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Title of Study: METHODS TO COUNTER ATTACKS ON QUANTUM 

CRYPTOGRAPHY PROTOCOLS 

Major Field: COMPUTER SCIENCE 

Abstract: The need for secure transmission in the fields of banking and defense has led to 

the interest in quantum cryptographic protocols which are theoretically more secure than 

any classical cryptographic protocol. However, the current implementations of the 

quantum cryptographic protocols have weaknesses. The main goal of this work is to find 

ways to strengthen quantum cryptographic protocols by using new implementation 

schemes. We present a method to improve the randomness of the sequence of 

polarization states used in BB84, the two-stage and the three-stage protocols. An analysis 

of quantum cryptography in the presence of noise is given.  We also study a variant of the 

three-stage protocol where the intensity of the photons is tracked. We have developed a 

further improvement to this protocol where the state of the photons is also estimated. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Overview of quantum cryptography 

In quantum cryptography information is transmitted in the form of photons or light 

particles. These information carriers obey laws of quantum physics. A photon which is a 

quantum state exhibits the property that in general it is a superposition of mutually 

exclusive attributes and the unknown polarization of a photon cannot be cloned. 

Quantum cryptography is a secure way to distribute a random secret key between two 

parties. Once the key is shared through a quantum channel, the information is then 

transferred through a public channel using classical cryptographic techniques. 

 
Figure 1 Quantum key distribution 
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Quantum cryptography makes it possible to implement a one-time pad under certain 

conditions.  BB84 Protocol, two-stage protocol and the three-stage protocol are the best 

known quantum cryptographic protocols.  

1.2 Research in quantum cryptography 

The research in quantum cryptographic system can be put in categories of the application, 

key management, physical quantum cryptographic transformation, and generation of 

random sequences. The various levels of the cryptographic system are as shown in the 

Figure 2. In this thesis, we have worked on cryptographic hardening of random sequences 

and also made a contribution to the methods used for the quantum cryptographic 

transformation. 

 
Figure 2 Cryptographic system 

 

1.3 Organization of thesis 

Towards the first goal of improving the randomness of a sequence, we have investigated 

the effect of introducing permutations on blocks of a candidate random sequence. This 

work is discussed in detail in chapter III.  
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In the study of quantum cryptography protocols, we have investigated a drawback of the 

iAQC protocol which tracks the intensity of the transmitted photons to ensure that Eve 

has not siphoned off some of the photons. Since Eve can theoretically inject photons to 

compensate for the ones she has siphoned off, we have investigated a new protocol that is 

intensity and state aware (chapter IV).  
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CHAPTER II 
 

 

REVIEW OF RELATED LITERATURE 

 

The following sections give an overview of information representation in quantum 

mechanics, quantum cryptographic protocols like BB84 protocol, the two-stage protocol, 

the three-stage protocol and noise analysis on these protocols. 

2.1 Representation of information by photons 

A single photon is a qubit. Let us consider the information associated with the photon. 

Represented as a qubit )10(  ba , the photon will collapse to 0 or 1  but since this 

collapse is random, it would not communicate any useful information to the receiver. 

Maximum information will be communicated to the receiver if the sender prepares the 

photon in one of the two orthogonal states 0 or 1 , which the receiver will be able to 

determine upon observation.  

In the BB84 protocol, the photon is polarized using either rectilinear bases (horizontal 

and vertical bases) or diagonal bases (-45
0
 and 45

0
 bases) to represent qubits. A photon 

generated represents a qubit after it is passed through a linear polarizer as shown in 

Figure 3.  A horizontally polarized photon or a photon that is polarized by -45
0
 represents 

a qubit 1. Similarly a vertically polarized photon or a photon that is polarized by +45
0
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represents a qubit 0. Table 1 summarizes the representation of qubits. This process of 

generation of qubits is done at the sender’s site. At the receiver’s site, the stream of 

polarized photons are passed through polarizing beam splitters and then through photon 

detectors to know the qubits.  

When a horizontally polarized photon passes through a rectilinear polarizing beam-

splitter, it is found at the refracted output (horizontally polarized photons) exit of the 

beam splitter. Similarly when a vertically polarized photon passes through a rectilinearly 

oriented beam splitter, it is found at the refracted output (vertically polarized photons) 

exit of the beam-splitter as shown in the Figure 3(a). But when a horizontally polarized 

photon passes through a diagonally oriented beam-splitter, the photon has 50% 

probability to be found at each exit. Furthermore, the photon will have a corresponding 

diagonal polarization afterwards as shown in the Figure 3(b). 

Table 1 Representation of qubits in quantum cryptography 

 

 

 

 

 

2.2 BB84 protocol 

As it is customary, we name the sender as Alice, the receiver as Bob and the 

eavesdropper as Eve. In the BB84 protocol, the key distribution takes place in a quantum 

channel and the further transmission of information takes place in a public channel.  

Polarization  Quantum bit value 

Horizontal Polarization 0 

Vertical Polarization 1 

 -45
0
 1 

+45
0
 0 
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3(a) Rectilinear polarization of photons 

 

3(b) Diagonal polarization of photons 

Figure 3 Linear polarization of a photon at the sender site to represent a quantum bit 

At the sender’s site, a single photon at a time is sent through linear polarizer as explained 

previously to generate polarized photons that represent a bit 0 or 1 of information.  Alice 

codes a quantum bit using either a rectilinear base state or a diagonal base state. The base 

states are chosen randomly. The resultant stream comprises of horizontally, vertically 

polarized photons and diagonally polarized photons each representing a qubit of the 
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information that Alice wants to send to Bob. In this case of key distribution, the 

information sent is a pseudorandom sequence that is used to compose a key.  

  

   

    

   Figure 4 Photons through beamsplitters 

On receiving the stream of polarized photons, Bob measures the property of the photon 

by using two interchangeable polarizing beam splitters where one of them allows Bob to 

distinguish between the horizontal and vertical polarization, the other allows him to 

distinguish between -45
0
and +45

0
 polarization. He then uses photon detectors to know the 

arrival of the photon. The choice of polarizing beamsplitters is randomly made. If Bob 

uses a polarizing beamsplitter compatible with the polarization choice of Alice, he can 

read the bit as either 0 or 1 based on the polarization. If Bob uses a polarizing 

beamsplitter incompatible with the polarization choice of Alice, he cannot get any 

information about the state of polarization. As stated earlier, here the quantum state is a 

superposition of two mutually exclusive properties. There is a 50% probability of it being 

Figure 4(b) A rectilinearly polarized 

photon passing through a diagonal 

beamsplitter 

 

Figure 4(a) A rectilinearly polarized 

photon passing through a rectilinear 

beamsplitter  
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a bit that represents 0 or 1. 

Once Alice is done with sending the information, Bob announces the sequence of 

polarizing beamsplitters that he used. Alice then compares this sequence with the 

sequences of bases that she used and tells Bob to note the beamsplitters that he used 

correctly. Finally those bits that are obtained from the correctly selected beamsplitters are 

considered and this forms the key called the Sifted key. The working of BB84 protocol is 

explained in the Figure 5. 

2.3 The two-stage protocol 

At an abstract level, the two-stage protocol can be explained in a simple scenario of 

exchange of a bag of money between Alice and Bob. Imagine a situation where Alice 

sends an amount of money to Bob, say X dollars. Bob either adds or subtracts some 

amount to this, say (X+Y) dollars and sends this to Alice. Alice now subtracts her amount 

from the bag and knows the value added by Bob.  If the money in the bag is not counted 

in passage in both directions, then the protocol is secure. 

This situation can be related to the two-stage protocol [2] as a scenario where Alice sends 

a linearly polarized photon that is randomly rotated through an angle   to Bob. It is Bob 

who has to decide on the key to be shared and he either rotates the photon further by 90
0 

or by 0
0 

that is no rotation. In the third step, Alice rotates the photon by -  and knows the 

rotation performed by Bob and hence knows the data chosen by Bob same as Alice 

knows the amount added by Bob. So, by knowing the rotation made by Bob, Alice knows 

the binary value decided by Bob to form a key. Hence the key negotiation can be done in 

just two stages. 
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Figure 5 Working of BB84 protocol (1) Un-polarized photons are sent through randomly chosen 

linear polarizer to represent the qubits to be sent to Bob (2) The stream of polarized photons are 

sent from Alice to Bob (3) Bob detects the qubits by passing these linearly polarized photons 

through beamsplitters and then through photon detectors (4) Bob announces the base states 

chosen by him (5) Alice then tells which of these are correct (6) The shared key which is called 

the ‘sifted key’ is formed by the bits obtained from these correct bases told by Alice. 

Once the key bits are known by Alice, Bob computes the hash value of the key and sends 

it to Alice. Similarly Alice computes the hash value of the key received and sends it to 

Bob. They compare the hash values received with the one they have computed and verify 

that the correct key is shared. This step ensures the secure distribution of secret keys. The 

working of the two-stage protocol is shown in Figure 6. 
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Figure 6 Implementation of the two-stage protocol 

2.4 The three-stage protocol 

Unlike BB84 protocol, the entire communication between Alice and Bob remains 

quantum at each stage that is both the key distribution and the further information transfer 

takes place in a quantum channel. The working of the three-stage protocol [2] is based on 

the idea of both Alice and Bob using personal keys on the data that is being exchanged. 

Consider a situation in which Alice puts her own lock on a box and sends it to Bob. Bob 

then puts his own lock on the box and sends it to Alice. Now, Alice removes her lock 

from the box and sends it to Bob. Bob now removes his own lock from the box and 
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finally he can open and see what is in the box. In the three-stage protocol the locks are 

nothing but the secret transformations of each party. 

 

Figure 7 Implementation of the three-stage protocol 

The three-stage protocol involves secret rotation transformations on the photons. Alice 

codes a quantum bit by applying a secret transformation of some random angle on a 

polarized photon. In the initial stage, Alice rotates the polarized photon, X through a 

secret, random angle θ and sends it to Bob. In the second stage, Bob further rotates this 

photon through an angle  . In the final stage, Alice inverses the transformation by re-

rotating this photon by the same angle θ and sends it to Bob. Bob inverses the 



 
 

  12 
 

transformation that he applied on the photon by re-rotating by angle   . Finally Bob 

receives the photon X that Alice intended to send (Figure 7).   

2.5 Quantum cryptography in the presence of noise 

2.5.1 Noise analysis on BB84 protocol 

In the BB84 protocol, the effect of noise is combated by first estimating the noise rate on 

the public channel and then extracting the reconciled key from the raw key.  First, Alice 

and Bob apply an agreed upon random permutation to their respective raw keys. The raw 

key is broken into blocks of length x, where the value of x is chosen so that it is most 

likely that the block contains no more than one error. For each of these blocks, and for 

other sub-blocks, Alice and Bob publicly compare parity checks, in a process so that 

erroneous bits are located and deleted. Each time parities are compared, an agreed upon 

bit is deleted from the chosen key sample. If the parity should not agree, a binary search 

strategy is used to locate and delete the error. 

The correctness of the raw key can also be communicated between Alice and Bob by the 

use of cryptographically strong hash functions of their respective raw keys. The ideas of 

obtaining reconciled key starting from a raw key can be used for non-BB84 protocols 

also. 

2.5.2 Noise analysis on the two-stage protocol and the three-stage protocol 

In both the two-stage and three-stage protocols, there is a possibility that the equipment 

that rotates the photon through certain angle is working erroneously. The error can be at 

Alice’s site or at Bob’s site or it can be at both the sites. The error can also be in the 

quantum channel through which the photon is transferred. We will lump the error from 

various sources to a uniform probability distribution function in each communication 
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link. The probability density function of error at Alice’s or Bob’s site is uniform with the 

measure of angle x ranging from -0.1 to +0.1 radians and is represented in the Figure 8.  

 

Figure 8 Probability density function of Error 

Therefore, the probability of error is obtained by the following expression where   

ranges from –x to +x radians. We have 

 
 

  

  

  
 sin

2  d  =   
 

 
 

 

  
      

which is approximately equal to   
 

 
   

 

  
    where x ranges from -0.1 to +0.1 . The 

graph obtained by taking different values is shown in the Figure 9. The y-axis represents 

the probability of error and the x-axis represents the value of x in radians. 

When the error exists at both the sites, then the cumulative effective of noise is as shown 

in the Figure 10. Therefore, the probability of error is obtained by the following 

expression where   ranges from –x to +x radians.  

                      
 

     
 

  
 

  

 
      

 
    = 

   

 
 

where x ranges from -0.1 to +0.1 . 
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Figure 9 Probability of error with the noise at single site based on the value of x in radians 

The graph obtained by taking different values of error angle is shown in the Figure 11. 

The y-axis represents the probability of error and the x-axis represents the value of x. 

 

         Figure 10 Cumulative effective of noise at both the sites 

 

We notice that the probability of error in two stages is roughly equal to twice of that in 

one stage. Likewise, the probability of error in three stages is roughly three times the 

error in a single stage. Given this error rate, one can use standard methods of key 

purification to obtain the reconciled key from the raw copy. 

2.6 Comparison of BB84 protocol with the two-stage and the three-stage protocols 

Apart from the faked-state attack [18], [19], the main weakness of BB84 protocol is that  
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it is difficult to produce single photon at a time and the duplicate photons can be used by 

the eavesdropper to reconstruct the key. Hence, the attacker can siphon off the photons 

when they are transferred between Alice and Bob. Moreover, as the photons are siphoned 

off only at one step, the intensity of the output at the receiver’s end is not affected. There 

is also the problem in generating single photons [20] as well as having single photon 

detectors. 

 

Figure 11 Probability of error with the noise at two sites based on the value of x in radians 

This is not the case with Kak’s multistage protocols. In order to know the angles θ and  , 

Eve has to siphon off the photons in all the stages which can result in significant decrease 

in the intensity of the output. Hence, the receiver can easily identify the attack. 

Nevertheless, practical implementation of this system creates its own difficulties [21]-

[23]. The security of single-photon rotation system has recently been presented [24]. A 

modification of the three-stage protocol to catch active eavesdroppers was recently 

presented [25]. Although it is generally claimed that quantum key distribution is 

unconditionally secure, Yuen has argued against that position [26]. 
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2.7 Conclusion 

This chapter presents overview of quantum cryptography protocols and the noise analysis 

on these protocols. The noise model used is that of uniform distribution of error over a 

certain small range that is associated with each link without regard for the source of the 

error. The noise in different links is taken to be independent.  

In every cryptographic protocol, a random sequence plays a vital role. In the BB84 

protocol, the bases are chosen randomly at both the parties. This shows the role of a 

random sequence in BB84 protocol. Similarly, in three-stage protocol, the polarization 

angles   and   are chosen randomly. In the two-stage protocol, the polarization angle   

is randomly chosen and the value of   being 0
0
 or 90

0
 is also random. Therefore, if the 

random sequence is cryptographically strong, the strength of the protocol increases. In 

chapter III we discuss a new technique to improve the randomness of a sequence.
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CHAPTER III 
 

 

CRYPTOGRAPHIC HARDENENING OF RANDOM SEQUENCES 

 

3.1 Introduction 

Pseudorandom sequences that are algorithmically produced have limited cryptographic 

applications because the eavesdropper can readily generate them. The complexity of the 

generation process and the lack of correlation amongst the bits (or digits) of the sequence 

are important in determining the usefulness of a pseudorandom sequence. A quantum 

mechanical process can be used to generate a true random sequence but the problem with 

such an approach is that such sequences cannot be replicated. Classical random 

sequences also find use in quantum cryptography applications since the random base 

choices or rotations there, either in the BB84 protocol or the three-stage protocol [2]-[4], 

must be generated by an algorithmic process.   

To develop a method of improving the quality of pseudorandom sequences, the question 

of a metric for the degree of randomness must be addressed. There are several ways the 

randomness of a binary sequence is defined statistically [5] and from a computational 

complexity point of view [6]. The problem of randomness is complicated by 

entanglement in quantum systems [7],[8] and it shall not be considered here. One popular 

method of defining randomness of an n-bit long sequence a(i) is given by the following 

formula 
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where c(k) is the autocorrelation function                   
 
   , where the sequence 

is represented in terms of +1s and -1s. This is intuitively satisfactory since for a 

completely random binary sequence this randomness measure is equal to 1 and for a 

constant sequence the randomness measure is 0.  For a maximul length shift-register 

sequence of period 2
k
 [9], the randomness measure is 1-1/n. For good pseudo-random 

sequences, the randomness measure will be a number just less than 1. 

 
Figure 12 Randomness measure of prime reciprocal sequences to 200 

 

Prime reciprocal sequences or d-sequences [10]-[14] have many applications and any 

pseudo-random sequence can be mapped to a suitable d-sequence. As seen in Figure 12, 

the randomness measure gets closer to 1 as the period of the d-sequence increases which 

is perfectly consistent with the theorem that prime reciprocal sequences are normal 

sequences. 

A number x is simply normal in base r if in the decimal of x each of the r possible digits 

occur with a frequency 1/r, i.e.,      
  

 
 

 

 
  for all b, where the digit b occurs nb times 



 
 

  19 
 

in the first n places and a number x is normal in base r if all of the numbers  x, rx, r
2
x,…  

are simply normal in all of bases r, r
2
, r

3
,…  It follows that when x is expressed as a 

decimal in the scale of r, every combination b1, b2, b3, …  of digits occurs with the proper 

frequencies. Thus, the property that a number is normal in base r may be reiterated by 

saying that all the digits 0 to (r - 1) occur with equal probability, and that each digit of the 

sequence is independent of every other digit. Almost all numbers are normal in any base. 

Nevertheless, from a practical point of view, given prime reciprocal sequences are not 

entirely satisfactory. To see this first note that the prime reciprocal sequence a(i), i = 

1,2,3,… for  prime p (that is the sequence 1/p in base 2) can be generated as a(i) = 2
i
 mod 

p mod 2 (Reference [12]): 

b(0)= 1 

b(i+1) = 2b(i) mod p 

a(i)=b(i) mod 2 

Maximum length (with period p-1) prime reciprocal sequences are generated when 2 is 

primitive root of p. Although maximum length binary prime reciprocal sequences have 

excellent autocorrelation properties they have the negative peak of -1 for half the period 

that reflects the fact that the sequence after half the period is a complementary image of 

the first half. As example, the binary d-sequence for 1/13 is 000100111011 where the last 

6 bits are complements of the first 6 bits. This means that although the randomness 

measure of such sequences is high, it is not very useful in this context. 

We suggest performing another transformation on the given sequence. In contrast to an 

earlier preliminary study [15] where groups of bits were mapped to a single bit based on 

plurality of 0s or 1s to improve autocorrelation properties, here we consider the effect of 
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block permutations on autocorrelation. A number of different random permutations are 

applied to the blocks of the candidate pseudorandom sequence. We will show that doing 

so improves the autocorrelation performance considerably.  

3.2 Choosing blocks for permutations 

A d-sequence can be divided into either even number of blocks or odd number of blocks. 

The performance of the permutation for the d-sequences does depend on whether the 

number of blocks is even or odd. For example, the d-sequence of the prime number 1277 

can be divided into blocks in a variety of ways as 1276 has factors 2, 4, 11, and 29. Here 

we will consider the division of 1276 into 58 blocks of size 22 bits or 319 blocks of size 4 

bits.  

In the general case, the sequence S can be represented as the concatenation of blocks 

S1S2S3S4… We represent an n-permutation by the operator Pn = P1P2P3... so that the 

permutations P1, P2, P3,… are applied in sequence. For example, 3-permutation P3 will 

work as follows: 

 P3(S) = P1(S1) P2 (S2) P3(S3) P1(S4) P2(S5) … 

3.2.1 Experiments 

In the first experiment, we consider the d-sequence of length 1276 which is divided into 

58 blocks that is S1, S2, S3… S58. We generated a random permutation, P, of size 22. This 

permutation,P is applied on all the 58 blocks of the d-sequence. If the position of each 

digit is represented with the help of an alphabet as follows. 

        1  0   1  0  1  0  0   1   1  0   1  1  0   1   1   1   1  0  1   1  1  1 

                                a   b  c  d  e   f   g   h   i   j   k   l  m  n   o   p   q  r   s   t   u  v 
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P is the permutation “hajblcfedgikovusrqnpmt” and it transforms the given block to  

1100110100111111011101. This random permutation “hajblcfedgikovusrqnpmt” is 

applied on each of 58 blocks of the sequence. We have conducted this experiment many 

times where the permutation P varies in each experiment. The average of all auto-

correlation values is plotted in the graph shown in Figure 13. 

 

Figure 13 Autocorrelation of the d-sequence with a single permutation applied on its 58 blocks of 

size 22 digits each 

To stress the difference with odd number of blocks, we next consider 319 blocks of size 4 

digits each of the d-sequence of 1277. We applied a single permutation P, on all the 319 

blocks as we did in the case of even number of blocks. The graph in Figure 14 shows the 

auto-correlation values of the d-sequence for odd number of blocks. As the 

autocorrelation function for half the period is less than what it was for the case of even 

number of blocks, this clearly shows that the performance of permutation process varies 

for even and odd number of blocks. 

Next, as a continuation of the first experiment on the d-sequence for even number of 

blocks, we generated two random permutations P1, P2 of length 22 each. The permutation 

P1 is applied on block1 and the permutation P2 is applied on block2. Then the same two 

permutations P1 and P2 are applied on block3 and block4 respectively. This is repeated 
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for all the 58 blocks of the d-sequence. We conducted the experiment many times where 

the permutations P1 and P2 are different every time and plotted the average of the 

autocorrelation values in the graph shown in Figure 14.  

 

Figure 14 Autocorrelation of the d-sequence with a single permutation applied on its 319 blocks 

of size 4 digits each 

Next we consider four random permutations P1, P2, P3 and P4. We applied the 

permutations P1, P2, P3 and P4 on block1, block2, block3 and block4 of the d-sequence 

of period 1276. Then, we applied the same four permutations, P1, P2, P3 and P4 on 

block5, block6, block7 and block8 respectively and this process was repeated till the end 

of the 58 blocks.   

Similarly we considered five, six, seven, eight, nine and ten different permutations on the 

58 blocks of the d-sequence of 1277. As a final step, we generated 58 random 

permutations P1, P2…P58 on block1, block2…block58 respectively. We conducted the 

experiment many times where the permutations are different every time and plotted the 

average of the autocorrelation values in the graph shown in Figure 17.  
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3.2.2 Off Peak autocorrelation for different number of permutations performed on 

the d-sequence of 1277 

Table 2 represents the maximum auto-correlation values of the d-sequence of the prime 

number, 1277. These are the results observed when the above experiments of different 

permutations are performed on the d-sequence of 1277 which is divided into 58 blocks of 

size 22 digits each. Table 3 represents the maximum auto-correlation values of the d-

sequence of the prime number 1277 for odd number of blocks that is 319 blocks of size 4 

digits each. 

 

Figure 15 Autocorrelation of the d-sequence of 1277 with two different permutations on 58 

blocks of size 22 digits each 

 

 

Figure 16 Autocorrelation of the d-sequence of 1277 with four different permutations on its 58 

blocks of size 22 digits each 
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Figure 17 Autocorrelation of the d-sequence of 1277 with 58 different permutations on its 58 

blocks of size 22 digits each 

Table 2 Absolute maximum of the autocorrelation values of the d-sequence of 1277 which is 

divided into 58 blocks of size 22 digits each that is even number of blocks 

 

Number of different 

permutations 

Maximum auto-correlation 

value 

0 1.0 

1 1.0 

2 0.10 

3 0.09 

4 0.10 

5 0.10 

6 0.09 

7 0.10 

8 0.24 

9 0.10 

10 0.13 

58 0.08 

 

The striking difference between the two Tables if for the value at 1-permutation where 

for obvious reasons it makes for no improvement if the number of blocks is even. Also if 

the size of the blocks is small, the reduction in the value of the off-peak autocorrelation is 

small.  

3.3 Improvement factor 

The Improvement factor in the off-peak autocorrelation function of any d-sequence may 

be measured by the following formula. 
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  Improvement factor, I = 1/maximum ( |c(k| ), k ≠ 0 

Table 3 Absolute maximum of the autocorrelation values of the d-sequence of 1277 which is 

divided into 319 blocks of size 4 digits each that is odd number of blocks 

 

Number of different 

permutations 

Maximum auto-

correlation value 

0 1.0 

1 0.47 

2 0.38 

3 0.41 

4 0.24 

5 0.64 

6 0.31 

7 0.32 

8 0.37 

9 0.26 

10 0.34 

              319                           0.19 

 

We considered the improvement factor as a measure of randomness in our experiments. 

Figures 18 and 19 show the improvement factor for the d-sequence of prime 1277 for 

different number of permutations. 

We conducted the above experiments for a large number of primes that lead to maximum 

length d-sequences.  Figures 20 and 21 show the improvement factor of the permuted d-

sequence of 1787. Figure 20 shows the improvement factor of the d-sequence of 1787 

where it is divided into even number of blocks that is 94 blocks of size 19 digits each. 

Figure 21 shows the improvement factor of the d-sequence of 1787 where it is divided 

into odd number of blocks that is 47 blocks of size 38 binary digits each. 

From all the above experiments it is found that the randomness of a d-sequence increases 

by applying permutations on its blocks. Similar results are obtained for a random 
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sequence that is generated on a Windows PC. The above graphs show that the 

improvement factor is quite impressive if the block size is not too small. Several 

statistical tests of randomness [5] were performed on the sequences and the results were 

supportive of the conclusion that the sequences are cryptographically strong. 

 

Figure 18 Improvement factor of the d-sequence of 1277 when divided into 58 blocks of size 22 

digits each that is even number of blocks 

 

 

Figure 19 Improvement factor of the d-sequence of 1277 when divided into 319 blocks of size 4 

digits each that is odd number of blocks 
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Figure 20 Improvement factor of the d-sequence of 1787 when divided into 94 blocks of size 19 

digits each that is odd number of blocks 

 

 

Figure 21 Improvement factor of the d-sequence of 1787 when divided into 47 blocks of size 38 

digits each that is odd number of blocks 

3.4 Conclusion 

We show that permutations on blocks of random sequences improve their randomness. 

The improvement presented in the graphs is typical of the performance of d-sequences. 

The specific conclusion is that two or three permutations on blocks that are not too small 

suffice to improve the autocorrelation function of the sequence. 
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CHAPTER IV 
 

 

INTENSITY AND STATE ESTIMATION IN QUANTUM CRYPTOGRAPHY  

4.1 Introduction 

The drawbacks of BB84 protocol are PNS attack, Trojan horse attack and faked states 

attack [31], [32], [39]. In Kak’s multistage protocols [2],[4],[25] a bunch of photons can 

represent a single bit. Though these protocols are theoretically proven to be secure, they 

have the loophole that Eve can siphon off photons at multiple stages and obtain the 

information.  

In the iAQC (Intensity Aware Quantum Cryptography) protocol [25] is a variant of three-

stage where Alice and Bob track the intensity of the laser beam at each stage making it 

possible to detect the intruder. But the drawback of iAQC lies in the scenario when Eve 

removes some photons and replaces them with the same number of photons with random 

polarization back into the stream where the intensity remains constant. Such siphoning 

can be done by fiber tapping [35] or using half silvered mirrors if the communication 

media is free space. In this case the intensity is not changed and hence Eve will not be 

discovered and the changes in the state will be ascribed to noise. In order to overcome 

this threat from Eve, an additional step of detecting the state of photons using 

tomography [36] is considered. This new protocol is called ISA (intensity and state 

aware) quantum cryptography. A certain fraction of the received photons are 
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examined for their intensity and state to determine if Eve has siphoned off  photons and 

replaced them with other photons. 

The ISA system can be used for the standard three-stage protocol or its many variations 

[3], [4], [17], [37] including the one-stage protocol [27]. We illustrate the process of state 

determination by examining only one transmission that is the two-stage protocol. 

4.2 Intensity and state aware protocol (ISA) 

In the ISA protocol, Alice keeps track of the state of the photons in addition to the 

intensity of the photons. If Eve introduces some photons with different polarization than 

that of Alice, then the resultant stream of photons sent to Bob is mixed state. Thus, Eve is 

caught if the state is detected to be mixed. 

The density operator is a convenient way of representing a mixed state. Assuming that a 

quantum system is in one of the number of states i , where i is an index with 

probabilities ip , { ip | i } is an ensemble of pure states. The density operator of the 

system is defined as 
i

iiip  .  

The main criterion to decide if a state is pure or mixed is considering the trace (tr) of the 

density matrix. If the tr is less than one then the state is said to be a mixed state else it is 

pure state. 

Suppose that Eve siphons off x number of photons in the first stage and puts x number of 

photons with different polarization back into the stream. Therefore, a total of 2x photons 

are siphoned off throughout the transmission. Eve will not be caught by the techniques 

that detect intruders unless the value of 2x reaches a substantial fraction of the total 

number of photons sent by Alice. Alice has to use this technique of computation and 
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comparison of density matrices to catch the eavesdropper. It is assumed that Alice picks 

up a random polarization angle,   and sends pure state photons to Bob. In addition, Alice 

computes two density matrices, imagining that Bob makes a rotation of 0
o 
in one case and 

90
o 

in the other case. Assuming that Bob makes a 0
o 

rotation on the photons that he 

receives, Alice computes the density matrix,  . Similarly, assuming that Bob makes a 90
o
 

rotation, Alice computes the density matrix as   .  

 

Figure 22 Intensity and State Aware Quantum Cryptography  

Once Alice receives the photons from Bob in the second stage, she computes a new 

density matrix for that photon state as     and then compares it with   and    . If there is 

no match, then Alice assumes that the state that she received is not pure and she makes 

sure by verifying if the trace of  (     )2 
is less than one which means that it is mixed state.  

This is how Eve is detected in this approach. Let the polarization of photons added by 
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Eve be  . The following calculations show how Eve’s interference is discovered. It is 

assumed that Alice sends a total of 100 photons with the polarization angle   =30
o
. 

Suppose that Eve siphons off 5 photons and injects 5 other photons with a random 

polarization, φ of about 45
o 

in the first stage. Then Bob rotates the photons by   =0
0
. 

Then in the second stage Eve takes 5 more photons and injects 5 photons with the same 

polarization, φ. That means 80 photons are with the state 121023   and 20 with 

state 12102/1  . Now the density matrices  ,           computed by Alice are 

                   =  
          

        
 ;    = 

         

        
 ;     = 

          
         

  

which is quite different from that of   and     and the trace of (   ) 
2  

is less than 1. 

Therefore, Eve is caught. If Alice finds that the photons are in pure state, she uses 

quantum tomography to find the unknown state. Figure 22 shows the ISA protocol. The 

next sections give a brief idea of the photon generation and detection process for better 

understanding of the quantum tomography. 

4.3 Photon generation process 

A set of photons are generated to represent a bit of information. We need a set of photons 

instead of a single photon for tomography purposes. A laser beam or a semiconductor 

Schottky diode device is used as a photon source. All the linearly polarized photons are 

sent through the polarizing equipment to obtain photons with required polarization angle. 

Alice and Bob negotiate on the set of polarization bases to be used and the notation each 

bit using the polarization angle,  . A brief outlook of the photon generation process can 
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be obtained from the Figure 23. There may be an error in the polarizing equipment which 

causes error in the information transfer. This category of error and the tolerance of the 

protocol to this error are explained in the next section. 

4.4 Photon detection process 

The photon detection process at the receiver site involves beamsplitters, half silvered 

mirrors and filters that contribute to the quantum tomography process. When the set of 

photons are received, they are sent through the beam splitters or half silvered mirrors to 

send them through different filters set up at required angles. The intensities at these filters 

are taken to construct the intensity vector, v. Now the nearest neighbor search algorithm 

is used to find the match in the stored vectors. Once the match is found the corresponding 

angle is said to be the polarization of the set of photons sent by Alice. Thus, the unknown 

state is determined. The process flow of the detection process at receiver’s site is shown 

in the Figure 24. 

 

Figure 23 Photon generation process at the Sender’s site 
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Figure 24 Photon detection and quantum tomography at receiver’s site 

4.5 Quantum state tomography 

Alice has to measure the unknown quantum state to get the information sent by Bob. The 

process of estimating the unknown quantum state is quantum state tomography. The 

following section gives an overview of the existing theory on quantum state tomography. 

Then, my work on quantum state tomography is given in detail. 

4.5.1 Overview of quantum state tomography 

Initially, all the photons pairs are filtered using the spatial filters and frequency filters. 

After the filtering process, the unknown states are measured by the process of projection 

[36]. An arbitrary polarization measurement can be realized using a quarter-wave plate, a 

half-waveplate and a polarizing beam splitter (PBS) in an order.  The quarter-wave plate 

and the half-waveplate are used to rotate the state to H  . Then the PBS will transmit 

the projected state and reflect its orthogonal compliment. The resultant measurement state 

is sent through the detectors and a photon counting circuit is implemented to maintain the 



 
 

  34 
 

coincidental counts. Using the likelihood function, the T matrix is obtained and using the 

T matrix density operator can be calculated as  = T
-1

T / Tr{ T
-1

T} [36].  

Once the density operator or matrix   is obtained, any single-qubit density matrix,   can 

be uniquely represented by three parameters {S1, S2, S3} are the Stokes parameters such 

that   =        
 
     such that     =  

  
  

  ,     =  
  
  

  ,     =  
   
  

          = 

 
  
   

 .  

Measurements can also be made in any non-orthogonal bases. The following computation 

illustrates how Stokes parameters which correspond the measurement in the D/A 

(diagonal), H/V (rectilinear) and R/L (right-circular and left-circular) basis are calculated 

and their representation on the Poincaré sphere is shown. Note that in our case, the Stokes 

parameter (S2) corresponding to the R/L basis is always zero. Suppose Alice receives a 

bunch of photons from Bob and obtains the density matrix as   = 
      
      

  . By the 

equation }{  ii TrS  , the Stokes parameters can be calculated as S0=1, S1=1, S2=0, 

S3=0. Since 1
3

0
 i iS , it indicates that the obtained state is pure state. Figure 26 shows 

the representation of these values in the Poincaré sphere. Since the state is on the surface, 

it is a pure state. 

Any physical density matrix can be diagonalized and its corresponding eigenvalues and 

eigenvectors can be computed. The eigenvalues of   are {0.0000, 1.0000} and the 

corresponding eigenvectors are (-0.5000, 0.8660) and (0.8660, 0.5000) respectively. The 

eigenvalues of        are {0.0108, 0.9892} and corresponding eigenvectors calculated are 

(-0.5437, 0.8393) and (0.8393, 0.5437) respectively. The eigenvalues of any density 
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matrix give the intensities and their corresponding eigenvector gives the angle at each 

intensity. 

 

Figure 25 Quantum tomography 

 

Figure 26 Poincaré sphere 
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4.5.2 Quantum state tomography for constrained polarization 

Here we present a conceptually easy approach to quantum tomography where the 

polarization angles are defined on a fixed plane which is true of our protocols. 

It is assumed that Alice and Bob negotiate on the number of polarization angles that 

should be used in their communication process. At Bob’s site, the received photons are 

sent into a set of filters. These filters are aligned at certain angles chosen from the set of 

polarization angles. A peak exists at a particular filter whose angle is equal to that of the 

polarization of the photon. We now consider the question of how many photons do we 

need to determine an unknown state. Our experiments lead us to the following conjecture: 

If there are n number of polarization angles equal to 2
m
 in a fixed plane, we need 

m number of filters and m
2
 number of photons through each filter. Calculations 

starting with the base case are provided in the following paragraphs. 

For 4 polarization angles, we need 2 filters and a total of 2
3
 photons. This is concluded 

from a set of experiments done. At the receivers end the photons are sent through filters 

aligned at different angles. The peaks obtained at these filters are put together to form an 

intensity vector as shown in Figure 24. Initially, we used one filter in the detection 

process, but it was not possible to determine the polarization angle of the photons since 

the vectors obtained were not unique. Then in the next trial, 2 filters are considered and 

the intensity vectors are found to be unique. 

Further, the point of number of photons needed at each filter to get a convincing value of 

intensity is considered. Since an integer value of the intensity peak has to be obtained we 

keep on increasing the number of photons passed through each filter until we get an 
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integer value of the component of the intensity vector. Thus, the trials began with passing 

one photon through each filter and then increasing the number by one each time. It is 

found that at the point where we sent 2 photons to each filter, we obtained integer values 

of intensity vectors that were precisely unique. The uniqueness of the vectors helps us to 

determine the unknown state. The vectors obtained by passing the photons with 

polarization angle chosen from the set of four polarization angles, {0
0
, 45

0
, 90

0
, 135

0 
} 

are stored at the receiver’s database. Thus, whenever a new set of photons arrive at 

receiver’s site, they are sent through the filters with the help of beamsplitters or half-

silvered mirrors. The output of these filters forms a new vector which is then compared 

with the stored vectors following the Nearest neighbor search algorithm to get the nearest 

match and therefore to get the unknown state of the photons.  

For example, the vectors for each possible value of   for a protocol which uses 8 

polarization angles are stored at the Bob’s site in the form of Table 5. When Alice sends a 

set of photons with polarization  = {0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5}, at Bob’s 

site, they are sent through the three filters to get the intensity vector, V. This V is 

compared with the existing vectors {(3 3 2), (3 3 3), (1 3 3), (0 2 3), (0 0 1), (0 0 0), (2 0 

0), (3 2 0)}. When a match is found, the polarization is determined which gives the state 

of the photons. Even if there is slight deviation in the vector obtained, then the Nearest 

neighbor search algorithm is applied to find the closest vector that matches. The 

Euclidean distance between two vectors, ),,( 111 cba and ),,( 222 cba  is calculated as

2

21

2

21

2

21 )()()( ccbbaa  where ),,( 111 cba is the stored vector and ),,( 222 cba

is the vector that is obtained when the photons sent by Alice are passed through filters. 
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Once the matching vector is found, the corresponding angle determines the unknown 

state of the photons sent by Alice. Similarly, the experiment is done for 8, 16, 32, 64 and 

128 polarization angles and the results are shown in Table 5 which support the 

conjecture.  

Table 4 Possible intensity vectors for a setting with 8 polarization angles 

Polarization of 

the photon sent 

by Alice 

Filter at 0
0
 Filter at 22.5

0
 Filter at 45

0
 Intensity Vectors 

(Stored Vectors) 

0
0 
 3 3 2 (3, 3, 2) 

22.5 3 3 3 (3, 3, 3) 

45 1 3 3 (1, 3, 3) 

67.5 0 2 3 (0, 2, 3) 

90 0 0 1 (0, 0, 1) 

112.5 0 0 0 (0, 0, 0) 

135 2 0 0 (2, 0, 0) 

157.5 3 2 0 (3, 2, 0) 

 

For some choice of filters, we might need lesser number of photons than m
2
. Figure 27 

shows a graph where the dotted line indicates the number of photons that suffice to 

measure the polarization angle for some optimal combination of filters. The square line 

indicates the at most number of photons needed in general for 4 through 64 polarization 

angles. 

The graphs in the following section show the change in intensities as the number of 

photons siphoned off by Eve changes. The angle by which Alice rotates the photons is 

denoted by   and the polarization of photons inserted by Eve as φ. The graph in Figure 

28 indicates the intensities of photons at the highest peak obtained when    22.5
0
 and φ 

=30
0
.  
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Table 5 Number of photons and filters required in the tomography process 

Number of polarization 

angles 
Number of filters 

Total number of 

photons 

4 2 8 

8 3 27 

16 4 64 

32 5 125 

64 6 216 

128 7 343 

 

 

Figure 27 Graph to show the number of filters varying for each set of polarization angles 

 

Figure 28 Graph showing the varying peak intensities with change 

in number of photons manipulated by Eve when     22.5
0
 and φ =30

0 
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Figure 29 to Figure 35 indicate the angle at which the intensity is high and the peak 

intensities varying with the number of photons manipulated by Eve. The examples are 

considered with difference between angle used by Alice and Eve that is ( -φ) as 7.5
0
, 15

0
, 

30
0
 and 60

0
. The intensities and the values of angle are obtained by the computation of 

eigenvalues and eigenvectors. 

 

 
Figure 29 Graph showing the varying values of angle whose intensities are high 

with change in number of photons manipulated by Eve when    22.5
0
 and φ =30

0 

 

 

 
Figure 30 Graph showing the varying peak intensities with change in 

number of photons manipulated by Eve when     45
0
 and φ =60

0 
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Figure 31 Graph showing the varying values of angle whose intensities are high 

with change in number of photons manipulated by Eve when    45
0
 and φ =60

0 

 

 
Figure 32 Graph showing the varying peak intensities with change in number 

of photons manipulated by Eve when     30
0
 and φ =60

0 

 

 
Figure 33 Graph showing the varying values of angle whose intensities are high 

with change in number of photons manipulated by Eve when    30
0
 and φ =60

0 
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Figure 34 Graph showing the varying peak intensities with change in number  

of photons manipulated by Eve when     30
0
 and φ =90

0 

 

 
Figure 35 Graph showing the varying values of angle whose intensities are high 

with change in number of photons manipulated by Eve when    30
0
 and φ =90

0 

 

 
Figure 36 Graph showing the varying values peak intensities with the difference 

between   and φ equals 7.5
0
, 15

0
, 30

0
 and 60

0
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Figure 37 Graph showing the varying values of angles at peak intensities with 

the difference between   and φ equals 7.5
0
, 15

0
, 30

0
 and 60

0 

 

Combining the results from all the above experiments, the graphs in Figure 36 and Figure 

37 are obtained. The Figure 36 shows the varying peak intensities as the difference 

between   and φ varies. Similarly Figure 37 shows the varying angle at the peak 

intensities as the difference between   and φ varies. 

4.6 Noise analysis on ISA quantum cryptography protocol 

4.6.1 Types of noise 

The existence of noise can be in any of the three possible ways. The first type of noise 

can be due to an error in the equipment that rotates the photons. This causes an error in 

the polarization of the photons which affects the quantum state on the whole. The next 

type of noise can occur in the photon generation process where the number of photons 

generated is affected. Another type of error that is possible is the error in the detectors 

that detect the photons. 

4.6.2 Relating noise to the ISA quantum cryptography protocol 

We consider the first type of error that is, a flaw in the rotation equipment. Chapter III 
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considered the presence of this type of noise in the two stage and three stage protocols. 

Let the angle of polarization is   and the error introduced be .  

We assume that the error angle,   introduced by the faulty equipment ranges from -4
0
 to 

+4
0
. Let us now try to understand the effect of this type of error on ISA protocol by the 

following example. 

Consider a protocol with 8 polarization angles. Assume that the filters used are at angles 

0
0
, 22.5

0
, 45

0
 and the vectors stored at the receiver’s site are as shown in the Table 6. If 

the angle of polarization is 0
0
, then the expected intensity vector is found to be (3, 3, 2). 

From the following table it is found that the match exists for all  +  and the vectors are 

exactly the same as the intensity vector for  =0
0
.  Similarly when   ranges from 0

0
 to 

+4
0
, match exists in all the cases. Therefore, this theoretical experiment is done for all the 

cases of angle,   with error,   ranging from -4
0
 to +4

0 
 that is   ={-4.0, -3.5, -3.0, -2.5, 

-2.0, -1.5, -1.0,-0.5, 0, +0.5, +1.0, +1.5, +2.0, +2.5, +3.0, +3.5, +4.0}.  

Table 6 Probability of error for each polarization angle  

Possible 

Polarization 

Angles 

Probability 

of error 

0
0 

0 

22.5
0 

13/16 

45
0 

13/16 

67.5
0 

1 

90
0 

0 

112.5
0 

13/16 

135
0 

13/16 

157.5
0 

13/16 
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The impact of error on the protocol in the case of  =0
0  

and  =90
0
 is zero. This indicates 

that the effect of noise due to error in the polarizing equipment is zero in case of the 

photons with polarization  =0
0
 and  =90

0
 

 

 

Figure 38 Probability of error in the vectors when there is a noise in the polarizing equipment 

The second possible error is in the photon generation process. If the number of photons 

generated is not up to the threshold, then there might be an error in the tomography 

process. The following paragraphs explain this category of noise in detail. 

Table 3 shows the number of filters required in the tomography process for different 

number of polarization angles. For some choices of filters, if the number of photons is 

less than the required, then the resultant vector might match with more than one stored 

vector which makes it difficult to determine the polarization state of the photons. Let us 

consider the case of 8 polarization angles of a protocol. In this case, the number of 

photons required is less than or equal to 9 photons at each filter. Here, we consider the 

filters chosen in table 4. Let us consider the cases where the photons generated are 8, 7, 6 

and 5 due to the error in generation process. If 8 photons are generated, still the vector 
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can find a unique match with the stored vectors and there is no error found in the 

tomography process. Similar is the case with 7, 6 photons generated due to error. But if 

the number of photons generated is less than 6 then the vector obtained matches with 

more than one stored vector. 5 out of 9 possibilities result in error. Similar experiment is 

done for the 16 through 64 polarization angles and the results are shown in the Table 7.  

In the case of 16 polarization angles, ISA protocol has good tolerance till the number of 

photons is not less the actual required number of photons minus two. Otherwise the 

vector obtained would have more than one match with the stored vectors. 

Table 7 Uniqueness of the vectors as the number of photons generated decreases 

Number of photons 

generated and sent 

through each filter 

Choice of filters 

0, 45, 90, 135 22.5,45,67.5,90 

 

45, 90, 135, 168.75 

16 Unique match Unique match Unique match 

15 Unique match Unique match Unique match 

14 No unique match No unique match No unique match 

13 No unique match No unique match No unique match 

Probability of error 14/16 14/16 14/16 

 

In the case of 16 polarization angles, the best choice of filters in an error prone protocol is 

a set of filters with a difference of 22.5
0
. Similarly when this experiment is run for the set 

of 32, 64 and 128 polarization angles, 13 out of 16 cases are found to be error prone. If 

the number of photons sent is more than the required, then the newly computed vector 

may deviate from the existing vectors. But in this case, the Nearest neighbor search 

algorithm can be used to find out the match. 



 
 

  47 
 

Therefore, we can conclude that any protocol which defines n polarization angles and that 

requires m number of photons at each filter has an error tolerance of about m-1. It might 

reach m-2 with some other choice of filters.  

The third type of noise is caused due to the error in the detection process. The fault may 

be in any of the detecting equipment like beam splitters, half-silvered mirrors or the 

orientation of the filters. The tolerance to the noise in the protocol is similar to that of the 

generation process as the effect is on the number of photons.  

4.7 Conclusion 

The ISA protocol overcomes one of the drawbacks of iAQC and helps to detect the 

intruder by tracking the state of the photons. Detection of mixed state shows the presence 

of Eve in the communication link. The polarization angles are defined on a fixed plane in 

our protocols. A conceptually easy way to approach quantum tomography in these 

protocols is explained. The tolerance of the intensity and state aware protocol is 

investigated for various noise environments. 
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CHAPTER V 
 

 

CONCLUSION 

 

This thesis is on improving the randomness of a sequence and developing a protocol for 

quantum cryptography that estimates both intensity and state.  Our proposed ISA  

protocol adds state estimation to the iAQC protocol. Our work is also applicable to the 

one-stage and the multi-stage protocols. 

Since random sequences play a vital role in choice of bases in BB84 protocol and choice 

of polarization of states in multistage protocol, the improvement in randomness of the 

sequence strengthens the protocols. The randomness of the sequence can be improved by 

applying permutations on its blocks and the randomness is measured with the 

autocorrelation graphs and randomness measure formula.  
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