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ABSTRACT

Name: Ningning Wang

Date of Degree: DECEMBER,2013

Title of Study: NONPARAMETRIC EMPIRICAL DENSITY FUNCTIONAL

ESTIMATION AND APPLICATIONS

Major Field: STATISTICS

Chapter 2 of this dissertation presents a nonparametric empirical likelihood es-
timation of kernel density functionals (ELKDFE), which are constructed based on
a kernel density functional estimation (KDFE) and the concepts of empirical like-
lihood. The work focuses on estimating the integration of square density function
and a known function which has a derivative of order p, for p > 0. In many applica-
tions there may be extra information available to use, hence the concept of empirical
likelihood becomes useful in providing a systematic approach for capturing the extra
information. So ELKDFE reduces the MSE, especially when the sample size is small
to moderate, and the difference of MSE between those two estimates decreases as the
sample size increases.

Secondly, in Chapters 3 and 4, two new kernel estimators are proposed, GCA
and LCA, and their rationales, properties, empirical likelihood versions, data-driven
bandwidth selection, and applications are given as well. The bandwidth of the new
approach is much tighter, catching the density’s humps and valleys is more accurate.
These estimates can be used for fixed and sequential sampling. The empirical likeli-
hood (EL) versions of the GCA and LCA are provided and shown to have smaller
AMISE than that of the non-EL estimation, and the difference of MISE tends to
shrink as the sample size increases.

The GCA and LGA estimates are applied to regression using a local polynomial
setting. It is shown that the regression estimators based on GCA and LGA have
smaller bias and variance than standard kernel regression estimators.

An investigation of the properties of cumulative distribution function estimation
based on GCA and LGA shows that the new estimators have smaller MSE and
better performance than standard kernel CDF estimation.
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1 Introduction and Literature Review

1.1 Introduction

Nonparametric density estimation has been widely used with an array of new

tools for statistical analysis. The main advantage of this approach is that it allows

the exploration of large amounts of data without making specific distributional as-

sumptions. This approach is in contrast to parametric estimation, in which it is

assumed that the density comes from a given family, and the parameters are esti-

mated by various statistical methods. Nonparametric density estimation is currently

found in many fields, such as economics, signal processing, and image processing and

reconstruction. Early contributors to the theory of nonparametric estimation include

Rosenblatt (1956) and Parzen (1962), and their methods are still the most commonly

used approach up to today. Comprehensive descriptions of various approaches to

nonparametric estimation have been provided by Silverman (1986), and Wand and

Jones (1994) have depicted more recent developments. These researchers provide

a though discussion of kernel estimation, including details about the assumptions

of kernel weight, estimator properties such as bias and variance, and guidelines for

choosing the smoothness parameter bandwidth h. Empirical likelihood based on ker-

nel density estimation (ELKDE) was introduced by Chen (1997), who showed that

ELKDE reduces MSE and variance.

Empirical likelihood was first introduced by Owen (1988, 1990) for constructing

confidence regions or intervals. It has many useful properties: such as, automatic
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determination of the shape of confidence regions given the observed data set and

a non-parametric version of Wilks’s Theorem. For these reasons, empirical likeli-

hood has found many applications, such as in smooth functions of means (DiCiccio

et al., 1991), estimating equations (Qin and Lawless, 1994), non-parametric density

and regression function estimation (Owen, 1988; Chen, 1996; Chen and Qin, 2000),

quantile estimation (Chen and Hall, 1993), and empirical likelihood-based kernel es-

timation (Chen, 1997). Other useful sources of discussion about empirical likelihood

include Owen (2001) and Chen and Keilegom (2009). In general, empirical likeli-

hood combines the reliability of non-parametric methods with the effectiveness of the

likelihood approach. The regions are invariant under transformations and often be-

have better than confidence regions based on asymptotic normality when the sample

size is small, a characteristic we show prevailing in our research. Moreover, they are

of natural shape and orientation since the regions are obtained by contouring a log

likelihood ratio, and they often do not require the estimation of the variance, as the

studentization is carried out internally via the optimization procedure. The empir-

ical likelihood method is appealing not only in obtaining confidence regions, but in

its unique attraction in parameter estimation and formulating goodness-of-fit tests.

On the computational side, empirical likelihood involves maximizing non-parametric

likelihood supported on the data subject to some constraints. Owen (1988) showed

that empirical likelihood regions for mean (univariate and multivariate) are always

convex, so there is a unique solution for pi, where pi is the probability weight of the

observed data.

The aim of this chapter is to review the most important aspects of kernel density

estimation and empirical likelihood based on kernel methods. In the remainder of

this chapter, an introduction of kernel density estimation is given in Section 1.2; Sta-

tistical results for the standard kernel density estimate is in Section 1.2.1; Bandwidth

selection of kernel density estimation is shown in Section 1.2.2; The kernel smoothing
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applications: regression and cumulative distribution function CDF estimation are

presented in Section 1.2.3; An empirical likelihood introduction and review are given

in Section 1.3; Empirical likelihood for univariate mean in Section 1.3.1; Empirical

likelihood-based kernel density estimation is given in Section1.3.2; Analysis of error

criteria is given in Section 1.4; New kernel density estimators are proposed in Section

1.5.

1.2 Kernel Density Estimation

The kernel estimation method is an important method in non-parametric density

and distribution functions fitting. Suppose X1, X2, · · · , Xn are a sample of inde-

pendently and identically distributed random variable from some distribution with

unknown density f . We are interested in estimating f . The kernel density estimate

is

f̂(x, h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (1.1)

where K is called the kernel, a bounded symmetric function satisfying
∫
K(µ)dµ =

1,
∫
µK(µ)dµ = 0, and

∫
µ2K(µ)dµ < ∞, and h is a positive number depending on

n, usually called the bandwidth or window width and satisfies h → 0 and nh → ∞,

as n → ∞. Using the notation, Kh(µ) = h−1K(µ/h), the kernel density estimator

(1.1) can be written as

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi). (1.2)

For further information, refer to Wand and Jones (1994), Silverman (1986) and Alez

(2012).
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1.2.1 Statistical Result of Kernel Density Estimation

In this section, some theoretical properties of the standard kernel density estimator

are derived. The assumptions and conditions are defined as in the previous section.

So for a fixed h

Bias(f̂(x)) =
h2

2
f ′′(x)µ2(K) + o(h2) (1.3)

Var(f̂(x)) =
1

nh
R(K)f(x) + o(

1

nh
), (1.4)

where R(K) =
∫
K2(µ)dµ. From these two equations, we have

MSE(f̂(x)) =
1

nh
R(K)f(x) +

h4

4
f ′′(x)2µ2

2(K) + o(h4 +
1

nh
). (1.5)

The trade-off between bias and variance is controlled by MSE, when h is decreasing

, the Bias is decreasing but variance is increasing. So a small h leads to a small Bias

but large variance yields under smooth, and vice verse. As has already been pointed

out, the smoothness of the estimate depends on the smoothing parameter h, and a

closed-form expression can be obtained from minimizing the mean integrated square

error (MISE)(1.12). We have

MISE(f̂) =
1

nh
R(K) +

h4

4
R(f ′′(x))µ2

2(K) + o(h4 +
1

nh
). (1.6)

Then the optimal bandwidth is achieved by minimizing AMISE (1.6)

hopt =

(
R(K)

nµ2
2(K)R(f ′′)

)1/5

.

Using this optimal bandwidth, we have

infh>0MISE(f̂) =
5

4
[µ2

2(K)R4(K)R(f ′′)]1/5n−4/5.

4



1.2.2 Bandwidth Selection

It is crucially important to select an appropriate bandwidth for the standard kernel

density estimator. Since the early work on kernel methods emphasized asymptotic

results, now determining an optimal h has been the main research focus up to today.

As AMISE contains the unknown function R(f ′′), several ”plug-in” procedures were

proposed by estimating R(f ′′) with R(f̂ ′′) (see Scott and Terrell, 1987; Park and

Marron, 1992). An automatic method for determining the optimal bandwidth is cross-

validation (CV) which was first introduced by Rudemo (1982) and Bowman (1984).

Scott and Terrell (1987) introduced biased cross-validation, which is considered a

hybrid of cross-validation and plug-in, replacing an unknown value in AMISE with a

cross-validation kernel estimator R̃(f ′′). The recent kernel contrast method of Ahmad

and Ran (2004) can be used for MISE minimization as well, but it is not really data

adaptive. Moreover this method performs particularly well for regression, but not as

well for density estimation. For more information about these methods, see the most

exhaustive form comparison papers, by Jones et al. (1996) and Devroye et al. (1997)

or the recent review paper by Heidenreich et al. (2013).

Cross-Validation Bandwidth Selection

Here we briefly introduce unbiased least square cross-validation, the idea of which

is to consider the expansion of ISE in the following way

ISE(h) =

∫
f̂(x)2dx− 2

∫
f̂(x)f(x)dx+

∫
f 2(x)dx

Note that the last term is not dependent on h, so that we only need to consider the

first two terms. The idea for choosing bandwidth is picking the one that minimizes

L(h) =

∫
f̂(x)2dx− 2

∫
f̂(x)f(x)dx

5



Consider the estimator

CV(h) =

∫
f̂(x)2dx− 2

1

n
f̂−i(Xi)

where

f̂−i(x) =
1

(n− 1)h

∑
j 6=i

K

(
x−Xj

h

)

It is shown that CV(h) is the unbiased estimator of MISE−
∫
f 2(x)dx. So the data-

driven optimal bandwidth is

hCV = arg minhCV (h)

Biased cross-validation considers the asymptotic MISE, and its main idea is to

replace the unknown quantity R(f ′′) in equation (1.6) by cross-validation estimator

R̃(f ′′) =R(f̂ ′′)− 1

nh5
R(K ′′)

=n−2
∑
i 6=j

(K ′′ ∗K ′′)(Xi −Xj).

Then the biased cross-validation estimator (BCV) is given as

BCV (h) =
R(K)

nh
+
h4

4
µ2
2(K)(f ′′).

So, the selected bandwidth is hBCV = argmin BCV (h).

1.2.3 Kernel Smoothing Applications: Regression and CDF Estimation

In this section, we describe nonparametric regression and CDF estimation based

on standard kernel density estimation. There is a vast literature on flexible methods

6



for estimating regression functions and CDF. The NW estimator proposed indepen-

dently by Nadaraya (1964) and Watson (1964) is based on locally weighted averages.

Another popular estimate is the integral kernel estimate proposed by Gasser and

Miller (1979). An alternative method of smoothing, the locally weighted regression,

appeared in the statistical literature by Stone (1977) and Cleveland (1979). This

method is still widely used today. It estimates the regression function at a particular

point by locally fitting pth degree polynomial to the data, via weighted least squares.

The CDF estimation is obtained by integrating a kernel estimator of the density.

There has recently been extensive work on the estimation by kernel method of prob-

ability densities and their derivatives; for a reference, see Wertz (1978) and Li and

Racine (2007).

1.3 Empirical Likelihood

Empirical likelihood is a non-parametric method of inference based on a data-

driven likelihood function. It allows the data analyst to use likelihood methods with-

out assuming that the data come from a known family of distributions. The likelihood

method is known to be efficient. For example, likelihood ratio tests have some good

power properties. These tests can be modified to construct short confidence intervals

or small confidence regions of the parameters. The empirical likelihood method com-

bines reliability of the non-parametric methods and the flexibility and effectiveness

of the likelihood approach. Now we will introduce the empirical likelihood.

Definition Let X1, X2, · · · , Xn be i.i.d random variables with the distribution func-

tion F . The empirical cumulative distribution function (ECDF) of X1, X2, · · · , Xn

is

Fn(x) =
1

n

n∑
1

1(Xi6x),

where 1A(x) represents the value 1 if the assertion A(x) is true, and 0 otherwise.

7



Definition Assuming X1, X2, · · · , Xn, are independent real random variable with

common cumulative distribution function (CDF) F , the non-parametric likelihood of

CDF of F is

L(F ) =
n∏
i=1

(F (Xi)− F (Xi−)),

where F (x) = Pr(X 6 x) and F (x−) = Pr(X < x), so Pr(X = x) = F (x)−F (x−).

Then for a CDF F , the ratios of the non-parametric likelihood for hypothesis tests

and confidence intervals are defined in the following way,

R(F ) =
L(F )

L(Fn)
.

Like parametric likelihood, suppose that we are interested in a parameter θ =

T (F ) for some functional T of the distribution. This F is a member of a set F of

distributions. Define the profile likelihood ratio function,

R(θ) = sup {R(F )|T (F ) = θ, F ∈ F} .

Empirical likelihood hypothesis tests reject H0 : T (F0) = θ0, when R(θ0) < r0 for

some threshold value r0. Empirical likelihood confidence regions are of the form

{θ|R(θ) > r0} ,

where threshold r0 may be chosen using an empirical likelihood theorem (ELT) 1.3.1,

a non-parametric analogue of Wilk’s Theorem.

Theorem 1.3.1 (ELT) Let X1, X2, · · · , Xn be independent random variables with

common distribution F0. Let µ0 = E(Xi), and suppose that 0 < V ar(Xi) <∞. Then

−2log(R(µ0)) converges in distribution to χ2
(1) as n→∞.

8



First, the chi-squared limiting distribution is the same as the typically found for

parametric likelihood models with one parameter, which is Wilk’s Theorem. Second,

it does not assume that X ′is are bounded random variables. It is only required to have

a bounded variance, which constrains how fast the sample maximum and minimum

can grow as n increases.

1.3.1 EL for Univariate Mean

To test whether µ = µ0, we need to compute R(µ0) and choose threshold value r0

by Theorem 1.3.1. Then reject the value µ0 at the α level, when −2logR(µ0) > χ2,1−α
(1) .

Empirical likelihood determines the pi by maximizing the empirical likelihood ratio

function
∏n

i=1 npi or
∑n

i=1 log(npi) subject to
∑n

i=1 pi(Xi − µ0) = 0, pi > 0, and∑n
i=1 pi = 1. The objective function

∑n
i=1 log(npi) is strictly concave on a convex set

of weight vectors. So there exists a unique global maximum in the domain.

We may proceed using the Lagrange multiplier to find p′is. Write

G =
n∑
i=1

log(npi)− nλ
n∑
i=1

pi(Xi − µ0) + γ(
n∑
i=1

pi − 1)

Setting to zero the partial derivative of G with respect to pi gives

∂G

∂pi
=

1

pi
− nλ(Xi − µ0) + γ = 0.

Therefore,

pi =
1

n

1

1 + λ(Xi − µ0)
. (1.7)

9



The value of λ can be found by numerical search method, (for example, Newton’s

method or Brent’s method), based on the equation

1

n

n∑
i=1

(Xi − µ0)

1 + λ(Xi − µ0)
= 0.

1.3.2 Empirical Likelihood-Based Kernel Density Estimation(ELKDE)

In some statistical applications, additional information about f is available: for

exmaple, the mean or variance of a distribution is known. This additional information

usually can be expressed as

EXgl(X) = 0 (l = 1, 2, · · · , q). (1.8)

where gl(X) are some known real functions. ELKDE (Chen, 1997) uses empirical

likelihood in conjunction with the kernel method to provide a systematic approach for

capturing the extra information. Suppose the extra information can be formulated as

equation (1.8), then ELKDE can be constructed by replacing n−1 in equation (1.2)

with the empirical likelihood pi under extra information (1.8). Specifically pi can be

determined by maximizing a multinomial
∏n

1 npi subject to

∑
pi = 1 and

∑
pigl(Xi) = 0 (l = 1, 2, · · · , q).

Let λ1, λ2, · · · , λq be Lagrange multipliers corresponding to the q constraints. Define

λ = (λ1, λ2, · · · , λq)T and g(Xi) = {g1(Xi), g2(Xi), · · · , gq(Xi)}. Then the weight pi

are

pi = n−1
{

1 + λTg(Xi)
}−1

(i = 1, 2, · · · , n), (1.9)
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where λ is the solution of

n∑
i=1

gl(Xi)

1 + λTg(Xi)
= 0 (l = 1, 2, · · · , q).

ELKDE is obtained by replacing n−1 in KDE (1.2) with the pi at equation (1.9) ,

so

f̂el(x) =
1

h

n∑
i=1

piKh(x−Xi) (1.10)

It is shown that ELKDE has smaller variance and MSE than those of KDE. This

is reasonable because ELKDE achieves a smaller variance by using unequal weights,

which offers more flexibility than KDE using equal weight n−1. In this Chapter,

the ELKDE method is applied to estimate density functional, and it is shown that

ELKDE has better performance than that of KDE in theoretical and simulation

results .

1.4 Analysis of the Error Criteria

There are many criteria to evaluate f̂(t) as an estimator of f(t) , such as the bias,

square error, and distance error.

1. Bias

Bias is the difference between an estimator’s expectation and the true value of

the parameter being estimated.

Bias[f(x)] = E{f̂(x)− f(x)}

2. Mean Squared Error (MSE) , Mean Integrated Square Error (MISE) and

Integrated Squared Error (ISE)

Mean squared error is the expected value of the square of the difference between
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the estimator and the true value of the parameter being estimated at a single

point.

MSE[f̂(x)] = E
{
f̂(x)− f(x)

}2

(1.11)

Mean integrated squared error is the expected value of the square of the differ-

ence between the estimator and the true value of the parameter being estimated

at whole real line.

MISE[f̂(x)] = E

∫ {
f̂(x)− f(x)

}2

dx (1.12)

Integrated squared error globally measures the distance between the estimator

and the true value of the parameter being estimated.

ISE[f̂(x)] =

∫
{f̂(x)− f(x)}2dx (1.13)

3. Mean Distance Error (MDE) and Mean Integrated Distance Error(MIDE)

The mean distance of using f̂(x) to estimate f(x) is given by

MDE[f̂(x)] = E|f̂(x)− f(x)|.

The MIDE is

MIDE[f̂(x)] = E

∫
|f̂(x)− f(x)|dx.

The MSDE is

MSDE[f̂(x)] = E sup
x
|f̂(x)− f(x)|.
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The Bias, ISE and MISE are discussed in this dissertation. For more details on the

MDE, MIDE and MSDE see Devroye and Lugosi (1996, 2001), Ahmad (2002), and

Ahmad and Ran (2004).

1.5 Proposed New Kernel Density Estimates

Standard kernel density estimation is still one of most active areas of research in

nonparametric statistics. But there are drawbacks to this method, such as choice of

smoothing parameter(s), and difficulty in catching humps and valleys. For example,

if the small bandwidth h is chosen, then the average kernel weight K(x−Xi

h
) for some

fixed x is only based on relatively few observations, not for all observations. So the

estimate pays too much attention to the local data and does not allow for variation

across the sample. But if the bandwidth is too large, then the estimate is too smooth

and cannot catch details such as humps and valleys.

In view of the flaws of standard kernel smoothing, two new kernel density estima-

tors GCA and LCA and their empirical likelihood versions are proposed in Chapter

3. Suppose the X1, · · · , Xn are independently and identically distributed from the

unknown distribution f , and these bandwidth of these two estimators is ih instead

of h. So the bandwidth has two parts: one is the smoothing parameter h, and the

other is the scale coefficient i. When choosing smaller h, for the fixed x, the value

of K(x−Xi

h
) in standard kernel estimate is almost zero when Xi is far away from x.

In this situation, standard kernel density estimation is more ”wiggy”. But in the

methods proposed in Chapter 3, the ratio of x−Xi

h
divided by coefficient i, the value

of K(x−Xi

ih
) is not dependent on the distance between x and observation Xi, so the

average of K(x−Xi

ih
) at each point x is dependent on the entire sample data instead of

just the local data (the data close to the x) in the standard KDE. These methods of

choosing difference bandwidth do very well on balance between the local data and the

whole sample data. Simulation study show that the new estimators can catch humps

and valleys better that the standard KDE. The empirical likelihood version of GCA
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and LCA show that when the sample size is small to moderate, these methods are

significantly better at catching humps and valleys than those of GCA and LCA.

And when the sample size increases, the advantages shrink.

The applications of the proposed methods in the regression and CDF estimation

of are developed in Chapter 4.
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2 Nonparametric Empirical Likelihood Estimation of

Density Functional

2.1 Introduction of Density Functional Estimation

Immediately following the introduction of the kernel density estimation by Fix and

Hodges (1951) and the study of its functional properties by Rosenblatt (1956), Parzen

(1962),Watson and Leadbetter (1963) and Nadaraya (1964), many authors saw the

potential of using a kernel density methodology to study inferential problems. The

methodology was subsequently used in estimating regression (Nadaraya, 1964; Wat-

son, 1964), testing goodness of fit (Bickel and Rosenblatt, 1973), testing independence

(Rosenblatt, 1975; Ahmad and Li, 1997a), testing symmetry (Ahmad and Li, 1997b),

and testing positive aging (Ahmad, 2000). Many books have been written on the

subject. For univariate density estimation, more recent work has been conducted by

Wand and Jones (1994), Bowman and Azzalini (1997), Simonoff (1996), Alez (2012)

and Pons (2011), and in the multivariate case by Scott (1992) and Klemelä (2009).

For econometric application, see Pagan and Ullah (1999), and Li and Racine (2007).

Finally, for regression applications, see Hardle (1990).

Of particular interest to researchers is the subject of estimating density functionals

of the type
∫
γ(x)f(x)2dx = I(γ; f), where γ(x) is some known continuous function

that has the pth derivative, for p > 0 . For γ(x) = 1 or x , Ahmad and Amezziane

(2011) studied the basic kernel estimates properties of I(1; f) and I(x; f). These

special cases are the location (I(x; f)) and scale (I(1; f)) parameters. Applications
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of estimates of I(γ; f) are found in several areas. Among them many authors used

variations of I(γ; f) and the estimates in evaluating the power of the nonparametric

tests (Aubuchon and Hettmansperger, 1984) or obtaining estimates of the smoothing

parameter (Sheather and Jones, 1991; Jones et al., 1991; Birge and Massart, 1995).

2.2 Methodology

In this work, I(γ, f) is estimated by the kernel density functional estimation

(KDFE) as follows:

Î(γ; f) =
2

n(n− 1)h

∑
i<j

(
γ(Xi) + γ(Xj)

2

)
K

(
Xi −Xj

h

)
(2.1)

Moreover, in many applications there exists extra information which can be rep-

resented by

E(gl(x)) = 0, l = 1, · · · , L, (2.2)

where gl(x) are some known real-valued functions. Using the concept of empiri-

cal likelihood (see Owen, 2001), in conjunction with the kernel method, provides a

systematic approach for capturing the extra data information. The estimator (2.1)

assigns an equal probability weight 1/(n(n + 1)) to each data pair. However, if the

extra data information is available as (2.2), then empirical likelihood based on kernel

estimation is constructed by replacing 1/(n(n+ 1)) in (2.1) with empirical likelihood

weights pipj, where p′is are the solution of the multinomial likelihood
∏n

i=1 pi subject

to:

n∑
i=1

pi = 1,
n∑
i=1

pigl(Xi) = 0, l = 1, · · · , L.
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Let λ = (λ1, · · · , λL)′ be the Lagrange multiplier and g(Xi) = (g1(Xi), · · · , gL(Xi))
′.

Then

pi =
1

n
{1 + λ′g(xi)}−1, i = 1, · · · , n, (2.3)

where λ is the solution to

n∑
i=1

gl(xi)

1 + λ′gl(xi)
= 0, l = 1, · · · , L.

Hence, the empirical likelihood based on kernel density functional estimation

(ELKDFE) of I(γ, f) is

Îel(γ; f) =
1

h

∑
i 6=j

pipj

(
γ(Xi) + γ(Xj)

2

)
K

(
Xi −Xj

h

)
, (2.4)

where pi is given in (2.3).

2.3 Statistical Result

In order to study the mean squared error (MSE) and expectation of ELKDFE in

comparison to those of the KDFE, we need the following customary conditions on

K,h and f :

1. The density function f has pth continuous derivative, where p is an integer and

p > 1.

2. The kernel K(·) is a symmetric probability density with mean µk = 0 and

variance µ2(K) = σ2
k <∞.

3. The sequence of constant {hn}, hn ≡ h is such that h → 0 and nh → ∞ as

n→∞
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In this section, the expectation and MSE of ELKDFE and KDFE are investi-

gated, and it is shown that the Bias and the MSE of ELKDFE are both smaller

than those of KDFE. The following is the main result.

Theorem 2.3.1

E(Îel) = E(Î)− 1

n

∫
gT (y)Σ−1g(y)γ(y)f 2(y)dy + o(n−1), (2.5)

and

MSE(Îel) = MSE(Î)− 2

n

∫
γ(y)f 2(y)dy

∫
gT (y)Σ−1g(y)γ(y)f 2(y)dy + o(n−1),

(2.6)

where g(·) is the vector of extra information(eg, mean, variance·) and Σ = cov(gi, gj).

In addition,

E(Î) =

∫
γ(y)f 2(y)dy + µ2(K)h2C1 + o(h2) (2.7)

and

MSE(Î) =
1

n2h

∫
γ2(y)f 2(y)dy

∫
K2(µ)dµ+ µ2

2(K)h4C2
1 +

4

n
C2, (2.8)

with

C1 =
1

2

∫
γ(y)f ′′(y)f(y)dy +

1

4

∫
γ′′(y)f 2(y)dy +

1

2

∫
γ′(y)f ′(y)f(y)dy (2.9)

and

C2 =

∫
γ2(y)f 3(y)dy −

[∫
γ(y)f 2(y)dy

]2
, (2.10)

both assumed finite.
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This theorem shows the difference of the expectation and MSE between ELKDFE

and KDFE. Also, the difference of MSE between these two estimators is not de-

pendent on the bandwidth h, so the optimal bandwidth for both methods can be

obtained from equation (2.8). Thus it is given by

hopt = n−2/5
{∫

γ2(y)f 2(y)dy
∫
K2(µ)dµ

4C1µ2
2(K)

}1/5

. (2.11)

2.4 Applications

Define the location-scale family distributions as

f(x;µ, σ) =
1

σ
f0

(
x− µ
σ

)
, (2.12)

where f0 is bounded, and almost everywhere continuous probability density function

(pdf). Consider the following functional,

I(x; f(·;µ, σ)) =

∫
xf 2(x;µ, σ)dx =

∫ (
yσ + µ

σ

)
f 2
0 (y)dy

= I(x; f0) +
µ

σ
I(1; f0).

Which leads to

µ = σ
I(x; f(·;µ, σ))

I(1; f0)
− σI(x; f0)

I(1; f0)
, (2.13)

and

σ =
I(1; f(·;µ, σ))

I(1; f0)
. (2.14)

Thus estimating µ and σ is reduced to estimating I(γ; f), where γ(x) = x for µ

and γ(x) = 1 for σ, provided the I(γ; f0) known. Suppose we wish to test H01 :
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σ = σ0 or H02 : µ = µ0, then we have I(1; f(x, µ, σ)) = I(1; f0)σ under H01 or

µ = c1I(x; f(x;µ, σ))+c2 under H02, where c1 = σ/I(1, f0) and c2 = −σI(x;f0)
I(1;f0)

. Hence

testing H01 or H02 is equivalent to testing H∗01 : I(1; f(x;µ, σ) = I(1; f0) or H∗02 :

I(x; f(x;µ, σ) = I(x; f0) + µ0
σ
I(1; f0) respectively. To test two or more samples H01 :

σ1 = · · · = σk or H02 : µ1 = · · · = µk, we only need to test H01 : I1(1; f1(x;µ, σ)) =

· · · = Ik(1; fk(x;µ, σ)) or H02 : I1(x; f1(x;µ, σ)) = · · · = Ik(x; f1(x;µ, σ)). Also notice

that I(γ; f0) is not required in those cases. In this work, by using extra information

g, it shows that both the Bias and MSE of the ELKDFE are distinctly smaller than

those of the KDFE.

2.4.1 Location Parameter

By equation (2.13), estimating µ is reduced to I(x; f). If the extra information

g is the location function g(y) = g0(y − µ), then Theorem 2.3.1 can be expressed as

follows:

Bias(Îel) = Bias(Î)− µ

n

∫
gT0 (y)Σ−1g0(y)f 2

0 (y;µ)dy + o(h2), (2.15)

MSE(Îel) = MSE(Î)− 4

n
µ2

∫
f 2
0 (y;µ)dy

∫
g0

T (y)Σ−1g0(y)dy + o(n−1), (2.16)

where

Bias(Î) =
µh2

2
µ2(K)

∫
f ′′0 (y;µ)f0(y;µ)dy + o(h2) (2.17)

Equation (2.16) shows that the empirical likelihood based on the kernel method has

reduced the MSE, and this reduction decreases when sample size n increases.

Simulation

Generate the data from N(2, 1), Laplace(2, 1) and Cauchy(2, 1) for the location

parameter study with the sample sizes 50 and 100, with 1000 replications. Figure 1

shows that the MSE of the ELKDFE is smaller than that of the KDFE, and the
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difference in MSE decreases as the sample size increases. ELKDFE performs better

for small and moderate sample sizes, and this advantage shrinks when the sample

size becomes large. The MSE of ELKDFE is close to zero when h is increasing.

When choosing the proper bandwidth h, MSE of ELKDFE is close to zero. Figure

2 shows that the ELKDFE is closer to the true value µ = 2 than that of KDFE.

From these three cases, the ELKDFE not only reduces the MSE, but also provides

bias correction with a proper bandwidth, which is shown in Theorem 2.3.1.
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Figure 1: MSE of µ̂ from different distributions and sample size
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Figure 2: Estimated µ̂ from different distributions and sample sizes. Red line is
the ELKDFE; blue line is the KDFE; horizontal green line is µ = 2; vertical green

line is optimal bandwidth based on equation (2.11)
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2.4.2 Scale Parameter

From equation (2.14), estimating scale parameter σ is equivalent to I(1; f). If

extra information g(x) is given, then Theorem 2.3.1 can be expressed as follows:

Bias(Îel) = Bias(Î)− 1

n

∫
gT (y)Σ−1g(y)f 2(y;σ)dy + o(h2) (2.18)

MSE(Îel) = MSE(Î)− 4

n

∫
f 2(y;σ)

∫
gT (y)Σ−1g(y)f 2(y;σ)dy + o(n−1)

(2.19)

where

Bias(Î) =
h2

2
µ2(K)

∫
f ′′(y;µ)f(y;µ)dy + o(h2), (2.20)

Equations (2.18) and (2.19) show that the ELKDFE not only reduces MSE but also

reduces Bias. The difference decreases as the sample size n increases.

Simulation

Generate the data from N(0, 1), Laplace(0, 1) and Cauchy(0, 1) for the scale

parameter study with the sample sizes 15, 25, 50, and 100, with 1000 replications .

Figure 3 shows that the ELKDFE has a smaller MSE, and that difference decreases

as the sample size increases. The ELKDFE works for small and moderate sample

sizes, and this advantage shrinks when the sample sizes become large. The estimated

difference decreases when the sample size increases, which is shown in Theorem 2.3.1.
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Figure 3: MSE of σ̂ from different distributions and sample size
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Figure 4: Estimated σ̂ from different distributions and sample size. Red line is the
ELKDFE; blue line is the KDFE; horizontal green line is σ = 1; vertical green line

is optimal bandwidth based on equation (2.11).
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2.5 Appendix: proof the Theorem 2.3.1

Proof Assume function γ(x) has pth derivative, γ(p)(x) 6= 0 and γ(p+i)(x) = 0 for

i = 1, · · · , k. First show the equation (2.7) and (2.8).

E(Î) =
2

n(n− 1)h

∑
i<j

E

(
γ(Xi) + γ(Xj)

2

)
K

(
Xi −Xj

h

)
=

2

n(n− 1)h

∑
i<j

∫ (
γ(x) + γ(y)

2

)
K

(
x− y
h

)
f(x)f(y)dxdy

=

∫
1

h

(
γ(x) + γ(y)

2

)
K(µ)f(x)f(y)dxdy

=

∫ (
γ(y + µh) + γ(y)

2

)
K(µ)f(y + µh)f(y)dµdy

=

∫ (
γ(y) + µhγ′(y) + (µh)2

2
γ′′(y) + γ(y)

2

)
K(µ)f(y + µh)f(y)dµdy

=

∫ (
γ(y) +

µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)
K(µ)

{f(y) + µhf ′(y) +
(µh)2

2
f ′′(y)}f(y)dµdy

=

∫
γ(y)f 2(y)dy +

µ2(K)h2

2

∫
γ(y)f ′′(y)f(y)dy

+
µ2(K)h2

4

∫
γ′′(y)f 2(y)dy +

µ2(K)h2

2

∫
γ(y)f ′(y)f(y)dy + o(h2).

(2.21)

Now we will work on the Var(Î). It is not difficult to show that
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Var(Î) = Var
1

n(n− 1)h

∑
i 6=j

(
γ(Xi) + γ(Xj)

2

)
K

(
Xi −Xj

h

)
=

1

n2(n− 1)2
Var{

∑
i 6=j

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
}

=
2

n(n− 1)
Var{

(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)
}

+
4(n− 2)

n(n− 1)
Cov{

(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)
,(

γ(X2) + γ(X3)

2h

)
K

(
X2 −X3

h

)
}

= I1 + I2.

E{
(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)
}2

=

∫∫ (
γ(x) + γ(y)

2h

)2

K

(
x− y
h

)2

f(x)f(y)dxdy

=

∫∫ (
γ(y + µh) + γ(y)

2h

)2

hK(µ)2f(y + µh)f(y)dµdy

=
1

h

∫∫ (
γ(y) +

µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)2

K(µ)2

{f(y) + µhf ′(y) +
(µh)2

2
f ′′(y)}f(y)dµdy

=
1

h

∫
γ2(y)f 2(y)dy

∫
K2(µ)dµ

+ h

∫
K2(µ)µ2dµC1 + o(h),

where C1 = 1
4

∫
γ′′(y)f 2(y)dy + 1

2
γ2(y)f ′′(y)f(y)dy +

∫
γ(y)γ′(y)f ′(y)f(y)dy.
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Then

I1 =
2

n(n− 1)
E{
(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)
}

− 2

n(n− 1)
[E{
(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)
}]2

=
2

n(n− 1)h

∫
γ2(y)f 2(y)dy

∫
K2(µ)dµ+

2C1

n(n− 1)

∫
K2(µ)µ2dµ

− 2

n(n− 1)
{
∫
γ(y)f 2(y)dy +

µ2(K)h2

2

∫
γ(y)f ′′(y)f(y)dy+

µ2(K)h2

4

∫
γ′′(y)f 2(y)dy +

µ2(K)h2

2

∫
γ(y)f ′(y)f(y)dy}2 + o(h2)

=
2

n2h

∫
γ2(y)f 2(y)dy

∫
K2(µ)dµ+ o(n−2),

29



and

E{
(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)(
γ(X2) + γ(X3)

2h

)
K

(
X2 −X3

h

)
}

=

∫∫∫ (
γ(x) + γ(y)

2h

)(
γ(y) + γ(z)

2h

)
K

(
x− y
h

)
K

(
y − z
h

)
f(x)f(y)f(z)dxdydz

=

∫∫∫ (
γ(y + µh) + γ(y)

2

)(
γ(y) + γ(y − νh)

2

)
K(µ)K(ν)f(y + µh)f(y)f(y − νh)dµdydν

=

∫∫∫ (
γ(y + µh) + γ(y)

2

)(
γ(y) + γ(y − νh)

2

)
K(µ)K(ν)f(y + µh)f(y)f(y − νh)dµdydν

=

∫∫∫ (
γ(y) +

µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)(
γ(y)− νh

2
γ′(y) + (

νh

2
)2γ′′(y)

)
K(µ)K(ν){f(y) + µhf ′(y) +

(µh)2

2
f ′′(y)}

f(y){f(y)− νhf ′(y) +
(νh)2

2
f ′′(y)}dµdydν

=

∫
γ2(y)f 3(y)dy +

µ2(K)h2

2

∫
γ′′(y)γ(y)f 2(y)dy

+ µ2(K)h2
∫
γ2(y)f ′′(y)f 2(y)dy + o(h2).
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So that we have

n(n− 1)

4(n− 2)
I2

=E{
(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)(
γ(X2) + γ(X3)

2h

)
K

(
X2 −X3

h

)
}

− E

(
γ(X1) + γ(X2)

2h

)
K

(
X1 −X2

h

)
E

(
γ(X2) + γ(X3)

2h

)
K

(
X2 −X3

h

)
=

∫
γ2(y)f 3(y)dy +

µ2(K)h2

2

∫
γ′′(y)γ(y)f 2(y)dy

+ µ2(K)h2
∫
γ2(y)f ′′(y)f 2(y)dy + o(h2)

− {
∫
γ(y)f 2(y)dy +

µ2(K)h2

2

∫
γ(y)f ′′(y)f(y)dy+

µ2(K)h2

4

∫
γ′′(y)f 2(y)dy +

µ2(K)h2

2

∫
γ(y)f ′(y)f(y)dy}2

=

∫
γ2(y)f 3(y)dy − [

∫
γ(y)f 2(y)dy]2 +O(h2).

Then we get that

Var(Î) =
1

n2h

∫
γ2(y)f 2(y)dy

∫
K2(µ)dµ+

4C2

n
+ o(n−1), (2.22)

where C2 =
∫
γ2(y)f 3(y)dy − [

∫
γ(y)f 2(y)dy]2.

Now,

MSE(Î) =(BiasÎ)2 + Var(Î)

=µ2
2(K)h4(C1)

2 +
1

n2h

∫
γ2(y)f 2(y)dy

∫
K2(µ)dµ+

4C2

n
.

This gives us the optimal bandwidth h

hopt = n−2/5
(∫

γ2(y)f 2(y)dy
∫
K2(µ)dµ

4C1µ2
2(K)

)1/5

(2.23)
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Next we show the equations (2.5) and (2.6).

First,

E(Îel) = E
∑
i 6=j

pipj

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
. (2.24)

Plug in pi from equation (2.3), then

E(Îel)

= E
∑

1≤i 6=j≤n

1

n

1

1 + λTg(Xi)

1

n

1

1 + λTg(Xj)

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
=

1

n2

∑
1≤i 6=j≤n

E
1

1 + λTg(Xi)

1

1 + λTg(Xj)

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
.
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By using that λ = Op(n
−1/2) and Taylor series expansion, then

E
1

1 + λTg(Xi)

1

1 + λTg(Xj)

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
=E

{
1− λTg(Xi) + λTg(Xi)g

T (Xi)λ + op(n
−1)
}

{
1− λTg(Xj) + λTg(Xj)g

T (Xj)λ + op(n
−1)
}(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
=E

{
1− λTg(Xi) + λTg(Xi)g

T (Xi)λ− λTg(Xj)

+λTg(Xi)λ
Tg(Xj) + λTg(Xj)g

T (Xj)λ
}(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
=E

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
− E

{
λT (g(Xi) + g(Xj))

}
(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+ E

{
λTg(Xi)g

T (Xi)λ + λTg(Xi)λ
Tg(Xj) + λTg(Xj)g

T (Xj)λ
}(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
.

So,

E(Îel) =
1

n2

∑
i 6=j

E{
(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
− E

{
λT (g(Xi) + g(Xj))

}(γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+ E

{
λTg(Xi)g

T (Xi)λ + λTg(Xi)λ
Tg(Xj) + λTg(Xj)g

T (Xj)λ
}(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
}

=E(Î)− E1 + E21 + E22 + E23 + o(n−1),
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where

E(Î) =
1

n2

∑
i 6=j

E

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
E1 =

1

n2

∑
i 6=j

E
{
λT (g(Xi) + g(Xj))

}(γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
E21 =

1

n2

∑
i 6=j

EλTg(Xi)g
T (Xi)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
E22 =

1

n2

∑
i 6=j

EλTg(Xi)λ
Tg(Xj)

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
E23 =

1

n2

∑
i 6=j

EλTg(Xj)g
T (Xj)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
.

Now, we need to find E1,E21,E22 and E23, respectively. Using Taylor expansion for

λ, we have following equation:

λ = Σ−1
1

n

∑
g(Xi) +Op(n

−1), (2.25)

where Σlm = Cov(gl(X), gm(X)), and µ2(K) =
∫
µ2K(µ)dµ. Plug in λ as in (2.25).

Hence

E1 =
1

n3

∑
i 6=j,k

E{Σ−1
∑

g(Xk)}T{g(Xi)+g(Xj)}
(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
.

There are three cases to consider,k = i 6= j,k = j 6= i and k 6= i 6= j, then

E1 =
n− 1

n2
EgT (Xi)Σ

−1 {g(Xi) + g(Xj)}
(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+
n− 1

n2
EgT (Xj)Σ

−1 {g(Xi) + g(Xj)}
(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+

(n− 1)(n− 2)

n2
EgT (Xk)Σ

−1 {g(Xi) + g(Xj)}
(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
,
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since X1, · · · , Xn are independent, and Egl(X) = 0, the third term is equal to zero,

then

E1 =
1

n

∫∫
g(x)TΣ−1 {g(x) + g(y)}

(
γ(x) + γ(y)

2h

)
K

(
x− y
h

)
f(x)f(y)dxdy

+
1

n

∫∫
gT (y)Σ−1 {g(x) + g(y)}

(
γ(x) + γ(y)

2h

)
K

(
x− y
h

)
f(x)f(y)dxdy + o(n−1)

=
1

n

∫∫
gT (y + µh)Σ−1 {g(y + hµ) + g(y)}(

γ(y) +
µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)
K(µ)f(y + µh)f(y)dµdy

+
1

n

∫∫
gT (y)Σ−1 {g(y + µh) + g(y)}(

γ(y) +
µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)
K(µ)f(y + µh)f(y)dµdy

=
1

n

∫∫ {
g(y) + µhg′(y) +

µ2h2

2
g′′(y)

}T
Σ−1{

g(y) + µhg′(y) +
µ2h2

2
g′′(y) + g(y)

}(
γ(y) +

µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)
K(µ)

{
f(y) + µhf ′(y) +

h2µ2

2
f ′′(y)

}
f(y)dµdy

+
1

n

∫∫
gT (y)Σ−1

{
g(y) + hµg′(y) +

µ2h2

2
g′′(y) + g(y)

}
(
γ(y) +

µh

2
γ′(y) + (

µh

2
)2γ′′(y)

)
K(µ){

f(y)− µhf ′(y) +
h2µ2

2
f ′′(y)

}
f(y)dµdy

=
4

n

∫
gT (y)Σ−1g(y)γ(y)f 2(y)dy + o(n−1).
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Next,

E21 =
1

n2

∑
i 6=j

EλTg(Xi)g
T (Xi)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
=

1

n4

∑
i 6=j,k,l

E(Σ−1g(Xk))
Tg(Xi)g

T (Xi)Σ
−1g(Xl)(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
.

There are three cases, k = l 6= i 6= j,k = l = i 6= j and k = l = j 6= i, also we know

Eg(Xi) = 0, so the rest of cases are equal to zero. The second and third case are

order of n−2, so only the first case is considered.

E21 = =
1

n4
E

n∑
l=k 6=i 6=j

g(Xk)
TΣ−1g(Xi)g

T (Xi)Σ
−1g(Xk)(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+ o(n−1)

=
(n− 1)(n− 2)

n3
Eg(Xk)

TΣ−1g(Xi)g
T (Xi)Σ

−1g(Xk)(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
=

1

n
EgT (Xi)Σ

−1g(Xk)g(Xk)
TΣ−1g(Xi)(

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+ o(n−1)

=
1

n
EgT (Xi)Σ

−1g(Xi)

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
+ o(n−1)

=
1

n

∫∫
gT (x)Σ−1g(x)

(
γ(x) + γ(y)

2h

)
K

(
x− y
h

)
f(x)f(y)dxdy + o(n−1)

=
1

n

∫∫
gT (x)Σ−1g(x)

(
γ(x)− µh

2
γ′(x) + (

µh)

2
)2γ′′(x)

)
K(µ)f(x)f(x− µh)dxdµ+ o(n−1)

=
1

n

∫
gT (x)Σ−1g(x)γ(x)f 2(x)dx+ o(n−1).
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Similarly, E23 = E22 = 1
n

∫
gT (x)Σ−1g(x)γ(x)f 2(x)dx+ o(n−1). From above calcula-

tions, then E(Îel)

E(Îel) =E(Î)− E1 + E21 + E22 + E23 + o(n−1)

=E(Î)− 1

n

∫
gT (y)Σ−1g(y)γ(y)f 2(y)dy + o(n−1),

where E(Î) is equation (2.21).

Now, calculate E(Î2el).

E(Î2el) =E
∑
i 6=j

pipj

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
∑
k 6=l

pkpl

(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
=

1

n4
E
∑
i 6=j

∑
k 6=l

1

[1 + λTg(Xi)][1 + λTg(Xj)][1 + λTg(Xk)][1 + λTg(Xl)](
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
.
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Using Taylor expression, then

E(Î2el) =
1

n4
E
∑
i,j

∑
k,l

[1− λTg(Xi) + λTg(Xi)g
T (Xi)λ + o(n−1)]

[1− λTg(Xj) + λTg(Xj)g
T (Xj)λ + o(n−1)]

[1− λTg(Xk) + λTg(Xk)g
T (Xk)λ + o(n−1)]

[1− λTg(Xl) + λTg(Xl)g
T (Xl)λ + o(n−1)](

γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
=

1

n4
E
∑
i,j

∑
k,l

[1− λT (g(Xi) + g(Xj) + g(Xk) + g(Xl))

+λT (g(Xi)g
T (Xj) + g(Xi)g

T (Xk) + g(Xi)g
T (Xl) + g(Xj)g

T (Xk)

+g(Xj)g
T (Xl) + g(Xk)g

T (Xl))λ](
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
.
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Simplifying can get

E(Î21el) = E(Î21 )− EλT (g(Xi) + g(Xj))

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
−EλT (g(Xk) + g(Xl))

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
+EλT (g(Xi)g

T (Xj)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
+EλT (g(Xi)g

T (Xk)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
+EλT (g(Xi)g

T (Xl)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
+EλT (g(Xj)g

T (Xk)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
+EλT (g(Xj)g

T (Xl)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
+EλT (g(Xk)g

T (Xl)λ

(
γ(Xi) + γ(Xj)

2h

)
K

(
Xi −Xj

h

)
(
γ(Xk) + γ(Xl)

2h

)
K

(
Xk −Xl

h

)
=E(Î2)− 2E1E(Î) + 2E(Î)E22 + E1E1 + o(n−1).
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Hence,

Var(Îel) =E(Î2el)− (EÎel)
2

=E(Î2)− 2E1E(Î) + 2E(Î)E22 + E1E1

−[E(Î)− E1 + E21 + E22 + E23]
2

=E(Î2)− 2E1E(Î) + 2E(Î)E22 + E1E1

−{[E(Î)]2 + (E1)
2 + (E21 + E22 + E23)

2 − 2E(Î)E1

− 2E1(E21 + E22 + E23) + 2E(Î)(E21 + E22 + E23)}

=Var(Î)− 2E(Î)(E21 + E23)− (E21 + E22 + E23)
2

+ 2E1(E21 + E22 + E23) + o(n−1).

Finally, MSE(Îel) can be written as

MSE(Îel) = Var(Îel) + Bias(Îel)
2

=Var(Î)− 2E(Î)(E21 + E23)− (E21 + E22 + E23)
2

+ 2E1(E21 + E22 + E23) + (Bias(Î)− E1 + E21 + E22 + E23)
2 + o(n−1)

=MSE(Î) + E1E1 − 2Bias(Î)E1 + 2Bias(Î)(E21 + E22 + E23)

− 2E(Î)(E21 + E23) + o(n−1)

=MSE(Î) + E1E1 − 2Bias(Î)E1 + 2Bias(Î)(E21 + E22 + E23)

− 2(Bias(Î) + I)(E21 + E23) + o(n−1)

=MSE(Î) + E1E1 − 2Bias(Î)E1 + 2Bias(Î)E22 − 2(I)(E21 + E23) + o(n−1)

=MSE(Î)− 2

n

∫
γ(y)f 2(y)dy

∫
gT (y)Σ−1g(y)γ(y)f 2(y)dy + o(n−1).
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3 New Kernel Density Estimations and their Empirical

Likelihood Version

3.1 Introduction of Kennel Density Estimation

The kernel method is a popular tool for the non-parametric estimation of the

probability density function f . Suppose the independent and identical distribution

sample X1, · · · , Xn from a continuous distribution, a kernel density estimator for f

at an arbitrary point x, is

f̂(x) =
1

nh

n∑
1

K

(
x−Xi

h

)
,

where K is a kernel function and h is a smoothing parameter that controls the smooth-

ness of the fit. The choice of the shape of the kernel function is not a particularly

important one. However, the choice of the value of the bandwidth is very important

to trade off between the bias and the variance. When the bandwidth h is increasing,

the bias is increasing but the variance is decreasing. The estimate of point x is the

average of 1
h
K(x−Xi

h
), and the kernel K is bounded. Also, in the symmetric density

function for small h, the estimate only pays attention to the local data (the observa-

tions close to the point x) because the value of K(x−Xi

h
) is almost equal to zero when

Xi is far away from x. But for the large h, the value of K(x−Xi

h
) is extremely close for

most observations, so in this case, it smooths away some details, such as humps and

valleys. Based on these reasons, the kernel density estimation has some drawbacks,
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such as difficulty in catching humps and valleys and finding the bandwidth. In this

chapter, two new kernel density estimators are proposed in Section 3.1.1, and their

empirical likelihood versions are also provided in Section 3.4.

3.1.1 New Kernel Density Estimations

Bandwidth plays an important role in the kernel density estimation. If bandwidth

h is small, the estimate pays too much attention to the particular data set and does

not allow for variation across the sample. If bandwidth h is large, the estimate is too

smooth, in that it smooths away some details. To solve this problem, the bandwidth h

of new estimations has two factors: one is the smoothing parameter h which controls

smoothness, and the other is a scale coefficient which balances the local data and data

from the whole sample. Under the same assumptions on the standard KDE, since

the Xi is the random sample, for the sake of simplicity, choose the scale coefficient is

the index of Xi. So the bandwidth for X1 is h, X2 is 2h, and so on, Xn is nh. For

fixed x, the value of K(x−Xi

ih
) is not only dependent on the distance between x and

Xi, it is also dependent on the scale coefficient i. As a result, these estimators are

smooth enough and are also able to catch the humps and valleys. By minimizing the

AMISE, we reach the optimal hnew.opt = O(n−6/5), which is smaller than standard

kernel optimal bandwidth h = O(n−1/5). The new estimators therefore have smaller

bandwidth ih; only the nth of the data Xn has the same order of the standard kernel

optimal bandwidth. Theoretical and simulation results show that the new kernel

density estimators have better performance than that of standard KDE.

3.1.2 First New kernel Density Estimation: Local Coefficient

Adjustment(LCA)

The first kernel estimator LCA is defined as follows:

f̂LCA(x) =
1

nh

n∑
i=1

1

i
K

(
x−Xi

ih

)
. (3.1)
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In this estimate, each kernel has adjusted coefficient 1/i and the bandwidth coefficient

is i. Also
∫
f̂LCA(x)dx = 1 when

∫
K(µ)dµ = 1. So f̂LCA(x) is the density function.

This estimate transforms ih∗ = h in the standard KDE. So this transformation

makes the value of K(x−Xi

ih
) dependent not only on the distance of x and Xi. In this

way, by choosing a small h, this estimate is able to catch more details and is also

sufficiently smooth, since the estimate pays attention to the whole sample data, not

only some local data.

3.1.3 Second New Kernel Density Estimation: Global Coefficient

Adjustment(GCA)

With the idea of LCA, choosing the same bandwidth, but this estimator has the

global coefficient adjustment 2
n+1

instead of 1
i

for each K(x−Xi

ih
) in LCA. Then GCA

is defined as follows:

f̂GCA(x) =
2

n(n+ 1)h

n∑
i=1

K

(
x−Xi

ih

)
, (3.2)

and
∫
f̂GCA(x)dx = 1 when

∫
K(µ)dµ = 1 , so GCA is density function. Since the

coefficient of this estimator is fixed, adding one more observation yields the following

result,

f̂GCA.n+1(x) =
2

(n+ 1)(n+ 2)h

{
n∑
i=1

K

(
x−Xi

ih

)
+K

(
x−Xn+1

(n+ 1)h

)}

=
n

n+ 2
f̂GCA.n(x) +

2

(n+ 1)(n+ 2)h
K

(
x−Xn+1

(n+ 1)h

)
.

Hence, f̂GCA(x) is a recursive estimate that can be used in sampling schemes.

3.2 New Kernel Density Estimation Properties

In this section, four different measurement errors (see Section 1.4), are discussed

for estimators GCA and LCA: bias, variance, MSE, and MISE.
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3.2.1 Bias and Variance

Theorem 3.2.1 shows the bias and variance based on the GCA and LCA.

Theorem 3.2.1

Bias[f̂GCA(x)] =
1

4
n2h2µ2(K)f ′′(x) + o(n2h2), (3.3)

Bias[f̂LCA(x)] =
1

6
n2h2µ2(K)f ′′(x) + o(n2h2), (3.4)

Var[f̂GCA(x)] =
2

n2h
f(x)R(K) + o(n−1, h), (3.5)

Var[f̂LCA(x)] =
(
∑n

i=1
1
i
)

n2h
f(x)R(K) + o(n−1, h), (3.6)

where µ2(K) =
∫
µ2K(µ)dµ <∞, and R(K) =

∫
K2(µ)dµ.

By minimizing AMISE, we can solve the new method optimal bandwidth hnew.opt =

O(n−6/5) for both estimators, while the standard KDE has the optimal bandwidth

hopt = O(n−1/5).

3.2.2 MSE and MISE

Combine the Bias and the Var in Theorem 3.2.1, then MSE is given by the fol-

lowing theorem.

Theorem 3.2.2

MSEf̂GCA(x) =
2

n2h
R(K)f(x) +

1

16
n4h4µ2

2(K)(f ′′(x))2 + o(n−1), (3.7)

MSEf̂LCA(x) =

∑n
i=1(

1
i
)

n2h
R(K)f(x) +

1

36
n4h4µ2

2(K)(f ′′(x))2 + o(n−1). (3.8)
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This leads to the AMISE expression

AMISEGCA =
2

n2h
R(K) +

1

16
n4h4µ2

2(K)R(f ′′), (3.9)

and

AMISELCA =

∑n
i=1(

1
i
)

n2h
R(K) +

1

36
n4h4µ2

2(K)R(f ′′). (3.10)

Then AMISE-optimal bandwidth is

hAMISE.GCA =n−6/5
[

8R(K)

µ2
2(K)R(f ′′)

]1/5
, (3.11)

and

hAMISE.LCA =n−6/5
[

9R(K)
∑n

i=1(
1
i
)

µ2
2(K)R(f ′′)

]1/5
. (3.12)

Theorem 3.2.2 shows that optimal bandwidth h = o(n−6/5) for the GCA and h =

o(n−6/5(
∑n

i=1
1
i
)1/5), when n is large,

∑n
i=1(

1
i
) ∼ log n, so optimal bandwidth of GCA

is larger than that of GCA. But the optimal bandwidths of GCA and LCA are

both smaller than those of standard KDE.

3.2.3 Estimation of Density functionals

An important component of bandwidth selectors is the estimation of integrated

squared density derivatives. The general integrated squared density derivative func-

tional is

R(f (p)) =

∫
f (p)(x)2dx.

Under sufficient smoothness assumption on f , using integration by parts can get,

R(f (s)) = (−1)s
∫
f (2s)(x)f(x)dx.
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Therefore, it is sufficient to study the functional estimation of this form

ψ =

∫
f (r)(x)f(x)dx,

for r even. Note that the sign of ψ2s is the same as that of (−1)s and ψr = 0 if r is

odd. Also note that

ψr = E{f (r)(x)}.

This motivates the density estimator

ψ̂r(h) =

∫
f (r)(x)dFn(x) = n−1

n∑
i=1

f̂ (r)(Xi;h). (3.13)

So for the GCA and LCA, we have

ψ̂r(h)GCA

=
2

n2(n+ 1)h

n∑
i=1

n∑
j=1

(
1

jh

)r
K(r)

(
Xi −Xj

jh

)

=
2K(r)(0)

n(n+ 1)hr+1

n∑
i=1

(
1

j
)r +

2

n2(n+ 1)h

n∑
i 6=j

(
1

jh
)rK(r)

(
Xi −Xj

jh

)
, (3.14)

ψ̂r(h)LCA

=
1

n2

n∑
i=1

n∑
j=1

(
1

jh

)r+1

K(r)

(
Xi −Xj

jh

)

=
K(r)(0)

n2hr+1

n∑
i=1

(
1

j
)r+1 +

1

n2h

n∑
i 6=j

(
1

jh
)r+1K(r)

(
Xi −Xj

jh

)
, (3.15)

where h is the bandwidth and K is kernel density.
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Theorem 3.2.3

Eψ̂r(h)GCA =
2K(r)(0)

n(n+ 1)hr+1

n∑
i=1

(
1

j
)r +

n− 1

n
ψr +

n2h2

4
µ2(K)ψr+2 + o(n2h2)

Eψ̂r(h)LCA =
K(r)(0)

n2hr+1

n∑
i=1

(
1

j
)r+1 +

n− 1

n
ψr +

n2h2

6
µ2(K)ψr+2 + o(n2h2)

Varψ̂r(h)GCA =
3

n

∫
f(y)[f (r)(y)]2dy − 8

n
[

∫
f(y)f (r)(y)dy]2

Varψ̂r(h)LCA =
2

nh2r+1
ψ0R(K(r)) +

4

n
{
∫
f(y)[f (r)(y)]2dy]− ψr},

where ψr+s =
∫
f (r)(x)f (s)(x)dx

From this theorem, we see that ψ̂r(h) is an asymptotically unbiased estimator. Also

the variance of ψ̂r(h) does not depend on h.

3.3 Bandwidth Selection

The choice of the bandwidth h is more important for the behavior of f̂ than the

choice of kernel K. A small value of h makes the estimate look ”wiggly” and shows

spurious features, whereas too large a value of h will lead to an estimate that is too

smooth, in the sense that it is too biased and may not reveal structural features,

such as bimodality. Figure 5 shows a mixture normal distribution 0.5N(−1, 4/9) +

0.5N(1, 4/9) by using GCA estimator for different values of h based on a sample of

100 observations for 1000 replications. And Figure 6 uses the LCA estimator. These

two figures both show that for h = 0.001, the estimators are not smooth, but they

still catch humps and valleys very well. Even if we choose a smaller bandwidth for

each replication data set by choosing a random bandwidth ih instead of a fixed h,

the estimates still allow for variation across samples. Unlike standard KDE, if we

choose a smaller bandwidth, the estimate focuses on particular data and is overly

noisy for most of the whole sampled data. In these two figures, a compromise is

reached with h = 0.005 represented by the red dotted lines. These estimates are not
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overly noisy and recover the essential structure of the true density. When h = 0.015,

these estimates are overly smooth, since the bimodality structure has been smoothed

away.
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Figure 5: Density estimate by GCA from bimodal distribution
0.5N(−1, 4/9) + 0.5N(1, 4/9) for different bandwidths
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Figure 6: Density estimate by LCA from bimodal distribution
0.5N(−1, 4/9) + 0.5N(1, 4/9) for different bandwidth
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In this section, the performance measures are mean integrated squared error

MISE (1.12) and integrated squared error ISE (1.13). Based on these error cri-

teria, we introduce a reliable data-driven estimator of the optimal bandwidth, the

cross-validation via plug-in method which tries to minimize the MISE to find hopt.

3.3.1 Unbiased Cross Validation Method

The idea of unbiased cross-validation was introduced by Rudemo (1982) and Bow-

man (1984). In this section, we employ this unbiased least squared cross-validation

of bandwidth selection in the new kernel estimate GCA and LCA. We will begin

our description of selection of bandwidth selectors. Ideally, for each sample, we would

like to construct a density estimate to minimize the ISE (1.13). Least squares cross-

validation attempts to address ISE rather than MISE. Its motivation comes from

expanding the MISE of f̂(.;h) to obtain

MISEf̂(x;h) = E

∫
(f̂(x))2 − 2E

∫
f̂(x)f(x)dx+

∫
f 2(x)dx. (3.16)

Since the last term does not depend on h, minimizing the MISEf̂(x, h) is equivalent

to minimizing

MISEf̂(x, h)−
∫
f 2(x)dx = E

∫
(f̂(x))2 − 2E

∫
f̂(x)f(x)dx. (3.17)

Then consider the cross-validation estimator

LSCV(h) ≡
∫
f̂(x)2dx− 2

∫
f̂−i(x)dFn(x)

=

∫
f̂(x)2dx− 2

n∑
i=1

f̂−i(Xi), (3.18)
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where Fn(x) is empirical cumulative density function (ECDF) based on the sample

with Xi deleted.

f̂−i(x)GCA =
1

n(n− 1)h
{
i−1∑
j=1

K

(
x−Xj

jh

)
+

n∑
j=i+1

K

(
x−Xj

(j − 1)h

)
}

and

f̂−i(x)LCA =
1

(n− 1)h

n∑
j=1

1

j
K

(
x−Xj

jh

)

Now we check the expectations of LSCV(h)GCA and LSCV(h)LCA.

1

n
E

n∑
i=1

f̂−i(Xi)GCA

=
n∑
i=1

i−1∑
j=1

1

n2(n− 1)h
K

(
y −Xj

jh

)
f(y)dy +

n∑
i=1

n∑
j=i+1

1

n(n− 1)h
K

(
y −Xj

jh

)
f(y)dy

=E

∫
f̂(y)GCAf(y)dy.

Same approach on LSCV(h)LCA,

1

n
E

n∑
i=1

f̂−i(Xi)LCA = E

∫
f̂(y)LCAf(y)dy.

So,

E{LSCV(h)GCA} =MISE(h)GCA −R(f),

E{LSCV(h)LCA} =MISE(h)LCA −R(f).

Hence, for the fixed bandwidth, LSCV(h)GCA and LSCV(h)LCA are unbiased estima-

tors.
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Now we will introduce least squares unbiased cross-validation for the GCA.

L̂SCVGCA(h)

=

∫
f̂(x)2dx− 2

∫
f̂−i(x)dFn

=
n∑
i=1

n∑
j=1

∫
2

n(n+ 1)h
K

(
x−Xi

ih

)
2

n(n+ 1)h

− 4

n2(n− 1)h

n∑
i=1

{
i−1∑
j=1

K

(
x−Xj

jh

)
+

n∑
j=i+1

K

(
x−Xj

(j − 1)h

)
}

=
2R(K)

n(n+ 1)h
+

4

n2(n+ 1)(n− 1)

∑∑
i 6=j

∫
1

h2
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
dx

− 4

n2(n− 1)h

n∑
i=1

{
i−1∑
j=1

K

(
x−Xj

jh

)
+

n∑
j=i+1

K

(
x−Xj

(j − 1)h

)
} (3.19)

=
2R(K)

n2h
+

4

n4

∑∑
i 6=j

∫
1

h2
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
dx

− 4

n3h

n∑
i=1

{
i−1∑
j=1

K

(
x−Xj

jh

)
+

n∑
j=i+1

K

(
x−Xj

(j − 1)h

)
}. (3.20)

The last equation replaces n± 1 to n.
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L̂SCVLCA(h)

=

∫
f̂(x)2dx− 2

∫
f̂−i(x)dFn

=
n∑
i=1

n∑
j=1

∫
1

n2h2ij
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
dx

− 2

n(n− 1)h

∑∑
i 6=j

1

j
K

(
Xi −Xj

jh

)

=

∑n
i=1

1
i
R(K)

nh
+

1

n2h2

∑∑
i 6=j

∫
1

ij
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
dx

− 2

n(n− 1)h

∑∑
i 6=j

1

j
K

(
Xi −Xj

jh

)
(3.21)

=

∑n
i=1

1
i
R(K)

nh
+

1

n2h2

∑∑
i 6=j

∫
1

ij
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
dx

− 2

n2h

∑∑
i 6=j

1

j
K

(
Xi −Xj

jh

)
. (3.22)

3.3.2 Bias Cross Validation Method

The idea of biased least squares cross-validation methods for the classic KDE

goes back to Scott and Terrell (1987). In this section, we employ this biased cross-

validation method of bandwidth selection in the new kernel estimate GCA and LCA.

The motivation comes from asymptotic expansion for AMISE as given in (3.9), and

(3.10) contains only one unknown quantity ( R(f̂
(p)
GCA) and R(f̂

(p)
LCA)) , where f̂GCA

and f̂LCA are new kernel estimators which are defined in section 3.1.1 and (p) is

the p derivatives. The BCVGCA and BCVLCA objective functions are obtained by

replacing the unknown R(f ′′) in the (3.9) and (3.10) by the estimators

R̃(f ′′GCA) =
4

n4h6

∑
i 6=j

∫
(

1

ji
)2K ′′

(
x−Xi

ih

)
K ′′
(
x−Xj

jh

)
dx,

R̃(f ′′LCA) =
1

n2h6

∑
i 6=j

∫
(

1

ji
)3K ′′

(
x−Xi

ih

)
K ′′
(
x−Xj

jh

)
dx.
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These two selectors, R̃(f ′′GCA) and R̃(f ′′LCA), used the data set of the i 6= j case.

These selectors use cross-validation techniques.

BCV(h)GCA =
2

n2h
R(K) +

n4

16
h4µ2

2(K)R̃(f ′′)GCA, (3.23)

BCV(h)LCA =

∑n
i=1

1
i

n2h
R(K) +

1

9
n4h4µ2

2(K)R̃(f ′′)LCA. (3.24)

3.4 Empirical Likelihood Based on GCA and LCA Estimation

In some statistical applications, additional information about f is available: the

mean or variance of a distribution may be known, such as when estimating equations.

This additional information usually can be expressed as (1.10).

3.4.1 Empirical Likelihood Based on GCA(ELGCA)

ELGCA uses empirical likelihood in conjunction with the new kernel method

(GCA) to provide a systematic approach for capturing the extra information. Sup-

pose the extra information can be formulated as equation (1.8), then, ELGCA can be

constructed by replacing n−1 in equation (3.2) with the empirical likelihood pi under

extra information (1.8). Then pi can be determined by maximizing a multinational∏n
1 npi subject to

∑
pi = 1,

∑
ipi =

n+ 1

2
and

∑
pigl(Xi) = 0 (l = 1, 2, · · · , q).

The second constraint makes the equation (3.26) to be density function. Let

λ1, λ2, · · · , λq be Lagrange multipliers corresponding to the q constraints. Define

λ = (λ1, λ2, · · · , λq)T and g(Xi) = {g1(Xi), g2(Xi), · · · , gq(Xi)}. Then the weight pi

are

pi = n−1
{

1 + λTg(Xi)
}−1

(i = 1, 2, · · · , n), (3.25)
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where λ is the solution of

n∑
i=1

gl(Xi)

1 + λTg(Xi)
= 0 (l = 1, 2, · · · , q).

ELGCA is obtained by replacing n−1 with the pi (3.25) in (3.2), so

f̂el.GCA(x) =
2

(n+ 1)h

n∑
i=1

piK

(
x−Xi

ih

)
. (3.26)

It is easy to check that f̂el.GCA(x) is a density function.

3.4.2 Empirical Likelihood Based on LCA Estimation (ELLCA)

This section, similar to Section 3.4.1, uses the empirical likelihood technique to

apply the LGA estimation. Suppose the extra information about f is available and

can be expressed as the 1.8. Then pi can be determined by maximizing a multinational∏n
i=1 npi

∑
pi = 1, and

∑
pigl(Xi) = 0 (l = 1, 2, · · · , q).

ELLCA is obtained by replacing n−1 with the pi at equation 1.9 in the LCA (3.1).

So ELLCA can be expressed

f̂el.LGA(x) =
1

h

n∑
i=1

pi
i
K

(
x−Xi

ih

)
. (3.27)

It easy to check f̂el.LGA(x) is a density function.

3.4.3 Bias and Variance of ELGCA and ELLCA

In this section, the bias and variance of the new empirical likelihood-based kernel

density estimators are investigated, and the performance of all estimators is compared.

We assume the function gl and kernel K satisfied the following conditions:
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1. for l = 1, · · · , q, gl are smooth functions with enough derivatives;

2. Eg
(k)
l (X) <∞ for nonnegative integer k 6 4;

3. K is symmetric about zero and is the probability density.

Theorem 3.4.1

E(f̂el.GCA) =E(f̂GCA) + o(n−1), (3.28)

E(f̂el.LCA(x)) =E(f̂LCA) + o(n−1), (3.29)

Var(f̂el.GCA(x)) =Var(f̂GCA(x))− 1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1), (3.30)

Var(f̂el.LCA(x)) =Var(f̂LCA(x))− 1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1), (3.31)

where Ef̂GCA,Ef̂LCA,Varf̂GCA and Varf̂LCA are defined in Theorem 3.2.1.

Theorem 3.4.1 shows that the difference between E(f̂el.GCA) and E(f̂GCA) is o(n−1),

so is between E(f̂el.GCA) and E(f̂GCA). Also it is obvious that the coefficient of n−1

is always negative in the equation (3.30) and (3.31), there is an O(n−1) reduction

in the variance of f̂el.GCA(x) and f̂GCA(x), so is variance of f̂el.LCA(x) and f̂LCA(x).

Using the empirical likelihood technique can reduce the variance with O(n−1), and

this reduction decreases as the sample size increases. Simulations show that when n

is greater than 25, f̂el.GCA(x) and f̂GCA(x) are almost the same for standard normal

distribution, and so are f̂el.LCA(x) and f̂LCA(x).

Immediately from the Theorem 3.4.1, the MISE for both estimators has the following

results,

MISEf̂el.GCA =MISEf̂GCA −
1

n

∫
g(x)TΣ−1g(x)f(x)2dx+ o(n−1) (3.32)

MISEf̂el.LCA =MISEf̂LCA −
1

n

∫
g(x)TΣ−1g(x)f(x)2dx+ o(n−1) (3.33)
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There is a reduction in the mean integrated square error due to using the extra

information by the empirical likelihood, since the coefficients of n−1 in the equation

(3.32) and (3.33) are always positive.

3.5 Simulation Study

In this section, the performance of six estimators will be compared: GCA,

ELGCA, LCA, ELLCA, standard KDE, and ELKDE. Data will be generated

from standard normal distribution, mixture normal 0.5N(−1, 4/9)+0.5N(1, 4/9) and

mixture normal 0.75N(0, 1) + 0.25N(1.5, 4/9), with 1000 replications and sample size

n=15, 25, 50, 100 and 500. All figures show that GCA and LCA are significantly

better than standard KDE, especially at catching humps and valleys and on the tails

(extreme points). When the sample size is small, the empirical likelihood version is

significantly better than the non-empirical likelihood version. The difference between

the estimators shrinks as the sample size increases.

For the normal distribution, when sample size n=15 (see figure 7), GCA and

ELGCA are almost identical, and both are close to true density function. ELLCA

is slightly better than LCA, and all four estimators are significantly better than

ELKDE and KDE. Especially on the mode and two tails, the two new estimators

and their empirical likelihood versions are better than KDE and ELKDE. When

the sample size n=25 (see figure 8), the empirical likelihood version estimators are

almost the same as their standard estimators. But GCA is better than LCA, and

both estimators are better than KDE. And when sample size increases, the difference

between these estimators decreases. When sample size n=500, these six estimators

are almost the same.

For the mixture normal 0.75N(0, 1)+0.25N(1.5, 4/9), when sample size n=15 (see

figure 9), ELGCA is best at catching the right hump, followed by ELLCA, GCA,

LCA, ELKDE, and finally, KDE. For catching the valley, GCA is best, followed

by LCA, ELGCA, ELLCA and KDE. For catching the left hump, ELGCA is
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almost the same as GCA, and both are better than ELLCA and LCA. All four of

these estimators are significantly better than ELKDE and KDE. Figure 10 shows

that the empirical likelihood version estimates are significant better than standard

estimates for sample size n=25, n=50. When n=100, empirical likelihood version

estimations are slightly better than standard estimators. When sample size n=500,

empirical likelihood version estimations are almost the same as standard estimators.

But for all cases, LCA is better than GCA, and both of these estimators are better

than KDE. Also, when sample sizes increase, the difference between these estimators

decreases. But the new estimators are better than classic KDE.

For the mixture normal distribution 0.5N(−1, 4/9) + 0.5N(1, 4/9), this case is

similar with the previous two cases.
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Figure 7: Kernel estimates from standard normal distribution for sample size n=15
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(d) n=500

Figure 8: Density estimate from normal distribution for different sample size
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Figure 9: Kernel density estimation from 0.75N(0, 1) + 0.25N(1.5, 4/9) for sample
size n=15
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(d) n=500

Figure 10: Kernel density estimation from 0.75N(0, 1) + 0.25N(1.5, 4/9) for
different sample size

62



-3 -2 -1 0 1 2 3

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

D
en

si
ty

 e
st

im
at

es

Normal
KDE
ELKDE
GCA
ELGCA
LCA
ELLCA

Figure 11: Kernel estimations from 0.5N(−1, 4/9) + 0.5N(1, 4/9) for sample size
n=15
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(d) n=500

Figure 12: Density estimate from normal distribution for different sample size
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3.6 Appendix

3.6.1 Proof Theorem 3.2.1

Proof First we show equations (3.3) and (3.4).

E
1

h
K

(
x−Xi

ih

)
=

∫
1

h
K

(
x− y
ih

)
f(y)dy

= i

∫
K(µ)f(x− µih)dµ

= i

∫
K(µ){f(x)− ihµf ′(x) +

i2h2µ2

2
f ′′(x) + o(i2h2)}dµ

= if(x) +
i3h2

2
µ2(K)f ′′(x) + o(i3h2).

Then,

Ef̂GCA(x) = E
2

n(n+ 1)h

n∑
i=1

K

(
x−Xi

ih

)
=

2

n(n+ 1)

n∑
i=1

E
1

h
K

(
x−Xi

ih

)
=

2

n(n+ 1)

n∑
i=1

(
if(x) +

i3h2

2
µ2(K)f ′′(x)

)
= f(x) +

1

4
n2h2µ2(K)f ′′(x) + o(n2h2).

So equation (3.3) is proved.

Ef̂LCA(x) = E
1

nh

n∑
i=1

1

i
K

(
x−Xi

ih

)
=

1

n

n∑
i=1

1

i
E

1

h
K

(
x−Xi

ih

)
=

1

n

n∑
i=1

1

i
{if(x) +

i3h2

2
µ2(K)f ′′(x) + o(i3h2)}

= f(x) +
1

6
n2h2µ2(K)f ′′(x) + o(n2h2)

Equation (3.4) is proved.
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Next we calculate the Variance for these two new methods.

First,

E
1

h2
K2

(
x−Xi

ih

)
=

1

h2

∫
K2

(
x− y
ih

)
f(y)dy

=
1

h2

∫
K2(µ)f(x− µih)ihdµ

=
i

h

∫
K2(µ){f(x)− µihf ′(x) +

i2h2µ2

2
f ′′(x)}dµ

=
i

h
{R(K)f(x) +

i2

2
h2f ′′(x)

∫
K2(µ)µ2dµ}.

So,

Var(
1

h
K

(
x−Xi

ih

)
)

= E{1

h
K

(
x−Xi

ih

)
}2 − {E 1

h
K

(
x−Xi

ih

)
}2

=
i

h
{R(K)f(x) +

i2

2
h2f ′′(x)

∫
K2(µ)µ2dµ} − {if(x) +

i3h2

2
µ2(K)f ′′(x)}2

=
i

h
R(K)f(x) +

i3

2
hf ′′(x)

∫
K2(µ)µ2dµ− i2f 2(x)− i4h2

2
f(x)µ2(K),

hence,

Varf̂GCA(x) =
4

n2(n+ 1)2

n∑
i=1

Var
1

h
K

(
x−Xi

ih

)
=

2

n2h
R(K)f(x)− 2

3n
f 2(x) + o(h, n−1),
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equation (3.5) is proved,

Var{f̂LCA(x)} =
1

n2

n∑
i=1

Var
1

ih
K

(
x−Xi

ih

)
=

1

n2

n∑
i=1

1

i2
{ i
h
{R(K)f(x) +

i3

2
hf ′′(x)

∫
K2(µ)µ2dµ− i2f 2(x)− i4h2

2
f(x)µ2(K)}

=

∑n
i=1

1
i

n2h
R(K)f(x)− 1

n
f 2(x) + o(n−1, h),

and equation (3.6) is proved.

This completes the proof of Theorem 3.2.1.

3.6.2 Proof Theorem 3.2.3

Proof From (3.14), the first term is independent of data. Clearly,

Eψ̂r(h)GCA =
2K(r)(0)

n(n+ 1)hr+1

n∑
i=1

(
1

j
)r +

2

n2(n+ 1)h

n∑
i 6=j

E(
1

jh
)rK(r)

(
Xi −Xj

jh

)
,

and

E(
1

jh
)rK(r)

(
Xi −Xj

jh

)
=

∫∫
(

1

jh
)rK(r)

(
x− y
jh

)
f(x)f(y)dxdy

=

∫∫
K

(
x− y
jh

)
f (r)(x)f(y)dxdy

= jh

∫
f (r)(x)f(x)dx+

j3h3

2
µ2(K)

∫
f ′′(x)f r(x)dx.

So

Eψ̂r(h)GCA =
2K(r)(0)

n(n+ 1)hr+1

n∑
i=1

(
1

j
)r +

n− 1

n
ψr +

n2h2

4
µ2(K)ψr+2 + o(n2h2),
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and

Eψ̂r(h)LCA =
K(r)(0)

n2hr+1

n∑
i=1

(
1

j
)r+1 +

n− 1

n
ψr +

n2h2

6
µ2(K)ψr+2 + o(n2h2),

where ψr+s =
∫
f (r)(x)f (s)(x)dx. The first equation in the theorem is proved. Now

we need to find variance of ψ̂r(h)GCA.

Varψ̂r(h) =
4

n4(n+ 1)2h2
Var

∑
i 6=j

(
1

jh
)rK(r)

(
Xi −Xj

jh

)

First, we need to find E[
∑

i 6=j(
1
jh

)rK(r)
(
Xi−Xj

jh

)
]2. There are some different cases:

E[
∑
i 6=j

(
1

jh
)rK(r)

(
Xi −Xj

jh

)
]2 = E1 + E2 + E3 + E4 + E5 + E6 + E7,

where

E1 when i = k 6= j = l; E2 when i = l 6= j = k; E3 when i = k 6= j 6= l;

E4 when i = l 6= j = k; E5 when i 6= j = k 6= l; E6 when i 6= j = l 6= k;

E7 when i 6= j 6= k 6= l;

E1 =E
∑

k=i 6=j=l

(
1

jh
)2r[K(r)

(
Xi −Xj

jh

)
]2

=
∑
i 6=j

(
1

jh
)2rE[K(r)

(
Xi −Xj

jh

)
]2

=
∑
i 6=j

(
1

jh
)2r
∫∫

[K(r)

(
x− y
jh

)
]2f(x)f(y)dxdy

=
∑
i 6=j

(
1

jh
)2r−1

∫∫
[K(r)(µ)]2f(y + µjh)f(y)dydµ

=
∑
i 6=j

(
1

jh
)2r−1R(f)R(K(r))

=o(n−1),

68



E2 = E
∑

l=i 6=j=k

(
1

jh
)r(

1

ih
)rK(r)

(
Xi −Xj

jh

)
K(r)

(
Xj −Xi

ih

)
=
∑
i 6=j

(
1

jh
)r(

1

ih
)rEK(r)

(
Xi −Xj

jh

)
K(r)

(
Xj −Xi

ih

)
=
∑
i 6=j

(
1

jh
)r(

1

ih
)r
∫∫

K(r)

(
x− y
jh

)
K(r)

(
y − x
ih

)
f(x)f(y)dxdy

=
∑
i 6=j

(
1

jh
)r(

1

ih
)rh

∫∫
K(r)(

µ

j
)K(r)(

−µ
i

)f(y + µh)f(y)dydµ

=o(n−1),

E3 = E
∑

k=i 6=j 6=l

(
1

jh
)r(

1

lh
)rK(r)

(
Xi −Xj

jh

)
K(r)

(
Xi −Xl

lh

)
=
∑
i 6=j 6=l

(
1

jh
)r(

1

lh
)rEK(r)

(
Xi −Xj

jh

)
K(r)

(
Xi −Xl

lh

)
=
∑
i 6=j 6=l

(
1

jh
)r(

1

lh
)r
∫∫∫

K(r)

(
x− y
jh

)
K(r)

(
x− z
lh

)
f(x)f(y)f(z)dxdydz

=
∑
i 6=j 6=l

∫
f(x)[

∫
(

1

jh
)rK(r)

(
x− y
jh

)
f(y)dy

∫
(

1

lh
)rK(r)

(
x− z
lh

)
f(z)dz]dx

=
∑
i 6=j 6=l

∫
f(x)[

∫
K

(
x− y
jh

)
f (r)(y)dy

∫
K

(
x− z
lh

)
f (r)(z)dz]dx

=
∑
i 6=j 6=l

jlh2
∫
f(x)[

∫
K(µ)f (r)(x− µjh)dµ

∫
K(ν)f (r)(x− νlh)dz]dν

=
1

12
n2(n− 1)(n− 2)(3n− 1)h2

∫
f(x)[f (r)(x)]2dx,
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E4 = E
∑

l=i 6=j 6=k

(
1

jh
)r(

1

ih
)rK(r)

(
Xi −Xj

jh

)
K(r)

(
Xk −Xi

ih

)
=
∑
i 6=j 6=k

(
1

jh
)r(

1

ih
)rEK(r)

(
Xi −Xj

jh

)
K(r)

(
Xk −Xi

ih

)
=
∑
i 6=j 6=k

(
1

jh
)r(

1

ih
)r
∫∫∫

K(r)

(
x− y
jh

)
K(r)

(
z − x
ih

)
f(x)f(y)f(z)dxdydz

=
∑
i 6=j 6=k

∫
f(x)[

∫
(

1

jh
)rK(r)

(
x− y
jh

)
f(y)dy

∫
(

1

ih
)rK(r)

(
z − x
ih

)
f(z)dz]dx

=
∑
i 6=j 6=k

∫
f(x)[

∫
K

(
x− y
jh

)
f (r)(y)dy

∫
K

(
z − x
ih

)
f (r)(z)dz]dx

=
∑
i 6=j 6=k

ijh2
∫
f(x)[

∫
K(µ)f (r)(x− µjh)dµ

∫
K(ν)f (r)(x+ νih)dν]dx

=
1

12
n2(n− 1)(n− 2)(3n− 1)h2

∫
f(x)[f (r)(x)]2dx,

E5 = E
∑

l 6=i 6=j=k

(
1

jh
)r(

1

lh
)rK(r)

(
Xi −Xj

jh

)
K(r)

(
Xj −Xl

lh

)
=

∑
l 6=i 6=j=k

(
1

jh
)r(

1

lh
)rEK(r)

(
Xi −Xj

jh

)
K(r)

(
Xj −Xl

lh

)
=

∑
l 6=i 6=j=k

(
1

jh
)r(

1

lh
)r
∫∫∫

K(r)

(
x− y
jh

)
K(r)

(
y − z
lh

)
f(x)f(y)f(z)dxdydz

=
∑

l 6=i 6=j=k

∫
f(y)[

∫
(

1

jh
)rK(r)

(
x− y
jh

)
f(x)dx

∫
(

1

lh
)rK(r)

(
y − z
lh

)
f(z)dz]dy

=
∑

l 6=i 6=j=k

∫
f(y)[

∫
K

(
x− y
jh

)
f (r)(x)dx

∫
K

(
y − z
lh

)
f (r)(z)dz]dy

=
∑

l 6=i 6=j=k

ijh2
∫
f(y)[

∫
K(µ)f (r)(y + µjh)dµ

∫
K(ν)f (r)(y − νlh)dν]dy

=
1

12
n2(n− 1)(n− 2)(3n− 1)h2

∫
f(y)[f (r)(y)]2dy,
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E6 = E
∑

k 6=i 6=j=l

(
1

jh
)r(

1

jh
)rK(r)

(
Xi −Xj

jh

)
K(r)

(
Xk −Xj

jh

)
=

∑
k 6=i 6=j=l

(
1

jh
)r(

1

jh
)rEK(r)

(
Xi −Xj

jh

)
K(r)

(
Xk −Xj

jh

)
=

∑
k 6=i 6=j=l

(
1

jh
)r(

1

jh
)r
∫∫∫

K(r)

(
x− y
jh

)
K(r)

(
z − y
jh

)
f(x)f(y)f(z)dxdydz

=
∑

k 6=i 6=j=l

∫
f(y)[

∫
(

1

jh
)rK(r)

(
x− y
jh

)
f(x)dx

∫
(

1

jh
)rK(r)

(
z − y
jh

)
f(z)dz]dy

=
∑

k 6=i 6=j=l

∫
f(y)[

∫
K

(
x− y
jh

)
f (r)(x)dx

∫
K

(
y − z
jh

)
f (r)(z)dz]dy

=
∑

k 6=i 6=j=l

j2h2
∫
f(y)[

∫
K(µ)f (r)(y + µjh)dµ

∫
K(ν)f (r)(y − νjh)dν]dy

=
1

6
n(n− 1)2(n− 2)(2n− 3)h2

∫
f(y)[f (r)(y)]2dy,

and

E7 = E
∑

i 6=j 6=k 6=l

(
1

jh
)r(

1

lh
)rK(r)

(
Xi −Xj

jh

)
K(r)

(
Xk −Xl

lh

)
=

∑
i 6=j 6=k 6=l

E(
1

jh
)rK(r)

(
Xi −Xj

jh

)
E(

1

lh
)rK(r)

(
Xk −Xl

lh

)
=

∑
i 6=j 6=k 6=l

∫∫
(

1

jh
)rK(r)

(
x− y
jh

)
f(x)f(y)dxdy∫∫

(
1

lh
)rK(r)

(
z − k
jh

)
f(z)f(k)dzdk

=
∑

i 6=j 6=k 6=l

∫∫
K

(
x− y
jh

)
f(x)f (r)(y)dxdy

∫∫
K

(
z − k
lh

)
f(z)f (r)(k)dzdk

=
∑

i 6=j 6=k 6=l

[jhK(µ)f(x)f (r)(x− µjh)dxdµ][lhK(ν)f(z)f (r)(z − lhν)dzdν]

=
∑

k 6=i 6=j 6=l

jlh2[

∫
f(x)f (r)(x)dx]2

=n(n− 1)[
1

4
n4 − 2n3 +

23

4
n2 − 7n+ 3]h2[

∫
f(y)f (r)(y)dy]2

Then Var
∑

i 6=j(
1
jh

)rK(r)
(
Xi−Xj

jh

)
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Var
∑
i 6=j

(
1

jh
)rK(r)

(
Xi −Xj

jh

)
= E1 + · · ·+ E7 − [E

∑
i 6=j

(
1

jh
)rK(r)

(
Xi −Xj

jh

)
]2

=
1

4
n2(n− 1)(n− 2)(3n− 1)

∫
f(y)[f (r)(y)]2dy

+n(n− 1)[
1

4
n4 − 2n3 +

23

4
n2 − 7n+ 3]h2[

∫
f(y)f (r)(y)dy]2

−n
4(n− 1)2

4
h2[

∫
f (r)(x)f(x)dx]2

=
3

4
n5h2

∫
f(y)[f (r)(y)]2dy − 2n5h2[

∫
f(y)f (r)(y)dy]2.

Then it is

Varψ̂r(h)GCA =
3

n

∫
f(y)[f (r)(y)]2dy − 8

n
[

∫
f(y)f (r)(y)dy]2.

Taking the same approach to Varψ̂r(h)LCA, we have

Varψ̂r(h)LCA =
2

nh2r+1
ψ0R(K(r)) +

4

n
{
∫
f(y)[f (r)(y)]2dy]− ψr}.
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3.6.3 Proof Theorem 3.4.1

Proof Using a similar proof to Chen (1997), we can get

f̂el.GCA(x) =
2

(n+ 1)h

n∑
i=1

piK

(
x−Xi

ih

)
=

2

n(n+ 1)h

n∑
i=1

1

1 + λTg(Xi)
K

(
x−Xi

ih

)
=

2

n(n+ 1)h

n∑
i=1

[1− λTg(Xi) + λTg(Xi)g
T (Xi)λ +Op(n

−1)]

K

(
x−Xi

ih

)
= f̂GCA(x)− λTT1 + λTT2λ +Op(n

−1),

where the vector T1 and q × q matrix T2 are defined by

T1 =
2

n(n+ 1)h

n∑
1

g(Xi)K

(
x−Xi

ih

)
,

T2 =
2

n(n+ 1)h

n∑
1

g(Xi)g(Xi)
TK

(
x−Xi

ih

)
.

A Taylor expansion for λ, similar to those given in Chen (1997), is

λ = Σ−1
1

n

n∑
i=1

g(Xi) +Op(n
−1), (3.34)

where Σ = cov(gl(X), gm(X)).
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E(λTT1) = E[Σ−1
1

n

n∑
j=1

g(Xj)]
T 2

n(n+ 1)h

n∑
i=1

g(Xi)K

(
x−Xi

ih

)

=
2

n2(n+ 1)h
E

n∑
i=1

n∑
j=1

g(Xj)
TΣ−1g(Xi)K

(
x−Xi

ih

)

=
2

n2(n+ 1)h
E

n∑
i=1

g(Xi)
TΣ−1g(Xi)K

(
x−Xi

ih

)
=

1

n
g(y)TΣ−1g(y)f(y) + o(n−1).

E

(
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

))
=

∫
g(x)TΣ−1g(x)K

(
y − x
ih

)
f(x)dx

=

∫
g(y − µih)TΣ−1g(y − µih)K(µ)f(y − µih)ihdµ

= ih

∫
{g(y)− µihg′(y) +

µ2h2i2

2
g′′(y)}TΣ−1

{g(y)− µihg′(y) +
µ2h2i2

2
g′′(y)}

K(µ){f(y)− µihf ′(y) +
µ2h2i2

2
f ′′(y)}dµ

= ihg(y)TΣ−1g(y)f(y) + o(n−1).
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E(λTT2λ) =
2

n3(n+ 1)h
E

n∑
i=1

n∑
j=1

n∑
k=1

g(Xj)
TΣ−1g(Xi)

g(Xi)
TΣ−1g(Xk)K

(
x−Xi

ih

)
=

2

n3(n+ 1)h

n∑
i=1

E

(
g(Xi)

TΣ−1g(Xi)g(Xi)
TΣ−1g(Xi)K

(
x−Xi

ih

))
=

2

n2(n+ 1)h

n∑
i=1

E

(
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

))
=

1

n
g(y)TΣ−1g(y)f(y) + o(n−1).

Thus, by delta method,

E(f̂el.GCA) = E(f̂GCA) + o(n−1). (3.35)

To derive the variance of f̂el.GCA,

f̂el.GCA(x)2

=
4

n2(n+ 1)2h2

n∑
i,j

1

1 + λTg(Xi)

1

1 + λTg(Xj)
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
= f̂GCA(x)2 − 2λTT1f̂GCA(x) + 2λTT2λf̂GCA(x) + λTT1T1λ + o(n−1),
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E(λTT1f̂GCA(x))

=
4

n3(n+ 1)2h2
E

(
n∑

i,j,k=1

g(Xj)
TΣ−1g(Xi)K

(
x−Xi

ih

)
K

(
x−Xk

kh

))

=
4

n3(n+ 1)2h2

n∑
i=j 6=k

E

(
g(Xj)

TΣ−1g(Xi)K

(
x−Xi

ih

))
E

(
K

(
x−Xk

kh

))

+
4

n3(n+ 1)2h2

n∑
j=k 6=i

E

(
g(Xj)

TK

(
x−Xk

kh

)
Σ−1

)
E

(
g(Xi)K

(
x−Xi

ih

))

+
4

n3(n+ 1)2h2

n∑
i=1

E

(
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

)2
)

=
8

n3(n+ 1)2

n∑
i 6=k

ikg(y)TΣ−1g(y)f(y)2dy

+
4

n3(n+ 1)2h

n∑
i=1

ig(y)TΣ−1g(y)f(y)dyR(K) + o(n−1)

=
2

n
g(y)TΣ−1g(y)f(y)2dy + o(n−1),

E(λTT2λf̂GCA(x))

=
4

n4(n+ 1)2h2

∑
i,j,l,k

Eg(Xj)
TΣ−1g(Xi)g(Xi)

TΣ−1g(Xl)

K

(
x−Xi

ih

)
K

(
x−Xk

kh

)
=

4

n3(n+ 1)2h2
E

(
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

)
K

(
x−Xk

kh

))
=

1

n
g(y)TΣ−1g(y)f(y)2dy + o(n−1),

E(λTT1T
T
1 λ) =

4

n4(n+ 1)2h2

n∑
i,j,k,l=1

Eg(Xj)
TΣ−1g(Xi)g(Xk)

TΣ−1g(Xl)

K

(
x−Xi

ih

)
K

(
x−Xk

kh

)
=

1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1).
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Thus, Taylor expansion for λ, and additional use of the delta method, can get

E(f̂el.GCA(x)2) = E(f̂GCA(x)2)− 1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1). (3.36)

So Varf̂el.GCA(x)

Var(f̂el.GCA(x)) = Var(f̂GCA(x))− 1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1), (3.37)

equation (3.5) is proved.

Similar proof of (3.3) and (3.5), then

f̂el.LCA =
1

h

n∑
i=1

pi
i
K

(
x−Xi

ih

)
=

1

nh

n∑
i=1

1

i

1

1 + λTg(Xi)
K

(
x−Xi

ih

)
=

1

nh

n∑
i=1

1

i
{1− λTg(Xi) + λTg(Xi)g(Xi)

Tλ + o(n−1)}K
(
x−Xi

ih

)
= f̂LCA − λTL1 + λTL2λ + o(n−1),

where the vector L1 and q × q matrix L2 are defined by

L1 =
1

nh

n∑
i=1

1

i
g(Xi)K

(
x−Xi

ih

)
,

L2 =
1

nh

n∑
i=1

1

i
g(Xi)g(Xi)

TK

(
x−Xi

ih

)
.
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Plug in the λ at equation (3.34), then

E(λTL1) = E

(
Σ−1

1

n

n∑
j=1

g(Xj)]
T 1

nh

n∑
i=1

1

i
g(Xi)K

(
x−Xi

ih

))

=
1

n2h
E

(
n∑
i=1

n∑
j=1

g(Xj)
TΣ−1

1

i
g(Xi)K

(
x−Xi

ih

))

=
1

n2h
E

(
n∑
i=1

1

i
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

))

=
1

n
g(x)TΣ−1g(x)f(x) + o(n−1),

where

E

(
1

ih
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

))
=

∫
1

i
g(x)TΣ−1g(x)K

(
y − x
ih

)
f(x)dx

=

∫
1

ih
g(y − µih)TΣ−1g(y − µih)K(µ)f(y − µih)ihdµ

=

∫
{g(y)− µihg′(y) +

µ2h2i2

2
g′′(y)}TΣ−1{g(y)− µihg′(y) +

µ2h2i2

2
g′′(y)}

K(µ){f(y)− µihf ′(y) +
µ2h2i2

2
f ′′(y)}dµ

= g(y)TΣ−1g(y)f(y) + o(n−1),
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and

E(λTL2λ)

=
1

n3h
E

(
n∑
i=1

n∑
j=1

n∑
k=1

g(Xj)
TΣ−1g(Xi)g(Xi)

TΣ−1g(Xk)
1

i
K

(
x−Xi

ih

))

=
1

n3h

n∑
i=1

E

(
g(Xi)

TΣ−1g(Xi)g(Xi)
TΣ−1g(Xi)

1

i
K

(
x−Xi

ih

))
=

1

n2h

n∑
i=1

E

(
1

i
g(Xi)

TΣ−1g(Xi)K

(
x−Xi

ih

))
=

1

n
g(y)TΣ−1g(y)f(y) + o(n−1).

Thus, by delta method,

E(f̂el.LCA) = E(f̂LCA) + o(n−1). (3.38)

To derive the variance of f̂el.LCA,

f̂el.LCA(x)2

=
1

n2h2

n∑
i,j

1

i(1 + λTg(Xi))

1

j(1 + λTg(Xj))
K

(
x−Xi

ih

)
K

(
x−Xj

jh

)
= f̂LCA(x)2 − 2λTL1f̂LCA(x) + 2λTL2λf̂LCA(x) + λTL1L1λ + o(n−1),
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E(λTL1f̂LCA(x))

=
1

n3h2
E

(
n∑

i,j,k=1

g(Xj)
TΣ−1g(Xi)

1

i
K

(
x−Xi

ih

)
1

k
K

(
x−Xk

kh

))

=
1

n3h2

n∑
i=j 6=k

E

(
g(Xj)

TΣ−1g(Xi)
1

i
K

(
x−Xi

ih

)
E

1

k
K

(
x−Xk

kh

))

+
1

n3h2

n∑
j=k 6=i

E

(
g(Xj)

T 1

k
K

(
x−Xk

kh

)
Σ−1

)
E

(
g(Xi)

1

i
K

(
x−Xi

ih

))

+
1

n3h2

n∑
i=1

E

(
g(Xi)

TΣ−1g(Xi)
1

i2
K

(
x−Xi

ih

)2
)

=
8

n3

n∑
i 6=k

g(y)TΣ−1g(y)f(y)2dy

+
4

n3h

n∑
i=1

g(y)TΣ−1g(y)f(y)dyR(K) + o(n−1)

=
2

n
g(y)TΣ−1g(y)f(y)2dy + o(n−1).

Now,

E(λTL2λf̂LCA(x))

=
1

n4h2

∑
i,j,l,k

Eg(Xj)
TΣ−1g(Xi)g(Xi)

TΣ−1g(Xl)

K

(
x−Xi

ih

)
1

k
K

(
x−Xk

kh

)
=

1

n3h2
E

(
g(Xi)

TΣ−1g(Xi)
1

i
K

(
x−Xi

ih

)
1

k
K

(
x−Xk

kh

))
=

1

n
g(y)TΣ−1g(y)f(y)2dy + o(n−1),
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E(λTL1L
T
1λ) =

1

n4h2

n∑
i,j,k,l=1

Eg(Xj)
TΣ−1g(Xi)g(Xk)

TΣ−1g(Xl)

1

ik
K

(
x−Xi

ih

)
K

(
x−Xk

kh

)
=

1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1).

Thus, Taylor expansion for λ, and additional use of the delta method, can get

E(f̂el.LCA(x)2) = E(f̂LCA(x)2)− 1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1).

So var(f̂el.LCA(x))

Var(f̂el.LCA(x)) = Var(f̂LCA(x))− 1

n
g(x)TΣ−1g(x)f(x)2 + o(n−1).

This completes the proof of Theorem 3.4.1.
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4 GCA and LGA Applications: Regression and CDF

Estimation

4.1 Introduction

In this chapter we study some applications, namely regression and Cumulative

Distribution Function (CDF) estimation based on GCA and LGA estimators. In

the regression models, the goal is to estimate the regression function at a particular

point by “local” fitting a pth degree polynomial to the data via weighted least squares.

In this class, p = 0 as a special case with degree zero polynomials, that is local

constants, like the Nadaraya-Watson estimator for usual kernel estimator. Another

special case is a local linear estimator, corresponding to p = 1. We also see the mean

squared error properties for p = 0 and p = 1 analogous to those of these new kernel

density estimators. This means that most of the the ideas developed in the context

of new density estimations can be easily transported to the context of regression.

Another application is the estimate CDF that is based on these two new estimators.

4.2 Random Design Regression Model

We study a random design regression model when we observe bivariate samples

(X1, Y1), · · · , (Xn, Yn) of random pairs and assume that all are continuously dis-

tributed with a joint density f(y, x). Let f(y|x) = f(y, x)/f(x) be conditional density
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of Yi given Xi. The regression function for Yi on Xi is

m(x) = E(Fi|Xi = x)

in which case the model can be written as

Yi = m(Xi) + εi i = 1, · · · , n (4.1)

where

E(εi|Xi) = 0 and E(ε2i |Xi) = σ2(x).

In the following sections, we introduce a local polynomial based on GCA and LCA

estimators.

4.2.1 Local Polynomial Based on GCA Estimators

In this section, we investigate a local polynomial based on a GCA estimator

that is defined by (3.2). Our task is to derive an explicit expression for the local

polynomial based on the GCA estimator. For simplicity’s sake we will assume that

f is supported on [0, 1]. Let p be the degree of the polynomial being fit. At a point

x, the estimator m̂(x; p, h) is obtained by fitting the polynomial

β0 + β1(· − x) + · · ·+ βp(· − x)p

to the (Xi, Yi) using weighted least squares with kernel weights 2
(n+1)h

K
(
x−Xi

ih

)
for

the GCA estimator. The value of m̂(x; p, h) is the height of the fit β̂0, where β̂ =

(β̂0, · · · , β̂p) minimizes (4.2) for the GCA estimator.

n∑
i=1

{Yi − β0 − · · · − βp(Xi − x)p}2 2

(n+ 1)h
K

(
x−Xi

ih

)
. (4.2)

83



Assuming the convertibility of (XT
x WGCA.xXx), standard weighted least squares the-

ory leads to the solution

β̂GCA =(XT
xWGCA.xXx)

−1XT
xWGCA.xY

where Y = (Y1, · · · , Yn)T is the vector of responses,

Xx =

∣∣∣∣∣∣∣∣∣∣∣

1 X1 − x · · · (X1 − x)p

1 X2 − x · · · (X2 − x)p

...
...

. . .
...

1 Xn − x · · · (Xn − x)p

∣∣∣∣∣∣∣∣∣∣∣
is an n× (p+ 1) design matrix, and

WGCA.x =
2

(n+ 1)h

∣∣∣∣∣∣∣∣∣∣∣

K
(
X1−x
h

)
0 · · · 0

0 K
(
X2−x
2h

)
· · · 0

...
...

. . .
...

0 0 · · · K
(
Xn−x
nh

)

∣∣∣∣∣∣∣∣∣∣∣
is an n× n diagonal matrix of weights.

Since the estimator of m(x) is the intercept coefficient, we obtain

m̂GCA(x; p, h) =eT
1 β̂GCA = eT

1 (XT
xWGCA.xXx)

−1XT
xWGCA.xY, (4.3)

where e1 is the (p+ 1)× 1 vector, with 1 in the first entry and zero elsewhere.

For special case p = 0, the regression based on the GCA estimator can be ex-

pressed as follows :

m̂GCA(x; 0, h) =

∑n
i=1K

(
Xi−x
ih

)
yi∑n

i=1K
(
Xi−x
ih

) , (4.4)
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and the local linear estimators p = 1:

m̂GCA(x; 1, h) = n−1
n∑
i=1

{Ĝ2(x;h)− Ĝ1(x;h)(Xi − x)}K
(
Xi−x
ih

)
Yi

Ĝ2(x;h)Ĝ0(x;h)− Ĝ1(x;h)2
, (4.5)

where Ĝj(x;h) = 2
n(n+1)h

∑n
i=1(Xi − x)jK

(
Xi−x
ih

)
Asymptotic MSE Approximations

We present the mean and variance calculations for m̂(x; p, h) in the p = 1. Suppose

that the design is an independent sample, denoted by X1, · · · , Xn, having density f .

We make the following assumptions in our analysis:

1. The functions m′′ are each continuous functions.

2. The kernel K is satisfying,

∫
K(µ)dµ = 1 and

∫
µK(µ)dµ = 0 and

∫
µ2K(µ)dµ <∞.

3. The bandwidth is satisfying h→ 0 and n2h→∞.

In this section we analyze the mean and variance of the estimator m̂(x; p, h). It follows

directly from (4.3), then

E(m̂GCA(x; 1, h)) = eT1 (XT
xWGCA.xXx)

−1XT
xWGCA.xM,

where M = (m(x1), · · · ,m(xn))T . And local linear fitting ,design matrix Xx

Xx =

∣∣∣∣∣∣∣∣
1 X1 − x
...

...

1 Xn − x

∣∣∣∣∣∣∣∣
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is an n× 2 matrix. According to a version of Taylor’s expansion , for any xε[0, 1],

m(xi) = m(x) + (xi − x)m′(x) +
1

2
(xi − x)2m′′(x) + · · ·

which implies that

M = Xx

∣∣∣∣∣m(x)

m′(x)

∣∣∣∣∣+
1

2
m′′(x)

∣∣∣∣∣∣∣∣
(x1 − x)2

...

(xn − x)2

∣∣∣∣∣∣∣∣+ · · ·

The first term in the expression of E(m̂GCA(x; 1, h)) is

eT1 (XT
xWGCA.xXx)

−1(XT
xWGCA.xXx)

∣∣∣∣∣m(x)

m′(x)

∣∣∣∣∣ = eT1

∣∣∣∣∣m(x)

m′(x)

∣∣∣∣∣ = m(x),

Then the bias of m̂GCA(x; 1, h) is

E(m̂GCA)(x; 1, h)−m(x)

=
1

2
m′′(x)eT1 (XT

xWGCA.xXx)
−1XT

xWGCA.x

∣∣∣∣∣∣∣∣
(X1 − x)2

...

(Xn − x)2

∣∣∣∣∣∣∣∣+ · · ·

If mr(x) = 0 for all r > 2, then m̂GCA(x; 1, h) is an exactly unbiased estimator for

linear m.

To compute the leading bias term for general m

XT
xWGCA.xXx =

∣∣∣∣∣Ĝ0(x;h) Ĝ1(x;h)

Ĝ1(x;h) Ĝ2(x;h)

∣∣∣∣∣
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and

XT
xWGCA.x

∣∣∣∣∣∣∣∣
(X1 − x)2

...

(Xn − x)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣Ĝ2(x;h)

Ĝ3(x;h)

∣∣∣∣∣

EĜj(x;h) =
1

n
E

n∑
i=1

(Xi − x)jK

(
Xi − x
ih

)
=

1

n

n∑
i=1

∫
(y − x)jK

(
y − x
ih

)
f(y)dy

=
1

n

n∑
i=1

∫
µj(ih)j+1K(µ)f(x+ µih)dµ

=
1

n

n∑
i=1

(ih)j+1

∫
µjK(µ){f(x) + µihf ′(x) +

1

2
(µih)2f ′′(x)}dµ.

So,

EĜj(x;h) =



2
n(n+1)

∑n
i=1(ih)j+1f(x)

∫
µjK(µ)dµ+Op(

2
n(n+1)h

∑n
i=1(ih)j+3)

if j is even ;
2

n(n+1)

∑n
i=1(ih)j+2f ′(x)

∫
µj+1K(µ)dµ+Op(

2
n(n+1)h

∑n
i=1(ih)j+4)

if j is odd .

which leads to

1

n
XT
xWGCA.xXx =

∣∣∣∣∣ f(x) +Op(n
2h2) n2h2

2
f ′(x)µ2(K) +Op(n

3h3)
n2h2

2
f ′(x)µ2(K) +Op(n

3h3) n2h2

2
f(x)µ2(K) +Op(n

3h3)

∣∣∣∣∣ ,
and

1

n
XT
xWGCA.x

∣∣∣∣∣∣∣∣
(X1 − x)2

...

(Xn − x)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣ n2h2

2
f(x)µ2(K) +Op(n

3h3)
n4h4

3
f ′(x)

∫
µ4K(µ)dµ+Op(n

4h4)

∣∣∣∣∣ ,
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(
1

n
XT
xWGCA.xXx)

−1 =

∣∣∣∣∣ f(x)−1 −f ′(x)/f 2(x)

−f ′(x)/f 2(x) {n2h2

2
f(x)

∫
µ2K(µ)dµ}−1

∣∣∣∣∣ .
It follows that the conditional bias is given by

E{m̂GCA(x; 1, h)−m(x)|X1, · · · , Xn} =
n2h2

4
m′′(x)µ2(K) + op(n

2h2).

For the variance approximation, note that

Var{m̂GCA(x; 1, h)}

= eT
1 (XT

xWGCA.xXx)
−1XT

xWGCA.xVWGCA.xXx(X
T
xWGCA.xXx)

−1e1

Using approximations analogous to those used above,

XT
xWGCA.xVWGCA.x =

∣∣∣∣∣ 2
(n+1)h

R(K)σ(x) O(n−1)

O(n−1) 4
3
hµ2(K)σ(x)

∣∣∣∣∣ ,

Var{m̂GCA(x; 1, h)} =
2R(K)σ(x)

n2h
+ o((n2h)−1).

This leads to MSE

MSE{m̂GCA(x; 1, h)} =Bias2{m̂GCA(x; 1, h)}+ Var{m̂GCA(x; 1, h)}

=
n4h4

16
{m′′(x)µ2(K)}2 +

2R(K)σ(x)

n2h
+ o((n2h)−1).

4.2.2 Local polynomial based on LCA Estimator

In this section, we investigate local polynomial LCA estimators that are defined

by (3.1). Taking a similar approach on the local polynomial based on GCA estimator,
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at a point x the estimator m̂LCA(x; p, h) is obtained by fitting the polynomial

β0 + β1(· − x) + · · ·+ βp(· − x)p

to the (Xi, Yi) using weighted least squares with kernel weights 1
ih
K
(
x−Xi

ih

)
for LCA.

The value of m̂LGA(x; p, h) is the height of the fit β̂0, where β̂ = (β̂0, · · · , β̂p) minimizes

(4.6) for LCA.

n∑
i=1

{Yi − β0 − · · · − βp(Xi − x)p}2 1

ih
K

(
x−Xi

ih

)
. (4.6)

Assuming the convertibility of (XT
x WLCA.xXx), standard weighted least squares the-

ory leads to the solution

β̂LCA =(XT
xWLCA.xXx)

−1XT
xWLCA.xY,

where Y is the same as in the previous section. But a diagonal weight matrix changes

to

WLCA.x =
1

h

∣∣∣∣∣∣∣∣∣∣∣

K
(
Xi−x
h

)
0 · · · 0

0 1
2
K
(
Xi−x
2h

)
· · · 0

...
...

. . .
...

0 0 · · · 1
n
K
(
Xi−x
nh

)

∣∣∣∣∣∣∣∣∣∣∣
.

Then we can obtain

m̂LCA(x; p, h) =eT
1 β̂LCA = eT

1 (XT
xWLCA.xXx)

−1XT
xWLCA.xY, (4.7)

where e1 is the (p+ 1)× 1 vector, with 1 in the first entry and zero elsewhere.
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For special case p = 0, the kernel regression LCA can be expressed as the follow-

ing:

m̂LCA(x; 0, h) =

∑n
i=1

1
i
K
(
Xi−x
ih

)
yi∑n

i=1
1
i
K
(
Xi−x
ih

) , (4.8)

and local linear estimators p = 1:

m̂LCA(x; 1, h) = n−1
n∑
i=1

{L̂2(x;h)− L̂1(x;h)(Xi − x)}K
(
Xi−x
ih

)
Yi

L̂2(x;h)Ŝ0(x;h)− L̂1(x;h)2
, (4.9)

where L̂j(x;h) = 2
n(n+1)h

∑n
i=1(Xi − x)j 1

ih
K
(
Xi−x
ih

)
Asymptotic MSE Approximations

We present the mean and variance calculations for m̂(x; p, h) in the p = 1. Suppose

that the design is an independent sample, denoted by X1, · · · , Xn, having density f .

We make the same assumptions from the previous section, and analyze the mean and

variance of the estimator m̂LCA(x; p, h). It follows directly from (4.7) that

E(m̂LCA(x; 1, h)) = eT1 (XT
xWLCA.xXx)

−1XT
xWLCA.xM.

Using Taylor expansion for M we obtain

eT1 (XT
xWLCA.xXx)

−1(XT
xWLCA.xXx)

∣∣∣∣∣m(x)

m′(x)

∣∣∣∣∣ = eT1

∣∣∣∣∣m(x)

m′(x)

∣∣∣∣∣ = m(x).
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The bias of m̂LCA(x; 1, h) is

Em̂LCA(x; 1, h)−m(x)

=
1

2
m′′(x)eT1 (XT

xWLCA.xXx)
−1XT

xWLCA.x

∣∣∣∣∣∣∣∣
(X1 − x)2

...

(Xn − x)2

∣∣∣∣∣∣∣∣+ · · ·

If mr(x) = 0 for all r > 2, then m̂LCA(x; 1, h) is an exactly unbiased estimator for

linear m.

To compute the leading bias term for general m

XT
xWLCA.xXx =

∣∣∣∣∣L̂0(x;h) L̂1(x;h)

L̂1(x;h) L̂2(x;h)

∣∣∣∣∣ ,
and

XT
xWLCA.x

∣∣∣∣∣∣∣∣
(X1 − x)2

...

(Xn − x)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣L̂2(x;h)

L̂3(x;h)

∣∣∣∣∣ .

EL̂j(x;h) =
1

n
E

n∑
i=1

(Xi − x)j
1

i
K

(
Xi − x
ih

)
=

1

nh

n∑
i=1

∫
(y − x)j

1

i
K

(
y − x
ih

)
f(y)dy

=
1

n

n∑
i=1

∫
µj(ih)jK(µ)f(x+ µih)dµ

=
1

n

n∑
i=1

(ih)j
∫
µjK(µ){f(x) + µihf ′(x) +

1

2
(µih)2f ′′(x)}dµ.
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So,

EL̂j(x;h) =



1
n

∑n
i=1(ih)j+1f ′(x)

∫
µj+1K(µ)dµ+Op(

1
n

∑n
i=1(ih)j+2)

if j is odd ;
1
n

∑n
i=1(ih)jf(x)

∫
µjK(µ)dµ+Op(

1
n

∑n
i=1(ih)j+1)

if j is even .

which leads to

1

n
XT
xWLCA.xXx =

∣∣∣∣∣ f(x) + op(nh) n2h2

3
f ′(x)µ2(K) + op(n

2h2)
n2h2

3
f ′(x)µ2(K) + op(n

3h3) n2h2

3
f(x)µ2(K) +Op(n

3h3)

∣∣∣∣∣ ,
and

1

n
XT
xWLCA.x

∣∣∣∣∣∣∣∣
(X1 − x)2

...

(Xn − x)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣ n2h2

3
f(x)µ2(K) +Op(n

3h3)
n4h4

5
f ′(x)

∫
µ4K(µ)dµ+Op(n

4h4)

∣∣∣∣∣ ,

(
1

n
XT
xWLCA.xXx)

−1 =

∣∣∣∣∣ f(x)−1 −f ′(x)/f 2(x)

−f ′(x)/f 2(x) {n2h2

3
f(x)µ2(K)}−1

∣∣∣∣∣ .
It follows that the conditional bias is given by

E{m̂LCA(x; 1, h)−m(x)|X1, · · · , Xn} =
n2h2

6
m′′(x)µ2(K) + op(n

2h2).

For the variance approximation, note that

Var{m̂LCA(x; 1, h)

= eT
1 (XT

xWLCA.xXx)
−1XT

xWLCA.xVWLCA.xXx(X
T
xWLCA.xXx)

−1e1.
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Using approximations analogous to those used above,

XT
xWLCA.xVWLCA.x =

∣∣∣∣∣
∑n

i=1
1
i

nh
R(K)σ(x) O(n−1)

O(n−1) 1
2
hµ2(K)σ(x)

∣∣∣∣∣ ,

Var{m̂LCA(x; 1, h)} =

∑n
i=1

1
i
R(K)σ(x)

n2h
+ o((n2h)−1).

This leads to MSE

MSE{m̂GCA(x; 1, h)} =Bias{m̂GCA(x; 1, h)}+ Var{m̂GCA(x; 1, h)}

=
n4h4

36
{m′′(x)µ2(K)}2 +

∑n
i=1

1
i
R(K)σ(x)

n2h
+ o((n2h)−1).

4.2.3 Simulation Study

The true regression function is

m(x) = sin3(2πx3), (4.10)

confined to the interval [0, 1], and is represented by the black solid curve. The data

X1, · · · , Xn are generated by uniform [0,1] and the data Y1, · · · , Yn are generated by

Yi = m(Xi) + 0.1εi, i = 1, · · · , n

where εi are independent N(0, 1) random variables. The (Xi, Yi) pairs are represented

by the circles. The black solid line is the regression function m(x) given by (4.10),

the blue solid curve is the usual kernel estimate with p = 1, the blue dot curve is the

usual kernel estimate with p = 0, the red solid curve is GCA estimate with p = 1, the

red dot curve is GCA estimate with p = 0, the green solid curve is the LCA estimate

with p = 1, and the green dot curve is GCA estimate with p = 0. Figures 13 and
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14 show that there is not too much difference between p = 0 and p = 1 for different

estimators. The GCA and LCA are better than KDE, especially at catching the

hump (close to 0.6) and the valley (close to 0.9). The GCA and LCA are almost

the same curve.
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Figure 13: Estimated regression function with sample size n=50

94



0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

 
 

reference
KDE p=0
KDE p=1
GCA p=0
GCA p=1
LCA p=0
LCA p=1

Figure 14: Estimated regression function with sample size n=100

4.3 Cumulative Distribution Function Estimation

Let X1, · · · , Xn be independent and identically distributed random vectors in

R, with absolutely continuous distribution function F and corresponding probability

density function f . The traditional estimator of the CDF is the empirical distribution
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function, which is given by

F̂n(t) =
1

n

n∑
j=1

I(Xi 6 t)

where I(·) represents the indicator function. The smoothed estimation of the CDF,

F̂n(x)GCA and F̂n(x)GCA are constructed by integrating f̂GCA and f̂LCA, which are

defined as (3.2) and (3.1). So, smooth estimators F̂n(x)GCA and F̂n(x)GCA can be

expressed as:

F̂n(x)GCA =
2

n(n+ 1)h

∫ t

−∞

n∑
i=1

K

(
x−Xi

ih

)
dx =

2

n(n+ 1)

n∑
i=1

iK̄
(
x−Xi

ih

)
,

F̂n(x)LCA =
1

nh

∫ t

−∞

n∑
i=1

1

i
K

(
Xi − x
ih

)
=

1

n

n∑
i

K̄
(
x−Xi

ih

)
,

and the estimator based on the standard kernel density estimation is

F̂n(x)KDE =
1

nh

∫ t

−∞

n∑
i=1

K

(
Xi − x
h

)
=

1

n

n∑
i

K̄
(
x−Xi

h

)
,

where K̄(t) =
∫ t
−∞K(µ)dµ. In the next section, we calculate the mean and variance

of smooth estimators F̂n(x)GCA and F̂n(x)GCA.

4.3.1 Properties

Theorem 4.3.1 Assume that F (x) is twice continuously differentiable, K is bounded,

symmetric and compactly supported. Then as n→∞

E(F̂n(t)GCA) =F (t) +
n2h2

2
µ2(K)f ′(t) + o(n2h2), (4.11)

E(F̂n(t)LCA) =F (t) +
n2h2

6
µ2(K)f ′(t) + o(n2h2), (4.12)

Var(F̂n(t)GCA) =
4

3n
(F (t)− F 2(t))− 2h

∫
K̄(µ)K(µ)µdµ+ o(nh), (4.13)

Var(F̂n(t)LCA) =
1

n
(F (t)− F 2(t))− h

∫
K̄(µ)K(µ)µdµ+ o(nh), (4.14)
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where f ′(t) = F (2)(t).

For proof see Appendix Section 4.4.

By following Theorem 4.3.1, we can immediately obtain the following results for the

MSE of F̂n(t)GCA and F̂n(t)LCA:

MSEF̂n(t)GCA =
n4h4

4
µ2
2(K)(f ′(t))2 +

4

3n
(F (t)− F 2(t))

− 2h

∫
K̄(µ)K(µ)µdµ+ o(n4h4), (4.15)

MSEF̂n(t)LCA =
n4h4

16
µ2
2(K)(f ′(t))2 +

1

n
(F (t)− F 2(t))

− h
∫

K̄(µ)K(µ)µdµ+ o(n4h4). (4.16)

4.3.2 Simulation Study

We generate the data from standard normal distribution, mixture normal

0.5N(−1, 1) + 0.5N(1, 1), and mixture normal 0.75N(0, 1) + 0.25N(1.5, 4/9) from

difference sample sizes n=15, 25, 50, 100 and 500. From the figure 16, the green

dashed line is best, followed by the red dotted line, with the last being the blue

dotdash line. So the performance of F̂n(t)LCA is slightly better than F̂n(t)GCA, and

these two estimators are significantly better than standard F̂n(t)KDE, especially at

the extreme value. Even for the sample size n=500, the new estimators are bet-

ter than a standard kernel estimator. Mixture normal 0.5N(−1, 1) + 0.5N(1, 1) and

0.75N(0, 1) + 0.25N(1.5, 4/9) have the same results.
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Figure 15: CDF estimation from normal distribution for sample size n=15
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(b) n=50
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(c) n=100
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(d) n=500

Figure 16: CDF estimation from normal distribution for different sample sizes
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Figure 17: CDF estimation from 0.5N(−1, 1) + 0.5N(1, 1) for sample size n=15
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(d) n=500

Figure 18: CDF estimation from 0.5N(−1, 1) + 0.5N(1, 1) for different sample size
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Figure 19: CDF estimation from 0.75N(0, 1) + 0.25N(1.5, 4/9) for sample size
n=15
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Figure 20: CDF estimation from 0.75N(0, 1) + 0.5N(1.5, 4/9) for different sample
size

4.4 Appendix

First look at the E{F̂n(x)GCA}.
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E{F̂n(t)GCA} =E{ 2

n(n+ 1)

n∑
i=1

iK̄
(
t−Xi

ih

)
}

=
2

n(n+ 1)

n∑
i=1

iE{K̄
(
t−Xi

ih

)
}.

Now working with

E{K̄
(
t−Xi

ih

)
} =

∫ ∞
−∞

K̄
(
t− x
ih

)
f(x)dx

=

∫ ∞
−∞

K̄
(
t− x
ih

)
dF (x)

= K̄
(
t− x
ih

)
F (x)

∣∣x=∞
x=−∞︸ ︷︷ ︸

=0

+
1

ih

∫
F (x)K

(
t− x
ih

)
dx

=
1

ih

∫
F (x)K

(
t− x
ih

)
dx

=
1

ih

∫
F (t− µih)K(µ)(ih)dµ

=

∫
{F (t)− µihF (1)(t) +

(µih)2

2
F (2)(t)}K(µ)dµ

=F (t) +
i2h2

2
µ2(K)F (2)(t) + o(n2h2).

Then

E{F̂n(t)GCA} =
2

n(n+ 1)

n∑
i=1

iE{K̄
(
t−Xi

ih

)
}

=F (t) +
n2h2

2
µ2(K)F (2)(t) + o(n2h2),

and

E{F̂n(t)LCA} =
1

n

n∑
i=1

E{K̄
(
t−Xi

ih

)
}

=F (t) +
n2h2

6
µ2(K)F (2)(t) + o(n2h2).
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E{K̄2

(
t−Xi

ih

)
} =

∫ ∞
−∞

K̄2

(
t− x
ih

)
f(x)dx

=

∫ ∞
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(
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ih
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)
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∫
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=2

∫
K̄(µ)K(µ){F (t)− µihF (1)(t)}dµ+ o(h2n2)

=F (t)

∫
dK̄(t)− 2ih
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K̄(µ)K(µ)µdµ+ o(n2h2)

=F (t)− 2ih

∫
K̄(µ)K(µ)µdµ+ o(n2h2),
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(
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ih
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(
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ih

)
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(
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ih

)
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=F (t)− 2ih

∫
K̄(µ)K(µ)µdµ− [F (t) +
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2
µ2(K)F (2)(t)]2

=F (t)− F 2(t)− 2ih

∫
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Then
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ih

)
]

=
4

n2(n+ 1)2
Var
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(
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ih
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=

4
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(
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ih
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4
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F (t)(1− F (t))− 2h

∫
K̄(µ)K(µ)µdµ+ o(nh),
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and

VarF̂n(t)LCA =Var[
1

n

n∑
i=1

iK̄
(
t−Xi

ih

)
]

=
1

n2
Var

n∑
i=1

K̄
(
t−Xi

ih

)
=

1

n2

n∑
i=1

Var[K̄
(
t−Xi

ih

)
]

=
1

n
F (t)(1− F (t))− h

∫
K̄(µ)K(µ)µdµ+ o(nh).

This completes the proof of Theorem 4.3.1.
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5 Future Research

In the future, I will concentrate on several issues pertaining to the GCA and LCA

density estimation, including their empirical likelihood version. Specifically, I propose

to:

1. Study the empirical likelihood versions of regression and CDF, based on the

new estimates GCA and LCA.

2. Extend the settings of GCA and LCA to multivariate density estimation; study

the properties of high dimension versions of GCA and LCA; investigate how

dimensions affect MISE or MSE and compare with standard multivariate KDE;

also, address data-driven bandwidth selection methods, such as cross-validation,

plug-in, and contrast methods.

3. Apply GCA and LCA estimations in some hypothesis testing, such as testing

goodness of fit, symmetry, and independence; evaluate power gains for both

these estimates and their empirical likelihood versions over standard KDE.

4. Generalize the rank versions of GCA and LCA estimate settings; for example,

let X1, · · · , Xn be a random sample from unknown distribution F with PDF

f , and let R1, · · · , Rn be the rank of Xi, then the rank versions of GCA and
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LCA estimators can be defined as:

f̂RGCA(x) =
2

n(n+ 1)h

n∑
i=1

K

(
x−Xi

Rih

)
(5.1)

f̂RLCA(x) =
1

nh

n∑
i=1

1

Ri

K

(
x−Xi

Rih

)
(5.2)

5. Address the bias reduction methods for the GCA and LCA estimates using

random transformation, both in the univariate and multivariate; study the den-

sity estimations GCA and LCA at boundaries for densities with finite support.

108



BIBLIOGRAPHY

Ahmad, I. A. (1982). Nonparametric estimation of the location and scale parame-

ters based on density estimation. Annals of the Institute of Statistical Mathemat-

ics 34 (1), 39–53.

Ahmad, I. A. (2000). Testing exponentiality against positive ageing using kernel

methods. Sankhy: The Indian Journal of Statistics, Series A 62, 244–257.

Ahmad, I. A. (2002). On moment inequalities of the supremum of empirical processes

with applications to kernel estimation. Statistics and Probability Letters 57 (3), 215

– 220.

Ahmad, I. A. and M. Amezziane (2011). Estimation of location and scale parameters

based on kernel functional estimators. In D. Hunter, D. Richards, and J. Rosen-

berger (Eds.), Nonparametric Statistics And Mixture Models (1 ed.)., pp. 1–14.

World Scientific Publishing Company.

Ahmad, I. A. and Q. Li (1997a). Testing independence by nonparametric kernel

method. Statistics and Probability Letters 34, 201 – 210.

Ahmad, I. A. and Q. Li (1997b). Testing symmetry of an unknown density function

by kernel method. Journal of Nonparametric Statistics 7, 279–293.

Ahmad, I. A. and I. S. Ran (2004). Data based bandwidth selection in kernel density

estimation with parametric start via kernel contrasts. Journal of Nonparametric

Statistics 16 (6), 841–877.

Alez, G. (2012). Kernel Density Estimation: Introduction, Bandwidth Selection, Sta-

tistical Implementations, and More. Webster’s Digital Services.

109



Aubuchon, J. C. and T. P. Hettmansperger (1984). A note on the estimation of the

integral of 2(x). Journal of Statistical Planning and Inference 9, 321 – 331.

Bickel, P. J. and M. Rosenblatt (1973). On some global measures of the deviations

of density function estimates. The Annals of Statistics 1, 1071–1095.

Birge, L. and P. Massart (1995). Estimation of integral functionals of a density. The

Annals of Statistics 23, 11–29.

Bowman, A. and A. Azzalini (1997). Applied Smoothing Techniques for Data Analysis

: The Kernel Approach with S-Plus Illustrations: The Kernel Approach with S-Plus

Illustrations. Oxford Science Publications. OUP Oxford.

Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing

of density estimates. Biometrika 71 (2), pp. 353–360.

Cao, R. and I. v. Keilegom (2006). Empirical likelihood tests for two-sample problems

via nonparametric density estimation. The Canadian Journal of Statistics / La

Revue Canadienne de Statistique 34, 61–77.

Chen, S. (1994a). Comparing empirical likelihood and bootstrap hypothesis tests.

Journal of Multivariate Analysis 51 (2), 277–293.

Chen, S. and I. V. Keilegom (2009). A review on empirical likelihood methods for

regression. TEST: An Official Journal of the Spanish Society of Statistics and

Operations Research 18, 415–447.

Chen, S. X. (1994b). Empirical likelihood confidence intervals for linear regression

coefficients. Journal of Multivariate Analysis 49 (1), 24–40.

Chen, S. X. (1996). Empirical likelihood confidence intervals for nonparametric den-

sity estimation. Biometrika 83 (2), 329–341.

110



Chen, S. X. (1997). Empirical likelihood-based kernel density estimation. Australian

Journal of Statistics 39, 47–56.

Chen, S. X. and P. Hall (1993). Smoothed empirical likelihood confidence intervals

for quantiles. The Annals of Statistics 21 (3), 1166–1181.

Chen, S. X. and Y. S. Qin (2000). Empirical likelihood confidence intervals for local

linear smoothers. Biometrika 87 (4), 946–953.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter-

plots. Journal of the American Statistical Association 74 (368), pp. 829–836.

Devroye, D., J. Beirlant, R. Cao, R. Fraiman, P. Hall, M. Jones, G. Lugosi, E. Mam-

men, J. Marron, C. Snchez-Sellero, J. Ua, F. Udina, and L. Devroye (1997). Univer-

sal smoothing factor selection in density estimation: theory and practice. Test 6 (2),

223–320.

Devroye, L. and G. Lugosi (2001). Combinatorial Methods in Density Estimation.

Springer Series in Statistics.

Devroye, Luc; Gyorfi, L. and G. Lugosi (1996). A probabilistic theory of pattern

recognition. New York;Berlin: Springer.

DiCiccio, T., P. Hall, and J. Romano (1991). Empirical likelihood is bartlett-

correctable. The Annals of Statistics 19 (2), 1053–1061.

Gasser, T. and H.-G. Mller (1979). Kernel estimation of regression functions. In

T. Gasser and M. Rosenblatt (Eds.), Smoothing Techniques for Curve Estimation,

Volume 757 of Lecture Notes in Mathematics, pp. 23–68. Springer Berlin Heidelberg.

Hall, P., J. S. Marron, and B. U. Park (1992). Smoothed cross-validation. Probability

Theory and Related Fields 92, 1–20.

111



Hardle, W. (1990). Applied nonparametric regression, Volume 27. Cambridge Univ

Press.

Heidenreich, N.-B., A. Schindler, and S. Sperlich (2013, October). Bandwidth se-

lection for kernel density estimation: a review of fully automatic selectors. AStA

Advances in Statistical Analysis 97 (4), 403–433.

Jones, C., J. Marron, and S. Sheather (1996). Progress in data-based bandwidth

selection for kernel density estimation. Computational Statistics (11), 337–381.

Jones, M. C., J. S. Marron, and B. U. Park (1991). A simple root n bandwidth

selector. The Annals of Statistics 19, 1919–1932.
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