, electric load forecasting can be organized into

three categories: short term, mid term and long term. In this work, we will focus on short

term load forecasting (STLF). STLF refers to the prediction of loads for time leads from

one hour up to one week ahead. Mandal et.al [2] explained that STLF is an important

tool in day to day operation and planning activities of the utility system, such as energy

transactions, unit commitment, security analysis, economic dispatch, fuel scheduling and

unit maintenance.

STLF is a very complex process, because there are many factors that influence it, such

as economic conditions, time, day, season, weather and random effects. Electric load de-

mand itself is a function of weather variables, human social activities and industrial activi-
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ties. Hipert et.al [3] explain that short term load forecasting becomes complicated because

the load at a given hour depends not only on the load of the previous hour but also the load

at the same hour on previous days, and the load at the same hour on the day with the same

denomination in the previous week. In addition, the predictor needs to model the relation

between the load and other variables, such as weather, holiday activities, etc.

During the last few decades, various methods for STLF have been proposed and imple-

mented. These methods can be classified into two main types; traditional or conventional

and computational intelligence approaches. Time series models, regression models and the

Kalman filter are some of the conventional methods. Expert system models, pattern recog-

nition models and neural network models are some of the computational intelligence based

techniques. Hagan and Klein [4] were the first to use the periodic ARIMA model of Box

and Jenkins for STLF. This is a univariate time series model, in which the load is mod-

eled as a function of its past observed values, with daily and weekly cycles accounted for.

Papalexopoulos and Hesterberg [5] used the regression model for STLF. The disadvantage

of the regression model is that complex modeling techniques and heavy computational ef-

forts are required to produce reasonably accurate results [6]. Other time series approaches

are multiplicative autoregressive models, dynamic linear and nonlinear models, threshold

autoregressive models and methods based on Kalman filtering.

Another predictor category is the causal model. In this method, the load is modeled as

a function of some exogenous factors, especially weather and social variables. Examples

of causal models include the Box-Jenkins transfer function model, ARMAX models, non-

parametric regression, structural models and curve fitting procedures. Hagan and Klein [7]

introduced the Box and Jenkins transfer function model to STLF. Later, Hagan and Behr

[8] added a static nonlinearity to the temperature input of that model. Linear and nonlinear

STLF using bilinear models have been performed by Zhang [9]. He included temperature

effects to increase the accuracy. Another approach to nonlinear STLF is computational in-

telligence. Expert systems are intelligent methods that have been implemented to forecast
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the short term load in the Taiwan power system [10].

Another computational intelligence method involves neural networks. Neural networks

have given excellent results in STLF [3]. They have become popular because of their abil-

ity to learn complex and nonlinear relationships through training on historical data, which

is very difficult with traditional techniques. Adya and Collopy [11] come to two main con-

clusions, based on their evaluation: they showed that neural networks have the potential

for prediction, and research in neural networks must be validated by making comparisons

between the neural networks and alternative methods. Zhang et. al [12] reviewed the appli-

cation of neural networks to load forecasting and showed that neural networks could deal

with the large amount of historical load data with nonlinear characteristics, but they ignored

the linear relationship among the data. Other research on STLF using neural networks can

be found in [2], [3], [6], [13], [14] and [15].

Since the time series approach is good for capturing linear factors, and neural net-

works are able to model nonlinearities, this work tries to combine the two approaches. The

main objective of this research is to demonstrate how neural networks can transform linear

ARIMA models to create a new forecasting tool, which can improve the accuracy of STLF.

In this work, we will first make linear predictions of the daily load using ARIMA mod-

els. Then, we develop a new nonlinear predictor from the ARIMA model, using neural

networks. This model is called the periodic nonlinear ARIMA (PNARIMA) network. This

is a new approach to STLF. We demonstrate that it has higher accuracy than the conven-

tional time series approach (i.e. the ARIMA model). As a case study, the STLF methods

will be tested using data obtained from Batam, Indonesia. Batam is chosen because it is

the major industrial area in Indonesia, with most of the large industries located there. The

load data will be provided by PT. PLN (State Electricity Company) Batam. The data set

contains hourly electricity consumption from May 2009 to April 2011.

Accurate STLF is very important for industrial areas such as Batam. As the govern-

ment corporation that supplies electricity needs, PT. PLN Batam has to meet public elec-
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tricity demands continuously. In addition, accurate STLF can help to determine the most

economic commitment of generation sources consistent with realibility requirements, op-

erational constraints and policies, and physical, environmental, and equipment limitations.

STLF can also be used to assess the security of the power system at any point and provides

the system dispatcher with timely information [16].

Following this introduction, the thesis is organized as follows: Chapter 2 discusses the

basics of STLF. ARIMA modeling is discussed in Chapter 3, including the fundamentals

of time series analysis and system identification. Neural networks for forecasting are dis-

cussed in Chapter 4. Chapter 5 shows the results of STLF using the proposed approaches:

ARIMA and neural network models. The results are compared to judge the robustness of

these two methods. Chapter 6 is the last chapter, and it summarizes the results and makes

suggestions for future work.
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CHAPTER 2

SHORT TERM LOAD FORECASTING

2.1 Overview of Load Forecasting

The electric power system is a real-time energy delivery system. It is different from water

or gas systems which are storage systems. The electric power system is called a real-time

system because the power is generated, transported and supplied at the moment we turn on

the electric switch. In electric power systems, there are three stages in supplying the power

from the power plant to the customers. Those are generation, transmission and distribution.

Fig. 2.1 shows a typical configuration of an electric power system. A typical configuration

of a power system will be different in each region; it depends on the geographical area,

the interconnection, the penetration of renewable resources and the load requirements. The

electric power system starts from generation. In this process, the power plant generates the

electrical energy. To produce the electrical energy, the power plant transforms other sources

of energy, such as heat, solar, hydraulic, wind and fossil fuel. Then, in the power station,

the energy is transformed to high voltage electrical energy. The high voltage energy will be

transmitted through transmission lines. The energy will be transported from distant gener-

ating stations where the energy is produced to the load centers. Before being distributed to

the consumers, the sub station will transform the high voltage electrical energy to a lower

voltage. This lower voltage energy will be distributed to the customers using the distribu-

tion line. Radial or ring distribution circuits are examples of networks in the distribution

process. Again, this energy will be transformed based on the type of customers, such as

industrial, residential or commercial.
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Figure 2.1: A Typical Configuration of An Electric Power System[17]

In the operation of an electric power system, the capability to provide the load to the

customers is the most challenging aspect, because it means that they must always fulfill

the load requirements instantaneously and at all times. The generator must have extra load

that might be used at any time. Due to the significant load fluctuations during each day, the

system operator must be able to predict the load demand for the next few hours or even the

next few years so that the appropriate planning can be performed. For example, fossil fuel

generators need considerable time to be synchronized to the network. This condition forces
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the power generation to have available a sufficient amount of generation resources. Hence,

prior knowledge of the load requirements enables the electric utility operator to optimally

allocate the system resources.

To have prior knowledge of the load requirements, there is a need for load forecasting.

The ability to forecast load is one of the most important aspects of effective management of

power systems. Load forecasting is essential for planning and operational decision making.

Based on the time horizon or lead time, load forecasting can be categorized in three major

groups.

1. Short term load forecasting

2. Mid term load forecasting

3. Long term load forecasting

The differences in time horizon have consequences for the models and methods applied and

for the input data available and selected. The decision maker must consider not only finding

the appropriate model type but also determining the important external factors needed to

get the most accurate forecast [18].

Short term load forecasting (STLF) usually forecasts the load up to one week ahead,

and is an important tool in such day to day operations of the power system as hydro-

thermal coordination, scheduling of energy transactions, estimating load flows and making

decisions that can prevent overloading. STLF is an active research area, and there are many

different methods. Recently, this area is becoming more and more important because of two

main facts: the deregulation of the power systems, which presents new challenges to the

forecasting problem, and the fact that no two utilities are the same, which necessitates a

detailed case study analysis of the different geographical, meteorological, load type, and

social factors that affect the load demand [17]. Typically, there are three mains groups of

inputs that are used for STLF. They are seasonal input variables (load variations caused

by air conditioning and heating units), weather variables (temperature, humidity, wind and
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cloud covers) and historical load data (hourly loads for the previous hour, the previous day,

and the same day of the previous week). The output of STLF will be the estimated load

every hour in a day, daily or weekly energy generation and the daily peak load.

Another type of load forecasting is mid term load forecasting (MTLF). It has a longer

time horizon, from one week to one year. MLTF is used for scheduling maintenance,

scheduling of the fuel supply and minor infrastructure adjustments. MLTF also enables

a company to estimate the load demand over a longer period, which can help them in

negotiations with other companies. Demographic and economic factors influence MLTF.

Typically, the output of MLTF is the daily peak and average load [19, 20]. MLTF has a

strong relationship with STLF. Longer term decision levels must be incorporated into short

term decision levels. This coordination between different decision levels is particularly

important in order to guarantee that certain objectives of the operation that arise in the

medium-term are explicitly taken into account in the short-term [21]. Moreover, the coor-

dination between decision levels has become an important issue for generation companies

in order to increase their profitability.

The last type of load forecasting is long term load forecasting (LTLF). LTLF covers a

period of twenty years. LTLF is needed for planning purposes, such as constructing new

power stations, increasing the transmission system capacity, and in general for expansion

planning of the electric utility. There are more indicators that influence LTLF in demo-

graphic and economic development. Some factors that are taken into account in LTLF are

population growth, industrial expansion, local area development, the gross domestic prod-

uct, and past annual energy consumption. The output from this forecasting is the annual

peak load demand and the annual energy demand for the years ahead [22]

2.2 The importance for short term load forecasting

STLF is an essential part of daily operations of the utilities. No utility is able to work with-

out it. Moreover, nowadays, STLF has become an urgent matter due to the complexity of
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loads, the system requirements, the stricter power quality requirements, and deregulation.

The error in forecasting would lead to increased operational cost and decreased revenue. In

the deregulation issue, STLF is going to be of benefit in determining the schedule of energy

transactions, preparing operational plans and bidding strategies. STLF provides the input

data for load flow studies and contingency analysis in case of loss of generator or of line.

STLF would be useful for utility engineers in preparing the corrective plan for the different

types of expected faults.

STLF is involved in a number of key elements that ensure reliability, security and eco-

nomic operation of power systems. Gross and Galiana [16] stated the principal objective

of the STLF is to provide the load prediction for

1. the basic generation scheduling function to determine the most economic commit-

ment of generation sources consistent with reliability requirements, operational con-

straints and policies, and physical, environmental, and equipment limitations

2. assessing the security of the power system at any time point, especially to know in

which condition the power system may be vulnerable so the dispatchers can prepare

the necessary corrective actions such as switching operations, power purchases to

operate the systems securely

3. timely dispatcher information to operate the system economically and reliably

To achieve those objectives, some major components are needed. The major components

of an STLF system are the STLF model, the data sources, and the man-machine interface.

Fig. 2.2 shows a general input-output configuration of an STLF system and its major uses.

9



Figure 2.2: An Input-Output Configuration of A STLF System and Its Major Uses [16]

The roles of STLF itself can be divided into three main areas: actions, studies and

operations [17]. The role of STLF in actions is that STLF will be an essential part in the

negotiation of the bilateral contracts between utilities and regional transmission operator.

STLF is needed in studies such as economics dispatch, unit commitment, hydro-thermal

coordination, load flow analysis and security studies. In the area of operations, STLF will

be used in committing or decommiting generating units and increasing or decreasing the

power generation.
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2.3 Short term load forecasting methods

There are various approaches to short term load forecasting, which can be classified into

two main categories: conventional or classical approaches and computational intelligence

approaches.

2.3.1 Conventional or classical approaches

Conventional methods are based on statistical approaches. These require an explicit math-

ematical model that gives the relationship between the load and another input factors. One

of the classical approaches is time series. Time series (univariate) will model the load data

as a function of its past observed values. Another approach is a causal model that will

represent the load as a function of some exogenous factors, especially weather and social

variables. Kyriakides and Polycarpou [17] classify these conventional methods into three

categories: time series models, regression models, and Kalman filtering based techniques.

Time series models

Time series models represent the load demand as a function of the previous historical load

and assume that the data follow certain stationary patterns, which depend on trends and

seasonal variations [23]. In the time series approach, a model is first developed based on

previous data, and then future load is predicted based on the model.

There are several time series models used in STLF: ARMA (autoregressive moving av-

erage), ARMAX (autoregressive moving average with exogenous variable), ARIMA (au-

toregressive integrated moving average), ARIMAX (autoregressive integrated moving av-

erage with exogenous variables), Box Jenkins, and state space models. ARMA is used for

stationary processes, ARIMA is an extension of ARMA for non-stationary processes. In

ARIMA and ARMA, load is the only input variable. But since load may also depend on the

weather and time of the day, ARIMAX is the most natural tool for load forecasting among
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the classical time series models.

One form of time series model that has been suggested [16] is as follows

z(t) = yp(t) + y(t) (2.1)

where yp(t) is a component that depends on the time of the day and on the normal weather

pattern for the particular day. The term y(t) is an additive load residual term which de-

scribes influences due to weather pattern deviations from normal and random correlation

effects. The additive nature of the residual load is justified by the fact that such effects

are usually small compared to the time-of-day component. The residual term y(t) can be

modeled by an ARMAX process of the form

y(t) =
n∑

i=1

aiy(t− i) +
nu∑
k=1

mk∑
jk=0

bjkuk(t− jk) +
H∑

h=1

chw(t− h) (2.2)

where uk(t), k = 1, 2, ..., nu represents the nu weather-dependent inputs. These inputs are

functions of deviations from the normal levels for a given hour of the day of quantities

such as temperature, humidity, light intensity, and precipitation. The input uk(t) may also

represent deviations of weather effects measured in different areas of the system. The

process w(t) is a zero mean white random process representing the uncertain effects and

random load behaviour. The parameters ai, bjk and ch as well as the model order parameters

n, nu,mk and H are assumed to be constant but unknown parameters to be identified by

fitting the simulated model data to observed load and weather data.

Time series models have been implemented to forecast the short term power load. Ha-

gan and Klein [4], [7] used the seasonal ARIMA model and the Box and Jenkins transfer

function model for STLF. Hagan and Behr [8] used the Box Jenkins transfer function model

with nonlinear temperature transformation, Fan and McDonald described the implementa-

tion of ARMA in STLF [24]. Espinoza et.al in their research used the partial autoregressive

model. They said that the general problems of STLF and profile identification can be ad-

dressed within a unified framework by using the proposed methodology based on the use
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of PAR (Partial Autoregressive) models. Starting from a single PAR model template con-

taining 24 seasonal equations, and using the last 48 load values within each equation, it is

possible to estimate a model suitable for STLF [25].

In general, time series methods give satisfactory results if there is no change in variables

that affect load demand, such as environmental variables. Time series modeling is partic-

ularly useful when little knowledge is available on the underlying data generating process

or when there is no satisfactory explanatory model that relates the prediction variable to

other explanatory variables [26]. In the time series approach, it is assumed that the load

demand is a stationary time series and has normal distribution characteristics. The result of

forecasting will be inaccurate when there is a change in the variable and when the histori-

cal data is not stationary. Although time series models have provided good results in some

cases, the approach is limited because of the assumption of linearity.

Regression models

The regression model represents the linear relationship between the load and other influ-

enced variables such as weather, customer types and day type. It uses the technique of

weighted least squares estimation using historical data. In this approach, temperature is the

most important information for electric load forecasting among weather variables and is

usually modeled in a nonlinear form.

Mbamalu and El-Hawary [27] describe a method to forecast short-term load require-

ments using an iteratively reweighted least squares algorithm. They used the following

load model

Yt = vtat + ϵt (2.3)

Where t is sampling time, Yt is measured system total load, vt is vector of adapted vari-

ables, such as time, temperature, light intensity, wind speed, humidity, day type (workday,

weekend), etc., at is transposed vector of regression coefficients, and ϵt is model error at

time t. Additional research was performed by Haida and Muto [28]. They used the re-
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gression method based on the daily peak load and then combined it with a transformation

technique to generate a model that utilizes both the annual weather-load relationship and

the latest weather load characteristic.

Regression methods are relatively easy to implement. Its advantage is that the relation-

ship between input and output variables is easy to comprehend and easy in performance

assessments. Although regression based methods are widely used by electric utilities, there

are some deficiencies of this method due to the nonlinear and complex relationship between

the load demand and the influencing factors. Besides that, heavy computational efforts are

required to get reasonably accurate results. The main reason for the drawbacks is that the

model is linearized in order to get the estimated coefficients. However, the load patterns

are nonlinear and it is impossible to represent the load demand during distinct time periods

using a linearized model.

Kalman filtering based techniques

The Kalman filter is an algorithm for adaptively estimating the state of the model. In load

forecasting, the input-output behavior of the system is represented by a state-space model

with the Kalman filter used to estimate the unknown state of the model. So, the Kalman

filter uses the current prediction error and the current weather data acquisition programs to

estimate the next state vector.

There has been research that uses Kalman filtering for STLF. Park et. al [29] developed

a state model for the nominal load which consists of three components: nominal load, type

load and residual load. The nominal load is modeled such that the Kalman filter can be

used, and the parameters of the model are adapted by the exponentially weighted recursive

least-squares method. The effect of weekend days is represented through the type load

model, which is added to the nominal load estimated through Kalman filtering. Type load

is determined through exponential smoothing. To account for modeling error, residual load

is also calculated. Another technique for STLF using the Kalman filter was implemented
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by Al-Hamadi and Soliman [30]. They used Kalman filter-based estimation to estimate the

model parameters using historical load and weather data. Sagunaraj [31] used the Kalman

filtering algorithm with the incorporation of ”a fading memory”. A two stage forecast

is carried out, where the mean is first predicted, and a correction is then incorporated in

real time using an error feedback from previous hours. They implemented this method for

developing countries where the total load is not large.

Although the Kalman filter has been used in STLF, it has some limitations. One of the

key difficulties is to identify the state space model parameters.

2.3.2 Computational intelligence based techniques

To improve the STLF performance that can be obtained using conventional approaches,

researchers have recently turned their focus to computational intelligence (CI), which is

getting more and more popular. In this method, no complex mathematical formulation

or quantitative correlation between inputs and outputs are required. CI techniques have

the potential to give better forecasting accuracy. Accuracy is the key in load forecasting.

For every small decrease in forecasting error, the operating savings are considerable. It is

estimated that a 1% decrease in forecasting error for a 10 GW electric utility can save up

to 1.6% million annually [32].

Artificial neural network

Artificial neural networks (ANN) have been implemented in many applications because of

their ability to learn. ANNs are based on biological neurons, and are frequently applied

for load forecasting. The idea for using neural networks for forecasting is the assumption

that there exists a nonlinear function that relates some external variable to future values of

the time series. Kyriakides and Polycarpou [17] said that there are three steps that need

to be considered in using neural network models for time series predictions: (i) designing

the neural network model; e.g, choosing the type of neural network that will be employed,
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the numbers of layers and the number of adjustable parameters or weights, (ii) training the

neural network; this includes selecting the training algorithm, the training data that will

be used and also the pre-processing of the data, (iii) testing the trained network on a data

set that has not been used during the training stage (typically referred to as neural network

validation).

A feed-forward network, which consists of several successive layers of neurons with

one input layer, several hidden layers and one output layer, is most often applied in fore-

casting. The basic learning or weight-adjusting procedure is back propagation (a form of

steepest descent), which propagates the error backwards and adjusts the weight accord-

ingly. There is much research that has used neural networks for STLF. Peng et.al [13] used

an adaptive linear combiner, called an ”ADALINE” to forecast the load one week ahead.

Senjyu et. al [14] proposed a neural network for one hour ahead load forecasting by us-

ing the correction of similar day data. In the proposed prediction method, the forecasted

load is obtained by adding a correction to the selected similar day data. Adya and Collopy

[11] investigated 48 studies using neural networks to see their effectiveness for forecasting.

Hippert et.al [3] also examined the application of neural networks, but they made it more

specific to short term load forecasting.

From the studies that have been done, it can be concluded that neural networks have

potential as a load forecasting tool, due to their nonlinear approximation capabilities and

the availability of convenient methods for training. By learning from training data, neural

networks extract the nonlinear relationship among the input variables. Neural networks

have ability to model multivariate problems without making complex dependency assump-

tions among input variables. But neural networks also have some limitations. They are

not typically able to handle significant uncertainty or to use ”common sense knowledge”

and perform accurate forecasts in abnormal situations. Sometimes, the researchers com-

bine this method with conventional techniques to overcome some drawbacks of the original

method. Zhang [26] made a hybrid between an ARIMA and a neural network model. Zhao
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and Su [33] used a Kalman filter and an Elman neural network.

Expert systems

An expert system is a computational model that comprises four main parts: a knowledge

base, a data base, an inference mechanism and a user interface. The knowledge base is

a set of rules that are derived from the experience of human experts. The data base is a

collection of facts obtained from the human experts and information obtained through the

interference mechanism of the system. The inference mechanism is the part of the expert

system that ”thinks”. In load forecasting, the expert system uses some rules which are

usually heuristic in nature to get accurate forecasting. The expert system will transform

the rules and procedures used by the human experts to the software that has the capability

to forecast automatically without human assistance. This brings advantages since expert

systems can make decisions when the human experts are unavailable. They can reduce the

work burden of human experts and make fast decisions in case of emergencies.

To get the best result by using expert systems, there must be a collaboration between

the availability of the human expert and the software developers. This is because the time

imparting the expert’s knowledge to the expert system software must be considered in mak-

ing the system software. STLF using expert systems was proposed by Ho et.al [10]. Here,

the case study was the Taiwan power system. The operators knowledge and the hourly

observations of system load over the past five years were employed to establish eleven day

types. Weather parameters were also used. The other research was done by Rahman and

Hazim [34]. They developed a site-independent technique for STLF. Knowledge about the

load and the factors affecting it are extracted and represented in a parameterized rule base.

Fuzzy logic

A generalization of the usual Boolean logic used for digital circuit design is known as fuzzy

logic. Under fuzzy logic, an input is associated with certain qualitative ranges. The benefit
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of fuzzy logic is that there is no need to make a mathematical model mapping inputs to

outputs and no need to have precise inputs. Hence, properly designed fuzzy logic systems

can be used in forecasting and will be robust. After the logical processing of fuzzy inputs,

a ”defuzzification” process can be used to gain the precise outputs.

Kiartzis and Bakirtzis [35] used a fuzzy expert system to forecast daily load curves

with two minima and two maxima, for each season of the year. The inference operations of

the fuzzy rules are performed following the Larsen Max-Product implication method and

the Product Degree of Fulfillment method, while the defuzzification procedure is based

on the Center of Area method. The proposed fuzzy expert system for peak load forecast-

ing is tested using historical load and temperature data of the Greek interconnected power

system. Sometimes fuzzy is combined with the neural network as a hybrid method. This

hybrid method has some advantages, such as the ability to respond accurately to unexpected

changes in the input variables, the ability to learn from experience and the ability to syn-

thesize new relationships between the load demand and the input variables [17]. Srinivasan

et.al [36] developed and implemented a hybrid fuzzy neural based one-day ahead load

forecaster. The approach involves three main stages. In the first stage, historical load was

updated to the current load demand by studying the growth trend and making the necessary

compensation. The second stage attempts to map the load profile of the different days by

means of Kohonen’s self organizing map. The load forecast for the current day is then ob-

tained using the auto-associative memory of the neural network. A fuzzy parallel processor

takes variables such as day type, weather and holiday proximity into consideration when

making the required hourly load accommodations for each day.

Support vector machine

The support vector machine performs a nonlinear mapping of the data by using kernel

functions to transform the original data into a high dimensional space and then does linear

regression in this high dimensional space. In the other words, linear regression in a high
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dimensional feature space corresponds to a nonlinear regression in the low dimensional

input space. Once the transformation is achieved, optimization techniques are used to solve

a quadratic programming problem, which yields the optimal approximation parameters.

Typically, support vector machines are usually used for data classification and regres-

sion. Instead of performing the regression in the original (x, y) - space the x data are

mapped into a higher dimensional space using a mapping function. In the context of load

forecasting, the radial basis function (RBF) kernel is used in most cases. The RBF can be

expressed as

ϕ(xi)
Tϕ(xj) = exp(−γ|xi − xk|2) (2.4)

Espinoza et.al [25] applied this technique by using fixed size Least Squares Support Vec-

tor Machines (LS-SVM). The methodology is applied to the case of load forecasting as an

example of a real-life large scale problem in industry, for the case of 24-hour ahead predic-

tions based on the data from a sub-station in Belgium. Other studies were done by Chen et

al. [37]. They proposed the SVM model to predict the daily load demand in a month. They

won the EUNITE competition. In their study, they identified two clearly separate patterns

for summer and winter load time series.
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CHAPTER 3

ARIMA MODELING

3.1 Linear time series Overview

3.1.1 Stationary stochastic processes

A time series is a set of observations ordered in time or any other dimension. There are

two types of time series; deterministic and stochastic. A process is deterministic if future

behaviour can be exactly predicted. Whereas for a stochastic process past knowledge can

only indicate the probabilistic structure of future behaviour. To be more precise, a stochas-

tic process Z(t), for t ∈ T , can be defined as a collection of random variables, where T is

an index set. When T represents time, the stochastic process is referred to as a time series

[38].

A special case of stochastic process is the stationary process, which is in a particular

state of statistical equilibrium. A time series is strictly stationary if its properties are not

affected by a change in the time origin. In other words, a stochastic process is strictly

stationary if the joint distribution of the observations zt1 , zt2 , ..., ztm is exactly the same as

the joint distribution of the observations zt1+k, zt2+k, ..., ztm+k. The stationary assumption

implies that the joint probability distribution p(zt) is the same for all times t and may be

written as p(z) when m = 1. Thus, the stochastic process has a constant mean

µ = E[zt] =

∫ ∞

−∞
zp(z) dz (3.1)

and also a constant variance

σ2
z = E[(zt − µ)2] =

∫ ∞

−∞
(z − µ)2p(z) dz (3.2)
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To estimate these parameters, we can use the sample mean and the sample variance. If the

observations in the time series are z1, z1, ..., zN then the sample mean can be estimated as

µ̂ =
1

N

N∑
t=1

zt (3.3)

and the sample variance can be estimated as

σ̂2
z =

1

N − 1

N∑
t=1

(zt − µ̂)2 (3.4)

3.1.2 Autocovariance and autocorrelation function

As described above, if a time series is stationary, the joint probability distribution p(zt1 , zt2)

is the same for all times t1 and t2 that are separated by the same interval. The autocovari-

ance function of a stationary process can be defined by

R(k) = E[(zt)(zt+k)] for k = 0,±1,±2, . . . (3.5)

If the mean is constant, and the autocorrelation is only a function of lag k, then the series

is wide sense stationary.

Besides autocovariance, the autocorrelation function can also be defined for stationary

processes. The autocorrelation function (ACF) is defined as

ρ(k) =
R(k)

R(0)
(3.6)

The estimation of R(k) is obtained by

R̂(k) =
1

N

N−|k|∑
t=1

(zt)(zt+|k|) for k = 0,±1,±2, . . . ,±(N − 1) (3.7)

Another tool that will be needed in time series modeling is partial autocorrelation func-

tion (PACF). The PACF is defined as the correlation between two variables after being

adjusted for a common factor that may be affecting them. The PACF between zt and zt−k

is the autocorrelation between zt and zt−k after adjusting for zt−1, zt−2, . . . , zt−k+1. The
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PACF is denoted by {ϕkk : k = 1, 2, . . .}. Let us consider a stationary time series {zt}. For

any fixed value of k, the Yule-Walker equations for the PACF of an AR(p) process is

ρ(j) =
k∑

i=1

ϕikρ(j − 1), j = 1, 2, . . . , k

It can be written in matrix form

1 ρ(1) ρ(2) . . . ρ(k − 1)

ρ(1) 1 ρ(3) . . . ρ(k − 2)

ρ(2) ρ(1) 1 . . . ρ(k − 3)

...

ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . 1





ϕ1k

ϕ2k

...

ϕkk


=



ρ(1)

ρ(2)

ρ(3)

...

ρ(k)


(3.8)

or

Pkϕk = ρk

Thus to solve for ϕk, we have

ϕk = P−1
k ρk (3.9)

For any given k, k = 1, 2, . . ., the last coefficient ϕkk is the PACF. The sample PACF, ϕ̂kk,

is obtained by using the sample ACF, ρ̂(k).

3.1.3 Differencing

Most time series are characterized by a trend. Trends indicate a non-stationary time se-

ries. There are several approaches to remove the trend, such as regression models and

differencing. The second approach is suggested by Box and Jenkins [39]. The method

of differencing a time series consists of subtracting the values of observations from one

another in some prescribed time-dependent order. First, let us define the backward shift
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operator as

Bzt = zt−1

Bnzt = zt−n

(3.10)

Using the backward shift operator, the difference operator can be written as

wt = ∇dzt

wt = (1−B)dzt (3.11)

A comparison between polynomial curve fitting and differencing is described in [40].

Differencing has advantages over fitting a trend model to the data. It does not require esti-

mation of any parameters, which makes it a simple approach. The other advantage is that

differencing can allow a trend component to change through time. It is not deterministic,

like fitting a trend model. Generally, to remove the underlying trend in the data, one or

more differences are required.

3.1.4 White noise

If a time series consists of uncorrelated observations and has constant variance, then we

call it white noise. White noise is an example of a stationary process. A process [et, t =

0, 1, 2, . . .] is a white noise process if

cov(et, et+k) =

 σ2
e if k = 0

0 otherwise

3.2 AR, MA, ARMA and ARIMA Models

Let zt, zt−1, zt−2, ..., zt−n be power loads, with t, t− 1, t− 2, ..., t− n representing integer

values of time in hours. Hence the power load zt can be seen as a time series.
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In linear time series analysis, we often represent the process as the output of a linear

system driven by white noise:

zt =
∞∑
i=0

ψiet−i (3.12)

where ψi is the system impulse response and et is white noise. (We assume here that the

process is zero mean.)

Under appropriate conditions [39], the process can also be written as a weighted sum

of previous values of the process plus white noise:

zt =
∞∑
i=1

ϕizt−i + et (3.13)

In some cases, only a finite number of previous values are needed:

zt =

p∑
i=1

ϕizt−i + et (3.14)

where p is the process order, which will be determined using system identification tech-

niques. Eq. (3.14) can be expanded as

zt = ϕ1zt−1 + ϕ2zt−2 + . . .+ ϕpzt−p + et (3.15)

Eq. (3.15) is called an autoregressive model (AR). An autoregressive model, AR(p), ex-

presses a time series as a linear function of its past values. The order of the AR model tells

how many past values are included. In the AR(p) model, the current value of the process

is expressed as a linear combination of p past observations of the process and white noise.

For convenience, we can use the backward shift operators from (3.11) to define

ϕ(B) = 1− ϕ1B − ϕ2B
2 − . . .− ϕnB

n (3.16)

Hence, (3.15) can be written as

ϕ(B)zt = et (3.17)

In addition to the autoregressive (AR) model, the other important fundamental class of

time series is the moving average (MA) model. MA (q) is a model in which the time series
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is regarded as a moving average (unevenly weighted) of a white noise series et . In the

MA(q) model the current value of the process is expressed as a linear combination of q

previous values of white noise.

zt = et − θ1et−1 − θ2et−2 − . . .− θqet−q

θ(B) = 1− θ1B − θ2B
2 − . . .− θnB

n

zt = θ(B)et

(3.18)

ARMA(p,q) is a mixed model, which is an extension of AR and MA models. The

mixed autoregressive-moving average model ARMA(p,q) is a combination of (3.17) and

(3.18)

zt = ϕ1zt−1 + . . .+ ϕpzt−p + et − θ1et−1 − . . .− θqet−q

ϕ(B)zt = θ(B)et

(3.19)

This ARMA model, introduced by Box Jenkins [39], has become one of the most popular

models for forecasting. The ARMA model (3.19) can be used to model stationary processes

with finite variance, and it is assumed that the roots of θ(B) and ϕ(B) lie outside the unit

circle.

Some processes may show non-stationarity because the roots of ϕ(B) = 0 lie on the

unit circle. In particular, non-stationary series are often well represented by models in

which one or more of these roots are unity. Now, let us consider

φ(B)zt = θ(B)et (3.20)

where φ(B) is a non-stationary autoregressive operator, where d of the roots of φ(B) = 0

are unity and the remainder lie outside the unit circle. Eq. (3.20) can be expressed as

φ(B)zt = ϕ(B)(1−B)dzt = ϕ(B)∇dzt = θ(B)et (3.21)

where ϕ(B) is a stationary autoregressive operator. Equivalently, the process is defined by

ϕ(B)wt = θ(B)et (3.22)
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where wt = ∇dzt. This process of differencing results in an autoregressive-integrated-

moving average model ARIMA(p,d,q). The value of p, d, q can be estimated using the

autocorrelation function (ACF) and the partial autocorrelation function (PACF).

Standard ARIMA models cannot really cope with seasonal behaviour. To incorporate

seasonal behaviour, we can use the general seasonal ARIMA (p, d, q)× (P,D,Q)s model,

as follows

ϕp(B)ΦP (B
s)∇d∇D

s zt = θq(B)θQ(B
s)et (3.23)

where s is the period of the seasonal pattern. The power load requires a seasonal model

because of the periodic nature of the load curve (e.g. The load at 10 A.M Tuesday is

related to the load at 10 A.M Monday). It is advantageous to use the seasonal ARIMA

(p, d, q)× (P,D,Q)24 models:

ϕp(B)ΦP (B
24)∇d∇D

24zt = θq(B)θQ(B
24)et (3.24)

In some cases, it is also useful to recognize the weekly periodicity (Sundays are not like

Mondays) and a two period ARIMA (p, d, q)× (P,D,Q)24× (P ‘, D‘, Q‘)168 could be used

ϕp(B)ΦP (B
24)Φ‘

P (B
168)∇d∇D

24∇D‘
168zt = θq(B)θQ(B

24)θ‘Q(B
168)et (3.25)

The ARIMA models are essentially extrapolations of the previous load history and have

problems when there is a sudden change in the weather. The transfer function model allows

for the inclusion of some independent weather variables, such as temperature. The transfer

function model TRFU(r,s) is

zt =
ω(B)

δ(B)
xt−b + nt (3.26)

Where ω(B) is a polynomial in B of order s, and δ(B) is a polynomial in B of order r. the

disturbance process nt is not white, but can be represented by an ARIMA model

∇d∇D
24∇D‘

168zt =
ω(B)
δ(B)

∇d∇D
24∇D‘

168xt−b +
θq(B)ΘQ(B24)Θ‘

Q‘ (B
168)

ϕp(B)ΦP (B24)Φ‘
P ‘ (B

168)
et (3.27)
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3.3 Time series models for prediction

The model that will be used for short term load forecasting is the ”seasonal” ARIMA

model. Before making prediction, we need to build an ARIMA model based on measured

data. This is a three-step iterative procedure

Figure 3.1: System Identification Steps

First, a tentative model of the ARIMA class is identified through analysis of the histor-

ical data. Then, the unknown parameters of the model are estimated. The next step is to

perform diagnostic checks to determine the adequacy of the model and to indicate potential

improvements. If the model is not adequate, then the modeling process will be restarted

from the beginning. This will be repeated until the final model is adequate.

3.3.1 Model identification

Modeling begins with preliminary identification. The purpose of the preliminary step is

to determine appropriate orders for the ARIMA model. This is done by analyzing the
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autocorrelation function (ACF) and partial autocorrelation function (PACF).

From the ACF, we can determine the stationarity of the process. For a stationary time

series, the ACF will typically decay rapidly to 0. But in non-stationary time series, the

ACF will typically decay slowly, because the observed time series presents trends and

heteroscedasticity. If the process is not stationary, data transformations (i.e differencing and

power transformations) are needed to make the time series stationary. They will remove the

trend and stabilize the variance before an ARIMA model can be fitted. Once stationarity

can be presumed, the ACF and PACF of the stationary time series are analyzed to determine

the order of the time series model.

For an AR (p) process, the autocorrelation function can be found as

R(k) = E[ztzt − k]

R(k) = ϕ1E[zt−1zt−k] + ϕ2E[zt−2zt−k] + . . .+ ϕpE[zt−pzt−k] + E[etzt−k]

R(k) = ϕ1R(k − 1) + ϕ2R(k − 1) + . . .+ ϕpR(k − p), k > 0

(3.28)

The expectation E[etzt−k] vanishes because zt−k is uncorrelated with et for k > 0. If we

divide both sides by R(0), we obtain the normalized ACF

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2) + . . .+ ϕpρ(k − p) (3.29)

To see the behaviour of the ACF of an AR(p) process, let us take an AR(1) example. Eq.

(3.29) will become

ρ(k) = ϕ1ρ(k − 1) and |ϕ1| < 1, k > 0

Hence for AR(1), the autocorrelation becomes

ρ(k) = ϕk
1

Therefore, ρ(k) decreases exponentially as the lag k increases. In a general ARMA process,

ρ(k) is a combination of damped sinusoids and exponentials.
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Let ϕkj denote the jth coefficient in a fitted AR model of order k. The last coefficient,

ϕkk, is the PACF. For an AR(p) process we can show that

ϕkk

 ̸= 0 if k ≤ p

= 0 otherwise

Fig. (3.2) shows the characteristics of the sample ACF and PACF for an AR(1) process.
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Figure 3.2: ACF and PACF of zt = 0.5zt−1 + et

For an MA(q) process, the ACF is identically zero for lags k greater than q. An MA(q)

process can be equally written as

θ−1(B)zt = et (3.30)

where θ(B) is assumed to be invertible, with its inverse denoted by θ−1(q). Therefore, the

PACF in an MA process has infinite components. Fig. (3.3) illustrates estimated ACF and

PACF for an MA(1) process
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Figure 3.3: ACF and PACF of zt = et + 0.8et−1

Clearly, AR and MA processes follow different patterns of ACF and PACF. Table 3.1

below can be used as a guide to identify AR or MA models based on the pattern of the ACF

and PACF.

Table 3.1: Behaviour of Theoretical ACF and PACF for Stationary Process

Model ACF PACF

MA(q) Cuts off after lag q Exponential decay and/or damped

sinusoid

AR(p) Exponential decay and/or damped

sinusoid

Cuts off after lag p

ARMA(p,q) Exponential decay and/or damped

sinusoid

Exponential decay and/or damped

sinusoid

One major concern about the ACF and PACF approach in the case of an ARMA(p,q)

process with both p > 0 and q > 0 is that there is uncertainty concerning model selection

when examining only the ACF and PACF. Because of this, Woodward and Gray in 1981

defined the generalized partial autocorrelation (GPAC). First, let zt be a stationary process
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with ACF ρj, j = 0,±1,±2, . . . , and consider the following k × k system of equations

ρj+1 = ϕ
(j)
k1 ρj + ϕ

(j)
k2 ρj−1 + . . .+ ϕ

(j)
k,k−1ρj−k+2 + ϕ

(j)
kk ρj−k+1

ρj+2 = ϕ
(j)
k1 ρj+1 + ϕ

(j)
k2 ρj + . . .+ ϕ

(j)
k,k−1ρj−k+3 + ϕ

(j)
kk ρj−k+2

...

ρj+k = ϕ
(j)
k1 ρj+k−1 + ϕ

(j)
k2 ρj+k−2 + . . .+ ϕ

(j)
k,k−1ρj+1 + ϕ

(j)
kk ρj

(3.31)

where ϕ(j)
ki denotes the ith coefficient associated with the k× k systems in which ρj+1 is on

the left-hand side of the first equation. The GPAC function is defined to be ϕ(j)
kk . By using

Cramer’s rule, it can be solved with

ϕ
(j)
kk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρj . . . ρj−k+2 ρj+1

ρj+1 . . . ρj−k+3 ρj+2

...

ρj+k−1 . . . ρj+1 ρj+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρj . . . ρj−k+2 ρj−k+1

ρj+1 . . . ρj−k+3 ρj−k+2

...

ρj+k−1 . . . ρj+1 ρj

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.32)

The GPAC can uniquely determine the orders p and q of an ARMA(p,q) process when

the true autocorrelations are known. For an ARMA(p,q) process, ϕ(q)
pp = ϕp. Also, as with

the partial autocorrelation function, it can be shown that if k > p then ϕ(q)
kk = 0. Thus, the

GPAC provides identification of p and q uniquely for an ARMA(p,q) model in much the

same way as the partial autocorrelation does for identification of p for an AR(p).

Another useful property of the GPAC is described by Woodward and Gray [41]. Let zt

be an ARMA process with autoregressive order greater than zero, then

1. zt is an ARMA(p,q) if and only if ϕ(q)
kk = 0, k > p and ϕ(q)

pp ̸= 0

2. if zt ARMA(p,q) then ϕ(q+h)
pp = ϕq, h ≥ 0
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Woodward et.al [41] also recommended examining the GPAC by calculating ϕ(j)
kk , k =

1, 2, . . . P and j = 1, 2, . . . Q for some P and Q then placing these value in a GPAC array,

as in Table 3.2.

Table 3.2: GPAC Array

j/k
Autoregressive order

1 2 . . . P

Moving average order

0 ϕ
(0)
11 ϕ

(0)
22 . . . ϕ

(0)
PP

1 ϕ
(1)
11 ϕ

(1)
22 . . . ϕ

(1)
PP

2 ϕ
(2)
11 ϕ

(2)
22 . . . ϕ

(2)
PP

...
...

... . . .
...

Q ϕ
(Q)
11 ϕ

(Q)
22 . . . ϕ

(Q)
PP

The first row of the GPAC array consists of the partial autocorrelations. We need to

find a row in which zeros begin occurring beyond a certain point. This row is the qth row,

and the zeros begin in the p + 1st column. Also, values in the pth column are constant

from the qth row and below. This constant is ϕp ̸= 0. Given the true autocorrelation for an

ARMA(p,q) process, the patterns in the GPAC array uniquely determine the model orders if

P and Q are chosen sufficiently large. Table 3.3 shows the GPAC array for an ARMA(p,q)

process.
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Table 3.3: GPAC Array for An ARMA(p, q) Process

j/k
Autoregressive order

1 2 . . . p p+ 1 . . .

Moving average order

0 ϕ
(0)
11 ϕ

(0)
22 . . . ϕ

(0)
pp ϕ

(0)
p+1,p+1 . . .

1 ϕ
(1)
11 ϕ

(1)
22 . . . ϕ

(1)
pp ϕ

(1)
p+1,p+1 . . .

...

q − 1 ϕ
(q−1)
11 ϕ

(q−1)
22 . . . ϕ

(q−1)
pp ϕ

(q−1)
p+1,p+1 . . .

q ϕ
(q)
11 ϕ

(q)
22 . . . ϕp 0 0 . . .

q + 1 ϕ
(q+1)
11 ϕ

(q+1)
22 . . . ϕp

0
0

0
0

. . .
... ϕp

0
0

0
0

. . .

3.3.2 Parameter estimation

Once, the “order” of the model is determined, the next step is to estimate the parameters.

In the ARIMA model ϕ(B)Φ(Bs)∇D
s = θ(B)Θ(Bs)et, the parameters that need to be

estimated are ϕ = (ϕ1, ϕ2, . . . , ϕp)
T , Φ = (Φ1,Φ2, . . . ,ΦP )

T , θ = (θ1, θ2, . . . , θq)
T and

Θ = (Θ1,Θ2, . . . ,ΘQ)
T . The principal method for estimating the parameters is maximum

likelihood.

Let us considerN = n+d observations assumed to be generated by an ARIMA(p, d, q).

The unconditional likelihood is given by

l(ϕ, θ, σ) = f(ϕ, θ)− n lnσ − S(ϕ, θ)

2σ2
(3.33)

Here, the noise series, et, is assumed to follow a normal distribution with zero mean and

variance σ2. f(ϕ, θ) is a function of ϕ and θ. The unconditional sum of squares function is

given by

S(ϕ, θ) =
n∑

t=1

[et|w, ϕ, θ]2 + [e∗]
′Ω−1[e∗] (3.34)

Where [et|w, ϕ, θ] = E[et|w, ϕ, θ] denotes the expectation of et conditional on w, ϕ, θ.

e∗ = (w1−p, . . . ,w0, e1−q, . . . , e0)
′ denotes the vector of p+ q initial values of the wt and
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et processes needed prior to time t = 1, Ωσ2
e = cov(e∗) is the covariance matrix of e∗, and

[e∗] = ([w1−p], . . . , [w0], [e1−q], . . . , [e0])
′ denotes the vector of conditional expectations

(”back forecasts”) of the initial values given w, ϕ, θ. An alternative way to represent the

sum of squares is as S(ϕ, θ) =
∑n

t=−∞[et]
2.

Usually , f(ϕ, θ) is important only for small n. For moderate and large value of n,

(3.33) is dominated by S(ϕ,θ)
2σ2 . Thus, the contours of the unconditional sum of squares

function in the space of the parameters f(ϕ, θ) are very nearly contours of likelihood and

of log-likelihood. In particular, the parameter estimates, obtained by minimizing the sum of

squares (3.34) which we call (unconditional or exact) least squares estimates, will provide

very close approximations to the maximum likelihood estimates.

S(ϕ, θ) =
n∑

j=1

e2j (3.35)

The term f(ϕ, θ) is a function of coefficients ϕ and θ. This is small in comparison with

the sum of squares function S(ϕ, θ) when the effective number of observations, n, is large.

Thus, the parameters which minimize S(ϕ, θ) are usually used as close approximations to

maximum likelihood estimates.

3.3.3 Diagnostic testing

The last step in building the ARIMA model is diagnostic testing. This step is useful to

examine the adequacy of the model and to see if potential improvements are needed. Di-

agnostic tests can be done through the residual analysis. The residual (one-step prediction

error) for an ARMA(p,q) process can be obtained from

êt = zt − (

p∑
i=1

ϕ̂izt−i −
q∑

i=1

θ̂êt−i) (3.36)

If the specified model is adequate, and the appropriate orders p and q are identified, it should

transform the observations to a white noise process. Thus, the residuals should behave like

white noise.
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One way of checking the whiteness of et is by checking the autocorrelation for et. If

there is only one spike at t = 0 with magnitude 1, and all the other autocorrelations are

equal to zero, then et is white noise. In the other words, if the model is appropriate, the

autocorrelation should not differ significantly from zero for all lags greater than one. If

the form of the model were correct and if the true parameter values are known, then the

standard error of the residual autocorrelation would be n−1/2. Any residual ACF more

than two standard errors from zero would indicate that the residuals were not white, and

therefore that the model orders were not accurate.

Another way to test for the whiteness of the residuals is a chi-square test of model

adequacy. The test statistic is

Q = n
K∑
k=1

r2e(k) (3.37)

which is approximately chi-square distributed with K − p − q degrees of freedom if the

model is appropriate. If the model is inadequate, the calculated value of Q will be inflated.

Thus, we should reject the hypothesis of model adequacy if Q exceeds an approximate

small upper tail point of the chi-square distribution with K − p− q degrees of freedom.

As explained above, these steps are iterative steps. If the fitted model is not adequate,

the identification process will continue until the fitted model is adequate.

3.3.4 Forecast

If we have completed the identification process by building the ARIMA model, now we

are ready to use the model to forecast future observations. If the current time is denoted

by t, the forecast for zt+m is called the m-step-ahead forecast and denoted by ẑt+m(t). The

standard criterion to obtain the best forecast is to minimize the mean squared error. It can

be shown that the best forecast in the mean square sense is the conditional expectation of

zt+m given current and previous observations:

ẑt+m(t) = E[zt+m|zt, zt−1, . . . , zt−N ] (3.38)
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Let us illustrate (3.38) through this example. Consider an ARIMA (1,1,1) model

(1− 0.3B)(1−B)zt = (1− 0.1B)et

(1− 1.3B + 0.3B2)zt = (1− 0.1B)et

zt = 1.3zt−1 − 0.3zt−2 + et − 0.1et−1

For the one step ahead forecast, replace t by t+ 1 then take the conditional expectation on

both sides

zt(1) = 1.3zt − 0.3zt−1 + et(1)− 0.1et

zt(1) = 1.3zt − 0.3zt−1 − 0.1et

where et(1) = E[et+1|et, et−1, . . .] = E[et+1] = 0 since et is white noise. Similarly,

et(j) = 0 for j > 0. Then, for two step ahead forecasts, replace t by t + 2 then take the

conditional expectation on both sides

zt(2) = 1.3zt(1)− 0.3zt + et(2)− 0.1et(1)

zt(2) = 1.3zt(1)− 0.3zt

Hence, for an m step ahead forecast, it becomes

zt(m) = 1.3zt(m− 1)− 0.3zt(m− 2) for m > 2

In general, for a given model, the m step ahead forecast can be found using the follow-

ing procedures

1. expand the given model until an explicit expression for zt is obtained

2. replace t by t+m and then take the conditional expectation

3. apply the following properties to the equation obtained by step 2
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E[zt+j|zt, zt−1, . . .] = zt(j) for j = 1, 2, . . .

E[zt−j|zt, zt−1, . . .] = zt−j for j = 0, 1, 2, . . .

E[et+j|et, et−1, . . .] = 0 for j = 1, 2, . . .

E[et−j|et, et−1, . . .] = et−j for j = 0, 1, 2, . . .

(3.39)
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CHAPTER 4

NEURAL NETWORKS FOR FORECASTING

The problem with the time series models is that they assume a linear relationship between

the current and future values of load and a linear relationship between weather variables and

load. To overcome this problem, neural networks offer the potential for general purpose

nonlinear time series forecasting. As stated in [42], a good nonlinear model should be

general enough to capture some of the nonlinear phenomena in the data. Neural network

load forecasters can be thought of as mappings from a set of previous load, current load

and future climatology variables (i.e. temperature, humidity, etc) to future load. It has been

shown that several types of neural networks are universal approximators, which means that

they can be used to approximate arbitrary complex mappings [43].

4.1 Neural Networks Overview

The basic neural network building block consists of the elementary computational unit

or neuron, as seen in Fig. 4.1. The output of the neuron is a nonlinear function of the

weighted sum of the neuron input p and bias b. The weight, w, and the bias, b are the

adjustable parameters of the neuron. The nonlinear function f is called the neuron transfer

function or activation function.
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Figure 4.1: General Neuron

One neuron with a single input might not be sufficient. We need to have multiple

neurons working in parallel. This set of neurons is called a layer. If we have S-neurons and

R-inputs, a one layer neural network can be drawn as

f

a = f(Wp+b)

Input Layer of S Neurons

Figure 4.2: Layer of S Neurons

A single layer of neurons still does not have the capability of approximating arbitrary

functions. To approximate arbitrary functions, the network needs to be extended by cas-

cading several layers together, as shown in Fig. 4.3. Here, the output of the first layer is

the input for the second layer and the output from the second layer is the input for the third

layer. A layer whose output is the network output is called the output layer, and the other

layers are called hidden layers. This kind of architecture is called a multilayer network.

A two layer network, with sigmoid transfer functions in the first layer and linear transfer

function in the second layer, is able to approximate arbitrary functions. Multilayer neural

networks can be used to create general time series models [12].
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Figure 4.3: Multi Layer

Before discussing networks that can be used for forecasting, we need to introduce the

tapped delay line. This is a mechanism for storing previous values of a time series, as

shown in the following figure. In the diagram on the left, the thin line at the top right

represents the undelayed output zt, while the thick line represents a vector consisting of the

outputs of the delay blocks.

B

B

B

T

D

L

ztzt

zt -1

zt-p

zt

Figure 4.4: Tapped Delay Line

The tapped delay line is used in dynamic neural networks for forecasting. The NARX

network (Nonlinear AutoRegressive model with eXogenous input) is a recurrent dynamic

network, with feedback connections enclosing several layers of the network. The NARX

network is an important and useful model for discrete-time nonlinear systems. The NARX
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model is based on the linear ARX model. The defining equation for the NARX model is

ẑt = f(ut−1, ut−2, . . . , ut−p, zt−1, zt−2, . . . , zt−r) (4.1)

where ut and zt represent the input and output of the network at time t, and p and r are

the input and output order and the function f is a nonlinear function. The next value of

the dependent output signal zt is regressed on previous values of the output signal and

previous values of an independent (exogenous) input signal. When the function f can be

approximated by a Multilayer Perceptron (MLP), the resulting system is called a NARX

neural network [44]. A diagram of the NARX network is shown below in Fig. 4.5, where

a two-layer feedforward network is used for the approximation. This implementation also

allows for a vector ARX model, where the input and output can be multidimensional. The

inputs layer 1 layer 2

1

= u

t=

t

Figure 4.5: NARX Neural Network

NARX network can be trained with static backpropagation. The two tapped delay lines can

be replaced with extended vectors of delayed inputs and targets. The NARX network can

be implemented in two ways, which are shown in Fig. 4.6. The first architecture is called

the parallel architecture, in which the predicted output is fed back to the input of the feed-

forward neural network, as shown in the left figure below. The second architecture is the

Series-Parallel architecture. This architecture uses target outputs in place of the predicted

outputs in the feedback loop, hence simple training algorithms, such as backpropagation,

can be easily implemented.
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Figure 4.6: NARX Neural Network Architecture

By using neural networks, the ARMA model of Eq. (3.19) can be generalized to non-

linear systems. To generalize the ARMA model, first re-write it in the following form

zt = ϕ1zt−1 + ϕ2zt−2 + . . .+ ϕpzt−p − [θ1et−1 + θ2et−2 + . . .+ θqet−q] + et (4.2)

This can also be written as

zt = ẑt + et (4.3)

where ẑt is a forecast of zt. This system can be represented by the following block diagram.

e

t

tB

B

B

B

B

B

1

p q

1

t

z

+ -

+

-

Figure 4.7: ARMA Model

This system can be represented in abbreviated notation, as the following figure.
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Figure 4.8: Abbreviated Notation of the ARMA Model

By combining the tapped delay line with a multilayered neural network, a nonlinear

version of the ARMA model (NARMA) can be created, as shown in the following figure.

Multilayer
Neural 
Network

T
D
L

T
D
L

z

+

- zt

et

t

Figure 4.9: Nonlinear ARMA (NARMA) Predictor Model Using a Neural Network

Here, the previous values of the time series (zt) are combined in a nonlinear way with

current and previous values of the forecasting errors (et) to form a forecast of future values

of the time series. Compare this with the linear ARMA equations (3.19)

ẑt = f(zt−1, zt−2, . . . , zt−p, et−1, et−2, , et−r) (4.4)

To generalize the periodic model given in Eq. 3.24 and 3.25, the periodic tapped de-

layed line is needed. The generalization of the periodic ARIMA model is the periodic

NARIMA (PNARIMA) model shown in the following figure
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Figure 4.10: Periodic NARIMA (PNARIMA) Model

4.2 Designing neural networks for forecasting

The task of designing neural networks for forecasting is an iterative procedure which be-

gins by collecting data and pre-processing them to make training more efficient. Then,

training data need to be divided into training, validation and testing sets. After that, the

appropriate network type and architecture for forecasting are chosen. Once the network

and architecture have been decided, the next step is to select a training algorithm that is

appropriate for the forecasting problem. After training the network, we need to analyze the

network in order to see whether the performance is satisfactory. If we find any problem,

we have to re-start our process from the beginning, as shown in Fig. 4.11

Figure 4.11: Flowchart of Neural Network Training Process [43]
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4.2.1 Data Collection and pre-processing

The first stage in designing the neural network for forecasting is collecting data. The re-

quired amount of data depends on the complexity of the underlying function that we are

trying to approximate. The choice of data set is closely related to the choice of the number

of neurons in the neural network. To make the forecasting problem more manageable, data

are pre-processed before being used to train the neural network. There are several types of

data pre-processing, such as normalization, nonlinear transformations, feature extraction,

coding of discrete inputs/targets, handling the missing data, etc.

Normalization is the main step in data pre-processing. It will help the neural network

to extract relevant information in the training process. Generally, there are two methods

for normalization. The first method is to normalize the data so that they fall into a standard

range - typically -1 to 1. This can be done by

pn = 2(p − pmin)./(pmax − pmin)− 1 (4.5)

where pmin is the vector containing the minimum values of each element of the input vec-

tors in the data set, pmax contains the maximum value. The other method of normalization

is to adjust the data so that they have specified mean and variance - typically 0 and 1:

pn = (p − pmean)./pstd (4.6)

where pmean is the average of the input vectors in the data set and pstd is the vector con-

taining the standard deviations of each element of the input vector.

Another type of pre-processing is removing outliers, missing values or any irregular-

ities. Neural networks can be sensitive to defective data. It is not possible to guarantee

network performance when the inputs to the networks are outside the range of the train-

ing set. Missing data can occur in the inputs and/ or targets (e.g., historical load data is

not available for one month). If missing data are in an input variable, one possibility is

to replace the missing data with the average value for the particular input variable. When
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missing data occur in an element of the target, then the performance index can be modified

so that errors associated with the missing target values will not contribute to the perfor-

mance index.

Once data collection and pre-processing have been implemented, the data will be di-

vided into three sets: training, validation and testing. The training set generally makes

up approximately 70% of the full data set, with validation and testing making up approxi-

mately 15% each. The gradient is computed on the training set, and the mean square error

on the training set is minimized. During training, validation error is monitored. Training is

stopped when validation error increases, to prevent overfitting. After training is complete,

the error on the test set is computed. This provides an indication of how the network will

perform on new data.

4.2.2 Selecting the network type and architecture

The purpose of forecasting is to predict the future value of some time series, e.g., short

term load forecasting predicts the load up to 24 hours ahead. Since many forecasts require

nonlinear models, dynamic neural networks can be used. In this research, we will be using

the PNARIMA model shown in Fig. 4.10. For this network, we will need to select the

number of neurons in the hidden layers and the number of hidden layers. To determine the

number of hidden layers, the standard procedure is to begin with a network with one hidden

layer. If the performance of the two-layer network is not good enough, then a three-layer

network can be used. It would be unusual to use more than two hidden layers, because

if there are multiple hidden layers the training becomes more difficult. Each layer in the

hidden layer performs a squashing operation, as the activation function in the hidden layer

must be differentiable and nondecreasing i.e. logistic or hyperbolic tangent. This causes

the derivatives of the performance with respect to weights in the early layers to be quite

small, which can cause slow convergence for steepest descent optimization. It has been

shown that one or two hidden layer is good enough for neural network forecasting [3].
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We also need to select the number of neurons in each layer. Choosing the number of

neurons in the hidden layers is not straightforward. If they are too few, the model will

not be flexible enough to model the data well. On the other hand, if they are too many,

the model will overfit the data. The standard procedure in choosing the number of neu-

rons in the hidden layers is to begin with more neurons than necessary, which may cause

the network to overfit the data. To prevent the overfitting, we can use early stopping or

Bayesian regularization. In Bayesian regularization, the norm of the weights is penalized,

which reduces the effective number of parameters. If, after training, the effective number

of parameters is much less than the total number of parameters, then the number of neurons

can be reduced and the network retrained. It is also possible to use ”pruning” methods to

eliminate neurons or weights in the network.

4.2.3 Selecting training algorithm

There are several processes in training; choosing the performance function, initializing the

weights, choosing the training algorithm, and choosing the criterion for stopping training.

The type of weight initialization will depend on the type of network. In general, the

weights and biases are set as small random values (e.g., uniformly distributed between -0.5

and 0.5, if the inputs are normalized to fall between -1 and 1) for multilayer networks.

We have to avoid setting the weights and biases to zero, because then the initial condition

may fall on a saddle point of the performance surface. On the other hand, if we make

the initial weights too large, the initial condition can fall on flat part of the performance

surface, because of the saturation of the sigmoid transfer functions. There is another good

approach to setting the initial weights and biases for a two-layer network. It was introduced

by Widrow and Nguyen [45]. This method generates initial weights and bias values for a

layer, so that the active regions of the neurons will be distributed approximately evenly over

the input space. In the other words, it is to set the magnitude of weights in the first layer

so that the linear region of each sigmoid function covers 1/S1 of the range of the input.
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The biases are set randomly in the region −1 < x < 1 so that the center of each sigmoid

function falls randomly in the input space by assuming the inputs to the network have been

normalized to values between -1 and 1. The detail is as follows, first set row i of W1, iw,

to have a random direction and a magnitude of

∥iw∥ = 0.7(S1)1/R

Set bi to a uniform random value between −∥iw∥ and ∥iw∥.

After initializing the weights, the weights and biases of the network are adjusted so as

to minimize the error, e, between the network output and the proper function response, as

shown in Fig. 4.12.
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Figure 4.12: Neural Networks

The training process can be thought of as a standard optimization problem, in which

the objective function is the mean squared network errors:

F (x) =
1

QSM

Q∑
q=1

(tq − aq)
T (tq − aq) (4.7)

or

F (x) =
1

QSM

Q∑
q=1

SM∑
i=1

(ti,q − ai,q)
2 (4.8)

where aq is the neural network output for the qth input, pq, and M is the number of layer.

Since training can be considered as an optimization problem, there are many different

optimization algorithms that can be used. The Levenberg-Marquardt algorithm and some

variations of the conjugate gradient algorithm appear to produce the best results [43]. We
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will use the Levenberg-Marquardt algorithm. Levenberg-Marquardt blends the gradient de-

scent method with the Gauss-Newton method. This algorithm inherits the speed advantage

of the Gauss-Newton algorithm and the stability of steepest descent. The training process

can be summarized as follows

Figure 4.13: Levenberg-Marquardt Flowchart

1. Initialize the weight (randomly generated), then evaluate the performance

2. Update the weights

wk+1 = wk − (JT
k Jk + µI)−1Jkek (4.9)

where J is the Jacobian matrix

3. Calculate the performance using the updated weight
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4. If the performance increases after updating the weight, then use the previous weight

and expand the coefficient µ by a factor of 10. Go to step 2 and try an update again

5. If the performance decreases after updating the weight, then accept the updated

weight as the current one and contract the coefficient µ by 10

6. Go to step 2 with the new weights until the performance is smaller than the required

value

As mentioned above, the main goal of training is to get a network that has small errors on

the training set, while still responding properly to novel inputs. A network is said to gener-

alize well when a network can perform as well as on novel inputs as on training set inputs.

The network will continue to work well under all operating conditions confidently. One

technique to improve the generalization is to divide the data into three subsets: training,

validation and test. The validation data is used to stop the training early when the network

begins to overfit [46]. Another method that is very helpful in improving network general-

ization is Bayesian regularization [47]. This method constrains the network weights and

biases so that the network response will be smooth. This will guarantee that the network

will interpolate reasonably between points in the training set. In this algorithm, a penalty

term is added into the original objective function:

F (x) = βED + αEW = β

Q∑
q=1

(tq − aq)
T (tq − aq) + α

n∑
i=1

x2i (4.10)

where EW is the sum of squares of the network weights, and α and β are objective function

parameters. If α << β, then the training algorithm will drive the errors smaller. If α >>

β, training emphasizes weight reduction at the cost of network errors, thus producing a

smoother network response. The steps of this algorithms, based on [47], can be described

below

1. Initialize α and β and the weights. It is suggested to set α = 0 and β = 1 and to use

the Nguyen-Widrow method for weight initialization. Compute ED and EW using
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the initialization parameters with γ = n

2. Take one step of the Levenberg-Marquardt algorithm to minimize the objective func-

tion F (x) = βED + αEW

3. Compute the effective number of parameter γ = N − 2αtr(H)−1 making the Gauss-

Newton approximation to the Hessian available in the Levenberg-Marquardt training

algorithm

H = ∇2F (w) ≈ 2βJTJ + 2αIN

where J is the Jacobian matrix of the training set errors

4. Compute new estimates for the objective function parameter

α =
γ

2EW (w)

and

β =
n− γ

2ED(w)

5. Iterate step 2 through 4 until convergence

After choosing the training algorithm, we need some criteria to stop the training. The

network has to stop the training when the error reaches some specified limits. The simplest

criterion is to stop the training after a fixed number of iterations have been reached. But

since it is also difficult to know how many iterations will be required, the maximum iter-

ation number is generally set reasonably high. Another stopping criterion is through the

norm of the gradient of the performance index. If this norm reaches a sufficiently small

threshold, then the training can be stopped. Since the gradient should be zero at a mini-

mum of the performance index, this criterion will stop the algorithm when it gets close to

the minimum. The threshold for the minimum norm should be set to a very small value

(e.g., 10−6 for mean square error indices, with normalized targets) so that the training does
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not end prematurely. When early stopping is used, the training will be stopped when the

performance on the validation set increases for a set number of iterations. In addition to

preventing overfitting, this stopping procedure also provides a significant reduction in com-

putation; for most practical problems, the validation error will increase before any of the

other stopping criteria are reached.

4.2.4 Analyzing network performance

In time series forecasting, we also need to test the performance of the network after training

is complete. There are two important concepts that are used when analyzing a trained

forecasting network

1. the forecasting error should not be correlated in time and

2. the forecasting error should not be correlated with the input sequence

If the forecasting errors are correlated in time, we need to improve our original predic-

tion. In order to test the correlation of the forecasting errors in time, we can use the sample

autocorrelation

Re(τ) =
1

Q− τ

Q−τ∑
t=1

e(t)e(t+ τ) (4.11)

If the forecasting errors are uncorrelated (white noise), then we would expect Re(τ) to be

close to zero, except when τ = 0. To determine if Re(τ) is close to zero, we can set an

approximate 95% confidence interval using the range

−2Re(0)√
Q

< Re(τ) <
2Re(0)√

Q
(4.12)

The error e(t) is white, if Re(τ) satisfies (4.12) for τ ̸= 0. To test the correlation between

the forecasting errors and the input sequence, we can use the sample cross correlation

function

Re(τ) =
1

Q− τ

Q−τ∑
t=1

p(t)e(t+ τ) (4.13)
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If there is no correlation between the forecasting errors and the input sequence, then we

would expect Rpe(τ) to be close to zero for all τ . To determine if Rpe(τ) is close to zero,

we can set an approximate 95% confidence interval using the range

−
2
√
Re(0)

√
Rp(0)√

Q
< Rpe(τ) <

2
√
Re(0)

√
Rp(0)√

Q
(4.14)

In summary, a neural network can be said to be properly trained if [11]

1. it is well fitted to the training data

2. its performances on the training sample and on the test samples are comparable

3. its performances across different test samples are coherent.
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CHAPTER 5

RESULTS

5.1 Data Description

For this study, data were obtained from PT. Perusahaan Listrik Negara (State Electricity

Company) Batam. Batam is an industrial city in Indonesia. This region has become a free

trade zone since 1989 as part of the Sijori Growth Triangle. Shipbuilding and electronics

manufacturing are important industries in this area.

As an Indonesian government-owned corporation, which has a monopoly on electricity

distribution in Indonesia, PT. PLN Batam must meet public electricity demands at all times.

Moreover, the economic growth in Batam has become very rapid. PT. PLN Batam has to

be more diligent in delivering electricity to industrial and residential consumers.

In distributing their services, PT. PLN Batam divides the consumers into 5 groups;

households, business, industry, multipurpose, and general consumers. Household is de-

fined as residential, individual or social organisations who use the electricity personally

and for daily activities. The business consumer is a commercial organization or small in-

dustry, such as hotels, banks, law firms, etc. Industrial consumers are large-scale industries,

e.g., manufacturing. The general consumer is a non-profit entity, such as schools, hospitals

or religious organizations. The last category is the multipurpose consumer. Government

buildings, street lights, or Base Transceiver Stations (BTS) can be classified as multipur-

pose consumers. As of 2010, the total number of customers, based on data from PT. PLN

Batam, can be seen in Table 5.1.

In operation, PT. PLN Batam has a mixed fuel strategy. As of 2011, PT. PLN Batam

generated energy from a mixture of 95.19% gas and 4.81% other fossil fuel. In the same
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Table 5.1: Classification and Composition of Consumers [48]

Year Households Business Industry General Multipurpose Total

2004 109112 14278 177 1571 1478 126616

2005 123692 15258 181 1802 1380 142313

2006 138095 16437 203 2025 1281 158041

2007 151025 18191 232 2222 1157 172827

2008 164776 19258 260 2411 1524 188229

2009 178888 20774 279 2892 1064 203897

2010 187116 22367 276 3003 1045 213807

year, the total installed capacity was 373 MW.

For the purpose of this study, the data is hourly electricity consumption data, which

was recorded over a 2 year period from May 2009 until April 2011. Fig. 5.1 shows typical

behaviour of hourly electric consumption for August 2009 for a week. Typically, peak load

occurs at 10 AM, 2 PM and 7 PM on week days. The lowest electricity consumption is

typically at 7 AM. It is presumed that at 7 AM consumers turn the lights off, and then at

7 PM they come back from work and perform activities at home that use a large amount

of electricity. The electricity consumption is also lower during the weekend (Saturday

and Sunday) or on the holidays. For example, on August 17, 2009 the lowest electricity

consumption was 105.7 MW at 8 AM and the largest was 157 MW at 7 PM. These are

lower than usual, because it is a holiday.
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Figure 5.1: Hourly Electric Load Consumption for August 3 - 9, 2009

A plot of peak hourly load for each month from May 2009 to April 2011 can be seen in

Fig. 5.2.
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Figure 5.2: Peak Load for Each Months from May 2009 until April 2011
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For this study, the only input variable that will be used for the load predictor is hourly

electricity load. Weather variables (temperature, humidity, etc.) can also be considered

as potential inputs for the predictor. But since Indonesia has a tropical rain forest climate

with two major seasons - dry (May to October) and wet (November to April) - temperature

does not change too much throughout the year. Hence, the weather variables provide no

additional improvements to the predictor. Fig. 5.3 shows the relationship between the

temperature and daily peak load for August 2009.
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Figure 5.3: Relationship Between Temperature and Daily Peak Electric Load Consumption

for August, 2009

From Fig. 5.3, we can see that temperature does not have a significant impact on the

load. As stated in Fidalgo et.al [15], whether weather-dependent factors have a significant

influence on the load will depend on the region and climate conditions. Temperature will

not be included in our forecasting models, because it did not improve the forecasts.
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In our tests, data are divided into two groups; training data and testing data. The training

data are used to train ARIMA models and PNARIMA neural networks in order to estimate

the model parameters. The testing data are used to test the fitted models. The purpose of the

testing data is to validate the model and to predict future model performance. Training data

consist of 7 data sets, and there are also 7 testing data sets. The training and testing data

will assist us in determining how many different models are required throughout the year.

One training set will consist of an entire year of data - meaning that one model will be fit for

the entire year. We will also consider fitting two models - one for the wet season and one

for the dry season. This means there will be two training sets of six months each. Finally,

we will consider four models throughout the year. In this case the data will be divided into

three month intervals. The following table shows the training and testing intervals.

Table 5.2: Training and Testing Periods

Models Training Periods Testing Periods

Full year May, 09 - April, 10 May, 10 - April, 11

6 month
Dry May, 09 - Oct, 09 May, 10 - Oct, 10

Wet Nov, 09 - April, 10 Nov, 10 - April, 11

3 month

Dry 1 May, 09 - July, 09 May, 10 - July, 10

Dry 2 Aug, 09 - Oct, 09 Aug, 10 - Oct, 10

Wet 1 Nov, 09 - Jan, 10 Nov, 10 - Jan, 11

Wet 2 Feb, 10 - April, 10 Feb, 11 - April, 11

The idea will be to use the fewest models that can accurately predict the load. If the

single model, fit to an entire year of data, provides predictions that are as good as the

predictions made by the two six-month models, or the four three-month models, then we

will recommend the full year model. The fewer models that we need to use, the more data

we can use to fit the models. This should provide more accurate models. However, if the
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characteristics of the load curve change significantly from one season to the next, then we

will need to fit more models in order to get accurate forecasts.

Once the data have been divided into training and testing set, we are ready to train and

test the models. In the following sections we will describe the following steps:

1. Fit the ARIMA model to the training data

2. Fit the PNARIMA neural network model to the training data

3. Compare the accuracy of seasonal ARIMA and PNARIMA neural network models

on the testing data

In comparing the accuracy of each model, this study will use the following forecasting

accuracy criteria:

1. Root Mean Square Error (RMSE)

RMSE =

√√√√ n∑
t=1

(zt − ẑt)2

n
(5.1)

2. Mean Absolute Error (MAE)

MAE =

n∑
t=1

|zt − ẑt|

n
(5.2)

5.2 Fitting the ARIMA model

To make a linear prediction using seasonal ARIMA models, we will follow the Box-Jenkins

procedures described in Chapter 3. The initial training data is the hourly electricity con-

sumption in the 3 month period August 2009 to October 2009 (Dry 2). In the preliminary

identification stage, we examine the autocorrelation function (ACF) and partial autocorre-

lation function (PACF) for the training data to determine whether the original process is

stationary or not.
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5.2.1 Preliminary model structure determination

As shown in Fig. 5.4, the slowly decaying ACF indicates that the process is not stationary.

To obtain a stationary process, we need to difference the original process and identify the

appropriate degree of differencing, d. There are several possible differencing schemes

(hourly, daily, weekly and combinations), as shown in Fig. 5.5. The differenced process,

wt, should have an ACF that decays reasonably quickly.
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Figure 5.4: ACF and PACF from Original Load August to October, 2009

The ACF plots in Fig. 5.5 indicate that a stationary process may be obtained by ei-

ther a differencing scheme of hourly and daily ∇1∇24 or hourly and weekly ∇1∇168. In

the following discussion, we use ∇1∇24. The autocorrelation function(ACF) and partial

autocorrelation function (PACF) of the differenced time series can be seen in the Fig. 5.6.
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(b) hourly
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(c) hourly and daily
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(d) hourly and weekly

Figure 5.5: ACF Differenced of Load August to October, 2009

The next step in developing the model is to identify the order of the model, given by

(p, d, q) × (P,D,Q)24. To get these model orders, we can inspect the ACF and PACF

separately, as shown in Fig. 5.6. The exponential decaying pattern in the ACF and the

large spikes at lag 24 in the PACF suggest a daily order, (P,D,Q)24, of P = 1 and Q = 1.

Hence, our tentative model has the form

ϕp(B
1)ΦP (B

24)∇1∇24zt = θq(B
1)ΘQ(B

24)et

(1− Φ1B
24)∇1∇24zt = (1−Θ1B

24)et

(5.3)

which we can indicate by (0, 1, 0)× (1, 1, 1)24
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Figure 5.6: ACF and PACF Load August - October 2009 Difference ∇1∇24

The parameters in the initial model (5.3) were estimated using the maximum likelihood

method. After estimating the parameters, we can diagnose the residuals of the model, et,

to check the goodness of fit. If the model is accurate, the autocorrelation function of the

residuals should be close to an impulse function, which would indicate that the residuals

are white. On the other hand, if the model is a poor fit, the residuals will not be white.
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Figure 5.7: ACF and PACF Residual for Tentative Model

Fig. 5.7 shows the residual ACF for our tentative model for lags 162 to 176. Notice

the dashed red lines, which are confidence intervals around zero (to see the detail of its

pattern, the ACF for small lags is omitted). Most of the values are within these lines, or

close by. But there is a large spike at lag 168 (recall that 168 hours is one week). This spike

at lag 168 is outside the confidence interval. It shows that the model may need a weekly

component. By adding this weekly component, we get the following form: (0, 1, 0) ×

(1, 1, 1)24 × (1, 0, 1)168. Hence, our final ARIMA model is as follows

(1− Φ1B
24)(1− Φ1‘B

168)∇1∇24zt = (1−Θ1B
24)(1−Θ1‘B

168)et

(1− Φ1B
24 − Φ1‘B

168 + Φ1Φ1‘B
192)∇1∇24zt = (1−Θ1B

24 −Θ1‘B
168

+Θ1Θ1‘B
192)et

(5.4)
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5.2.2 Parameter estimation and model validation

The final fitted ARIMA model for the training data set August to October 2009 is

(1 + 0.952B24)(1 + 0.809B168)∇1∇24zt = (1 + 0.092B24)(1 + 0.981B168)et (5.5)

A whiteness test for et from the model above gives no indication of model inadequacy. The

ACF for et is shown in Fig. 5.8. It shows that et is white. Besides the whiteness test,

we can see the model adequacy from the confidence intervals. Confidence intervals can

determine whether the estimated parameter is significantly different from 0. From the final

fitted ARIMA parameters, we have the confidence interval for each parameters shown in

Table 5.3. None of the confidence intervals include zero. We can conclude that our final

model is adequate.

Table 5.3: Confidence Intervals for Final ARIMA Model Training Data August to October

2009

Parameters
Confidence Interval

Lower Bound Upper Bound

Φ1 -0.856 -0.906

Φ1‘ -0.724 -0.850

Θ1 -0.090 -0.191

Θ1‘ -0.931 -1.009
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Figure 5.8: ACF and PACF Residual for Final Model

Finally, the fitted seasonal ARIMA model in Eq. (5.5) will be used to forecast the

electricity load 1 hour ahead. The forecasts will be made on the training data. The results

can be seen in the following figure.
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Figure 5.9: ARIMA Prediction for One Week in August - October, 2009

Fig. 5.9 shows a graph of the forecasts and the actual loads for a typical week. We see

from this graph that there are poor forecasts at some points (e.g., at hours 8 and 12). There

could be many causes for these large errors (e.g., a sudden shut down of nearby industrial

plants, weekends, etc.). It is also possible that the performance could be improved by using

a nonlinear model.

ARIMA models for the other training sets were also developed. The results are summa-

rized in Table 5.4. We can notice from this table that the models are very similar throughout

the year. This suggests that using one model for the entire year might be sufficient. We will

consider this possibility again when we compare the accuracies of the various models (full

year, six month, three month).
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Table 5.4: ARIMA Models

Season Time period Model

Full year May, 09 - April, 10 (1 + 0.922B24)(1 + 0.885B168)∇1∇24zt =

(1 + 0.066B24)(1 + 0.992B168)et

Dry Season May, 09 - Oct, 09 (1 + 0.914B24)(1 + 0.846B168)∇1∇24zt =

(1 + 0.069B24)(1 + 0.987B168)et

Wet Season Nov, 09 - April, 10 (1 + 0.899B24)(1 + 0.893B168)∇1∇24zt =

(1 + 0.073B24)(1 + 1.008B168)et

Dry Season 1 May, 09 - July, 09 (1 + 0.937B24)(1 + 0.757B168)∇1∇24zt =

(1 + 0.030B24)(1 + 0.960B168)et

Dry Season 2 August, 09 - Oct, 09 (1 + 0.881B24)(1 + 0.787B168)∇1∇24zt =

(1 + 0.140B24)(1 + 0.970B168)et

Wet Season 1 Nov, 09 - Jan, 10 (1 + 0.867B24)(1 + 0.888B168)∇1∇24zt =

(1 + 0.088B24)(1 + 1.025B168)et

Wet Season 2 Feb, 10 - April, 10 (1 + 0.949B24)(1 + 0.883B168)∇1∇24zt =

(1 + 0.063B24)(1 + 1.033B168)et

Table 5.5 shows the accuracy for the seasonal ARIMA models. The results show that

the single (full year) model provides better forecasts than models developed for individual

seasons. The two six-month models (dry and wet) produce a slightly better forecast during

the wet season, but the accuracies are not significantly different.
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Table 5.5: Seasonal ARIMA Performance for Training data

Season Training Period RMSE MAE

Full year May, 09 - April, 10 4.481 3.027

Dry May, 09 - Oct, 09 4.677 3.199

Wet Nov, 09 - April, 10 4.407 2.990

Dry 1 May, 09 - July, 09 4.777 3.250

Dry 2 August, 09 - Oct, 09 4.982 3.403

Wet 1 Nov, 09 - Jan, 10 4.513 3.115

Wet 2 Feb, 10 - April, 10 4.950 3.314

It is clear from these results that ARIMA models can provide reasonable forecasts of

electricity consumption. However, ARIMA models have the drawback that they can only

produce linear forecasts. In the next section, we want to try to increase the accuracy of

short term forecasting by using a nonlinear model - the neural network.

5.3 Fitting the neural network model

As stated in Chapter 4, a good nonlinear model should be “general enough to capture some

of the nonlinear phenomena in the data”. One such model is the artificial neural network.

In Chapter 4 we introduced a new neural network architecture - the PNARIMA network.

In this section we describe how this network can be trained for load forecasting.

5.3.1 Preliminary structure determination

To build a neural network model for forecasting, we should pre-process the data first. The

input to this neural network is the previous hourly electricity consumption. From the ACF

and PACF behaviour shown in Fig. 5.4, we know that this is a non-stationary process, so we

need to difference the data. Wang and Leu [49] suggested that neural networks trained with
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differenced data can produce better predictions than those trained with raw data. Hence,

we prefer to difference the data before training. The differenced load, wt, is computed as

in (5.6):

wt = ∇d
1∇D

24zt

wt = ∇1∇24zt

wt = ∇24zt −∇24zt−1

wt = zt − zt−24 − zt−1 + zt−25

(5.6)

After being differenced, the data will be normalized to the interval -1 to 1.

Having pre-processed the data, we are ready to determine the network type. For our

problem, we will use the PNARIMA model shown in Fig. 4.10. We will use the ARIMA

model of (5.4) to determine the structure of the tapped delays in the PNARIMA network.

(1− Φ1B
24 − Φ1‘B

168 + Φ1Φ1‘B
192)wt = (1−Θ1B

24 −Θ1‘B
168 +Θ1Θ1‘B

192)et

wt − Φ1B
24wt − Φ1‘B

168wt + Φ1Φ1‘B
192wt = et −Θ1B

24et −Θ1‘B
168et +Θ1Θ1‘B

192et

wt − Φ1wt−24 − Φ1‘wt−168 + Φ1Φ1‘wt−192 = et −Θ1et−24 −Θ1‘et−168 +Θ1Θ1‘et−192

Using this ARIMA model, the architecture of the PNARIMA neural network is shown in

Fig. 4.10. A more detailed diagram, showing the structure of the multilayer section, is

shown in Fig. 5.10. The periodic tapped delay lines of Fig. 4.10 are collapsed to single

tapped delays in Fig. 5.10.
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Figure 5.10: PNARIMA Architecture for Prediction

This network consists of three layers. The first two layers represent the multilayer net-

work from Fig. 4.10. The third layer represents the summation in Fig. 4.10 that computes

the prediction error. The weight IW 3,1 = 1, the weight LW 3,2 = −1 and the bias b3 = 0.

These parameters are fixed during training of the network. The delay for the input is based

on the ARIMA model (5.4) so we have DI1,1 = 24, 168, 192 and DL1,3 = 24, 168, 192.

The transfer function for the first layer is the hyperbolic tangent:

f(x) =
exp (x)− exp (−x)
exp (x) + exp (−x)

(5.7)

Linear transfer functions will be used in the second and third layers.

In initializing the weight and bias, we use the Nguyen-Widrow algorithm [45]. This

neural network consists of two outputs. The first output is the error, et, which is the differ-

ence between actual value, wt, and predicted value, ŵt, and the second output from layer

two is the predicted value ŵt.

For the training algorithm, we use the Gauss-Newton approximation to Bayesian regu-

larization [47]. Training is stopped when the norm of the gradient of mean squared error

falls below a specified level, or when a maximum number of epochs is reached (100 for our

tests).
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5.3.2 Form of neural network prediction

We will fit the neural network to the differenced load

wt = ∇1∇24zt = (1−B)(1−B24)zt = (1−B −B24 +B25)zt

= zt − zt−1 − zt−24 + zt−25

(5.8)

Therefore, the trained network will produce predictions of the differenced load, ŵt. How-

ever, we need to convert this to a prediction of load, ẑt. From Eq. (5.8), we would expect

that the relationship between ẑt and ŵt should be

ẑt = ŵt + zt−1 + zt−24 − zt−25 (5.9)

In this section we will demonstrate that this equation does work for the linear ARIMA

model. We will then use Eq. (5.9) for the PNARIMA predictor.

We can expand the ARIMA model in Eq.(5.4) to obtain

(1− Φ1B
24 − Φ1‘B

168 + Φ1Φ1‘B
192)wt = (1−Θ1B

24 −Θ1‘B
168 +Θ1Θ1‘B

192)et

wt − Φ1B
24wt − Φ1‘B

168wt + Φ1Φ1‘B
192wt = et −Θ1B

24et −Θ1‘B
168et +Θ1Θ1‘B

192et

wt − Φ1wt−24 − Φ1‘wt−168 + Φ1Φ1‘wt−192 = et −Θ1et−24 −Θ1‘et−168 +Θ1Θ1‘et−192

(5.10)

We can solve for wt as follows

wt = Φ1wt−24 + Φ1‘wt−168 − Φ1Φ1‘wt−192 − (Θ1et−24 +Θ1‘et−168−Θ1Θ1‘et−192) + et

The error, et, is the difference between the actual value and the prediction. It can be written

as

et = wt − ŵt
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Hence

wt = Φ1wt−24 + Φ1‘wt−168 − Φ1Φ1‘wt−192 −Θ1(wt−24 − ŵt−24)

−Θ1‘(wt−168 − ŵt−168) + Θ1Θ1‘(wt−192 − ŵt−192) + et

This can also be written as

wt = ŵt + et (5.11)

where the value of ŵt is

ŵt = Φ1wt−24 + Φ1‘wt−168 − Φ1Φ1‘wt−192 −Θ1(wt−24 − ŵt−24)

−Θ1‘(wt−168 − ŵt−168) + Θ1Θ1‘(wt−192 − ŵt−192)

(5.12)

Consider again our proposed ẑt from Eq. (5.9): ẑt = zt−1 + zt−24 − zt−25 + ŵt. If we

substitute ŵt from (5.12) into this equation, we will get

ẑt = zt−1 + zt−24 − zt−25 + ŵt

ẑt = zt−1 + zt−24 − zt−25 + Φ1wt−24 + Φ1‘wt−168 − Φ1Φ1‘wt−192

−Θ1(wt−24 − ŵt−24)−Θ1‘(wt−168 − ŵt−168) + Θ1Θ1‘(wt−192 − ŵt−192)

(5.13)

Since we know wt = zt − zt−24 − zt−1 + zt−25 from (5.8), we can write the prediction of zt

in the above equation as

ẑt = zt−1 + zt−24 − zt−25 + Φ1(zt−24 − zt−25 − zt−48 + zt−49) + Φ1‘(zt−168 − zt−169 − zt−192

+ zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)−Θ1(wt−24 − ŵt−24)−Θ1‘(wt−168

− ŵt−168) + Θ1Θ1‘(wt−192 − ŵt−192)

(5.14)

We want to write this expression in terms involving only zt and ẑt. We can rewrite Eq. (5.9)

as

ŵt = ẑt − zt−1 − zt−24 + zt−25
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So (5.14) can be rewritten as

ẑt = zt−1 + zt−24 − zt−25 + Φ1(zt−24 − zt−25 − zt−48 + zt−49)

+ Φ1‘(zt−168 − zt−169 − zt−192 + zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)

−Θ1(zt−24 − zt−25 − zt−48 + zt−49 − (ẑt−24 − zt−25 − zt−48 + zt−49))

−Θ1‘(zt−168 − zt−169 − zt−192 + zt−193 − (ẑt−168 − zt−169 − zt−192 + zt−193)

+ Θ1Θ1‘(zt−192 − zt−193 − zt−216 + zt−217 − (ẑt−192 − zt−193 − zt−216 + zt−217))

= zt−1 + zt−24 − zt−25 + Φ1(zt−24 − zt−25 − zt−48 + zt−49) + Φ1‘(zt−168 − zt−169 − zt−192

+ zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)−Θ1(zt−24 − ẑt−24)

−Θ1‘(zt−168 − ẑt−168) + Θ1Θ1‘(zt−192 − ẑt−192)

(5.15)

This is the prediction of zt for the ARIMA model, if we assume that (5.9) is the correct

relationship between ẑt and ŵt.

Now we will get the prediction of zt by substituting the difference equation in (5.6) into

the ARIMA model in (5.4) directly. If this produces the same form as (5.15), then (5.9) is

the correct relationship between ẑt and ŵt. The procedure is as follows

(1− Φ1B
24 − Φ1‘B

168 + Φ1Φ1‘B
192)∇1∇24zt = (1−Θ1B

24 −Θ1‘B
168

+Θ1Θ1‘B
192)et

(1− Φ1B
24 − Φ1‘B

168 + Φ1Φ1‘B
192)(1−B1 −B24 +B25)zt = (1−Θ1B

24 −Θ1‘B
168

+Θ1Θ1‘B
192)et

(1− Φ1B
24 − Φ1‘B

168 + Φ1Φ1‘B
192 −B + Φ1B

25 + Φ1‘B
169 − Φ1Φ1‘B

193 −B24 + Φ1B
48

+Φ1‘B
192 − Φ1Φ1‘B

216 +B25 − Φ1B
49 − Φ1‘B

193 + Φ1Φ1‘B
217)zt = (1−Θ1B

24

−Θ1‘B
168 +Θ1Θ1‘B

192)et
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If we expand the above equation, we can get

zt − Φ1B
24zt − Φ1‘B

168zt + Φ1Φ1‘B
192zt −Bzt + Φ1B

25zt + Φ1‘B
169zt−

Φ1Φ1‘B
193zt −B24zt + Φ1B

48zt + Φ1‘B
192zt − Φ1Φ1‘B

216zt +B25zt − Φ1B
49zt+

Φ1‘B
193zt + Φ1Φ1‘B

217zt = et −Θ1B
24et −Θ1‘B

168et +Θ1Θ1‘B
192et

zt −Bzt −B24zt +B25zt = Φ1B
24zt − Φ1B

25zt − Φ1B
48zt + Φ1B

49zt + Φ1‘B
168zt−

Φ1‘B
169zt − Φ1‘B

192zt + Φ1‘B
193zt − Φ1Φ1‘B

192zt + Φ1Φ1‘B
193zt+

Φ1Φ1‘B
216zt − Φ1Φ1‘B

217zt −Θ1B
24et −Θ1‘B

168et+

Θ1Θ1‘B
192et + et

zt − zt−1 − zt−24 + zt−25 = Φ1(zt−24 − zt−25 − zt−48 + zt−49) + Φ1‘(zt−168 − zt−169−

zt−192 + zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)− (Θ1et−24+

Θ1‘et−168 −Θ1Θ1‘et−192) + et

zt = zt−1 + zt−24 − zt−25 + Φ1(zt−24 − zt−25 − zt−48 + zt−49) + Φ1‘(zt−168 − zt−169−

zt−192 + zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)− (Θ1et−24+

Θ1‘et−168 −Θ1Θ1‘et−192) + et

Therefore, the prediction of zt is

ẑt = zt−1 + zt−24 − zt−25 + Φ1(zt−24 − zt−25 − zt−48 + zt−49)+

Φ1‘(zt−168 − zt−169 − zt−192 + zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)−

(Θ1et−24 +Θ1‘et−168 −Θ1Θ1‘et−192)

ẑt = zt−1 + zt−24 − zt−25 + Φ1(zt−24 − zt−25 − zt−48 + zt−49)+

Φ1‘(zt−168 − zt−169 − zt−192 + zt−193)− Φ1Φ1‘(zt−192 − zt−193 − zt−216 + zt−217)

−Θ1(zt−24 − ẑt−24)−Θ1‘(zt−168 − ẑt−168) + Θ1Θ1‘(zt−192 − ẑt−192)

(5.16)

This result is equivalent with the previous equation (5.15). Hence, we can conclude that
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(5.9) is correct:

ẑt = zt−1 + zt−24 − zt−25 + ŵt (5.17)

This technique for calculating the prediction ẑt from ŵt in Eq. (5.17) can be adapted to

the neural network model forecast.

For the neural network of Fig. 5.10, ŵt is the output from the second layer. Hence, the

nonlinear prediction can be written as

ẑt = zt−1 + zt−24 − zt−25 + Neural Network Result from the second layer (5.18)

5.3.3 Fitting and validation of the neural network model

As with the ARIMA model, we will begin neural network training with the Dry 2 season

(August to October, 2009). To check the adequacy of the model, we can investigate the

autocorrelation function of the residuals (prediction errors) of the fitted model. The ACF

of the residuals for the training data from August to October, 2009, is shown in Fig. 5.11.
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Figure 5.11: ACF and PACF Residual for PNARIMA Neural Network
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The ACF shows that the forecast error is almost uncorrelated (white noise). This indi-

cates that the model is adequate. Fig. 5.12 shows the actual and forecasted loads using the

neural network model for the training data in a typical week between August and October,

2009. Table 5.6 shows the network performance for the training data.
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Figure 5.12: PNARIMA Prediction During a Typical Week During August - October, 2009
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Table 5.6: PNARIMA Performance for Training data

Season Training Period RMSE MAE

Full year May, 09 - April, 10 4.427 3.043

Dry May, 09 - Oct, 09 4.650 3.207

Wet Nov, 09 - April, 10 4.215 2.934

Dry 1 May, 09 - July, 09 4.700 3.260

Dry 2 August, 09 - Oct, 09 4.227 3.025

Wet 1 Nov, 09 - Jan, 10 3.749 2.603

Wet 2 Feb, 10 - April, 10 4.219 2.838

From the network performance, we can see that the PNARIMA predictor is better than

the ARIMA predictor (see Table 5.5). It means that there are nonlinear aspects of the load

process that the neural network has the capability to capture, but that the linear ARIMA

model does not.

5.4 Comparison of ARIMA and neural network models on test data

Having developed the linear ARIMA model and the PNARIMA neural network, we are

ready to implement these models on the testing data. The objective is to evaluate the model

performance. The testing data is the hourly electricity consumption over the period May,

2010 to April, 2011. There are two months (September, 2010 and January, 2011) which are

missed from the testing data set.

Fig. 5.13 shows the actual load and ARIMA and PNARIMA predictions for a typical

week during the testing period. The prediction models were fit using training data from

August to October, 2009, and the predictions in Fig. 5.13 are from the period August to

October, 2010.
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Figure 5.13: PNARIMA and ARIMA Predictions of Testing Data from The Period from

August to October, 2010

In this testing period, the ARIMA error is worse than the PNARIMA error. The per-

formance of the PNARIMA predictor is compared with the ARIMA performance for the

other testing data in Table 5.7.

There are a couple of conclusions we can draw from the testing results. First, the

PNARIMA predictor produces better results than the ARIMA predictor in all cases. This

means that the load process is clearly nonlinear. In addition, it appears that the process

does not change in a significant way throughout the year. The errors for the single model

that was fit for the entire year are very similar to those for models that were fit over only

six or three month periods. If we consider the total RMSE over the entire year, the single

model has RMSE of 4.835. The separate wet and dry models have a total RMSE over the

year of 4.844. The four subseason models (Dry 1, Dry 2, Wet 1, Wet 2) have a combined

4.631 RMSE over the test year.
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Table 5.7: ARIMA and PNARIMA Performance for Testing Data

Forecasting Period Method RMSE MAE

May, 10 - April, 11 PNARIMA 4.835 3.380

Full ARIMA 5.214 3.614

May, 10 - Oct, 10 PNARIMA 4.938 3.411

Dry ARIMA 5.245 3.637

Nov, 10 - April, 11 PNARIMA 4.752 3.376

Wet ARIMA 5.261 3.629

May, 10 - July, 10 PNARIMA 4.847 3.432

Dry 1 ARIMA 5.028 3.498

August, 10 - Oct, 10 PNARIMA 4.645 3.389

Dry 2 ARIMA 5.672 3.928

Nov, 10 - Dec, 10 PNARIMA 4.699 3.249

Wet 1 ARIMA 5.612 3.887

Feb, 11 - April, 11 PNARIMA 4.333 3.025

Wet 2 ARIMA 5.181 3.630
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CHAPTER 6

CONCLUSIONS

The objective of this research has been the development of accurate short term forecasts

of electric power loads. We began by using linear ARIMA models. These models were

able to capture the non-stationarity of the electric load process. The seasonal ARIMA

model is relatively easy to develop, using some systematic procedures, and it produces

good forecasts. This makes the linear approach popular for short term load forecasting.

Although the ARIMA model generally produces good results, it has a drawback. It as-

sumes a linear relationship between present and future values of load and between weather

variables and load. Based on this consideration, we need a nonlinear approach to achieve

better performance. Since ARIMA models can capture non-stationary and linear factors,

and since neural networks can capture nonlinear effects, we have decided to combine these

two approaches to produce a periodic nonlinear ARIMA (PNARIMA) neural network. This

is a new approach to short term load forecasting with neural networks, because it considers

not only the autoregressive component, but also the moving average component (the addi-

tion of the moving average component requires that the network be trained with dynamic

backpropagation, which is not needed for the purely autoregressive neural networks that

have been used in the past). In addition, the PNARIMA network uses periodic tapped de-

lay lines to account for the seasonality in the load process, and it also includes differencing,

which allows the model to handle the non-stationarity in the load process.

We have tested our linear and nonlinear models using the actual electricity load con-

sumption from PT. PLN Batam, Indonesia. We used two years of data from May 2009 to

April 2011. (The first year was used for training the models. The second year was used for
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testing.) The main input for this study is the previous electricity load consumption. We did

not include the weather variables in our models because we found that they did not signif-

icantly improve the forecasts. The temperature does not strongly influence the electricity

consumption, since this area has a tropical rain forest climate that has similar temperatures

for wet and dry seasons. For the purpose of this study, we divided the historical load data

into training and testing data. The training data is used to estimate the model parameters

and the testing data is used to validate the model and to predict future model performance.

We fit several ARIMA and PNARIMA models : one for the whole year, one for each

season (dry and wet) and one for each sub season (dry 1, dry 2, wet 1 and wet 2). ARIMA

model development follows three steps: preliminary identification, parameter estimation

and diagnostic testing. Preliminary identification determined that the best seasonal ARIMA

model is (0, 1, 0)× (1, 1, 1)24× (1, 0, 1)168. This structure was also used for the PNARIMA

model. The best neural network model had five neurons in the hidden layer, with tangent

sigmoid transfer function in the hidden layer and linear transfer function for the output

layers. The input to the neural network is the differenced load data. For the training data,

neural network performance was better than ARIMA performance. This indicates that

the PNARIMA model has the capability to capture the nonlinear aspects that cannot be

captured by the ARIMA model.

The models were tested using data from the year following the training data. The

results on the testing data showed that the performance of PNARIMA neural networks is

better than linear ARIMA models for all cases. For example, PNARIMA RMSE is 4.645

and ARIMA RMSE is 5.672 for the dry 2 model testing data. For the full year model,

PNARIMA RMSE is 4.835 and ARIMA RMSE is 5.214. This is an improvement of up

to 5% in accuracy, which will be meaningful in terms of operating costs. These results

indicate that the load process is clearly nonlinear. In addition, the process does not change

significantly throughout the year. The errors for the single model that was fit for the entire

year are very similar to those models that were fit over only six or three month periods.
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For future work, the newly proposed PNARIMA model can be implemented on an-

other utility system for a region where electric load consumption is influenced by weather

variables, such as temperature, humidity, wind, rainfall, etc. The PNARIMA model can be

easily adjusted, as described in Chapter 4, to include external inputs, like weather variables.

This new approach can also be applied to predict wind speed, which would be useful

for wind power prediction.
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APPENDIX (Training and Testing Result)

Training data

Training data 1 (Full year - May 2009 to April 2010)
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The confidence interval for the training data set May 2009 to April 2010

Confidence Interval for Final ARIMA Model
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Confidence Interval

Lower Bound Upper Bound

Φ1 -0.913 -0.931

Φ′
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The ACF and PACF for the residual of PNARIMA neural network for training data set

May 2009 to April 2010

−25 −20 −15 −10 −5 0 5 10 15 20 25
−10

0

10

20
Autocorrelation Function

Lag

1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2
Partial Autocorrelation Function

Lag

ACF and PACF Residual for Final Model

91



Training data 2 (Dry - May 2009 to October 2009)
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The confidence interval for the training data set May 2009 to October 2009

Confidence Interval for Final ARIMA Model
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Confidence Interval
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The ACF and PACF for the residual of PNARIMA neural network for training data set

May 2009 to October 2009
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Training data 3 (Wet - November 2009 to April 2010)
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The confidence interval for the training data set November 2009 to April 2010

Confidence Interval for Final ARIMA Model
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Confidence Interval
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The ACF and PACF for the residual of PNARIMA neural network for training data set

November 2009 to April 2010
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Training data 4 (Dry 1 - May 2009 to July 2009)
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The confidence interval for the training data set May 2009 to July 2009

Confidence Interval for Final ARIMA Model
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Confidence Interval
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The ACF and PACF for the residual of PNARIMA neural network for training data set

May 2009 to July 2009
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Training data 5 (Dry 2 - August 2009 to October 2009)
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The confidence interval for the training data set August 2009 to October 2009
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Parameters
Confidence Interval

Lower Bound Upper Bound

Φ1 -0.856 -0.906

Φ′
1 -0.724 -0.850

Θ1 -0.090 -0.191

Θ1‘ -0.931 -1.009

The ACF and PACF for the residual of the ARIMA final model training data set August

2009 to October 2009

−25 −20 −15 −10 −5 0 5 10 15 20 25
−10

0

10

20

30
Autocorrelation Function

Lag

1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1
Partial Autocorrelation Function

Lag

ACF and PACF Residual for Final Model

102



The ACF and PACF for the residual of PNARIMA neural network for training data set

August 2009 to October 2009
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Training data 6 (Wet 1 - November 2009 to January 2010)
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The confidence interval for the training data set November 2009 to January 2010

Confidence Interval for Final ARIMA Model
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The ACF and PACF for the residual of PNARIMA neural network for training data set

November 2009 to January 2010
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Training data 7 (Wet 2 - February 2010 to April 2010)
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The confidence interval for the training data set February 2010 to April 2010

Confidence Interval for Final ARIMA Model
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The ACF and PACF for the residual of PNARIMA neural network for training data set

February 2010 to April 2010
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Testing data

Testing data 1 (May 2010 to April 2011)

Forecasting result
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Testing data 2 (May 2010 to October 2010)
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Testing data 3 (November 2010 to April 2011)

Forecasting result
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Testing data 4 (May 2010 to July 2010)

Forecasting result
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Testing data 5 (August 2010 and October 2010)

Forecasting result
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Testing data 6 (November 2010 to December 2010)

Forecasting result
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Testing data 7 (February 2011 to April 2011)

Forecasting result
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