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Abstract: In this dissertation, a heterogeneous GPUs system means the system consists of 

a variety of different types of GPUs. Many problems in science and engineering can be 

represented as a two dimensional grid where updating of each grid point value is 

dependent on its nearest neighbor’s values. The grid size used may be too large to be 

handled on a single computing node. If a distributed and heterogeneous processors 

system is applied two crucial issues are introduced, namely, minimizing inter-processors 

communication and load balancing. Firstly, a novel partitioning algorithm for 

heterogeneous processors (NPHP) is proposed which is based on gird shape to choose an 

efficient way to divide blocks as square as possible to minimize communication cost. 

Secondly, a functional performance model with communication (FPMC) is proposed to 

estimate the absolute speeds of processors accurately. This method can accurately divide 

the workload proportional to the speeds of GPUs. Based on these two partitioning 

algorithms, a heterogeneous GPU system (HG) is implemented. The HG is different from 

other distributed GPU systems because HG can process dependent tasks which indicate 

the tasks in HG can communicate with each other. Furthermore, a dynamic component is 

designed and implement in HG system. Hence the neighbor relationship can change at 

run time. Using this architecture HG can deal with more complex task dependent 

applications. To validate our approach, a HG system running heat transfer and Gaussian 

Elimination is implemented. The results of experiment demonstrate that the 

heterogeneous GPU system has an essential advantage over traditional homogeneous 

GPU and CPUs system. For the static neighbor application, heat transfer, HG is at least 8 

times faster than a MPI program running on CPU. For the dynamic neighbor application, 

Gaussian Elimination, HG can get 2.75 times speedup. Also we propose and implement 

some optimizations to improve performance. These include NPHP which reduces 

communication cost by at least 10%, and FMPC which improves the load balance by 

10% on average. Optimization in the form of the data reuse technology in the computing 

kernel to utilize shared memory to reduce the global memory accesses yields a 7 times 

speedup.  
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CHAPTER I 
 

 

INTRODUCTION 

 

With the increasing sizes of datasets, analyzing these huge data requires novel and efficient 

utilization of limited computing resources, especially when dealing with high complexity 

scientific computing applications such as matrix multiplication, solver of partial differential 

equations, Gaussian emulation and so on. Researchers and scientists find it very difficult, if not 

impossible, to find a single super computer to process huge scientific problems. Recently, the 

general purpose graphics processor unit (GPGPU) has been proposed to take advantage of the 

single instruction multi-data (SIMD) architecture with hundred scale cores. GPGPUs can achieve 

hundreds of times speedup when compared to CPU. A heterogeneous GPGPUs system presents a 

feasible approach to handle scientific computations with vast data volume. 

1.1.  Dependent tasks on grid problems 
 

Philipp Colella divided the majority of scientific computing algorithms into seven categories, the 

so-called seven dwarfs of parallel programming (Asanovic et al. 2006), which includes the 

following algorithm classes: Dense Linear Algebra, Sparse Linear Algebra, Spectral Methods, N-

Body Methods, Structured Grids, Unstructured Grids, and Monte Carlo. The Structured Grids 

scheme is represented by a regular grid and points on the grid are conceptually updated together 
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 (Asanovic et al. 2006). The grid may be subdivided into finer grids in the areas of interest (M. 

Berger and Colella 1989). AMR (Adaptive Mesh Refinement) system is one of the classic grid 

processing systems. There exist several AMR systems, like GrACE (Parashar 2012) (Grid 

Adaptive Computational Engine). When the grid is fixed and static this algorithm class includes 

solving partial differential equations, like the heat equation. Only the Monte Carlo method in the 

seven dwarfs is highly and an embarrassingly parallel computing. If we define a task as the basic 

computing unit in these dwarfs, then a task means a value in the matrix, a point on the grid, and a 

pair of key and value in hadoop(Apache 2013) which is a kind of Monte Carlo method. All tasks 

of these dwarfs are dependent except for the Monte Carlo method.  

Many problems in science and engineering can be represented as a two or three dimensional grid 

where updating of each grid point value depends on its nearest neighbors’ values. Crandall and 

Quinn comprehensively discussed this kind of problem in (Phyllis E. Crandall and Michael J. 

Quinn 1993). This kind of problem includes weather forecasting project like ARPS(Xue, 

Droegemeier, and Wong 2000), solver of Partial Differential Equation, thermal conduction, fluid 

dynamics and so on. The computational process of these problems consists of iterations. In 

iteration, values of all grid points have to update in response to the values of its nearest neighbors. 

Conventionally for such a problem space, the grid is too large to run on just a processor. The 

problem space is divided to several pieces to run on a distributed system. Usually the number of 

pieces equals the processors, but the sizes of pieces may vary in a heterogeneous collection of 

processors to ensure load balancing. Because grid points need the values from adjacent grid 

points, some inter-processors communications will take place. These communications feature 

high latency. For example, the workstation network is usually connected by a 10 Mbps Ethernet 

or 16 Mbps Token Ring. The cost for a single communication consists of message preparation 

latency and transmission time. Hence, inter-processors communication brings a bottleneck which 



3 
 

greatly degrades the performance. Because of this cost, the right partitioning algorithm is a 

critical issue. 

1.2. Heterogeneous processors 
 

Because of Moore’s Law, processor speeds and communication network technology have 

improved and are improving substantially. The upgrade for companies or research labs is a waste 

of money if they just simply change the obsolete and less powerful processors to new much more 

powerful models and abandon the old ones, especially for the large cloud computing companies, 

such as Amazon. So most supercomputing centers and laboratories have to cope with 

heterogeneous collections of nodes. We cannot apply traditional partitioning algorithm in a 

heterogeneous processors environment to divide the problem space evenly since the faster 

processors always wait for the slower ones which is waste of resource. It is crucial to find an 

algorithm to reduce inter-processors communications and to achieve load balancing to maximize 

utilization of heterogeneous processors’ capabilities. This will yield the sub-optimum 

performance. 

Based on the capability of processors, these partitioning algorithms can be categorized into two 

groups, homogeneous and heterogeneous processors. For homogeneous processors the main 

challenge is dividing the grid to sub-grids which have an even workload and minimize 

communication cost. Then a sub-grid is assigned to a processor. The basic way for partitioning a 

2-D grid is to find the two largest numbers which when multiplied together equals the number of 

processors and divide by a larger number along the larger sides and a smaller number along the 

smaller side. Nicol (Nicol 1994) proposed a rectilinear partitioning algorithm, Berger and Bokhari 

(M. J. Berger and Bokhari 1987) introduced an adaptive method, and Belkhale and Banerjee 

(Belkhale and Banerjee 1990) proposed a recursive partitioning method addressing partitioning a 

non-uniform grid across homogeneous processors. If the grid is uniform, the partitioning is 
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straightforward as the goal is to make the size of each sub-grid equal and their perimeters as short 

as possible. Equally sub-grids mean each processor is of the same size and the shorter the 

perimeter the smaller the inter-processors communications.  

When the computation is running on heterogeneous processors, the partitioning becomes more 

complicated. Even for a simple linear algebra kernel as matrix multiplication on heterogeneous 

processors the problem of optimal partitioning has proved NP-complete (Beaumont et al. 2000). 

The partitioning algorithms (Phyllis E. Crandall and Michael J. Quinn 1993), (Bowen, Nikolaou, 

and Ghafoor 1992),(Nedeljkovic and M J Quinn 1992), (P E Crandall and M J Quinn 1993), and 

(Dovolnov, A Kalinov, and Klimov 2003) aim to make the size of a sub-grid appropriate to the 

capability of a processor as well as ensure the perimeters is short as possible to minimize the 

communication cost. Crandall and Quinn (P E Crandall and M J Quinn 1994) furthered their work 

(P E Crandall and M J Quinn 1993) in proposing the partial-homogeneous parallel algorithm that 

took advantage of any available processor homogeneity. One of the big deficiencies of all the 

existing work is that they assumed the grid is square. However, not all problems can be mapped 

to a square grid space. 

1.3. General purpose graphic processing unit 
 

Because of the limited performance of single-core CPUs (M. Ekman, F. Warg 2005) and the 

increasing programmability and performance of the graphics processor unit (GPU), more and 

more General Purpose GPUs (GPGPU) have been utilized in scientific and commercial 

computing areas in recent years. OpenCL (Khronos 2012) and CUDA (Nvidia 2012a) are two 

parallel computing program packages or architectures of GPU, released by Apple Inc. and Nvidia, 

respectively. Right now OpenCL is a 1.2 version and CUDA has been updated to 5.0 version.  

Both of them are very easy to learn and use. For example, to program CUDA GPUs, we use a 

language known as CUDA C. CUDA C is essentially C with a handful of extensions to allow 
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programming of massively parallel machines like NVIDIA GPUs (Sanders and Kandrot 2010). 

Most importantly the performance of GPU demonstrates a hundred times speedup (Farivar et al. 

2009) than CPU in a broad variety of applications. 

GPU has already entered many cores era rather than the multicore era of CPU. A CPU in 

mainframes or workstation computers such as Intel i7-39xxX has only 6 cores, while Nvidia 

Tesla C2050 (Nvidia 2012c) has 448 CUDA cores and the latest Nvidia Tesla M2090 has up to 

512 CUDA cores. Even more significantly, GPU owns a higher memory bandwidth of up to 

144GB/sec (Nvidia 2012c) compared to around 20GB/sec for a CPU. In short, a GPU has a much 

higher FLOPS (floating point operations per seconds) of up to 1.03 Tflops whereas the most 

powerful CPU in a workstation is the Intel Core i7 X980 (4515MHz) which can run at 20 Gflops. 

Hence in recent years, more and more researchers have utilized GPUs to build their applications 

and platforms.  Harvard Engineering, Harvard Medical School, and Brigham & Women's 

Hospital have teamed up to use GPUs to simulate blood flow and identify hidden arterial plaque 

without invasive imaging techniques or exploratory surgery (Nvidia 2013b). A molecular 

simulation called NAMD (nanoscale molecular dynamics) gets a large performance boost with 

GPUs(Nvidia 2012a). In addition, many researchers have proposed implementing existing cloud 

computing models like MapReduce on GPU systems (Farivar et al. 2009; He et al. 2008; Hong et 

al. 2010). It’s expected that GPUs will become the major player in leading edge research in fields 

such as bioinformatics, data mining, graph computing, and even in astronomy. 

However, researchers or software developers who want to use GPGPUs (General Purpose GPUs) 

to analyze big data should understand their complex hardware architecture because they are 

significantly different from the CPU. Firstly, SM (streaming multiprocessor) is the basic process 

unit in the GPU and it executes threads in groups of 32 threads called a warp. So the 32 threads in 

one warp execute the same code path and access memory in the adjacent address to improve 

performance (Nvidia 2012b). GPGPUs also use a different hierarchical memory architecture. For 
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example, CUDA uses three levels. The inner level consists of registers and local memory which 

can only be accessed by the thread that is using the registers and local memory. The intermediate 

level is shared memory which can be accessed by threads in one block. The outside level is 

global, constant and texture memory which can be accessed by all threads. Software developers 

should therefore be very careful on when to invoke communication between threads. Ideally the 

threads in the same block of shared memory should be involved since this will be much faster 

than global memory. Hence it’s very difficult for researchers and scientists without computer 

science programming knowledge to build their own single or distributed GPU test-beds. Some 

kinds of universal platforms which can hide the complex architecture of the GPU are needed to 

satisfy the ever increasing requirements. 

Furthermore, the development of GPU is very fast and we can find Moore’s Law in the GPU 

area. For example, if we make comparisons between NV40 published in 2004 August, G70 

published in 2005 July, and G71 published in 2006 March, we observe that the performance of 

GPUs is improving nearly two times a year(Govindaraju et al. 2006). Hence, for companies or 

research labs, they cannot just simply change the old and less powerful GPUs to new more 

powerful GPU models and abandon the old ones, especially for large cloud computing 

companies, such as Amazon. Recently we can rent NVIDA Tesla M2050 GPU cluster on 

Amazon EC2. However NVIDA introduced Tesla M2090 GPU in 2011 which performance is 

four time faster than M2050. It’s impossible for Amazon to change all the Tesla M2050s to Tesla 

M2090s and not to use the M2050s anymore. In the nearly future, it is expected that we will 

enable to rent Tesla M2050s and Tesla M2090s or later models from Amazon EC2.  The key 

point is how to leverage the heterogeneous GPU resources to build cloud computing systems. 

Maximum and efficient utilization of limited computing resources is the only feasible solution, in 

the absence of more resources. 
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1.4. Contributions 
 

Nowadays, most platforms based on GPUs focus on specific applications or independent task 

models or highly and embarrassingly parallel computing models like MapReduce in which tasks 

do not need to communicate with each other.  Hence, if we want to use these platforms to deal 

with dependent task models like ARPS(Xue et al. 2000) or solver of Partial Differential 

Equations (PDE) in which tasks have to exchange information it become very complex and even 

impossible.  

This work addresses the main challenges in executing scientific applications on GPUs: 

1. reducing internet communication between GPUs is addressed in chapter 3, 

2. achieving load balancing to maximize utilization of heterogeneous GPUs resources is 

addressed in chapter 4, 

3. improving CUDA device memory accesses addressed by data reuse is discussed in 

chapter 5.6. 

4. implementing a general platform to support fixed and dynamic task dependent 

applications is described in chapter 5.  

In this contribution we propose a novel platform, Heterogeneous GPUs (HG) that leverages 

heterogeneous GPU resources to process task dependent applications, such as heat transfer and 

Gaussian Elimination. This platform utilizes the heterogeneous GPUs power and partitions jobs 

according to their capabilities. In this work we have implemented and provide a set of APIs. 

Researchers can use these APIs to implement their own task dependent applications. 
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CHAPTER II 
 

 

 

RELATED WORK 

 

Because HG (heterogeneous GPUs) system includes different types of GPUs which have different 

computing resources such as speed and memory capacity, and even communication latency if 

they are not in the same communication environment, The HG system is firstly concerned with 

how to partition the workload. There is little research work done in heterogeneous GPUs systems. 

2.1. Partitioning data on heterogeneous processors 
 

The challenge of facing partitioning algorithms on heterogeneous processors is load balancing 

and minimizing communication cost if tasks in the application are dependent. Most partitioning 

algorithms on heterogeneous processors firstly get the absolute speeds of processors by 

benchmark experiments in advance or assume them as some constant positive numbers. Hence, 

the kernel of a partitioning algorithm on heterogeneous processors is to find a way to estimate the 

performance of processors accurately. Basically, there are two ways for estimating the 

performance; one is the traditional constant performance models (CPMs)(Beaumont et al. 2000; 

Alexey Kalinov and Alexey Lastovetsky 2001) that is characterized by a positive constant which 

is measured by the processor’s hardware configurations such as CPU clock rate; the other one is 

the functional performance model (FPM)(Alexey Lastovetsky and Ravi Reddy 2010)
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that it is characterized by speed functions.  

(CPMs) proved to be accurate enough for heterogeneous distributed memory systems if the 

performance of the application has a linearly increasing relationship to the speed of processors. 

However if the performance of the application doesn’t only depend on the speed of processors but 

also on memory speed and internet communication latency, CPMs become less accurate.  

FPM uses a function to estimate the performance of processors which involves parameters as 

much as possible on which the performance depends. It can be formulated as follows (Alexey 

Lastovetsky and Ravi Reddy 2010): assume we have   independent chunks of computations, each 

of equal size (i.e., each requiring the same amount of work). How can we assign these chunks to 

        physical processors            with their respective full FPMs represented by speed 

functions                        where ∑     
 
   , so that the workload is best balanced? 

For example, the paper(Alexey Lastovetsky and Ravi Reddy 2010) proposed a heuristic algorithm 

with a complexity of O(p×log2n) to partition the workload. 

All the previous works focused on independent tasks running on CPUs which do not consider the 

communication cost of inter-processors. The inter-processors communication cost of GPUs is 

larger than CPUs because data is not only transferred within the network but also on the system 

bus between GPU memory and main memory. We propose a novel partitioning algorithm based 

on gird shape to minimize the communication cost. We also propose a FPM algorithm that 

considers communication costs to estimate the absolute speeds of processors accurately when 

processing dependent tasks. 

2.2. Programming in CUDA 
 

CUDA is a parallel computing platform and programming model that enables dramatic increases 

in computing performance by harnessing the power of the graphics processing unit (GPU) 
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(Nvidia 2013c). Since its first version released in 2006, CUDA has been supported by over 300 

million devices including notebooks, workstation, compute clusters, and supercomputers and has 

been widely used though thousands of applications and published in many academic research 

papers (Nvidia 2013a). The CUDA programming language is very easy to learn and is very 

similar to C(Farber 2011; Nvidia 2011). Optimizing CUDA program performance can be found in 

(Kirk and Hwu 2010). 

...

...

...

...

Block 0,0 Block n-1, 0

Block 0,n-1 Block n-1, n-1

Grid

 
Figure 2-1. CUDA thread organization 

Usually a program in CUDA devices features millions of threads. A CUDA device supports up to 

thousands of thread to run simultaneously. CUDA uses a 2 level hierarchy to organize threads as 

shown in figure 2-1. Threads are grouped by blocks. The threads in a block can be organized as 

one, two, or three-dimensional space. The blocks can be organized in either one or two-dimension 

space. So if we want to locate a specific thread, we first locate the block using block location 

information blockX and blockY to find the block that has the thread and then use the thread 

location information ThreadX, ThreadY, and ThreadZ to locate the thread in the block. All the 

blocks constitute a grid which is like a process in a CPU.  



11 
 

Grid

Block0

Global Memory

Thread0

Shared Memory

Registers

Thread1

Registers

Global Memory

Block1

Thread0

Shared Memory

Registers

Thread1

Registers

Host
Memory

 
Figure 2-2. CUDA memory architecture 

 
From the view of data access scope, the memory of GPU has 3 levels as shown in figure 2-2. 

From the outer to inner memory layers the sequence is global and constant memory, shared 

memory, and registers. Only the global and constant memory can communicate with host 

memory. Hence the data copied from the host needs to be transferred to the global memory or 

constant memory first. The global and constant memory can be accessed by all threads. The 

threads in a block can communicate with each other through a shared memory. However if the 

threads are in a different block, they cannot access the same shared memory. A thread has its own 

registers which can be accessed by the thread itself.  

Table 2-1. The features of GPU memory 

Type Scope Size Performance 

Global memory Grid Several gigabytes Long-latency 

Constant memory Grid and read only Tens of kilo bytes 

 

Short-latency and high-

bandwidth Shared memory Block 

Register Thread Tens of thousand Very high speed 

 
From a performance view, the memory of GPU has 4 types shown in table 2-1. The global 

memory is the largest. The memory size of a common commercial GPU can reach up to several 

gigabytes. However the disadvantage is that global memory access needs hundreds of GPU clock 

cycles. The constant memory is faster than the global. However its size is much smaller than the 

global and it’s immutable within the GPU computation. The critical memory resource of GPU is 
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shared memory and registers. Both of them are very fast and their sizes are small. The shared 

memory has tens of kilo bytes and the size for each block should be evenly divided by the number 

of blocks. Usually there are tens of thousands of registers on a GPU. However the number of 

registers for each thread is evenly divided by the number of threads. The size of shared memory 

for each block and the number of registers for each thread is relative small. So if there are a huge 

number of threads involved, the programmer should very carefully use the shared memory and 

registers to avoid them becoming out of range. 

Grid 0

...

CPU serial code:
Copy data from host memory to 

global memory or constant  
memory in GPU

GPU parallel kernel:
Threads read data from 

memory and process in GPU

CPU serial code:
Copy data from GPU global 
memory to Host memory

 
Figure 2-3. CUDA execution sequence 

 
The CUDA program is running on both CPU and GPU. There is no CUDA program that is just 

running on the GPU. The entrance of CUDA program is on CPU and CPU starts GPU to process 

data. The execution sequence of a CUDA program is shown in figure 2-3. Firstly, CPU gets or 

generates data and copies them from the host memory to the global memory in GPU. Secondly, 

CPU starts GPU and calls the GPU kernel function which is running on all threads 

simultaneously. Finally, when the GPU finishes, CPU copies the results from GPU global 

memory to the host memory. 
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The main difference of programming in CPU and CUDA is that there is no automatic 

optimization of memory access. So the programmer should know the architecture and features of 

the CUDA device memory including the specific memory type used by CUDA codes to improve 

device performance. Usually the way to take advantage of the memory hierarchy architecture is 

for threads to read data from the global memory to the shared memory or registers first. The 

threads in the same block read data from the shared memory or registers instead of the global 

memory. The idea is to use lower level memory as much as possible and store data in faster 

memory so that if the data is access again only the faster memory is searched. This technology is 

defined as data reuse which is described in section 5.6. 

2.3. Processing dependent tasks model in GPU 
 

This type of computing model features a structured grid (Asanovic et al. 2008) and task 

dependence that can include stencil, matrix computations and so on. Stencil computations solve 

partial differential equations (PDEs) over multi-dimensional Cartesian grids, such as weather and 

seismic waves (Maruyama et al. 2011). Figure 2-4 shows an example of a grid and grid point. We 

described the dependent tasks model in our previous work (R. Yang and Thomas 2012). 

x

y

Grid point 
i,j

 
Figure 2-4. 2 dimensional grid 

In stencil computations, each grid point is repeatedly updated by only using neighborhood points 

(Maruyama et al. 2011). However in Gaussian Elimination when it is working on column i, each 

grid point is influenced by the pivot row which has the maximum absolute value in column i. In 
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other words, the neighbors of the grid point in stencil computations are fixed, surrounding and 

immediate. In Gaussian Elimination, the neighbors are dynamic and not immediate.  

From these two types of computation models, the dependent structured grid tasks computation 

pattern uses neighbors to calculate the value or output of a grid point based on the neighbors it is 

dependent upon. The grid model we use in this work consists of a 2-dimensional Cartesian or 

space grid for each time unit. Hence this becomes a 3-dimensional grid with time on one axis and 

x, y Cartesian coordinates in the other two dimensions (see Figure 2-5). This model can be 

extended to n-dimensions. We also use a 2-dimensional model where one dimension is space and 

the other is time. 

x

yt

t1

t2

 
Figure 2-5. 2 dimensional grid with time coordinate 

Each grid’s value or output can be computed by the formula below: 

     
    

        
      

            
      

                                               (2-1) 

In (2-1),      
    

 is the value of grid point P in time step n at spatial location x, y.      
      

 is the 

value of grid point P in time step n-1.             
      

 is a set of values of grid point P’s neighbors in 

time step n-1. Neighbors are application dependent and can be immediate or distant neighbors. 

      represents new information to be added in time step n such as new data from the radar in 

ARPS.   represents a function or formula to compute      
    

 . 

This data process pattern is different from the MapReduce or similar models in which tasks are 

independent. Currently GPU systems focus on tasks which are independent. Hence existing GPU 

systems which use the MapReduce model cannot be directly utilized in tasks that feature a 



15 
 

dependent structured grid model. Additional, the grids of dependent structured grid tasks model 

are uniform where the grid size or number of grid points is fixed. Each grid has the same field 

structure: index, key, value, and neighbors where an index is the unique identifier of a grid point 

for the system to locate a grid point, a pair of key and value is the content of the grid point and 

neighbors is the set of indexes of neighbors. A key is a hashed key for a user to locate a value. 

GrACE (Grid Adaptive Computational Engine) (Parashar 2012) uses CPUs to deal with adaptive 

mesh-refinement computations. In GrACE, the grids with high solution error and requiring 

additional resolution need to be refined. Hence the grids in GrACE are not uniform, that is, the 

grid size may change. 

Dynamic

Send and receive

Computation

Pre-Dynamic 
Operations

Post-Dynamic 
Operations

 
Figure 2-6. The execution sequence of dependent tasks model based on the traditional CPUs system 

 
The dependent tasks model is categorized into fixed and dynamic dependence. In fixed 

dependence, the dependence of all of the points in a grid is fixed after initialization. So the 

process in a GPU is simple. For a computational iteration, GPU copies the values to be sent to the 

CPU and CPU sends and receives them and then CPU transfers the received data to GPU. GPU 

starts the kernel to compute. The process is presented in Figure 2-6 ignoring the slash zone. The 

slash zone includes pre-Dynamic Operations, Dynamic, and Post-Dynamic Operations processes. 
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In dynamic dependence, the dependence of all of the points in a grid is changed while the system 

is running. In Figure 2-6, the slash zone represents the dynamic operations where the dependence 

of points in a grid is changed. For example, in the Gaussian Elimination, before the mth 

computation step the pivot should be selected which has the maximum absolute value in the mth 

column and switch the pivot row and the mth row. The selection of pivot and the row exchange 

are the pre-Dynamic operations in Figure 2-6. Then use (2-3) to update the point value. We define 

the dependence relationships as neighbors of points change between iterations. These changes are 

defined as dynamic in this work. In Gaussian Elimination, there are no Post-Dynamic operations. 

Hence the dash squares representing pre-Dynamic and Post-Dynamic operations are optional. 

Dynamic operations are not required for some applications like heat transfer because the 

neighbors of a point in heat transfer are surrounding, immediate, and fixed.  

The heat transfer application (Barney 2012) is used (2-2) to compute the value of grid point i, j at 

time t+1 as follows: 

                     [                             ]    [                              ]   (2-2) 

where the temperature at time t plus one time step (         ) at grid point i, j, is a function of the 

current temperature distribution about i, j, and the thermal diffusivity in the x and y directions (ax, 

ay). More details of the heat transfer process in can be found in (Barney 2012). 

In Gaussian Elimination, the computation consists of several iterations. In an iteration, this 

scheme processes a row. Hence for a n row matrix, it needs n iterations. While computing the 

value of a point at the mth iteration, the computing unit      has to get the pivot value     , the 

computing unit      which is in the same row of the pivot, and      which is in the same column 

of the pivot. The pivot has the max absolute value in the mth column. If the computing unit     , i 

is not selected as pivot and j is larger than m at the mth iteration, then use (2-3) to update the point 

    . 
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                                                     (2-3) 

where the value of point      is dependent on          , and     . 
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CHAPTER III 
 

 

 

PARTITIONING ALGORITHMS OF CONSTANT PERFORMANCE MODEL 

 

The constant performance model assumes the performance of processors including CPU and GPU 

is a positive number. The goal of a partitioning algorithm in the system includes: load balancing 

and minimal inter-processors communication. Because the system runs on a heterogeneous GPUs 

environment the load balance mechanism should consider the different capabilities of GPUs.  

The system uses eq. (3-1) shown below to quantify the capability of each worker. In eq. (3-1), 

       is the computation power of a worker which can be measured by the GPU core number or 

GPU speed.        presents the network bandwidth of the worker and         is the size of 

worker memory.  α, β and δ are factors which are application dependent. We can tune their values 

to fit different types of applications. For computing intensive applications such as Gaussian 

Elimination, we should enlarge the value of α. If the application is a text search which results in 

large communication cost, we should enlarge the value of β. Similarly, for memory intensive 

applications, δ will be given a larger weight. The capability of a worker           is defined as in 

eq. (3-1). 

                                                                       (3-1)
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Using the information about all hardware resources in the system, HG decides the proportion of 

workload to be assigned to each worker by using eq. (3-2) . 

                    ∑          
 
                                                (3-2) 

For example, assume HG has 4 workers and each worker’s capability is 40, 30, 20, and 10, 

respectively.  So we can get       ,       ,       , and       . 

The problem space is considered to be a 2 or 3 dimensional grid as mentioned before. In this 

thesis, we assume a 5-point stencil communication pattern in a 2-dimensional uniform grid where 

the grid size (grid points) represents workload. The partitioning algorithms take care of dividing 

the grid and assigning grid points to each processor. Based on the number of grid points assigned 

to each processor, these algorithms are categorized as even and uneven partitioning. Even 

partitioning is applied for homogeneous processors and uneven partitioning for heterogeneous 

processors. Based on the locations of grid points, they are categorized as scatter, contiguous 

point, contiguous row (column), interleaved row (column), rectangle, and arbitrary polygon 

partitioning. In the rest of the paper,   denotes the number of processors and   is the side length 

of a square grid. 

Scatter, contiguous point, and arbitrary polygon partitioning are able to achieve fine-grained load 

balance by assigning proportional grid points to each processor according to their relative speeds. 

These kinds of methods work very well in embarrassingly parallel computing, because there is no 

communication between processors and load balancing is the first concern. However if the 

communication pattern is a 5-point stencil then a grid point needs to communicate with its nearest 

four surrounding neighbors. In the worst case, scatter and interleaved row (column) need       

communications during each iteration when every processor is adjacent to every other processor. 

The worst case number of grid points that must be transferred is       when no neighboring grid 

point resides on the same processor.  
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The communication cost of arbitrary polygon partitioning depends on the sides of the polygon 

and the communication message size depends on the length of its sides. Arbitrary polygon 

partitioning is able to minimize communication cost but it has to use a       lookup table to 

restore processors location of each grid point. So for heterogeneous processors and dependent 

data applications, the realistic partitioning algorithms are contiguous point, contiguous row 

(column), and rectangle. 

3.1. Contiguous Points  
 

The grid point is the basic partitioning unit of contiguous points. So this method achieves fine-

grained load balancing. Each processor is assigned the number of grid points in proportion to its 

relative speed. For example, in Figure 3-1 (a), the grid is 10 by 6. Processor    gets the first 24 

points which consist of the first two rows and the beginning 4 points in the third row in Figure 3-

1 (a) if the grid points are in row-major order.    gets 18 points;    gets 12 points;    gets the last 

6 points. 

The communication cost is varied. In Figure 3-1 (a),    and    generate the maximum 

communication number 4 because both of them are adjacent to two other processors and for each 

processor it needs two communications, one for sending and one for receiving. The total number 

of communications is 12. A message is transmitted for each communication. The message size is 

defined as the number of grid points on the boundary between two processors. The maximum 

message size is 10 data items which is on the boundaries between the pair    and   , and the pair 

   and   . The message size of the pair    is 6 data items. So the total number of grid point 

values transmitted during each iteration is 52 (2×(10+6)) data items. If the relative speeds of 

processors are changed the communication cost may change as well. For example in Figure 3-1 

(b), the total number of communications is 16 and the total number of grid point values 
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transmitted is 30. The total number of grid point values transmitted is decreased but the number 

of communications is increased. 

p1
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p4
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p1 p2

p3

p4

 

(a)The relative speeds of processors are (4, 3, 2,1)      (b) The relative speeds of processors are (1, 1, 11, 2) 

Figure 3-1. Contiguous points partitioning for 4 processors 

 

In the worst case, the maximum number of communications for a single processor as    in Figure 

3-1 (b) reaches up to        where p is the number of processors when the relative speeds of 

other processors are small enough to be assigned less than one row or column of grid points. 

Usually the grid size is very large and the difference of relative speeds of processors is within one 

or two orders of magnitude. So it’s seldom that two or more processors are assigned less than a 

row or column grid points. In short, in most cases the communication cost of contiguous points is 

close to the cost of contiguous row. 

3.2. Contiguous Row (Column) 
 

This method is similar to contiguous points. The main difference is it uses the row or column in 

the grid as the basic partitioning unit. So its load balancing is slightly worse than contiguous 

points. However, the communication cost of this method is very stable and easily estimated. The 

total number of communications is      and the total number of grid point values transmitted 

is        . 
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Figure 3-2. Contiguous column partitioning for 4 processors with relative speeds(4, 3, 2, 1) 

 
 

If the grid is not a square, we can divide along the larger dimension to reduce the communication 

message size. For example, in Figure 3-2 the grid is 10 6 and we divide along x dimension 

according to the relative speeds of processors. The processors are organized as a chain. The most 

neighbors of a processor are 2. Processor,    in Figure 3-2 sends to and receives from    and   . 

The advantage of this method is it generates the least number of communications in the worst 

case of all methods examined here. However the number of grid point values transmitted 

        is usually large. 

3.3. Rectangle partitioning 
 

To avoid using an       lookup table storing the processors’ locations of all the grid points, we 

partition the grid to different size of rectangles whose sizes are proportional to the relative speeds 

of processors. For locating the grid points of a processor, we store the points of top-left and 

bottom-right corner of all rectangles. If we want to find a grid point is on which processor, we 

just need to compare the coordinate of a grid point to the coordinates of top-left and bottom -right 

points of all rectangles. If the grid point lies within the top-left and bottom-right points area the 

grid point should be in the processor assigned the rectangle area. The size of the rectangle is the 

workload and its perimeter denotes communication size measured by the number of grid points 

transmitted. For a particular area of a rectangle, the shortest perimeter is when the rectangle is a 

square. Hence, the idea of this method is to make the rectangle as square as possible to reduce 

communication size. The basic partitioning method for homogeneous processors is finding the 
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two largest factors whose product equals the number of processors. Then divide the longer edge 

of the grid by the larger of these factors and divide the shorter edge of the grid by the smaller of 

these factors. Figure 3-3 demonstrates the different partitionings of a square grid with different 

numbers of homogeneous processors. In Figure 3-3(a), there are 6 processors. The two largest 

factors are 3 and 2 as shown in the figure. The best case is when   is a square number and we are 

able to divide the grid to   even squares such as Figure 3-3(b). The number of communication is 

   but the message size is reduced to   √ . The worst case is that   is a prime number, we have 

to use contiguous column method as in Figure 3-3(c).  

                           
(a)The number of processors is 6   (b) The number of processors is 9   (c) The number of processors is 5 

Figure 3-3. A basic rectangle partitioning for homogeneous processors 

 

(P E Crandall and M J Quinn 1994) modified the basic partitioning algorithm for homogeneous 

processors, called single group partition (SGP), to reduce the message size when the number of 

processors is a prime. This method firstly decides whether the number of processors is a prime or 

not. If it is not a prime divide the grid using the basic partitioning method. Otherwise, create two 

subgroups: subgroup 1 has just a single processor and subgroup 2 has the remainder. Then divide 

the current grid proportionally according to the total speeds of each subgroup along the current 

large dimension. Use single group partitioning to process subgroup 2. For example, in Figure 3-4 

there are 5 processors. Firstly, divide the processors to 2 groups: group 1 has 1 processor and 

group 2 has 4. Because the ratio of relative speeds of the two groups is 1:4 we divide the grid as 

in Figure 3-4(a) and assign the smaller part to   . Then we partition the rest of the grid for the 

group 2 which has 4 processors. The largest multiplier factors of 4 are 2 and 2. So we can get the 
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final result as Figure 3-4 (b). The length of cut lines in Figure 3-4 (b) is 
  

 
  which is less than    

in Figure 3-3 (c). 

             
(a)                                   (b) 

Figure 3-4. Single group partitioning algorithm for homogeneous processors for 5 processors 

 

To take advantage of homogenous partitioning, Phullis E. Crandall (P E Crandall and M J Quinn 

1994) proposed the partial homogeneous partitioning algorithm (PHP) for heterogeneous 

processors. This method groups the processors by relative speed and treats each group as a unit. 

They then use a heterogeneous partitioning algorithm to divide grid to sub-grids according to the 

relative speeds of each unit. The heterogeneous partitioning algorithm applied in (P E Crandall 

and M J Quinn 1994) is a kind of bisection method. It recursively divides the groups of 

processors into two sets and makes sure each set has total relative speeds as close as possible until 

only a single group is left. In each sub-grid, use single group partitioning method to process each 

unit.  

An example of this method is given in Figure 3-5. 29 processors are divided into 5 groups. 3 

groups have 5 processors each, 1 group has 10 processors and the remaining group has 4 

processors The relative speeds of the processors in the 3 groups are 1, 3, and 4. i.e., the processor 

in one group has relative speed 1, 3 in another group and 4 in the 3rd group. The group with 10 

processors has relative speed 2. The last group with 4 processors has relative speeds 5. So there 

are 5 groups with total relative group speeds (20, 20, 20, 15, 5). Firstly we divide the five groups 

into two sets (20, 20) and (20, 15, 5) so that the two groups are balanced. The sub-grids for the 

two sets are shown in Figure 3-5 (a). We divide the left sub-grid into two parts as shown in Figure 
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3-5(b). For the group with the total relative speed of 20 consisting of 10 processors at relative 

speed 2, we use SGP to partition these 10 processors in the grid at the top-left corner of the grid 

as in Figure 3-5(c). Using this process, we get the final result shown in Figure 3-5(k). 

 
  (a)                        (b)                           (c)                              (d) 

 
                        (e)                             (f)                              (g)                                (h) 

 
                                                     (i)                                       (g)                                            (k) 
Figure 3-5. A partial homogeneous partitioning for 29 processors with relative speeds(2x10, 4x5, 5x4, 3x5, 

1x5) where 2x10 means 10 processors with relative speed 2 

 

3.4. A novel partial homogeneous partitioning based on grid shape 
 

A novel partial homogenous partitioning algorithm based on grid shape (NPHP) is a variant of 

partial homogeneous partitioning (PHP). The algorithm is given below. NPHP consists of two 

methods, advanced single group partition (ASGP) and multi-group partition (MGP).  The NPHP 

calls partitioning method ASGP if it deals with only 1 group otherwise it calls MGP. Before 
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NPHP some preprocessing is necessary. Group the processors by relative speed and sort the 

group speeds in descending order. If some groups have the same group speeds they are sorted by 

processor number in descending order. The main advantage of our approach is that it is able to 

generate smaller message sizes by avoiding cutting along the larger dimension and using a square 

dimension. 

Algorithm 3-1 Partial homogenous partitioning algorithm based on grid shape (NPHP) 

input: 

           set of groups, groups; 

           information of current dimension, dimension; 

           working grid,  grid; 

1:      If there is only 1 group, 

2:          Advanced Single Group Partition ( groups, dimension, grid); 

3:      Else 

4:           Multi-group Partition (groups, dimension, grid); 

 

PHP takes advantage of the homogenous partitioning algorithm. However the homogenous 

partitioning method applied in PHP is not smart enough. When the grid is not a square, 

contiguous row may be better than single group partitioning (SGP). This is because SGP, which 

finds the two largest multiply factors of   and then divides the grid according to these two 

factors, does not make the sub-grids as square as possible.  

SGP has not considered the shape of the working grid. When the grid is not square and it is 

narrow it would be better to cut along the smaller dimension instead of following SGP to cut 

along the larger dimension. For example, in Figure 3-6, the grid is a      rectangle. SGP uses a 

cross to cut the grid to four parts. The number of data items transmitted is 8n. If the contiguous 

column is applied they are reduced to 6n. In PHP, the sub-grids for each group are usually not 

square and can be very narrow. 

      
                         (a)Continuous column                           (b) Single group partitioning 

Figure 3-6. An example where single group partitioning is worse than continuous column 
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When it comes to a square grid, SGP fails to make the sub-grids as square as possible. The 

advanced single group partition algorithm (ASGP) takes advantage of a square number to divide 

p to the largest square number s less than p and the remainder. Since s is a square number we can 

get the minimum number of data items transmitted. For example, in Figure 3-7 the two methods 

(SGP and ASGP) are running on a square grid for partitioning 10 processors. The largest multiply 

factors of 10 is 2 and 5. So SGP divides the grid to 2 by 5 and the number of data items 

transmitted is 10n where n is the length of the grid. ASGP shown in algorithm 2 finds the largest 

square number less than 10 which is 9. It divides the grid as 1:9 and assigns the bottom narrow 

part to a processor. Then it is divided into 9 sub-grids as in Figure 3-7 (b). The number of data 

items transmitted in ASGP in Figure 3-7(b) is 9.6n which is less than SGP. 

                                   
     (a)single group partitioning (SGP)                     (b) Advanced single group partitioning (ASGP)    

Figure 3-7. Partitioning on a square grid for 10 homogeneous processors 

We assume the largest square number less than p is s and the largest two multiply factors of p is α 

and β. The grid is x by y and we assume y is not less than x and α is not less than β. If we use α 

and β to divide the grid the length of the cutting lines in the grid is  

x(α-1) + y(β-1).                                                             (3-3) 

If we use square number s the length of the cutting lines is  

x(√ -1) + y 
 

 
(√ -1) + O(p-s).                                              (3-4) 

where O(p-s) denotes the length of cutting lines in the narrow grid for the remainder. For the 

remainder part we can call ASGP to partition. However for analysis we just consider the worst 
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case in using the contiguous partitioning in this sub-grid. So for the worst case the length of 

cutting lines does not become larger than x+ y 
            

 
. We can therefore conclude (3-5). 

x(√ -1) + y 
 

 
(√ -1) + O(p-s)<  x(√ -1) + y 

 

 
(√ -1) + x+ y 

            

 
             (3-5) 

From (3-3) – (3-5): 

x(α-√  -1) + y(β- 
 

 
√ - 

                

 
)                                          (3-6) 

Since (3-3) – (3-4) > (3-3) – (3-5), if we want (3-3) – (3-4) > 0 which means partitioning by 

square number is better than by two multiple factors, we need (3-6) to be greater than 0. 

x(α-√   ) + y(β- 
 

 
√ - 

                  

 
)  > 0 

 

 
 > 

     √                   

    √    
  where x   y and α  β                            (3-7) 

For example, if we have 10 processors, that is p is 10 and s will be 9. Then (3-7) turns to be 
 

 
 > 

 

 
 

and x   y. 

So if the ratio of smaller and larger dimension is larger than 4/5 for 10 processors, the grid should 

be partitioned by the square number otherwise by the largest two multiply numbers. We use   to 

denote the value of 
     √                   

    √    
 . 
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Algorithm 3-2 Advanced single group partitioning (ASGP) 

Input: 

           set of processors, processors; 

           information of current dimension, dimension; 

           working grid,  grid; 

1:      set the larger dimension as current dimension; 

2:      If the cardinality of the processors is 1, 

3:              return; 

4:      Else if cardinality of the processors is a square number, 

5：            If the ratio of the two current dimension (larger/smaller) is larger than the squared root of cardinality  

                         of the processors, 

6:                     Divide the processors into 2 subgroups:           

                              Assign one processor to subgroup 1; 

                              Assign remaining processors to subgroup 2; 

7:                     Divide the grid proportionally according to the total speeds of each set along the current dimension; 

8:                     Set the current grid to the section assigned to subgroup 1; 

9:                     ASGP(subgroup 1, current dimension, current grid); 

10:                   Set the current grid to the section assigned to subgroup 2; 

11:                   ASGP (subgroup 2, current dimension, current grid); 

12:             Else 

13:                   Divide the two edges of grid by the square root of cardinality of the processors; 

14:    Else the ratio of smaller and larger dimension of this grid is not larger than  , 

15:             Find the two largest factors whose product equals the cardinality of the processors; 

16:             Divide the longer edge of the gird by the larger factor; 

17:             Divide the shorter edge of the grid by the smaller factor; 

18:    Else 

19:            Find the largest square number less than the cardinality of the processors; 

20:            Divide the processors into 2 subgroups: 

                      Assign the square number of processors to subgroup 1; 

                      Assign the rest of processors to subgroup 2; 

21:            Divide the grid proportionally according to the total speeds of each set along the current dimension; 

22:            Set the current grid to the section assigned to subgroup 1; 

23:            ASGP (subgroup 1, current dimension, current grid); 

24:            Set the current grid to the section assigned to subgroup 2; 

25:            ASGP (subgroup 2, current dimension, current grid); 

 

MGP introduced in (P E Crandall and M J Quinn 1994) is shown as algorithm 3-3. Its purpose is 

to divide groups into two sets where the relative group speeds between the two sets are as close as 

possible. It avoids making the two sets very narrow and makes each group use squared number 

partitioning as much as possible. 

 Algorithm 3-3 multi-group partitioning (MGP) 

Input: 

           set of groups, groups; 

           information of current dimension, dimension; 

           working grid,  grid; 

1:      set the larger dimension as current dimension; 

2:      Divide the processors into 2 almost even sets:      

3:      Divide the grid proportionally according to the total speeds of each set along the current dimension. 

4:      Set the current grid to the section assigned to set 1; 

5:      NPHP(set 1, current dimension, current grid); 

6:      Set the current grid to the section assigned to set 2; 

7:      NPHP(set 2, current dimension, current grid); 
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An example of NPHP – see algorithm 3-1 is given in Figure 3-8. The combination of processors 

is the same as for Figure 3-5: 4 processors with relative speed 5, 5 processors with relative speed 

4, 5 processors with relative speed 3, 10 processors with relative speed 2, and 5 processors with 

relative speed 1. The sorted groups are (20, 20, 20, 15, 5) where the first 20 consists of 10 

processors with speed 2, the second 20 consists of 5 processors with speed 4, and the last 20 

consists of 4 processors with speed 5. MGP divides them into two sets (20, 20) and (20, 15, 5). 

Figure 3-8(a) shows the division of the grid for these two sets. Utilize MGP to divide the left sub-

grid into two parts shown as Figure 3-8(b). The top-left corner of the grid will be assigned to the 

group which has 10 processors at relative speed 2. For this group ASGP is involved. Since the 

number of processors is 10 the largest squared number less than 10 is 9. The   of 10 processors is 

4/5. In this sub-grid the ratio of larger and smaller dimension is 1 which is larger than 4/5. Hence 

we can divide this sub-grid by the square number method. ASGP divides the 10 processors to 1 

and 9. So ASGP assigns one tenth to one processor and divides the sub-grid as in Figure 3-8(c). A 

call to ASGP processes the rest of the sub-grid. The remaining number of processors is 9 which is 

a squared number. First check the ratio of the larger and smaller dimensions. The ratio is around 1 

which is smaller than the squared root of the remaining processors’ number 3. So we divide the 

two edges of the grid by 3 shown as Figure 3-8(d). The second group consisting of 5 processors at 

speed 4 is divided into two sets of 1 processor and 4 processors since its ratio 1 is larger than 

its  =2/3. Assign one fifth of this sub-grid to one processor and divide the rest of the grid by 

square number method as in Figure 3-8(e) and (f). In the same way, we can partition the right 

sub-grids.  
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                       (a)                                  (b)                                      (c)                                        (d) 

    

                      (e)                                   (f)                                   (g)                                            (h) 

    

                       (i)                                 (j)                                   (k)                                           (l)  

Figure 3-8. A novel partial homogeneous partitioning (NPHP) for 29 processors with relative speeds (2x10, 

4x5, 5x4, 3x5, 1x5) where 2x10 means 10 processor with relative speed 2 

 

3.5. Performance of the algorithm 
 

We make a comparison between the partitioning results of NPHP and PHP including the number 

of communications which is O(p) and data items transmitted of all processors which is O(n). In 

realistic applications the number of processors, p is not big and less than thousands. However the 

side of the grid, n is usually very large at more than millions. So the data items transmitted by all 
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processors plays a major role in impacting the communication time. In algorithm 2, NPHP 

guarantees the least number of data items transmitted of all processors. 

Figure 3-9 shows the partitioning results of both methods for 5 groups of processors as mentioned 

in Figure 3-5 and 3-8.  Each sub-block is assigned to a processor and the number in the sub-block 

indicates the number of communications required by that sub-block during each iteration. The 

maximum number of communication of PHP is 7 and it is 6 in NPHP. The most important factor 

is the data items transmitted of all processors for PHP which is 18.4n compared to 16.9n for 

NPHP. In this example NPHP is able to reduce the data transmitted by more than 8%. 

For transmitting one message, the time includes the preparation for this connection and the 

transfer time which depends on the message size. Hence the time of communication for one 

iteration is estimated as the maximum number of communications and the total size of data 

transmitted as in (3-8). 

        ∑   
 
                                                     (3-8) 

Where   is the message preparation latency,   is the transmission speed measured by seconds per 

byte, p is the number of processors,       means the maximum number of communications 

required by any single processor, and    denotes the number of bytes transmitted by processor i. 
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(a) PHP                                                   (b) NPHP         

Figure 3-9. A comparison of NPHP with PHP. The number within each sub-grid presents the number of 

communications required by that sub-block during each iteration. 
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In the following analysis, we assume that   is 1 msec per message, and bandwidth is 10 Mbytes 

per second and each date item has 4 bytes. Figure 3-10 presents the size of data that needs to be 

transmitted for the n x n grid problem shown in Figure 3-9. In Figure 3-9, there are 29 processors 

so the number of data transmitted during each iteration of contiguous row method is 56n. NPHP 

is able to reduce the amount of data transmitted by 8% compared with PHP and 70% compared 

with contiguous row (Figure 3-10). 

 
Figure 3-10. The size of data transmitted for n x n grid problem in Figure 3-9 partitioned by contiguous row, 

PHP, and NPHP. 

 

For the grid problem in Figure 3-9, the maximum communications of contiguous row, PHP, and 

NPHP are 2, 7, and 6, respectively which means contiguous row requires the least time for 

preparation of connections. A shown is Figure 3-11, when the grid size n is less than 200 million, 

the contiguous row method performances best of all of the three. However with the increase of 

grid size n, NPHP has an essential advantage over the other two methods. NPHP is able to reduce 

the communication time 10% compared with PHP and 58% compared with contiguous row. 
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Figure 3-11. The communication time for n x n grid problem in Figure 3-9 partitioned by contiguous row, 

PHP, and NPHP. 

In this chapter we have looked at the problem of minimizing inter-processors communications. 

We have proposed a novel partitioning algorithm for grid problems. This algorithm depends on 

the grid shape to divide homogeneous processors by square number or the two largest multiply 

numbers. Our algorithm improves the partial homogeneous parallel partitioning algorithm and is 

able to reduce by 8% the size of data transmitted and by 10% the communication time compared 

to partial homogeneous parallel partitioning. 

3.6. Conclusion 
 

We have proposed a novel partitioning algorithm called NPHP for grid problems. This algorithm 

depends on the grid shape to divide homogeneous processors by a square number or the two 

largest factors. Our algorithm (NPHP) improves the partial homogeneous parallel partitioning 

algorithm and is able to reduce by 8% the size of data transmitted and by 10% the communication 

time compared to partial homogeneous parallel partitioning. In future work we plan to apply our 

algorithm to 3-D applications.  
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CHAPTER IV 
 

 

 

PARTITIONING ALGORITHMS OF FUNCTIONAL PERFORMANCE MODEL 

 

In the functional performance model the speed of the processor is a function against some 

arguments, usually the problem size. For CPUs, when the problem size increases and cannot fit 

into main memory, the data items will be placed at lower levels of the memory hierarchy thus 

resulting in a decrease of speed of execution of the application. However for GPUs, with an 

increase of the problem size, more activated threads could hide the high latency in accessing 

global memory thus resulting in increased execution speed of the application. 

Lastovetsky and Reddy (A Lastovetsky and R Reddy 2004) (Alexey Lastovetsky and Ravi Reddy 

2007) proposed using the functional performance model (FPM) to partition independent chunks 

of computations over heterogeneous processors. FPM needs to run the benchmark or real 

applications to get the absolute speeds of processors for the full range of problem sizes which 

incurs a very high cost. A relatively efficient sub-optimal solution (Alexey Lastovetsky, Ravi 

Reddy, and Higgins 2006) was proposed to deal with building the FPM of a processor. 

The functional performance model (FPM) assumes the functions of the absolute speeds of all 

processors against the workload sizes are already known. For example, the functions of absolute 

speeds of processors 1 to 3 are ready known as shown in Figure 4-1. If   ,   , and    are the 
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workload sizes assigned to processor 1 to 3, their execution time can be expressed as 
  

      
, 

  

      
, and 

  

      
, respectively where        is the absolute speed of processor i with workload 

size   . For the loads to be balanced, their execution times should be the same, that is 
  

      
 

  

      
 

  

      
. The partitioning problem changes to finding the optimally sloped line crossing 

the point of origin and these functions and the sum of the values of x-axis of these intersections 

should be equal to n, the total workload size. Because the slopes of the intersections are the same, 

the execution time of each processor is same. 
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Figure 4-1. Load balancing in function performance model. 

 

4.1. Bisection Method in Function Performance Model 
 

Lastovetsky and Reddy (A Lastovetsky and R Reddy 2004) (Alexey Lastovetsky and Ravi Reddy 

2007) proposed a bisection method in FPM to find the optimally sloped line as shown in Figure 

4-2. This method firstly finds the absolute speeds of all processors when the total workload is 

divided evenly which is n/p in Figure 4-2 where n is the total workload size and p is the number 

of processors. Then we can get the upper bound of the optimally sloped line, line 1 and the lower 

bound line 2. We divide the angle of line 1 and line 2 evenly and get the line 3. If the sum of x-
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axis values of the intersections of line 3 and the functions is less than the total workload size then 

we set line 3 as new upper bound. We divide the angle of line 3 and line 2 evenly and get the line 

4. If the sum of the workload sizes of intersections of line 4 and the functions is larger than the 

total workload size, we set line 4 as new lower bound. We continue to run the bisection steps until 

we find the optimally sloped line which satisfies           . This method does not 

consider the communication cost. So we cannot use it directly to task dependent applications. 
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Figure 4-2. A bisection method in Function performance model for partitioning 

 

4.2. Estimating the performance of GPU on dependent tasks  
 

It is well known that the bottleneck of GPU performance is the high latency of accessing global 

memory. There are two ways to increase GPU performance. One is using lower and faster 

memory levels of the memory hierarchy such as loading data from global memory to shared 

memory and the thread to read data from shared memory instead of global memory which is data 

reuse as discussed in the section 5.6. The other way to increase GPU performance is to use large 

data volumes. Since a larger data volume involves more active threads, this can hide the high 

latency of global memory access. The performance function of GPUs is increasing against the 

workload size as shown in figures 4-3 (a) and (b). 
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In Figure 4-3, we run the 2-D heat transfer application on two types of GPUs, GeForce GTX650 

and Tesla C2050. The test-bed consists of two nodes: one is for computation and the other is for 

communication. For each GPU, we measure the execution time with different workload sizes. For 

each workload size, the computation node will send and receive different number of data items to 

and from the other node. So we can get a performance surface as shown in Figure 4-3 which is 

increasing with the workload size and decreasing with the communication cost.  

 
(a) GTX650                                          (b)C2050 

Figure 4-3. Absolute speeds of the GPUs against the size of the problem and the communication cost in 

heat transfer application. The unit of data items transferred is a float. 

 

4.3. Function Performance Model with Communication 
 

In the model we propose the absolute speed of a processor does not only depend on its workload 

size but also on the communication cost. The absolute-speed of processor i is           where Si 

is the absolute speed function of processor i, wi is the workload size of processor i, and ci is the 

communication cost of processor i. Depending on the different partition algorithms, the 

communication cost    varies. For example, if the contiguous row partitioning algorithm is 

applied,    is fixed and equals to 2n. If the homogeneous partitioning algorithm (P E Crandall and 

M J Quinn 1994) is utilized,    depends on the relative speeds of all processors,            that 

is                 , but it is very hard to find a function to calculate   . We make the 

following assumptions in this dissertation: 
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1. If      
 , then      

 ; 

If the workload of processor i increases from    to   
  and the workloads of other processors do 

not change, its proportion of the total workload will increase. So the size of block assigned to 

processor i increases and the perimeter of the block will increase as well which means the 

communication cost    increase to   
 . 

2. If      
       

  and           
  

         
, then                

                 

        
   and                 

    
  . 

The execution time    of processor i, can be represented by 
  

         
. If either of the workload of 

processor i or its communication cost increases, its execution time will increase as well. So the 

function of execution time of a processor against the size of problem is monotonically increasing. 

3. If      
 , then                   

   

This assumption means the function of absolute speed of a processor against the communication 

cost is monotonically decreasing. If the number of transferred data items increases from    to   
  

of processor i, the speed of processor i will decrease. However the function of absolute speed of a 

processor against the size of problem   ,           may increase or decrease depending on the 

processor architecture. For example, if the problem size fits into main memory of the processor, 

its speed should increase with increasing the problem size to a limit of the processor as shown in 

Figure 4-4 (a), because large data volume and a large number of threads can hide the high latency 

of memory access operations. On the other hand, if the problem size cannot fit into main memory 

of the processor its speed will degrade because of the paging involved as shown in Figure 4-4 (b). 

The functional performance model with communication (FPMC) works well in both of situations. 

Ignoring communication cost, we can use the bisection method to get the optimal sloped line 

where 
      

  
 

      

  
 

      

  
 such as in Figure 4-4 (b). Then we can get the intersections of the 

optimal sloped line and the speed functions of all processors. The values of x-axis of these 
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intersections represent the workloads assigned to each processor. However the real speed of a 

processor is expected to be lower since communications is involved. In Figure 4-4, the x points, 

which are below the speed function S(x), denote the real speeds of processors with 

communications. As mentioned above, the communication cost is very hard to estimate by a 

function when advanced partitioning algorithms are applied. Therefore, these x points may be not 

on a straight line 
         

  
 

         

  
 

         

  
. In other words, the workloads of processors 

will be out of balance when communication cost is involved. We use the least square method to 

find the best fitting straight line (BFL) denoted as      which is the closest to all x points 

where     ⃗ ∑        
 
. The horizontal distance of the x points and the BFL can be expressed 

as    in Figure 4-4 (b), where    ‖   
  

 
‖. We use   to denote the relationship between the x 

points and the line where   ∑  
 . 
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(a)                                                       (b) 

Figure 4-4. Load imbalance when considering communication. (a) The speed of a processor increases with 

the increasing of size of the problem. (b) The speed of a processor decreases with the increasing of size of 

the problem. 

 

At first, we run the benchmark application on each processor assigned different workload sizes to 

draw the graphs of the processors with speed versus the workload sizes without communication 

cost. For each workload size, the processor i transmits different sizes of data items through the 

network to get a table of           of all the processors with speed versus the workload sizes    

and communication cost   . Then the functional performance model is used in the graph of the 
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processors with speed versus the workload sizes without communication cost to get the optimal 

partitioning workload sizes of all processors without considering communication. We treat this 

partitioning as the initial partitioning of FPMC. Then we adjust the problem sizes of processors to 

get close to the optimal solution satisfying the criterion that the number of elements should be 

proportional to the speed of the processor with communication cost. 

We utilize the move single x point method (MSXP) to move the x points horizontally to be closer 

to the best fitting line (BFL). While moving the point x, x must always remain in the same 

position relative to the BFL, that is, it must remain above or under the BFL. If the x point is under 

BFL and its horizontal distance of BFL is d, the x point is moved to the left d/2. Then we can 

estimate its real absolute speed         
 

 
   . If the speed function against workload size is 

increasing as in Figure 4-5 (a), we increase d/2 to the workload of each other processors. Their 

absolute speeds can be expressed as   (   
 

 
   )             . Otherwise, for Figure 4-5 

(b), we do not change the absolute speeds of other processors. Then we use    and the absolute 

speeds of other processors to run the partition algorithm (P E Crandall and M J Quinn 1994) and 

get the new communication cost   
 . We now get the new x point: the real absolute speed of this 

motion      
 

 
   

  . If the new x point is above the line, move to the right d/4. Otherwise keep 

move until d, the horizontal distance becomes larger than the last motion or changes to 0. We can 

use the same way to move x points to the right. In Figure 4-5 (a) and (b), the first motion of the x 

point is from x to    which moves d/2 to the left and the updated x point is      
 

 
     where    

can be calculated by the partitioning algorithm with   
  and the absolute speed of other processors. 

Because the new x point     
      is above the BFL, we move the new x point to the right d/4 to 

    which is   
 

 
. 
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Proposition 1. If the x point (the real absolute speed of a processor i) is under or above the best 

fitting line (BFL)      then the x point should be moved horizontal to the left or right 

respectively to be closer to the BFL. 

Proof. The slop of BFL is k. If the x point is under the BFL, then 
       

 
  . In other words, the 

reciprocal of         is smaller than k. So we should decrease        . Because the function 

        is monotonically increasing, there are two ways to make         smaller: decrease the 

workload x or the communication cost c. However, because the communication cost c is a 

monotonically increasing with processors speeds, we cannot simply maintain or increase the 

workload   and change the communication cost   to get a smaller        . Hence the only way to 

decrease         is decrease the workload   which means the x point should be moved 

horizontally left to be closer to the BFL. In the same way, we can show that if the x point is above 

the BFL, it should move right to be closer to the BFL. 

Proposition 2. If the x point is under the BFL, the moved x point which can be measured by 

    
     , is smaller than the real absolute speed of processor i at workload size   . Otherwise, 

the moved x point as measured by     
      is larger than the real absolute speed of processor i at 

workload size   .  

Proof. If the x point is under the BFL, the horizontal distance between the x point and BFL is d 

and the workload of the moved x point as measured by     
       is    which is      . The 

communication cost    will change since the workload of the processor changes. We cannot get 

the exact communication cost because we cannot determine the exact workload of other 

processors at this point. However according to the above assumptions we can get the smallest 

communication cost if we move the x point to the left. If the speed function against workload size 

is increasing as in Figure 4-5 (a), we increase d/2 to the workload of each other processors. Their 

absolute speeds can be expressed as   (   
 

 
   )             . Otherwise, as in Figure 4-5 
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(b), we do not change the absolute speeds of other processors. Then we use         
 

 
    and 

the absolute speeds of other processors to run the partition algorithm. Actually in the real 

situation, the speeds of other processors will change because their workload sizes change. The 

proportion of the workload size of processor i and all other processors are smaller than the 

workload assigned to processor i in the real situation. So according to assumption 1, we can get 

the communication cost of the moved x point    to be smaller than the communication cost of the 

moved x point in the real situation. According to assumption 3,     
      must be smaller than the 

absolute speed of processor i in the real situation. We can use the same way to prove if the x point 

is above BFL, the absolute speed of moved x point is larger than its speed in the real situation. 

Proposition 3. The move single x point method (MSXP) ensures that it does not change the 

above or under relationship of the x point relative to the BFL. 

Proof. According to proposition 2, if the x point is under (above) BFL, the moved x point as 

measured by     
     , is smaller (larger) than the real absolute speed of processor i at workload 

size   . So the real moved x point should be below (above) the moved x point. MSXP ensures the 

moved x point is also under (above) the BFL, then the real moved x point is under (above) the 

BFL. 
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Figure 4-5. The Move Single x Point method. Use bisection method to move the x point horizontally to be 

closer to the line while ensuring that the above or under relationship of each x point to the line does not 

change. 
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The time complexity of MSXP is          where   is the time complexity of the partition 

algorithm (P E Crandall and M J Quinn 1994) which denotes      and d is the horizontal 

distance between a x point and BFL where d is less than n/p.  Hence, in the worst case the time 

complexity of MSXP is       
 

 
 . 

In the Move All x Points method (MAXP), the x points of all processors use the move single x 

point method to move closer to BFL while ensuring that the total sum of the workload remains 

unchanged. For example in Figure 4-6,    and    are above BFL which means processor 1 and 3 

are under-loaded. So we should move    and    to the right to increase the workloads on 

processor 1 and 3. On the other hand,    is under the line and we should move    to the left to 

reduce the workload on processor 2. The rules of the motion are as follows: 

1. Use the MSXP method to move the x points above tje BFL to the right.     

         where     denotes increasing     data items for processor i. The expected 

decrease in performance of processor i is represented as                     

      
  .    ∑   . So rm is the total number of data items to be added to the 

processors above the BFL. 

2. Use the MSXP method to move the x points under the BFL to the left.         (  ) 

where     denotes  the number of data items to be removed for processor j. The expected 

increase in increasing of processor j is represented as       (         
 )           . 

l  ∑    . So lm is the total number of data items that should be removed from the 

processors under the line. 

3. If rm equals lm, then finish the motion. 

4. If rm is larger than lm,         , sort     for all processors in increasing order. 

Get the smallest     of processor i. If     is no less than dm, then move left dm data 
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items of processor i. Otherwise, move left     data items of processor i and update    

and    by reduction of    . Then go to step 3. 

5. If rm is smaller than lm,         , sort     for all processors in increasing order. 

Get the smallest     of processor i. If     is no less than dm, then move right dm data 

items of processor i. Otherwise, move right     data items of processor i and update    

and    by reduction of    . Then go to step 3. 

In the worst case the time complexity of MSXP is       
 

 
 . Because there are p processors, 

there are number of p x points. For all x points, in the worst case the time complexity of MAXP is 

       
 

 
 . 

FPMC is presented in algorithm 1. The motion of problem sizes of processors is to adjust the 

workload sizes for processors to make their load balance. When the x point of a processor is 

above the BFL it should move right to increase the workload otherwise move left. In this process, 

the total workload size must be constant which means the total left motion of data items should be 

the same as the total right motion of data items. At the end of each motion, the distance   (see 

above) between the x points and BFL, is calculated.  When the   of this motion is less than the 

last one, we update the speeds of all processors and use these new speeds shown as 

                in Figure 4-6 to partition and then run MAXP until the   of this motion is greater 

than or equal to the last one.  
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Figure 4-6. The Move All x Points Method. Move x points of all processors using the move single x 

point method to get closer to BFL while ensuring the total sum of workload remains unchanged. 

 

The FPMC (Functional Performance Model with Communication) is introduced in algorithm 4-1. 

In FPMC,  , horizontal distances between x point and the BFL controls the loop executing 

MAXP method. If   increases or equals to 0, FPMC is terminated. Otherwise, MAXP is 

performed to get a smaller  . 

Algorithm 4-1 Functional performance model with communication (FPMC) 

Input: 

           table of absolute speeds versus the workload and communication sizes  of all processors, 

          for    ; 

           working grid,  grid; 

Output: 

           W set for workload sizes of all processors ,   {          }; 
1:      Use the realistic performance model to get the initial S set (the absolute speeds of all processors        

         without communication cost.  

2:      initialize the close relationship of x points and the line    ∑  
  to MAX and   = 0; 

3:      According to S, use the partitioning algorithm to get the communication cost set C. 

4:      for each i in n: 

5:                             ; 

6:      end for;       

7:      while       
8:               =    
9:            Construct the BFL which makes the distances of all        minimum; 

10:          Use MAXP(S(w, c),        ) to update   and {     ,…   }; 

11:    end while; 

12:  According to {     ,…   } (the absolute speeds of all processors with communication cost), use the  

        partitioning algorithm to get  . 
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The time complexity of FPMC is determined by the loop number between lines 7 and 11 in 

algorithm 4-1. The worst case is MAXP just reduces the horizontal distance of an X point and 

BFL by 1 in each loop. All of horizontal distances of the x points are assumed n/p and there are p 

X points. So the total horizontal distance is n and the largest loop number is n as well. 

Furthermore, the time complexity of MAXP in the worst case is        
 

 
  and the loop number 

is n. In short, in worst case the time complexity of FPMC is         
 

 
 . 

4.4. Conclusion 
 

In this chapter, we discussed how to accurately estimate the performance of a processor while 

considering communication cost. We have proposed a novel functional performance model 

partitioning algorithm that takes into consideration the communication cost for heterogeneous 

GPUs (FPMC). This algorithm depends on the realistic GPU performance with real 

communication cost to estimate the speed of GPUs. The estimated speeds are used to recursively 

partition the workload to ensure load balance. FPMC outperformances previous FPM which does 

not consider communication cost when the application needs inter-processor communication. 

However, it’s very expensive to construct the benchmark performance table of GPU with a wide 

range of workload and communication cost and for different kinds of applications. In future work 

we plan to use an adaptive method to construct the benchmark performance table of GPU which 

can automatically control interval of workload to reduce the number of experiments.  
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CHAPTER V 
 

 

DESSIGN AND IMPLEMENTATION 

 

The implementation of HG is based on our previous work(R. Yang and Thomas 2012).The HG 

system utilizes heterogeneous GPU resources and according to their relative capabilities tasks are 

assigned. From an implementation view, we use a computing unit to represent a grid point. Hence 

the tasks mean computing units in this work. The basic computing unit in HG includes 4 fields, 

namely, index, key, value, and neighbors. HG uses a master/workers architecture. In this work, a 

worker means a processor or GPU. Each worker can be assigned a large number of computing 

units. The major differences from our previous work are the addition of dynamic neighbor 

components. Some optimizations including using partitioning algorithms described in chapter 3 

and 4, and data reuse technology described in section 5.6. Using dynamic neighbor components, 

the user is able to add or delete neighbors of computing units between computing iterations. 

Hence it allows HG to support not only fixed task dependent applications but also dynamic ones, 

such as Gaussian Elimination application. These optimizations improve on our previous HG 

system performance. 

In this chapter, we firstly introduce the architecture of HG and its three phases, initialization, 

communication, and computation.  Then we analyze the implementation and performance of the 

system. Finally, we demonstrate some system parameters and APIs. With these APIs, users are
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 able to implement task dependent applications, and improve the system performance by adjusting 

system parameters. 

5.1. Computing Unit 
 

A computing unit is the basic data structure in HG, including 4 fields, index, key, value, and 

neighbors. For GPU implementation, a thread in GPU processes a computing unit.  The work 

zone which consists of all computing units is declared in the HG initialization phase. Figure 5-1 

(a) shows a 10x6 work zone. Then the work zone is partitioned into four parts and one part is 

assigned to each worker. In Figure 5-1 (a), the total number of computing units is 60. HG uses a 

partition by column scheme as described in section 4.1. If the ratios of the capabilities of the four 

workers equals {4:3:2:1}, the four workers get the following number of computing units, namely, 

24, 18, 12, and 6, respectively. Worker1 gets the 24 computing units on the left side of the red 

line labeled 1 in Figure 5-1 (a). Worker1 calls the 24 computing units as local computing units. 

In the heat equation application, the neighbors of a point are immediate. However we cannot 

guarantee all the neighbors of local computing units are in the same worker with local computing 

units. For example, in Figure 5-1 (a), the first four columns of computing units are in worker1 and 

we define these computing units as local computing units for worker1. Some neighbors of 

computing units which are on the right boundary of worker1 are in worker2. We define these 

neighbors as remote neighbors. We call the collection of remote neighbors as the ghost zone 

which is colored as light gray in the right side of Figure 5-1 (b), and the collection of local 

computing units which the worker sends to other workers as send zone which is colored as light 

blue in Figure 5-1 (b). The exchange zone of a worker includes its ghost zone and send zone.  
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Local computing
units

Ghost zoneSend zone

Exchange zone 

Worker1

① ② ③
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(a) Partitioning work zone                                                  (b)  The exchange zone of worker1 

Figure 5-1. Partitioning work zone and exchange zone of a worker for heat transfer 

 

For updating neighbors of computing units, there are three steps. Firstly, workers call the 

updating neighbors component, a runtime API implemented by the users to fulfill the 

requirements of their applications. Secondly, a worker finds its local computing units’ remote 

neighbors and merges them together into the ghost zone. If the ghost zone is the same as at the 

last iteration, three is no need to send its ghost information to other workers. However If the ghost 

zone is changed, the worker has to communicate with other workers by sending computing units 

to update the exchange zone.  

5.2. Architecture 
 

The architecture of HG is shown in Figure 5-2. HG has two roles, master and worker. A worker is 

one GPU and a master is one of the workers. The system uses MPI (Forum 2009) as a 

communication tool that supports scalability very well and each MPI process manages one 

worker or GPU. HG has three phases, namely, initialization, computation, and finalization.  

Initialization phase. The initialization phase consists of initializing the system and tasks. In the 

initializing system step, HG analyzes hardware information of workers and partitions tasks. In the 

initializing tasks step, HG reads data from source input and constructs the exchange zone. The 
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exchange zone is defined in the next step. In the initializing system step, the master first gets the 

speed functions of all GPUs. 

Partition. Using FPMC, the master decides the proportion of the workload to be assigned to each 

worker. The master reads the input workload size information such as the dimension of the job, a 

2 or 3-D grid. If no workload size information is provided the system treats it as one dimension 

and the total workload size is the number of lines of each input file. The master uses a partition 

module which is controllable by the user or the system to provide a proportion partition algorithm 

as default to split the input workload into pieces and assign them to different workers. The 

proportion partition algorithm is a basic simple partitioning algorithm in this work. First, the 

master assigns an UID (unique ID) to each computing unit. Then the master can assign to each 

worker’s its number of computing units on a proportional basis. 

After receiving computing units a worker uses the initialization module to initialize each 

computing unit. The initialization module is an API that the programmer uses to initialize the 

computing unit’s key, value and neighbors. Since computing units may need to communicate 

with their neighbors, local computing units should be extended to include their remote neighbors. 

We define a remote neighbor to be one which is not in the same worker. We call these neighbors 

as the exchange zone. The worker uses neighborhood information of each computing unit to 

create the exchange zone. Finally, the worker copies these data and information to GPU memory.  

Computation phase. Following the initialization phase, the computation phase has three steps: 

updating the exchange zone, GPU computing, and checking the termination condition. At the first 

step, each worker will send keys and values of the exchange zone to other workers. Then 

according to the kernel computing module (part of the API) provided by the programmer, 

workers compute units’ values in parallel. After each iteration, the system checks if the iteration 

number has converged to the termination condition.  If so, the system merges all workers data, 
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stores the output in local disk or memory and releases all resources, which is the finalization 

phase. 
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Figure 5-2. Dependent structured grids tasks model processed by HG 

 

For example, in Figure 5-2 the HG system has one logic master and three workers. The capability 

of worker 3 at bottom of Figure 5-2 outperforms the others by 100%. Worker 1 and worker 2 

have the same capability. Hence, when the workload size is 32 units as shown in Figure 5-2, HG 

will assign 16 units to worker 3 and 8 units to each of the other two workers. The different 

partition algorithms produce different results which can affect HG performance significantly. 

Using APIs provided by HG the programmer can implement the specific partition algorithm 

depending on the application. After receiving tasks each worker extends local units to cover their 

neighbors which are colored as darker grid points or computing units (the exchange zone) in 

Figure 5-2. Hence worker 1 and 3 each has 8 exchange units and worker 2 has 16 exchange units. 

As can be seen in Figure 5-2, the exchange zone for worker 2 is computing units from workers 1 

and 3 (and similarly for workers 1 and 3). On completing the initialization phase HG enters the 

computation phase. When it meets the termination condition HG will merge all outputs and 

release all resources.  
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The HG system uses MPI as a communication tool which supports scalability and each MPI 

process manages a worker or GPU. HG has three phases, namely, initialization, communication, 

and computation. The work flow of HG as shown in Figure 5-3 consists of four parts.  The 

initialization phase includes four sub-processes presented in the green box on the left side of 

Figure 5-3. The box of update Units neighbors means changing or updating the neighbors of 

computing units. In the communication phase workers update the values in their exchange zones. 

The dotted lines in Figure 5-3 represent two workers who use the internet to communicate with 

each other. The last part is the computation box in which HG calls the CUDA kernel functions 

and uses GPUs to process local computing units. 

In the initialization phase, HG partitions the work zone based on each worker’s capability. So our 

first concern is quantifying the capability of each worker. HG can use the Constant Performance 

Model, CPM (see chapter 3) where a positive number is used to express the speeds of GPUs or 

HG can use FPMC, Functional Performance Model (see chapter 4), as speed function. If the user 

wants to use CPM, he is required to set the α, β and δ in (3-1). Otherwise a table of speeds against 

workload sizes and communication cost should be provided as mentioned in section 4.2. 
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Figure 5-3. The work flow of HG 
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After collecting each worker’s capability          , HG uses the partitioning module to get each 

worker’s work zone. HG provides three partitioning schemes for constant performance model, 

sequential partitioning, row or column based partitioning and NPHP which are described in 

section 3.4 and a functional performance model with communication presented in section 4.3. 

The users are able to implement their own partition schemes using HG APIs. Then a worker uses 

the initialization module to initialize each computing unit. The initialization module is an API 

that the user uses to initialize the computing unit’s key, value and neighbors. When all of the 

local computing units finish changing their neighbors, HG will reconstruct the exchange zone. 

This is optional. If the neighbors in the application are fixed, this step will be skipped. Finally, the 

worker copies the initialized data and information to GPU memory and processes computing 

units by the computation APIs. When this computation is finished, HG checks the finish 

condition, such as the iteration number. If the finish condition is not met, HG goes to the next 

iteration until the finish condition is satisfied. 

5.3. System analysis 
 

In this section, host denotes the CPU side and device represents the GPU side. On the host side, a 

worker needs to store all computing units’ location information in the workers. Additionally, for 

communication, a worker uses the sending and receiving values lists to update the exchange zone. 

If neighbors of computing units are not fixed, a worker has to construct the sending and receiving 

indices lists every time.  

On the device side, a worker first initializes the value offsets of local computing units. If the sizes 

of values are the same this step is not necessary. Then all computing units are stored on the 

device memory. The neighbors of local computing units are determined next. The set of 

neighbors is not needed when the neighbors’ relationship is determined by a formula. A 

G2LocalUnitID is needed to convert the global computing unit ID to local computing unit ID 
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when HG does not apply the sequence partitioning and columns or rows based partitioning. We 

easily know the range of local IDs under these two partitioning algorithms, because the local IDs 

are continuous in each worker.  When we try to get the value of a computing unit with ID  , we 

just need to compare x to the first ID and the last ID of local computing units. If it is in the range, 

then we can convert global ID to local ID:                  ; Otherwise this is a remote ID 

which is not in the local neighbor list and gets the value from the receiving value list. If the 

neighbors of all computing units are dynamic, the receiving and sending IDs lists are built 

between iterations. Otherwise they are fixed and built in the initialization step. However the 

receiving and sending values lists are updated every time. Firstly, the device gets the sending 

values and copies them to the host side. The host exchanges them and receives some values. 

Finally, the host transfers the receiving values to the device side. 

Table 5-1. The requirement of space for HG 

Name Space Location Description 

UnitID2Worker Number of global computing 

units 

Host In constructing the exchange 

zone steps, locate workers of the 

remote neighbors. 

Computing Units Number of local computing 

units.  

Device In computation steps, find the 

offsets of values of computing 

units. Optional if the sizes of 

values are the same. 

Values of 

Computing Units 

Sum of all sizes of values of 

local computing units. 

The values of local computing 

units 

Neighbors of 

Computing Units 

Sum of all numbers of neighbors 

of local computing units 

Optional if the neighbors 

relationship  are conducted by a 

formula 

G2InnerUnitID Number of local computing 

units. 

Convert the global computing 

unit ID to the local ID. Optional 

if HG applies the sequence 

partitioning and columns or rows 

based partitioning. 

Receive IDs list Number of receive computing 

units in an iteration 

Host and  

Device 

 

According to this list, a worker 

notifies the other workers which 

computing units it needs. 

Send IDs list Number of send computing units 

in an iteration 

According to this list, a device 

gets the send values from the 

device and copies to send values 

list 

Receive values list Number of Receive values size 

in an iteration 

Receive the values from other 

workers 

Send values list Number of send values size in an 

iteration 

Send the values to other workers 
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In short, the space of HG is dependent on the applications. In these following formulae,    is the 

number of local computing units and n is the number of global computing units. If the 

applications, PDE (partial deficiency equation) and heat transfer, have fixed sizes of values, fixed 

neighbor relationship, and continuous local IDs, the requirement of space on the host for a worker 

is                 , where we ignore the space for the worker location of global computing 

units, because it’s used only once in the initialization step to build the exchange zone.  On the 

device the space is                              . 

For the applications, matrix operations and Gaussian Elimination, which have fixed sizes of 

values and continuous local IDs, and the dynamic neighbor relationship can be formulated, the 

requirement of space on host for a worker is                     and on device it is: 

                               . 

The space on the host for the worst case is                     . On the device it is 

∑            
  
                                          , where      means 

we have to store the offsets of values and neighbors of local computing units. 
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Figure 5-4. The ith iteration of HG 

 
Furthermore, the operations in HG are also dependent on applications. The overview of 

operations at the ith iteration of a worker is shown in Figure 5-4. The axis denotes time and the 
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vertical red lines represent the barriers where operations must wait for the previous operations. 

The slash zones represent the dynamic operations as in Figure 5-4 and the ellipses denote these 

operations working on the device; the rectangles denote these operations working on the host; the 

hexagons denote the sub-operations of the computation step. The hexagon and cylinder with 

dotted lines, read the unit’s neighbor and update units neighbors, which mean they are optional. If 

the applications need a dynamic neighbor component they should use them. In the computation 

step, there are two methods to locate the unit’s neighbors, formula based or reading from the 

neighbor set. If neighbors are able to be formulated it is better to use the formula, because it can 

save the usage of device memory and the time of memory accesses. The tradeoff is we need more 

computing operations to calculate neighbors. Our experiments show that using formula is better 

than neighbor set. 

Compared to heat transfer running on CPU, HG requires additional two transfers between host 

and device to get the send values and copy the receive values to device. We use (5-1) to estimate 

the execution time of GPUs system and (5-2) for CPUs system. When compared to Gaussian 

Elimination implemented on CPU, HG adds additional two transfers between host and device.  

         {                                                   

 
         

                   

} 

where       represents the execution time of GPUs. 

if 

          
                            

∑                    
 
   

 

Then, 
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   {                                                    
        

∑                    
 
   

} (5-1) 

And 

                                     
          

                  
                     (5-2) 

Almost all applications implemented on GPUs keep data in GPU memory and avoid transferring 

them between CPU and GPU because the band width between CPU and GPU is dramatically less 

than the processing speed of GPU. For example, the bandwidth of PCI Express 2 is up to 8 

GB/sec for an x16 device. However, it’s expected with the increasing bandwidth the bottleneck 

will be overcome. Right now the bandwidth of PCI Express 3 doubles the previous version which 

is up to 16 GB/sec. Hence, if the total processing speed of GPUs is larger than the total 

processing speed of CPUs, GPU can easily get tens or even hundreds speedup over CPU, when 

the exchange zone (the area where data needs to move betwwen GPU and CPU) sizes are not 

very large, the distributed GPUs system prevails over the distributed CPUs system in terms of 

speed. 

We ignore the overhead of the network transfer part in (5-1) and (5-2) because almost all clusters 

run in a private cloud environment. They are connected by an infinite band where network 

bandwidth is significantly fast. Moreover the sizes of exchange zones of CPUs and heterogeneous 

GPUs are very close when the capabilities of GPUs are very close and the same partitioning 

algorithm is applied such as by rows or columns if the workload is a matrix. 

The study of heterogeneous GPUs system is shown below. If the application is heat transfer and 

the workload is n n matrices, network bandwidth is 40GB/sec, device bandwidth 16GB/sec, the 

size of exchange zone is n specified by a row. In (Cowboy 2013), the CPU is an Intel Xeon E5-

2620 “Sandy Bridge” whose peak speed is 96 GLOPs. The processing speed of different types of 
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GPUs is listed as follows: 1 Fermi in Tesla M 2050: 1.03T GFLOPs;1 Fermi in Tesla M 2090: 

1.33T GFLOPs; 1 Kepler GK 104s in Tesla K10: 2.29T GFLOPs; 1 Kepler GK 110 in Tesla 

K20x: 3.95T GFLOPs. The Fermi and Kepler are the serial types of GPUs. 

In figures 5-5 and 5-6, the workload is a 2-D square matrix and its size is 256,000x256,000. The 

x-axis denotes the number of CPUs and the y-axis is the speedup of GPUs over CPUs which is 

calculated as the CPUs execution time divided by the GPUs execution time. Fox example in 

Figure 5-5, “CPU/16 M2050” represents the 16 Tesla M2050 over multiple CPUs and 

“CPU/32(K20+M2050)” means 32 Tesla K20x and M2050 over multiple CPUs. The red dash 

line in Figure 5-5 is the base line of “1”. The GPUs have more GFLOPs than CPUs. A Tesla 

M2050 and a Tesla K20x are 10x and 40x faster than an Intel Xeon E5-2620 respectively. In the 

study, when the number of CPUs is up to 256 and the GPUs consist of 32 K20x and M2050, 

respectively, the heterogeneous GPUs system is able to get almost 5x speed up. With increasing 

the number of CPUs, CPUs are able to exceed GPUs system. However the more number of CPUs 

requires more energy consumption and expenditure. When increasing the number of GPUs and 

CPUs we simplify (5-1) and (5-2) to (5-3) and (5-4). 

 
Figure 5-5. The expected speedup of GPUs over CPUs 
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                {                                                   }    

(5-3) 

                                                                                        (5-4) 

When the numbers of CPUs and GPUs are large, the execution time of CPUs is decided by the 

network communication time, and the execution time of CPUs is decided by the network 

communication time pluses the data movement time between CPU and GPU which is slower than 

network communication. With the improvement of PCI-E technology, this gap should be 

dramatically reduced in the future. 

We compare different homogenous and heterogeneous GPUs system to show the improvement of 

the heterogeneous GPUs system. In Figure 5-6, “32xM2050” means the system consists of 32 

Tesla M2050 GPUs which is considered as base line. The y-axis represents the speedup obtained 

which is the execution time of 32 Tesla M2050 GPUs divided by the execution time of GPUs 

system with different GPUs combinations. The x-axis represents the different sizes of the 2-D 

workload where one unit is a thousand.  

 
Figure 5-6. The speedup of GPUs over 32 Tesla M2050 GPUs 
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A Tesla K20x has almost 4 times of GFLOPs as a Tesla M 2050’s. Therefore, the speedup of 

32xK20x is up to 3.5 when the workload size is 512K. “32x(M2050+K20x)” means the system 

consists of 32 Tesla M2050 and 32 Tesla K20x, respectively. The evenly partitioning algorithm is 

applied and the workload in M2050 is the same as it is in K20x. The performance of 

32x(M2050+K20x) is worse than 32xK20x because K20x should wait for M2050 to finish. From 

a theoretical view, the 32x(M2050+K20x) system equals to 64xM2050 system. The GPUs in 

“32xM2050+32xK20s” are the same as the “32x(M2050+K20s)” system, but it applies a different 

partitioning algorithm which can partition a workload depending on the computing capability of 

GPUs. Hence the partitioning algorithm results in the workload in K20x being more than it is in 

M2050. If we combine them together to make a heterogonous GPUs system, their performance is 

improved. From Figure 5-6, the heterogonous GPUs system with 32 Tesla K20x and M2050 has 

the best performance. 

5.4. Configuration 
 

HG provides parameters which can be specified by the user for different applications or 

performance tuning. Table 5-2 lists some of the major parameters. For example, the heat equation 

application can run in two-dimensional space in which case the parameter of Job_Dimension is 

set to 2. This parameter affects how neighbors are configured. When the job is 1 dimension, 

neighbors of a computing unit should be only left and right neighbors. If the Job_Dimension is 2, 

the neighbors should include top and bottom neighbors also. Job_dimension also impacts the set 

Job_Size which is the value of each dimension of a job. Job_Size can be described as x, y and z 

where Job_dimension is 3. If Job_dimension is set as 1, y and z are set as default value 1 and the 

default value of x is the number of source files. The only dimension of interest therefore is x. 
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Table 5-2.The configuration parameters 

Parameter Description Default 

Job_Dimension Value of job physical dimension which is from 1 to 3. 1 

Job_Size Number of computing units in each dimension.  Lines of source file 

Input_path Direction of input file. Project folder/input.in 

Output_path Direction of output file. Project folder/output.ou 

nBlock Number of thread blocks. 512 

nThread Number of thread per block. 256 

nNeighbor Number of neighbors per unit. 4 

Input_path is the path to a file or folder. In other words, the source folder can have multiple files. 

However Output_path just supports a single file, so all results must be stored in a single output 

file. Users can tune nBlock and nThread parameters for application performance. These two 

parameters are related to GPU programming and this is low level information which we want to 

hide. However these two basic parameters are very important to application performance and so 

users have the option to set them.   

5.5. APIs 
 

The system provides two types of APIs, user-defined and runtime APIs. Table 5-3 shows some of 

the major API functions. User-defined API functions should be minimal and simple to use. The 

system provides three user-defined functions which cover the three phases of the system, 

initialization, computing and finalizing. Furthermore, users can define their own partitioning 

functions for specific applications. Runtime API functions are more complex.  Runtime APIs 

allow users to input data into the system and update the values and neighbors.  
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Table 5-3. APIs 

Type APIs Required 

User-

defined 

__device__ void initializeUnit(int unitID,WC_UNIT_T *unit, char* inputs) 

Initialize local unit using the input data in inputs array which are assigned to the worker. 

Yes 

__device__ void ComputingKernel(int unitID, int runTime) 

Run on GPU and be the GPU kernel function. 

Yes 

bool finishCon(Job job) 

Set the termination condition. 

Yes 

int* partitionJob(float[] workerCapabilities, int workerID, WC_UNIT_T *units, char *inputs) 

Partition and assign tasks. 

No 

__global__ void neighborDynamic(int unitID, int runTime) 

Device kernel to update neighbors of local computing units 

No 

Runtime 

void finalize() 

Merge all the results and release allocated memory. 

Yes 

void addInput(WC_UNIT_T *units, VALUE_T* value) 

Add a computing unit with a value to the computing unit structure in GPU memory. 

Yes 

bool getValueFromDevice(int valueSize, int *IDlist, VALUE_T* values) 

Get values whose IDs are in the IDlist from device to host. 

No 

bool copyValueToDevice(int valueSize, int *IDlist, VALUE_T* values) 

Copy values whose IDs are in the IDlist from host to device. 

No 

__device__ int writeValue(int unitID, VALUE_T *value, int valueSize) 

Update value for the computing unit. 

Yes 

__device__ int getValue(int unitID, VALUE_T *value) 

Find the value of unit. 

Yes 

__device__ void setNeighbor(int unitID, int *neighbors, int neighborSize) 

set unit’s neighbors 

No 

At a minimum, users are required to implement just two main functions: initializeUnits to 

initialize local units and ComputingKernel function to make GPU compute local units’ values. 
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Algorithm 5-1 and 5-3 present the pseudo code of initializeUnits and ComputingKernel function 

for computing the average of neighbors in 2 dimensions. 

Algorithm 5-1 Initializing computing units (initializeUnit) 

Input: 

           set of local units ID, unitIDs; 

           set of input data, input; 

           Job information,  jobInfo; 

1:      for each   in unitIDs do 

2:          Unit unit; 

3:          unit.key = i; 

4:          Set the location of the unit using jobInfo; 

             //if the local computing units’ neighbors cannot be located by formula they should use setNeighbor 

function            to add their neighbor location to the set of neighbors. Otherwise omit setNeighbor function. 

5:          setNeighbors(unit, up, down, left, right); 

6:          Set unit value using input and get the value size; 

7:          addInput(unit, value Size); 

8:      end for;     

 

We have two ways to initialize computing units based on how to locate neighbors. If the 

neighbors are able to be located by formula, it’s not necessary to use additional space to store the 

neighbor relationship. So we can omit setNeighbor function to initialize the locations of 

computing units’ neighbors. Otherwise we have to use setNeighbor function to store the neighbor 

relationship of all computing units. In algorithm 5-1, initializeUnit, the user sets the values of 

fields such as location, key and neighbors’ ID. Then the user uses the addInput runtime API to 

add an initialized computing unit to the local computing units set. 

Some types of applications need to change the neighbors of computing units when they are 

running. So we need a dynamic component to change the neighbors. For example, in Gaussian 

Elimination all the neighbors depend on the pivot. The dynamic component is used to select the 

pivot as in the pseudo code of algorithm 5-2.  

Algorithm 5-2 Dynamic component in Gaussian Elimination (ComputingKernel) 

1:      get the values of current column from device; 

2:      merge them to a worker; 

3:      sort to select the pivot; 

4:      announce the current pivot; 

5:      exchange pivot row;    

6:      copy the pivot values to device; 
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In the ComputingKernel function, the user uses the getValue runtime API to get the value of a 

computing unit and uses writeValue runtime API to update the value. The pseudo codes of 

algorithm 5-3 and 5-4 are the ComputingKernel functions of the Gaussian Elimination 

application. The difference is the way to determine the neighbors. Algorithm 5-3 uses a formula 

and algorithm 5-4 uses a neighbor set. The tradeoff of algorithm 5-3 is we should get the location 

of the computing unit first and will need more computational operations to calculate the 

neighbors’ locations. Its benefits are saving storage, and reducing memory accesses. Our 

experiments show that algorithm 5-3 performs better than algorithm 5-4. 

Algorithm 5-3 Computing kernel of Gaussian Elimination using formula to get the neighbor  

Input: 

           Local unit ID, unitID; 

           Current iteration, i; 

           Job information,  jobInfo; 

1:      get the location information of unitID, x and y; 

2:      result = getValue(unitID); 

3:      calculate pivotID using                      ; 
4:      pivot = getValue(pivotID);   

5:      get the neighbor ID in the same row using                         ; 
6:      rowValue = getValue(          ); 

7:      get the neighbor ID in the same column using                         ; 

8:      colValue = getValue(          ); 

9:      result = result-colValue 
        

     
; 

10:    writeValue(unitID, result); 

 

Algorithm 5-4 Computing kernel of Gaussian Elimination using neighbor set to get the neighbor  

Input: 

           Local unit ID, unitID; 

           Current iteration, i; 

           Job information,  jobInfo; 

1:      result = getValue(unitID); 

2:      get pivotID using pivotID =getNeighbor(unitID, 0); 

3:      pivot = getValue(pivotID);   

4:      get the neighbor ID in the same row using           = getNeighbor(unitID, 1); 

5:      rowValue = getValue(          ); 

6:      get the neighbor ID in the same column using           = getNeighbor(unitID, 2); 

7:      colValue = getValue(          ); 

8:      result = result-colValue 
        

     
; 

9:    writeValue(unitID, result); 
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5.6. Data reuse 
 

For the third challenge, we use a tiling technique proposed by (Kirk and Hwu 2010) where 

threads in a thread block use shared memories to reduce the accesses of global memory. CUDA 

utilizes four types of memory, global, constant, shared memory, and registers. The global 

memory of GPU features long access latencies, up to hundreds of clock cycles and finite access 

bandwidth. The long access latencies of global memory make it’s impossible to use global 

memory directly on a device. However shared memory is very fast. In (Kirk and Hwu 2010), Kirk 

proposed a tiling technology to load the data from global memory to shared memory and the 

threads in the same block are able to access the shared memory instead of the global memory. In 

this technology most of the threads in the same block access the same location of global memory.  

For example, in ComputingKernel of heat transfer, computing units load their own values from 

global memory first and then load their neighbors values from global memory again before 

starting computation. Actually, there is excess global memory traffic because each value is loaded 

five times from global memory by different threads. If the computing units    and    are 

adjacent,    and    load their values from global memory separately. Then    loads its 

neighbors’ values including    from global memory. For   , there are two global memory 

accesses. The idea of data reuse is firstly, computing units load their own values from global 

memory to shared memory. Then they load their neighbors values from shared memory instead of 

global memory. 

5.7. Conclusion 
 

In this chapter, we have proposed a novel platform for processing dependent tasks on 

heterogeneous GPUs system based on neighborhood grid points. It supports change of 

neighborhood when the system is running. Also we implement some optimizations to improve its 
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performance. We integrate our previous partitioning algorithms to ensure load balance for 

heterogeneous GPUs as well as reducing their exchange zones. We use the data reuse in 

computing kernel to utilize shared memory to reduce global memory accesses.  
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CHAPTER VI 
 

 

EVALUATION 

 

 

Using the heat transfer and Gaussian Elimination application, we show the partitioning 

algorithms and optimizations to improve the performance of HG system. Then we evaluate HG 

compared to homogenous, heterogeneous GPUs systems, and CPU-based counterparts. 

6.1. Experimental setup 
 

Our test-bed consists of two computing nodes. In each node, the CPU is an Intel Xeon 2.4 GHz 

and 4 cores with 6GB memory. Additionally, in each node we have a Tesla C2050 GPU card and 

a GeForce GTX650 GPU card. The memory of Tesla C2050 is 2687MB with 384 bits memory 

bus width, and GTX650 is 1024MB with 128 bits memory bus width. Their numbers of CUDA 

cores are 448 and 384, with 1.15GHz and 1.05GHz GPU clock speed, respectively. Obviously, 

C2050 is more powerful than GTX650. So we use the four GPU cards to make a heterogeneous 

distributed system. We connect the two nodes with a 100Mbps router and the average latency is 

around 0.2 ms which is much higher than a standard supercomputing center. 

To test the effect and efficacy of our system, we use the 2-D heat transfer and 2-D Gaussian 

Elimination application with different workload sizes. For each experiment we record the time of 

each phase of HG, such as initializing, communicating, and computing. We also compare the total 

execution time with the MPI programs running on the CPU. For the heat equation experiment,
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we set the time steps to 1,000 and change the number of computing units from 100 thousand to 41 

million. And for the Gaussian Elimination application, the range of workload size is from 1 

million to 41 million.  

We first compare the performance of the systems with and without optimizations including 

partitioning algorithms and data reuse. We run the heat transfer application to show the speedup 

of the system with the partitioning optimization and show the performance improvement within 

data reuse in the heat transfer application and the Gaussian Elimination application. In the 

following figures, Comp. represents computing time, Comm. is communication time and init. is 

initializing time. 

6.2. Result of NPHP partitioning algorithm 

 

In this experiment, we run the heat transfer application applying different partitioning algorithms 

on a heterogeneous GPUs system which includes two C2050s and two GT650s. The capability of 

the GPU is measured by FPM which is the experimental results presented in section 4.2. Thus, a 

C2050 card is assigned around two and a half times of computing units as a GTX650 card. Then 

according to their capabilities, partitioning by row, PHP, and NPHP partitioning algorithms as 

described in sections 3.3 and 3.4 are used. NPHP constructs a smaller exchange zone than 

partitioning by rows does. Hence, NPHP partitioning algorithm reduces the communication time 

of the applications where computing units’ neighbors are immediate. In Figure 6-1 the by rows 

partitioning algorithm brings the worst performance and PHP is better. For all workload sizes, 

NPHP achieves the shortest communication time. For example, when the workload size is 

6400x6400 computing units, NPHP partitioning algorithm improves to reduce the communication 

time up to 3.5 times when compared to by rows partitioning and 10% when compared to the PHP 

partitioning algorithm. 
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Figure 6-1. The communication time of Heat transfer applications using different partitioning 

6.3. Result of FPMC partitioning algorithm 
 

We compare the proposed algorithm FPMC with evenly partitioning and previously proposed 

FPM (P E Crandall and M J Quinn 1994) in this section. In the following figures, comp.-GTX650 

represents computing time of GTX650, comp.-C2050 denotes computing time of C2050, comm. 

is communication time and init. is initializing time. In the x-axis, the system applies different 

partitioning algorithms with different workload sizes. For example, 800-Even means the 

workload is a 800x800 square matrix and partitioned evenly. So each GPU gets a 400x400 square 

matrix. 1600-FPM denotes the workload is a 1600x1600 square matrix and it uses the FPM 

partitioning algorithm. 3200-FPMC means the workload is a 3200x3200 matrix and it uses the 

FPMC partitioning algorithm.  
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Figure 6-2. 2-D heat transfer using different partitioning algorithms 

 

 
Figure 6-3. 2-D Gaussian Elimination using different partitioning algorithms 

 

In Figure 6-2 and Figure 6-3, the evenly partitioning algorithms causes severe load imbalance. 

Especially, when the workload size is a 6400x6400 square matrix the execution time of GTX650 

is more than 3 time of C2050’s in Figure 6-2 and 2 time in figure 6-3. From the total execution 

time view, FPMC brings the best result because FPMC gets better load balancing.  

0

5

10

15

20

25

comp.-GTX650 comp.-C2050 total

0

5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

18

20

comp.-GTX650 comp.-C2050 total

Tim
e (in

 seco
n

d
s) 

Tim
e (in

 seco
n

d
s) 

Size of matrix 

Size of matrix 



72 
 

 

 
Figure 6-4. Load balance of 2-D heat transfer 

 
Figure 6-5. Load balance of 2-D Gaussian Elimination 

 

Figure 6-4 and Figure 6-5 show how partitioning algorithms affect the load balance. The y-axis 

denotes the ratio of execution time of GXT650 and C2050. If the ratio is very close to 1 it means 

the load is balanced. With increasing workload size, even partition brings more load unbalancing. 

However FPM and FPMC are very close to 1 and FPMC is closer to 1 than FPM which means 
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FPMC provides the best load balance. In Figure 6-5 for the 2-D Gaussian Elimination application, 

when the workload is very small like as in 1600x1600, evenly partition outperformances FPM. 

This is because of the large communication overhead which affects the performance. In this 

situation, FPMC can estimate the speed of GPUs more accurately than FPM to achieve better load 

balance. 

6.4. Optimization of data reuse 
 

In this experiment, HG system consists of two C2050s and runs the heat transfer and the Gaussian 

Elimination applications. The range of workload size ranges from 800 to 6400 square matrix. In 

Figure 6-6(a) and (b), we measure the execution time at each step of HG system without 

optimizations and analyze which step is the most time-consuming and how to improve its 

performance. In Figure 6-6(a) and (b), HG system spends the most of the time in the computing 

step. In Figure 6-6(b) Gaussian Elimination application, the second most time-consuming step is 

the dynamic step where HG gets the pivot and updates the computing units’ neighbors. In figure 

6-6 (a) heat transfer application, when the workload size is up to a 6400x6400 matrix, the 

computing step takes up to 85.6% of total execution time. When the HG system processes a 

6400x6400 matrix for the Gaussian Elimination in Figure 6-6 (b), the computing and dynamic 

steps take up to 77.7% and 19.8% of execution time, respectively. In the computing step, the 

computing kernel has a vast number of global memory accesses which are very slow in GPU. 

Usually, the ratio of float-point calculation to the global memory access operation (RFM) in heat 

transfer application is 1 to 5, because each computing unit of the heat transfer application has 4 

neighbors. For the Gaussian Elimination application is 1 to 4, or 0.25 which means each 

computing operation needs four global memory accesses. However, if we use the neighbor set to 

locate computing units’ neighbors the RFM increases to 1/7. This is because we need 3 more 

global memory access operations to get the neighbors locations. We can use data reuse 

optimization to improve the performance of the computing step.  
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(a) Heat transfer application 

 
(b) Gaussian Elimination application 

Figure 6-6. Results of applications without the data reuse optimization 
 

In Figure 6-7, the data reuse optimization is able to improve the computing performance up to 2.5 

times in heat transfer application which is lower than the expected 5x. The reason is we add some 

logic decisions in the computing kernel section to process the computing units on the boundary. 

We divide the local computing units to tiles, that is, a tile consists of a number of computing units. 

Each tile is processed by a block of threads in GPU where these threads can share values through 

the shared memory in GPU. Each computing unit in a tile firstly loads its own value to shared 

memory, and depending on its location, the boundary value is loaded. If it is on the grid boundary 
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we should load its remote neighbor to the tile. If it is on the tile boundary we should load its local 

neighbor to the tile. For the Gaussian Elimination application, the data reuse optimization 

improves the performance up to almost 7 times. The computing units in a tile share their 

neighbors through the shared memory of GPU. All of the computing units have three neighbors. 

All of them have the same pivot. The computing units in the same column share the same 

neighbor and those in the same row share another neighbor. Thus, there are few decisions to be 

made in the Gaussian Elimination computing kernel. Additionally, we use a formula to calculate 

the locations of computing units’ neighbors. Hence we reduce the global memory access to only 1 

compared to the original version’s 7 which is without data reuse optimization and reads neighbors 

locations from global memory.  

 

Figure 6-7. Speedup of data reuse optimization 

 

6.5. Heterogeneous and homogenous GPUs system. 
 

In these experiments, we compare the performance of HG system in different GPU combinations.   

In figure 6-8 and 6-9, “800-2xC2050” means the HG system consists of two C2050 cards and the 

workload size is an 800x800 matrix. So this is a homogenous GPUs system. “1600-hetero” 

presents the HG system consists of two C2050 and two GTX650 cards and the workload size is a 

1600x1600 matrix. We use the experimental results in section 4.2 to quantify the capability of 
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each GPU card which means a C2050 is assigned approximately 2.5 times more computing units 

as a GTX650. “2400-4xEven” denotes the HG system consists of two C2050 and two GTX650 

cards and the workload size is a 2400x2400 matrix. However we assign the same number of 

computing units to all of them. “initi.” means initiation time and “dyna.” is dynamic time. In the 

same way, “comm.” is short for communication time and “comp.-GTX650/C2050” means 

computing time of GTX650 and C2050, respectively.  The asterisk mark “total” means the total 

execution time.  

 
Figure 6-8. 2-D heat transfer in different GPUs combinations 

 

It is not true that more GPUs mean better performance. In figure 6-8, in most situations, the four 

GPUs system with same workload size needs more time to execute than two C2050s GPUs 

system. Because we assign the same workload size to each GPU, the slow GTX650 becomes the 

bottleneck. Additionally, more GPUs increase the communication time. If we assigned 

appropriate workload size to GPUs based on their capabilities, the heterogeneous system is 

expected to improve the performance.  In figure 6-8, although the communication time of 

heterogeneous system is a little longer than the two C2050s system, the computing time of the 

heterogeneous GPUs system is much shorter than the two C2050s homogenous system. We get 
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the same conclusion when we run Gaussian Elimination. In Figure 6-9, the best performance is 

created by the heterogeneous GPUs system. The second beat performance is delivered by two 

C2050s homogeneous GPUs system. The worst performance is given by the four heterogeneous 

GPUs system where each GPU is assigned the same workload.  

 
Figure 6-9.  2-D Gaussian Elimination in different GPUs combinations 

 

We use a parameter, improvement percentage which is calculated by (6-1) to estimate the 

performance improvement by the heterogeneous GPUs system over the homogenous system.  

                        
            

     
                                                                (6-1) 

where       is the execution time of the homogenous system and        is the execution time of 

the heterogeneous system. 

In Figure 6-10, the heterogeneous GPUs system consists of two C2050s and two GTX650 

respectively and the homogeneous GPUs system includes two C2050s. If we add two cheaper 

GPUs into the original homogeneous GPUs system we see an improvement of 14% in the heat 

transfer application and even up to 30% performance improvement in the Gaussian Elimination 

application. The price of GTX650 is just around one hundred USD comparing to the price of 
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C2050 which is almost two thousand USD. In other words, we add 5% of resources but we can 

get 14%~30% improvement in performance. This is achieved even though our tests are not 

running on a perfect supercomputing environment such as connected by the InfiniBand. The two 

nodes are connected by a normal router. Thus, if we deploy this HG system in a real 

supercomputing environment, the communication time can be trivial. So the HG heterogeneous 

system is able to provide even better percentage improvement. 

 
Figure 6-10. The percentage of improvement of heterogeneous to homogenous GPUs 

 

6.6. Results of heat transfer application  
 

In this experiment, we use an MPI based program running on the CPU called Cmpi. In figure 6-

11, the left y-axis captures time in second and the right y-axis is measured by million updates of 

computing units per second which is calculated as the workload size divided by the sum of 

Comm. and Comp. time. The x- axis denotes workload sizes of different systems, Cmpi and HG. 

For example, 100k-Cmpi means the workload size is 100 thousand computing units running on 

Cmpi system which is the CPUs based program. 1M-HG means the workload size is one million 

computing units running on HG system which is based on 4 GPUs, namely, 2 GTX650s and 2 

Tesla C2050s. An update of computing units means a computing unit calculates the value at time 

t+1 at time t. 
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In Figure 6-11, HG outperforms Cmpi system because the HG system speeds less time in 

initiation and computation. HG initializes and computes computing units on GPU side which 

dramatically increases performance. However HG system needs more time in the communication 

step because HG needs to copy values from GPU to CPU and then copy them back. This 

disadvantage does not affect the performance significantly.  

 

 
Figure 6-11. 2-D heat transfer in HG and CPU based system 

 

The time for updates of computing units includes the time of communication and computation 

steps. Hence the performance of the system is measured more accurately as million updates of 

computing units per second which is marked as   in figure 6-11. When the workload size is 1 

million, the updates of Cmpi is around 127 million comparing to 1064 million of HG. Thus, HG 

system is more than 8 time faster than Cmpi. When the workload size is larger than 1.5 million 

Cmpi cannot run. This is because Cmpi uses a 3 dimensional array in the main function. The 

system cannot allocate enough memory in stack for such a requirement. However even at these 

high loads, HG can run smoothly because HG uses dynamic memory allocation.  
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6.7. Result of Gaussian Elimination application 
 

Gaussian Elimination application is different from the heat transfer application. We add a 

dynamic step in the Gaussian elimination application where the system can decide the pivot.  The 

control system is implemented by different number of MPI processes running on CPUs. 

 

Figure 6-12 (a) shows the execution time of each step of the Gaussian Elimination application. 

The time consuming part is the dynamic step because it gets the values of the current row from 

device and collects all of them to select the pivot. This is then broadcast to all workers. Finally 

each worker updates the pivot row on device. So the HG system in Gaussian Elimination 

application includes four data transfers between device and host and four data transfers between 

workers. Even with these complicated time consuming steps in the HG system, it still 

outperforms the MPI system. For these two computing nodes, 8 MPI processes get the best 

performance of the MPI system. However the HG system gets 2.75 times speed up. 

           

(a) 2-D Gaussian Elimination application       (b) 2-D Gaussian Elimination application and MPI processes 
Figure 6-12. 2-D Gaussian Elimination in HG and CPU based system 

 

6.8. Conclusion 
 

In this chapter, the experimental results show these optimizations improve the performance of the 

HG system. For example, the NPHP algorithm minimizes the inter-processor communications. 

The FPMC algorithm ensures the load balance of heterogeneous GPUs. The data reuse 

technology significantly reduces the computation time. The proposed heterogeneous GPUs 
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system outperforms the MPI system based on CPU and the homogeneous GPUs system. The 

price for a GTX650 GPU card is around 100 USD and the price for a Tesla T2050 GPU card is 

almost 2,000 USD. The ratio of the price of a GTX650 and a Tesla T2050 is 5%. From the results 

of heat transfer and Gaussian Elimination, we add 5% resource measured by money spent which 

means we add two GTX650 GPU cards, but we can get 14%~30% performance improvement. 
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CHAPTER VII 
 

 

CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Conclusion 
 

The dependent tasks problem in a grid running on heterogeneous processors including CPU and 

GPU faces some challenges which include load balancing and reducing communication cost. The 

goal of load balancing is to assign the workload sizes to be proportional of the speeds of 

processors. So it is vital to estimate the speeds of processors accurately. However it is very hard 

to use a positive number to estimate the speed of a processor, especially when considering 

communication cost. One feasible approach is to use a function of absolute speed of a processor 

against the workload size and communication cost to estimate their speeds accurately. Existing 

function approaches use experimental measurements to build the speed function or table for each 

processor. We have proposed in this thesis a new approach called FMPC that utilizes NPHP to 

minimize communication cost. FMPC aims to ensure load balancing of heterogeneous processors 

and minimize their communication cost. Our experiments show that NPHP reduces 

communication cost by at least 10% and FMPC improves the load balance by 10% on average.  

We have proposed in this thesis a novel approach for processing dependent tasks on 

heterogeneous GPUs system based on neighborhood grid points. Previous works have
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 investigated only process in dependent tasks on homogeneous GPUs. Our approach supports 

change of neighborhood when the system is running. Hence the system can support more types of 

applications. Also we implement some optimizations to improve its performance, such as NPHP 

reduces at least 10% communication cost, FMPC improves the load balance by 10% average, and 

the data reuse technology in computing kernel to utilize shared memory to reduce the global 

memory accesses, brings 7 times speedup.  

In chapter 1, we define the computation scenario: the dependent tasks on grid problems and we 

do a survey of how to utilize heterogeneous processors to process the dependent task. Also, we 

give the reason for using use general purpose graphic processing units to deal with computing 

intensive problems. In chapter 2, we list two ways to partition data on heterogeneous processors: 

constant performance model and functional performance model. Secondly, we briefly talk about 

how to program in CUDA and the memory architecture of GPU. Finally, we introduce a model to 

process dependent tasks in GPU. In chapter 3, we propose a novel partial homogenous 

partitioning algorithm (NPHP) to reduce the inter-processor communication cost. In chapter 4, we 

propose a partitioning algorithm of functional performance model that considers communication 

cost to ensure load balance. In chapter 5, we give the architecture of the heterogeneous GPUs 

system (HG) and analyze the system. In chapter 6, we run two types of applications on the system: 

heat transfer and Gaussian Elimination. The heat transfer is a static neighbor application and the 

Gaussian Elimination is dynamic neighbor application. For the static neighbor application, HG is 

at least 8 times faster than MPI program running on CPU. For the dynamic neighbor application, 

HG can get 2.75 times speedup. 

7.2 Contributions 
 

This work addresses the main challenges in executing scientific applications on GPUs: 
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1. A novel approach to reducing internet communication between GPUs based on grid sharp 

(chapter 3), 

2. A new technique to achieve load balancing to maximize utilization of heterogeneous 

GPUs resources based on the partitioning algorithm of functional performance model that 

considers inter-processor communication cost (chapter 4), 

3. The implementation of the data reuse technology to improving CUDA device memory 

accesses (chapter 5.6). 

4. The design and implementation of a general platform to support fixed and dynamic task 

dependent applications (chapter 5).  

In this contribution we propose a novel platform, Heterogeneous GPUs (HG) that leverages 

heterogeneous GPU resources to process task dependent applications, such as heat transfer and 

Gaussian elimination. This platform utilizes heterogeneous GPUs power and partitions jobs 

according to their capabilities. In this work we have implemented and provide a set of APIs. 

Researchers can use these APIs to implement their own task dependent applications. 

7.3 Future Work 
 

For future work, one area that requires further study is using InfiniBand to reduce the bottleneck 

in the distributed GPUs system. By improving inter-processors communication, the performance 

of the system will be improved as well. A second area for future work is to propose an adaptive 

method for efficiently building the performance benchmark tables for GPUs.  This method can be 

used to construct performance benchmark tables for GPUs. Finally, a third area of investigation is 

the use of distributed GPUs system to process big data, especially GPUs integrated into HBase 

which is NoSQL database based on hadoop. 

7.3.1 Using InfiniBand to improve performance 
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In the section 5.3, we analyzed heterogeneous GPUs system and found that the performance 

bottleneck is in the data transferred between GPUs. The inter-GPUs communication requires two 

transfers by bus plus a transfer by network. First, the data in the source GPU memory is 

transferred into local main memory by bus. Then, it is transferred from the source node to the 

target node through the network. Finally, the target node receives the data and copies it into target 

GPU memory. Form the results of Gaussian Emulation application, the communication time takes 

up more than 50% of the time. In this work, we use the PCI Express 2.0 and a 100 Mbps network 

which is a normal configuration for a commercial computer. J. Huang etc. (Huang et al. 2012) 

used the InfiniBand to connect all HBase region servers and they show that this can improve the 

throughput more than 3 times. Hence, if we use a much faster bus such as PCI Express 3.0 which 

speed is 2 times than the speed of PCI Express 2.0, and use InfiniBand to connect all GPUs, we 

can improve performance greatly. 

7.3.2 Constructing benchmark tables of GPUs 

 

From the experiment results in section 6.5, we observed that if the performance of GPU is 

estimated more accurately, the system gets better load balancing. The FPMC technique proposed 

in this work brings better quality of problem partitioning for high performance computing on 

common, heterogeneous networks than the previous work (FPM) (Alexey Lastovetsky and Ravi 

Reddy 2010), because FPMC considers communication cost. So the performance functions of 

GPUs in FPMC are not only related to work load sizes but also to communication cost. The 

performance benchmark tables of GPUs in FPMC are surfaces as shown in Figure 4-3. In short, in 

the dependent tasks environment, to get good quality of problem partitioning for dependent tasks, 

it is critical to accurately build performance benchmark tables of GPUs. Our goal is to build 

performance benchmark tables of majority GPUs and for different types of applications. 
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However it is very expensive to build the performance table. Firstly, there are many parallel 

computing applications. It’s impossible to build performance benchmark tables for all of them. 

Secondly, even for a specific application the experimental time is very large. Because we need to 

run the large range of work sizes and for each work size we need to run a large range of 

communication costs. We will use optimizations to efficiently build the performance table for 

GPUs and for different applications. For example, the expected maximal workload size of a GPU 

(    ) is 100 million grid points and the interval for the workload size (  ) may be set as 1000 

grid points. If the grid is a 1 million by 1 million grid points matrix, the maximal communication 

for a GPU (    ) is up to the perimeter of the matrix which is 4 million and the interval for the 

communication (  ) is set as 100. The experimental time is 4 billion and is calculated by equation 

7-1. 

   er  e t      e  
    

  
 

    

  
                                                         (7-1) 

In future, we plan to use the following methods to minimize experimental times. 

 Classify applications by the number of memory accesses and arithmetic operations. 

The operations of kernel computation in a GPU thread usually constitutes of memory access and 

arithmetic operations. The speeds are different, and hence the number of memory accesses and 

arithmetic operations dominate the execution time. Some classic applications which have 

different numbers of memory accesses and arithmetic operations can be used to build the 

benchmark performance tables. For a new application, we just need to find the benchmark 

performance table of a classic application which has the same or approximately the same numbers 

of memory accesses and arithmetic operations. 

 Use adaptive method to select the intervals of work load sizes and communication cost. 
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If small intervals are selected, the accuracy is improved but the experimental time increases. 

However, if large intervals are selected, the accuracy is decreased but the experimental time is 

reduced. So the crucial step to minimize experimental times is determining how to set intervals. 

Alexey et cl (Alexey Lastovetsky et al. 2006) proposed a procedure for building a piecewise 

linear function approximation of the speed band of a processor. Their work can be extended using 

an adaptive method to choose the appropriate intervals instead of fixed intervals as shown in 

Figure 7-1. S(x) is the GPU performance function; x is the workload size and y is the absolute 

speed of the GPU. First we set the workload interval    to d and select a threshold h. We run the 

application with workload size           respectively and we get the absolute speeds,          . 

If   ‖     ‖   , then    
  

 
           otherwise     ,         . Hence, we 

get the next test workload size    and run the application to get the absolute speed   . This 

process keeps going until the expected maximal workload size is reached. In the same way, the 

benchmark performance tables of communication cost can be constructed. 
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Figure 7-1. Adaptive method to build the performance benchmark table of a GPU 

 

7.3.3 Using distributed GPUs to process big data (NoSQL database, HBase) 

 

It is essential to parallel process the queries of NoSQL databases storing big data. GPUs have the 

essential advantages to process small tasks in parallel. Hence utilization of GPU in NoSQL 



88 
 

database is attracting a lot of interest in both academia and industry. IBM filed a patent about a 

GPU-Accelerated Database (Child 2012) which can execute a parallelized query on a GPU kernel 

executable or process the particular stored procedure on one or more GPU devices. B. He et al. 

designed and implemented and in-memory relational query processing system on GPU (He et al. 

2009). The result shows the performance using GPU is 2 to 7 times faster than CPU. However it 

needs to load all the data to GPU memory first. W. Fang et al. proposed a way to compress the 

data in a GPU database (W. Fang, He, and Q. Luo 2010). It is still impossible to use their GPU 

database to process big data because of the limitation of GPU memory. Using GPU, the feasible 

ways to improve the throughout and response time of NoSQL, for example HBase, include: a) 

Sort row_key in GPU; b) Split a query into several queries and use GPU to compute index or 

hash values.  
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