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ABSTRACT:  

 
Knowledge of soil moisture spatial patterns provides basic but important information in studies of 

hydrological processes. At the field to subwatershed scale, soil moisture spatial variability is 

critical to aid in hydrologic modeling, but has not been adequately studied. Two new approaches 

were taken to contribute to the study of soil moisture spatial variability at this scale. The Bayesian 

Maximum Entropy (BME) framework is a more general method than classical geostatistics and 

has not yet been applied to soil moisture spatial estimation. The recently developed mobile 

Cosmic-ray Soil Moisture Observing System (COSMOS), i.e. COSMOS rover, has a ~660 m 

diameter footprint which can potentially be used in field to subwatershed scale soil moisture 

mapping. The objectives of this research are to compare the effectiveness of BME versus 

ordinary kriging (OK) for spatial prediction of soil moisture at the field scale, and to calibrate and 

validate a COSMOS rover for mapping 0 – 5 cm soil moisture at spatial scales suitable for 

evaluating satellite-based soil moisture estimates. High resolution aerial photography was 

incorporated into the soil moisture spatial prediction using the BME method. Soil moisture maps 

based on the BME and the OK frameworks were cross-validated and compared. The BME 

method showed only slight improvement in the soil moisture mapping accuracy compared to the 

OK method. The COSMOS rover was calibrated to field average soil moisture measured with 

impedance probes which were themselves calibrated to 0-5 cm soil moisture measured by soil 

sampling. The resulting rover calibration was then applied to map soil moisture around the 

Marena, Oklahoma In Situ Sensor Testbed (MOISST) in north central Oklahoma, USA and in the 

Little Washita River watershed in southwest, Oklahoma. The maps showed reasonable soil 

moisture patterns and a clear response to soil wetting by an intervening rainfall. The rover 

measured field averaged soil moisture with an RMSD of 0.039 cm
3 
cm

-3
 relative to the impedance 

probes which themselves had an RMSE of 0.031 cm
3
 cm

-3
 relative to soil moisture measured by 

soil moisture sampling. The results provide evidence that a COSMOS rover can be used 

effectively for near surface soil moisture mapping with acceptable accuracy. 
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CHAPTER I 
 

 

GENERAL INTRODUCTION 

 

Knowledge of soil moisture spatial patterns provides basic but important information in 

studies of hydrological processes. Satellite remote sensing for soil moisture offers near global 

spatial coverage but it is limited to coarse spatial resolution, currently ~40
2
 km

2
. In situ soil 

moisture measurements often have small spatial support (< 1
2
 m

2
), so fine spatial resolution is 

possible but spatial coverage is generally sparse. There is a significant gap between these two 

measurement scales, which hinders our understanding and modeling of hydrological processes at 

the intermediate scale (Robinson et al., 2008). 

 Two strategies are proposed for bridging this gap. One is upscaling point measurements 

to describe large spatial patterns. Kriging as a classical spatial geostatistic method, can be applied 

to predict soil moisture at unmeasured points. However, kriging is a linear estimator and also 

assumes the field is stationary, which may not be appropriate for soil moisture data. A Bayesian 

Maximum Entropy (BME) framework for spatial prediction has been developed which is more 

general than traditional geostatistics and allows incorporation of a wider range of data types. 

BME has proven more accurate than traditional geostatistics for spatial prediction of soil texture 

(D'Or et al., 2001) and soil salinity (Douaik et al., 2004). There is a need to determine if the BME 

framework can provide better soil moisture mapping than traditional geostatistical methods. 

 



2 

Another strategy to address the “scale gap” described above would be to develop a soil 

moisture measurement device operating between the point scale and the satellite footprint scale. 

Recently the Cosmic-ray Soil Moisture Observing System (COSMOS) has been developed. This 

nondestructive unattended soil moisture measurement is based on detection of cosmic-ray 

neutrons. It has a ~670 m diameter footprint (Zreda et al., 2012). The preliminary work in Hawaii 

(Desilets et al., 2010) showed the COSMOS can be made mobile, which creates the possibility of 

on the go soil moisture mapping at a scale (1 km
2
 - 100 km

2
) which fits the gap between satellite 

and in situ measurement approaches. A complete calibration and validation of the COSMOS 

rover for soil moisture mapping is needed. 

 The objectives of this research are: first to compare the effectiveness of BME versus 

ordinary kriging estimators for spatial prediction of soil moisture at the field scale, and second to 

calibrate, validate and apply the COSMOS rover for spatial mapping of soil moisture at the field 

to watershed scale. 
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CHAPTER II 
 

 

BAYESIAN MAXIMUM ENTROPY VERSUS KRIGING ESTIMATORS OF SOIL 

MOISTURE SPATIAL VARIABILITY 

 

ABSTRACT 

Spatial variability of soil moisture is ubiquitous but difficult to characterize and predict, since 

many soil moisture-dependent processes are non-linear and scale dependent. Many classical 

geostatistical techniques have been developed to advance the study of soil moisture spatial 

variability. The Bayesian Maximum Entropy (BME) framework is a more general method than 

classical geostatistics and has not yet been applied to soil moisture spatial estimation. The 

objectives of this research are to compare the effectiveness of BME and ordinary kriging (OK) 

methods and to produce high resolution soil moisture maps at the field scale. High resolution 

aerial photography was incorporated into the soil moisture spatial prediction using the BME 

method. Soil moisture maps based on the BME and the OK methods were cross-validated and 

compared. The BME method showed only slight improvement in the soil moisture mapping 

accuracy compared to the OK method. Nested high resolution measurements in limited areas 

within the study site led to more accurate soil moisture maps for the entire site for both the BME 

and OK method.
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INTRODUCTION 

The study of soil moisture spatial variability at the field scale is important to aid in 

modeling hydrological processes at the land surface. The spatial patterns and the space-time 

evolution of soil moisture are controlled by many physiographic factors – such as topography, 

landscape position, slope aspect, vegetation and soil properties (Robinson et al., 2008). These 

factors influence soil moisture conditions through hydrologic processes which also vary in space 

and time. For example, during a drying period, the spatial variation of soil moisture is influenced 

by spatial variability in vegetation type and density (Seyfried and Wilcox, 1995), since the 

evapotranspiration is the dominant process in the water cycle. 

Soil moisture is spatially correlated under the control of multiple hydrologic processes, 

and this spatial structure provides the possibility of spatial prediction and mapping of soil 

moisture at unmeasured points. From the classical geostatistics viewpoint, soil moisture is often 

assumed to be a random variable and the spatial predictions are based on soil moisture 

measurements at nearby points and models for the covariance or semivariance of soil moisture in 

space (Cressie, 1993). Many studies have been done in soil moisture spatial structure analysis by 

using the classical geostatistics at field to watershed scale (Brocca et al., 2007, Western et al., 

1998, Western et al., 2004), and some focuses on the mapping (Bardossy and Lehmann, 1998).  

Our knowledge about the physical processes and controlling factors has not been fully 

used in spatial prediction of soil moisture. To expand upon classical geostatistics, the Bayesian 

Maximum Entropy (Christakos et al., 2001) framework for spatial prediction has been advanced 

which is more general and allows incorporation of a wider range of data types (i.e. soft data), 

such as intervals, probability functions, and physical laws. The BME framework has proven more 

efficient and accurate than traditional geostatistics for spatial prediction of soil texture (D'Or et 

al., 2001) and soil salinity (Bogaert and D'Or, 2002, Douaik et al., 2004). In the comparisons 
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between the BME and Kriging methods, all the reported mean errors of the BME method are 

smaller than of  Kriging (Akita et al., 2012, Bogaert and D'Or, 2002, D'Or et al., 2001, Douaik et 

al., 2005, Douaik et al., 2004). The BME method has also been suggested as an efficient estimator 

when accurate data (i.e., hard data) are scarce or expensive to collect (D'Or et al., 2001). The use 

of soft data can compensate for the lack of hard data, but it also makes the BME method 

computationally more demanding. Soft data in this context refers to information such as 

constraint intervals, inequalities, or qualitative data (Christakos et al., 1990). 

This research focuses on studying the applicability of the BME framework in soil 

moisture spatial prediction at the field scale. The research area is located at the Oklahoma State 

University Range Research Station approximately 13 km southwest of Stillwater, OK. The site is 

1.6 km wide E-W and 1.2 km wide N-S (Fig. 1a). The average annual temperature is 15 °C and 

annual precipitation is 831 mm (Fuhlendorf and Engle, 2004). The dominant soil series is 

Grainola silty clay loam, which includes moderately deep, well drained soils formed in material 

wathered from shale of Permian age. The soil texture varies with depth and landscape position. 

The National Agriculture Imagery Program (NAIP) aerial photo (Fig. 1a) shows the details of the 

distribution of grasses, shrubs and trees. This site is used for multiple research purposes. The 

Marena, Oklahoma In Situ Sensor Testbed (MOISST) occupies the eastern half of the site. The 

Marena station of the Oklahoma Mesonet (McPherson et al., 2007) is located in the north eastern 

quarter of the site.  

Soil moisture has significant small-scale variability at this site. Some studies suggested 

that the soil moisture spatial patterns and the vegetation types are dependent on each other, but 

their relationship cannot be characterized by a linear regression (Rodriguez-Iturbe, 2000, 

Rodriguez-Iturbe et al., 1999). In this study, we hypothesized that the plant and soil conditions 

reflected in the aerial photo contain useful information about small scale soil moisture variability, 

which could help to improve the spatial estimation accuracy within the BME framework. The 
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NAIP image was used to generate the BME soft data set since it provides the highest resolution 

(~1 m) data available for this site in this study. Furthermore, aerial or satellite images are among 

the most widely available remote sensing data in the world. If the BME framework can 

effectively utilize these types of data for soil moisture mapping, then the method may have 

extensive applications. 

The objective of this study is to produce high resolution soil moisture maps by applying 

the BME method. The emphasis is to compare the BME and the ordinary kriging approaches in 

soil moisture mapping at the field to watershed scale. 

 

MATERIALS AND METHODS 

Soil Moisture Surveys 

Three surface soil moisture surveys were conducted on 8/16/2011, 1/31/2012 and 

6/25/2012. About 100 georeferenced point measurements of 0-6 cm volumetric soil moisture 

were recorded with an impedance probe (ML2x-Theta Probe, Delta-T Devices, Cambridge, UK) 

in each survey. The latitude and longitude coordinates for the measurements locations were 

selected before the field campaign and were found in the field using handheld GPS receivers with 

horizontal accuracy of ±5 m. The locations were chosen to make the lag (i.e. distance between 

pairs of locations) distribution as uniform as possible while keeping field logistics manageable. 

Figure 2a shows the sampling points layout for the first survey. 

In the third survey, in order to facilitate more detailed study of the spatial structure of soil 

moisture and vegetation patterns, a nested high resolution soil moisture sampling was conducted. 

A 61 × 77 m area was selected for this nested high resolution sampling, which is on the edge of 

the forest located in the southwest quadrant of the site. Forty-nine Theta Probe measurements 
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were taken on a 9 × 11 m grid. In the paper, the third survey with all sampling points is named as 

Survey 3a, and the Survey 3b represent the same survey but without the nested high resolution 

sampling points. Two individual Theta Probes were used in each survey. In the third survey, three 

pairs of measurements were taken closely in space at the site before the survey to compare the 

two Theta Probes. The average absolute difference between the two Theta Probes was 0.024 cm
3
 

cm
-3

.  

 

Cluster Analysis 

In this research, an aerial photo of the study area was processed to create a soft data base. 

A NAIP image of the study area was down loaded from the USDA Geospatial Data Gateway 

(http://datagateway.nrcs.usda.gov/). This image was taken in 2010 at a one-meter ground sample 

distance. The image is rectified in the UTM coordinate system, NAD 83. A cluster analysis was 

conducted to classify the aerial photo pixels based on their RGB values. Pixels in the aerial photo 

were partitioned into five clusters using the Matlab function “kmeans.m”, which minimizes the 

within-cluster sums of point to-cluster-centroid distances over all clusters. A similar cluster 

analysis approach has been applied for mapping surface soil organic carbon based on bare soil 

aerial photography (Chen et al., 2000) . The measurement locations were then classified into the 

same clusters as the collocated pixels. 

 In an effort to identify pixel clusters that contained useful information about soil 

moisture, each cluster was evaluated by calculating its Cluster Quality Index (CQI), which was 

proposed to quantify the quality of a cluster,  

http://datagateway.nrcs.usda.gov/
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(2.1) 

where jn  and jN  are the number of samples and the number of pixels in the thj cluster 

respectively. The upper bound ju  and lower bound jl  of the thj  cluster were calculated as

)()max( jjju   , )()min( jjjl   , where j  refers to the soil moisture sample 

values in the thj cluster, and the )( j is the standard deviation of the j . Clusters containing 

relatively large fractions of the measurement locations and pixels and with relatively small ranges 

of measured soil moisture had relatively high CQI, and were regarded as high-quality clusters. 

The clusters with the top three CQI rankings were chosen to generate the interval soft data base, 

which consisted of the upper and lower bounds of soil moisture for each cluster.  

 

Method of BME 

From the stochastic viewpoint of geostatistics, the soil moisture is assumed to be a 

continuous spatial random field. Soil moisture at a particular location is considered as a random 

variable. Observed soil moisture values are considered to be realizations of the associated random 

variables. In this work, the small English letter, x, denotes soil moisture as a random variable, the 

small Greek letter, χ, denotes a realization of x and bold letters denote vectors. 

The BME framework begins with an information measure based on the Shannon 

information entropy (Shannon, 1948): 

  mapmapmapmap χχχx dffH GG )()](ln[)(  (2.2) 
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where )(H is the differential entropy of the continuous random vector,
mapx  , )(Gf is the 

multivariate probability density function (pdf) of
mapx , 

mapχ represents the realizations of
mapx . 

The integral is the multiple integral across all the variables in mapx integrated from  to  . 

The notation )(Gf is used to denote the pdf associated with the available “general” knowledge 

prior to taking any specificatory knowledge into account, so this pdf is called the “prior pdf”. The 

random vector ),,( kxsofthardmap xxx  , in which ),,( 21 hmxxx hardx   and

),,( 21 mmm xxx
hh

softx , so mapx consists of m random variables associated with available 

data (hard and soft) and one random variable to be estimated, kx . 

At the prior stage, the Maximum Entropy principle (Jaynes and Bretthorst, 2003) is 

applied to obtain the prior pdf, )( mapχGf . Namely, )( mapxH is maximized under available 

constraints. These constraints can often be expressed as statistical moment equations of the form: 

  mapmapmapmap χχχχ dfggE G )()()]([   (2.3) 

where )]([ mapχgE is the expectation of a known constraint function,   . By convention, 10 g

, so 1)]([ 0 mapχgE leading to the normalization constraint 1)(  mapmap χχ dfG . For

1,,1  m , iig  )( , so ][)]([ ii xEχgE  , that is the mean of the random variable, 

  , at a point, ip . The set of spatial coordinates corresponding to mapχ  is defined by ip with

kmi ,,,2,1  . In this work we employ the covariances between the random variables 

constituting mapx as additional constraints (D’Or et al.,2001). Thus for

2/)4)(1(,,2  mmm  , 
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 ))((),( jjiiji xxg    (2.4) 

for all possible unique pairs of points i and j , and kmji ,,,2,1,  . For convenience, ix  and 

jx  were treated equal to the mean of soil moisture of the whole domain in practice.  

The method of Lagrange multipliers is used to find )( mapχGf which maximizes Eq. (2.2) 

subject to the constraints imposed by Eq. (2.2). The result is 

 









 




cN

G gZf
1

1 )(exp)(


 mapmap χχ  (2.5) 

where 

 

mapmap χχ dgZ
cN

  









1

)(exp


  (2.6) 

is the partition function and    are the Lagrange multipliers. Inserting Eq. (2.5) into Eq. (2.3) 

yields: 

 
mapmapmapmap χχχχ dggZgE

cN

])(exp[)()]([
1

1

 





   (2.7) 

The solution of this system of 1cN  equations Eqs.(2.6 – 2.7) determines the values of the 

Lagrange multipliers, which in turn define the multivariate prior pdf Eq. (2.5). 

At the posterior stage, the Baysian conditionalization principle (Christakos, 2000) is 

applied to integrate the specificatory knowledge (hard and soft data), leading to the posterior pdf 

of the variable to be estimated:  
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softmap χχ dfAχf

I

GkK 
 )()( 1  (2.8) 

where softsofthard χχ,χ dfA
I

G )( is a normalization coefficient and I refers to the domain of the 

soft data vector softχ . The notation )( kK χf denotes the pdf is based on the total knowledge, 

which includes both of the general knowledge and the specificatory knowledge. In our case, the 

soft data is expressed in terms of intervals iI  

 ]},[:],,,{[ 11 iiiimmm ulI
hh

   softχ  (2.9) 

where ii ul , are the lower bound and upper bound of iI respectively. By substituting the prior pdf 

into Eq. (2.8), the posterior pdf is expressed as 

 

softmap χχ dgAZχf
I

N

kK

c

  













1

1 )(exp)()(


  (2.10) 

The posterior pdf )( kK χf of kx is maximized taking the partial derivative of Eq. (2.9) with 

respect to kχ  and setting it equal to zero, which yields the BME mode equation 

 0
)(

)(exp

ˆ

1

1








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

























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map

map χ
χ

χ d
g

g
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c
c

k

N
N



 







  (2.11) 

where k̂ is the estimated mode of the )( kK χf . Most of the calculations were completed using 

Matlab R2012a with Matlab Mapping toolbox and BMElib version 2.0b. The main function that 

was used is “BMEintervalMode.m”.  
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Method of Ordinary Kriging 

A variogram model is typically used in ordinary kriging estimation, but in this research, 

we used a covariance model instead. This allowed a direct comparison of the OK and BME 

methods because the same covariance model was used in both.  

Kriging interpolation method assumes the estimated value of )(ˆ
kpk is a linear 

combination of the known values of hardχ  

 



hm

i

iik

1

)()(ˆ
ik pp   (2.12) 

where i are the weighting factors chosen so that 

 



hm

i

i

1

1  (2.13) 

The weighting factors are determined to minimize the variance 
2)](ˆ)([ kii ppx k , which can 

be written as the expression below (Eq. 14),  

  
  


h h hhm

i

m

j

m

i

i

m

i

iji CCC
1 1 11

)1(2)(2)()(  ikji pppp0  (2.14) 

where and  are the Lagrangian multipliers, )(C is the covariance which is determined from 

the covariogram (Cressie, 1993). The minimum of the variance can be achieved by taking 

derivatives of Eq. (2.14) with respect to 
hm ,,, 21  and  . The values of the weighting 

factors (Lagrangian multipliers as well) can thus be calculated. 

The covariance )(C in Eq. (2.14) refers to the isotropic covariance model which was 

established to fit the covariance estimated from the measured soil moisture values, i.e. 

experimental covariogram (Eq. 2.15) 
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 



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1

])(][)([
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1
)(

h

ii hpp
h

h

N

i

ii xx
N

C   (2.15) 

where )( hN is the number of samples at the lag distance h . Soil moisture maps were generated 

by estimating a series of )(ˆ
kpk .   

The damped cosine (or damped oscillation) covariance model )cos()exp()( h
h

hC 


  

where  /1 in ℝ2 (Bellier and Monestiez, 2010, Yaglom, 1987), was introduced here. The 

model was modified the then applied to fit the experimental covariograms (Eq. 2.16). Two fitting 

parameters are a  and b in Eq. (2.16). 

 )
2

cos()
2

exp()(
b

h

b

h
ahC


  (16) 

In Eq. (2.16), theoretically, a is equal to the variance of the measurements, since aC )0( . This 

damped cosine model characterizes a cyclic pattern according to the definition of “cycle” 

(Sargent, 1987). The “length” of a cycle, or the “period” of the damped oscillation is  /2 , 

which is b4  in our case. Therefore, b refers one quarter of the “period” and )0,(b is also where 

the covariogram intersects the x-axis, since 0)( bC .  

 The covariance was estimated from the measured soil moisture values using the Matlab 

function “covairo.m” in the BMElib version 2.0b (Christakos et al., 2001). The fitting processes 

were fulfilled by Excel solver using the least square error method. 

 

Spatial Predictions and Cross-validation Analysis 

The estimation points were the vertices of a 15 × 15 m grid covering the study area. In 

the mapping process,  a maximum of 10 hard data points within 300 m of a given estimation point 
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were considered for both the OK and BME method and a maximum of 10 soft data points within 

300 m of the estimation point were also taken into account in the BME method.  

Leave-one-out cross-validations were conducted to evaluate and compare the 

performance of these two methods. Hard data points were withheld one at a time and the soil 

moisture value at its location was then estimated using both OK and BME. The mean error (ME) 

and the root mean square error (RMSE) of the estimation was calculated to evaluate the model 

performance. 

 

RESULTS AND DISCUSSION 

Statistical Properties of the Soil Moisture Observations 

The statistical characteristics are listed in Table 1. Survey 2 has the highest mean value of 

soil moisture and the lowest CV, which indicated it was conducted in the wettest condition and 

the relative variability of soil moisture was less than that observed in the other surveys. In Survey 

3, both the mean and the standard deviation increased after removing the nested high resolution 

samples. The nested high resolution sampling was conducted in a relatively dry area of the whole 

domain. 

Figure 2a – 2d are the covariograms (covariance )(hC  as a function of the spatial lag 

distance h ) of soil moisture for the three surveys. The experimental covariograms are plotted 

with dots and the model covariograms are shown with fitted curves. The fitting parameters for the 

covariance model and the 
2r values are listed in Table 2. 

The covariograms of soil moisture exhibit the damped oscillations for Survey 1 and 3. 

Soil moisture values are positively correlated with small lag distances (<50 m), but this 

correlation decreased rapidly to negative values at around 100 - 200 m. The covariance then 
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oscillated about the x-axis. The amplitude of the covariance oscillation tended to zero as the lag 

distance increased.  In Survey 1 and Survey 3a, more soil moisture measurements were collected 

at small lag distances than in Survey 2 (Fig. 4b and f), thus some detailed features of the 

covariogram with lag distance from 0 – 100 m are captured in the first and third surveys (Fig. 3a 

and c). The soil moisture measurements locations are shown in Fig. 4. The closely spaced soil 

moisture observations in Survey 1 and 3 not only influenced the covariogram at 0 – 100 m, but 

also influenced the covariogram at 100 – 300 m, especially at the lag distances with negative 

covariance. By comparing the covariograms for Survey 3a (Fig. 3c) and Survey 3b (Fig. 3d), this 

influence can be easily perceived.  

The damped oscillation of the covariogram suggests a cycle in the soil moisture data. The 

period of the cycle is four times of the fitting parameter b for each survey. From Table 2, the 

values of b are divided into two groups - the ones with nested high resolution samples (Survey 1 

and 3a) have relatively short period (~10
3
 m), and the ones without nested high resolution 

samples (Survey 2 and 3b) have relatively long period (~10
4
 m). 

 

Cluster Analysis Results 

In Figure 3, the bars indicate the fraction of aerial photo pixels within each cluster 

relative to the total number of pixels. Soil moisture observations within each cluster are plotted as 

circles, and the circle colors correspond to the colors in Figure 1b. The CQI values are plotted as 

X’s and were scaled with the largest value set to one and the others scaled to the largest one. 

Clusters 1, 3 and 4 were selected to generate the soft data base, which resulted in that more than 

80% of the pixels being used in the spatial prediction process. The upper and lower bounds for 

soil moisture in cluster 1, 3 and 4 are given for each survey in Table 3. 
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The results of the cluster analysis of the aerial photo were relatively uninformative 

compared to soft data used in previous studies (Bogaert and D'Or, 2002, D'Or et al., 2001) in 

which incorporation of soft data through the BME frame work led to improved map quality. As 

Fig. 2 shows, for each cluster, the difference between the upper and the lower bounds was large 

(about 15% - 20%). There was also near complete overlaps between intervals for the selected 

clusters. In contrast, in the research conducted by D’Or et al. (2001), the soft data base contained 

10 narrow intervals without any overlaps between them. The relatively wide intervals and 

substantial overlap between intervals in this study made the soft data less informative for spatial 

prediction in the BME framework. 

 

Soil Moisture Maps 

The resulting soil moisture maps for each survey and method are shown in Fig. 4 to allow 

visual comparisons. In the maps, the soil moisture patterns are mainly controlled by the hard data 

with few differences between the two methods. The soil moisture maps in the right column 

always have similar patterns with the corresponding maps in the left column (BME).  It has been 

shown that the BME mode estimates coincide with OK estimates when soft data are absent and 

the general knowledge is constrained to the mean and covariance (Christakos et al., 2001). In this 

study, the soft data were relatively uninformative and the patterns in the BME maps are primarily 

reflections of the hard data similar to the patterns in the OK maps. The soil moisture maps 

produced by the BME method were expected to reflect some details of the soil and vegetation 

patterns evident in the aerial photo, but the effects of those patterns were not pronounced (Fig. 4a, 

c, e and g). One visible impact of the soft data was limiting the region of influence of a few 

exceptionally high soil moisture observations in Survey 2. In the southwest quadrant of the maps 
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for that survey, areas of unusually high soil moisture are evident in Fig. 2d but are less 

pronounced in Fig. 2c. 

 

Cross-validation Results 

The cross-validation results for the three soil moisture surveys are summarized in Table 

3. The ME statistics for both the BME and OK methods were close to 0, which indicates both 

methods were unbiased. The RMSE statistics for the BME method were slightly lower than for 

the OK method. These RMSE values are relatively low given that the uncertainty of Theta Probe 

is ~2%, which contributed around half of the RMSE in each survey (Table 4). In previous study, 

the benefit of the BME method was obvious. The RMSEs of soil texture (sand, clay or silt 

content) were from 4% to 10% for the BME method, and 5% to 13% for the OK method (Bogaert 

and D'Or, 2002, D'Or et al., 2001). In our case, the RMSEs for both of the methods were low, so 

the benefits of BME were hard to perceive. 

For surveys without nested high resolution samplings (Survey 2 and 3b), the RMSE 

values are higher than for the ones with nested high resolution samplings (Survey 1 and 3a). Also, 

RMSE for Survey 3b is 1% (vol.) higher than it for Survey 3a. The ME for Survey 2 and 3b are 

greater than 0.1. The results can be partly attributed to covariogram model fitting. The modified 

damped cosine model was more suitable for the data with the nested high resolution samplings. 

In this research, the mapping of soil moisture for the third survey was not a simple spatial 

prediction process, for it also included the scaling process. According toWestern et al. (2002), 

scaling is to distill the patterns from information at one scale and to use these to make predictions 

at another scale. Therefore, the effects of the small scale soil moisture measurements on the larger 

scale covariogram were actually a kind of scaling process. 
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CONCLUSION 

This study represents the first known application of the BME framework for spatial 

prediction of soil moisture. The results demonstrate that the BME framework is applicable for 

soil moisture spatial estimation. The aerial photo, as soft data, provided extra information about 

spatial patterns of soil and vegetation which was applied in the soil moisture spatial estimation 

with the BME framework. However, the cluster analysis used in this research as a way of 

extracting and quantifying the information from the aerial photo was not effective enough to 

meaningfully improve the soil moisture mapping accuracy. 

At the 15-m mapping resolution used in this study, the BME framework produced only 

slight improvement in mapping accuracy compared to OK. High resolution maps close to the 

resolution of the aerial photo (~1 m) could be produced using this soft data, but computational 

demands will increase dramatically and the impacts on the accuracy of the soil moisture maps are 

uncertain. At the 15-m mapping resolution, the computation time for the BME maps was about 

70× greater than for the OK maps, so the small advantage in accuracy came at a relatively high 

computational cost. Future research could seek improvements to the BME approach for field-

scale soil moisture mapping by using potentially more informative soft data such as soil texture or 

elevation. 
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Table 1. Basic statistical properties of the 0-6 cm volumetric soil moisture data for the three 

surveys. N refers to the number of samples, μ refers to the mean value of the soil moisture for 

each survey, σ is the standard deviation, and CV is the coefficient of variation. 

Survey Date N  (cm
3
 cm

-3
)  ( cm

3
 cm

-3
) CV 

1 8/16/2011 95    0.141 0.0322 0.23 

2 1/31/2012 84 0.271 0.0356 0.13 

3a 

6/25/2012 

133 0.149 0.0366 0.25 

3b 84 0.192 0.0455 0.24 
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Table 2. Parameters and statistics of the fitted covariance model. 

Survey  a  b  2r  

1 6.560 98.20 0.6878 

2 7.083 580.3 0.7842 

3a 8.371 55.81 0.3521 

3b 3.645 292.6 0.2252 
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Table 3. The upper and lower bounds for soil moisture in the selected clusters. 

 Upper bound (cm
3
 cm

-3
) Lower bound (cm

3
 cm

-3
) 

Cluster Rank 1 2 3 1 2 3 

Survey 1 0.265 0.241 0.220 0.047 0.063 0.057 

Survey 2 0.427 0.360 0.395 0.164 0.210 0.176 

Survey 3a 0.265 0.237 0.341 0.053 0.043 0.022 

Survey 3b 0.322 0.288 0.412 0.100 0.057 0.073 
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Table 4. Cross-validation statistics for the three surveys. Survey 3a represents the third survey 

with all sample points, and Survey 3b represents the third survey without the small scale 

measurements. 

 ME (vol. %) RMSE (vol. %) 

Survey BME Kriging BME Kriging 

1 -0.0212 -0.0581 3.1102 3.1624 

2 0.1835 0.1714 3.8208 3.8347 

3a -0.0748 -0.0399 3.5414 3.5906 

3b 0.1043 0.1142 4.5049 4.5504 
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Figure 1.  (a) Aerial photograph of the research area taken in 2010. Coordinates are for the UTM 

coordinate system, Zone 14. Hard data locations of the first survey are shown as white dots. (b)  

Cluster index map. Pixels of the five clusters are plotted with their cluster colors.

(a) 

(b) 
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Figure 2. Covariograms of three soil moisture surveys: (a), (b) and (c) are the covariograms for 

the first, second and third surveys respectively; (d) is the covariogram of the third survey without 

the nested high resolution sampling.

(a) (b) 

(c) (d) 
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Figure 3. Cluster analysis results. The pixel fractions for the five clusters are illustrated as the 

white bars. Volumetric water content (θv) of Theta Probe measurements are plotted as circles. 

Crosses show the Cluster Quality Index (CQI) of each cluster.

Survey 1 Survey 2 

Survey 3a Survey 3b 
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Figure 4. Soil moisture (0 – 6 cm) maps for three surveys obtained by BME mode estimation (a, 

c, e and g) and ordinary kriging estimation (b, d, f and h). 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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CHAPTER III 
 

 

CALIBRATION, VALIDATION AND APPLICATION OF THE COSMOS ROVER 

 

ABSTRACT 

The recently developed Cosmic-ray Soil Moisture Observing System (COSMOS) creates unique 

opportunities for long-term soil moisture monitoring (stationary) and large area soil moisture 

mapping (mobile). One potential application of a mobile COSMOS system, i.e. COSMOS rover, 

is for calibration and validation of satellite remote sensing approaches for monitoring near surface 

soil moisture. The objectives of this research were to calibrate and validate a COSMOS rover for 

mapping 0-5 cm soil moisture at spatial scales suitable for evaluating satellite-based soil moisture 

estimates. The COSMOS rover was calibrated to field average soil moisture measured with 

impedance probes which were themselves calibrated to 0-5 cm volumetric soil moisture measured 

by soil sampling. The resulting rover calibration was then applied to map soil moisture on two 

dates for a 16 × 10 km region around the Marena, Oklahoma In Situ Sensor Testbed (MOISST) in 

north central Oklahoma, USA and on one date for a 34 × 14 km region in the Little Washita River 

watershed in southwest, Oklahoma. The maps showed reasonable soil moisture patterns and a 

clear response to soil wetting by an intervening rainfall. The rover measured field averaged soil 

moisture with an RMSD of 0.039 cm
3
 cm

-3
 relative to the impedance probes which themselves 
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had an RMSE of 0.031 cm
3
 cm

-3
 relative to soil moisture measured by soil moisture sampling. 

The regional averaged soil moisture estimates from the COSMOS rover differed by 0.0126, 

0.0532, and 0.0168 cm
3
 cm

-3
 from the best available independent estimates for the two MOISST 

surveys and the Little Washita survey, respectively. The largest discrepancy occurred when the 

data were collected one day after a 37-mm rainfall event when steep vertical gradients in near 

surface soil moisture were likely present. Overall, these results provide evidence that a COSMOS 

rover can be used effectively for near surface soil moisture mapping with acceptable accuracy. 
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INTRODUCTION 

Soil moisture is a key variable influencing a wide range of agricultural, ecological, 

hydrological, and meteorological processes. To understand and predict soil moisture patterns at a 

range of spatial scales is important but challenging (Western and Bloschl, 1999). In particular, 

there is a gap in understanding soil moisture spatial variability for intermediate (1 – 100s km) 

scales due to lack of data (Western et al., 2002). To bridge this gap, the development of new 

techniques for soil moisture measurement at intermediate scales is needed (Robinson et al., 2008). 

The Cosmic-ray Soil Moisture Observation System (COSMOS) is a relatively new soil moisture 

measurement technique which has shown promise for measuring area-averaged soil moisture at 

an intermediate scale. 

Cosmic rays are high-energy subatomic particles which originate in outer space (Hess et 

al., 1959). When the cosmic rays penetrate the atmosphere, fast neutrons are generated in the 

interactions of the cosmic rays with the atmospheric nuclei. Additional fast neutrons are 

generated as the cosmic rays interact with the land surface. As the fast neutrons travel through the 

air and the soil, they are moderated greatly by hydrogen near the soil surface and in the soils. 

Since a neutron and a hydrogen atom have similar mass, the kinetic energy loss of a fast neutron 

in a collision with a hydrogen atom in a collision is much greater than with other atoms. Since 

hydrogen in soil is mostly in the form of water, soil moisture and fast neutron intensity have a 

strong relationship. It has been proven that the fast neutron intensity above the land surface is 

inversely correlated with soil moisture (Zreda et al., 2008). This provides the theoretical basis for 

measuring soil moisture by fast neutron detection.  

A typical stationary COSMOS probe (Hydroinnova, LLC of Albuquerque, New Mexico, 

USA) consists of two neutron detectors having different energy sensitivities (Desilets et al., 2010, 

Zreda et al., 2012). The detectors are gas (
3
He or 

10
B) and one of them is shielded by low-density 
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polyethylene, which makes the detector sensitive to fast neutrons. The neutron detectors and the 

associated electronics are mounted on a pole which is 1 m above the soil surface. The horizontal 

footprint of COSMOS is a circle with a diameter of ~660 m at sea level which depends on the 

atmospheric density and humidity (Zreda et al., 2008, Zreda et al., 2012). The effective 

measurement depth of COSMOS has a strong dependence on soil water content, which ranges 

from ~76 cm (0 cm
3
 cm

-3
) to ~12 cm (saturated soil) (Zreda et al., 2008). The COSMOS 

measurement error depends on the measured neutron count, which is a proxy for the neutron 

intensity. The uncertainty of the COSMOS is inversely proportional to the square root of neutron 

counts (Knoll, 2000). Thus, the measurement precision increases with the neutron intensity. More 

than 50 COSMOS stations are widely distributed in the US and abroad. This network is still being 

expanded and developed (Zreda et al., 2012).  

Recently a COSMOS rover was developed to conduct large area soil moisture field 

campaigns. The COSMOS rover consists of an array of relatively large neutron counters which 

are mounted in a vehicle (Desilets et al., 2010). In previous studies using the COSMOS rover, soil 

moisture was estimated along a 35 km west-east transect in Hawaii (Desilets et al., 2010) and soil 

moisture was mapped for a 37 × 42 km region around the MOISST site (Zreda et al., 2011) have 

been conducted. However, field measurements for validation of soil moisture estimates from the 

rover were limited in the prior studies. Prior studies (Franz et al., 2012, Zreda et al., 2011)  have 

suggested that cosmic ray neutron probes may be useful for calibration and validation of satellite 

microwave remote sensing approaches for measuring soil moisture such as the ongoing Soil 

Moisture Ocean Salinity mission (SMOS) or the upcoming Soil Moisture Active Passive mission 

(SMAP) (Entekhabi et al., 2010, Kerr et al., 2010). However, no studies have determined the 

accuracy with which the rover can be calibrated to 0 – 5 cm soil moisture which is the target 

variable for these microwave remote sensing approaches. This is shallower than the theoretically 

predicted effective measurement depth range for the cosmic ray neutron method. Therefore, a 
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more complete calibration and validation of the mobile COSMOS is needed. The objective of this 

study is to calibrate, validate, and apply the COSMOS rover for spatial mapping of 0 – 5 cm soil 

moisture at the field to watershed scale. 

 

MATERIALS AND METHODS 

Field Surveys  

Field campaigns were conducted around the MOISST site on June 3, 6, and 13, 2011. 

The research area is located ~13 km southwest of Stillwater, OK. Five target fields were selected 

for rover calibration and validation, and these fields spanned ~6 km in a generally east-west 

transect. Each target field was 0.8 × 0.8 km. The locations of the five fields are shown in Fig. 1. 

The land use of the research area is dominated by rangeland and pasture. The eastern 

target field was predominantly eastern redcedar, and the other four fields were grassland. 

Fourteen soil moisture measurements were taken distributed along two transects in each field on 

each survey day (0-6 cm) using impedance probes (ML2x, Theta Probe, Delta-T Devices, 

Cambridge, UK). Three volumetric soil samples (5 cm diameter, 0-5 cm depth) were taken per 

field per day for soil moisture measurement by the thermo-gravimetric method. The COSMOS 

rover consisted of four 
3
He-filled proportional counters (LND, Int. and GE, Inc.) which were 

shielded by 2.5 cm thick polyethylene. Neutron pulse modules (Q-NPM-1000, Questa 

Instruments, LLC) are connected to the counters and monitor the neutron counts and send the 

number of counts to a data logger (Q-DL-2100, Questa Instruments, LLC). A barometric pressure 

sensor and a GPS receiver are integrated with the rover. Data are stored in the data logger and a 

removable SD card. The COSMOS rover measurements were collected at each target field with 

the rover sitting stationary in the field for ~36 min while the soil moisture samples were being 

taken. After the target field measurements on each survey day, a roving survey was completed for 
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the surrounding region. The roving paths are shown in Fig. 1. The yellow dots showed the small 

survey (13 × 5 km) which was conducted on June 3, and the red and blue dots showed the paths 

of the large surveys (10 × 16 km) on June 6 and June 13 respectively. 

 Another field campaign was conducted on June 7, 2011 in the Little Washita River 

watershed which is located in southwestern Oklahoma. The land use of the study area is mainly 

rangeland and winter wheat cropland. Soil texture ranges from sandy and silt to clay (Cosh et al., 

2006), and about the center 1/3 of the watershed is sandy textured soil. The study area (~455 km
2
) 

covers more than 70% of the Little Washita River watershed (610 km
2
) (Cosh et al., 2006). The 

study area and the path for the roving survey are shown in Fig. 2, along with the locations of the 

Micronet stations. 

For all rover measurements, the fast neutron counts were totaled every minute, and the 

GPS coordinates and barometric pressure were recorded simultaneously. The driving speed was 

typically 48 km h
-1

. In our roving measurements, two of the four detectors behaved erratically and 

the neutron counts collected from the two detectors were not taken into consideration. 

 

COSMOS Rover Calibration, Validation and Spatial Estimation 

The rover was calibrated to 0 – 5 cm soil moisture using data from the five target fields in 

the MOISST region. The Theta Probe soil moisture measurements were first calibrated using the 

volumetric soil samples. A linear regression model was established with volumetric soil samples 

and Theta Probe measurements for all five fields and for the three survey days combined.  

The data from the first survey day in the MOISST region were used to calibrate neutron 

count rates recorded with the rover stationary inside each target field to the average calibrated 
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Theta Probe soil moisture for each field using the shape-defining function, which characterizes 

the relationship between neutron intensity and soil water content: 

 lata
a

a



 


 2

10

0

/
 

(3.1) 

where   is the soil volumetric water content, lat   is the soil volumetric lattice water content, 

(count per minute, cpm) is the observed fast neutron intensity normalized for variations in 

atmospheric pressure, Lattice water is here defined as the amount of water released when soil that 

has been dried at 105 °C is heated to 1000 °C (Franz et al., 2012). 0  (cpm) is the neutron 

intensity over dry  soil, and 0a , 1a  and 2a  are constants (Desilets et al., 2010). In this research, 

the parameters values were 0808.00 a , 372.01 a , 115.02 a (Desilets et al., 2010) and the 

lattice water content 072.0lat cm
3
 cm

-3
. Lattice water content was calculated as the product of 

the lattice water per unit mass of 0.052 g g
-1

 reported for the MOISST site (Zreda et al., 2012) and 

a bulk density of 1.38 g cm
-3

. The 0  parameter was adjusted to produce the best fit between the 

field averaged Theta Probe measurements and the soil water contents predicted by Eq. (3.1) for 

the first MOISST survey day. 

All the neutron intensities were normalized to a reference pressure of 972 mbar, the 

average atmospheric pressure for the first MOISST survey day, using an exponential model 

(Desilets and Zreda, 2003) in which the atmospheric attenuation coefficient was set to 0077.0

mbar
-1

. The optimized 0  value was then used in Eq. (3.1) to estimate 0 – 5 cm soil volumetric 

water content from the rover for the subsequent surveys, so that the calibration results can be 

validated. The same rover calibration was used for the Little Washita survey as for the MOISST 

surveys because adequate calibration data were not available in the Little Washita region. 
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The ordinary kriging method was used to map fast neutron intensity and soil moisture to 

allow visualization of the soil moisture spatial patterns. Experimental variograms were first 

estimated then fitted with variogram models. The fitted variogram models were analyzed for 

understanding soil moisture spatial structure and also OK mapping. Given the minimum distance 

(~ 1600m) between the rover paths and the effective diameter (650 m) of the rover, the pixel size 

was set to 533 × 533 m. 

All the analyses in this study were conducted using Matlab R2012a with theMatlab 

Mapping toolbox and the BMElib version2.0b (Christakos et al., 2001). 

 

RESULTS AND DISCUSSION 

Calibration and Validation 

 The Theta Probe measurements were linearly related to the water content determined by 

soil sampling with 2r  0.909 over the range from 0.062 to 0.38 cm
3
 cm

-3
 (Fig. 3). Prior to 

calibration, the Theta Probe tended to underestimate the actual water content. After calibration 

the root mean square error (RMSE) of the Theta Probe was 0.031 cm
3
 cm

-3
. The quality of this 

Theta Probe calibration is similar to that of prior field specific calibrations ( 76.02 r

028.0RMSE ) in this region (Cosh et al., 2005). The calibration results of the neutron 

intensity with the field average Theta Probe soil water content for the five target fields on June 3 

are shown in Fig. 4. Equation (3.1) with 1870  cpm provided soil water content estimates that 

closely matched the Theta Probe data with 973.02 r  and RMSE 0.0050 cm
3
 cm

-3
. This is 

the first known calibration of the rover to independent field average soil moisture data and the 

first calibration of a cosmic ray neutron probe with 0 – 5 cm soil moisture. The typical calibration 

depth is 0 - 30 cm (Franz et al., 2012). Despite the unique nature of the results in Fig. 4, the 
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quality of the calibration is similar to that reported by Franz et al. (2012) for a stationary cosmic 

ray neutron probe in Arizona ( 927.02 r and 0095.0RMSE  cm
3
 cm

-3
). 

 The shape-defining function with the calibrated 0  was validated using the second day 

and third MOISST surveys, and the results are shown in Fig. 5. The calibrated soil water contents 

from the first MOISST survey are also plotted in this figure. A 37 mm rainfall event occurred 

approximately 24 hr before the third survey (June 13) providing a substantial increase in the 0 – 5 

cm soil water content. The validation data indicate a linear 1:1 relationship between field average 

0 – 5 cm soil water content measured with the calibrated Theta Probes and that estimated with the 

rover across a water content range of approximately 0.10 to 0.35 cm
3
 cm

-3
. The 

0336.0RMSE  cm
3
 cm

-3
 is larger than that reported for validation of a stationary COSMOS 

probe, 0.0165 cm
3
 cm

-3
 (Franz et al., 2012). However the maximum soil water content in that 

study was 25.0 cm
3
 cm

-3
, and the uncertainty of the cosmic ray neutron probe method is known 

to increase with increasing water content (Zreda et al., 2012). Note that the uncertainty in the 

rover field averages ( 0336.0RMSE ) is comparable to the uncertainty in the Theta Probe 

measurements themselves ( 031.0RMSE , Fig. 3). The largest discrepancy was an apparent 

0.08 cm
3
 cm

-3
 underestimate of 0 – 5 cm soil water content by the rover in field 4 on June 13.  

It is not possible to directly validate the regional average soil water content determined 

with the rover because the target fields constitute only a fraction of the region of interest. 

However, if the target fields are representative of the region of interest, then it is useful to 

compare the regional average soil water content measured by the rover with that calculated from 

the target fields. We can strengthen the comparison by considering only the subset of rover data 

collected nearest to the target fields (within ~4 km). That subset is labeled as the small rover 

survey in Fig. 6 while the complete surveys are labeled as large rover survey. Despite these 

limitations, the regional average soil moisture from the roving surveys agreed well with the Theta 
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Probe measurements. The standard errors (Fig. 6) of the rover surveys for the wet condition (June 

13) were larger than for the dry condition (June 3 and 6). This was also reflected in Fig. 5. The 

increases of the error and less agreement between the Theta Probe measurements and the roving 

measurements could be attributed to two possible reasons. One was that less fast neutrons were 

detected which increases the uncertainties of the measurements. The other was that the third 

survey was conducted one day after a rainfall event. Soil moisture may still have been moving 

downward and the water may have been more concentrated near the surface. During the surveys, 

Theta Probes were only used to measure the soil moisture at 0-6 cm, which was shallower than 

the effective depth of the COSMOS rover.  The COSMOS roving survey in the Little Washita 

River watershed agreed well with the Micronet station data. The COSMOS rover average soil 

water content (0 – 5 cm) was 0.063 cm
3
 cm

-3
 with the standard error of 0.004 cm

3
 cm

-3
, and the 

average soil water content of 20 Micronet stations was 0.08 cm
3
 cm

-3
 with the standard error of 

0.02 cm
3
 cm

-3
. 

 

Spatial Estimation 

Two maps were made for each survey - one was the neutron intensity, the other was the 

soil moisture. Figures 7 and 8 show maps of the neutron intensities and soil moisture for the 

second and third surveys in the MOISST region. Surface soil sand content and surface soil clay 

content maps for the study area, created using SSURGO data, are shown in Fig. 9. Some similar 

patterns in the southwest quadrant can be perceived when comparing Fig. 7, 8, and 9. The surface 

clay content is low, and the surface sand content is high in the same vicinity (Easting ~6.58 × 10
5
 

m ) where soil moisture content for both of the surveys was relatively low. This correspondence 

between soil moisture and soil texture patterns is physically reasonable and provides indirect 

evidence for the validity of the soil moisture patterns recorded with the rover.  
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Fig. 10 is the variogram of neutron intensity for the roving survey in the Little Washita 

River watershed, and Fig. 11 contains the neutron intensity map (a) and the soil moisture map (b) 

for this survey. The range of the variogram is 2900 m, the sill is 225 cmp
2
, and the nugget is 160 

cpm
2
. Compared with some prior studies, the range of the soil moisture variogram was often 

found several hundred meters at a similar scale (Warrick and Myers, 1987), but the spacing of 

samples was still small (~ 100 m) compared with the COSMOS (~ 650 m) . The big support 

volume could be the reason why the spatial structure reflected in the variogram is larger. The soil 

moisture patterns shown in Fig. 11 display some similarities with the soil texture map shown in a 

previous study in the same region (Jackson and LeVine, 1996).  

 

CONCLUSION 

The COSMOS rover soil moisture measurements were calibrated to the surface soil 

moisture (0 – 5 cm) successfully with one day of data, which implies that the COSMOS rover is 

applicable for measuring large area surface soil moisture. The accuracy of the COSMOS rover 

was comparable to the mission requirements (± 0.04 cm
3
 cm

-3
) (Entekhabi et al., 2010) of satellite 

microwave remote sensing missions like SMOS and SMAP. To achieve acceptable precision, it is 

essential that enough fast neutrons are collected. In the roving measurements, the neutron 

detectors, counting intervals, and driving speed should be adjusted to meet the required precision.  

In the application of COSMOS rover for soil moisture spatial estimation, one issue is 

how to take best advantage of the large support volume of this instrument. One straightforward 

way of using COSMOS rover to map soil moisture is to “scan” the entire region of interest, which 

means the spacing between the roving paths would be set equal to the rover footprint. Soil 

moisture maps could thus be made without using geostatistical spatial estimation methods. 
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However, in rural areas the public road network is not generally dense enough to permit this close 

spacing. 
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Figure 1. Aerial photo (NAIP) of the Marena, Oklahoma In Situ Sensor Testbed (MOISST) study 

region near Stillwater, OK. The yellow dots show the small survey on June 3, 2011, and the red 

and blue dots show the large surveys on June 6 and June 13 respectively.
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Figure 2. Aerial photo (NAIP) of the study region in the Little Washita River watershed. The 

black dots show roving paths.



46 

 

Figure 3. Volumetric soil sample water content (0 – 5 cm) vs. Theta Probe soil water content for 

five target fields in the MOISST region on June 3, 6, and 13, 2011.



47 

 

 

Figure 4.Calibrated shape defining function (Eq. 3.1) for the first MOISST survey (June 3) data. 

Circles are the averages of 14 calibrated Theta Probe soil moisture measurements in each of the 

five target fields. Solid line is the calibrated shape defining function.
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Figure 5. Field average calibrated Theta Probe soil water content vs. COSMOS rover field 

average soil water content (stationary) for all three MOISST region surveys. The RMSE was 

computed using only the validation data (June 6 and June 13). 
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Figure 6. Comparisons of mean soil water content and standard error of the mean between Theta 

Probe data from the target fields and calibrated COSMOS data from the roving surveys 

(Small/Large Rover Survey).
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Figure 7.COSMOS rover neutron intensity (a) and soil water content estimates (b) for large 

surveys around the five target fields on the second survey days.

(a) 

(b) 
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Figure 8.COSMOS rover neutron intensity (a) and soil water content estimates (b) for large 

surveys around the five target fields on the third survey days.

(b) 

(a) 
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Figure 9. SSURGO estimated sand (a) and clay (b) content for the surface horizon based on the 

predominant soil series in each mapping unit in the MOISST region.

(a) 

(b) 
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Figure 10. Neutron intensity semivariogram for the rover survey in the Little Washita River 

watershed on June 7, 2011.
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Figure 11. COSMOS rover neutron intensity (a) and 0 – 5 cm soil water content estimates (b) for 

the rover survey in the Little Washita River watershed on June 7, 2011.

(a) 

(b) 
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