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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Background: 

Microorganisms organisms play an important role in changing environmental and 

hydrodynamic of  porous media due to the development of microbial biomass (Brovelli et 

al., 2008). In porous media (e.g., subsurface soil or rocks), biofilm growth within the 

pore space can induce substantial modifications to rock mechanical properties and 

dynamics on a much larger scale. Microbial communities can grow and block a large 

fraction of pore space and effectively reduce permeability; the process is known as 

bioclogging (Taylor and Jaffe, 1990; Lappan and Fogler,1996; Bouwer et al., 2000; 

Dunsmore et al., 2004). The ability to manage artificial and natural bioclogging and 

monitor microbial growth is essential in many applications. Microbial enhanced oil 

recovery (MEOR) is one of the applications where understanding bio-mass production is 

important for the process of extracting trapped oil in reservoirs and improving oil 

recovery (Zajic et al., 1983; Yen, 1990).
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In addition, bioclogging treatments have been proven to be efficient in forming 

bio- barriers to control subsurface contamination plumes and at the monitoring of bio-

barriers for CO2 sequestration operations (Figure 1) (Pintelon et al., 2012).  

The ability to resolve subsurface microbial growth with high spatial resolution is 

hindered by the capability to understand how microorganisms change their physical and 

chemical environment during the cell growth and biofilm development process. Many 

studies discussed the capability and potential of geophysical methods such as seismic and 

electrical techniques to compromise noninvasive option to detect, characterize and/or 

quantify the spatial distribution of biogeochemical processes (Williams et al., 2005; 

Atekwana et al., 2006; dejong et al., 2006; Atekwana and Slater, 2009; Slater et al., 

2009). Geophysical methods have potential to detect and image biofilms formation in 

many applications such as microbial attachment/transport studies, imaging zones of 

bioclogging, soil remediation of liquefaction during earthquakes, and microbial enhanced 

oil recovery (Abdel Aal et al., 2004-2006; Karatas, 2008; Williams et al., 2009; 

Ntarlagiannis et al., 2005-2007). 

Geophysical techniques can help in monitoring microbial processes in porous 

media (Hubbard et al., 2008; Williams et al., 2008) because changes induced by biofilm 

formation manifest as geophysical anomalies. Here, the intrinsic assumption is that bio-

changes depend on the rheological properties of the porous medium and fluids that are 

contained in the pore spaces (Li et al., 2001). For instance, geophysical methods based on 

acoustic wave propagation particularly in the ultra- sonic frequency range seem to be the 

most efficient to assist microbial imaging and help in monitoring microbial process in 

porous media. By-products of microbial growth such as biogenic gas (e.g., Williams, 
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2002) and mineral (e.g., Williams et al., 2005; dejong et al., 2006), can change the elastic 

properties of unconsolidated sediments (e.g., Davis et al., 2009 and 2010).  

1.2 Case study: 

Davis et al. (2010) presented time-lapse arrival time and amplitude data from a 

physical-scale experiment involving biofilm growth in unconsolidated sediments (Figure 

2). Davis et al. (2010) observed that amplitudes and arrival times varied during the 

biofilm development and growth in the biostimulated column (Figure 3).  Nearly 80% 

decrease in amplitude was recorded in the biostimulated column, raising up the question 

if P-wave attenuation (in ultrasonic frequency) is a positive indicator for biofilm 

formation. On the other hand, only ~2% increase in arrival time (~1% change in VP) was 

observed in the experiment.  

The scanning electron microscope (SEM) images obtained by Davis et al. (2010) 

showed apparent differences in the morphology of attached biomass between different 

regions (Figure 4). Accordingly, Davis et al. (2010)  suggested that heterogeneity in the 

acoustic measurements from the biostimulated column are due to existence of more than 

one biofilm growth style. On similar lines, Kwon and Ajo-Franklin . (2012) conducted 

experiments which involved stimulating the production of the biopolymer dextran inside 

a column of sand while monitoring changes in permeability and seismic response using 

the ultrasonic pulse transmission method. In their attempt to check the feasibility of using 

increased attenuation as a proxy for decreased permeability, Kwon and Ajo-Franklin . 

(2012) recorded the same results observed in Davis et al. (2010) (Figure 5).  
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Davis et al. (2010) and Kwon and Ajo-Franklin . (2012) suggested the rock 

matrix properties such as porosity and permeability change due to biofilm development 

and thus explained the variation in their seismic data. The Davis et al. (2009;2010) study 

speculated that the P-wave attenuation could have occurred due to squirt flow and 

scattering, whereas the Kwon and Ajo-Franklin (2012) related the P-wave attenuation to 

a flow-induced loss mechanism related to the combined grain/biopolymer structure. A 

model that relates the effect of biofilm growth on seismic responses is lacking.  This 

work demonstrates the development of biofilm growth models based on rock physics 

relations to explain the time-lapse geophysical data from Davis et al. (2010). 

1.3 Objective of the work: 

The objective of this research is to develop a rock physics model to explain 

seismic data obtained from the Davis et al. (2010) experiment. First, however, the 

rationale for using rock physics is needed. Rock physics draws a relationship between the 

geophysical data and rock properties. The sensitivity of seismic velocities to critical rock 

parameters, such as porosity, pore fluid type, saturation, and permeability, has been 

recognized for many years (Han and Batzle, 2004). Yet, the practical need to quantify 

geophysical data-to-rock-property transformations and their uncertainties has become 

critical over the past decade (Takahashi et al., 2000). For instance, rock physics modeling 

is used to interpret amplitudes for hydrocarbon detection, reservoir characterization, and 

reservoir monitoring (Teng, 1998). Discovering and understanding the seismic-to-

reservoir relations has been the focus of rock physics research. In this paper rock physics 

are used to quantify microbial growth, biofilms formation, and byproducts in porous 

rocks.  
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Several studied have been conducted to quantify and interpret seismic data by 

means of rock physics in different environments such as carbonate rocks, mud rocks and 

gas hydrates (Nur and Dvorkin, 2003-2004; Dai et al., 2004). I propose that biofilm can 

be modeled much like hydrates as biofilm saturation is time dependent precipitate from 

pore fluid. None of the previous rock physics models considered or have incorporated the 

effects of microorganisms. Thus this study is attempt to model seismic attributes and 

seismic response alterations due to microbial growth by means of rock physics models. 

Rock physics models have the potential to (1) provide explanations for the results 

obtained by seismic methods, thus helping in testing and validating of bioclogging 

models and numerical simulations used for assessing microbial induced changes on flow 

and transport properties and (2) be used for evaluating and monitoring spatial or temporal 

variations in seismic attenuation due to biomass distribution in subsurface environments 

(e.g., microbial enhanced oil recovery (MEOR), and engineered bio-barriers). 

By developing a rock model, I expect to a) quantifying microbial growth styles 

and structures; b) construct biofilm saturation profiles that can be related to the changes 

in seismic amplitudes using rock physics models; and c) provide a tool to the science 

database to infer the rock microstructure from velocity profiles. The rock physics models 

that relate seismic data such as acoustic velocity and attenuation to hydraulic changes in 

the media can be useful in elucidating the effect of biofilm formation on seismic 

properties and may be an effective tool in monitoring microbial growth and permeability 

alterations. 
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CHAPTER II 
 

 

TYPE TITLE HERE 

 

2.1 Davis et al. (2010) Experiment 

In this research, time-lapse arrival time and amplitude data from Davis et al. 

(2010)  are  used to model the effect of biofilm growth on seismic velocities and seismic 

waves attenuation. In the Davis et al. (2010) experiment, bacterial growth was stimulated 

over a period of 26 days (17
th

 June to 11
th

 July).  Nine set of ultrasonic waveforms scans 

were recorded at an interval of 2 – 4 days. Individual set of scan comprise ultrasonic 

measurements at 168 locations (a rectangular matrix of 14 X 16 cells). Although data 

reported by Davis et al. (2010) are not uniform temporally, they adequately captured the 

bio-stimulation character in terms of biofilm inception, growth and decay. In the 

experiment, the ultrasonic waves between source and receivers travelled through three 

different media – water, glass (Pyrex) enclosure, and bio-stimulated sediments.  To 

discount for traveltime in water (5 mm or either side) and Pyrex (2 mm on either side), at 

the outset we apply a constant shift of 7.7 ms to the arrival times. We convert the 

resulting traveltime dataset to velocity assuming straight rays in 51mm thick sedimentary 

column.
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Travel times were converted to velocity and discover two dominant time-lapse 

trends – continually increasing and continually decrease (Figure 6). Velocity model from 

straight-ray tomography models showed a fairly random distribution of high and low 

velocity patches in the first 7 days. From Day 10 onwards, a vertical zone of low velocity 

starts appearing in the center. We speculate that this zone is weak and of higher porosity 

which is more conducive to fluid flow. This gradual change in porosity could be as a 

result of preparation of the sample box or due to the growth of biofilms. Analysis of the 

velocity data suggested that biofilms exhibited different impact on the sand stiffness 

frame work in different regions. The velocity started on Day 1 with a value of 1.711 

(km/sec) and over the course of the experiment, different patches of high velocities along 

with patches of low velocity. Tracing two different spots that had different changes in 

velocity with time, distinct behaviors for the acoustic velocities were observed (Figure 7). 

Position A presented an increase of up to 1.8 (km/sec) in velocity values due to biofilm 

growth and formation; whereas, position B showed a decrease in velocity up to 1.65 

(km/sec) with time due to biofilm production. Even though the change in velocity values 

was negligible, the desire to find a technique that can be used to explain these two 

opposite behaviors was raised at this stage.  

We infer from the Davis et al. (2010) work that the change in biofilm growth 

styles might be the main cause for changes in the acoustic properties. However, the drop 

in pH value in the biostimulated column presented by Davis et al. (2010) suggested the 

possibility of metabolic byproducts such as dissolved gas to be one of the reasons for 

changes in the acoustic properties. In this work, the effects of both bio-product (biogenic 
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gas) and biofilm growth styles on seismic data during microbial growth and biofilm 

development in unconsolidated sediment were investigated using rock physics models. 

2.2 Rock Physics Modeling Basic 

Rock physics models are used for quantitative characterization of geophysical 

measurement such as seismic acoustic data. Rock physics models help to address the 

relationship between elastic parameters made from surface and subsurface rock properties 

and mineralogy. Rock physicists find the relationship between material properties and the 

observed seismic response, and thus create a predictive model so that these properties 

may be detected seismically. For given formation composite and pore fluids, using rock 

physics can help find velocity, density, and their relationships to porosity and elastic 

moduli (bulk modulus) (Johnston et al., 1995; Mavko, 2002). 

 2.2.1 Defining the Matrix, Fluids and Placement of Additional Components 

From a rock physics perspective, the rock is divided into two parts – the solid 

frame, which comprises the mixture of minerals (matrix) and the pore fluid, which 

comprises mixture of fluids such as gas, oil and water (Wang, 2001). Any additional 

component (such as the biofilm) to the system must be defined as either being part of 

matrix or part of the fluid. Therefore, constructing synthetic elastic models of the rock 

involves four steps: (1) defining the matrix, the fluids, and the location of the additional 

component if one or more exist; (2) assembling and constructing a dry rock matrix 

modulus; (3) analyzing pore fluid separately and determine its modulus as well and (4) 

introducing fluids into the dry matrix and reuniting both modulus in one effective system 

modulus via the Gassman’s relationship (Figure 8) (Gassmann, 1951). 
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2.2.2 Assembling and Constructing a Dry Rock Matrix Modulus 

For simplicity, in this work it is assumed that the rock matrix is comprised only of 

quartz and the pore-fluid is simply water. The bulk modulus of the individual solid and 

fluids are known from literature and their values listed in (Table 1). Batzle and Wang 

(1992) relations were used to correlate fluid properties with temperature and pressure to 

calculate densities and the bulk modulus of the fluids. For modeling purposes, a 

homogenous background system was assumed of matrix composed of quartz grains that 

are not cemented, spherical or randomly packed. For spherical unconsolidated sediment 

the bulk (KHM) and shear (GHM) moduli of dry rock is expressed as: 

3
1
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These equations are known as Hertz-Mindilin relations and they describe moduli at the 

critical porosity Øc, which is the porosity at which the solid particles just flow in the 

fluids, thus presenting the elastic moduli at the critical porosity endpoint, where n is 

average number of contacts per grain for unconsolidated sediment for which we use n of 

6. P, the effective pressure (delta between the pore pressure and the overburden pressure) 

and v and G are the Poisson’s ratio and shear modulus of the solid phase.  

The other end member is representing elastic moduli at zero porosity where we 

just have the mineral phase. That can be determined by the average and mass balance 

relationships (Hill, 1952): 
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Where Ks, Gs, and ρs are the bulk and shear moduli and density of the mineral (solid) 

phase, respectively;  is the number of the mineral components; fi is the volumetric 

fraction of the -th component in the solid phase; and Ki, Gi, and ρi are the bulk moduli, 

shear moduli and density of the -th component respectively. 

At porosities other than zero and critical porosity, many mathematical models are 

introduced to connect those two end members. The two end members include trajectories 

corresponding to the upper and the lower Hashin Shtrikman bounds.  The upper bound 

assumes that a softer mineral/fluid is enclosed in a stiffer shell. The lower bound 

(applicable in this case) assumes vice-versa. In this work, referring to all the data 

provided by Davis et al. (2010) especially the ESEM images, and knowing that hosting 

media for the  

 was unconsolidated rock, the lower Hashin Shtrikman bound was used to connect 

the two end members (Figure 9) (Dvorkin and Nur, 1996).  

2.3 Biofilm Growth Styles 

Using the  SEM image, Davis et al. (2010) observations  confirmed microbial cell 

attachment to sand surfaces and observed different biofilm structures in different zones. 

In this paper, this information was utilized in creating the rock physics models. In order 

to introduce any new components to the rock system such as biofilm in this work, this 

new composite can either be considered as part of matrix or as part of the fluids. 

However, biofilm attached to sediment presents unique challenges as biofilm can be 

attached with the sediment in many complex ways. Biofilm needs a solid to attached to in 

order to develop its network of bio-cells (Bendaoud et al., 2011).  

The biofilms are introduced in our system with two different fates. However, their 

m

i

i
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initiation is the same. At their inception, we assume that the biofilm forms a continuous 

layer on the grain surface. In the rock physics model, we conceive this layer as the base 

phase (Figure 10a). As the biofilm saturation increases, the bioflims can continue to “fill” 

spaces or, wherever there is space available for the EPS material to expand (such as the 

pore space, grow into the pores taking the shape of a “mushroom” (Figure 10b).  

(Picioreanu et al., 2010). In a “filler” mode, the biomaterial is considered to be embedded 

as part of the host rock matrix and bears the load (Figure 11a). The mushroom style, on 

the other hand, grows and builds up in a non-continuous style. As biofilm exists in pore 

space, the EPS material will have more space to expand and thus create an apparent low 

density texture with high porosity. This part of the biofilm will grow as an extended 

surface freely floating in pore spaces where fluid exist (Figure 11b). This growth style is 

non-loadbearing, i.e., biofilm do not participate in transferring the seismic stress. 

Translating the two growth styles into rock physics models means that the two end 

members of mineral phase and critical porosity will be combined using the filler model 

and mushroom model depending on where the biofilm is considered to be in the 

sediment. 

2.3.1 Loadbearing “Filler” Model 

Considering biofilm as part of the mineral frame, a loadbearing model can be introduced 

to simulate synthetic seismic elastic velocity. To quantify this effect, first, biofilm 

saturation of the pore space 
b

S is presented, which means the biofilm volume in a unit 

volume of rock compare to the total porosity of the mineral frame tφ . Therefore, the mass 

of biofilm per unit volume of rock is:  
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b
C = 

b
Stφ                    (3) 

Accordingly, the porosity available for fluid φ  after biofilms (fills part of the pore space) 

becomes part of the solid is:   

)
b

S(1tφb
Ctφφ                   (4) 

φ  is equivalent  to tφ  for 
b

S  = 0 and φ  is zero for 
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biofilm in the new solid phase where biofilm is part of the matrix is: 
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To calculate the elastic moduli and density of the new solid phase material that includes 

biofilm, Hill’s average relations are used. But instead of the original fi, the new volume 

fractions are used which consider the biofilm as being part of the solid. Hence, the 

modulus at the end member where there is no porosity or where there is total mineral 

phase is determined.  

To calculate the other end member at the critical porosity modulus, the Hertz-

Mindilin relation presented previously is used. The next step is to connect these two 

endmembers and build the dray effective modulus. As this work evaluated the lower 

Hashin bound, the two end members can be related as (Dvorkin and Nur, 1996): 
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The bulk modulus of the pore fluid (water in this case) Kf can be calculated using Ruess 

bound: 

  1
w/KwS

f
K


                  (7) 

Where Sw is water saturation and Kw is water’s bulk modulus. Fluid density 
f

ρ  is 

calculated by: 

wρwS
f

ρ                     (8) 

To introduce the fluid to the dry effective modulus we used Gassmann equation 

(Gassmann, 1951) for saturated rock moduli which is expressed as:  

Dry
G
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G,

s/K
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K
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Where the bulk density 
b

ρ  is obtained from mass balance as: 

f
φρsφ)ρ(1

b
ρ                 (10) 

Finally, pV  and sV  can be computed using the elastic moduli satK  and satG  and density 

b
ρ  as: 

satG
3
4

satKsatM     and     

b

Gsat
Vs    , 

b

Msat
Vp 


                    (11) 

2.3.2 Non-loadbearing “Mushroom” Model  

A different approach towards modeling the elastic properties of sediment with 

biofilm is to assume that the biofilm is not totally part of the solid or all suspended in the 
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pore fluid. As an alternative, part of the biofilm is attached to the matrix and the 

extension occurs in the fluid. In this case, the biofilm will not act to change the bulk 

modulus of the matrix or the pore fluid; instead, it will have an effect on the densities, 

altering the overall density of the mineral frame and the pore fluids. The assumption is 

that once the biofilm already exists in the system attached to a solid particle, and has the 

right environment and nutrient to grow, it starts developing around the solid particle, 

evolving as a head-tail like fragment as mentioned in some microbial structure analysis 

studies ( e.g., Klapper et al., 2002).  

Mushroom body shape is the closest mimic of this biofilm growth style 

(Figure12). The head part will have role in changing the density of the sediment. As a 

thin sheet of biofilm already coats the grain and is attached to solid sand particles, the 

biofilm will grow creating the tail structure with many associated pores. This tail part of 

the biofilm will be freely floating in the pore fluid, causing some density variation due to 

contact with water. This implies that each part of the biofilm body (head and tail) will 

have different densities and impact on the surrounding environment.  

Therefore, to calculate the bulk modulus at zero porosity or at the mineral phase, 

the biofilm is not considered as part of the solid. Accordingly, original Hills (1952) 

average equations presented earlier can be used to compute the bulk and shear modulus 

of the solid. However, in calculating the solid density, the influence of biofilm must be 

considered. Hence, the volume fraction of biofilm which will be presented by the 

saturation of biofilm at head stage only 
b1

S  must be added to the density
b1

ρ  of the head 

biofilm. Thus, the total solid density sρ  in this case is:  
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b1
ρ

b1
Squartzρquartzfsρ                            (12) 

To present the end member at critical porosity Øc, the Hertz-Mindilin modulus relation is 

used. Following will be joining the two end members by means of the lower Hashin-

Shtrikman bound (Dvorkin and Nur, 1996). For the pore fluid bulk modulus Kf of water 

in this case Ruess equation is used keeping in mind not to consider the biofilm as being 

part of the fluid. However, while computing the total fluid density 
f

ρ , the biofilm must 

be considered with volume fraction equivalent to biofilm saturation higher than the 

saturation of biofilm needed to create the head part 
b2

S and thus the biofilm has a density 

of 
b2

ρ  . Total fluid density can be expressed as:   

b2
ρ

b2
SwρwS

f
ρ                 (13) 

Next, is obtaining saturated rock modulus by Gassmann relations and then calculating the 

seismic elastic compressional and shear velocities. 

2.4 Porosity Estimation  

Researcher such as Sakurada et al., (1962); Yamanaka et al., (1989); Nishi et al., (1990); 

Tajima et al., (1995); Stoodley et al., (1998-2002); Horn et al., (2002); Klapper et al., 

(2002); Astley et al., (2003); Guhados et al., (2005); Hsieh, (2008); and Aggarwal and 

Hozalski,(2010)  have measured the mechanical properties of bacterial cellulose (Table 

2). For molding purpose in this study, the biofilm moduli was taken as average values 

from Table 1 - 0.18 MPa for K and 0.67 KPa for G for Pseudomonas aeruginosa biofilm 

was used.  
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The first step in modeling Davis et al. (2010) time-lapse data is to determine 

biofilm-free porosity. VP on Day 1 is 1.711±0.0051 km/sec. Assuming the matrix to 

comprise pure quartz and pore fluid to comprise water, Helgerud’s model yield initial 

system porosity as 37.85%. To estimate a porosity value for the biostimulated sand 

column, a synthetic model by means of rock physics was constructed. The biostimulated 

column was modeled as a system of sand and water assuming that the background 

composite is quartz (100%). The process was done by building a dry effective rock model 

and then adding fluid into the pores. Basically, adding biofilm to the sand column as an 

extra component caused reduction in porosity with time. The bulk modulus of the 

saturated rock system was determined and, therefore, velocity was estimated. The change 

in velocity due to microbial growth was obtained. With the knowledge of the background 

velocity and initial porosity biofilm saturation can be estimated from the time-lapse 

velocity data after assigning a particular growth model to a particular cell (Figure 13).  

2.5 Velocity Changes Due to Dissolved Gas 

As discussed earlier when analyzing the Davis et al. (2010) data set, dissolved gas was 

suggested to be a possible reason for the change in the acoustic properties. In the Davis et 

al. (2010) experiment, the pH values measured for the control column remained steady 

near a pH value of 7 throughout the experiment. However, the pH values measured from 

the biostimulated column gradually decreased from pH value of 7 to near 4.4, and 

remained at a pH of 4.4 to the end of the experiment (Figure 14). For the pH value of 

water to drop from a value of 7 to 4.4, the alkalinity of the water must have changed. As 

reported in Davis et al. (2010) this increase in acidity was thought to be a result of 

accumulation of waste products due to biofilm detachment and cell death. Acidity 
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increase can be presented by an increase in the amount of dissolved bio-organic gas in the 

fluid.  The expected resulting gas from bio-product is CO2 which can dissolve in water to 

form carbonic acid: 

CO3H2OH2CO2                                                                                                  (14) 

Carbon dioxide gas will be modeled in the system according to the Le Châtelier principle 

that states that if a reaction is at equilibrium and conditions are altered so as to create a 

new equilibrium state,  then the composition of the system will tend to change until a 

new state of equilibrium is attained (Le Chatelier, 1898).To test how much the alkalinity 

of the water has been changed to the degree that caused a drop in pH values from 7 to a 

value of 4.4, Henry’s law was used (Smith and Harvey, 2007): 

)
KlKCO2

γMHCO
2

3 CO
2

3log(pHPCO2ogl




                                                                      (15) 

Where: pH=-log [H+]. 

Here γMHCO
2

3 CO
2

3


  are the activity coefficient and the molarity respectively.    is the 

first dissociation constant of H2CO3, and KCO2 is Henry’s law constant for CO2(g); both 

values are corrected to the temperature (T) of the sample. The evaluated values of 

        using Phreeq-C geochemical model software are presented in (Table 3), and in 

(Table 4) they were converted to     (
   

     
)  values which represent the amount of 

dissolved CO2 gas in water for different alkalinity of water under the room temperature 

and pressure mentioned in Davis et al. (2010). 
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     values are equivalent to the gas to water ratio (GWR) which is the amount of 

gas in mol per liter of water. This ratio enters in the calculations of bulk modulus of water 

(Kwater) in the rock physics models.  Kwater  is consider as a very important fluids property 

to calculate bulk modulus of total fluid Kfluid and thus bulk density (Batzle and Wang, 

1992). Therefore, adding dissolved gas to the fluid in the rock system used in Davis et al. 

(2010) is going to influence the calculation of fluid properties which, in turn, will affect 

the calculation of compressional velocity that depends on both bulk density and Kfluid.  

2.6 Velocity Changes due to Microbial Growth 

Using the two rock physics models described above, the biofilm saturation 

changes were modeled in loadbearing mode and a relation of change in velocity due to 

increasing in biofilm saturation Sb was plotted (Figure 15a). On the other hand, microbial 

growth in mushroom arrangement was modeled as well and VP was plotted with 

increasing Sb (Figure 15b). Velocity changes with respect to the velocity on Day 1 were 

used to map the velocities to saturation. The difference in velocity ∆V was calculated for 

all zones in the 2-D scan section as ∆V=Vn-Vo, where Vn is velocity in day n and Vo is 

the initial or day 1 velocity. If ∆V presented a positive value which indicates an increase 

in velocity, the zone was assigned to be accumulated with loadbearing growth style 

biofilm. However, if ∆V resulted in a negative value which represented a decrease in 

velocity compared to day 1, the mushroom growth style of biofilm was assigned to that 

zone. Otherwise, if ∆V value was zero, no change in velocity occurred and thus no 

biofilm was presented in this zone. By this classification technique, the types of biofilm 

growth styles were classified for each zone. Using these classification profiles and the 
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synthetic velocities obtained previously, the velocity tomography profiles was converted 

into biofilm saturation profiles. 

2.7 Attenuation due to Microbial Growth 

To explain the attenuation data, a large amount of work done on seismic wave 

attenuation in geological media was reviewed. For example, the work done by Winkler et 

al. (1979); Mavko et al. (1979); Winkler and Nur (1980); Winkler and Nur (1982); Walsh 

(1995); Gurevich et al. (1997); Roth et al. (2000); Carcione and Picotti (2006); Maultzsch 

et al. (2007); Gurevich and Ciz (2006); Adam et al. (2009); Muller et al. (2010); 

Gurevich et al. (2010) and Masson and Pride (2011)  allows for conclusion that 

attenuation is a fundamental property of partially saturated rocks. In general attenuation 

is the decay in amplitude of the seismic wave as it propagates in space and time. None of 

the two authors mentioned above have adopted the same mechanism for modeling 

attenuation. This says that the relationship between the seismic attenuation and rock 

properties is very complex. Many factors affect seismic wave attenuation such as pore 

structure, fluids content, and connectivity of pore,  mineral composition and fractures 

(Boadu, 1997; Babaia, 2000).  

In this thesis attenuation is measured using dimensionless quantity called the Q 

factor (energy of seismic wave/ energy dissipated per cycle) represented as: 

E

E2
Q




                                                                                                                          (16) 
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Where E is the energy of the wave, and ∆E is the change in energy per cycle. To estimate 

Q from the given amplitude data, for a medium with linear stress-strain relation, it is 

known that wave amplitude A is proportional to E (Hedlin, 2004). Hence: 

A

A

Q

1




                                                                                                                   (17) 

From which the amplitude fluctuations due to attenuation as can be obtained as: 

A0

A2

Q

1




                                                                                                                        

(18) 

Where   is the wave length and   is angular frequency. Moreover, attenuation is 

measured by the decay of a plane wave as it propagates through a rock material as 

suggested by Boadu (1997) and is determined by: 

A(x) = A0 e
ax

                 (19) 

Where A0 is the initial amplitude of the propagating wave,  A(x) is the wave amplitude at 

a distance x, and a is the attenuation coefficient mentioned in Boadu (1997). The 

attenuation coefficient a can be represented as: 

a= 0.432 + 0.011Φ + 0.002K - 0.003D + 0.251C              (20) 

With Φ is the porosity (percent), K is the permeability (millidarcy), D is the mean grain 

size (mm) and, C is the clay content (percent).  

For this rock system, Φ=35%, D=0.6–1.18 mm from Davis et al. (2010), and clay 

content= zero. Permeability is the measure of the soil’s ability to permit water to flow 

through its pores or voids, and it will be affected by the microbial growth and biofilm 

development. 

Substituting equation (19) into (18) and resulted in: 
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Ao1Aeax
o2

Q

1



                                                                                        (21) 

Attenuation and permeability were the only unknowns and were modeled with respect to 

microbial enhancement. To model attenuation by the given equation, permeability had to 

be increased for low biofilm saturation and then decreased with biofilm development 

(Figure 16). For attenuation modeling the peak to peak amplitude data is being used 

(Figure 17). 
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CHAPTER III 
 

 

RESULTS & ANALYSIS 

 

3.1 Velocity Changes Due to Dissolved Gas 

There was a decrease in the velocity changes due to an increase in the amount of CO2 gas 

dissolved in water presented as GWR in the rock physics model; however, the decrease 

was from 1.7075 to 1.704 (km/sec) for 100% dissolved CO2 gas in the system. This 

decrease in velocity due to dissolve gas was not significant and was less than the decrease 

in velocity calculated from arrival time data. 

3.2 Velocity Changes Due to Microbial Growth 

Modeling biofilm in the loadbearing case produced an increase in Vp with 

increasing biofilm saturation Sb as shown in.On the other hand, by modeling biofilm in 

the mushroom arrangement, VP decreased with increasing Sb. Only small changes in 

apparent velocity occurred, but consistent decreases and increases were observed from 

previous work conducted by Davis et al. (2010).
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It was observed that to increase the VP from initial value of 1.711 (km/sec) to 1.85 

(km/sec), the biofilm saturation needs to be as high as 45%. This increase due to 

loadbearing growth style was reported to be remarkably insignificant, varying by a 

maximum of ~25 m/s or about 1-2%.  This observation showed that the gel-like 

microorganisms do not affect the grain stiffness. Even though the decrease in velocity 

was insignificant, to decrease the velocity from the initial value of 1.711 to 1.65, as it is 

the lowest velocity value reported, the biofilm saturation in the pore space had to be close 

to or exactly 45% and could be as high as 65% in some pores.  

 Remarkably, the synthetic models of velocity matched the real data obtained 

from the velocity tomography generated earlier by the arrival time data. This suggested 

that biofilm introduced to the sample in the biostimulated column developed in both 

growths style. When classifying the growth styles of biofilm according to velocity 

changes as presented in (Figure 18), the mushroom growth style appeared to cover 60% 

of 2D-section as the biostimulated sand sample had high porosity of almost 35%, and was 

covered by more than one loadbearing growth style.  Accordingly, the biofilm saturation 

distribution was obtained for each growth style and as shown the loadbearing model 

occurred almost at the center of the 2-D map; whereas the rest is the mushroom model. 

Some areas did not show any velocity changes, thus no microbial growth occurred at 

these locations. Toward the end of the experiment, the range of biofilm saturation was 

observed to vary between 0 to 65%. 
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3.3 Attenuation Due to Microbial Growth 

When assembling the 2-D scan data set for amplitude changes due to microbial growth 

and development, the change in amplitude with respect to increasing biofilm saturation 

was observed for each growth style separately. If Δ A= 0 is set as a reference line, the 

dominant growth style to cause an increase in amplitude is loadbearing. In addition, both 

growth styles a play part in causing the decrease in amplitude; therefore with an increase 

in attenuation, the mushroom style effect is more significant, as it covered more space 

compared to the loadbearing growth style.  

Attenuation was modeled for the two different growth styles using the peak to 

peak amplitude data (Figure 19-20). Estimated attenuation was based on the squirt flow 

model that has been shown to be an important attenuation mechanism in rocks (Mavko et 

al., 1979; Murphy et al., 1986). The calculated inverse of the quality factor Q
-1

 as the 

ratio of change in amplitude with respect to the initial amplitude A0 was modeled with 

respect to permeability modifications. As it was assumed in Kwon and Ajo-Franklin . 

(2012) study permeability was determined from Darcy’s law (Brinkman, 1949), while 

assuming single-phase flow. It is observed that to model attenuation, permeability had to 

be increase at very early stages of biofilm growth for both growth styles. In this work, 

permeability was raised to a value of 0.6 millidarcy for 20% saturation of bioflm. 

Gradually, the permeability started to decrease due to attenuation alterations and to 

insoluble biomass formation. Attenuation responds for both growth styles presented 

virtually identical and parallel decreases and increases in attenuation in a cyclical manner 

such as the attenuation alteration produced earlier when testing the effect of biofilm 

growth on amplitude data.  

file:///C:/Users/Mahra/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/user/Desktop/Results%20and%20Analysis.docx%23_ENREF_43
file:///C:/Users/Mahra/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/user/Desktop/Results%20and%20Analysis.docx%23_ENREF_43
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CHAPTER IV 
 

 

DISCUSSION 

 

4.1 Major Patterns in the Observations 

Previous studies such as Davis et al. (2010) and Kwon and Ajo-Franklin . (2012) 

attributed the observed amplitude variation in the biostimulated sample in their 

experiments to biofilm development and growth. This attribution was based on 

observations including SEM images of samples at locations with increased/decreased 

acoustic attenuation. This study has proposed rock physics models to explain Davis et al. 

(2010) data. The method could be potentially extended to explain Kwon and Ajo-

Franklin . (2012) data but it is beyond the scope of the present study. One of the key 

features of this study is the examination of pH variation. The change in pH is attributed to 

metabolic byproducts and gas (mainly CO2) that could have been formed through biofilm 

formation and decay. No free was reported during the observations of the experimental 

column of the work conducted by Davis et al. (2010) or Kwon and Ajo-Franklin . (2012). 

However, lowering of pH confirms that dissolved gas was present, which has been using 

GWR ratio in the rock physics models. As GWR increases from 0-100%, VP decreases.
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Within the framework of Davis et al. (2010) experiment only minimal (0.02 km/sec) 

velocity change was observed by introducing dissolved gas into the model, indicating that 

the effect of gas was insignificant in causing seismic data heterogeneity.  

It was recognized from the results that the velocities changed in two dominant 

time-lapse trends – continually increasing and continually decrease. The continual trends 

can be explained using our models by respectively introducing biofilms as a part of dry 

sediments or fluids.  However, we suspect that a large part of the Davis et al. (2010) 

model has both growth styles. Exact expressions of mixed systems is a matter of further 

research and which requires generation of more physical scale data such as those 

generated by Davis et al. (2010). 

4.2 Justification for Data and Models 

To justify the change in sediment modulus and microbial influence to the surrounding as 

biofilm formed, we have to know biofilm moduli. Previous works that attempted to study 

the rheology and mechanical properties of microbial substances outlined that the modulus 

of biofilm is very low compared to the modulus of sand (Watson et al., 1995; Stoodley et 

al., 1999-1998; Valls and de Lorenzo, 2002; Dunsmore et al., 2002; Allen et al., 2007; 

Hsieh, 2008; Bendaoud et al., 2011). Therefore, when merging biofilm and sand modulus 

together, the effect of bio-material on the sand stiffness will be minimal. Hence, the 

microbial-induced alterations on acoustic velocity will be insignificant. 

Biofilm may alter the grain contact coupling; however, this depends on the 

location where biofilms are present in the sediment frame. Biomaterial that exist and 

grow in the pore space may cause a decrease in the volume and size of pores which alters 

the pore throat geometry, hence affecting seismic signal responses and an increase in 
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attenuation. This is especially true if the thin layer of biofilm which grows around the 

grains surrounding pore space where fluid already exists possess a kind of slipping effect 

for the fluid (Kraigsley et al., 2002). Thus, increasing fluids mobility are in fact 

represented as an increase in flow rate and a reduction in shear effect are found around 

the pores (Chellam, 1992). On the other hand, biofilm formations in the matrix can help 

in providing additional coupling and support among grains, thus stiffening the rock frame 

and decreasing attenuation (Davis et al, 2010). 

To replicate time-lapse velocity data from the Davis et al. (2010) experiment, we 

formulate the two models with appropriate time-lapse saturation of bio-films. Results 

show that biofilmsaturation increases with time to a threshold value in both models 

following which they stay almost constant over the period of observation. The thresholds 

for both models are different. When bio-films are a part of fluid, the threshold can be as 

high as 80%. Independently, we model attenuation as a function of porosity, 

permeability, and grain size.  

4.3 Permeability Expression in Bio-Contaminated System 

The permeability model showed an increase in biofilm saturation of about 20% and then 

a decrease in bio-saturation to the end of the experiment. To elucidate permeability 

model, the overall permeability of the system first needed to be defined. Then the 

permeability is combined with the knowledge of biofilm growth styles to have a better 

understand of attenuation variations. The overall system permeability of the rock physics 

model can be expressed as the sum of rock and biofilm permeability (Figure 21).  

Kall= Krock+ Kbiofilm                         (22) 
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Where Krock is the rock system permeability that is presented by the original conductivity 

of the fluid in the system. Kbiofilm is the biofilm permeability which is representing the 

new fluid paths that are generated by bio-tubes and both permeability change with respect 

to the biofilm saturation. The concept of bio-tubes was introduced recently by Costerton 

(2008) who reported a few years ago that bacteria cells that form biofilms have little 

connections running between the cells, so that the jelly sticky material or what is referred 

to as the sitoplasma of one cell is in communication with the other cell in the bio-

community. This opens channels of communication and creates biofilm permeability 

between the cells.  

These bio-tubes will represent biofilm permeability Kbiofilm and the rock 

permeability Krock can be expressed using Kozeny equation (Berryman and Blair, 1987; 

Shafahi and Vafai, 2009) as: 

 ε
3

M

Co
Krock           (23) 

Where Co  is a constant , 
3
 factor is dependent on the porosity and decreases with 

reducing the system porosity and the specific surface, M, is: 

αd

Π

d
3

α

d
2

Π

Vbulk

A
M                                                                                                 (24) 

Where  is the arrangement packing factor for sphere grain shape, and d is the grain 

diameter, all these factors will change and effect K rock. Due to biofilm growth 

surrounding the grains, the grain diameter is considered to increase and thus having 

influencing on permeability proportionally. However, the biofilm growth will reduce 
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porosity and will occupy some of the empty space in the system which will reduce 

permeability. The two permeability changes due to microbial growth and biofilm 

formation can be explained by relating the alteration to changes in biofilm growth 

structures and styles. 

4.4 Permeability Changes in Bio-Contaminated System 

The base phase occurs at a saturation less of than 20% in the early stages of biofilm 

formation (Figure 22). At this stage, a thin layer of EPS begins to cover the micro-

organisms cells attached to sand grains, and forms a continuous thin sheet of biofilm 

around the grains as a base. As these thin sheets continuously grow and cover the sand 

grains, they form what is introduced in this study as connected bio-tubes. The bio-tubes 

absorb fluids through a porous medium and act as a fluid absorbing agent thus affecting 

the system permeability by creating new paths for fluids and connecting pore spaces. This 

will act to assists in increasing the mobility of fluids in the system by increasing Kbiofilm. 

At the base stage when the grain are covered with these thin layers of biofilm, called base 

layers, these bio-layers surrounding the grain will increase the grain diameter, and thus 

the specific surface (M) value which is the will decrease causing an increase in Krock.. As 

both biofilm and rock permeability increase, i.e., overall system permeability (Kall) will 

increase.  

At biofilm saturation greater than 20%, the surface phase or the continuous 

structure of biofilm start to grow either in the filler or in the mushroom style depending 

on the location of the growth process. As biofilms develop, mature and enter the 

advanced stages, the EPS material increases around the bio-bacteria cells. The EPS 

distribution depends on where it is positioned in the rock system. If the bio-material is 
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localized only in the matrix, where there is no space, EPS will start to accumulate and 

build up layer upon layer in the same place. This biofilm formation style is described as 

filler growth. The texture of this biofilms is considered to be very thick which means that 

the bio-tubes will be closed and thus biofilm permeability (Kbiofilm) decreases. In the case 

where bio-material will grow in pore space, the EPS substance has more space to grow 

and forms mushroom shape biofilms. This discontinuous mushroom shape biofilm will 

probably be more prone to getting disconnected upon decay and clogging the pore throats 

and in turn, reducing the porosity of the system. 

The mushroom growth style appears to be dependent on the porosity of the 

system. The saturation models indicate that the mushroom growth style covered a larger 

volume than the filler model. This might be related to the fact that almost 80% of the 

increases in attenuation were reported by Davis et al. (2010) compared to only 45% 

decreases in attenuation observed. Moreover, since both experiments conducted by Davis 

et al. (2010) and Kwon and Ajo-Franklin ., (2012) did have an approximate porosity of 

35%, this might be the reasoned that both studies reported a value of ~80% increase in 

attenuation. Therefore, probably the porosity acted as a threshold point in both 

experiments. In addition, at low biofilmsaturation, attenuation appears to be saturation 

proportional, i.e., as biofilmsaturation increases (effective porosity decreases), 

attenuation increases. For example, as an extreme case, 80% biofilmsaturation leads to 

~80% decrease in amplitudes.  At low biofilmsaturation (10-20%), however, the 

attenuation is inversely proportional to saturation. Although this appears to be counter-

intuitive, we propose that at low bio-flim saturation, focused fluid flow can be achieved 

through formation of bio-tubes (interconnected and porous biofilmmembrane). 
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4.5 Model Limitations and Future Studies 

The assumptions in rock physics models need to be carefully understood. For example, 

applying Gassmann’s (1951) relations on high frequency data have revealed large 

disturbances between the models synthetic data and the observed real data (Dewar et al., 

2001). However, in this work the Gassmann (1951) equation was used to represent 

ultrasonic data even though these relations are strictly valid only for low frequencies. The 

reason behind this is that Gassmann’s (1951) fluid substitution relations are expected to 

work well at seismic frequencies significantly lower than f squirt:  

μ

K α3mineral
squirt f                                                                                                     (25) 

Where α is the crack aspect ratio and μ is the fluid viscosity and in this case experimental 

frequency range (1-1.6 MHz) were much less than          value. In the future, further 

work on testing the designed rock physics models with different ranges of ultrasonic data 

and high frequency sample is recommended. Moreover, when the biofilm growth 

classification map was designed by the change in velocity concept, the assumption was 

that if a spot showed a loadbearing growth style no mushroom model growth is 

considered at all at the same spot throughout the experiment. However, keeping in mind 

the heterogeneity of microbial element and the complexity of biofilm formation, the 

simultaneous growth of biofilm in both styles at in one zone should be considered. 
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CHAPTER V 
 

 

CONCLUSION 

 

The growth of the biofilm associated in sediments poses large variability in the spatial 

and temporal properties of the sediment. However, so far little effort has been made to 

isolate changes caused by biofilm formation underground. Quantifying the time scales 

over which these vicissitudes take place due to biofilm growth is important for 

developing suitable experimental designs and for understanding how biofilms mediate 

sediment properties and processes. This paper describes rock physics models that were 

developed to explain seismic time-lapse velocity and attenuation data as function of 

biofilm saturation from the Davis et al. (2010) experiment. Heterogeneity in the structure 

of biofilm growth is the main cause of variability in the seismic acoustic data. Velocity 

alteration observed due to biofilm formation showed two dominate trends of continually 

increasing and continually decrease. To explain the velocity attributes, we used rock 

physics to replicate time-lapse velocity data from the Davis et al. (2010) experiment. 

Thus, we formulate the two models with appropriate time-lapse saturation of bio-films. 

Results presented that two separate biofilm growth phases are required based on biofilm 

saturation amount which influence biofilm saturation.

../../user/Desktop/conclusion.docx#_ENREF_18


33 
 

First, the low saturation phase which is the base stage in which biofilms coat the mineral 

grains in thin layer. Second, the high saturation phase or the surface phase that is also 

divided into two other growth styles based on biofilm formation location. The filler stage, 

at biofilms growth that occur within the sediment matrix. This growth style bears the 

load; biofilms increase bulk and shear strength and decrease density of the sediment 

system. The other biofilm growth style happens in pore space and form in a mushroom 

shape thus we called it Mushroom mode.   In this mushroom mode growth style, biofilms 

decrease the density only without affecting the moduli. Increasing biofilm saturation in 

the filler style increases VP while increasing biofilm saturation in the mushroom style 

decreases VP.. Both growth styles create permeability changes in the system. In the early 

stages of biofilm development, permeability increases most likely due to formation of 

channels and bio-tubes. The base layer with low biofilm density acts as a bridge that 

connects pores together to open new channels around the matrix. However, no long and 

the permeability will suddenly decreases as biofilm continue to grow and biofilm 

saturation increase. This because the thicker the bio-material start to be, the more these 

channels start lose their transparency and transmission property.  

Moreover, the results showed that biofilmsaturation will increases with time to a 

threshold value in which it stay almost constant over the period of observation. The 

thresholds depend on many factors that can control it such as clay content, grain size and 

porosity. Independently, we model attenuation as a function of porosity, permeability, 

and grain size. Attenuation behavior will act depending on biofilm saturation as well. 

That mean at high biofilmsaturation, attenuation appears to be saturation proportional, 

i.e., as biofilmsaturation increases (effective porosity decreases), attenuation increases. 
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To illustrate, as an extreme case, 80% biofilmsaturation leads to ~80% decrease in 

amplitudes.  On the opposite side, at low biofilmsaturation (<10%), the attenuation is 

inversely proportional to saturation. The only way to explain the decrease in attenuation 

at low biofilm saturation is by increasing permeability. Although this appears to be 

counter-intuitive, we propose that at low biofilm saturation, focused fluid flow can be 

achieved through formation of bio-tubes (interconnected and porous biofilmmembrane). 

Our results suggest that rock physics model can serve as a quantitative tool for 

diagnosing physical property of bio-saturated sediments in in-situ conditions. More work, 

both experimental and numerical, is needed for confirmation.
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Table 1.Elastic moduli and densities of Quartz and some fluid components. 

 

Component Bulk Modulus 

(GPa) 

Shear Modulus 

(GPa) 

Density 

(g/cc) 

Quartz 36.60 45.00 2.650 

water 2.330 0.00 1.029 

Gas 0.017 0.00 0.112 

 

Table 2. Mechanical Properties of Bacterial Cellulose 

Biofilm 

Density 

(g/m
3
) 

Biofilm 

Tensile stress 

(GPa) 

Young’s moduli 

(GPa) 

The bacteria 

moduli (GPa) 

Biofilm Shear 

Stress (Pa) 

                         Author 

  15    Yamanaka et al. (1989) 

  30    Nishi et al. (1990) 

  30–40   Tajima et al. (1995) 

0.11   0.13   Astley et al. (2003) 

   20–21   Yano et al. (2005) 

  64.6-99.6(x10
-9

)  0.005-5.1 Klapperet al. (2002) 

  17- 240(x10
-9

)   Stoodley et al. (1999) 

  6.5-0.5(x10
-6

)   Ko¨rstgens et al. (2001) 

  63.9-283(x10
-9

)  0.05-55 Stoodley et al. (1998) 

   114   Hsieh (2008) 

0.027-0.115    1.12 Horn et al. (1995) 

  6x10
-8

   Stoodley et al. (2002) 

   1.27+0.28(x10
-6

)   Towler et al.(2003) 

0.09  78 +/- 17   Guhados et al. (2005) 

     Sakurada et al. (1962) 

 0.5-1(x10
-6

)  6-5(x10
-6

)   0.2 - 24 Aggrawal and Hozalaski(2010) 
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Table 3. log PCO2 values which are obtained using the Phreeq-C geochemical software 

Henry’s equation. 

Alkalinity of 

water 

Log(PCO2) at 

pH=7 

Log(PCO2) at 

pH=5 

Log(PCO2) 

at pH=4.5 

Log(PCO2) at 

pH=4 

50 -2.1983 0.11 0.316 0.8454 

100 -1.905 0.4039 0.6068 1.1236 

150 -1.7286 0.5757 0.7779 1.2912 

 

Table 4. PCO2 values in (mol/liter). 

Alkalinity of 

water 

pH=7 pH=5 pH=4.5 pH=4 

50 0.0063 1.288 2.0711 7.005 

100 0.01245 2.5345 4.0439 13.292 

150 0.01868 3.7644 5.997 19.552 
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Figure 1.Conceptual illustration of supercritical CO2 leakage mitigation using deep 

subsurface biofilm barriers (a) Potential upward leakage of CO2 from deep subsurface (b) 

Reduced upward leakage of CO2 due to engineered biofilm barrier (Mitchell et al. 2009). 
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Figure 2. Experimental setup for the acoustic measurement used: (a)Schematic drawing 

showing the column setup, (b)Acoustic experimental setup and column placement in the 

water tank, (c) drawing showing the acoustic imaging system setup and (d) Biostimulated 

column divided into smaller (Davis et al., 2010). 
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Figure 3.Two‐dimensional amplitude scans obtained from day 29 for the (a) 

biostimulated and (b) control columns, with the select scan region (positions A–E) 

plotted temporally to the right. Similarly, the 2‐D time of arrival scans obtained from day 

29 for the (c) biostimulated and (d) control columns, with the select scan region 

(positions A–E) plotted to the right (Davis et al., 2010). 
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Figure 4.SEM images from sand samples: (a & b) patchy growth from the bio-stimulated 

column, and (c & d) non-patchy growth from the same column; ( e & f) Images from the 

control column (Davis et al., 2010). 
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Figure 5. Left side: (a) P-wave signatures of biopolymer formation experiment 1, (b) P-

wave velocity with time, (c) Relative P-wave velocity changes. Right side: (a) P-wave 

signatures experiment 2, (b) Relative amplitude changes to the initial amplitudes and (c) 

attenuation (1/QP) changes over a course of the first and second experiment (Kwon and 

Ajo-Franklin, 2011). 
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Figure 6.2D-biostimulated Velocity model from straight-ray tomography. The models 

show a fairly random distribution of high and low velocity patches in the first 7 days. 

From Day 10 onwards a vertical zone of low velocity starts appearing in the center. We 

speculate this zone to be weak and higher porosity which is more conducive to fluid flow. 

This gradual change in porosity could be as a result of preparation of the sample box or 

due to the growth of biofilms themselves. 
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Figure 7.Temporal changes in velocities: (A) an increase in velocity with time, (B) 

Relative decrease in velocity. 

 

Figure 8. Rock phyiscs basic concept of constructing an effective rock modulus flow 

chart. 
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Figure 1.Hashin-Shtrikman bound that connect the two extreme end points at zero & 

critical porosity. 
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Figure 2.Microbial Growth and biofilm formation phases: (A) Base phase at which a thin 

layer of biofilm sheet start to expand and cover the grain and (B)surface phase where to 

different in-continuous bio-growth style occur . 
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Figure 3.Surface phase biofilm growth styles: (a) Loadbearing and (b) mushroom mode. 

 

Figure 4. Mushroom growth style structure. 
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Figure 5.Schematic presenting velocity vs. porosity was done to investigate porosity of 

the control system. 

 

Figure 6. Plots showing the (a) pH results and (b) velocity change due to dissolved gas in 

water represented as increase in GWR. 
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Figure 7.Synthetic data velocity variations  with microbial growth in the system applying: 

(left) load bearing model; (right) Mushroom model. 
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Figure 16.Attenuation models for the two biofilm growth styles and permeability changes 

(green) due to microbial growth. 

 

 

 

Figure 17.Amplitude alterations for the two different growth style: (red) loadbearing; 

(blue) mushroom with respect to biofilm saturation. 
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Figure 18.2-D maps of the biofilm growth type Classification and biofilm Saturation 

distributions where LB: Loadbearing mode and MS: Mushroom mode. 
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Figure 19.Transmitted compressional signals from the biostimulated column for days 1, 

5, and 29 of the experiment for (a) position A and (b) position E (Davis et al., 2010). 

 

Figure 20. 2D amplitudes tomography maps for biostimulated data: (A) positioned of 

increased amplitude,(E) position of decrease amplitude. 
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Figure 8.Permeability alterations due to microbial growth: Base phase where bio-tubes 

are created as thin layers to transmit fluids, Surface phase where the bio-tubes are 

blocked to reduce permeability and the porosity as well. 
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Figure 22. The relation between the biofilm development stages and the rock physics 

biofilm growth styles models. 
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