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Abstract: This research proposes approaches for monitoring and inspection of surface 

morphology with respect to two ultraprecision/nanomanufacturing processes, namely, 

ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The 

methods illustrated in this dissertation are motivated from the compelling need for in situ 

process monitoring in nanomanufacturing and invoke concepts from diverse scientific 

backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph 

theory. From an engineering perspective, this work has the following contributions: 

1. A combined neural network and Bayesian learning approach for early detection of 

UPM process anomalies by integrating data from multiple heterogeneous in situ sen-

sors (force, vibration, and acoustic emission) is developed. The approach captures 

process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their incep-

tion and is therefore valuable for minimizing yield losses. 

2. CMP process dynamics are mathematically represented using a deterministic multi-

scale hierarchical nonlinear differential equation model. This process-machine inter-

action (PMI) model is evocative of the various physio-mechanical aspects in CMP 

and closely emulates experimentally acquired vibration signal patterns, including 

complex nonlinear dynamics manifest in the process. By combining the PMI model 

predictions with features gathered from wirelessly acquired CMP vibration signal pat-

terns, CMP process anomalies, such as pad wear, and drifts in polishing were identi-

fied in their nascent stage with high fidelity (R
2
 ~ 75%).  

3. An algebraic graph theoretic approach for quantifying nano-surface morphology from 

optical micrograph images is developed. The approach enables a parsimonious repre-

sentation of the topological relationships between heterogeneous nano-surface fea-

tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, 

and Laplacian matrices. Topological invariant measures (e.g., Fiedler number, 

Kirchoff index) extracted from these matrices are shown to be sensitive to evolving 

nano-surface morphology. For instance, we observed that prominent nanoscale mor-

phological changes on CMP processed Cu wafers, although discernible visually, 

could not be tractably quantified using statistical metrology parameters, such as 

arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, 

CMP induced nanoscale surface variations were captured on invoking graph theoretic 

topological invariants. Consequently, the graph theoretic approach can enable timely, 

non-contact, and in situ metrology of semiconductor wafers by obviating the need for 

reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the 

propagation of yield losses over long production runs.  
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Executive Summary 

his research proposes approaches for monitoring and inspection of surface 

morphology in two ultraprecision/nanomanufacturing processes, namely, 

ultraprecision machining (UPM) and chemical mechanical planarization (CMP) 

(see Graphic I). The methods illustrated in this dissertation are motivated from the 

compelling need for in situ process monitoring in nanomanufacturing, and invoke 

concepts from diverse scientific backgrounds, such as sensor-based process mod-

eling, digital signal processing, artificial neural networks, Bayesian learning, and 

algebraic graph theory. The underlying principles are nonetheless envisioned to 

be extensible to other nanomanufacturing processes, and by induction, conven-

tional manufacturing processes (particularly those involving material removal) not 

addressed in this research. The objectives, socioeconomic impact, and synopsis of 

this research are presented in Chapter 1.  

A combined neural network and Bayesian learning approach for early detec-

tion of UPM process anomalies by integrating data from multiple heterogeneous 

in situ sensors (force, vibration, and acoustic emission) is illustrated in Chapter 2 

(summarized in the northwest quadrant of Graphic I). This approach captures 

process drifts in UPM of aluminum 6061 discs (Sa ~ 20 nm) within 15 millisec-

onds of their inception and is therefore valuable for minimizing yield losses in 

UPM processes.   

T 
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Chapter 3 details in situ sensor-based monitoring approaches for CMP. We 

have designed a wireless sensor network consisting of miniature MEMS vibration 

and sound sensors that enable close-proximity data acquisition in a CMP process. 

Extensive tests are conducted (documented in Appendix II) in order to isolate 

sensor data features that can capture CMP process states from those sensor signal 

components which are merely the effect of extraneous noise. As a consequence, 

we identify certain signal features which are valuable for process monitoring in 

CMP.  

Next, the CMP process dynamics are mathematically represented using a de-

terministic multi-scale hierarchical differential equation model (summarized in 

the northeast quadrant of Graphic I). This mathematical model (documented in 

Appendix III) is evocative of the various physio-mechanical aspects in CMP 

(termed process-machine interaction (PMI) model) and closely emulates experi-

mentally acquired vibration signal patterns, including complex nonlinear dynam-

ics manifest in the process. By combining the PMI model predictions with fea-

tures from the wirelessly acquired experimental signals, CMP process anomalies, 

such as pad wear, and drifts in polishing load, can be predicted at an early stage 

with high fidelity (R
2
 ~ 75%).  

In Chapter 4, we present an algebraic graph theoretic approach (depicted in 

the southeast quadrant of Graphic I) for quantifying nano-surface morphology 

from optical micrograph images. This approach overcomes some of the lacunae 

associated with conventional statistics-based surface metrology. The graph theo-
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retic approach is not only capable of capturing nanoscale topographical aspects 

(e.g., scratches, pits, and ridges) but also obviates reticent surface profile scanning 

methods, such as laser interferometry AFM, SEM, etc.  

The algebraic graph theoretic approach is essentially a parsimonious repre-

sentation of the underlying topological relationship between heterogeneous sur-

face features. These relationships are enshrined in graph theoretic entities, name-

ly, the similarity, degree, and Laplacian matrices. The properties of these graph 

matrices (e.g., eigenvalues and eigenvectors) are found to be sensitive to evolving 

nano-surface morphology.  

This is pertinent because it was observed that nanoscale morphological 

changes (for instance, on CMP processed Cu wafers) were not tractably quantified 

using statistical features, such as arithmetic average roughness (Ra, Sa), root 

mean square roughness (Rq, Sq), and other such distribution parameters (skew-

ness, kurtosis). For instance, we show that by invoking the graph theoretic invari-

ant Fiedler number (viz. the smallest non-zero eigenvalue of the graph Laplacian 

matrix), the morphology of CMP processed Cu surfaces can be assessed from 

optical micrographs. This can enable timely, non-contact, and in situ metrology of 

semiconductor wafers. 

Finally, future research plans (summarized in the south-west quadrant of 

Graphic I) and conclusions are discussed in Chapter 5 and Chapter 6, respectively. 
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Graphic I: An Overview of the dissertation.  

North-West quadrant: The RPNN-PF methodology for capturing incipient process anomalies in UPM (Chapter 2).  

North-East quadrant: PMI model approach integrating wireless sensor data and multi-scale CMP phenomena for detection of process induced wafer defects 

(Chapter 3).  

South-East quadrant: An algebraic graph theoretic approach for capturing surface morphology evolutions in nanomanufactured ultraprecision components 

(Chapter 4).  

South-West quadrant: Future research directions for algebraic graph theoretic quantification of surface morphology (Chapter 5).   
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 1 Introduction  

his dissertation describes approaches for monitoring and inspection of 

surface morphology in ultraprecision/nanomanufacturing processes by 

incorporating in situ quality assurance capabilities in two such vital processes, 

namely, ultraprecision machining (UPM) and chemical mechanical planarization 

(CMP) [1-4]. UPM and CMP are often used in the manufacture of components 

with nanometer (10
-9

 m) level dimensional specifications (1 nm to 100 nm) [2, 4]. 

Since surface quality is a critical determinant of functional performance for na-

nomanufactured components, defect-free surface quality with characteristics in 

the nanometer range, e.g., arithmetic mean roughness (Ra) < 10 nm (generally 

referred to as mirror or specular finished surface – contingent on the processed 

material), is an often mandated requirement for such components [5-9]. 

Table 1-1 juxtaposes UPM and CMP alongside conventional manufacturing 

techniques in terms of the achievable surface finish (Ra) [1, 3, 10]. From Table 

1-1, it is evident that the (typical) surface quality (with reference to surface 

roughness, Ra) that can be realized with UPM and CMP is almost three orders of 

magnitude smaller (smaller is better) to comparable conventional manufacturing 

processes (e.g., turning and lapping, respectively). In a similar vein, Table 1-2 

shows representative manufacturing tolerances and functionally critical facets for 

various engineering components, with tolerance < 100 nm being the domain of 

nanomanufacturing processes, such as UPM and CMP.   

T 
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Table 1-1: Typical surface finish ranges for various manufacturing processes (after DeGarmo, et al. [10]). 

Representative surface finish values for UPM [1] and CMP [3] processes have been appended. Darker shades indicate typical ranges; the lighter shades represent less typical ranges. 
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Table 1-2: Part tolerance and emphasis with respect to different applications (after Taniguchi [4]). 
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1.1 Motivation and Research Objectives 

UPM (often also referred to as diamond turning (DT)) is typically a single-

point turning process, which uses a single crystal diamond (SCD) tool for crafting 

precision components, such as precision molds, miniature lenses, aspheric mir-

rors, micro-channels, etc., which are functionally critical to the electro-optical, 

aerospace, biomedical, and defense industries [1-4, 11, 12]. Characteristic toler-

ances (waviness) for UPM finished parabolic mirrors used in radiometry are of 

the order of ± 6 nm, with surface finish (Ra) in the range of 2 – 25 nm [13, 14]. 

We report near-specular
1
 surface finish (arithmetic mean areal surface roughness, 

(Sa) 15–20 nm) obtained on aluminum 6061 discs using our experimental UPM 

setup (see the left side of Graphic II, which summarizes these outcomes).  

The UPM process is observed to be exceedingly sensitive to minute instabili-

ties from extraneous sources, such as temperature fluctuations, vibrations, materi-

al inconsistencies, etc. [15-17]. It is noted that an infinitesimal change or drift in 

process conditions, for instance, due to heat radiated from the human body (of the 

operator), vibration from nearby machinery, perturbation from opening and clos-

ing doors, material crystal defects, etc., that might be inconsequential in conven-

tional machining, manifest almost immediately on the surface of the work-

material in UPM [1, 18].  

                                                 
1
The surface produced has close to mirror finish quality, but is not defect-free due to certain sub-

optimal conditions stemming from microstructural defects in the material. The Al 6061 sample 

used in our UPM study has hard material inclusions (aluminum silicide) due to the presence of 

silicon as an alloying element. This significantly impedes the homogeneity of the microstructure, 

and consequently the uniformity of cutting forces and conditions (depth of cut). 
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If such process drifts/anomalies are not detected in a timely manner, they can 

render waste several hours of labor, expensive tools, and substrates. Therefore, 

detection of incipient anomalies is important for quality assurance in a UPM 

process. Consider for example, an extract (produced verbatim below) from a 

recent (March 2013) job posting by II-VI Inc., of Saxonburg, PA, which describes 

the responsibilities of a process engineering manager for its ultraprecision ma-

chining operations (referred as diamond turning (DT) by the company). 

“Errors in DT can have significant impact on profits of Diamond Turning 

Business Unit. Attaining and maintaining satisfactory yields, on time delivery 

throughput and product quality is critical to II-VI profitability. Operational er-

rors can jeopardize II-VI reputation in the market and can result in lost growth 

opportunities.”   

From the above excerpt, it is evident that control of key process output variables 

(dimensional accuracy and surface integrity of the component) in UPM is a perti-

nent engineering problem consequential to profitability.  

CMP is a free abrasive process similar to lapping, which is widely used in the 

semiconductor industry for finishing dielectric and metal interconnect layers 

patterned on semiconductor wafers [19]. The dimensional consistency of these 

interconnect layers is crucial to the functional performance of semiconductor 

devices and, therefore, tightly controlled during manufacture [19, 20]. Since a 

typical modern semiconductor integrated circuit (IC) has 7 to 10 interconnect 

layers, with each layer requiring a CMP step, CMP induced variations in layer 

thickness can severely impede device functionality [20, 21].  
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Pertinently, with semiconductor devices with feature sizes less than 22 nm 

soon to be commercially introduced, nanoscale wafer surface morphology defects 

(pits, scratches, corrosion) that occur during a CMP step can have deleterious 

effects on microprocessor performance [20]. Consequently, monitoring of CMP 

process is vital for ensuring functional integrity of semiconductor devices. In 

this research, copper wafers with near-specular
2
 characteristics and surface finish 

(Sa) in the range of 5 – 8 nm were obtained using our experimental CMP setup 

(depicted in the right half of Graphic II). 

CMP process induced wafer defects have significant financial implications. 

For instance, revenue losses from damage to a single 300 mm (12 inch) semicon-

ductor wafer due to CMP defects are appraised at over $100,000 [22]. Industry 

practitioners have noted that wafer defects resulting from poor CMP process 

control are among the top five reasons inhibiting semiconductor yield [23].  

For quality assurance purposes, semiconductor manufacturers spend close to 

$9 billion annually on wafer metrology related operations [24]. The current em-

phasis has been towards development of responsive wafer inspection methods, 

since ex situ offline metrology can lower production yield by as much as 35% 

[25]. For example, results from off-line wafer inspection may often take more 

time than a production shift to be reported. Such delays inhibit detection and 

                                                 
2
This is because the copper wafers used in our study have tellurium (Te) added as an alloying 

element. Consequently, the particular copper alloy used this study (C14500 series) has a higher 

machinability rating (~ 80%) compared to pure copper (~ 20%). A higher machinability rating 

was necessary for ease of shaping (sawing and CNC machining) of wafers commensurate with the 

dimensional constraints of the apparatus, and in order to mount sensors on the wafer backside. 

During CMP these Te inclusions tend to be removed as flakes, which impedes the surface finish 

that can be achieved (in comparison to pure copper). 
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subsequent prevention of process related defects [26]. Thus, poor control and 

reticent inspection in nanomanufacturing processes, such as CMP, can result 

in significant revenue losses. 

As noted by Bennet [24], one of the evolving trends, particularly in the semi-

conductor industry, is the increasingly greater emphasis on faster characteriza-

tion of manufacturing processes, assisted by increased modeling and simulation 

for nanotechnologies to offset the greater increase in costs associated with 

measurements (quoted verbatim from [24]). Given these concerns, traditional 

post process statistics-based monitoring and inspection techniques are of limited 

utility, because, due to their inherent reticence they may fail to detect some of the 

subtle process drifts manifest in nanomanufacturing operations [27, 28]. 

Therefore, there is a compelling need to suggest approaches that can 

capture evolving (incipient) process anomalies at an early stage in nanoman-

ufacturing applications so that opportune corrective actions can be taken and 

yield losses can be minimized. With these concerns in perspective, we distill the 

objectives of this research as follows: 

Research Objectives  

1. To forward approaches for monitoring and identification of incipient anoma-

lies in nanomanufacturing process, specifically UPM and CMP, based on in 

situ sensing techniques. 

2. To suggest methods for surface quality assessment of nanomanufactured 

ultraprecision components that can be incorporated in line and are capable 

of capturing subtle nanoscale surface morphology variations.  
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Graphic II: Summary of research concerning ultraprecision machining (UPM) and chemical mechanical planarization (CMP) processes. 

Left: The experimental UPM setup instrumented with multiple miniature sensors, and the typical specular finish obtained on Al 6061 workpieces using this setup. The 

bottom portion shows profiles of abnormal surfaces due to UPM process drifts.  

Right: A CMP machine instrumented with multiple sensors, and the mirror-like surface obtained as a result of CMP on copper discs. The bottom portion shows the 

micrograph of the surface before (as lapped, left) and after CMP (right); however note that the improvement in surface quality due to CMP that is readily evident to the 

naked eye is not captured using statistical measurements, such as Ra (which is accessed at 5 nm). 
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1.2 Challenges and Proposed Approaches  

Meeting these research objectives requires surmounting many challenges, 

some of which were enumerated by experts from academia, industry, and national 

labs at a recently organized (Nov. 2009) National Science Foundation (NSF) 

workshop on nanotechnology. These expert findings, which appear in a topical 

article authored by Bukkapatnam, et al. [27], can serve as a roadmap for future 

nanotechnology related research. 

These expert recommendations have inspired the approaches developed in 

this research to address some of the challenges associated with quality assurance 

in nanomanufacturing. Some of the challenges and expert recommendations in 

perspective of this research are reproduced (verbatim) herewith. They are also 

summarized in Graphic III (adapted from a CIRP review article by DeChiffre, et 

al [8]). 
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Challenges in Nanomanufacturing 
(as listed in [27]) 

1. In situ sensing 

 Nanoscale processes and systems pose many challenges for sensing:  

  • accessibility to signal source is not easy; 

  • in situ sensing is almost impossible; 

  • signals are short, evanescent, and weak; 

  • quantization of signals makes transduction difficult; and 

  • signal-to-noise ratio is low. 

2. Complex process physics 

Mechanisms that cut across multiple scales make observation and characterization 

of nano-materials and nano-processes difficult. 

3. Product quality assessment 

Tools currently used in nanotechnology research labs offer atomic-level resolution 

for characterizing nanoscale surfaces but are barely adequate to meet the require-

ments of high-volume nanomanufacturing. For example, an Atomic Force Micro-

scope (AFM) gives nearly atomic-level surface resolution, albeit at a very slow 

rate; it would be impossible to use AFM to characterize surfaces in commercial-

scale high-rate operations. 



11 

 

 

Graphic III: Issues and challenges in manufacturing, particularly in the emerging nanomanufacturing realm involving surface engineering, process control, 

and quality control aspects which present opportunities for industrial engineers to make relevant contributions [27]. Graphic adapted from DeChiffre, et al. 

[8]. 
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Recommendations for Nanomanufacturing Research 

(as listed in [27]) 

1. A systematic set of methodologies of quality engineering should be developed 

to provide the following:  

  • guidelines for the design and analysis of experiments to optimize  nano-

process settings;  

   • on-line monitoring and diagnosis techniques to reduce nanoprocess  

  variation and downtime during production; and  

   • strategies for continuous improvement for high yield and quality. 

2. Physics-based statistical models considering nanoscale hierarchical physics 

and nonlinearities should be developed. These realistic models will enable 

monitoring, diagnostics, prognostics, and reliability analysis. 

3. Instrumentation and analytical tools for comprehensive characterization 

of nano-materials for on-line process control should be developed and 

characteristics required for specific applications defined. 

1.2.1 Scope of the Research 

Summary of the research satisfying objective 1 

The first objective viz., to develop approaches for monitoring and identifi-

cation of incipient anomalies in nanomanufacturing is accomplished by inte-

grating in situ heterogeneous miniature sensors, such as force, vibration, and 

acoustic emission (AE) in close proximity to the (UPM and CMP) process. How-

ever, as noted in the challenges listed in the foregoing, due to the low signal-to-

noise ratio (S/N) of acquired sensor signals and the sensitivity of the process to 

extraneous noise, the signal patterns depict complex nonstationary and nonlinear 

behavior. Consequently, the sensor signal patterns acquired from UPM and CMP 
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processes may not be amenable to application of conventional process monitoring 

approaches [27]. 

To overcome these impediments, we use concepts from various domains, 

such as chaos theory, neural networks, and Bayesian inference, in order to devel-

op approaches for analyzing the acquired sensor signal patterns, and consequently 

detect anomalous process variations. For example, an integrated Recurrent Predic-

tor Neural Network, Bayesian Particle Filter (RPNN-PF) prediction algorithm is 

used to detect incipient defects in UPM processing of aluminum discs, by invok-

ing data from heterogeneous wired piezoelectric sensors.  

Using this approach, process drifts leading to deterioration in surface quality 

of the machined sample were detected within 15 milliseconds (ms) of their incep-

tion. In comparison, conventional signal processing methods were largely reticent 

(> 30 ms) and prone to Type 1 (false alarm) and Type 2 (failing to detect) errors. 

Using this approach, we have addressed expert recommendations exhorting the 

development of on-line monitoring and diagnosis techniques to reduce nano-

process variation and downtime during production [27]. 

For CMP process monitoring, we have designed a close-proximity wireless 

miniature (3 mm × 3 mm) MEMS multi-sensor array consisting of tri-axis vibra-

tion and sound sensors. Commercially available piezoelectric sensors, such as 

those used for the previous UPM study, are ill suited for CMP monitoring. This is 

because the presence of multiple rotating machine elements does not allow for 

easy integration of wired piezoelectric sensors. Although wireless sensors enable 
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close-proximity monitoring of the CMP process, their utility is impeded, as noted 

by Bukkapatnam, et al, due to low signal-to-noise ratio, propensity to quantization 

errors, low signal sampling rates, etc. [27].  

Therefore, based on expert recommendations suggesting that physics-based 

statistical models considering nanoscale hierarchical physics and nonlineari-

ties should be developed [27], the sensor signal patterns are integrated with a 

deterministic nonlinear differential equation process-machine interaction (PMI) 

model (documented in Appendix III) evocative of the various multi-scale phe-

nomena that culminate in the complex process dynamics. By using the sensor 

signals in conjunction with a physical model, the effect of extraneous noise and 

inconsequential artifacts are negated.  

Pertinently, the PMI model allows evolving process anomalies to be antici-

pated a priori. For example, after extensive verification of the PMI model solu-

tions with experimentally acquired sensor data, accurate (R
2
 > 75%) statistical 

models capable of timely identification of process drifts, such as polishing pad 

wear are suggested. 

Summary of the research satisfying objective 2 

In order to satisfy the second objective calling for development of methods 

for surface quality assessment of nanomanufactured ultraprecision compo-

nents, we propose an algebraic graph theoretic approach for quantification of 
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surface morphology variations in nanomanufactured components. This approach 

represents the nano-surface morphology as a network graph.  

As a result, the underlying topological relationships of the surface are pre-

served and can be subsequently quantified using graph theoretic invariants. This is 

advantageous because traditional surface metrology is restricted to statistical 

parameters, which do not elucidate the nano-surface topography [29]. Researchers 

have also reported that statistical quantification of nanomanufactured ultrapreci-

sion surfaces are often incongruous [30].  

Additionally, since this graph theoretic approach primarily uses optical mi-

crographs for characterization of the surface morphology, it overcomes several 

lacunae associated profile mapping techniques, such as laser interferometry, 

atomic force microscopy (AFM), scanning electron microscopy (SEM), etc., that 

can be time consuming, destructive and restricted to assessment of small areas. In 

contrast, contemporary optical inspection systems can scan (ex situ, off-line) a 

300 mm semiconductor wafer in less than 1 minute [26].  

Given these considerations, the graph theoretic approach is amenable to in 

line integration and can therefore be valuable as an analytical tool for compre-

hensive characterization of nano-materials, as suggested by experts [27]. We 

now motivate the possible socioeconomic benefits of this research.  
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1.3 Socioeconomic Impact of the Research 

Why cannot we write the entire 24 volumes of the Encyclopedia Britannica on the 

head of a pin?  

− Richard Feynman, “There is plenty of room at the bottom” [31].  

If the automobile industry advanced as rapidly as the semiconductor industry, a 

Rolls Royce would now get half a million miles per gallon, and it would be cheap-

er to throw it away than to park it. 

                 − attributed to Gordon Moore  

Although nanomanufactured components, such as computer chips, hard drive 

components, precision optics, etc., influence our daily life in the same profound 

way as an automobile, most consumers barely think about how these articles are 

made. Indeed, nanotechnology enabled materials are increasingly being incorpo-

rated into mundane consumer products, such as cosmetics, textiles, anti-bacterial 

coatings in refrigerators and air purifiers [32, 33] (e.g., Samsung’s Silver-Nano® 

coating), etc. Pertinently, the ability to successfully accomplish nanomanufactur-

ing related objectives is vital to the national interest and impacts several conse-

quential areas, from semiconductor devices in the electronics industry, biomedical 

implants in the healthcare industry, optical components for space and defense 

applications, to efficient photovoltaic cells for harnessing solar energy [34]. Some 

of these potential impact areas are listed in Table 1-3.  

From a pecuniary perspective, NSF projects a worldwide market of $1 trillion 

in the next 10 years for nano-enabled products in the manufacturing, electronics, 

healthcare, and transportation sectors of the economy [35] (see also Graphic IV).  
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Graphic IV: Socioeconomic impact of the research in context of the emerging nanotechnology para-

digm. 

At this juncture, we introduce some terms related to nanotechnology and na-

nomanufacturing for the benefit of the general audience. The US government 

National Nanotechnology Initiative (NNI) strategic plan [36] quotes the following 

with respect to nanotechnology and nanomanufacturing: 

Nanotechnology is the understanding and control of matter at dimensions 

between approximately 1 and 100 nanometers, where unique phenomena enable 

novel applications. Encompassing nanoscale science, engineering, and technolo-

gy, nanotechnology involves imaging, measuring, modeling, and manipulating 

matter at this length scale. 

A nanometer is one-billionth of a meter. A sheet of paper is about 100,000 na-

nometers thick; a single gold atom is about a third of a nanometer in diameter. 

Dimensions between approximately 1 and 100 nanometers are known as the 

nanoscale. Unusual physical, chemical, and biological properties can emerge in 

materials at the nanoscale. These properties may differ in important ways from 

the properties of bulk materials and single atoms or molecules. 

United States National Nanotechnology Initiative Strategic Plan (pg.3). [36] 
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The same document states the following goal identified by the US govern-

ment as being vital to nanomanufacturing related research: 

R&D aimed at enabling scaled-up, reliable, and cost-effective manufacturing 

of nanoscale materials, structures, devices, and systems. Includes R&D and 

integration of ultra-miniaturized top-down processes and increasingly complex 

bottom-up or self-assembly processes. 

United States National Nanotechnology Initiative, Strategic Plan (pg.5). [36] 

Provide, facilitate the sharing of, and sustain the physical R&D infrastruc-

ture for nanoscale fabrication, synthesis, characterization, modeling, design, 

computation, and hands-on training for use by industry, academia, nonprofit 

organizations, and state and federal agencies… 

United States National Nanotechnology Initiative Strategic Plan (Goal 3, pg.29). 

[36] 

 

Though nanotechnology is a relatively new (1983) term, the concept was 

suggested in 1960 by Richard Feynman in a seminal article – There is plenty of 

room at the bottom [31]. In this article, Feynman challenges, ‘Why cannot we 

write the entire 24 volumes of the Encyclopedia Britannica on the head of a pin?’ 

Feynman not only envisions atomistic scale manufacturing (printing, manipula-

tion, machining, bionics), but also suggests how these could be achieved, and the 

constraints we might face (e.g., he devotes a section on lubrication at the atomic 

scale).  
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Table 1-3: Potential impact of nanotechnology (after Corbett, et al. [34]). 

Technology Present Impact Potential Impact 

Dispersion 

and Coatings  

 Thermal barriers 

 Optical (visible and UV) 

barriers 

 Imaging enhancement 

 Ink-jet materials 

 Coated abrasive slurries 

 Information-recording 

layers 

 Targeted drug deliv-

ery/gene therapy 

 Multifunctional nano-

coatings 

High Surface 

Area 

Materials 

 Molecular sieves 

 Drug delivery 

 Tailored catalysts 

 Absorption/desorption 

materials 

 Molecule-specific sensors 

 Large hydrocarbon or 

bacterial filters 

 Energy storage 

 Grätzel-type solar cells 

Consolidated 

Materials 

 Low-loss soft magnetic 

materials 

 High hardness, tough 

WC/Co 

 cutting tools 

 Nano-composite cements 

 Superplastic forming of 

ceramics 

 Ultrahigh-strength, tough 

structural materials 

 Magnetic refrigerants 

 Nano-filled polymer 

composites 

 Ductile cements 

Nano-devices  GMR read heads 

 Terabit memory and mi-

cro-processing 

 Single molecule DNA 

sizing and sequencing 

 Biomedical sensors 

 Low noise, low threshold 

lasers 

 Nanotubes for high 

brightness displays 

Additional 

Biological 

Aspects 

 Bio-catalysis 

 Bioelectronics 

 Bio-inspired prostheses 

 Single-molecule sensitive 

biosensors 

 Designer molecules 
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1.3.1 The need for nanoscale precision  

Research in the last century has enabled the continual tightening in manufac-

turing accuracy specifications. For example, in the early 1980s an exponential 

trend in machining accuracy was observed by Taniguchi [2]. This observation, 

depicted in the so-called Taniguchi curves (Figure 1-1), suggested that machining 

accuracies in the nanometer range (10
-9

 m) would be achievable before the onset 

of the new millennium. Professor Taniguchi consequently coined the manipula-

tion of material in the nanometric range as nanotechnology [34]. 

 

Figure 1-1: Taniguchi curve [2] (1983) predicting the exponential improvement in machining accuracy.  
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McKeown [12] motivates the need for precision manufacturing from eco-

nomic and scientific perspectives. McKeown cites six reasons as prime movers in 

the continual tightening of manufacturing accuracy specifications: 

i. Promote ease of assembly. 

ii. Reduce scrap, rework, and inspection. 

iii. Promote interchangeability. 

iv. Improve wear life and fatigue life. 

v. Achieve miniaturization. 

vi. Advance science and technology. 

As an illustrative example, it was observed that significant improvement in 

performance of aerospace components, such as jet engines and turbine gearboxes 

could be achieved by incorporating greater levels of precision during their manu-

facture [12]. For example, as shown in Figure 1-2, on tightening the surface 

roughness (Ra) specification of turbine blades from 500 nm to 300 nm, the com-

pressor efficiency of later Rolls-Royce Trent series engines improved by almost 

2%, which is comparable to the improvement achieved between design genera-

tions (e.g., Rolls-Royce RB series vs. Trent series) [12]. Similarly (see Figure 

1-3), on reducing the individual tooth error in an aerospace transmission from 3 - 

4 μm to below 1 μm, increase in torque efficiency from 50% to close to 90% was 

achieved [12]. 
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Another example of such an exponential trend (Figure 1-4) in manufacturing 

specifications, is the doubling of number of transistors on integrated circuits 

approximately every two years (Moore’s Law) [37]. 

 

 
Figure 1-2: Improvement in compressor efficiency over last five decades. 

The compressor efficiency of jet engines has continuously improved over the last five decades due to 

advancement in design and technology. However, a significant improvement in compressor efficiency 

can also be achieved by tightly controlling the surface quality and profile tolerances of jet engine 

blades (Rolls-Royce  corporation, graphic adapted from [12] ). 
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Figure 1-3: Improvement in torque capacity due to increased precision in manufacturing. 

The torque capacity of an aerospace gearbox can be improved (almost exponentially) by refining the 

precision of the gear tooth profile and minimizing errors in loci without extensive redesign. (Rolls-

Royce corporation, graphic adapted from [12]). 

 

Figure 1-4: An illustration of Moore’s law. 

The doubling of semiconductor transistor counts on an integrated chip approximately every two years 

[38]. 
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1.3.2 The need for novel process monitoring approaches in nanoman-

ufacturing 

Despite the nanomanufacturing processes studied in this research being dis-

tinctive from conventional processes, such as turning or milling, which one en-

counters on a daily basis, the issues of the broadest consequence are almost iden-

tical. Notwithstanding the sophistication involved in nanomanufacturing, the 

classic industrial engineering concern, get it done faster, cheaper, and better
3
 is 

not outmoded [39]. It is indeed even more significant in the case of nanomanufac-

turing, because as noted previously, the economic stakes are many orders of 

magnitude greater. Additionally, our physical understanding of some of these 

processes is not yet complete [27].  

Our dilemma is further compounded when we find that owing to the complex 

physical phenomena manifest at the nanoscale [27, 35], few techniques from the 

generic IE toolkit, such as statistical process control, time series analysis, linear 

programming, etc., are at best useful for a peripheral understanding of the prob-

lems encountered [27, 28]. Therefore, in the case of nanomanufacturing, the 

industrial engineer has to devise novel ways of getting it done faster, cheaper, 

and better.  

The central theme of this dissertation stems from the quality assurance per-

spective in nanomanufacturing processes.  

                                                 
3
F. W. Taylor, "On the art of cutting metals," Transactions of the ASME, Annual Meeting, 1907. 



25 

 

A brief introduction to UPM and CMP processes 

Ultraprecision machining (UPM) and chemical-mechanical planarization 

(CMP) are employed for achieving surface finish in the nanometric range (< 100 

nm) by subtractive means on a variety of materials encompassing the domain of 

metals, non-metals, semiconductors, and composites. However, any similarity 

between the twain ends with their classification as subtractive processes. A delin-

eation of the method of material removal is perhaps most conducive to contrast 

UPM and CMP.  

The volume of material removed is significantly smaller (few tenths of a mil-

ligram per minute) in the case of CMP compared to UPM (tens of grams per 

minute). In general, UPM is analogous to turning operations conducted on a 

specialized lathe using natural diamond cutting tools; while CMP is similar to 

loose abrasive material removal processes such as lapping.  

In UPM, material is removed (typically) as a single point cutting operation. A 

single crystal diamond (SCD) tool is used to remove material in the form of fine 

chips at depths in the 2 – 50 micrometer (µm) range on an extremely precise lathe  

having the following salient characteristics [1, 17, 18, 40]: 

 Enhanced vibration and noise isolation: Stiff granite machine structure, 

pneumatically elevated machine supports, and acoustic/vibration isolators 

are used to eliminate errors due to extraneous disturbances. In some cases, 

the machine might be (quite literally) buried in a ‘pit’ instead of being ele-

vated on the floor for vibration and acoustic isolation [13, 14, 40]. 



26 

 

 Minimization of errors due to inertia of machine elements: The machine 

elements are designed in a manner such that their inertial moment is bal-

anced or compensated. Precision straightedges are mounted to measure the 

deflection of machine slides, so that corrective action can be taken [13, 41].   

 Minimization of errors due to backlash and friction: Air-bearing spindles 

mechanically coupled (via precision flexible couplings) to brush-less DC 

motors, and precision air (cushion) slides are used to eliminate backlash and 

friction errors. Conventional ball screws and hydrodynamic journal bearings 

are avoided [4]. 

 Integrated precision metrology: Multiple laser interferometers, encoders, 

and process condition monitoring sensors (e.g., temperature) are incorpo-

rated to ensure precision positioning and movement (of the tool and work-

piece). 

 Precision work-holding arrangements: For error free location and clamp-

ing of the workpiece, vacuum or magnetic chucks are used. These prevent 

the possibility of imbalance, warping, and misalignment of the workpeice 

often observed with mechanical fastening. 

 Precision cutting tools: Ground and lapped single crystal diamond (SCD) 

tools with stringently controlled signature (i.e., geometry) and surface quali-

ty are used. 

 Minimization of thermal errors: Machine elements (tool slides, tool hold-

ers, fasteners, etc.) are constructed from low thermal expansion materials, 
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such as Invar; coolant showers and temperature-controlled enclosures are 

used to minimize thermal deflection of the machine. 

In the United States, Lawrence Livermore National Laboratory (LLNL) has 

been the pioneering institution in the design and development of UPM-capable 

machines [18]. Ultraprecision machines for turning 4 inch diameter spherical 

geometry lenses and optics, to 84 inch diameter non-cylindrical mirrors used for 

X-ray radiometry applications have been designed at LLNL [13].  

For example, a UPM machine designed by LLNL is the vertical Large Optics 

Diamond Turning Machine (LODTM) [14, 40], which is purported to be one of 

the most accurate UPM machine available (2001) (see Figure 1-5). This machine 

is capable of turning 64-inch diameter workpieces for optical applications to a 

surface finish of 4.2 nm (Rq) and 28 nm form (geometric) accuracy. This machine 

utilizes multiple interferometers (7 in all) for tool movement with respect to the 

machine structure.  

In addition, capacitive gauges are used to precisely locate the workpiece in 

reference to the machine coordinates. Aerostatic bearings are employed for the 

slideways (14 in all), and water-cooled pressurized oil radial and thrust bearings 

stabilize the rotational motion of the spindle. Connectors are made from materials 

with low coefficient of thermal expansion (e.g., Invar) to ensure thermal stability. 

Suppression of environmental noise is achieved using pneumatic isolators, inde-

pendently mounted air compressors, and air conditioning equipment. The machine 
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operates in an acoustically isolated area where the air temperature is kept within 

0.001° F. 

 
Figure 1-5 64 inch Large Optics Diamond Turning Machine (LODTM) at LLNL [14, 40]. 

(a) Schematic of the machine (b) Photograph of machine with workpiece loaded (c) Aspheri-

cal mirror for astronomy applications machined on LODTM.  

 In CMP, the physio-chemical action of nano-particulate abrasives (< 100 na-

nometer (nm) grain size), such as alumina (Al2O3) and silica (SiO2), suspended in 

colloidal form in a chemically active solvent (typically, potassium hydroxide 

(KOH) or sodium hydroxide (NaOH)), are used to remove material as grains (too 

small to be visible to the naked eye) with a polishing-like mechanical action [19, 

21].  

Modern semiconductor integrated circuits (IC) are built layer by layer, with 

trenches and via(s) (connections) etched into each preceding layer using ultravio-

let photolithography processes [20, 21]. Dielectric or metal is subsequently depos-

ited on the patterned layers, usually by vapor diffusion methods. After deposition, 

it is necessary to polish each layer to specification using CMP. Control and moni-

toring of CMP is crucial, because if planarization is not accomplished to preci-

sion, then the dimensional thickness of subsequent layers will fall out of specifi-
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cation, and consequently affect the functional integrity of the device [21]. For 

example, if the preceding layers are crooked (called bird beak structure in semi-

conductor manufacturing parlance [19]) the ultraviolet light used in photolithog-

raphy patterning of following layers will be exceedingly out of focus. The bird 

beak structure is but one of several anomalies that can be induced during CMP 

[20].  

Modern current integrated circuits have 7-10 such interconnect layers [19, 

20], with each layer requiring a CMP step. Considering that the worldwide reve-

nue from sale of semiconductors for financial year 2010 was recorded at $299.4 

billion, up ~ 30% from the previous year [42], it is readily apparent that the eco-

nomic implications from minimizing CMP related defects and anomalies are 

profound.  

In contrast, UPM is a relatively niche market, with (hardware) sales in 2003 

recorded at ~ $100 million, and is in the midst of a transition from the realm of 

national laboratories to large-scale commercial deployment [43]. Ultraprecision 

diamond turning machines, which were until recently designed and housed in 

national labs, and primarily meant for manufacturing components for so called big 

science projects, such as X-ray telescope mirrors, are now being scaled down and 

sold to small-medium private businesses [13, 14, 40]. 

Scaled-down UPM machine tools in the hands of private entrepreneurs are 

now being applied in previously unimagined consumer driven areas [43-46]. For 

example, a Boston area ophthalmologist uses ultraprecision diamond turning for 
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making scleral eye lenses customized to fit the ocular characteristics of the pa-

tient, and crafted with miniature grooves which can hold lubricating fluid [43]. In 

addition, these lenses are designed with complex spline geometries in order to 

dilate and contract with the eye. The complex geometry and micro-scale grooves 

enable the lens to be placed touching the cornea.  

Pertinently, without the lubrication provided by the fluid held in the UPM-cut 

grooves, the lens sticks to the cornea. Hitherto the spline geometry and grooves 

had to be painstakingly cut by hand, scleral lenses were therefore prohibitively 

expensive. The specialized UPM process adapted for this application is credited 

with restoring eyesight to the functionally blind (see Graphic V). One also notes, 

the potential health hazard due to a miniscule defect caused by poor process 

control during the manufacture of such lenses. 

Thus, given the wide applicability of UPM and CMP, expeditious process 

prognosis can help alleviate inherent low yield/high rejection rate problems. 

Significant socioeconomic incentives are consequently envisioned from prevent-

ing anomalies in their incipient stages in CMP and UPM.  
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Graphic V: The societal impact of UPM. Ultraprecision lathes are used for shaping scleral lenses bearing intricate splines and grooves. These lenses can potentially 

impart vision to blind people with damaged corneas
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1.4 A Synopsis of the research 

In freshman engineering shop class, we were perhaps asked to turn a steel bar 

to shape (as done here at Oklahoma State) on a lathe. To check whether the part 

was ‘in spec’; we regularly stopped the lathe and measured the relevant dimen-

sions using a vernier caliper. If the part was ‘off spec’, we tried to rework it. If 

unfortunately the errors were unfixable, we started anew on a fresh steel bar. In 

the worst case, our total loss amounted to a few dollars.  

Unlike conventional manufacturing, where we might have the wherewithal to 

rework or scrap a part often entailing moderate losses, we rarely have such liberty 

when dealing with nanomanufactured ultraprecision components. For example, an 

undetected non-conforming telescope mirror (due to surface and geometry de-

fects) might cost many millions to replace [47]. The thrust, therefore, is to mini-

mize the ex situ monitoring of the process and expeditiously detect the onset 

of process faults in order to avoid expensive failures. 

One of the most viable means to achieve this goal is to integrate in situ sen-

sors in the process and examine the emerging signals. Nevertheless, which type 

sensors are suitable for our application?  

The above question can be answered based on experience of previous re-

searchers [48-52]. Particularly, the works of Dornfeld, et al. [48-50] indicate that 

accelerometers and Acoustic Emission (AE) sensors are best suited for applica-

tions where subtle changes, such as surface finish and sub-surface damage, which 

occur in the nanometer range, have to be monitored (see Figure 1-6). Therefore, in 
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this work, signals acquired from accelerometers (vibration sensors) are used 

widely.   

The next step is to correlate the characteristics of the output signals with pro-

cess anomalies. By doing so, we can begin to consider corrective actions as the 

process shows signs of malfunction or out of control condition. 

However, these aims hinge on the central assumption that the acquired sen-

sor signals are evocative of the process and not largely the result of accompany-

ing noise from factors extraneous to the process dynamics, such as kinematic 

errors from machine elements and environmental conditions. Once we are assured 

of a high signal to noise ratio from the sensor data, we might even think ahead 

and consider predicting when the process is about to malfunction.  

 

Figure 1-6: Sensor types and concomitant detection regimes (after Dornfeld, et. al.[50, 53]) 
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In summary, to reliably monitor the process in situ using sensors, one has to 

ensure the following conditions are met:  

1. Acquired sensor signals should have sufficiently high signal to noise ra-

tio. 

2. Sensor data should depict consistent and replicable trends. 

3. Algorithms for signal monitoring should correlate actual physics of the 

process with relevant signal characteristics. 

Optimistically, when we have achieved these prerequisites, the components 

that are produced would be largely conforming to specification. Nevertheless, 

how could we be sure that the component is still ‘in spec’?  

Perhaps, we will proceed to inspect the part that was produced. Analogous to 

when we used a vernier caliper in freshman engineering, we might examine the 

surface of the nanomanufactured component, albeit using sophisticated methods, 

such as laser interferometry, stylus-based (contact) profiling, optical microscopy, 

atomic force microscopy, etc.  

What happens if we find that some of the quantifiers we have inherited from 

traditional manufacturing practices are not suitable for quality assessment of 

nanomanufactured ultraprecision components? Therefore, it is essential to devise 

a reliable quantification approach that can capture aspects of the surface 

morphology critical to the functional performance of the component.  

Unfortunately, given the complexity and uniqueness of the processes studied, 

a universal strategy cannot be applied. For example, in UPM the material removal 

action is akin to single point plastic deformation (assuming material removal in 
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UPM to be a similar to conventional metal cutting constitutes a grave error, none-

theless this analogy is (tenuously) defensible for broad didactic purposes), while 

in CMP the material removal action is mainly due to abrasive wear.  

It is rather obvious that apart from the process mechanics, the physical setup 

and constraints in terms of the machine tools, process conditions, and environ-

mental noise for these processes also differ. These considerations influence the 

nature and type of sensors that can be used for monitoring. For example, the CMP 

process uses chemically active slurries, which can easily damage expensive wired 

piezoelectric sensors. Hence, in CMP it is imperative to design a sensor network 

that is wireless, non-contact, and uses easily replaceable inexpensive sensors. 

One of the essential premises of this dissertation is that nanomanufacturing 

processes, such as UPM and CMP, can be monitored with high fidelity using 

sensor data.  

We now provide a brief overview of the dissertation encompassing Chapter 2 

through Chapter 4 that essentially enshrines the main contributions of this re-

search.  
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1.4.1 Real-time Identification of Incipient Surface Morphology Varia-

tions in Ultraprecision Machining (UPM) Processes  

In chapter 2, we address expert recommendations concerning on-line moni-

toring techniques for real-time diagnosis of nanomanufacturing process variations 

[27]. We have devised an approach that invokes neural network and Bayesian 

learning techniques for in situ detection of UPM process variations, by integrating 

data from heterogeneous sensors, such as force, vibration, and acoustic emission 

(AE). 

Challenges in nanomanufacturing research [27] 

Nanoscale processes and systems pose many challenges for sensing: 

  • Accessibility to signal source is not easy; 

  • In situ sensing is almost impossible; 

  • Signals are short, evanescent, and weak; 

  • Quantization of signals makes transduction difficult; and 

• Signal-to-noise ratio is low. 

Expert recommendations for nanomanufacturing research [27] 

A systematic set of methodologies of quality engineering should be developed 

to provide the following:  

• Guidelines for the design and analysis of experiments to   

   optimize nanoprocess settings;  

• On-line monitoring and diagnosis techniques to reduce   

    nanoprocess variation and downtime during production; and  

• Strategies for continuous improvement for high yield and quality.  
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Motivation and goal 

 

Figure 1-7: Surface roughness profile of a section of UPM processed Al 6061 disc (obtained using a 

laser interferometer). 

Consider Figure 1-7, which shows a 300 µm (1 µm = 10
-6 

m) long contiguous 

surface profile of a UPM-processed aluminum 6061 (Al 6061) disc. It is evident 

that the surface roughness (Ra) changed significantly in a short span amounting to 

a few milliseconds (ms) of processing time, in this case approximately 30 ms.  

Unlike, in conventional manufacturing such evanescent out of control process 

states have a substantial impact on the quality of parts produced in UPM. In this 

context, this particular Al disc could be a telescope mirror measuring several 

inches (if not feet) in diameter, with allowable deviation in surface roughness 

specifications amounting to Ra < 10 nm [13, 41].  

Under such circumstances, we might have to rework, or worse, scrap the part, 

leading to waste of several man-hours of specialized labor, costly tools (diamond 

tools), machine downtime, setup, materials, etc.,– in all a very expensive preposi-

tion.  
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Clearly, such abrupt changes in surface morphology are indicative of process 

anomalies, which can have deleterious consequences and lead to considerable 

capital losses if not detected and stopped at an early stage. It would be valuable, 

therefore, if we could find approaches to avoid such eventualities by predicting 

the onset of process anomalies so that timely corrective action can be taken.  

Goal 1 
(Satisfying Objective 1) 

To suggest a method capable of real-time in situ detection of incipient anomalies 

in UPM process.  

However, in situ prediction of developing process anomalies from sensor data 

is not easily accomplished, mainly because: 

i. Traditional statistical signal processing techniques are reticent in de-

tecting short time drifts (sampling window is small). 

ii. Typical control charting approaches (e.g., X-bar chart) are particularly 

stymied if the underlying distribution of the signal is non-Gaussian, 

time-dependent, nonlinear, and nonstationary (i.e., IID assumptions 

are violated). 

iii. Conventional signal processing techniques, such as Fourier transform 

spectra are easily contaminated by noise, and are therefore ill suited 

for analyzing complex signals with broadband characteristics, such as 

those observed in UPM.  

iv. Data from more than one type of sensor may be needed to predict the 

onset of UPM process anomalies. However, incorporating information 
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from multiple heterogeneous sensors is not tractable using traditional 

methods.  

Challenges 

1. Traditional statistics-based quality control and spectral analysis methods 

cannot capture evanescent, nonlinear, and nonstationary signal patterns in a 

timely manner, and therefore do not lend toward incipient real-time detection 

of ultraprecision machining anomalies.  

2. Information from multiple heterogeneous sensors is not easily integrated using 

traditional statistical methods. 

Research approach and outcomes  

In Chapter 2, we integrated heterogeneous sensors, such as piezoelectric vi-

bration, force, and acoustic emission (AE) in situ into an ultraprecision diamond 

turning machine (DTM), in an attempt to detect the onset of anomalies (e.g., 

Figure 1-7). The machine itself is similar to a lathe, albeit several orders of mag-

nitude more precise and mechanically rigid to minimize vibrations.  

Al 6061 discs are finished to a surface roughness (Sa) in the 15 – 25 nm 

range using a natural diamond single point cutting tool (single crystal diamond 

(SCD)) on this machine. The physical setup of the DTM allowed for acquisition 

of high fidelity wired piezoelectric vibration, force and AE sensor signals, with 

sampling rates > 10 kHz.  

In order to surmount the foregoing enumerated challenges, we developed a 

method (Figure 1-8), which uses a combination of a neural network called recur-
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rent predictor neural network (RPNN) and Bayesian particle filtering (PF) tech-

niques capable of online prediction of UPM process anomalies using inputs from 

multiple heterogeneous sensors, and hence prevents production of defective parts.  

 

Figure 1-8: Summary of the approach used for in situ detection of UPM process anomalies. 

We (artificially) introduced defects into the process in a controlled manner 

and studied their influence on the process (chip type) and component surface 

quality, while simultaneously acquiring heterogeneous sensor data.  

The combined RPNN-PF prediction approach imparts processing advantages 

and allows responsive prediction of incipient process anomalies. We show that the 

RPNN-PF approach significantly outperforms traditional statistical signal 

processing methods. Typically, the delay in capturing process anomalies was ~ 

15 ms using this RPNN-PF approach, compared to over 30 ms using conventional 
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statistical techniques. In this study, we assumed extraneous noise effects were 

negligible; this is reasonable given: 

i. The close proximity and high sampling rate of the sensors used.  

ii. The precise nature of the machine (air bearings, air slides, and electrically 

isolated brushless DC motors are built into the setup). 

iii. The care taken in maintaining a controlled environment during pro-

cessing – experiments are conducted when other machinery (lathes, mill-

ing machines) in vicinity of the setup are not operational (the machine 

rests on a vibration-isolated three metric ton granite base). 

iv. The consistency observed in the acquired signal patterns and surface 

morphologies on replication of experimental conditions. 

Hence, in this particular study little attempt was made to delineate or model 

the process dynamics. The specific tasks executed to accomplish the research 

outcome from this chapter are listed herewith. 
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Specific Tasks 

1. Ensure surface finish in the nanometric range (Sa < 25 nm) with near-specular 

characteristics for UPM processed Al 6061 discs.  

2. Instrument UPM setup with vibration, force, and AE sensors in close proximi-

ty to the tool-chip interface. 

3. Develop a combined recurrent predictor neural network – Bayesian particle 

filtering prediction (RPNN-PF) technique that incorporates data from hetero-

geneous sensors, such as force, vibration, and AE sensors for real-time identi-

fication of incipient anomalies.  

4. Test the approach using synthetic signals, and subsequently (statistically) 

characterize the sensitivity of the approach to different types of signal varia-

tions. 

5. Design UPM experiments to introduce controlled surface defects, and subse-

quently study their effects on sensor signals. 

6. Apply the RPNN-PF approach for early detection of UPM process anomalies.  



43 

 

1.4.2 Process-Machine Interaction (PMI) Model-based Monitoring of 

the Chemical Mechanical Planarization (CMP) Process using 

Wireless Vibration Sensors  

In Chapter 3, we invoke a deterministic process-machine interaction (PMI) 

model for identifying evolving process anomalies (the PMI model formulation is 

documented in Appendix III). The PMI model combines multi-scale phenomena 

active in the CMP process in the form of a two-degree of freedom nonlinear 

differential equation.  

We invoke and verify the PMI model using experimentally acquired MEMS 

wireless vibration signals. By using this physics-based model for explaining CMP 

process dynamics, we identify evolving CMP process anomalies and therefore 

avoid low yield situations. Thus, in this chapter we have addressed two expert 

recommendations as stated below, ultimately culminating in hierarchical physics-

based models for explaining dynamics of nanomanufacturing processes [27]. 
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Challenges in nanomanufacturing research [27] 

Nanoscale processes and systems pose many challenges for sensing: 

  • Accessibility to signal source is not easy; 

  • In situ sensing is almost impossible; 

  • Signals are short, evanescent, and weak; 

  • Quantization of signals makes transduction difficult; and 

• Signal-to-noise ratio is low. 

Mechanisms that cut across multiple scales make observation and characteriza-

tion of nano-materials and nano-processes difficult. 

Expert recommendations for nanomanufacturing research [27] 

A systematic set of methodologies of quality engineering should be developed 

to provide the following:  

• guidelines for the design and analysis of experiments to  

    optimize nanoprocess settings;  

• on-line monitoring and diagnosis techniques to reduce    

   nanoprocess variation and downtime during production; and  

• strategies for continuous improvement for high yield and quality.  

Physics-based statistical models considering nanoscale and hierarchical 

physics, and nonlinearities should be developed. These realistic models will 

enable monitoring, diagnostics, prognostics, and reliability analysis. 
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Motivation and goal 

 

Figure 1-9: Typical vibration sensor data in the tangential (VX) direction obtained during CMP. 

Conditions are as follows: 30 RPM spindle speed, 150 RPM platen speed, and 2 lb. down force. 

(a): Time series plot showing ~ 20 sec of the total (180 sec) data, period between prominent low fre-

quency components ~ 2 seconds. 

(b): FFT frequency spectrum of the data, showing presence of four main components. Low frequency 

component (0.5 Hz – 1 Hz) seen in (a) is marked by 1. A zoomed-in view of component 1 is shown in the 

inset. 

Consider Figure 1-9, which shows the MEMS wireless vibration signal pat-

terns (sampling rate ~ 700 Hz) obtained during CMP. The time series in Figure 

1-9(a) shows prominent low frequency periodic behavior interlaced with high 

frequency components. These frequency components are evident in the fast Fou-

rier transform (FFT) of the signal shown in Figure 1-9(b), some of which are 

broadband in nature (e.g., component marked 2 in Figure 1-9(b)), while others 

occur at relatively higher frequency regions (component 3).  

Sensor-based process monitoring with signals depicting such complex non-

linear and nonstationary facets can be challenging, because: 

i. As with the UPM case, traditional statistical process monitoring techniques 

are of limited utility.  

50 52 54 56 58 60 62 64 66 68 70

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (seconds)

M
a
g
n
it
u
d
e
 (

g
-f

o
rc

e
)

0 50 100 150 200 250 300

0.5

1

1.5

2

2.5

3
x 10

-3

Frequency (Hz)

|Y
(f

)|

(a)

(b)

~ 2 sec

1

2 2

3

4

0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

x 10
-3

Frequency (Hz)

|Y
(f

)|

1

50 52 54 56 58 60 62 64 66 68 70

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (seconds)

M
a
g
n
it
u
d
e
 (

g
-f

o
rc

e
)

0 50 100 150 200 250 300

0.5

1

1.5

2

2.5

3
x 10

-3

Frequency (Hz)

|Y
(f

)|

(a)

(b)

~ 2 sec

1

2 2

3

4

0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

x 10
-3

Frequency (Hz)

|Y
(f

)|

1



46 

 

ii. We are not certain what aspects (components 1 through 4 in Figure 1-9(b)) 

of the sensor signal patterns are evocative of the process. That is, we can-

not tell for sure which frequency components of the signal are due to 

noise, and which components are representative of the process and 

therefore useful for tracking process variations.  

For example, a curious observer might ask: 

 Why does the signal in Figure 1-9(a) show prominent low frequency 

beat-like patterns?  

 What causes these low frequency patterns?  

 Are they relevant to the process? How do you know?
4
 

Goal 2 

(Satisfying Objective 1) 

Identify and statistically quantify those aspects of MEMS wireless sensor signal 

components that are relevant to the CMP process dynamics, and therefore useful 

from a real-time monitoring perspective. 

In other words, we need to address the following questions:  

i. How do we ensure that the acquired vibration sensor signal has some useful 

information pertaining to the process?  

ii. Which particular aspect (or frequency component) of the signal is sensitive 

to changes in process inputs, and is therefore relevant for process monitor-

ing? 

                                                 
4
 Readers acquainted with this research might recollect that these questions were first put by (late) 

Dr. R. Komanduri. This footnote is meant to serve as a reminder, especially to this student, of his 

profound impact (even in absentia) on every aspect of this research. 
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iii. What process conditions correspond to the different aspects of the signal, 

i.e., if the polishing load is changed, which (one or more) frequency compo-

nent(s) change(s)? 

iv. Are the signal features sensitive to changes in process conditions, and are 

these features statistically significant and replicable?  

The challenges that arise in answering these questions are listed herewith, and the 

empirical tests conducted for delineating relevant signal characteristics are docu-

mented in Appendix II. 

Challenges 

1. Wireless vibration signals obtained during CMP process have low signal to 

noise ratio and depict complex nonlinear, nonstationary, and broadband char-

acteristics. Under such circumstances, conventional statistical process moni-

toring techniques are of limited value. 

2. Given the complex signals emerging from the process, it is not known what 

aspects (features or frequencies) of the signal are relevant to the process.  

 

Consider Figure 1-10(a) which shows a deliberately glazed CMP polishing 

pad, i.e., the surface of the polishing pad was caked with slurry debris, used for 

processing of Cu wafers. Polishing with such a degraded pad causes damage to 

the wafer surface, as evidenced by the nanoscale scratch shown in Figure 1-10(b). 

When we compare the frequency spectra of MEMS vibration signals acquired 

while polishing under normal pad conditions (Figure 1-11(a)) to the glazed pad 

condition (Figure 1-11(b)), we notice an increase of ~ 35% to 40% in the magni-
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tude in the 115-120 Hz region (shaded region). How can we explain this behavior 

in terms of the process dynamics?  

 

Figure 1-10: (a) Glazed pad after 12 minutes of CMP, and (b) Scratches on wafer observed at the end 

of 12 minutes of CMP. 

 

Figure 1-11: FFT of experimental vibration data 

obtained for (a) new pad vs. (b) 12 minutes used pad (glazed). 

Oftentimes, there is no dearth of high fidelity time-series sensor data occupy-

ing several gigabytes of memory. Given the large volume of information, the 

approach typically used is to analyze the data applying sophisticated signal pro-

cessing tools in order to correlate sensor signal patterns with process conditions. 

Although, correlations between the sensor data features (i.e., statistical and 

spectral quantifiers) and process dynamics (see Appendix II) are valuable for 
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understanding the source of sensor signal components, we are nonetheless essen-

tially listening to one side of the story. As correlation does not imply causation, it 

would therefore be valuable to gain an insight as to why the sensor data depicts 

certain types of behavior.  

This implies we must develop the capability to identify the specific physical 

reasons (connected with the process dynamics) sensor patterns. For example, this 

could mean delineating the process dynamics that led to higher energy content in 

a certain bandwidth of the vibration signals because of controlled variations intro-

duced in the process (e.g., Figure 1-11).  

As we will explain shortly, the ability to provide the physical reason for par-

ticular signal patterns can enable a priori identification of process anomalies from 

sensor signals. The goal therefore is stated as follows. 

Goal 3 
(Satisfying Objective 1) 

Explain based on process dynamics and physical phenomena, the physical reason 

for certain vibration sensor patterns observed in CMP and thereby facilitate real-

time process prognosis. 

In Chapter 3, we invoke a physical model-based justification for behaviors 

observed in MEMS vibration signal features identified using empirical tests (Ap-

pendix II). This closes the loop from both the process dynamics and signal behav-

ior perspectives.  

However, the challenge in attempting to capture sensor signal patterns from 

the process dynamics stems from various multi-scale phenomena active in the 
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process (as alluded in [27]). Apart from the material removal regime at the na-

noscale, there is a significant influence of bulk-level dynamics (due to pad elastic 

behavior) and machine-level kinematics on the sensor signal patterns. The vibra-

tion patterns emerging from each of these different multi-scale aspects may be 

coupled (i.e., influence each other) leading to complex aggregated vibration signal 

patterns. Therefore, it is important to integrate the contribution of each multi-scale 

aspect in order to obtain a close corroboration with observed sensor data. 

Challenges 

Interaction between multi-scale phenomena in CMP manifest in complex vibra-

tion signal patterns. Integration of such multi-scale process aspects is necessary in 

order to identify the physical causes influencing vibration sensor signal patterns.  
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Research approach and outcomes  

 

Figure 1-12: Schematic of the approach used for in situ condition monitoring in CMP. 

Figure 1-12 shows the overall approach used in Chapter 3, where unlike the 

UPM case, the physical setup of the CMP machine does not allow for easy inte-

gration of wired piezoelectric sensors due to the presence of rotating components. 

Instead, we use wireless MEMS sensors for monitoring in CMP. Although, we 

have not detailed the sensor integration process, we note that off-the-shelf solu-
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tions cannot be readily modified to suit the application. Therefore, we first de-

signed a data acquisition system for CMP process monitoring, using IEEE 

802.15.4 protocol radios for wireless MEMS vibration sensor signal transmission, 

and reception.  

Nevertheless, as noted in the challenges, wireless sensing comes with the at-

tendant problem of low sampling rate and therefore lower signal to noise ratio 

compared to piezoelectric sensors. Hence, in contrast to the UPM case, where we 

could proceed to analyze the signals directly once they are acquired, here we have 

to judiciously ensure that signal features relevant to the process dynamics was 

captured. Nine experimental tests are detailed in Appendix II. These tests led to 

identification of signal components that are relevant for process monitoring in 

CMP. We also statistically quantified the sensitivity of these signal features with 

respect to changing process conditions. Based on these studies we inferred (refer-

ring to Figure 1-9(b)): 

1. Component 1 results from eccentricity errors in the polishing head 

(spindle). 

2. Component 2 is most likely a consequence of sensor characteristics, 

electromagnetic interference from machine elements, and structural vi-

bration. 

3. Component 3 is responds to changing downforce (polishing load) condi-

tions, and process state, such as pad wear, and is therefore useful for 

process monitoring applications. 
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4. Component 4 is largely due to environmental noise.  

The deterministic process-machine interaction (PMI) model invoked for ex-

plaining the physical reasons for the patterns summarized above incorporates 

multi-scale aspects of the process. The PMI model represents the effects at the 

machine, bulk, and nanoscale levels on the overall CMP vibration patterns in the 

form of a 2 degree of freedom nonlinear differential equation. The detailed formu-

lation of the PMI model is documented in Appendix III. 

Using the PMI model and vibration sensor signals in conjunction, as shown 

in Figure 1-12, facilitates an explanation of the physical reason for observed 

signal patterns. This can be valuable under sparse data conditions, because, the 

PMI model can be used to predict anomalous process states, and thereby reduce 

wafer defects. For instance, we can simulate offline using the PMI model the 

vibration patterns that emerge when the pad is close to being glazed (see Figure 

1-11). From the simulated vibration patterns, we can then anticipate a priori the 

features and characteristics to monitor in sensor signals and therefore predict the 

onset of process anomalies.  

In other words, using the PMI model, we know beforehand those features in 

the actual signal that should be tracked closely to predict anomalous behavior. For 

instance, we used the PMI model generated signals to predict process anomalies 

due to pad wear with an accuracy of R
2
 ~ 75%. Specific tasks toward fulfilling 

the outcomes of this chapter are listed herewith. 
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Specific Tasks 

1. Ensure surface finish in the nanometric range (Sa < 5 nm) with near-specular 

characteristics for CMP processed Cu wafers consistent with the state-of-art.  

2. Instrument CMP polishing experimental setup with in situ MEMS wireless 

vibration sensors in close proximity of the wafer and thus acquire data remote-

ly.  

3. Isolate signal components evocative of process dynamics as opposed to extra-

neous noise by conducting a battery of empirical tests, such as machine modal 

analysis, sensor response characterization studies, structural noise isolation as-

sessments, etc. 

4. Conduct designed experiments to correlate relevant signal components with 

process conditions. For example, correlate magnitude change in the frequency 

spectra of CMP wireless vibration signals that respond to variations in polish-

ing load by conducting designed experiments. 

5. Invoke a multi-scale process-machine interaction (PMI) model evocative of 

multi-scale process mechanics in CMP, in order to explain the behavior of vi-

bration signal patterns. 

6. Corroborate PMI solutions with experimentally gathered data. For example, 

show that the model simulated vibration signal patterns and actual vibration 

patterns depict identical time-frequency behavior. 

7. Identify features gathered from simulated vibration patterns and use them in 

conjunction with experimentally acquired signals for predicting the onset of 

process anomalies. 
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1.4.3 A Graph Theoretic Approach for Quantification of Ultrapreci-

sion Surface Morphology  

In Chapter 4, we present an algebraic graph theoretic approach for characteri-

zation of CMP wafers processed to near-specular finish. This was motivated from 

the observed incongruity of statistical parameters in quantifying such ultrapreci-

sion surfaces. The approach is based on treating various heterogeneous features 

(e.g., pits, ridges, scratches) as a stationary mixture of random fields that allows 

for compact graph theoretic representation of the surface morphology as measured 

from optical micrograph images.  

The graph theoretic approach, by primarily employing optical microscopy, 

eschews relatively reticent profile mapping techniques, such as laser interferome-

try and atomic force microscopy. Thus, we have addressed the expert concerns 

regarding characterization of nano-materials in this chapter.  

Challenges in Nanomanufacturing Research [27] 

Tools currently used in nanotechnology research labs offer atomic-level 

resolution for characterizing nanoscale surfaces but are barely adequate to 

meet the requirements of high-volume nanomanufacturing. For example, an 

Atomic Force Microscope (AFM) gives nearly atomic-level surface resolution, 

albeit at a very slow rate. It would be impossible to use AFM to characterize 

surfaces in commercial-scale high-rate operations. 
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Expert Recommendations for Nanomanufacturing research [27] 

Instrumentation and analytical tools for comprehensive characterization of 

nano-materials for on-line process control should be developed and character-

istics required for specific applications defined. 

Motivation and goal 

 
Figure 1-13: The surface profile of a copper wafer obtained using a laser interferometer. 

 (a): The surface profile prior to CMP operations shows heterogeneous features, such as scratches ( ), 

ridges ( ), pits ( ), etc.  

(b): The surface profile after CMP shows significant improvement in surface morphology within 3 min 

of CMP operations.  

(c) Specular finish obtained on CMP processed blanket copper wafers.  

(d): The mean areal surface roughness (Sa) obtained over 3 min intervals of CMP for two replications 

fails to reflect these improvements in surface morphology.  

Evident in Figure 1-13(a) are heterogeneous surface features, such as ridges, 

scratches, and pits occurring over different length scales (multi-scale behavior) 

present on a copper (Cu) wafer surface. Such surface morphology is considered 
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deleterious to the performance of a semiconductor device and is therefore im-

proved using the CMP process. However, we found that although the surface 

morphology improved within 3 min of CMP (Figure 1-13(b)) and specular finish 

ultimately achieved (Figure 1-13(c)), traditional statistical quantifiers, such as 

average roughness (Ra, Sa), root mean square roughness (Rq, Sq), etc., did not 

track these morphological variations (Figure 1-13(d)).  

Surface morphology is a critical determinant of functional performance in ul-

traprecision components, such as semiconductor ICs, optical mirrors, MEMS 

devices, etc. [5, 6, 8, 9, 54]. However, ultraprecision surfaces possess multi-scaled 

heterogeneous features (such as those seen in Figure 1-13(a)), which make quanti-

fication of the surface morphology a compelling challenge. This is mainly be-

cause statistical parameters that are traditionally used for surface quantification 

can only capture a few of these morphological features. Therefore, in order to 

characterize the surface morphology, several parameters may be needed. This has 

led to a situation where several dozens of parameters have been standardized. 

Experts in the area call this tendency to continually define newer statistical pa-

rameters as the parameter rash [41].  

Additionally, statistical parameters tell us very little about the relationship 

connecting various morphological aspects of the surface. To use a geodesic anal-

ogy, though we can describe the average height, and depth of summits and valleys 

for an area, we know nothing about how these features (valley and ridges) are 

connected. Although, fractal and wavelet analysis techniques have been proposed 



58 

 

for quantification of multi-scale morphological aspects, these methods require 

sifting through different length scales and are therefore computationally demand-

ing [6, 55-57]. 

Furthermore, ultraprecision surface characterization approaches, such as 

atomic force microscopy (AFM), scanning electron microscopy (SEM), laser 

interferometry, stylus-based profilometry, etc., can be time consuming, restricted 

to assessment of small areas, and sometimes destructive [56]. Hence, there is a 

compelling need for more efficient means for surface characterization. For exam-

ple, in the semiconductor industry offline characterization can take several hours 

[26]. This consequently stymies opportunities to correct process anomalies at an 

early stage. Also, offline characterization using test wafers can lead to significant 

yield losses estimated by some researchers to be close to 35% [25].  

Consequently, an approach that can parsimoniously capture surface morphol-

ogy variations using efficient means, such as optical micrographs can be valuable 

for in situ quality assessment of ultraprecision components. The goal and chal-

lenges with respect to quantification of nano-surface morphologies are stated 

below.  

Goal 4 
(Satisfying Objective 2) 

Develop an approach that can quantify ultraprecision surface morphologies in a 

rapid and parsimonious manner. 
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Challenges 

1. Ultraprecision surfaces depict heterogeneous multi-scale aspects, which are 

not captured using traditional statistical quantifiers.  

2. Traditional statistical parameters are not evocative of the underlying morpho-

logical relationships.  

3. Characterization approaches, such as AFM, SEM, and laser interferometry are 

reticent, restricted to small areas, destructive, and expensive.  

Research approach and outcomes  

 

Figure 1-14: Schematic of graph theoretic approach used for quantification of ultraprecision surface 

morphology. 

In order to surmount these challenges, we proceeded to represent the surface 

morphology as a network graph. This graph theoretic approach for surface mor-

phology quantification implicitly represents ultraprecision surfaces as a convolu-

tion of random fields associated with heterogeneous multi-scaled features present 

on the surface. As evident from the overall schematic of the approach in Figure 
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1-14, two symbiotic methods for graph theoretic representation of ultraprecision 

surface morphology are developed. Consequently, graph theoretic topological 

invariants, such as Fiedler number of the network graph, are estimated to capture 

the evolving ultraprecision surface morphology (for example, the morphology 

illustrated in Figure 1-13).  

We note that by using optical micrographs for quantification of the surface 

morphology, the graph theoretic approach precluded inefficient characterization 

methods such as laser interferometry. We verify that the Fielder number is able to 

capture the evolving morphology of an ultraprecision surface with high fidelity (ρ 

> 80%). The specific tasks to be accomplished in Chapter 4 are listed below. 

Specific Tasks 

1. Represent ultraprecision surface morphology using a graph theoretic approach 

based on optical micrograph images.  

2. Illustrate that the graph theoretic topological invariant, Fiedler number, is 

capable of capturing heterogeneous multi-scale surface morphology features, 

which are not adequately tracked using statistical quantifiers. 

3. Verify the Fiedler number trends for CMP surfaces with scale-limited local 

surface roughness statistics. 

  



61 

 

A note for the reader 

Given the diversity of processes and approaches studied, a literature review 

chapter is eschewed in this dissertation. Instead, we take a contextual approach by 

providing a literature review in each chapter. Likewise, since the approaches used 

are contingent on the process, these are detailed at appropriate junctures. In prin-

ciple, each chapter is meant to be a standalone description. Indeed, the majority of 

the chapters stem from peer reviewed journal papers either; in press (Chapter 

2)[58], editorial acceptance (Chapter 3) [59], or manuscript preparation stages 

(Chapter 4).  
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 2 Real-time Identification of Incipient Sur-

face Morphology Variations in Ultrapreci-

sion Machining (UPM) Processes 

“Errors in DT can have significant impact on profits of Diamond Turning Busi-

ness Unit. Attaining and maintaining satisfactory yields, on time delivery 

throughput and product quality is critical to II-VI profitability. Operational er-

rors can jeopardize II-VI reputation in the market and can result in lost growth 

opportunities.” 

 – An extract from a job posting for a Diamond Turning Process Engineering 

Manager position by II-VI Inc., of Saxonburg, PA. 

eal-time monitoring and control of surface morphology variations in their 

incipient stages is vital for assuring nanometric range finish in the ultrapre-

cision machining (UPM, often also termed as diamond turning (DT)) process. A 

real-time monitoring approach, based on predicting and updating the process 

states from sensor signals (using advanced neural networks and Bayesian analy-

sis) is reported for detecting the incipient surface variations in UPM. An ultrapre-

cision diamond turning machine is instrumented with three miniature accelerome-

ters, a 3-axis piezoelectric dynamometer, and an acoustic emission (AE) sensor 

for process monitoring.  

Goal 
To suggest a method capable of real-time in situ detection of incipient anomalies 

in UPM process.  

The diamond turning machine tool is used for face turning aluminum 6061 

discs to a surface finish (Ra) in the range of 15-25 nm. While the sensor signals 

(especially the vibration signal in the feed direction) are sensitive to surface varia-

R 
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tions, the extraneous noise from the environment, machine elements, and sensing 

system prevents direct use of raw signal patterns for early detection of surface 

variations. In addition, the nonlinear and time-varying nature of the process dy-

namics does not lend conventional statistical process monitoring techniques suita-

ble for characterizing UPM-machined surfaces. Consequently, instead of just 

monitoring the raw sensor signal patterns, the nonlinear process dynamics where-

from the signal evolves are more effectively captured using a Recurrent Predictor 

Neural Network (RPNN). 

The parameters of the RPNN (weights and biases) serve as the surrogates of 

the process states, which are updated in real–time, based on measured sensor 

signals using a Bayesian Particle Filter (PF) technique. We show that the PF-

updated RPNN can effectively capture the complex signal evolution patterns. We 

use a mean-shift statistic, estimated from the PF-estimated surrogate states, to 

detect surface variation-induced changes in the process dynamics. Experimental 

investigations show that variations in surface characteristics can be detected 

within 15 ms of their inception using the present approach, as opposed to 30 ms or 

higher with the conventional statistical change detection methods tested.  

The following challenges and expert recommendations for nanomanufactur-

ing research as listed by Bukkapatnam, et al. [27] provides the vista for this 

work
5
. 

                                                 
5
 P. Rao, S. Bukkapatnam, O. Beyca, Z. J. Kong, and R. Komanduri, "Real-time identification of 

incipient surface morphology variations in ultraprecision machining process," Transactions of the 

ASME, Journal of Manufacturing Science and Engineering, (In-Press) 2013. 
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Challenges in nanomanufacturing research [27] 

Nanoscale processes and systems pose many challenges for sensing: 

  • Accessibility to signal source is not easy; 

  • In situ sensing is almost impossible; 

  • Signals are short, evanescent, and weak; 

  • Quantization of signals makes transduction difficult; and 

• Signal-to-noise ratio is low. 

Expert recommendations for nanomanufacturing research [27] 

A systematic set of methodologies of quality engineering should be developed 

to provide the following:  

• guidelines for the design and analysis of experiments to   

   optimize nanoprocess settings;  

• on-line monitoring and diagnosis techniques to reduce    

   nanoprocess variation and downtime during production; and  

• strategies for continuous improvement for high yield and quality.  

 

2.1 Introduction 

Aluminum and copper disks are widely used in the manufacture of mirror fin-

ish surfaces (arithmetic average surface roughness (Ra) in the nanometric range) 

for diverse engineering applications, including hard drives and memory discs in 

the computer industry, precision aluminum mirrors in lasers, rotating mirrors in 

copy machines, as well as optical elements critical to the aerospace and defense 

industries [1, 2].  

Such optical surfaces are often realized using ultraprecision machining 

(UPM) process, where depth of cut is in 2-50 μm range and a single crystal dia-
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mond tool is employed [1]. An UPM-machined surface typically does not need an 

additional finishing process, such as lapping or polishing [1, 60]. For most indus-

trial UPM processes, assurance of consistent surface finish is crucial. Adverse 

variations of surface characteristics can lead to heavy scrap rates and re-

work. Therefore, detection of surface variations in their incipient stages 

would be crucial for effective control, so that rework can be significantly 

reduced. 

Surface finish in UPM depends on the machine stiffness and precision [1], 

chip generation process [61], and other factors, such as machine tool vibration 

[62], and thermal instabilities [63] that affect dynamic stability. Unlike in conven-

tional machining, the uncut chip thickness in UPM is comparable to tool edge 

radius, and of the same order of magnitude as the grain size of the workpiece 

material (see Graphic VI). These contrasts with conventional machining give rise 

to distinctly different chip-formation process, magnitude of cutting and thrust 

forces and their ratio, and surface generation mechanisms [1, 64]. These mecha-

nisms can affect the surface properties [65] and functional behavior of a machined 

component [1]. These factors also make the prediction and control of surface 

quality and its variations an enormous challenge.  

For instance, at the uncut chip thickness typical to UPM (viz. tens of nanome-

ters), complex physical phenomena which are distinctive from conventional 

machining are evident. Below a critical uncut chip thickness, termed as minimum 

chip thickness [61, 66], material removal in the conventional sense (shearing of 
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material in form of chips) is not observed [64, 67]. Instead, material is dislocated 

as the tool ploughs through the surface [64, 67]. Consequently, the magnitude of 

forces and specific energy observed empirically in ultraprecision machining are 

not in accordance with conventional machining models [67].   

In this context, experts  have noted that the tool edge radius is a critical factor 

governing the minimum chip thickness (and thereby the surface quality, material 

flow characteristics, and the nature (magnitude and direction) of resultant forces 

in UPM process) [61, 64, 66, 68]. Typically, the ratio of minimum chip thickness 

to tool edge radius is observed to be approximately 0.20 – 0.30 [69]. A (nano-

metric) change in the geometry of the tool edge, e.g., due to wear, which might be 

inconsequential in conventional machining, may completely alter the cutting 

dynamics in ultraprecision machining [68].  

However, despite the significant effect of tool edge radius on UPM process 

mechanics, commercial diamond tool suppliers often restrict the explicit specifi-

cation of the tool signature to the nose radius, clearance and rake angles. This is 

because the measurement of the edge radius is a challenging preposition. Re-

searchers have therefore developed novel approaches using precision instruments, 

such as AFM and SEM for measurement of SCD tool edge radius.  

For example, Asai, et al. [70] used a SEM setup integrated with two electron 

detectors for accurately estimating the tool edge geometry. Lucca, et al. [68] use 

an AFM-based setup (compensating for the geometry of the AFM probe) for 

measuring the tool edge radius. Evidently, the measurement of tool edge geome-



67 

 

try is not a tractable/trivial exercise, and is considered to be outside the scope of 

this research. 

For this work, we wish to clarify at the outset that we have not attempted to 

characterize the tool edge geometry and its effects on UPM mechanics. More 

importantly, we implicitly assume that the tool geometry, particularly the edge 

radius, remains unchanged during our experiments. This is a tenable assumption 

because the experiments documented in our study are used for cutting few feet (if 

not inches) of material under conservative processing/machining conditions.  

 
Graphic VI: Distinctive characteristics of the UPM process. 
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Some research efforts have focused on the mechanisms of material removal 

in UPM as well as the use of sensors for monitoring and control of the process 

[50]. For example, Cheung, et al. [17, 71] developed a surface topography simula-

tion model considering the effects of tool geometry, cutting parameters, and the 

vibration between the cutting tool and the workpiece in UPM operations. Aboue-

latta, et al. [72] modeled the effects of process parameters and vibration in both 

radial and feed direction of machined surface characteristics. Beggan, et al. [73] 

used acoustic emission (AE) sensor to predict surface roughness.  

Hayashi, et al. [74] used a miniature tool temperature sensor composed of 

platinum electrodes coupled with an integrated PID type feedback controller that 

minimizes excessive temperature variations around the tool tip by adjusting the 

spindle speed. The approach was demonstrated in UPM of aluminum alloy discs 

as follows: for a fixed feed rate of 15 µm/rev, depth of cut 5 µm, and maximum 

allowable spindle speed of 5000 RPM, an arbitrary rise of 7.1 °C was selected as 

the permissible level of temperature change around the tool tip from steady state. 

When a temperature rise greater than 7.1 °C was detected, the spindle speed was 

gradually reduced to ~ 2000 RPM via a feedback controller. However, the authors 

caution that parameters of the feedback controller require extensive tuning in 

order to be effective for early detection.  

Similarly, Yoshioka, et al. [75] attempted to minimize the thermal defor-

mations in the aerostatic bearing spindle of an UPM machine by monitoring the 

temperature of air at the spindle exit, and adaptively adjusting the temperature of 
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the intake air. Shinno, et al. [76] reported the use of a strain gage sensor in a 

Wheatstone bridge formation for the detection of anomalies, such as chatter and 

winding of chips around tool shank in machining. Although, these prior works 

report the use of sensors to detect well-developed anomalies, approaches for early 

stage detection of nascent process drifts, critical for effective process control in 

UPM, have not been reported to date.  

The real-time monitoring approach presented in this research is also sensor-

based, and it is demonstrated on an ultraprecision diamond turning machine in-

strumented with three miniature accelerometers, a 3-axis piezoelectric dynamom-

eter, and an acoustic emission (AE) sensor for process monitoring. The machine 

tool is used for face turning aluminum (Al) 6061 discs to a surface finish (Sa) in 

the range of 15-25 nm.  

For example, Figure 2-1 shows a sample surface of an Al 6061 disk UPM-

machined to an average Sa of 20 nm (see also, Figure 2-3)
6
. As a ~ 300 µm long 

contiguous surface profile obtained on the same sample in Figure 2-2 indicates, 

changes in surface characteristics can take place rather abruptly, especially near 

the edges – the Sa value changes from ~ 18 nm to 30 nm in a span of ~ 100 µm. 

Prediction of the onset of such surface defects in their incipient stages can be 

valuable for assuring product quality and minimizing subsequent rework. The 

sensors can be used to discern the complex processes variations that cause and/or 

                                                 
6
 Representative 3D profiles and statistical metrology parameters for this UPM-processed surface 

are shown in Figure 2-3 and Table 2-1, respectively 
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result from such sudden surface finish variations, which are often difficult to 

predict using the current physical models [77].  

Much of these complexities and sharp variations in the surface morphology 

can be attributed to nonlinear dynamics [78] and the inherent nonstationarity (i.e., 

time-varying nature) of the process.  

Challenges 

1. Traditional statistics-based quality control and spectral analysis methods 

cannot capture evanescent, nonlinear, and nonstationary signal patterns in a 

timely manner, and therefore do not lend toward incipient real-time detection 

of ultraprecision machining anomalies.  

2. Information from multiple heterogeneous sensors is not easily integrated using 

traditional statistical methods. 
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Figure 2-1: SCD tool used in UPM experiments and its image on a typical surface (Sa ~ 20nm). 

Surface was obtained on an Al 6061 sample workpiece machined with the UPM setup. The sample was 

machined with the SCD tool under the following conditions: spindle speed 2000 RPM, feed rate 15 

mm/min, and depth of cut 4 μm. 

  
Figure 2-2: MicroXAM 3D profile of the workpiece shown in Figure 2-1. 

Measurements were taken near the outer edge showing abrupt changes in the surface finish. 
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Figure 2-3: Representative 3D profiles obtained using the MicroXAM laser interference microscope for 

the surface shown in Figure 2-1.  

The profile sections are 164 nm × 124 nm × 100 nm. The feed direction is along the long axis. A green 

light source (λ = 547.8 nm) is used; magnification is set at 50X (see also Appendix I). 
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Table 2-1: Some areal statistical characteristics corresponding to the surface profiles shown in Figure 

2-3 [6, 56]. 

(all units are in nanometers, Ssk and Sku are dimensionless parameters. 
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Sa Sq Sp Sv Ssk Sku 

(a) 12.9 16.1 52.1 59.4 0.18 -0.41 

(b) 16.1 19.9 59.0 49.1 0.23 -0.66 

(c) 23.4 28.8 68.9 86.6 -0.38 -0.36 

(d) 18.7 22.8 63.7 61.2 0.21 -0.33 

(e) 17.2 21.9 74.0 68.4 0.36 -0.31 

(f) 22.9 30.4 94.3 85.4 -0.35 0.36 

(g) 26.2 33.0 110.1 74.9 0.44 -0.15 

(h) 27.9 34.4 93.6 200.1 -0.10 -0.19 

MEAN 20.6 25.9 76.9 85.6 0.07 -0.25 

STD. DEV 5.2 6.6 20.2 48.0 0.31 0.29 

RANGE 15 18.3 58 140.7 NA NA 

 

In the present approach, the complex evolution patterns discernible from mul-

tiple sensors are compactly captured by a dynamic version of a Neural Network 

(NN) called a Recurrent Predictor Neural Network (RPNN) [79, 80]. The parame-

ters of the RPNN (i.e., weights and biases) are used as the surrogate states of the 

process underlying the measured sensor signals. With every new signal measure-

ment, the surrogate states (i.e., weights and biases) are updated using a Bayesian 

prediction technique known as Particle Filter (PF) method [81]. The use of RPNN 
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weights was found to accentuate surface variation-induced changes in signal 

characteristics.  

The PF is able to capture the effects of complex nonlinear and non-stationary 

UPM process dynamics on the signal variations, and hence the weight patterns. 

The combined RPNN-PF is applied to predict surface variations in their early 

stages. The experimental investigations indicate that the present multi-sensor-

based approach can effectively predict surface variation on the machined work-

piece about 15 ms compared to 30 ms or higher with conventional statistical 

change monitoring techniques.  

The remainder of this chapter is organized as follows: a brief review of the 

literature is presented in Sec. 2.2; the overall research approach in Sec. 2.3; the 

implementation details and results in Sec. 2.4 – 2.6. 

2.2 Review of the Literature 

Considerable research has been conducted in the past two decades to investi-

gate the effects of various process parameters on forces and surface characteristics 

in UPM. For example, Ikawa, et al. [1] have provided a historic overview of 

UPM. They also delineated the critical issues encountered during processing, 

including the process stability under different machine settings and tool geome-

tries. Dornfeld, et al. [60] reviewed recent developments in micromachining 

process physics, contemporary modeling efforts, metrology, and machine tool 
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errors. In this section, we review some of the relevant experimental and theoreti-

cal works focusing on modeling and prediction of surface characteristics in UPM. 

Liu, et al. [64] noted that the tool might encounter different material phases, 

such as ferrite, pearlite in micromachining of ferrous materials that can signifi-

cantly alter the cutting process mechanics and obtained surface finish. They also 

noted that for depth of cuts typical to UPM, the tool may not continuously en-

counter material, thus giving rise to surface inconsistency. Ikawa, et al. [61] 

showed that an uncut chip on the order of 1 nm can be obtained using a specially 

prepared diamond tool. The minimum obtainable uncut chip thickness is strongly 

influenced by the cutting tool geometry, and the machine tool system.  

Moriwaki, et al. [82] conducted UPM tests on copper using a diamond tool 

and found that as the nominal depth of cut decreases from 1 μm to 2.5 nm, the 

specific cutting energy increases sharply from 2 GPa to 150 GPa, suggesting the 

limited utility of conventional orthogonal machining models to quantify the UPM 

machined surfaces. Lucca, et al. [67] suggested that the combined effects of 

sliding at the tool-workpiece interface and plowing (due to the effective rake 

angle being negative) may play a significant role in explaining the large rise in 

specific cutting energy observed by Moriwaki, et al. [82].  

Takasu, et al. [62] proposed a physical model to predict the surface rough-

ness of workpieces obtained from UPM that considers interactions between vibra-

tion characteristics (amplitude and phase) at the tool-workpiece interface, geome-

try of the tool cutting edge (nose radius), and machining parameters (feed and 
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depth of cut). They delineated conditions where tool interference is said to occur, 

i.e., when the cross section of the cut made by the cutting edge of the tool at the 

current pass overlaps with the preceding pass. Tool interference is reported to 

have a deleterious effect on the surface finish. Cheung, et al. [17, 71] considered 

tool interference as part of a computational model to predict the topography of 

surfaces from UPM processes.  

Lee, et al. [77] used the Taylor’s theory of plasticity (see ref. [83]) to predict 

the variations in the cutting force, and their influence on surface characteristics. 

They conducted turning experiments with a single crystal diamond tool (774 µm 

nose radius), on both copper single crystal and alloy workpieces at depth of cut in 

the range of 5 to 50 µm, 3000 RPM speed, and 20 mm/min feed rate. The cutting 

and thrust forces were measured during machining using a piezoelectric dyna-

mometer (9252A from Kistler). They observed that compared to conventional 

machining, the crystallographic orientation of the workpiece material greatly 

affects the cutting forces, chip generation process, and surface finish at low depths 

of cut typical to UPM.  

Kong, et al. [84] presented a phenomenological model to explain the charac-

teristics of surfaces obtained from UPM of ductile materials, such as electroless 

nickel-phosphorus and aluminum based on elastic recovery and swelling effects 

of the material. They noted that when the depth of cut is small (~ 2 µm) and tool 

clearance angle is shallow (~ 7°), the elastic recovery, and subsequent material 

swelling has a significant impact on the surface characteristics.  
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Lee, et al.[53] used AE signals to investigate material anisotropy ahead of the 

tool (single crystal diamond) in UPM of single crystal as well of polycrystalline 

copper. The presence of material irregularities is determined as a significant cause 

of deterioration in the machined surface.  

Cheung, et al.’s [85] framework for virtual machining and inspection of opti-

cal surfaces from UPM process consisted of a simulation module, which predicts 

the surface roughness based on estimated errors of tool location, wear, and spindle 

run out. Chan, et al. [17, 86] presented a finite element method (FEM) model 

considering process parameters, tool signature, and workpiece material aspects 

(swelling and elastic recovery) to predict the surface topography of UPM-

machined Al-SiC metal-matrix composites.  

Also, Hocheng, et al. [87] described a method to predict Ra in phosphor-

bronze used for generating lens molds. They determined the surface profile using 

a stylus based instrument (TalySurf
®
), to investigate the frequency spectrum of 

the surface profile. Their analysis showed three major groupings for surface 

profile components on UPM-machined samples; (i) low frequency vibrations 

from the machine tool, (ii) from the tool geometry, and (iii) noise effects from the 

measuring instruments. They conducted a statistical analysis of variance (ANO-

VA) relating the speed, feed, depth of cut, and tool nose radius to the spectral 

intensity of the machined surface features. Their model can be used in a regres-

sion setting for the prediction of surface roughness.  
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These methods are able to detect prominent anomalies. However, early in situ 

stage detection, highly desirable for effective process control in UPM has not 

been reported thus far. The present work aims to address this gap (summarized 

also in Graphic VII) through consideration of the underlying complex dynamics 

using an NN and Bayesian update method. 

 

Graphic VII: Gaps and opportunities in UPM research. 
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2.3 Research Approach 

 

Figure 2-4: Summary of the proposed approach. 

As summarized in Figure 2-4, we used information from multiple sensor sig-

nals for early stage detection of surface variations. The four main aspects of our 

approach are as follows: 

2.3.1 Sensor Signal Acquisition 

We integrated an UPM setup with multiple sensors, including, force, vibra-

tion, and AE as detailed in Sec. 2.4 (see also Table 2-2). This experimental UPM 

setup (Figure 2-5) is capable of face turning flat disks to nanometric finish in the 

range of 5 to 100 nm. The machine is equipped with an aerostatic spindle bearing 
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(model Block-Head
® 

4R) and air-slide tool carriage manufactured by Professional 

Instruments Inc. The setup rests on a 2 metric ton granite base for additional 

stability.  

2.3.2 Machined Surface Characterization 

The finished surfaces are first characterized using an optical microscope. 

Subsequently, quantitative characteristics of the surface waveforms are extracted 

using a high-resolution optical interference microscope (MicroXAM
®
, see Ap-

pendix I for a brief explanation of the operating principle of the instrument), and a 

stylus-based profilometer (TalySurf
®
). The analytical methods described in the 

following (RPNN-PF) are developed and validated for relating the signal features 

with certain incipient changes in the surface characteristics. 
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Figure 2-5: Two views of the Ultraprecision Machining (UPM) experimental setup. 

Setup shows the force (3 axis), vibration (3 directions) and AE sensors. 
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2.3.3 RPNN-PF 

The measured multi-channel vibration and force sensor signals, although sen-

sitive to variations in surface characteristics, contain significant amount of noise. 

Under such conditions, the signals can at best be used to only detect well-

developed surface variations as opposed to predict or detect incipient surface 

variations. For incipient detection, it is important to separate useful information 

from the signals, as well as, impart some predictive capability, so that an appro-

priate mitigating control action can be executed.  

Since the signals are nonlinear [88] and time varying [77], the use of tradi-

tional prediction approaches, including classical time series [89] and Kalman 

Filtering [81] methods, are unlikely to be adequate. Furthermore, since the raw 

signals contain significant extraneous information, it is desirable to transform 

these signals so that the relevant components of the signals are accentuated. We 

therefore, take a new approach that uses a Recurrent Predictor Neural Network 

(RPNN) [79, 80] to capture the nonlinear dynamic evolutions of signal patterns 

(see Figure 2-6). In other words, the parameters (i.e., weights and biases) of the 

RPNN serve as the surrogate states of the process dynamics.  

While the RPNN can capture effectively the signal evolutions over a short 

term, its long-term predictability is limited by the non-stationary nature of the 

process (the process conditions are constantly changing), and sustained retraining 

of RPNN involves significant computational overhead.   
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Therefore, an on-line method to adjust the weights and biases of the RPNN 

based on real-time sensor measurements is necessary to sustain prediction accura-

cies. In this context, the weights and biases can serve as the surrogates of the 

UPM process states that can be adjusted on-line using sensor measurements. 

Thus, the use of RPNN ensures that the predictions made are based on inherent 

variations in the process dynamics underlying the measured signals as opposed to 

mere statistical (and possibly noise-induced) variations in signal patterns. Sequen-

tial Bayesian techniques, including Particle Filters (PFs) are being increasingly 

sought for on-line adjustments in such complex prediction applications [81].  

The effectiveness of these methods depends on the prior distributions of the 

variables being estimated. The distribution of the signal as a function of the surro-

gate state (RPNN parameters) can be used as the prior for a PF. Therefore, as 

shown in Figure 2-4, PF updates the weights and biases of a trained RPNN (i.e., 

the surrogate states), in real-time based on the signals measured on-line.  

2.3.4 On-line Classifier 

Oftentimes, surface-induced variations in the signals cause significant chang-

es in the distribution of updated RPNN parameters, which have been used as the 

surrogates of the process states in this work. This change in the RPNN parameter 

distribution can be detected in their early stages using an on-line mean shift meth-

od. Compared to traditional change detection methods, this method does not 

assume stationarity of states, which makes it more suitable for the present applica-
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tion. The relationship between RPNN, PF, and mean-shift stages is schematically 

depicted in Graphic VIII. 

 

Graphic VIII: RPNN-PF approach for prediction of surface morphology variations in UPM. 

2.4 Experimental Procedure 

The present study involved face turning of Φ 16.25 cm × 3.75 cm cylindrical 

aluminum alloy (Al 6061) disk-shaped workpieces on the UPM setup (Figure 

2-5). The following three cutting tools were used: natural single crystal diamond 

(SCD) tool with 750 µm nose radius, polycrystalline diamond (PCD) cutting tool 

with 400 µm nose radius, and brazed tungsten carbide chevron type cutting tool 
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with 396 µm nose radius. All the above tools have 0° rake angle and ~10° cylin-

drical clearance angle.  

As shown in Figure 2-5, three vibration sensors (model 8728A500 from 

Kistler) were mounted along three orthogonal directions on the tool holder near 

the PCD cutting insert to measure vibration signals, and a 3-axis piezoelectric 

dynamometer (Kistler 9251A) was mounted on the underside of tool holder to 

measure force signals. Additionally, an AE sensor from Physical Acoustics (mod-

el R80) was mounted on top of the tool holder.  

For experiments with the PCD tool, 36 different process parameters altogeth-

er were obtained from varying the spindle speed (500, 1000, 2000 RPM), feed 

rate (1.5, 3, 6 mm/min), and depth of cut (5, 10, 20, 25 μm), so that we can quan-

tify the effects of factors and interactions among the process parameters and 

signal features.  

With the carbide tool, experiments were performed at 2000 RPM spindle 

speed, 8 μm depth of cut, and six different feed rates (6, 15, 30, 60, 150, 300 

mm/min). We have also investigated the effects of coolant (KoolMist
®
) on the 

surface and the corresponding signal characteristics. Sampling rates of 10 kHz 

were chosen for vibration and force signals and 1 MHz for the acoustic emission 

(AE) signals (see Table 2-2).  

To provide consistent initial surface characteristics, all workpieces were ini-

tially finish-turned on a conventional lathe prior to the commencement of an UPM 
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test. They were then machined on the UPM setup at 1500 RPM, 60 mm/min feed 

rate (40 µm/rev feed), and 12 μm depth of cut in two successive steps.  

First, we used a carbide tool to achieve surface flatness in 300 nm range. 

Next, we used PCD tool to obtain overall surface finish Sa ~ 100 nm. Thereafter, 

the SCD tool was mounted for finish UPM experiments. The surface shown in 

Figure 2-1 (Sa ~ 22 nm) was obtained with SCD tool in the UPM process con-

ducted under spindle speed of 2000 RPM, feed rate 15 mm/min and depth of cut 4 

μm. The sample had the following surface characteristics (12 point measurement): 

Sa ~ 20 nm (5 nm standard deviation) and Sq ~ 27 nm (6 nm standard deviation).  

The results are comparable to those reported in the prior literature for Al 

6061. For example, Dahlgren and Gerchman [16] have reported Ra of 7 – 10 nm 

in UPM of aluminum alloy series 201, 6061, 771 and 713 by tightly controlling 

the chemical integrity of the raw material during alloying and melt casting stages. 

Other researchers [84, 86, 90-92] have reported Ra in 12 – 25 nm range with Al 

6061 workpieces.  

The experiments exemplify some of the challenges with the UPM process for 

Al 6061, which are mainly due to presence of hard inclusions (from alloying 

elements such as Mg and Si),and trace iron impurities [15, 62, 90, 93]. These have 

also been noted to limit the life of SCD tools in UPM process. 

Much of the present experimental studies on surface variation sensing are fo-

cused on machining with carbide and PCD tools. The SCD tool was used sparing-

ly in this study, since much of the experiments were conducted under suboptimal 
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process conditions, such as sudden introduction of coolants, so that surface anom-

alies can be introduced and studied (see Sec. 2.6 for details). These conditions as 

well as the reasons noted in the foregoing significantly impede the life of SCD 

tools in UPM of Al 6061.  

At every process parameter setting, the UPM facing operation was performed 

on a separate workpiece with the tool moving from the periphery towards center. 

It may be noted that the cutting speed continuously decreases during the process 

with the maximum speed near the periphery and almost zero speed near the cen-

ter.  

Therefore, the workpiece surface is divided into 16 concentric strips (hence-

forth referred to as zones) each measuring ~ 0.5 cm in width. Each zone is 

marked by almost constant process settings. Signals collected at each zone are 

synchronized in time with the corresponding machining location on the workpiece 

surface that forms a source of signal generation. On completion of machining, the 

workpiece surface is cleaned with isopropyl alcohol.  

Subsequently, the surface characteristics, including the complete profile, sur-

face roughness (Sa) of the workpiece were measured at three random locations on 

each of the 16 zones using multiple instruments, namely, optical laser interference 

microscope (MicroXAM
®
 from KLA-Tencor), optical microscope, and a stylus-

based profilometer (TalySurf
®
) manufactured by Rank-Taylor-Hobson. Among 

these, we mostly report the profiles measured from MicroXAM
®
. The surface 
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roughness values were determined by the Talysurf
®
 and corroborated with Mi-

croXAM
®
 readings. 

Table 2-2: Details of the sensing system mounted on the UPM setup 

Signal 

Type 
Sensor Orientation Symbol 

Sampling 

Rate 

Sensor 

Type 

V
ib

ra
ti

o
n

 

Along the feed direction VX 

10 KHz 
Kistler 

8728A500 
Across the feed in the XY plane  VY 

Vertical VZ 

F
o
rc

e Along the feed direction FX 

10 KHz 
Kistler 

9251A 
Across the feed in the XY plane  FY 

Vertical  FZ 

A
E

 

Vertical AE 1 MHz 

Physical 

Acoustics 

R80 

 

2.4.1 Recurrent Predictor Neural Network to Capture Signal Evolu-

tion in UPM process 

 

Figure 2-6: The architecture of an RPNN with input node I = 2, hidden node P = 2, and n exogenous 

inputs. 
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The complex evolutional patterns of the sensor signals from UPM process 

cannot be adequately captured using conventional prediction approaches. Recur-

rent Predictor Neural Networks (RPNN) [79, 80] offer a means to compactly 

capture the complex evolution of process underlying the measured vibration 

signals.  

Unlike conventional NNs (also referred to as feed-forward NNs), RPNN cap-

tures the temporal relationship between successive realizations of the output 

variable (e.g., vibration sensor signals in our case). In other words, in convention-

al NN, the output y is a function of certain input variable x, and does not depend 

on the previous realizations of y. In contrast, an RPNN captures the signal evolu-

tion as a nonlinear difference equation.  

Formally, this difference equation uses the I previous realizations of y (called 

nodes) or inputs, and P delays (hidden nodes) of neural network activations with 

each of the I nodes, i.e., for an RPNN with I nodes and P activation delays (also 

see Figure 2-6). We represent the signal in terms of difference equations involv-

ing the RPNN weights and biases as follows
7
: 

  ( )   ( ) 
    ( )      ( )   (   ) 
    ( )      ( )   (   ) 

  

    ( )      ( )   (   ) 
  

  ( )     (   )( )    (   ) ( )   (     ) 

 

(2-1) 

 

 

 

                                                 
7
 We also include n exogenous inputs ( ) independent of the primary input x. For example, if x 

is chosen to represent the feed direction vibration sensor (VX) data and its time lags, then   could 

represent a combination of data from other sensors such as vertical direction vibration (VY), feed 

direction force (FX ), AE, etc.   
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The output at node k is given by, 

 ̂ (   )   (  ( )) (2-2) 

Since the one-step prediction is obtained at node I (the last node), 

 ̂(   )   ̂ (   )   (  ( )) (2-3) 

 here   ( ), k=1... I is written as, 

  ( )    ( )    

   ([

    
     

   
        

 
] [

  ( )     
   
      ( )

])

   
   ( ) 

(2-4) 

Each element      in Eqn. (2-4) has the following form, 

     [    
     

      
 ]

 
 (2-5) 

Each   is one of the P x I (I +1)/2 weights in the RPNN. For example,     
  is a 

weight connecting from the third delay in the first node to the second node. Simi-

larly, each element   ( ) in Eqn. (2-4) has the following form,  

  ( )  [ (  (   ))  (  (   ))   (  (   ))]
 

 (2-6) 

We define the exogenous components in Eqn. (2-4) as having the following form, 

   [  
   

    
 ]  

and,  ( )  [  ( )   ( )    ( )]
  

(2-7) 

Where elements in    are weights connecting to the exogenous inputs  ( ), 

there being n such weights. For example,   
  connects to   ( ),   

  to   ( ), 

etc. Thus, the total number of weights (  and   ) in the RPNN is given by P x I 

(I +1)/2 + n, and the number of biases (denoted as  ) is I. The RPNN represents 

the process dynamics as a 4-dimensional nonlinear difference equation (i.e., I = 

4). We use P = 4 for the signals obtained from the process. Such an RPNN has 
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been applied for the prediction of complex phenomena in diverse scientific and 

engineering domains [79, 80].  

The key difference between conventional multilayer NNs and RPNN is that 

unlike conventional NNs where the training set elements are presented inde-

pendently of each other without regard for their sequence or order, the training set 

elements in RPNN are treated as time-shifted versions of each other.  

In addition, as shown in Figure 2-6, the layers of the networks are uniquely 

interconnected to each other. Such rich interconnectivity between layers requires 

a different approach towards calculation of network derivatives for minimizing 

the error between the RPNN outputs and the corresponding target values. There-

fore, in contrast to the Back Propagation (BP) method [94] common to conven-

tional NN, the RPNN uses the Back Propagation Through Time algorithm (BPTT) 

[95]. 

2.4.2 Online Particle Filter (PF) Update of the Process State 

The evolution of surrogate process state   , as captured from the p auto-

regressive terms of every RPNN parameter (weights and biases)
8
 at time k is 

estimated using online vibration sensor data   . The underlying relationship 

between the dynamic state    and measurement    can be represented in the 

state-observer form, 

                                                 
8
 Here, for each RPNN parameter w, we created a separate state vector consisting of the current 

and its order-p autoregressive terms, i.e., for each RPNN parameter, wk = [wk wk-1… wk-p+1]
T
, 

where the superscript [ ]
T 

denotes the transpose operator. 

     (         ) (2-8) 
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where    is the state transition function,      is white process noise,    is the 

observation function, and    is the white observation noise. The Bayesian ap-

proach is used to dynamically estimate and predict the state evolution, from a 

time-series of observations (vibration sensor signals in the feed direction), 

        , in terms of the conditional probability density functions (pdfs) 

𝑝(  |    ), and 𝑝(    |    ). Based on the Bayesian theory, these conditional 

pdfs can be determined as,  

𝑝(  |    )  
𝑝(  |  )

𝑝(  |      )
𝑝(  |      ) 

(2-9) 

𝑝(    |    )  ∫𝑝(    |  ) 𝑝(  |    )    

This is a recursive process of estimation and prediction evolves over time 

with every new signal observation [81]. However, due to the nonlinearity of UPM 

process dynamics Eqn. (2-9) cannot be solved analytically. This is because the 

nonlinear state transition function    will cause the posterior distribution of state 

   to be non-Gaussian.  

To surmount this challenge, a sequential Bayesian analysis based on a numer-

ical Monte Carlo method (also called, particle filter) is used in this study to recur-

sively solve Eqn. (2-9) [81]. Recently, the authors have used this method to com-

pute the evolution of material removal rates in Chemical Mechanical Planariza-

tion (CMP) process [96].  

The basic concept behind particle filter method is that any probability density 

function (pdf) can be approximated by a set of random samples  ( ) i=1.. N, 

     (       ) 
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called particles that are drawn from another (analytically more tractable than 𝑝( ) 

given in Eqn. (2-9)) distribution  ( ) (also called the importance pdf) as, 

𝑝( )  ∑ ( ) 

 

   

(   ( )) 

(2-10) 

 ( )  
𝑝(  )

 (  )
 ( )  

𝑝(  )

 (  )
 

where   is the Dirac delta function and  (i) is related to the ratio between the 

posterior pdf 𝑝(  ) and the selected importance pdf  (  ). For scalar signal 

observations   

   
𝑝(  |  )  𝑝(  |        )  𝑝(      |      )

 (  |        ) ⋅  (      |      )

     

𝑝(  |  )  𝑝(  |        )

 (  |        )
 

(2-11) 

At every k we choose the importance pdf (  |        )  𝑝(  |        ), 

referred to as the prior for time step k. Thus, Eqn. (2-11) becomes,  

       ⋅ 𝑝(  |  ) (2-12) 

where 𝑝(  |  ) is the likelihood of measurement   , which can be estimated by 

the measurement noise vk in Eqn. (2-8). 

In summary, using Eqn. (2-8), the process state can be predicted one step 

ahead; and then using Eqn. (2-10) – (2-12) the weights of the particles of the 

process state can be updated by using the measurement data.  

By using this sequential Monte Carlo sampling method, Eqn. (2-9) can be se-

quentially and recursively solved to estimate and predict the state vector. Also, 

akin to our recent application of PF (see Ref. [96]), we capture the nonlinear state 

transition using the state space representation given in Eqn. (2-1) – (2-7), and the 
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parameters were estimated by the same joint Bayesian estimation scheme used in 

this recent investigation.  

The PF prediction accuracies critically depend on the initial prior 𝑝(  |  ). 

We had used the distribution of the parameters and the outputs of the trained 

RPNN to determine the initial prior distribution. As will be evident in the follow-

ing sections, the use of this prior, as well as the appropriate structure to capture 

the dynamics helps avoid instability issues and convergence to local minima in 

PF. 

2.4.3 On-line Change Detection 

A non-parametric clustering technique, called, the mean-shift algorithm [97] 

is used to detect surface-variation induced changes in the dynamics of surrogate 

process state (i.e., the PF-updated RPNN parameters). Due to the non-parametric 

nature of this method, the shape as well as the number of clusters need not be 

known a priori.  

Also, the method can relax some of the stationarity and Gaussian assump-

tions that underpin many of the statistical change detection techniques. For the 

presented application, we have noted that the surface variations cause changes in 

the second moment of the weights of the output node of the RPNN.  

Therefore, we had considered a time-series   , formed by the 1000 samples 

(~100 ms) moving variance computed from the output node weight     
  (see Sec. 

2.6.1, similarly,     
  for the numerical example in Sec. 2.5, and multi-sensor 

monitoring case in Sec. 2.6.2) to determine a possible surface induced shifts in the 
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weight pattern. At every time step k, we determined the centroid   
  of the time-

series    as, 

  
          

 
  ( )  

∑    (‖
    

 
‖

 

) 
   

∑  (‖
    

 
‖

 

) 
   

   (2-13) 

where  ( ) is a kernel function that weights distances of different samples from 

their centroid  , and h is the parameter used to scale the distribution of the sam-

ples. Every   
  is compared with its previous value     

 , and if the difference is 

larger than a threshold a change is detected at time step k. Further intuition behind 

the overall approach is evident from the following numerical illustration. 

2.5 Numerical Example 

For illustrating the methodology, we have used a synthetic signal composed 

of sinusoidal waves of multiple frequencies (see Figure 2-7(a)). The first half 

(2,000 time steps) of the signal was composed of four frequencies (Figure 2-7(b)) 

and the next half had five frequencies (Figure 2-7(c)), but the amplitudes were 

adjusted to make the signal energies the same for both signal halves.  

As one can gather from the time portrait (Figure 2-7(a)), the two signal 

halves have the same first and the second moment, akin to subtle signal variations 

resulting from incipient surface variations during UPM.  

In such cases, the process drift, or the change point (here the data point 

#2,000) is not detectable with the use of conventional statistical change detection 

techniques. We trained an RPNN using the first 100 points of the signal as de-
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scribed in Sec. 2.3.3. We used 2 nodes with 2 delay terms (I = P = 2) for the 

RPNN. Evident from Figure 2-7(d) is that the trained RPNN can accurately pre-

dict the evolution of the first half of this synthetic signal.  

Next, we used a PF to update the RPNN parameters (weights and biases) as 

presented in Sec. 2.4.2. As shown in Figure 2-7(e), the PF predicts signal evolu-

tions satisfactorily for both signal halves (R
2
 > 0.95)

9
. The PF updated values of 

the RPNN output node weight was used for on-line change detection. Here, we 

compared the performance of mean-shift statistic with that of a conventional 

statistical monitoring technique based on Sequential Probability Ratio Test 

(SPRT).  

An SPRT statistic can be used to detect changes in the first and the second 

moment of the data. Figure 2-7(f) summarizes the results of SPRT with different 

data sets. The values of the SPRT statistic that lay above the threshold (horizontal 

dashed line) have a 99% chance that a change or a drift has occurred in the com-

puted statistic (i.e., Type I error or false positive rate, α < 1%). It may be noted 

that this study evaluates how well the changes in the statistics are indicative of the 

actual change in the signals (which occurs at the data point #2,000). First, we 

applied SPRT on the raw data sets (dashed line).  

As shown in the figure, the SPRT statistic falsely crosses the threshold much 

earlier (near data point #1,000) than the real change point. But it fails to detect the 

change (the statistic values remain below the threshold) even after 1,000 data 

                                                 
9
 R

2
 statistic (0 ≤ R2

 ≤ 1) quantifies the fraction of the variation in the signals that the model 

captures. The higher (closer to 1) the R
2
 statistic values the more accurate is the model. 
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points following the actual change. Such a mode of failure of the method is re-

ferred to as a Type II error (failing to detect).  

In contrast, the SPRT statistic values of the RPNN weight cross the threshold 

at 2,266
th

 data point, i.e., the SPRT of the weights is able to detect change in the 

signal characteristic 266 data points after the actual change that occurs at the data 

point #2,000. This result indicates that the use of RPNN parameters as surrogates 

of the process state can be a more effective means to detect process variations 

compared to tracking statistical variations in the raw signals.  

Although the RPNN was able to detect the change for the presented case, la-

tency of 266 data points following the actual inception of the change may not be 

early enough for effective mitigating control in precision manufacturing applica-

tions. Comparatively, we applied the mean-shift algorithm described in the previ-

ous section on the raw data sets and RPNN weights.  

Using this method the change was detected at the 2,285
th

 and 2,010
th

 data 

point (see Figure 2-7(g)), for the raw data set and RPNN weights respectively. 

The latter is within 10 data points following the actual change inception. This 

outcome indicates that compared to the use of SPRT statistic, the use of mean-

shift with RPNN weights can lead to earlier detection of process-induced changes 

in the signal patterns. 

Next, we studied a case where we had the same signal characteristic (i.e., the 

same 4 frequencies) in as the previous case for the entire length of the time-series. 
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Interestingly, the SPRT statistic of the raw signal wrongly detected changes 

(false positive or Type I error) at two instances as indicated in Figure 2-7 (h). The 

SPRT of the raw weights also detects a nonexistent change in the signal character-

istic. This false positive rate needs to be lowered for effective change monitoring. 

Pertinently, the mean-shift algorithm does not yield any false alarms.  

The values of the mean-shift statistic were below the threshold for all the 

time steps when applied to the raw data set, as well as the RPNN weights (see 

Figure 2-7(i)). Thus, the numerical study indicates: 

i. RPNN and PF are effective in capturing the evolution of the process un-

derlying the signals,  

ii. the use of RPNN parameters are adequate surrogates to track the process 

dynamics instead of using the statistical signal patterns alone, and,  

iii. mean-shift algorithm applied to the moving variance of the PF-updates 

of RPNN weight is effective in early detection of subtle changes in sig-

nal characteristics (no apparent mean or variance shift), and minimizing 

the false positive rates compared to the use of conventional statistical 

change detection techniques, such as SPRT.  

The following section describes the application of the present approach for 

monitoring of precision turned surfaces. 
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Figure 2-7: Summary of results from the numerical example. 

(a): Concatenated (with change case) sinusoidal simulated time series with the first 2,000 points consisting of 4 periods, and last 2,000 points with 5 periods.  

(b) & (c): Frequency portraits (~2 kHz sampling rate) of the two sinusoidal time series shown in (a) with 4 and 5 periods respectively.  

(d): Performance of trained RPNN for the with change case.  

(e): Performance of PF-updated RPNN for the with change case.  

(f): SPRT applied to the with change case simulated time series showing both Type I and Type II error and SPRT applied to the RPNN weights. 

(g): Behavior of the mean-shift statistic when applied to RPNN weight time series with change.  

(h) SPRT applied to the RPNN weights and raw signal consisting of 4 periods alone (no-change case), both instances depict Type I error.  

(i): Behavior of the mean-shift statistic when applied to RPNN updated weights for the no-change case. 
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2.6 Change Detection in Ultraprecision Machining Process 

using the RPNN-PF approach  

2.6.1 Change Detection Using One Sensor Signal (vibration signal 

along the feed direction) 

As noted in the foregoing, early detection of surface variation can be vital for 

minimizing scrap rate and rework in an industrial UPM process. Figure 2-8 sum-

marizes the overall result from the application of RPNN-PF for detecting changes 

in the surface characteristics during UPM using vibration signals in the feed 

direction. Figure 2-8(a) shows a surface zone after UPM, and Figure 2-8(b) shows 

the feed direction vibration signal obtained during the machining of that zone. It 

can be seen that the signals bear information sensitive to machined surface char-

acteristics.  

For example, Figure 2-9 shows a portion zoomed on the surface obtained dur-

ing the ultraprecision facing operations with a carbide tool (~0.4 mm (396 µm) 

nose radius), at 2000 RPM, 60 mm/min feed rate (30 µm/rev feed), and 12 µm 

depth of cut. As stated in Sec. 2.4 the carbide and PCD (instead of SCD) tools 

was used as they present less risk for damage due to sudden introduction of the 

coolant in these experiments.  

During the process, the surface speed varied from 1021 m/min at the periph-

ery (φ 16.25 cm) to near zero at the center. Two notable process characteristics 

reflected in the surface are (i) the feed marks occurring at 30 µm intervals, and (ii) 

the tool radius chord length of ~200 µm. The figures also show the feed vibration 
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signal obtained concurrently during the process. It can be noted that the signal 

peaks appear to be aligned with the valleys of the surface, and the signal appears 

to be modulated at a wavelength of 200 µm. This examination of the signals and 

the surface indicates that the measured signals are sensitive to variation in the 

material removed under different surface characteristics. Similarly, Wang, et al. 

[92] have noted a correlation between workpiece surface characteristics and force 

sensor signals in UPM of Al 6061.  
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Figure 2-8 : Overview of the RPNN-PF method applied to precision face-turning (facing) process. 

(a): Surface obtained during machining of aluminum before application of coolant (portion A) and 

after application of coolant (portions B and C). (b): Feed direction vibration signal (Vx) observed 

isochronously during machining of portions A, B and C. (c): Behavior of one particular PF-updated 

RPNN weight ( ̃   
 ) before and after application of coolant. (d) SPRT applied to the raw times series 

shown in (b) and the RPNN weight shown in (c). (e): Mean-shift clustering applied to the RPNN 

weight.  
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Figure 2-9 : Surface and concurrent signal obtained during facing test 

Test condition are:  2000 RPM, 60 mm/min feed rate and 12 µm depth of cut. Signal down sampled 

from 10 kHz to 100 Hz. 

  



 

105 

 

In Figure 2-8(a), the initial portion (labeled A, lies predominantly in the 6
th

 

zone as measured from the periphery) was realized under dry cutting conditions 

with spindle speed of 2000 RPM, 6 mm/min feed rate (3 µm/rev feed), and 8 μm 

depth of cut. The resulting surface roughness was Ra ~ 200 nm.
10

 When the end 

of portion A was reached (start of 7
th

 zone), a coolant (Kool Mist-78
®

) was intro-

duced and continuously applied for the remainder of the operation.  

We note that the application of the coolant in this study was not aimed at 

optimizing the surface characteristics, but to introduce abrupt changes in the 

surface characteristics. Portions labeled B and C were obtained with the use of 

this coolant. Soon after the coolant was applied, the surface characteristic changed 

to reveal certain dominant periods (with wavelengths of about 40 μm) as shown in 

Figure 2-8(a) for portion B, and the chip morphology changed from discontinuous 

to continuous type.  

Continued application of the coolant in mist form for further 6 sec leads to a 

wavy surface with a wavelength of about 100 μm, as shown in Figure 2-8(a), 

portion C. Evidently, the surface characteristics deteriorate significantly from A to 

C, to Ra > 300 nm. This is likely a consequence of chemical [98, 99] and thermo-

mechanical interactions [100] that take place in the cutting zones in the presence 

of a coolant.  

                                                 
10

 The reason for obtaining this surface roughness value is because we used a tungsten carbide 

tool instead of a single crystal diamond tool. It is well known that single crystal diamond tool 

would give a surface finish in the nanometric range. The main objective of this study was to 

investigate a multiple sensor fusion approach (with RPNN and PF) for early detection of changes 

in surface characteristics.  
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Wang, et al. [92] have suggested that the effect of fluid damping due to in-

troduction of coolant may cause changes in surface characteristics. Such oscilla-

tions in cutting forces and temperature may lead to the deterioration in surface 

characteristics as seen in Figure 2-8 (a) portion C. Figure 2-8(b), shows that the 

vibration peak to peak amplitudes progressively increase with the application of 

the coolant during machining over portion B, reaching a steady state when portion 

C is reached.  

While there is a noticeable change in the signal characteristics with surface 

variations, the use of time domain vibration signals may not lead to early stage 

surface detection; see Figure 2-8(d). In UPM, earlier detection of defects even by 

a few milliseconds can significantly avert excessive rework. Towards this end, we 

use the PF updates of the trained RPNN
11

 (Figure 2-8(c)) as surrogates for the raw 

signal. The RPNN chosen consisted of four nodes (I) and four delays (P), imply-

ing a total of 40 (= P x I(I+1)/2) weights ( ) and 4 bias ( ) parameters. This 

peculiar choice is made for the purpose of symmetry.  

Pertinently, the embedding dimension and auto-mutual information of the 

signal [101] were observed to provide a value close to the selected I and P, re-

spectively. It should be noted that the raw signal is averaged using a rectangular 

moving window of length 5, and down sampled to 1/5
th

, to suppress the high 

frequency contents that mostly emerge from extraneous sources. The length of the 

rectangular window is selected based on spectral frequency estimates. The largest 

                                                 
11

 Since we use only one sensor signal, the term   
   ( ) will become zero in Eqn. (2-4). 
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window length, which does not excessively attenuate the dominant signal fre-

quency characteristics, is deemed as an appropriate window length. Such down 

sampling did not have a deleterious effect on prediction delay, and was in turn, 

observed to aid in faster RPNN convergence. A representative of this down sam-

pled signal is shown in Figure 2-8(b).  

For this representative case, a total of 180,000 (  ) data points are gathered 

at 10 kHz sampling rate from the accelerometer mounted in the feed direction 

(Vx) during the machining operation conducted at 2000 RPM, 6 mm/min feed rate 

and 8 μm depth of cut on the aluminum workpiece described in preceding sec-

tions. The data set    temporally corresponds to 18 sec epoch of operation, or 

equivalently, 600 workpiece revolutions, or 1800 μm on the workpiece surface. A 

1/5
th

 down sampling of this data set yields 36,000 data points long data set  ̃  

shown in Figure 2-8(b). This data is in synchronization with the workpiece sur-

face segment in Figure 2-8(a) as follows: 

 First 7.25 sec or corresponding to ~ 725 μm of surface machined is cap-

tured in data points 1 through 72,500     , or data points 1 through 

14,500   ̃  in portion A of Figure 2-8(a).  

 Next 4 sec (~ 400 μm machining ending at 1125 μm total length), is syn-

chronous with data points 72,500 through 112,500     , or data points 

14,500 through 22,500   ̃ , represented by portion B  

 Last 6.75 sec (~ 675 μm machining, ending with 1800 μm total length) is 

synchronous with data points 112,500 through 180,000     , or data 

points 22,500 through 36,000   ̃ , as represented by portion C  
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From this down sampled dataset, 6,000 points, representing 3 sec of machin-

ing, are chosen for our analysis, these are taken in the vicinity of the detected 

change isochronously with portion B, i.e., when the coolant was first introduced. 

With respect to the machined surface, these points are equivalent to 300 μm in 

length.  

Out of the 6,000 points (data point 12,700 – 18,700 in Figure 2-8(b)) in the 

down sampled signals, the first 3,300 points are the down sampled vibration 

measurements taken before the change (no coolant) state while the remaining 

2,700 points were taken after the change (with coolant). The first 3,300 points are 

further partitioned into two parts, the initial 1,100 points are used for training the 

RPNN while the remaining 2,200 points are concatenated with the 2,700 points 

taken with coolant on, and used for testing and PF updates. The 4,900 points 

shown in the abscissa of Figure 2-8(c) - (e) correspond to the time steps at which 

these 4,900 vibration measurements were taken. 

The RPNN is initialized with Gaussian distributed random weights of the or-

der of 10
-1

. The learning rate is adjusted heuristically, as suggested by Hagan, et 

al. [94]. We set a primary stopping criteria of R
2
 = 0.85, and secondary criteria 

threshold of 2500 iterations for the RPNN training process. If the primary stop-

ping criteria is not met at the end of the iteration threshold, the training process is 

re-started and proceeded till convergence, or until the set number of iterations are 

reached, or the learning rate reaches 0.001% of the initial value.  
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The training process is continued until four converged results are obtained. 

The parameters obtained over these four RPNN training loops are arithmetically 

averaged, this averaged RPNN parameters are taken as the surrogates for the 

process state. The RPNN parameters are updated by the PF for optimal one step 

ahead prediction (see Figure 2-8(c)) as each data point from the 4900 points long 

data set is presented in sequence.  

These updated parameters set ( ̃) are now considered surrogates of the pro-

cess state during those time intervals. It may be noted that  ̃ is dynamic, and 

identical in length (4900 data points) to that of the signal segment used in the PF 

update. 

Figure 2-8(d) shows results from the Sequential Probability Ratio Test 

(SPRT) applied to both the raw signal    and the one particular PF updated 

weight ( ̃   
 ) shown in Figure 2-8(c). SPRT detects the change in the signal type 

within 120 ms when applied to  ̃   
 . In contrast, the shift in the raw signal alone 

takes over 166 ms to identify.  

Figure 2-8(e) depicts the detection performance of the mean-shift statistic 

based change detection applied to variation of the shown weight (same as Figure 

2-8(c)). The change detection delay due to mean-shift clustering statistic reduces 

to 102 ms. This reduction in the latency of change detection can be attributed to 

the less restrictive assumptions that underpin the mean-shift statistic compared to 

the SPRT statistic. 
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Also, we have tested the present approach to cases where the surface charac-

teristics were fairly consistent, and no significant surface changes were noticeable 

(see Figure 2-10 for a summary of a representative result). In this case, the mean-

shift statistic values were well below the threshold for the entire time span over 

which the surface segment was precision finished.  

A similar pattern was noted for SPRT statistic of raw signal as well as PF-

updated RPNN weight values, reinforcing that this statistic is fairly insensitive to 

small signal variations. However, as noted from the previous example, lack of 

sensitivity with the conventional methods can lower the accuracy and earliness of 

detection of surface variations, and the present approach involving the use of PF-

updated RPNN weights along with the mean-shift statistic offers a robust means 

for the detection of incipient surface variations in the process. 
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Figure 2-10 : Summary of the application of the present approach to signals from the feed direction 

vibration sensor for the portions where no change is apparent. 

(a) variation of the SPRT for weights and raw signal statistics. (b): Behavior of the mean-shift statistic 

as applied to the raw signal. (c): Behavior of the mean-shift statistic as applied to RPNN weights. 
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2.6.2 Fusion of Information from Multiple Sensors 

Next, we continued with the same procedure using two (vibration and force 

in the feed direction), as well as all sensors simultaneously. The signals from 

sensors other than the feed direction vibration sensor were taken as exogenous 

inputs as explained in Sec. 2.3.3. These exogenous inputs influence the   
  

 ( ) term in Eqn. (2-4) which was cancelled out for the case presented in Sec. 

2.6.1. It is surmised that UPM process signals contain significant amount of re-

dundant information. Increasing the number of sensor signals, albeit, increasing 

the redundancy, would contribute to increase the robustness of change detection.  

We conducted four replications of the facing tests using a PCD cutting tool 

under cutting conditions identical to Sec. 2.6.1, but with isopropyl alcohol as 

coolant. Surface finish (Sa) in the range of 80 to 100 nm was obtained during 

these tests.  

The signals gathered from these tests were used to train an RPNN. The feed 

direction vibration sensor signal was used as the primary signal, with other sensor 

signals in the exogenous role. This is because the feed vibration signals, as stated 

in Sec. 2.6.1, was most sensitive to process variations that alter the surface pro-

files.  

Thereafter, we had used the trained RPNN weights to initiate a PF to track 

and detect possible process variations as captured by the dynamics of these 

weights. Both SPRT and mean-shift statistics were used for change detection.  
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As indicated in Figure 2-11, fusion of signals from two sensors, namely feed 

vibration (as the main variable for RPNN), and cutting force in the feed direc-

tion
12

 (as an exogenous input) with mean shift statistics, reduces the time-delay in 

detecting a change in UPM process dynamics by a half (~ 15 ms) of that with one 

sensor signal (~ 27 ms).  

In addition, the variation (range) of the detection times is reduced from about 

20 ms to ~ 5 ms with multiple sensors, leading to a more consistent performance. 

We also observed that using more than two sensor signals did not significantly 

improve the mean detection time. In general, the more number of sensors the 

more accurate and robust would be the predictions. Also, the saturation of predic-

tion accuracies with two sensors may be peculiar to the surface characteristic 

changes studied in the present investigation. One may need a different combina-

tion and number of sensors to facilitate early detection of other process anomalies.  

 Using exogenous sensor inputs allowed for a more tractable RPNN structure. 

An RPNN consisting of only two nodes (I = 2), and two delays (P = 2), i.e., with 

six weights and two biases (and additional weights for exogenous inputs depend-

ing on the number of sensor signals used) was seen to suffice (compared to 40 

weights and 4 biases), thus significantly reduces the computation load. 

 Thus, using more than one sensor signal for change point detection allows 

for the following noteworthy outcomes in comparison to the no exogenous input 

case:  

                                                 
12

 We have tested several combinations of primary and exogenous inputs to arrive at this conclu-

sion. 
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i. reduction in mean change detection delay from ~ 27 ms to about 15 ms,  

ii. significant improvement in reliability of detection with roughly 5 ms range 

of uncertainty (95% confidence interval) compared to 20 ms with one sen-

sor signal, and 

iii. reduction in the computational load due to the use of 6 weights and 2 bias-

es, instead of 40 weights and 4 biases. 

 

Figure 2-11: Effect of multiple sensor fusion on change detection delay. 

comparing performance of the mean-shift and SPRT applied to RPNN weights with (i) feed direction 

vibration sensor (VX) alone, (ii) with feed direction vibration and force sensor (VX, FX), and (iii) all 

sensors. The saturation of prediction accuracies with two sensors may be peculiar to the current 

situation where the change in surface morphology is prominent. 
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2.7 Summary 

We have reported a new approach, namely, Recurrent Predictor Neural Net-

work – Particle Filter (RPNN-PF) for real time monitoring of incipient surface 

variations in the UPM process. This approach can effectively capture the nonline-

ar and non-stationary dynamics of the process, instead of just tracking the statisti-

cal patterns of the signals. Consequently, it was able to detect surface variations 

within 15 ms of its inception. Specific conclusions are summarized in the follow-

ing: 

1. The experimental UPM machine tool was integrated with multiple sen-

sors, namely, a three component accelerometer to measure tool vibration 

along these orthogonal directions, a three component force piezoelectric 

dynamometer, and an AE sensor. Among these, feed vibration sensor was 

found to be most sensitive to the variations in the surface characteristics. 

Surface finish on Al 6061 discs varies over Ra ~ 15-25 nm range with 

single crystal diamond (SCD) tools. Experiments also suggest that sur-

face morphology in UPM can undergo sudden and almost abrupt varia-

tions. The information discerned from multiple sensors was used for pre-

dicting these variations in their incipient stages. 

2. The complex evolution of signal patterns, emerging from the underlying 

nonlinear process dynamics was effectively captured using an RPNN. 

The RPNN was trained for one-step ahead prediction of the feed vibra-

tion signal. After training, the RPNN was thus able to capture the nonlin-
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ear process dynamics, and the RPNN outputs matched well with the vi-

bration signal evolutions (R
2
 ~ 85%). Therefore, the parameters of the 

RPNN, including the weights and biases, were treated as surrogates of 

the process states, and their time-bound variation was tracked to monitor 

the process state changes. 

3. The RPNN parameters were continually updated with every new vibra-

tion signal measurement using the PF. The temporal evolution of the PF-

updated RPNN parameters, i.e., the surrogate process states, was found to 

reflect the inherent complexity in the raw signal. This provides a means 

for tracking surface vibration-induced changes in the process dynamics 

as opposed to mere statistical signal patterns. 

4. Since the UPM process dynamics exhibits an inherent time varying [64, 

77] and nonlinear [88] (non-Gaussian) nature, a nonparametric mean-

shift statistic of moving variance of the output node weight values was 

applied to detect process drifts. This mean-shift statistic based clustering 

method is shown to correctly identify surface-induced changes in the 

process dynamics. It was also found to be robust to false positives (false 

alarm or Type I error), and provides for early stage detection in compari-

son to conventional sequential statistic based methods, such as SPRT. On 

the other hand, conventional and mean-shift statistics applied upon the 

raw signal itself were found to yield high false positive (failing to detect 

or Type II error), and low detection rates. 
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5. Another noteworthy aspect of the presented method, evident in the nu-

merical case studies is that the present approach was able to detect subtle 

harmonic distortions taking place without significant changes in the mean 

or the variance. Such changes were detected within 2 dominant cycles. In 

comparison, the experimental studies have shown that change detection 

based on SPRT statistic on the extracted features from RPNN-PF can 

sustain both Type I (false alarm) and Type II (failure to detect) errors.  

6. The use of multiple sensor signals can improve both the timeliness and 

robustness of change detection compared to the use of one sensor signal 

alone. Furthermore, multi-sensor fusion allowed for reduction in the 

computation load involved in training the RPNN.  

7. By incorporating the force sensor signals in the feed direction, along with 

the feed direction vibration signals, changes in process dynamics was de-

tected, on an average, within 15 ms of its inception, with an uncertainty 

of ± 2.5 ms (95% confidence interval). Peculiar to the defects considered 

in this study, the inclusion of information from more than two sensors 

does not seem to further enhance the timeliness or robustness of identifi-

cation. It may, however, provide other defect information not possible 

with a single sensor. These results indicate that the sensor signal infor-

mation may be coupled, and much of the information pertaining to pro-

cess dynamics responsible for the surface variations considered in this 

study may be captured in two signals. However, from a practical stand-
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point, fusion of information all sensors enhances the redundancy and 

therefore robustness of a monitoring approach for early detection of 

changes in the process. 

Thus, the present approach can lead to a reliable monitoring system for detecting 

incipient surface characteristic variations in the UPM process. Future investiga-

tions will attempt to combine information from other signals, as well as use long-

er-range predictions to improve the reliability as well as timeliness of incipient 

surface variation detection. 
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 3 Process-Machine Interaction (PMI) Model-

based Monitoring of the Chemical Me-

chanical Planarization (CMP) Process us-

ing Wireless Vibration Sensors  

e use a deterministic process-machine interaction (PMI) model that can 

associate different complex time-frequency patterns, including nonline-

ar dynamic behaviors that manifest in vibration signals measured during a chemi-

cal mechanical planarization (CMP) process for polishing blanket copper wafer 

surfaces to near-optical finish (Sa ~ 5 nm) to specific process mechanisms. The 

model captures the effects of the nonuniform structural properties of the polishing 

pad, pad asperities, and machine kinematics on CMP dynamics using a determin-

istic two degree of freedom nonlinear differential equation.  

Goals 

 Identify and statistically quantify those aspects of MEMS wireless sensor 

signal components that are relevant to the CMP process dynamics, and there-

fore useful from a real-time monitoring perspective. 

 Explain based on process dynamics and physical phenomena, the physical 

reason for certain vibration sensor patterns observed in CMP and thereby fa-

cilitate real-time process prognosis. 

The model was validated using a Buehler (Automet
 
250) bench top CMP ma-

chine instrumented with a wireless (XBee
 
IEEE 802.15.4 RF module) multi-

sensor unit that includes a MEMS 3-axis accelerometer (Analog Devices ADXL 

335). Extensive experiments suggest that the deterministic PMI model can capture 

W 
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such significant signal patterns as aperiodicity, broadband frequency spectra, and 

other prominent manifestations of process nonlinearity.  

Remarkably, using the deterministic PMI model we were able to explain not 

only the physical sources of various time-frequency patterns observed in the 

measured vibration signals, but also their variations with process conditions. The 

features extracted from experimental vibration data, such as power spectral densi-

ty over the 115 − 120 Hz band, and nonlinear recurrence measures were statisti-

cally significant estimators (R
2 ~ 75%) of process parameter settings. The model 

together with sparse experimental data was able to estimate process drifts result-

ing from pad wear with high fidelity (R
2
 ~ 85%). The signal features identified 

using the PMI model can lead to effective real-time in situ monitoring of wear and 

anomalies in CMP process.  

The following challenges and recommendations noted by Bukkapatnam, et 

al. [27] provides the contextual motivation for this work
13

. 

  

                                                 
13

 P. Rao, M. B. Bhushan, S. Bukkapatnam, Z. Kong, S. Byalal, O. Beyca, A. Fields, and R. Komanduri, 

"Process-machine interaction (PMI)  modeling and monitoring of  chemical mechanical planarization (CMP) 

process using wireless vibration sensors," IEEE Transactions in Semiconductor Manufacturing, (Accepted, 

1st Review) 2013. 
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Challenges in nanomanufacturing research [27] 

Nanoscale processes and systems pose many challenges for sensing: 

  • Accessibility to signal source is not easy; 

  • In situ sensing is almost impossible; 

  • Signals are short, evanescent, and weak; 

  • Quantization of signals makes transduction difficult; and 

• Signal-to-noise ratio is low. 

Mechanisms that cut across multiple scales make observation and characteriza-

tion of nanomaterials and nanoprocesses difficult. 

Expert recommendations for nanomanufacturing research [27] 

Physics-based statistical models considering nanoscale and hierarchical physics, 

and nonlinearities should be developed. These realistic models will enable moni-

toring, diagnostics, prognostics, and reliability analysis. 

 

3.1 Introduction 

“Data contain both signal and noise. To be able to extract information, one must 

separate the signal from the noise within the data.” 

– Walter Shewhart 

CMP is a vital back-end-of-line (BEOL) process in semiconductor manufac-

turing for obtaining both local and global planarity on a variety of materials [19, 

21]. CMP is often the last step before device testing and packaging stages [21]. As 

a consequence, wafer anomalies resulting from CMP operations will lead to high 

losses [22].  

Advent of copper (Cu) semiconductor interconnects as a viable alternative to 

tungsten (W) and aluminum (Al) poses additional challenges to yield [102]. This 
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is because tantalum (Ta) and tantalum-nitride (TaN) barrier layers designed to 

prevent diffusion of Cu into the neighboring silicon dioxide (SiO2) - low k dielec-

tric have low selectivity with respect to Cu, and Cu interconnects are easily dam-

aged during CMP due to their relative softness compared to W and Al [103]. 

Stringent control of operating conditions is therefore considered essential for 

defect-free realization in CMP process (see also Graphic IX) [19].  

Industry predominantly uses off-line statistical process control (SPC) meth-

ods by surface characterization of test wafers for process quality assurance in 

CMP [104]. However, the use of test wafers for process monitoring can lead to ~ 

35% reduction in throughput, and cause as much as 100% increase in cost of 

ownership [25]. These traditional SPC methods may fail to detect some of the 

subtle process drifts inherent to CMP [22, 105-107]. Consequently, real-time in 

situ sensor-based approaches have been pursued for CMP monitoring [22, 25, 

108-111].  

Contemporary CMP monitoring approaches primarily use piezoelectric vibra-

tion and force [112-124], acoustic emission (AE) [53, 125-129], laser [130, 131], 

electro-chemical [132, 133], and thermo-optical [134-137] sensing elements. 

Apart from cost, these sensing systems require careful attention to calibration and 

location. In situ optical sensing systems for CMP endpoint detection typically 

need specially designed polishing pads with optical filter windows [108, 131, 

135].  
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Also, the added bulk and high power consumption of these sensing systems 

limits their applicability to non-intrusive close proximity monitoring. Hence, the 

majority of these approaches are mostly limited for detection of CMP endpoint as 

opposed to tracking anomalous process variations [109]. Wireless MEMS sensors 

have been used towards alleviating this issue [117, 118, 137]. These sensors also 

facilitate close proximity monitoring of the process. 

However, the sensor signals acquired from the CMP process exhibit certain 

complex time-frequency patterns [116]. For instance, Figure 3-1(a) shows a time 

portrait of a representative signal acquired from a wireless MEMS vibration 

sensor mounted on our CMP apparatus (see Sec. 3.4). The signal exhibits a beat-

like pattern with prominent periodic low frequency component, superimposed 

with aperiodic high frequency components.  

Such inherently complex signals can manifest broadband frequency spectra 

as seen in Figure 3-1(b). Traditional methods use features, such as band limited 

energies, statistical moments, etc., that quantify the statistical patterns in a signal 

and not the inherent process dynamics in CMP.  

Challenges 

1. Wireless vibration signals obtained during CMP process have low signal to 

noise ratio and depict complex nonlinear, nonstationary, and broadband char-

acteristics. Under such circumstances conventional statistical process monitor-

ing techniques are of limited value. 

2. Given the complex signals emerging from the process, it is not known what 

aspects (features or frequencies) of the signal are relevant to the process.  
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A physical model capable of elucidating the multi-faceted aspects of CMP 

process dynamics can be used to define features that can track the process, as 

opposed to the mere signal variations. Existing physical models, however are 

largely focused on the wafer-pad asperity level mechanics, and explain the mate-

rial removal regimes dominant at such a scale, such as hydrodynamic, mixed, and 

direct contact modes [138-143].  

These models overlook the interaction among mechanics active at different 

scales, such as bulk pad structure, and machine kinematics. Consequently, the 

model solutions cannot be associated with complex patterns in the measured 

vibration signals, and therefore are not suited for process monitoring. 

We invoke a deterministic process-machine interaction (PMI) model which 

incorporates the effects of the nonuniform structural properties of the polishing 

pad and machine kinematics on CMP dynamics at the wafer-pad interface using a 

deterministic two degree of freedom nonlinear differential equation. The PMI 

model is used to explain the physical sources of various time-frequency patterns 

observed in the measured vibration signals, as well as, their variations with CMP 

process conditions. The signal features identified based on the PMI model can 

track inherent variations in CMP process as opposed to just statistical signal 

patterns, and thus would lead to effective real-time in situ monitoring of drifts 

(wear) and anomalies in CMP process.  

The remainder of this chapter is organized as follows: a review of the rele-

vant literature is provided in Sec. 3.2, an overview of the research approach is 
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presented in Sec. 3.3, experimental validation of the PMI model in Sec. 3.4, and 

the application of the PMI model for condition monitoring in CMP is discussed in 

Sec. 3.5. 

 

Figure 3-1: Typical vibration sensor data in the tangential (X) direction obtained during CMP. 

Polishing of copper surfaces under the following conditions: 30 RPM spindle speed, 150 RPM platen 

speed, and 2 lb. (8.9 N) down force. (a): Time series plot showing 8 sec of the total (180 sec) data, time 

period between prominent beat-like low frequency components is ~ 2 sec (b): FFT frequency spectrum 

of the data, showing presence of 4 main frequency bands (see Sec. 3.4). Low frequency (2 sec) region 

seen in (a) is shown in inset.  

 
Graphic IX: Challenges in CMP process 
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3.2 Review of the Relevant Literature 

Vibrations from the CMP process result from a dynamic interplay among 

mechanisms taking place at three different scales, namely wafer-pad asperity 

[138, 139, 144], bulk pad structure [145, 146], and machine kinematics. Much of 

the literature has focused on deriving analytical models of the CMP process at pad 

asperity and bulk scales [138-141, 143-149].  

For example, Luo, et al. [138] and Wang, et al. [139] proposed models incor-

porating pad asperity effects for predicting material removal rate (MRR) in CMP. 

They showed the influence of pad topography and slurry particle size distribution 

on the contact load at the wafer-pad interface, and as a consequence the MRR. 

Significant work has been done to model the effects of slurry agglomeration 

[147], chemical action [150], pad porosity [151], and hydrodynamic effects of the 

slurry [142, 152] on forces and MRR in CMP. 

At the bulk pad level, Bastawros, et al. [145] invoked the effect due to elastic 

pad bending to delineate the different contact modes at the wafer-pad interface. 

Fu and Chandra [146] considered the effect of viscoelastic pad behavior to model 

within-wafer-nonuniformity. Bajaj, et al. [153] correlated material properties of 

the polishing pad, such as shear modulus, asperity density, etc. with MRR. They 

explained the deterioration in MRR over time because of pad degradation at the 

asperity and bulk levels.  

Borucki [149] invoked pad degradation effects, such as thinning, and asperity 

wear to model MRR. While CMP pads are essentially multi-material structures 
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[20], the heterogeneous characteristics have not been considered in earlier models. 

Lu, et al. [154] considered heterogeneity of pad structure and showed via experi-

ments that multi-material composite stacked pads can depict complex dynamics. 

Stavreva, et al. [155] conducted polishing experiments using both stacked and un-

stacked pads, their results indicated that composite stacked pads offered signifi-

cant improvement in MRR and uniformity characteristics compared to un-stacked 

pads.  

 Integration of models capturing pad-asperity effects with those addressing 

pad structural non-uniformity may be necessary to delineate the physical sources 

of the spatio-temporal patterns in vibration signals from CMP and thereby facili-

tate process monitoring.  

From the process monitoring viewpoint, prior sensor-based works for CMP 

process monitoring have used vibration [112-115, 119, 121], thermal [134, 136, 

156], friction (including AE) [122, 123, 125, 129], and fluid pressure [142, 152] 

measurements. A common theme in these efforts has been to relate statistical 

features from the sensor signals, such as vibration amplitude, signal RMS, power 

spectral density (PSD), etc., with CMP process conditions – typically endpoint 

and MRR.  

For example, Carter, et al. [113] used a piezoelectric displacement sensor 

(Micro-epsilon S601-0,5) mounted on the wafer carrier shaft to implicitly meas-

ure the drag (friction) force at the wafer-pad interface, together with an infrared 

(IR) pyrometer (Mikron Infrared MI-N500) to monitor oxide CMP process. They 
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report close to 85% increase in PSD of displacement signals over a broadband 50 

− 90 Hz frequency region as downforce is increased from 14 kPa (2 psi) to 42 kPa 

(6 psi), however, the trend is not linear. They also noted continuous bands of 

active frequencies, and significant interaction among process parameters, which 

pose challenges for CMP process monitoring.  

Hetherington, et al. [114] mounted piezoelectric accelerometers (Endevco 

7259A-500) on a CMP polisher (IPEC 472) spindle head. Using a 2
3-1

 fractional 

factorial design of experiment (DoE) to vary wafer carrier (spindle) speed, platen 

speed, and downforce for polishing plasma enhanced chemical vapor deposition 

tetraethyl orthosilicate glass (PE-TOS) coated SiO2 wafers, they noted that vibra-

tion signal PSD in the 800 − 900 Hz region increases from -50 dB to -30 dB as 

downforce is varied from 2 psi (14 kPa) to 10 psi (70 kPa), decreases from -30 dB 

at 20 sec of polish to -60 dB as polishing proceeds beyond 185 sec, and remains 

unaffected by changes in platen or wafer speed. 

 Jeong, et al.’s [112] multi-sensor monitoring system for CMP uses a tethered 

piezoelectric force sensor attached to the spindle head, a Hall Effect sensor to 

monitor the current drawn by the spindle servo motor (as a consequence of polish-

ing load), and an AE sensor attached to the backside of the wafer. These sensors 

essentially record variations in friction force at the pad-wafer interface due to 

material layer transitions during polishing. They detected a transition point from 

copper to tantalum (barrier) layer during CMP, at which point the force signal 

energy over the 80 – 100 Hz range increased 8 fold, and AE RMS signals showed 
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a 3 fold increase at the material transition point. The Hall Effect sensor signal was 

found to be contaminated with extraneous sources, mainly motor impedance, and 

was therefore reticent in detecting these transitions.  

Tang, et al. [125] mounted AE sensors on two different setups for polishing 

of spin-on glass, and PE-TOS wafer films. The AE RMS data showed large spikes 

whenever they induced defects on the wafer by using contaminated slurries (e.g., 

with 1 µm size diamond particles) and polishing pad having particulate residue. 

Ganesan, et al. [126] used wavelet coefficients of AE RMS signals to track the 

process drifts, such as delamination defects, within a statistical process control 

(SPC) framework for CMP of patterned Cu wafers.  

Park, et al. [128] mounted tethered and wireless AE sensors on a CMP appa-

ratus. They conducted experiments in order to compare AE signal characteristics 

between Cu and oxide CMP process. Due to relative softness of Cu, scratches 

were observed on Cu deposited wafers when polishing conditions were main-

tained identical to those for oxide polishing. Consequently, the intensity in the 

210 – 250 kHz frequency range was approximately 3 times greater for Cu-CMP. 

Chi, et al. [124] tracked the residual errors from the Kalman filter predictions 

of piezoelectric friction sensor signals to determine the polishing endpoint based 

on a predetermined statistical threshold. Allen, et al. [157] mounted probes on the 

polishing platen that concurrently induce and sense eddy currents in the rotating 

wafer. The polishing endpoint is estimated by correlating eddy current intensity 

with wafer thickness. Meloni’s [133] endpoint detection method is based on 
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estimating the concentration of reaction species, such as hydroxyl ions, which are 

typical byproducts of the chemical action in Cu-CMP, by relating the concentra-

tion of relevant reaction species with wafer thickness.  

Kojima, et al. [121] used band limited frequencies from piezoelectric vibra-

tion sensors signals to detect endpoint in Cu-CMP. They correlated the intensity 

of vibration signals in the 1.5 – 4 kHz region with different phases of Cu layer 

thickness. Yamada, et al. [120] used an in situ dual axes strain gage probe in 

contact with the polishing pad to detect polishing endpoint in Cu-CMP. Their 

system is similar to a pin-on-disk tribometer and is designed to detect transitions 

in pad coefficient of friction. For example, the coefficient of friction decreased 

gradually with Cu removal (due to deposition of polishing byproducts on the pad) 

and reached a minimum value (approximately 30%) near the endpoint.  

A majority of the research in CMP monitoring relies on statistical, as 

opposed to physically motivated features for correlating sensor data with 

process conditions and outcomes. A PMI model that can relate the complex 

signal patterns with process mechanisms can facilitate extraction of signal fea-

tures that are sensitive to variations in CMP process, and not just to signal pat-

terns. 
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3.3 Overview of the Research Approach 

Our approach to invoke and experimentally validate a PMI model of CMP is 

summarized in Figure 3-2. The PMI model combines the mechanics at the pad 

asperity level [149, 158] with the effects of the bulk pad material [153] and ma-

chine kinematics in the form of a deterministic two degree of freedom nonlinear 

differential equation model. The model solutions are corroborated with data ac-

quired from experiments. The detailed formulation of the PMI model is docu-

mented in Appendix III. 

One of the main objectives of this chapter is to verify the model-derived 

vibration  ̈ with experimentally acquired wireless MEMS accelerometer data 

patterns.   

The experiments were conducted on our Buehler CMP machine instrumented 

with wireless MEMS accelerometers. Process parameters, such as downforce (2 

lb. (8.9 N) – 8 lb. (35.6 N)), spindle speed (30 RPM – 60 RPM), and pad condi-

tion were varied in these experiments. At each of the experimental conditions the 

PMI model parameterized with variables identical to the experimental conditions 

was validated using conventional time series techniques and frequency domain 

analysis [101], as well as, nonlinear invariants, such as recurrence quantification 

measures [159].  

Next, the sensitivity of these PMI model-directed features for in situ monitor-

ing of variations in process parameters (e.g. downforce, speed) and process condi-

tions (here, pad wear) was assessed.  
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Figure 3-2: Schematic of the proposed approach for in situ condition monitoring in CMP. 
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3.4 Experimental Validation of the PMI Model 

A Buehler (model Automet 250) metallographic polishing apparatus is in-

strumented with MEMS vibration (model ADXL 335 tri-axis accelerometer) and 

sound sensors (model ADMP 401 microphone) from Analog Devices [160]. 

Signals gathered from the accelerometer were employed for model validation. 

The accelerometer is capable of measuring vibration between ± 3g, and has a 

maximum sampling rate of 1600 Hz for each axis. The signals are sampled at ~ 

685 Hz using a XBee
 
(IEEE 802.15.4 Protocol RF module) unit with an onboard 

analog to digital converter and transmitted wirelessly to a desktop computer 

having a coupled XBee
 
receiver unit (see Ref. [160]). We mainly use the signals 

gathered from the tangential (VX) direction (X-Y plane with respect to the rotating 

spindle) vibration sensor. The entire wireless sensing platform rotates with a 

wafer carrier, and therefore travels through the error in the spindle head (Figure 

3-3 (a) and (b)).   

Cylindrical copper (free-machining C14500 series
14

) discs (wafers) of diame-

ter 40.6250 mm ± 0.1 mm (1.625 in.), and thickness ~ 12.5 mm ± 2 mm (0.5 in.) 

are polished on this apparatus [62]. Scratch free, near-optical finish with Ra ~ 5 

nm is reported in this work (Figure 3-3). Experiments were conducted in accord-

ance by varying downforce between 2 lb. (8.9 N) and 8 lb. (35. 6 N), with spindle 

speed in the range of 30 RPM – 60 RPM, and platen speed fixed at 150 RPM. We 

used a KOH-based alkaline colloidal silica slurry supplied by Eminess Technolo-

                                                 
14

 This particular copper series is 99.5% pure with tellurium (Te) as an alloying element. Te 

improves the machinability rating of copper but limits the surface finish that can be achieved. 
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gies (Ultra-Sol S17, particle size 70 nm, 10 pH) with slurry flow rate maintained 

constant at 20 ml/minute Typical CMP operations were conducted for duration of 

9 minutes in three stages each lasting 3 minutes.  

Since the initial surface roughness of the blanket copper wafers can signifi-

cantly affect the acquired CMP vibration signal patterns, the wafers used for CMP 

experimental studies were first lapped to a surface finish in the range of Ra ~ 12.5 

nm ± 2.5 nm. By tightly controlling the initial wafer surface roughness we ensure 

that the vibration signal patterns are consistent across experimental replications. 

The wafer surface is therefore considerably smoother than the pad surface and 

thereby satisfies one of the key assumptions of the GW Hertzian contact formula-

tion [158] (Eqs. (15) through (17) in Appendix III).  

Consequently, the vibrations resulting from the wafer surface morphology 

can be considered to be of negligible concern and dominated by vibrations from 

the pad asperities and bulk-pad structure 
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Figure 3-3: Blanket copper wafers after 12 minutes of CMP with 70 nm colloidal silica slurry.  

(a) Buehler polishing apparatus instrumented with wireless vibration sensors. (b): Close-up view of the 

wireless vibration sensing setup. (c) and (d): blanket copper wafers after 12 min. of CMP with 70 nm 

colloidal silica slurry. 

3.4.1 Examination of Time Portraits  

We compared the time portraits of vibration signals obtained from experi-

mental tests and the PMI model. Figure 3-4(a) shows a 6 sec long vibration signal, 

gathered at ~ 685 Hz sampling rate from CMP tests conducted at 2 lb. (8.9 N) 

downforce, 150 RPM platen speed, and 30 RPM (0.5 Hz) spindle (head) speed. 

We note a characteristic low frequency pattern recurring every 2 seconds. 

This period corresponds to the spindle head speed. This low frequency pattern is 
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replicated in the simulated vibration signal shown in Figure 3-4(b). From these 

time portraits we also note that the high amplitude segments last for ~ 1.25 sec-

onds.  

 

Figure 3-4: Representative time portraits of: (a) experimental and, (b) simulated vibration signals for 

CMP process. 

(a) 6 sec long experimental vibration signal for CMP tests conducted at 2 lb. (8.9 N) downforce and 30 

RPM (0.5 Hz) spindle speed, showing characteristic low frequency pattern occurring at 2 sec intervals 

(0.5 Hz), and high amplitude portion of the signal lasting for ~ 1.25 seconds. 

(b) The corresponding simulated vibration time series, showing presence of low frequency pattern 

occurring at 2 sec intervals, and high amplitude portion lasting for ~ 1.25 seconds. 

3.4.2 Frequency Domain Analysis of Vibration Signals 

Evident in Figure 3-1(b) are four major frequency bands. The signal content 

in the 0.5 Hz – 1 Hz range is likely a result of spindle shaft eccentricity. The two 

broadband frequency regions centered around 25 Hz and 50 Hz are found to be a 

conjoined effect from sensor ambient characteristics, electromagnetic interference 

from machine elements, and extraneous vibration from the machine structure. The 

fourth, observed in the vicinity of 120 Hz was found to be sensitive to applied 

downforce and pad wear, and can therefore be useful for process monitoring 

[160].  
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Next, the effect of varying downforce on the frequency characteristics of the 

vibration signals was studied. Representative frequency portraits of experimental 

and simulated vibration signals are shown in Figure 3-5. Here the CMP tests were 

conducted under two different downforce conditions; 2 lb. (8.9 N, low downforce) 

and 8 lb. (35.6 N, high downforce). The spindle (head) and platen speed were 

maintained at 60 RPM and 150 RPM, respectively. We observe a 50% increase in 

the energy in 115 Hz − 120 Hz region when downforce is increased from 2 lb. 

(8.9 N) to 8 lb. (35.6 N). These tests were replicated 9 times for each downforce 

setting, and a statistically significant (p-val. < 0.01) increase in spectral energy 

content of (sum of squares of FFT magnitudes) 115 Hz – 120 Hz region with 

increasing downforce was observed.  

Figure 3-5(b) and (d) show corresponding FFTs for simulation conditions im-

itating low (2 lb., 8.9 N), and high downforce (8 lb., 35.6 N) at 60 RPM spindle 

speed conditions. The model vibration data is in close agreement with the experi-

mental data for the 115 Hz − 120 Hz frequency region. The magnitude of this 

region increases by roughly 40% when down force is increased from 2 lb. (8.9 N) 

to 8 lb. (35.6 N). The increase in magnitude of the 115 Hz − 120 Hz region is 

explained based on the PMI equations, which are documented in Appendix III. 

From Eqn. (14) it is evident that an increase in downforce   , leads to an increase 

in magnitude of   ( ). Consequently,    in Eqn. (8) also increases.  

The observed increase in spectral energy, i.e., sum of squares of FFT magni-

tudes, is statistically corroborated using ANOVA (Table 3-1). We used a non-
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overlapping moving window of length 3 sec to gather spectral energy values from 

simulated and experimental signals. ~ 30 sec of data each representing low (2 lb. 

(8.9 N)) and high (8 lb. (35.6 N)) downforce conditions were analyzed (since 

there are 3 replications, we have a total of 30 measurements for each condition). 

As shown in Table 3-1, there is a significant difference in spectral energy 

contained in the 115 Hz − 120 Hz frequency band of both experimental as well as 

model-derived vibrations signals at the two downforce levels analyzed. The 

ANOVA regression R
2 

(adj.) values are close to 75% for experimental, and 90% 

for the simulated cases.  

Table 3-1: ANOVA results comparing spectral energy contained in 115 Hz − 120 Hz region at high and 

low down force conditions 

Quantifier Simulated signal Experimental signal 

Spectral energy of 115 Hz − 

120 Hz region for low down-

force (2 lb. (8.9 N)) vs. high 

downforce conditions (8 lb. 

(35.6 N)) 

Difference in  

mean: 20.77% 

p-val.: < 0.001 

 

Difference in  

mean: 54.57% 

p – val.: < 0.001 

 

Regression R
2
 

92.22%  

91.73% (adj.) 

78.24%  

76.43% (adj.) 
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Figure 3-5: Representative frequency domain fast Fourier transform (FFT) portraits. 

(a and c) experimental, and (b and d) simulated vibration signals for CMP process obtained under 

different downforce conditions (spindle speed identical, at 60 RPM, i.e., 1 Hz). 

(a) FFT portrait of a ~ 180 sec long experimental vibration signal (685 Hz sampling rate) for CMP tests 

conducted at 2 lb. (8.9 N) downforce and 60 RPM (1 Hz) spindle speed, showing the different charac-

teristic regions. Inset shows the 0 - 2 Hz region zoomed in, with peaks corresponding to spindle speed 

(1 Hz). 

(b) The corresponding simulated vibration time series, showing presence of low frequency peaks (inset) 

as in (a), and 115 Hz − 120 Hz region prominently replicated.  

(c) FFT portrait of a ~ 180 sec long experimental vibration signal for CMP tests conducted at 8 lb. (35.6 

N) downforce and 60 RPM (1 Hz) spindle speed. 115 Hz − 120 Hz region shows an increase of ~ 50% 

compared to (a). 

(d) Simulated vibration signal corresponding to (c). 115 Hz − 120 Hz region shows an increase of ~ 

40% compared to (b). 

3.4.3 Time-frequency Analysis 

 Figure 3-6 compares the time-frequency spectrogram portraits of the experi-

mental (Figure 3-6(a)) and simulated (Figure 3-6(b)) vibration signals. These 

plots were obtained by taking a short-time Fourier transform (STFT) of the time 
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portrait with an overlapping moving window of length 0.5 sec (345 data points), 

with an overlap of 0.0125 sec (8 data points). The time-evolution is shown along 

the abscissa, while the frequency in Hz is plotted along the ordinate axis. The 

highest magnitude portions of the STFT are colored red, and the lowest magni-

tude portions take a dark blue hue. Thus, the spectrogram plot allows for visuali-

zation of the signal in both time and frequency domains.  

For spectrogram plot of a vibration signal obtained from CMP tests at 2 lb. 

(8.9 N) downforce, 150 RPM platen speed, and 30 RPM spindle speed (Figure 

3-6(a)), two distinct regions can be discerned − (i) region marked in black corre-

sponds to the high amplitude portions of the time series, and (ii) region marked in 

green, corresponds to the low amplitude portions.  

We notice that the high amplitude portions (dark red hue) appear at every 2 

sec intervals corresponding to the spindle speed and last for ~ 1.25 sec (Figure 

3-4(a)). One also notes the prominent presence of significant signal components 

in 25, 50 Hz and 120 Hz bands, along with another component in 240 Hz region. 

The spectrogram for the equivalent simulated vibration signal is shown in Figure 

3-6(b). Comparison between the experimental and simulated vibration signals 

attests to the ability of the model in capturing the CMP process dynamics, both in 

the time and frequency domains.  

We compare the length of the low amplitude portions of the time series for 

different downforce conditions – 2 lb. (8.9 N) and 8 lb. (35.6 N). Visual examina-

tion of the 120 Hz region of the spectrogram plots indicated that the length of the 
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low amplitude region is shorter for the high downforce case. The interval lengths 

were determined based on a statistical clustering methods to segment signals 

based on dynamic behavior [161]. Here, we used a recurrent Dirichlet classifier 

[162] to estimate the duration of the low amplitude portions.  

Time duration information corresponding to the low amplitude portions is ex-

tracted for low (2 lb. (8.9 N)) and high downforce (8 lb. (35.6 N)) conditions 

(thirty measurements for each condition) from simulated as well as experimental 

data. The ANOVA results are summarized in Table 3-2. We note a statistically 

significant difference in the length of the low amplitude portion between low and 

high downforce conditions, with mean difference of 10.78% for the model vs. 

16.31% for experimental data. 

Table 3-2: ANOVA results comparing low amplitude portion length at high and low down force 

conditions 

Quantifier Simulated Signal Experimental signal 

Length of low amplitude 

segment for low (2 lb. (8.9 

N)) and high downforce (8 lb. 

(35.6 N)) conditions 

Difference in mean:10.78% 

p-val.: 0.003 

  

Difference in  

mean: 16.31% 

p- val.: < 0.001 

  

Regression R
2
 

15.26%  

13.69% (adj.) 

56.10%  

55.35% (adj.) 
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Figure 3-6: Representative time-Frequency domain analysis – spectrogram portraits. 

(a) experimental, and (b) simulated vibration signals for CMP process obtained under identical condi-

tions (2 lb. (8.9 N) downforce, spindle speed 30 RPM, i.e., 0.5 Hz).  

(a) Spectrogram of a ~ 30 sec long experimental vibration signal (685 Hz sampling rate) for CMP 

showing two distinct regions: (i) high energy portions corresponding to high amplitude sections in the 

overlaid time series (marked in black), and (ii) low energy portions corresponding to the low amplitude 

sections of the time series (marked in green).  

(b) The corresponding simulated vibration time series, showing similar characteristics. 

3.4.4 Comparison of Nonlinear Dynamic Quantifiers  

Next, we compared certain topological properties, such as recurrence [159] 

and space-time separation characteristics [101] of the state-space of the dynamics 

derived from experimental data vs. the PMI model. Application of a battery of 

tests suggested that the model correctly captures the dimensionality (m = 4) of the 

CMP process state space [88, 163]. The acquired vibration time series were em-

bedded in a four dimensional state-space using a delay reconstruction procedure 

[101, 164].  

The Euclidean distance of each data point in the reconstructed state space 

with every other data point is evaluated (i.e., pairwise measurements) and color 

mapped. The regions of higher magnitude are mapped with light (yellow-red) hue, 
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while points with relatively lesser pairwise Euclidean distance (i.e., neighbors in 

the state space) are marked with dark (black-blue) hue. Although the recurrence 

plot in Figure 3-7(a) for the experimental data is contaminated by extraneous 

noise, the overall characteristics (called texture in recurrence parlance) appears to 

be similar to the recurrence plot from simulated data (Figure 3-7(b)). The high 

energy regions, marked by yellow hues in the plots, seem to agree in temporal 

spacing, they occur at roughly 1 sec intervals, corresponding to the set spindle 

speed (60 RPM). Also, for both cases the high energy region persists for close to 

0.60 seconds.  

 

Figure 3-7: Representative un-thresholded recurrence plot. 

(a) experimental and (b) simulated vibration signals with CMP data under identical conditions (down-

force 2 lb, spindle speed 60 RPM) for ~ 3 sec long time series acquired at 685 Hz sampling rate. The 

yellow to red hues are considered as regions of high magnitude in time domain (i.e., high Euclidean 

distance in state-space).  

(a) High magnitude patterns are ~ 1 sec apart (~ 685 data points) which corresponds to spindle speed (1 

Hz), and lasts for ~ 0.6 sec Signal is relatively contaminated with noise, mostly emerging from 25, 50 

Hz frequency regions.  

(b) High magnitude patterns are also ~ 1 sec apart corresponding to spindle speed, and lasts for ~ 0.6 

sec Simulated signal is relatively less contaminated with noise. 

A space-time separation plot (Figure 3-8) depicts the distribution of recur-

rence behavior of the attractor topography in a manner analogous to the recur-

rence plot [101]. The plot captures for every point in the state space (denoted by 
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its time index), the neighborhood size (ε) around the point at which, a specified 

density of measure (roughly the specified fraction of points in the state space) is 

reached. In other words, we evaluate the size ε of the Euclidean ball, required to 

accommodate a fixed percentage of points in the state-space.  

For example, consider a representative space-time separation plot in Figure 

3-8(a), obtained from a CMP experiment conducted at low downforce (2 lb. (8.9 

N)) and 60 RPM spindle speed. There are eight prominent lines in the plot; each 

of the eight lines uses a specific fraction between 0.60 and 0.95 with a step incre-

ment of 0.05. The bottom most line (cyan), has a fraction specified at 0.60, while 

the second (yellow) has 0.65, and so on.  

In our case, comparison of the space-time separation plots for experimental 

(Figure 3-8(a)), and simulated (Figure 3-8(b)) vibration patterns, shows a close 

corroboration at various specified fractions. For example, we notice the recurrent 

periodic behavior for the 0.95 fraction (top most line, cyan) where the distance 

between successive periods is ~ 4 time steps in state-space. Similar corroborating 

patterns can be discerned for fraction size down to 0.75 (5
th

 line from top, black 

line).  
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Figure 3-8: Representative space time separation plots. 

 (a) experimental, and (b) simulated vibration signals with CMP data under identical conditions 

(downforce 2 lb, spindle speed 60 RPM) for ~ 10 sec long time series acquired at 685 Hz sampling rate.  

Next, we quantitatively compared the characteristics of the experimental and 

simulated vibration signal dynamics using features obtained from the recurrence 

plot [159]. Consider the un-thresholded recurrence plot shown in Figure 3-7, the 

Euclidian distance measured from these plots is now converted into a matrix of 

ones and zeros applying a Heaviside step function, i.e., if the Euclidean measure-

ment is greater than a set fraction it is assigned a value 1, and 0 otherwise.  

The appropriate threshold (neighborhood size) is selected based on the space-

time separation plot (Figure 3-8). We selected a fraction of 0.75 (fifth line from 

top, black line), and note the corresponding average neighborhood size (ε, along 

the ordinate axis) for both cases. For the experimental case the neighborhood size, 

ε = 0.03, and for simulation ε = 0.04 are selected. These neighborhood sizes are 

used as the thresholding for the Heaviside step function.  

A number of recurrence quantifiers discussed in Table 3-3 were extracted 

from the thresholded recurrence plot as suggested by Marwan, et al. [159]. First, 



 

146 

 

~ 7.25 sec long (5000 data points) non-overlapping sliding window is applied to 

the vibration signals obtained from both experiment and simulations. Recurrence 

measures were then extracted for each window. We apply this moving window 5 

times.  

The results are tabulated in Table 3-3. We observe from Table 3-3 that for 9 

of the total 14 recurrence measures, the error between the experimental and simu-

lated case is < 30%. This is noteworthy considering the noise content in the exper-

imental data, and that the model is purely deterministic.  

Table 3-3: Recurrence quantifiers for experimental and simulated signal for low downforce (2 lb. (8.9 

N)), 60 RPM spindle speed, and 150 RPM platen speed CMP condition. There are total of five meas-

urements (windows) for each recurrence measure, each totaling 5000 data points (~ 7 sec).  

Recurrence Measure 
From experiment From simulation 

Mean Std. dev Mean Std. dev 

Recurrence Rate 0.40 0.026 0 .30 0.039 

Determinism 0.62 0.009 0.65 0.030 

Determinism/Return Rate 1.54 0.099 2.17 0.197 

Lamilarity 0.81 0.007 0.79 0.023 

Lamilarity/Determinism 1.30 0.009 1.21 0.020 

Maximal Diagonal Line Length 562 76.895 632 18.575 

Mean Diagonal Line Length 23 0.870 55 9.518 

Entropy of Diagonal Lengths 3.67 0.048 3.55 0.048 

Divergence 0.001 0.0002 0.001 < 0.0001 

Max Vertical Line Length 417 12.774 595 24.212 

Trapping Time 6.43 0.272 13.02 1.573 

Entropy of Vertical Line Lengths 1.76 0.041 1.70 0.062 

Recurrence Times First Type 2.43 0.153 3.19 0.452 

Recurrence Times Second Type 7.83 0.473 11.80 0.618 
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3.5 Condition Monitoring of CMP using PMI Model  

The developed PMI model was shown to capture some of the salient dynam-

ics of the CMP process. We now illustrate the application of the PMI model for 

condition monitoring applications in CMP. Apart from using spectral features, we 

used various recurrence measures gathered from the signal, as discussed in Sec. 

3.4 (Table 3-3) to monitor the following three types of variations in CMP process:  

(i) downforce is varied from 2 lb. (8.9 N) to 8 lb. (35.6 N),  

(ii) polishing pad gradually deteriorates, and glazed portions become ap-

parent, and  

(iii) both downforce and pad condition vary. 

3.5.1 Effect of Varying Downforce 

We used experimental and simulated vibration data for two downforce condi-

tions, 2 lb. (8.9 N, low downforce), and 8 lb. (35.6 N, high downforce). For each 

downforce condition 9 data sets, each representing 3 sec of vibration signals (30 

sec total) are considered. From these data sets,16 different quantifiers including 

14 recurrence measures, spectral energy content in 115Hz – 120 Hz range, and 

duration of low amplitude portions (see Sec. 3.4) were used as candidate features. 

First, a best subset regression analysis was conducted to determine the subset 

of these quantifiers, which can differentiate between varying downforce condi-

tions. Then, conventional linear regression models are constructed with the select-

ed candidate features (identified from the best subset regression step) regressed on 
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downforce (dependent variable). We can thereby identify the common parsimoni-

ous feature set capable of explaining the process variation (due to varying down-

force) for experimental and simulated signals.  

The regression results are briefly summarized in Table 3-4. Compared to cas-

es where only the signal spectral and time features were used (Table 3-1 and 

Table 3-2 of Sec. 3.4), a significant improvement in predictability on using recur-

rence-based features is observed. Furthermore, the simulated signals seem to 

capture over 95% (R
2
) of the process variation, and can provide a means to antici-

pate process anomalies. 

3.5.2 Effect of Pad Wear 

The effect of pad wear has been experimentally studied by Bajaj, et al. [153]. 

They observed the evolution of morphology of polyurethane polishing pads to 

explain the decay in material removal rate with polishing over time. They ob-

served blockage of pad pores in worn pads, which subsequently hinders slurry 

flow to wafer-pad interface. Byrne, et al. [165] observed that the polishing pad 

undergoes thinning overtime, with a worn pad being ~ 10% thinner than a fresh 

pad. They also note that while worn IC 1000 pads are more compliant than a fresh 

pad with the elastic modulus decreasing by ~ 13%, the pad hardness (shore D) for 

worn pad is nearly 3% higher.  

Lu, et al. [166] observed significant changes in surface roughness, pore ge-

ometry and spectral properties of the polishing pad due to wear. In comparison to 

a fresh pad, the average surface roughness (Ra) of worn pads decreased to ~ 6.5 
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µm from ~ 8.5 µm, the pore geometry became more elongated along the direction 

of rotation with use, and worn pads showed almost two fold increase in infrared 

absorbance magnitude.  

Models proposed by Wang, et al. [139, 140] and Borucki [149] incorporated 

the gradual degradation observed in the pad asperity distribution (mean and 

standard deviation of asperity heights decrease) to explain the decay in removal 

rate with time. The degradation of the pad asperity distribution affects the wafer-

pad separation distance (  ( ) in Eqn. (18) of Appendix III). For worn pads 

  ( ) reduces in comparison to fresh pads. Borucki [149] estimated a decrease of 

close to 2 µm and 8 µm in    after 8 minutes and 45 minutes of polish, respec-

tively.  

Table 3-4: Regression analysis for detection of variation in downforce in CMP 

Factor 
Statistical significance (p-val.) 

Simulation Experimental 

Spectral energy of 115 Hz − 120 Hz region 0.00 0.0350 

Entropy of vertical line lengths 0.002 0.282 

Trapping time 0.012 0.0380 

Segment length 0.634 0.0220 

Regression R
2 97.5%, 96.8% 

(adj.) 

91.4% 

88.7% (adj.) 

Lapped copper wafers (Ra ~ 10 nm − 15 nm) were polished on the CMP set-

up in 3 minutes intervals with silica slurry. The polishing conditions were as 

follows: platen speed 250 RPM, head speed 60 RPM, and downforce 4 lb. (17.83 

N) The platen speed is deliberately increased to this high value in order to accel-

erate pad wear. Such high platen speed is not advisable for long runs, since we 

observed a significant vibration of the machine rests and workbench. These extra-
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neous vibrations manifested in a dominant peak at around 75 Hz in the frequency 

spectrum (Figure 3-10).  

After 3 minutes of CMP the average wafer Ra improved to nearly 7 nm. Sub-

sequently, pad wear was accelerated by soaking the pad in slurry for 45 minutes, 

followed by drying in air. By soaking and subsequent drying of the pad, the silica 

particles in the slurry tend to crystallize in the gaps between the asperities (pad 

glazing) [153].  

This constrains the flow of slurry at the wafer pad interface, and deprives the 

wafer of adequate slurry. Secondly, by employing high relative velocity the hard-

ened asperities (due to pad glazing) are easily sheared off (pad wear). As a conse-

quence, we observed sheared pad material residue in the slurry reservoir.  

 The CMP process is carried out in 4 stages of 3 minutes each with the pad 

soaked and dried in the interim. After the end of 12 minutes of CMP, significant 

glazing of the polishing pad is observed (Figure 3-9(a)). In the same interval, 

prominent scratches were seen on the wafer (Figure 3-9(b)), and Ra increased to 

approx. 22 nm.  

The FFT of the tangential direction (VX) vibration sensor obtained after 3 

minutes, and at the end of 12 minutes (when glazing of pad is observed) are com-

pared in Figure 3-10(a) and (b) respectively. The magnitude in the 115 Hz − 120 

Hz region increases by nearly 30 – 40% at the end of 12 minutes (Figure 3-10(b)) 

of CMP, indicating the effect of pad deterioration on vibration data.  
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To emulate the effect of pad wear in the PMI model, the static separation dis-

tance (  ( ) in Eqn.(18), Appendix III) was reduced by 10% from ~ 36 µm for 

the unused pad to ~ 33 µm for a moderately worn pad case [149, 165]. The results 

from the simulation are shown in Figure 3-11. We note an increase of 20 – 30% in 

magnitude of FFT for the worn pad case (Figure 3-11(b)) compared to fresh pad 

(Figure 3-11(a)).  

Next, we proceeded to construct a linear regression model for data sets repre-

senting experimental, as well as, simulated vibration patterns. The experimental 

vibration patterns obtained from the first 3 minutes of CMP represent the fresh 

pad case, whereas the signals obtained between 9 to 12 minutes was chosen to 

represent the worn pad case. For each of the two representative data sets, we 

extracted 9 non-overlapping segments each measuring 20 seconds. As in the 

previous case, we computed 16 different quantifiers for each of these segments. 

Similar steps were taken with simulated vibration patterns from the PMI model. 

 We then combined the simulated and experimental data sets in order to com-

pensate for the sparseness of available experimental data (see for example, Ref. 

[167]). Thus, we have 36 different data points representing fresh and worn pad 

cases (18 data points each).  

We used integer indicator variables (1 and 2 for fresh pad vs. worn pad case, 

respectively) to differentiate between pad conditions. Similar to the previous case, 

a best subset regression analysis was first conducted to determine the subset of the 

candidate features which can differentiate between varying pad conditions. Then, 
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conventional linear regression models are constructed with these selected candi-

date features regressed on pad condition. The regression results are shown in 

Table 3-5. 

Close to 75% of the variation in experimental vibration signals as a result of 

pad wear can be captured using only 6 features (30 degrees of freedom for residu-

al error). The PMI model can thus help identify subtle drifts in process conditions 

from pad wear and can also compensate for sparse experimental data. This can 

enable early detection of incipient process anomalies with a parsimonious data set 

so that timely corrective action can be applied to prevent yield losses.  

Table 3-5: Regression analysis for detection of pad wear in CMP 

Factor Statistical significance (p-val.) 

Spectral energy of 115 Hz − 120 Hz region  0.688 

Determinism 0.00 

Lamilarity 0.00 

Maximum diagonal line length 0.00 

Maximum vertical line length 0.00 

Recurrence times first type 0.00 

Regression R
2 77.1% 

72.3% (adj.) 

3.5.3 Effect of Changing Downforce and Pad Condition 

Anomaly causing conditions in CMP are oftentimes confounded, i.e., pad 

wear can occur at both high and low downforce conditions. In order to ascertain 

whether the PMI model can differentiate between such confounded states, we 

consider the four cases resulting from the combination of (i) low (2lb., 8.9 N) and 

high down force (8 lb., 35.6 N), and (ii) fresh pad vs. worn pad.  
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The four different process conditions were coded with integer indicator vari-

ables. For example, the ordinal 1 representing low down force – no pad wear, 2 

high downforce – no pad wear, and so on. As before, we extracted 8 non-

overlapping segments from each condition, giving a total of 32 (= 8 × 4) data 

points. We then computed the candidate features for each segment. Thereafter, the 

simulated and experimental data sets were combined (64 total data sets) and the 

candidate features regressed on integer coded process states.  

Five features, as listed in Table 3-6, are found to be significant, with R
2
 in the 

vicinity of 88%. We also note that the set of statistically significant features iden-

tified from regression analysis for each of the three cases illustrated in this section 

are largely unique (Table 3-4 − Table 3-6). This uniqueness of feature sets sensi-

tive to different types of anomalies mitigates the possibility of confounding. For 

example, while spectral energy in 120 Hz range undergoes similar variation with 

increase in downforce as well as pad wear, the recurrence feature lamilarity is 

found to be significant for the pad wear case (Sec. 3.5.2), but not a relevant pre-

dictor of downforce (Sec. 3.5.1). In other words, based on the behavior of differ-

ent features sets, a robust inference can be made regarding the type of anomaly.  

Furthermore, by using the vibration patterns from the PMI model different 

types of anomalous conditions can be simulated offline. Consequently, the statis-

tical feature set indicating the onset of such anomalies can be anticipated a priori 

from the simulated data. Therefore, instead of merely tracking a fixed set of statis-

tical features, some of which may not necessarily be sensitive to process varia-
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tions; the PMI model can be used as a means to select the most cogent features 

based on understanding the process dynamics.  

Table 3-6: Regression analysis combining both simulated and experimental data 

Factor Statistical significance (p-val.) 

Spectral energy of 115 Hz − 120 Hz region  0.019 

Recurrence rate 0.000 

Mean diagonal line length 0.004 

Divergence 0.000 

Trapping time 0.004 

Regression R
2 88.8% 

87.8% (adj.) 

 

 
Figure 3-9: (a) Glazed pad after 12 minutes of CMP, and (b) Scratches on wafer observed at the end of 

12 minutes of CMP. 

 

Figure 3-10: FFT of experimental vibration data obtained for (a) new pad vs. (b) 12 minutes used pad 

(glazed). 
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Figure 3-11: FFT of simulated vibration data obtained for: (a) new pad vs. (b) used pad. 

3.6 Summary 

We have forwarded a deterministic multi-scale process-machine interaction 

(PMI) model of CMP in the form of a two degree of freedom differential equa-

tion, which in combination with experimentally acquired vibration signals can 

help identify onset of process anomalies. Specific contributions of this work are 

as follows: 

1. A deterministic two degree of freedom nonlinear differential equation pro-

cess-machine interaction (PMI) model for CMP was formulated encompassing 

the responses at three different levels, namely: (i) pad-asperity, (ii) bulk pad 

structure, and (iii) machine kinematics levels. The model was validated on a 

CMP apparatus instrumented with multi-channel wireless vibration sensors. 

Despite being deterministic, the PMI model simulated vibration patterns 

closely emulated (R
2
 ~ 90% for some cases) the signals obtained from CMP 

tests. Remarkably, apart from capturing the spectral aspects of the measured 
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vibration signals, the PMI model solutions was also able to replicate complex 

time-frequency and nonlinear topographical aspects of experimentally ac-

quired vibration signals.  

2. The PMI model solutions were used off-line to simulate different types of 

process drifts. The resulting simulated signal patterns were analyzed apriori 

for identifying the appropriate statistical feature set responsive to process var-

iations. The features so extracted are closely related to physical changes in the 

process as opposed to mere signal statistics. Consequently, signal features 

identified based on PMI simulated signal patterns were observed to capture 

the process variation and resulting anomalies with R
2 

in the range of 80 − 

90%. 

3. The PMI model solutions, due to their close dynamic similarity with measured 

vibration signals, can augment the sparse experimental data typical to CMP. 

For example, in case of process defects such as pad wear, availability of prior 

observations can be rare or at best evanescent. Under such conditions, the fea-

tures extracted from the PMI simulated signals can be used as surrogates to 

experimental data.  

It may also be noted that for reasons of tractability, the CMP experiments in 

this work were conducted on blanket copper (dia. 40.625 mm, thickness 12.5 mm) 

wafers, whereas the wafers used in industry are both significantly larger and 

thinner (dia. 300 mm, thickness < 1 mm), and composed of multi-material phases. 
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The effect of these different wafer dimensions on the vibration signal patterns 

may be non-negligible.  

For example, we have observed that the raw magnitude of vibration signals in 

the 115 − 120 Hz region is close to 60-70% lower when 25 mm (1 in.) dia. copper 

wafers were used for preliminary tests. With larger diameter wafers used in indus-

try, we contend that the vibration signal patterns will be dependent on the radial 

location of the sensors. In order to isolate and thereby model the effect of sensor 

location, several sensors can be mounted at different radial locations on the wafer 

carrier in close proximity to the substrate. We are currently investigating Bayesi-

an-based analytical approaches for data fusion from multiple sensors.  

Also, since industry uses a multi-step CMP approach for copper intercon-

nects, it is reasonable to anticipate a change in the vibration signal patterns as the 

process evolves from blanket copper removal phase to copper clearing and barrier 

removal stages. It is therefore expected that additional experimental efforts may 

be necessary towards extending the concepts presented in this work to an industri-

al semiconductor production scenario.  

These practical challenges notwithstanding, we contend that the overall ap-

proach of modeling the various multi-scale PMI phenomena in CMP and subse-

quently integrating the model with observed signal patterns, as presented in this 

work, can be valuable from a quality assurance perspective.                   

  



 

158 

 

 4 A Graph Theoretic Approach for Quantifi-

cation of Ultraprecision Surface Morphol-

ogy 

e present an algebraic graph theoretic approach for quantification of 

nanoscale ultraprecision surface morphology. Two complementary 

methods to realize graph theoretic representation and subsequent quantification of 

nanoscale surface morphology variations are reported.  

Investigations with CMP processed copper wafers suggest that the graph-

based topological invariant Fiedler number (λ2) was able to quantify and track 

variations in surface morphology more effectively compared to other quantifiers 

reported in literature. Using this approach, heterogeneous, multi-scaled aspects of 

nano-surface morphology can be captured from optical micrographs as opposed to 

reticent profile mapping techniques, and can therefore be valuable for in situ real-

time assessment of surface quality. 

Goal 
Develop an approach that can quantify ultraprecision surface morphologies in a 

rapid and parsimonious manner. 

 

  

W 
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4.1 Motivation 

“But there is no easy way of predicting how summits join together to form ridges, 

or how valleys link up. In geographical terms, it is as if we knew the average area 

of a valley, but had no way of finding the easiest pass to the next valley, or the 

most direct route through a range of hills by means of interconnecting valleys.” 

 – T.R. Thomas, "Trends in surface roughness," International Journal of Machine 

Tools and Manufacture, (38)5–6, pp. 405-411, 1998. 

Modern semiconductor microelectronics consist of nanoscale dielectric/metal 

interconnect layers [20, 21]. The dimensional and topographical integrity of these 

interconnect layers is a critical determinant of device performance, and is there-

fore tightly controlled during fabrication [20]. In semiconductor manufacturing, 

layer topography specifications are met using multi-step chemical mechanical 

planarization (CMP) process [19]. Unimpeded CMP induced deviations in inter-

connect layer topography dimensions can compromise device functionality and 

cause high yield loss [19-21]. Hence, monitoring and characterization of CMP 

processed surfaces is vital for quality assurance of semiconductor devices [19, 20, 

168]. In this context, effective wafer metrology can help prevent propagation of 

catastrophic defects over long production runs, and thereby minimize yield loss. 

The semiconductor industry has prioritized development of responsive sur-

face characterization approaches, and spends an estimated $9 billion per annum 

on metrology related operations [24]. Several lacunae have been identified with 

current characterization approaches, such as atomic force microscopy (AFM), X-

ray fluorescence, and mass spectrometry methods. These approaches are noted to 

be reticent, expensive, and destructive [26]. Some of the surface metrology related 
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challenges and recommendations motivated by Bukkapatnam, et al. are used as a 

segue for this chapter [27].  

Challenges in Nanomanufacturing ([27]) 

Tools currently used in nanotechnology research labs offer atomic-level resolution 

for characterizing nanoscale surfaces but are barely adequate to meet the require-

ments of high-volume nanomanufacturing. For example, an Atomic Force Micro-

scope (AFM) gives nearly atomic-level surface resolution, albeit at a very slow 

rate; it would be impossible to use AFM to characterize surfaces in commercial-

scale high-rate operations. 

Recommendations for Nanomanufacturing Research ([27]) 

Instrumentation and analytical tools for comprehensive characterization of 

nanomaterials for on-line process control should be developed and characteris-

tics required for specific applications defined. 

 

Experts have noted that statistical quantifiers, such as arithmetic mean rough-

ness (Ra, Sa), root mean square roughness (Rq, Sq), etc., used for quantification 

of conventional surface morphologies are not amenable at the nanoscale [6, 8, 9]. 

For example, consider Figure 4-1, which shows morphological evolutions of a 

copper (Cu) wafer surface over CMP processing intervals. The surface morpholo-

gy changes are captured using a profile scanning laser interferometer (Figure 

4-1(a) and (b)) and optical microscope (Figure 4-1(c) and (d)).  
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The surface quality of the Cu wafer visibly improved within a short CMP 

processing interval of 3 minutes, and the ridged texture of the lapped surface 

(Figure 4-1(a) and (c)) was polished to a distinctly smoother topography with 

near-specular surface finish with CMP (Figure 4-1(b) and (d)). However, the 

measured Sa values (Figure 4-1(e), and similar surface statistics such as Sq) failed 

to capture these visibly prominent changes. This intractability in quantification of 

surface morphology variations in Cu-CMP using conventional statistical parame-

ters (such as Sa and Sq) has motivated us to pursue an alternative approach (to 

surface characterization). 

Our approach aims to overcome these lacunae by invoking graph theoretic 

quantification of surface morphology using optical micrographs. This can be 

advantageous from an application standpoint, because, although optical microsco-

py is insensitive in detecting surface chemistry and sub-surface related defects 

(e.g., surface corrosion, sub-surface damage, and chemical etching), it is signifi-

cantly faster compared to profile mapping (such as AFM, and laser interferome-

try) techniques [33, 169]. In industrial settings, semiconductor wafers (> 200 mm. 

dia.) are typically scanned (in-line) in less than 30 seconds using optical tech-

niques. Additionally, optical inspection approaches are easier to integrate in-line, 

non-contact, and non-destructive [26, 170].  

It is interesting to note that Thomas [29] recognized the need for a connectivi-

ty based surface characterization approach, since it can be a better exposition of 

the overall topography in terms of the relationship among peaks and valleys on a 
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surface.  Our approach aims to provide such a connectivity-based perspective for 

quantification of nanoscale surface morphology using graph theoretic methods.  

The rest of this chapter is structured as follows: the challenges for surface 

metrology, particularly at the nanoscale, are briefly reviewed in Sec. 4.2; the 

research approach summarized in Sec. 4.3;  mathematics of graph theoretic repre-

sentation for surface morphology explained in Sec. 4.4; followed by case studies 

demonstrating the potential of graph theoretic invariants for quantifying surface 

morphology variations in Sec. 4.5; and further verifications with near-optical 

CMP finished copper wafer surface measurements are provided in Sec. 4.6. 
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Figure 4-1: Surface morphology evolution of CMP processed Cu wafer. 

(a): The surface profile obtained using a laser interferometer of a lapped wafer surface prior to CMP. 

(b): The surface profile obtained after 3 minutes of CMP. (c) – (d): The optical micrographs corre-

sponding to surface profiles in (a) and (b) respectively. (e): The mean surface roughness (Ra) obtained 

across 3 intervals of CMP for two replications.  

4.2 Challenges for Surface Metrology at the Nanoscale 

Surface metrology of nanomanufactured semiconductor microelectronic 

components is challenging due to several factors, namely:  

 Reticence of measurement, which constrains in-line use, for example, 

Jiang [6] notes that AFM-based topography mapping of a 2 mm diameter 

shell can take more than 2 hours. 

 Lack of quantification approaches for complex surfaces, such as re-

entrant surfaces, freeform splines, nanoscale ridged surfaces, etc., which rel-

egates assessment of such morphologies to qualitative criteria [6, 9, 26, 56].  
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 Effect of instrument parameters, such as spatial resolution of the stylus 

(contact profilometers and AFM), scan length, sampling interval, digitizing 

filters, errors from transduction, drift, hysteresis, etc. [6, 9, 30]. For exam-

ple, Poon and Bhushan [30] have recorded a difference of as much as 40% 

in surface measurement statistics (e.g., Ra) due to instrument factors.  

 Scale dependency, which restricts measurements to small local areas, and 

inability to characterize global morphology [6], such as surface texture, 

with popular statistical quantifiers used for assessment of surface quality, 

e.g., arithmetic average (Ra, Sa) roughness, maximum peak-valley height 

(Rt, Sz), and root mean square (Rq,Sq) roughness.  

 The last four decades have seen profusion in parameters available (pa-

rameter rash) for surface characterization [8, 54]. Several quantifiers have 

been standardized in an attempt to incorporate aspects of functional behav-

ior of engineering components; for example, bearing ratio parameters for as-

sessing seal integrity [8]. An unintended consequence of this profusion in 

parameters is the lack of coherence in surface metrology practice across in-

dustry [29, 171].  

 Scale independent techniques such as fractal dimensions have been investigat-

ed in order to overcome some of these shortcomings [172-174]. Surface char-

acterization using fractal dimensions involves mapping a statistic of the sur-

face at various sampling lengths [173]. The gradient of the measured statistic 

over the sampling length (in logarithmic scale) is the evaluated fractal dimen-
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sion. A unifying statistical quantifier for measurement of fractal dimen-

sions has not been suggested thus far.  

Moreover, fractal dimensions can be ambiguous, the difference be-

tween rough and polished surfaces is less than a few tenths [173, 175]. 

Whitehouse [176] notes that for parts manufactured using abrasive processes 

(such as grinding and polishing), the fractal dimension could be an artifact 

resulting from the stochastic nature of material removal (in abrasive finishing) 

[3].  

Recently, multi-resolution wavelet-based approaches for characterizing sur-

faces at different length scales have been proposed [8, 55].  However, these newer 

methods require profile-based mapping (which is an off-line process), and exten-

sive post-measurement analysis (which can be computationally demanding). 

Graphic X summarizes these challenges. 

Challenges 

1. Ultraprecision surfaces depict heterogeneous multi-scale aspects, which are 

not captured using traditional statistical quantifiers.  

2. Traditional statistical parameters are not evocative of the underlying morpho-

logical relationships.  

3. Characterization approaches, such as AFM, SEM, and laser interferometry are 

reticent, restricted to small areas, destructive, and expensive.  
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Graphic X: Challenges in surface metrology with currently available approaches. 
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4.3 Summary of the Research Approach 

 

Figure 4-2: Summary of the research approach 

Figure 4-2 summarizes the graph theoretic approach for nanoscale surface 

morphology quantification. Two methods are used for graph-based representation 

of surfaces from optical micrographs of the surface.  

The first, called the ε neighborhood approach (Sec. 4.4.3), involves convert-

ing the gray scale micrographs into binary images using an edge detection tech-

nique (e.g., Canny filter) [177]. We note that the ε neighborhood representation is 

not loss-less, because it is contingent on (heuristically determined) filter parame-

ters, and hence it is applied for cases where quantification of surface defects, such 

as nano-scratches is more pertinent.  

Therefore, a second graph representation method, called edge weighted ap-

proach (Sec. 4.4.4) is also developed. This approach uses (gray scale) micrograph 
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images without the need for a filtering step and thus preserves surface texture 

information. Consequentially, the edge weighted graph representation is more 

suitable for assessing changes in surface texture.  

We demonstrate the graph theoretic approach with artificially generated sur-

faces (Sec. 4.5). Using simulated surfaces we show that the graph topological 

theoretic invariant Fiedler number (λ2) can be useful for quantifying different 

types of surface characteristics, and can overcome some of the drawbacks associ-

ated with traditional measurements. For reasons of completeness, we also investi-

gate certain limiting scenarios (Sec. 4.5.6) where the Fiedler number may fail to 

capture surface morphology variations.   

We validate the approach in Sec. 4.6 with CMP processed Cu wafers, where 

the graph-based topological invariant Fiedler number [178-180] serves as a dis-

criminant for surface morphology variations. Subsequently, the trends observed in 

Fiedler number (λ2) over different CMP intervals are verified against locally 

measured surface parameters, such as Sa and Sq (Sec. 4.6). The Fiedler number 

correlates with high fidelity when compared to conventional surface statistics; the 

correlation coefficient (ρ) estimated between ~ 80 – 99 %.  

We note, these conventional measurements are scale-limited (they are meas-

ured over specific scales for verification), and require time intensive profile map-

ping and post-processing. The mathematical concepts for realizing a graph theo-

retic representation of surface morphology from optical micrographs are elucidat-

ed in Sec. 4.4.  
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4.4 Graph-theoretic Representation of Surface Morphology 

Variations 

As noted previously (in Sec. 4.2), our current understanding of surface mor-

phology appears to be restricted by the nature of statistics used for quantification 

[6]. Given the summits and valleys on a surface, we can estimate their statistical 

characteristics (Sa, Sq), higher moments of their probability distribution (skew-

ness Ssk, kurtosis Sku, etc.), and spatial frequency (power spectral density) [8]. 

However, as it was recognized by Thomas [29], a description of the surface mor-

phology in terms of the connectedness of summits and valleys is not forthcoming 

from these quantifiers, particularly (quoting Thomas) “…how summits can join 

together to form ridges, or how valleys link up. (It) is as if we know the average 

area of a valley, but had no way of finding the easiest pass to the next valley…” 

[29].  

The essence of Thomas’ argument can be rephrased in the following manner. 

Suppose we have complete areal measurements for a surface  , i.e., we have 

mapped the peaks and valleys of the surface (e.g., using a laser interferometer). 

How should we proceed to quantify the surface from these measurements? The 

most accessible method would be to extract statistical moments, such as arithme-

tic mean (Sa), standard deviation (Sq), skewness  (Ssq), kurtosis (Sku). However, 

by characterizing the surface using these global distribution parameters, we have 

occluded how the hills and valleys are connected.  
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In other words, the surface is not a single probability distribution, but a mix-

ture of several distributions, i.e., the surface   is a convolution of several features 

   each occurring over a subspace    (   ), and having a probability distribution 

  . With this notation, we can mathematically represent   in the following form, 

  ∑   |  (   )

 

   

        

  {   }, 

  |  (   )   . 

(4-1) 

The above equations interpret the surface   as a stationary random field. By 

characterizing the mixture distribution   with global distribution parameters, such 

as mean (Sa), standard deviation (Sq), etc., we implicitly assume that the random 

field   (i.e., the surface) has only one underlying distribution – one of the main 

impediments of statistical metrology, as pointed out by Thomas [29]. In contrast, 

the graph theoretic approach describes the surface morphology in terms of the 

connectedness among different features of the surface over varying scales. Using 

a graph-based approach allows us not only to represent the surface in terms of 

connectivity, but also enables quantification of topological characteristics (of the 

surface).  

The main contribution of this work is in the graph theoretic representation 

and subsequent quantification of surfaces, based on treating such surfaces as a 

stationary mixture of random fields consisting of various heterogeneous features 

(e.g., pits, ridges, scratches; See Eqn. (4-1)) which allows topological invariants, 
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such as Fiedler number (λ2) to effectively quantify and track variations in surface 

morphology. 

The method has the following two key phases: 

i. Representation of a surface as a network graph. 

ii. Quantification of the topological aspects of the network graph (ob-

tained for a surface). 

The realization of these two aspects is formalized mathematically in the forthcom-

ing section. 

4.4.1 Representation of Surface Morphology as a Network Graph 

 
Figure 4-3: Illustration of a network graph with dots representing nodes (vertices) and lines as edges. 

We now describe the method used to transform an image ( ) of a surface into 

a graph network (  (   )), i.e., achieve a mapping,      (   ).  

Let      be the matrix representation of an optical micrograph (image taken 

with an optical microscope) of the surface acquired with a resolution of     

pixels. The objective is to represent this surface as a network graph. For this 
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purpose, each row of   is considered to be the vertex (or node) of the undirected 

graph   (   ) with nodes (vertices)   and edges   [178-181] (an undirected 

graph is that in which the edges are bereft of any directional constraint, i.e., an 

edge is a two-way street). For example, in Figure 4-3 each dot represents a node 

and each line an edge, with movement possible in either direction along an edge. 

From the   rows of   we construct vectors  ( ),   {      } that are essential-

ly row vectors of image pixel values
15

.  

We compute pairwise comparison metrics     between  ( ) using a kernel 

function  , and subsequently apply a threshold function   that converts     into 

binary form. The above steps determine the topology of edge connections of the 

network   (   ) and are mathematically expressed in the following manner,  

     (     )        ;  (4-2) 

 

      (   ),     {   }. (4-3) 

Using     we construct the similarity matrix   (also called the adjacency matrix 

in graph theoretic context), 

  [   ]. (4-4) 

Since the graph is undirected,   is a (binary) symmetric matrix [182]. It en-

shrines the edge connections between nodes, i.e., if an edge exists between any 

two nodes   and   then     = 1, else     = 0. Essentially, the matrix   represents 

the pruned graph, such that only nodes satisfying the threshold condition set in 

                                                 
15

 Row-wise pixel comparisons are done in order to minimize computation load. Individual pixel 

comparisons will require 
  

 
 

  

 
 evaluations, only  

  

 
 computations are required with row-wise 

comparisons. Similar results are obtained using column vectors.  
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Eqn. (4-3) are connected with an edge. We note that these row-wise (column-

wise) pixel comparisons are critical for facilitating analysis of homogeneous 

ultraprecision surfaces as they allow inclusion of features up to a length of   

pixels (~ 200 µm when examining the CMP images in Sec. 4.6) as opposed to 

only local (< 0.20 µm, ~ 1 pixel) scales. Consequently, the computation load 

reduces from a bi-quadratic  (     ) to quadratic  (  ) complexity. Fur-

thermore, if individual pixel comparisons were to be computed, the resulting 

graph representation would then be replete with several nodes and edges, and 

consequently many of the large-scale variations in surface morphology would 

then be occluded.  

Thus, by comparing the pixel rows (columns) of a surface, as opposed to in-

dividual pixels, we accomplish two objectives: 

i. Measurements are over a global scale, as opposed to small local are-

as. 

ii.  Significant reduction in computation effort. 

Thus, the graph   (   ) is a convolution of various morphological aspects 

of the surface, such as nano-scratches, pits, and ridges. As a result, the graph   

captures the multi-scale aspects of surface morphology without the need to sift 

through different length (or areal) scales as typically required in wavelet decom-

position and fractal mapping. At the end of this phase we have transformed the 

image   into a graph   (   ), i.e.,      (   ). Therefore, (strictly for the 
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purpose of analogy – we have not proved this duality claim mathematically) 

  (   ) can be considered a dual form of   .  

4.4.2 Quantification of Graph Network Topology 

Once a surface has been represented in a graph theoretic form, we now pro-

ceed to quantify the topology of the resulting network   (   ). For this pur-

pose, we first compute the diagonal degree matrix  . The degree    of a node   is 

a count of the number of edges that are incident upon (connected to) that node. An 

isolated node will have degree 0. The degree    for node   is expressed as, 

   ∑    

   

   

         (4-5) 

for the graph  , we formulate the degree   as a diagonal matrix, 

  [

      
      
      

], 
(4-6) 

additionally, the volume   of the graph is given by, 

 ( )    ( ), (4-7) 

with the degree     and similarity matrix  , we define the combinatorial 

Laplacian matrix [178, 180, 181, 183] as follows, 

     , (4-8) 

using the combinatorial Laplacian   and degree   matrices, the normal-

ized Laplacian   [179, 180] is expressed as,  

    
 

 

      
 

 

 , (4-9) 
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with the eigen spectrum for   and   computed, 

   μ   

   λ  . 

(4-10) 

We note,   and   have the following key properties: 

i. They are singular, i.e.,| |    | |   , and diagonally dominant, i.e., 

             . This implies, they do not have full rank and are not in-

vertible. 

ii. They are symmetric M matrices (off-diagonal elements are negative or ze-

ro,            ), also called Stieltjes matrices. 

iii. They are positive semi-definite, i.e.,      . 

iv. Therefore, their eigenvalues μ  λ  are non-negative [179, 180], 

   μ  μ  μ   μ  

  λ  λ  λ   λ . 

(4-11) 

Additionally, it has been shown [184, 185] that the eigenvalues of      interlace, 

  λ  μ  λ  μ  λ  μ  λ  μ  λ    μ     μ  (4-12) 

Both the combinatorial   and normalized Laplacian   share similar properties 

[179, 180]. For example, Butler [180] shows that λ  and μ  are related,  

μ 

   (  )
    

μ 

   (  )
 (4-13) 

In choosing between the combinatorial ( ) and normalized Laplacian ( ) ma-

trices, the latter (normalized Laplacian,  ) is preferred in recent applications of 

graph theory, especially in the area of image processing [182]. This is because the 
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eigenvalues (λ ) of   are bounded between 0 and 2, i.e.,   λ    (the equality 

holds only for special cases), whereas μ  is dependent on the maximum degree 

(see Eqn.(4-8) and (4-9)) [179, 180].  

Therefore, λ  is scaled based on the degree matrix  . This property is perti-

nent from an application standpoint, because as a result of scaling based on  , the 

effect of graph volume  ( ), and thereby the image size   on λ  are mitigated. 

This means, the eigen spectra of λ  are not contingent on the size of the image. 

We also posit, based on empirical observations that λ  is more robust to variations 

in brightness and contrast of surface micrographs compared to μ . Therefore, we 

primarily use the eigen spectrum λ  of the normalized Laplacian   for quantifica-

tion of surface morphology variations.  

The smallest non-zero eigenvalue (λ ) of λ  is called the Fiedler number, and 

the corresponding vector (  ) the Fiedler vector [178-180, 183]. The value of λ  

equals 0 if and only if the graph is disconnected, i.e., there is an isolated node in 

the graph   (   ) that cannot be reached (this node will have degree = 0) 

[183]. As a result, the corresponding (to the isolated node) row in the similarity 

matrix   will have all elements equal to zero. Consequentially,   will degenerate 

into a defective matrix (i.e., it will not have a full set of eigen vectors).    

Some of the well-known properties of   and its eigen spectra are listed on the 

next page [179-181, 185-188]. Subsequently, we outline the mathematics which 

shows that the Fiedler number (λ2) is a useful measure for quantifying the connec-

tivity of a graph network   (   ).  
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Some Properties of the Normalized Laplacian Matrix ( ) 

     
 
 (   )   

 
     

 
     

 
  

1. Every graph has a unique Laplacian. The converse is not true.  

2.   is a real symmetric matrix (    ). 

3.   is positive semi-definite (   ).  

4. All eigenvalues are non-negative (λ   )   

5. All eigenvalues are less than or equal to 2; the equality holds if and only if the 

graph is bipartite (λ   )  

6. The first eigenvector is an identity vector       , the first eigenvalue is 

zero (λ   )   

7. The multiplicity of λ (  ) as an eigenvalue is equal to the number of con-

nected components in the graph. 

8. The second eigenvalue is greater than zero if the graph is connected (λ   )  

and zero (λ   ) if and only if the graph is disconnected.  

9. The second eigenvalue is greater than 1 (λ   ) if an only if the graph is a 

complete graph (i.e., every node is connected to all other nodes). 

10. The second eigenvalue is 1 (λ   ) if and only if the graph is bipartite. 

11. The eigenvectors of   are orthonormal.  

          ; ⟨     ⟩   ; ⟨     ⟩    

this implies, the Gramian is an identity matrix  ( )    

hence, the transpose of the eigenvector spectrum is its inverse (      ). 
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A note for the reader 

Graph theory is a well-developed (beginning with Euler’s graph theoretic 

resolution (a negative result) of the Bridges of Konigsberg Problem in 1736) and 

extensive science. It appears (to this student at least) that there are two main areas 

of thrust in graph theory, (i) studies from a topological/combinatorial perspective, 

and (ii) the examination of the algebraic properties of graph networks (termed, 

algebraic graph theory). The former has been of interest to Industrial Engineers 

mainly from a logistic/OR background for some time, the latter, not as much 

(however, note the work of Hall [189]). This work is from the latter branch.  

The novice in the area of algebraic graph theory must be prepared to face a 

rather steep mathematical learning curve, beginning with theorems in linear alge-

bra (particularly those on eigen spaces). A graduate level textbook in linear alge-

bra (e.g., [190]) may be useful in this regard. The following references in the area 

of algebraic graph theory were frequently referred by this student:  

 The lecture notes by Spielman [186]. 

 Papers by Mohar [181], von Luxburg [182], and Spielman [187, 191]. 

 The master’s thesis by Newman [188], and the doctoral dissertation by Butler 

[180]. 

 SIAM lecture series by F.R.K. Chung [179] (one of the definitive and highly 

cited references in this area). 
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The Fiedler number as a measure of connectivity of a graph network 

Cheeger constant ( ( ), also called the isoperimetric number or Cheeger 

number), and the Fiedler number (λ2) are fundamental to the study of topological 

characteristics of graph networks [179-181]. They are often used to quantify the 

connectivity of a graph network. The larger the Cheeger number ( ( )), the more 

resilient the network is to edge failures (viz. the severing of edges between nodes) 

[181]. This is evident from the following definition of  ( ) [179]. 

 Referring to the network   (   ) shown in Figure 4-3, consider a subset 

of nodes   (or sub-graph) of the graph    (  ) (e.g., the node colored red in 

Figure 4-3), it follows  (  )     ̅ is the set of all nodes other than   in   (all 

the nodes colored black in Figure 4-3). With this notation  ( ) is written [179] 

as, 

 ( )     {
| ( )|

   { ( )  ( ̅)}
} 

(4-14) 

 ( )  {(   )       (  )|         ̅}, 

where,  ( ) denotes all edges connecting   with  ̅ (e.g., | ( )| = 6 for the edges 

colored red in Figure 4-3 when the red colored node is the only node in the sub-

graph  ). Also, note that the denominator    is not the same as  ,  ( ) refers to 

the volume of the graph (Eqn. (4-7)), whereas  ( ) is the set of nodes or vertices 

in the graph. Cheeger number ( ( )) is therefore a measure of edge connectivity 

of the network. 



 

180 

 

In other words,  ( ) is a quantifier of the graph in terms of the most sparsely 

connected node, the severing of whose connections (edges) will break the graph 

in two (i.e., isolate a node). It is evident that when the density of edge connections 

is high (as in Figure 4-3),  ( ) will be larger. This assertion was first proved by 

Fiedler [178], based on the smallest non-zero eigenvalue μ , and edge connectivi-

ty  ( ), viz. analogous to  ( ), obtained from the combinatorial Laplacian   for 

a graph with   nodes. Fiedler proved the following bound on μ , 

μ    ( ) (     (
 

 
)). (4-15) 

The normalized Fiedler number λ  is related to  ( ), by the following inequality 

[179], as shown by Chung [179]. 

[ ( )] 

 
 λ    ( ) (4-16) 

From these bounds, it is evident that relatively high  ( ) values (and as a conse-

quence high λ  values) imply many edges must be removed in order to break the 

graph into disjointed chunks [188]. In contrast, a graph with low  ( ) (and λ ) is 

relatively easy to disrupt. By using the Fiedler number (λ ) we measure the ease 

(the number of edges to be removed) by which a node can be isolated in a graph 

 , i.e., a measure of the weakest links.  

We now rationalize the following concerns in a more mathematically rigor-

ous manner:  

i. How the Fiedler number (λ2) could be used in a practical scenario. 

ii. Why λ2 is a good quantifier of surface morphology.  
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The Fiedler vector as an efficient means to partition a graph  

Our approach, which uses the Fiedler number (λ2) for measuring surface 

morphology, is inspired from the domain of graph-based image segmentation. The 

main objective in image segmentation (and clustering) is to partition an image 

into different parts (pixels) based on certain common features of interest, such as 

texture, brightness, contrast, etc. This is important in various applications, e.g., 

machine vision, medical imaging, object tracking – primarily areas in which the 

output signal/measurement is an image as opposed to a point statistic.  

Consequently, algorithms that can accurately and efficiently partition images 

are an active area of research. Shi and Malik [192] describe a graph theoretic 

approach that uses the Fiedler vector (  ) to partition images. In their paper, Shi 

and Malik [192] represent images in graph theoretic form and mathematically 

prove that the Fiedler vector (  ) is an efficient basis for segmenting an image. 

Though, our objective is similar in scope to the image segmentation problem 

of Shi and Malik [192], we wish to quantify the morphology of a (nanoscale) 

surface using graph theory. Notwithstanding this distinction, since segmenting a 

graph would first require mathematically (implicitly) quantifying the network 

topology, we can use the concepts described by Shi and Malik [192] to distinguish 

surfaces (from their optical images) based on the topology of their graph represen-

tations, instead of attempting to segment them (which is a more evolved problem).  

However, certain modifications (described in the forthcoming sections; Sec. 

4.4.3, Sec. 4.4.4) to the method described by Shi and Malik [192] are required to 
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make the graph theoretic approach tractable to our application area of nano-

surface morphology quantification. Before we proceed, it is pertinent to 

acknowledge the work of Hall [189] (which is also referenced by Shi and Malik). 

In an article published over four decades ago (1970), Hall [189] mathematically 

outlines the properties of the Laplacian matrix (Hall however terms it the discon-

nection matrix). Hall’s work is noteworthy in the following aspects: 

i. Hall shows that properties of a graph can be mathematically quantified 

using the eigenvalues and vectors of the combinatorial Laplacian ma-

trix   (termed disconnection matrix by Hall). Indeed, he uses an Eu-

clidean measure to construct the adjacency matrix of the graph (which 

Hall terms as the connection matrix). The Euclidean measurement 

used by Hall translates to mapping the dissimilarity between nodes – a 

concept analogous to the similarity matrix   from equation Eqn. (4-4). 

ii.  Hall proves that the smallest non-zero eigenvector is an optimal solu-

tion to a very close (quadratic) form of the mincut problem. 

iii. Hall applies the eigenvectors of the Laplacian for solving clustering 

problems, with several illustrated examples, e.g., on sequencing pro-

cesses, clustering animals, placing electronic components in a grid. 

With these examples, Hall shows that the graph theoretic Laplacian 

eigen characteristics are perhaps the most efficient means to achieve a 

partition in r-dimension space.    
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We now describe the essential outlines of the proof given by Shi and Malik to 

show that the Laplacian eigenvector    (Fiedler vector) is an efficient partition for 

a graph   (   ). Using the terminology established in the previous section, a 

graph   (   ) (e.g., Figure 4-3) is cut when we have been able to remove 

edges, such that, a node is isolated. The cut can be mathematically described as 

splitting the graph   into two parts (subgraphs),   and   ̅, by removing edges with 

weight  . This process is mathematically expressed as, 

   (    ̅)  ∑  (   )

         ̅

 (4-17) 

The objective (wrt image segmentation) is to minimize the cut, that is, find the 

RHS of Eqn. (4-14) in terms of the edge weights  , such that, the LHS has the 

least magnitude. This describes the essence of the graph cutting problem; viz. 

    (   )    (    ̅), or as it is known, the mincut problem (we recognize that 

this is symbiotic to the definition of  ( ) in Eqn. (4-14)). 

However, it is observed that the mincut problem often degenerates, and pro-

duces a solution where only one node forms a cluster. This implies, instead of 

partitioning the graph into well-populated node clusters, the mincut criterion often 

converges to a solution in which there is only one node in a cluster. Therefore 

several image clusters, bereft of any useful common feature are formed – an 

inefficient outcome.  

Therefore, as an alternative, a more constrained criterion is applied by Shi 

and Malik [192]. This criterion penalizes outcomes to the mincut problem with 
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sparse node clusters. They term this criterion as the normalized cut criterion 

(    ), and define it as follows, 

    (    ̅)  
   (    ̅)

     (    )
 

   (    ̅)

     (  ̅   )
 (4-18) 

where, 

     (    )  ∑  (   )
    

   ( )

 (4-19) 

However, the solution to the         is NP-complete [192] (it is in essence a 

graph coloring problem, which is known to be NP-complete), and therefore not 

tractable. Herein lies one of the major accomplishments of Shi and Malik’s paper 

[192]; they show that the         problem has an efficient discrete solution 

in the Rayleigh Quotient of the Laplacian matrix i.e., 

   (    (    ̅))     
 

    

   
     

 

(4-20) 

From the properties of the Laplacian matrix   and its eigenvectors listed in 

Sec. 4.4.2 we notice the following: 

i. the first eigenvector of the normalized Laplacian   is a unit vector 

      , and  

ii. the eigenvectors (of  ) form orthonormal basis, i.e.,           ; 

⟨     ⟩   ; ⟨     ⟩   . 

These properties ensure the normality condition of Eqn. (4-20) is met. Con-

sequently, on using the Courant-Fischer theorem (which gives min and max 
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bounds on the Rayleigh Quotient), Shi and Malik arrive at the following solution 

to the      problem,  

       
   

  
    

  
   

    

   
  

  
    

  
   

 λ  

(4-21) 

 

Therefore, the Fiedler vector (  ) solves the         problem, with 

Fiedler Number (  ) as the minimum attained. This mathematically proves 

that Fiedler Number (λ ) is not merely a statistic, but a topological invariant, 

which can therefore be useful as a discriminant for quantifying network of a graph 

network   (   ), and as an extension the image  , since     (   ). This 

is of important consequence to our application, because, a mathematically tenable 

link has been established between the Fiedler number (λ ) and the surface mor-

phology, via the graph   (   ) representation of the optical image   of the 

surface. 

This is pertinent from our application standpoint, because using the Fiedler 

number, the morphological characteristics of a surface (from its optical image,  ) 

can be quantified. 

The Kirchoff index as a measure of graph connectivity 

Although, the Fiedler number (λ2) and vector  2 are predominantly used in 

this work for quantifying surface morphology, it is natural to inquire whether the 
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higher order eigenvalues and vectors of the normalized Laplacian are of any 

consequence. In order to answer this question, we note the existence of another 

graph invariant called the Kirchoff index, which is estimated using the entire eigen 

spectrum of the Laplacian matrix [193].  

The Kirchoff distance (  ) for a graph with n nodes is written as,  

    ∑
 

μ 

   

   

 (4-22) 

where,  μ  are the non-zero eigenvalues of the Laplacian matrix  . Recently, 

Chen and Zhang [193] extended the metric to the normalized Laplacian  , 

     ∑
 

λ 

   

   

 (4-23) 

with,    as the number of edges of an (undirected) graph, and λ  the non-zero 

eigenvalue of the normalized Laplacian  . It is easy to see,  

   ∑∑   

   

   

   

   

∑
 

λ 

   

   

 (4-24) 

Chen and Zhang [193] prove a relationship between    and   ,  and show 

that these indices are evocative of topological characteristics of the network. In 

keeping with our terminology, we will call the former (  ) as the combinatorial 

Kirchoff index, and the latter (  ) as the normalized Kirchoff index. Without 

delving into the mathematical details, we note it has been proved that the Kirchoff 

indices are also topological invariants of a network graph.  
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However, estimating the Kirchoff indices is computationally expensive, be-

cause the complete eigen spectrum (μ  λ ) is required. Hence, we resort to the 

Kirchoff indices in only one instance in Sec. 4.5.6, which is a limiting case where 

the Fiedler number (λ2) fails to discriminate between different surface morpholo-

gies. With this remark, we now detail the two complimentary approaches devel-

oped for representing nano-surface morphology in graph theoretic form. 

4.4.3 ε Neighborhood Graph Representation 

For this graph theoretic representation, the optical micrograph image ( ) of a 

surface is first converted into a binary image (using image filtering techniques, 

such as the Canny edge detection algorithm [177]). Then, the kernel function   

(see Eqn. (4-2)) is defined [182] as follows, 

     (     )  ‖     ‖
 
       ,   {      } (4-25) 

we make the following observation regarding the bounds of    , 

   
|     |  

      

(4-26) 

   
|     |  

      

    [   ). 

Subsequently, the threshold  (   ) is applied, 
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 (   )       {
                 

                 
  

  
∑ ∑    

 
   

 
   

  
 

  [   ]. 

(4-27) 

These steps are further explained on the basis of Figure 4-4. We first compute 

the pairwise edge distance based on Eqn. (4-25) (Figure 4-4(a)), then edges with 

distance    are identified (colored blue in Figure 4-4(b)), and subsequently 

pruned (Figure 4-4(c)) using the threshold function in Eqn. (4-27).  

Thereby, only those nodes, which are (topologically) farther away from each 

other are connected by an edge. This means, dissimilar
16

 nodes are connected 

with an edge.  

                                                 
16

 The term similarity matrix is therefore a misnomer, in reality,   represents connections among 

dissimilar nodes.  
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Figure 4-4: ε neighborhood graph representation. 

(a) a well-connected representative graph (b) vertex distances identified based on the ε neighborhood 

(c) edges pruned using the distance threshold function (i.e., remove edges that are closer than ε). 
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4.4.4 Edge Weighted Graph Representation 

In the previous graph representation, the nodes were connected on the basis 

of their topological closeness (measured using the Euclidean distance). In con-

trast, the edge weighted graph representation approach, the nodes are connected 

on the basis of their similarity (actually, dissimilarity) of texture. We compute the 

pairwise difference in texture between pixel rows with the kernel and threshold 

functions defined as follows [182], 
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‖     ‖ 
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       ,   {      } 
(4-28) 

where    is the standard deviation of (gray scale) pixel values of the image  .  

Consequently,     is bounded, 
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On applying threshold  (   ),     is converted into binary form 
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(4-30) 

The kernel function in Eqn. (4-28) is a Gaussian radial basis function, with 

the dispersion parameter set as the standard deviation of the image. These steps 
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are explained based on Figure 4-5. Figure 4-5(a) shows a well-connected graph, 

with different vertex colors representative of various node textures. The edges 

connecting nodes with similar textures are identified, (e.g., in Figure 4-5(b), a 

blue node connecting to a blue node), and is subsequently pruned (Figure 4-5(c)) 

using the threshold function of Eqn. (4-27). That is, edges are connected only 

between nodes with distinct textures. Since the nodes are connected based on 

texture dissimilarity, we use this approach (Sec. 4.6.3) to gain an insight into the 

rugosity aspects of a surface.  

The salient features of the two approaches used for graph representation of 

micrograph images are summarized in Table 4-1. We now test the graph theoretic 

approach with artificially generated surfaces.  
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Figure 4-5: Edge weighted graph representation. 

(a) a well-connected representative graph, with various colored nodes (analogous to different surface 

textures) (b) Edges connecting similar nodes are identified based on the radial basis function (c) edges 

connecting similar nodes are pruned using the threshold function. 
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Table 4-1: Salient aspects of the two approaches used for graph theoretic representation of surface 

micrographs 

APPROACH WEIGHT ESTIMATES REMARKS 
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 Uses gray scale images directly 

(no filtering step is required) 

 No heuristically set parameters 

required 

 Compares surface texture between 

pixels 

 Afflicted by bias caused due to 

presence of artifacts 
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4.5 Studies with Simulated Surfaces 

In this section, we demonstrate the graph theoretic approach using artificially 

generated (computer simulated) surfaces. Six scenarios are tested in order to 

examine the suitability of using the Fiedler number as a discriminant under differ-

ent criteria. In these tests, the Fiedler number is compared with well-established 

statistical quantifiers, such as defect density (i.e., the percentage of defects, as in 

undesirable features present on a surface). These simulation-based studies also 

uncover instances where the Fiedler number may not be a good discriminant of 

surface morphology. Thus, in addition to situations where the approach is applied 

amicably, we identify scenarios where the approach may fail (e.g., Sec. 4.5.6, 

which serves as a counter-example).  

We note that for a majority of the cases tested, the artificially generated sur-

faces are binary (i.e., black and white, 0s and 1s, respectively). The white colored 

features (1s) will represent various surface morphologies, such as pits, scratches, 

inclusions, etc. In addition, unless otherwise stated, the ε neighborhood approach 

(Sec. 4.4.3), which is well suited for binary-type surfaces, will be used in these 

case studies.     
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4.5.1 Case 1: Effect of Morphology Type  

Case 1(a): Differences in surface morphology under stationary process 

conditions.   

It may be contended that a count of the number of surface features detected 

from a binary representation of the micrograph (readily obtained using image 

edge detection algorithms [177]) can also suitably estimate the surface morpholo-

gy. Though this might be true for some cases, the feature count (density) may not 

be a universally appropriate measure for representing the surface topology. To 

demonstrate this assertion is the objective of this case study.  

Aim of the study 

Demonstrate that the graph theoretic invariant Fiedler number can capture differ-

ences in surface morphology.  

Three types of surface morphologies with feature density, i.e., percentage of 

white colored features on the surface, identically set at 3% (Figure 4-6) are pat-

terned. A surface with Type 1 defects shown in Figure 4-6(a) is similar to features 

typically observed on semiconductor wafers immediately following lapping. The 

wafer surface depicts nanoscale pits (see also Figure 4-53(a) and (c)) which re-

quire about 12 − 15 minutes of subsequent CMP operations. We artificially gen-

erate pits (white spots), the locations of which are obtained by sampling from a 

discrete uniform distribution.  
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For example, given a 1000 x 1000 pixel surface with no defects (black col-

ored surface, in practice a 1000 x 1000 matrix of zeros), a random coordinate 

(sampled from a discrete uniform distribution with bounds [1 1000],  

{⌈ (      )⌉ ⌈ (      )⌉} ) is selected. At this coordinate we create a point 

defect (i.e., change the matrix element at the identified location to a 1). We con-

tinue in this manner, taking care that sampled locations do not repeat (sampling 

without replacement), until 3% of the total surface (i.e., 30,000 points out of the 

total (1000 × 1000 =) 10
6 

possible locations) has been converted into defects 

(white spots).  

A surface with Type 2 defect is depicted in Figure 4-6(b). This is similar to a 

surface with randomly distributed nano-scratches. Plurality of such scratches are 

typically evident under sub-optimal CMP conditions, such as when processing 

with high polishing load (> 20 N), using worn out polishing pads, or when the 

polishing slurry is contaminated with particulate residue. When detected early, 

these scratches can (typically) be eliminated within 3 – 6 minutes of CMP with 

optimally adjusted parameters (unless the scratches are very deep).  

We simulate a surface with (uniformly distributed) scratches between 20 and 

200 pixels in length (discrete uniform distribution; ⌈ (      )⌉) at random 

locations ({⌈ (      )⌉ ⌈ (      )⌉}) inclined at ± 45° to the horizontal. The 

starting locations for the scratches are sampled from a discrete uniform distribu-

tion, in a manner identical to the procedure described for the previous case. We 
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note that three parameters are simultaneously manipulated for this type of surface 

viz.: 

i. the location of the scratch, which is randomly sampled (without re-

placement) from the distribution ⌈ (      )⌉ ⌈ (      )⌉, 

ii. the slope of the scratch, alternated as 1 or -1, i.e., if a scratch has a 

positive slope, the subsequent scratch will have a negative slope, and 

iii.  the length of the scratch sampled from a uniform random distribu-

tion ⌈ (      )⌉.  

Once the starting location has been identified, a scratch with the appropriate 

slope (± 1), and length is generated. This procedure is recursively implemented 

until 3% (i.e., 30,000 points out of the total (1000 × 1000 =) 10
6
) 

 
possible loca-

tions) of the total surface is covered in scratches.   

Figure 4-6(c) shows a surface with Type 3 defect. Such a surface typifies 

chemical corrosion and particulate embedding [19] defects observed during CMP. 

Compared to prior cases, a large contiguous portions of the wafer remain unaf-

fected. In our experimental tests, such defects were remedied in < 3 minutes of 

CMP. The procedure for simulating Type 3 surfaces is largely identical to the 

Type 1 surface. But, instead of a point defect (as in Type 1), for Type 3 surfaces 

the neighboring 20 to 40 pixels (i.e., the area of a defect is 20 px. sq. to 40 px. sq, 

sampled from a discrete uniform distribution) in a square loci around a random 

location are also converted into defects (the matrix elements are changed to 1, 

note that there is a chance of overlap between features). Once again, the total area 
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occupied by defects is restricted to 3%. The characteristics of the three types of 

surfaces studied are summarized in Table 4-2 below. 

Table 4-2: Morphology details for the three types of simulated defects. The total density is maintained 

identical (3%) for all three types. 

MORPHOLOGY 

TYPE 
SHAPE LOCATION SIZE ORIENTATION 

TYPE 1 
Point 

defects 

Uniformly sampled 

{⌈ (      )⌉ ⌈ (      )⌉} 
1 NA 

TYPE 2 Scratch 
Uniformly sampled 

{⌈ (      )⌉ ⌈ (      )⌉} 
⌈ (      )⌉ Slope ± 1 

TYPE 3 
Square 

blobs 

Uniformly sampled 

{⌈ (      )⌉ ⌈ (      )⌉} 
⌈ (     )⌉ NA 

 

Fifty two different instances (replicates) are simulated for each of the above 

surface types (total 156 data points). We used the ε neighborhood graph represen-

tation for these simulated cases because they are binary images. First, the weights 

    are estimated using Eqn. (4-25), and subsequently the threshold from Eqn. 

(4-27) is applied. Thereafter, steps from Eqn. (4-4) thru (4-10) are implemented.  

Plots of the first two non-zero Laplacian ( ) eigenvectors,    and   , are 

shown in Figure 4-6(d)-(f). Here we notice a significant difference in the eigen-

vector trajectories. The corresponding Fiedler statistics are plotted in Figure 4-7. 

Though the defect density (percentage of white colored areas) were identical for 

these three cases (3%), the mean Fiedler numbers are significantly different, as 

seen from Figure 4-7 and Table 4-3. They range from close to 0.81 to 0.66 for 

Type 1 vs. Type 3 respectively. An ANOVA study revealed a statistically signifi-

cant overall and pairwise (p-val. < 0.01) difference in the mean Fiedler number 

for the three cases illustrated.  
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Figure 4-6: Different types of simulated surface morphologies. 

(a) – (c): Three types of simulated topographies, white colored details represent wafer features. The density of wafer features (white spots) is maintained at 3%.  (d) – (f): The eigenvectors 

map corresponding to topographies (a) – (c). 
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Figure 4-7: Interval plot of Fiedler number estimated for the three simulated defect types.  

The bars represent the  ±1σ  limits. 

Table 4-3: Some descriptive statistics of the Fiedler number measured for the three simulated defect 

types (52 data points for each defect type) 

DEFECT 

(MORPHOLOGY) TYPE MEAN STD. DEV. RANGE IQR 

TYPE 1 0.8172 0.0061 0.0248 0.0084 

TYPE 2 0.7019 0.0461 0.1743 0.0715 

TYPE 3 0.6641 0.0237 0.1052 0.029 

Number of data points 52 (for each feature type) 

Pooled standard deviation 0.0301 

Standard error 0.0042 

We observe (from Figure 4-7 and Table 4-3) that the Fiedler number is high 

(0.81) for Type 1 representations, this is explained based on the high degree of 

connectivity between nodes (the graph network is shown Figure 4-8(a)). In Type 

1 (Figure 4-6(a)), the pairwise distances     are largely dissimilar (pixel rows 

look different from each other). In other words, for Type 1 surfaces,     = 1 (Eqn. 
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(4-3)) for a large number of nodes (vertices); consequently the similarity matrix   

(Eqn. (4-4)), as well as, the degree matrix   (Eqn. (4-5)) are not sparse for this 

case. This manifests in the rich interconnectivity between nodes seen in Figure 

4-8(a). 

In contrast, for Type 3 (Figure 4-6(c)) the network is well pruned (    = 0 for 

many connections, therefore   is sparse), because     (note the difference be-

tween     and    , see Eqn.(4-2) and (4-3)) does not vary significantly across 

pixel rows (only some pixel rows are different from others, the surface as a whole 

is homogenous). As a result, we notice from Figure 4-8(c) that the nodes of the 

graph are not as well connected compared to Type 1 (notice particularly, the 

sparsely connected nodes in the south-west region). Hence, it is relatively easy to 

isolate a node for Type 3 surfaces in comparison to Type 1 surfaces. Therefore, 

from the definition of  ( ) in Eqn. (4-16) – (4-14), one expects the Fiedler num-

ber to be higher for Type 1 relative to Type 3.  

This study intends to illustrate that the Fiedler number is sensitive to varia-

tions in surface morphology that are not captured using statistical parameters, 

such as defect density. However, the converse is not presumed, i.e., the type of 

surface morphology may not be surmised from the Fiedler number if we do not 

have a priori knowledge of the surface morphology. In other words, the simulated 

surface morphologies may have the same Fiedler number if the defect densities 

were allowed to vary. 
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Inferences from the study 

1. Defect count (density) is not a good quantifier for surface morphology. 

2. Fiedler number could be a more appropriate statistic for assessing surface 

morphology.  

 

 
Figure 4-8: The typical graph network for the three defect types studied 

(a) Type 1 (pits), (b) Type 2 (scratch), and (c) Type 3 (corrosion). These plots are essentially the simi-

larity matrix   in graphical form; here we show the connections among 40 nodes of the graph   
(   ). The nodes are located on the circumference of a unit circle.  
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Application to a practical scenario 

The implications from this study are readily applied to some practical scenar-

ios, such as differentiating the microstructure of materials, speckle defects on 

textiles, ink splatter patterns, etc. For example, we illustrate a case where the 

graph theoretic Fiedler number for differentiating the microstructure of cast iron. 

Micrographs of two types of cast iron microstructure (courtesy Metals Handbook 

Vol. 9 [194]), namely, lamellar and nodular matrix are shown in Figure 4-9, along 

with the Fiedler number (λ ). The mean Fielder number assessed for the two 

different types of microstructures are statistically different at the 10% level of 

significance. 

 

Figure 4-9: Fiedler number for two different types of cast iron microstructures. 
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Case 1(b): Detection of changes in surface morphology from an evolving 

process  

Continuing our study using simulated surfaces with different morphologies 

(while maintaining the defect density constant at 3%), we now test the scenario 

where the morphology changes during operation (similar to the situation when the 

process conditions evolve to a sub-optimal state). We wish to quantify the delay 

in detection of a change in surface morphology using the Fiedler number as a 

discriminant.   

Aim of the study 

1. Demonstrate that the graph theoretic invariant Fiedler number can capture 

evolving surface morphology. 

2. To quantify the average run length (ARL) statistics when Fiedler number is 

used in a SPC setting for detection of changes in surface morphology. 

As a practical analogy, consider the Type 3 surface of the previous study 

which may be representative of an acceptable CMP surface. As we continue to 

polish, over time the process conditions will deteriorate (e.g., the polishing pad 

may become glazed, the slurry contaminated, etc.), and as a consequence the 

wafer surface quality may be affected, e.g., scratches may appear on the surface 

(Type 2 surface).  

If we consider the Type 3 surface as ‘normal’, and a Type 2 surface with 

scratches is termed ‘defective’ (see Figure 4-10), how many defective wafers will 

be produced, before we realize that the process is malfunctioning (i.e., the process 
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state has changed), if the Fiedler number (λ2) is used as a discriminant? In a 

physical sense, suppose that we measure the surface morphology in terms of the 

Fiedler number (λ , using an automated inspection device), of a semiconductor 

wafer as soon as it has finished a CMP step, then, how quickly could we detect an 

out of control process condition (right side surface in Figure 4-10).  

In other words, we wish to quantify the average run lengths (ARL) under 

normal (ARL0), and defective conditions (ARL1), in an SPC scenario using the 

Fiedler number (λ2) as the key process output variable (a large ARL0 and small 

ARL1 is desired). 

 

Figure 4-10: Simulated change in surface morphology. 

Left: A representative surface produced under normal processing conditions. 

Right: A representative surface produced when the process is malfunctioning. 
Accordingly, we generated artifical surfaces as shown in Figure 4-10. The 

Type 3 surface morphology is considered as the normal condition, whereas the 

Type 2 surface is representative of the defective condition. First, 2337 instances 
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(about 12 hours of PC time) of Type 3 surface are generated, and their Fiedler 

number (λ2) is computed. Subsequently, control limits for a ‘runs’ SPC chart (X-

chart) are calculated, using which the number of points out of control during the 

normal condition can be observed, and the ARL0 estimated (viz. an estimate of 

the Type 1 error). There were 5 points observed out of 2337, (Figure 4-11(a)), i.e., 

on an average one point in ~ 467 points. The Type I (false alarm) error is there-

fore 0.2139% (~ 2.85σ on the standard normal).  

Thereafter, 1000 instances of the defect condition (right side Figure 4-10) are 

simulated. Using the control limits from the normal condition (after the delete and 

revise procedure), we can estimate the ARL for the defect condition (i.e., ARL1). 

We found that 213 points were out of control out of 1000 (Figure 4-11(a)). This 

translates to an ARL1 of 4.6.
17

 Therefore, on an average, 4 wafers will be 

processed before we discover that the process is malfunctioning. In all, as 

indicated by Figure 4-11(b), there is close to 1.5σ shift  (1.46 σ) going from the 

normal condition (stable condition) to out of control state. 

Pertinently, if the defect (or feature) percentages (feature density is fixed at 

3%) were to be used as a discriminant, one would not be able to recognize any 

change in the process state. This study demonstrates that the Fiedler number can 

overcome some of the lacunae associated with traditional statistical quantifiers, 

such as defect density. 

 

                                                 
17

 As one expects this can be reduced to about 2.13 if the AT&T runs rules are used, but one 

(necessarily) sacrifices the ARL0 which reduces to ~ 65.  



 

207 

 

 

 

 

Figure 4-11: Using the Fiedler number as a discriminant to detect process drifts. 

 (a) ARL0 and ARL1 calculated from the X-chart control limits. (b): The distribution of the Fiedler 

number for the normal and defect conditions, indicating that there is shift of approximately  1.5 

standard deviations (from the normal condition) in the Fiedler number. 
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Inferences from the study 

The Fiedler number can be useful for capturing changing surface morphology, the 

ARL0 and ARL1 limits are estimated at 467 points and 4.6 units respectively. 

4.5.2 Case 2: Effect of Defect Density 

This study tests the sensitivity of the Fielder number (λ2) relative to changes 

in defect (feature) density (ρ). In the previous case, the Fiedler number (λ2) was 

used as a discriminant for different types of surface morphologies with the feature 

density (ρ) maintained constant at 3%. In this case the converse is tested, the 

morphology type is maintained constant as the defect density is varied.  

Aim of the study 

Demonstrate that the graph theoretic invariant Fiedler number can capture the 

changes in defect density. 

In previous cases, the defects were randomly located (sampled from an uni-

form distribution), while the number of defects occurring over an area was a fixed 

parameter. Whereas, in this study, we consider the following two scenarios: 

i. The defects (or features) have a deterministic arrival rate, but are lo-

cated randomly (sampled from a uniform distribution). 

ii. The defects have a stochastic (Poisson distributed) arrival rate apart 

from being located randomly (sampled from a uniform distribution). 

We note the key difference in the sampling procedure applied between the 

Poisson and uniformly distributed cases. In the second case, the arrival rate (mean 
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number of the defects) is a random (Poisson) variable. While in the first case, the 

density of defects is a fixed parameter.  

Contrary to usual practice, we discuss the more complicated Poisson case 

first. This is because certain observations are more amenable to an explanation 

due to well-known properties of the Poisson distribution, particularly, the mean 

and variation for a Poisson distribution are identical (i.e., μ = σ
2
 = λ). 

Case 2(a): Poisson distributed defects 

A spatial Poisson process is used to sample features on a 1000 × 1000 pixel 

area (𝚅). This area is further subdivided into smaller 100 × 100 pixel areas (sub-

spaces, vk),     {     }. For each vk, and a set Poisson arrival rate (λi), the 

number of defects (nk) for each vk is estimated. (We note that in this case the 

number of defects (nk) in the subspace vk is a random variable. These preliminary 

conditions are formalized as, 

               

      

            

  |       (λ ). 

 

(4-31) 

In effect, vk are independent, non-overlapping, sub-spaces, within which 

Poisson sampled defects (  ) occur (satisfying IID conditions). The defects (  ) 

in each subspace   , i.e.,(  |  )  are (uniformly) randomly assigned.  
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In other words, for every vk, in 𝚅,  (   𝚅), we obtain the number of defects 

   sampled from a Poisson distribution. Then, for each    we decide the location 

of the sampled defects (  ) (i.e., the coordinate 

(     )  {(     )  (     )   (     )  
} of each    in   ).  

At these locations (     ) we create a defect (i.e., change the element 

(     )  of 1000 × 1000 matrix to 1). This gives us one instance of a Poisson 

generated surface 𝚅 |   for a set Poisson arrival rate λ . We generate 50 instances 

of V for each λ , i.e., 𝚅   {𝚅 |   𝚅  |  } for each λ  tested. The Fielder number 

λ2 for each instance (𝚅 |  ) is subsequently computed. Representative simulated 

surfaces for different Poisson arrival rates are shown in Figure 4-12. 

 

Figure 4-12: Typical surfaces obtained on locating defects (pits) sampled from a Poisson distribution 
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Furthermore, in Figure 4-13, the mean Fielder number (λ̅ , along with maxi-

mum, minimum, and standard deviation of the Fiedler number) for 𝚅   is graphed 

against the Poisson arrival rate λ . The abscissa also depicts the average defect 

density (ρ) as a percentage. 

The defect density (ρ) can be calculated as follows: Suppose, λ   50, which 

implies, there are 50 defects (on average) per   . Hence, there are 50 × 100 = 

5000 defects (ρ, on average on the surface 𝚅). Therefore, the mean percentage of 

defects in 𝚅 is, ρ  
    

            = 0.5%. 

We note four regions of interest in Figure 4-13: 

 Region 1: In the region of ρ < 1% (λ < 100), the Fielder number is not ob-

served to be sensitive to changes in the feature density. This is because the 

simulated image is sparse for low arrival rates. In addition, as the mean of 

the Poisson distribution is the same as its variance, at small λ the surface 

generated is largely homogeneous. Consequently, the pixel rows are not 

substantially different from others, and therefore the similarity matrix S has 

few connections.    

 Region 2: In the region between 1% < ρ < 100% (100 < λ < 10,000), the 

mean Fiedler number (λ̅ ) increases with increasing Poisson arrival rate λ. 

This is explained based on the increasing variation in the surface. Since the 

variance of the Poisson distribution is identical to the mean, the surface be-

comes progressively inhomogeneous with increasing λ.  
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This is evident on observing the simulated surfaces shown in Figure 

4-12 (which all belong to this range of λ). For instance, we notice that the 

bottom right of the surface for ρ = 50% (λ = 1000) in (Figure 4-12) is dis-

tinctly different (it has significantly fewer defects) from the rest of the sur-

face. A network graph representative of this region is shown Figure 4-14 

(top), in which the rich interconnection between nodes is apparent. This 

well-connected network has a relatively high λ2 value (0.82). 

 Region 3: In the region between 100% < ρ < 750 % (10,000 < λ < 75,000) 

the mean Fiedler number (λ̅ ) starts decreasing, this is explained on the basis 

that the region to the right of the ρ = 100% in Figure 4-13 is essentially a 

complement of the region to the left (ρ   100%, recall that the surface is a 

binary (1 and 0) matrix).  

That is, the defects (1’s) now dominate the rest of the surface (0’s); in-

stead of a black surface with white colored defects,  we have the opposite 

case. As λ increases, the black areas (‘good’ areas) decrease; this is also evi-

dent from the network graph for a surface in this region shown in Figure 

4-14 (bottom left), where the node connections are sparser in comparison to 

the network of Region 2 (Figure 4-14 (top)).  

 Region 4: In the region of ρ > 750% (λ > 75,000) we observe a complex 

behavior in λ̅ , the explanation for which requires further understanding of 

graph theoretic concepts.  
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After the surface is almost saturated with defects (tail end of region 3), 

we briefly enter a state where the network has the characteristics of a bipar-

tite graph [185]. As we will explain in more depth in Sec. 4.5.6, the Fielder 

number of a bipartite graph equals 1 (λ2 = 1)  [185]. In Figure 4-13 the sur-

faces generated in the 750% < ρ < 1200% region evolve to such a bipartite 

graph state. A representative bipartite graph from this region is shown in 

Figure 4-14 (bottom right). A peculiar aspect of this network is that none of 

the nodes from the left hand portion of the graph are connected to their im-

mediate neighbors.  

Furthermore, these left hand side nodes all have three edges, and connect 

to three particular nodes in the north-east region. Such graph networks typi-

fy a bipartite structure, and present a limiting (pathological) case for our ap-

proach (Sec. 4.5.6). 

Also, in this region some (of the total 50) realizations can converge to a 

bipartite state (λ2 = 1), while others are completely covered with defects 

(that is, there are no features to detect, consequently λ2 = 0). For example, at 

ρ = 1250% we observed that 47 out of 50 realizations had λ2 = 1, and the 

rest (i.e., three realizations) had λ2 = 0, therefore the mean λ̅  = 0.94.  

In comparison, at ρ = 1500%, about 60% of the realizations (31 out of 

50) realizations are observed to have λ2 = 0, while the rest (19 out of 50) are 

bipartite (λ2 = 1), which implies λ̅  = 0.38 (average of nineteen 1’s and thirty 
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one 0’s). This also the explains the relatively large variation observed in λ̅  

between 1200% < ρ < 1500%.  

Finally, in the region of ρ > 1500 %, there are no features to detect as the 

surface has been completely ‘whited out’ with defects, therefore, λ̅  = 0.  

One might consider Region 2 (1% < ρ < 100%, and the complimentary Re-

gion 3 by induction) to be practically relevant. The tails of Figure 4-13 (i.e., 

Region 1 and 4) are largely of academic interest. 
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Figure 4-13: The Fiedler number for Poisson disturbed defects with arrival rate λ.  

Each measurement point (162 points in the interval λ=1 to λ=500000), has 50 simulated instances. 
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Figure 4-14: Some typical network graphs (forty nodes) at different Poisson arrival rates (λ).  

For λ=5,000 the graph shows fairly robust connectivity, which is progressively depleted as λ increases to 50,000. Thereafter, close to 

λ=100,000 the network begins to approach the bipartite structure.    
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Case 2(b): Uniformly distributed defects 

In this study, uniformly distributed defects with different defect densities (ρ) 

are generated, and the surface is simulated in a manner identical to the Type 3 

surface of Sec. 4.5.1. We generate 50 replicates for each level of defect density 

(ρ), which were tested between 1% and 75% in intervals of 0.5%, hence there are 

150 levels tested for ρ (the behavior at the right tail is similar to the Poisson case). 

We did not test beyond ρ > 75% due to computational constraints
18

. We note that 

ρ is a deterministic parameter, and hence in retrospect, this study is a special case 

of the previous Poisson case. Some typical surfaces simulated for this study are 

shown in Figure 4-15. 

 

Figure 4-15: Typical surfaces obtained on simulating defect locations sampled from a uniform distribu-

tion. 

                                                 
18

 Because the locations for the defects are sampled without replacement, searching for a ‘free’ 

location is computationally expensive at large ρ. 
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Subsequently, the Fielder number (λ2) is computed for each instance (there 

are 50 instances for each λ). Figure 4-16 shows the mean Fiedler number (λ̅ ) 

plotted against ρ. At the ρ =1% level,  λ̅  depicts complex behavior, this is due to 

the graph network being extremely sparse and approaching the bipartite state (λ2 = 

1). The reasons for this behavior are identical to those tendered for Region 4 of 

the previous Poisson distributed case.  

Beyond ρ > 1%, the λ̅  increases (almost linearly in the range of 3% to 10%) 

with ρ, and finally peaks at ρ = 50%. Thereafter, λ̅   begins to decline. This is 

because above the 50% defect density the surfaces generated are complementary 

to the surfaces for ρ < 50%. This behavior is evident from examination of Figure 

4-15. 

The behavior of λ̅  in the region of 3% < ρ < 11% is studied in greater detail 

(these ranges of ρ were chosen to reflect the typical defect ranges observed in a 

CMP process, see Sec. 4.6). The mean Fiedler number (λ̅ ) and one standard 

deviation interval over different ρ (for ρ < 11%) are plotted in Figure 4-17, to 

which the Tukey’s pairwise comparison test was subsequently applied. The Tuk-

ey’s pair wise comparison results are shown in Figure 4-18.  

From Figure 4-18, we notice that the Fiedler number (λ2) was a statistically 

significant discriminant, and was capable of detecting differences in mean defect 

(feature) density for a majority of the cases. For ρ < 5.5%, a drift of 0.5% is de-

tected using Tukey’s distance statistic, this increases to about 1.5% and beyond, 

for  ρ > 6%. Thus, from a quality monitoring standpoint, the Fiedler number can 



 

219 

 

be considered as a sensitive parameter to detect changes in defect density of a 

given surface. The following inferences are drawn from this study: 

Inferences from the study 

1. The Fiedler number (λ2) increases as defect density (ρ) increases, for both 

Poisson and uniformly distributed defects. However, this holds only within 

certain bounds, and is contingent on the condition that the surface is not dom-

inated by defects. Within these constraints, λ2 can be a good discriminant for 

surface quality. 

2. A threshold for defect density (ρ) exists, beyond which λ2 begins to decrease 

(instead of increasing). The threshold is reached when the defects are domi-

nant over the rest of the surface. The Fiedler number (λ2) is a good discrimi-

nant in this region because the surfaces are complimentary to those obtained 

below the threshold defect density (as in, inference 1 above).  

3. When the defect distribution becomes either too large or infinitesimal, the 

network graph can approach a bipartite state (λ2 = 1), or becomes disconnect-

ed (λ2 = 0). The Fiedler number (λ2) is not a good discriminant under such 

conditions.
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Figure 4-16: The Fiedler number for uniformly disturbed defects.  

Each measurement point (in the interval ρ = 0% to λ=75% in steps of 0.5%), has 50 simulated instances. 
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Figure 4-17: The Fiedler number for the defect density range ρ between 3.5% to 11% (typical CMP 

range). 

 

Figure 4-18: Tukey’s pairwise comparison test applied for uniformly distributed defects for the 

(defect) density range 3% < ρ < 11% 
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4.5.3 Case 3: Effect of Feature size  

We now study the behavior of the Fiedler number as the size of feature mor-

phology changes, for a fixed constant defect density (3%). For this purpose, we 

artificially generate 1000 pixel × 1000 pixel images with the procedure used for 

simulating the Type 3 surfaces described in Sec. 4.5.1. Instead of maintaining the 

feature size at 20 sq. pixels as in the Type 3 defect in Case 1 (Sec. 4.5.1), we now 

vary the size (α) of the defect. 

 

Figure 4-19: The morphology of the defect (white square) used for studying the effect of feature size on 

Fiedler number. 

Aim of the study 

Demonstrate that the graph theoretic invariant Fiedler number can capture differ-

ences in feature size of the morphology.  

A sample defect is shown in Figure 4-19. The side (α) of the white colored 

square (the defect) shown in Figure 4-19 is varied. The defect size takes the fol-

lowing (dyadic sequence) levels; α =1, 2, 4, 8, 16, 32, with 50 instances simulated 

for each α value. We note that the features locations are sampled (without re-

placement) from a discrete uniform distribution{⌈ (      )⌉ ⌈ (      )⌉}), 

with the defect density (ρ) maintained constant at 3%.   

The study is conducted in two phases:  
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1. (Case 3(a)) The defect size is deterministic, i.e., the defects have a 

mean size α, with variation σ
2
 = 0. Representative cases for this sce-

nario are shown in Figure 4-21. 

2. (Case 3(b)) For a fixed level of α, the mean defect size is a (discre-

tized) uniform random variable in the range of [α, 2α]. A defect is 

therefore a (discrete) random variate with size     ⌈ (    )⌉. The 

variation (σ
2
)
 
in defect size is therefore, 

  

  
. Typical realizations for 

this scenario are shown in Figure 4-24. 

Case 3(a): Change in size (α) of the defect with zero variation (σ2 = 0) 

The mean Fiedler number (λ̅ , mean of 50 instances) for different levels of α 

is shown in Figure 4-20. This reveals a decreasing trend in λ̅  as α increases. This 

behavior is explained on the observation (see Figure 4-21) that with increasing α, 

and with ρ fixed at 3%, the similarity matrix S becomes sparser (there are fewer 

countable defects on the surface as α increases). Consequently, the surface be-

comes relatively ‘cleaner’ at high α (compare the surface for α =1 with α = 6 in 

Figure 4-21), with only a few pixel rows being significantly different than the rest 

of the surface for the latter case. Therefore, given the progressive sparseness of 

the similarity matrix S with increase in α, one expects λ̅  to reduce likewise. 
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Figure 4-20: Change in mean Fiedler number (  ̅ ) with change in feature size (α). 

This inference becomes further evident on studying the network graphs, typi-

cal cases of which are shown in Figure 4-22. For example, at α = 6, we notice that 

some nodes of the graph have only one edge connecting them to the rest of the 

graph, while the weakest links for α = 3 have at least two edges. This implies, that 

the network for α = 6 is much easier to disrupt (in comparison to a network for α 

= 3).    

 Further analysis of the Fiedler number (see Table 4-4) revealed a statistically 

significant difference in mean Fiedler number (λ̅ ) for the feature sizes (α) studied 

in this case. At 5% level of significance, all pairwise differences using Tukey’s 

(multiple comparison) test were significant.  
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Table 4-4: Some descriptive statistics of the Fiedler number measured for the simulated defect types 

with different sizes (α, with zero variation; 50 data points for each defect type). Defect density is 

maintained at 3% for each α level. 

FEATURE SIZE  MEAN STD. DEV. RANGE IQR 

α = 1 0.8200 0.0089 0.0380 0.0113 

α = 2 0.7156 0.0127 0.0524 0.0141 

α = 4 0.6951 0.0076 0.0300 0.0114 

α = 8 0.6643 0.0083 0.0366 0.0122 

α = 16 0.6329 0.0295 0.1458 0.0276 

α = 32 0.5960 0.0232 0.1318 0.0305 

Number of data points 50 (for each α) 

Pooled standard deviation 0.0172 

Standard error 0.0024 

 

Figure 4-21: Typical surfaces for different defect sizes (α) for the zero variation scenario.  
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Figure 4-22: Some typical network graphs (forty nodes) for different feature sizes (α). 

For α =2 the graph network shows robust connectivity, which reduces as α increases to 6. 
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Case 3(b): Change in size (α) of the defect with variation (σ2 ≠ 0)  

Compared to the previous case where the mean Fiedler number λ̅  showed a 

(statistically significant) decreasing trend with increase in defect size (α); in this 

case where the size of the defect (α) is a (discrete uniform) random variable, the 

behavior of λ̅  with change in α is not comparatively tractable (see Figure 4-23). 

As we can observe from Figure 4-23, for the range α = 2 to α = 8, it appears that 

the Fiedler number fails to register any change (this was verified statistically, see 

also Table 4-5). An explanation for this behavior can be tendered on the basis of 

Figure 4-24, which shows the typical surfaces generated for different (mean) 

levels of feature (defect) size (α).  

For instance, examination of the surface for α = 16 reveals that the defects 

vary significantly in size (this is to be expected, since by the very nature of the 

simulation we have set the variation,    
  

  
, i.e., larger the defect size, the larger 

is the variation). That is, we have confounded (by choice) two parameters, name-

ly, mean size of the defect, and variation (σ
2
)
 
in the size of the defect α. Therefore, 

instead of the surface becoming more homogenous with increase in α (as ob-

served in Case 3(a), Sec. 4.5.3), a more complex behavior (λ̅ ) is observed for this 

case (Figure 4-23).  

With increasing α, the variation in feature size would tend to make the sur-

face more inhomogeneous (implying, larger λ̅ ), while the increase in the mean 

size tends to make the surface more homogenous. These opposing trends combine 
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to make λ̅  almost level for certain ranges of α (α = 2 to α = 8). Stated imprecise-

ly, the increase in variation (σ
2
) in α ‘pulls’ λ̅  ‘up’, while the increase in mean α 

‘pushes’ λ̅  down, as a result of which the response is flat in some ranges. How-

ever, the tails of Figure 4-23 show distinct behaviors. For small α (e.g., α = 1) the 

effect of mean size is dominant, while for large α (e.g., α = 32) the variation 

becomes more prominent. 

 

Figure 4-23: Change in mean Fiedler number (  ̅ ) with mean feature size (α), where α is a uniform 

random variable . 
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Table 4-5: Some descriptive statistics of the Fiedler number measured for the simulated defect types 

with different sizes (α, with (discrete) uniform random variation; 50 data points for each defect type). 

Defect density is maintained at 3% for each α level 

FEATURE SIZE  MEAN STD. DEV.  RANGE IQR 

α = 1 +  (   ) 0.817 0.0075 0.0346 0.0113 

α = 2 +  (   ) 0.7145 0.0073 0.0342 0.0103 

α = 4 +  (   ) 0.7024 0.0092 0.0397 0.0103 

α = 8 +  (   ) 0.6923 0.0136 0.0621 0.0201 

α = 16 +  (    ) 0.6536 0.0251 0.1106 0.0316 

α = 32 +  (    ) 0.9429 0.0687 0.2582 0.0911 

Number of data points 50 (for each α) 

Pooled standard deviation 0.0309 

Standard error 0.0043 

Though it may be argued that this is a biased scenario, with the mean and 

variation effects of feature size (purposely) confounded, it is nonetheless of prac-

tical importance. Though we can easily separate the two effects when simulating 

artificial surfaces, we may not have such liberty with experimentally acquired 

surfaces. One observes that large dimension parts often have much wider toler-

ances (variance) compared to smaller dimension parts. We point the reader to 

Table 1-2  [4] in Chapter 1 as evidence in support of this position. Given such 

confounding and the insensitivity of λ2 (in scenarios such as this), we wish to seek 

a better discriminant than the Fiedler number.  

Thus far, we have not examined the Fiedler vector    (which is used exten-

sively in image segmentation applications [192]). The Fiedler vectors    for 

different α from this scenario are shown in Figure 4-25. We observe from Figure 

4-25 that the Fiedler vector (  ) may contain information related to the spatial 

characteristics of the surface. For example, we perceive that as α increases,    

tends to cross the zero line less often. Subsequently, we extracted two statistical 
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characteristics, termed as, zero crossing and persistence to study the behavior of 

the eigenvector   . 

 The zero crossing statistic measures the number of instances    crosses zero, 

i.e., the number of inflexions (or changes in sign) the eigenvector undergoes. The 

persistence statistic, is complementary to zero crossing, and measures for how 

long (in terms of data points) the eigenvector maintains its current position either 

above or below the center, (i.e., the run length before     changes sign). The zero 

crossing and persistence statistics for different α levels are presented in Table 4-6, 

plotted in Figure 4-26. From where (Table 4-6 and Figure 4-26) it is apparent that 

there is a trend in these statistical measurements with respect to α, namely, the 

number of zero crossings decreases with α. This corroborates that the initial visual 

observation that    seems to become less volatile with increase in α while the 

opposite is true for the persistence statistic. This study leads us to infer the follow-

ing: 

Inferences from the study 

1. The Fiedler number can distinguish changes in size of the morphology. 

2. The Fiedler vector can also be a valuable tool for distinguishing morphologi-

cal changes. 
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Figure 4-24: Typical surfaces for different mean defect sizes (α) with variation in defect size. 
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Figure 4-25: Representative Fiedler vectors (  ) for different levels of α.  

We observe that as α increases,    becomes less volatile (there are fewer changes of sign)  
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Table 4-6: Zero-crossing and persistence statistics measured at different levels of α 

Feature Size Zero Crossings Persistence 
α = 1 +  (   ) 429 570 
α = 2 +  (   ) 362 637 
α = 4 +  (   ) 188 811 
α = 8 +  (   ) 110 889 
α = 16 +  (    ) 54 945 

 

 

Figure 4-26: Trend of zero crossings vs. feature size (α). 

As α increases the number of zero crossings decrease almost linearly (on the log scale) 
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4.5.4 Case 4: Effect of image properties 

Case 4(a): Effect of image size 

From a practical standpoint, it can be claimed that the Fiedler number is a pa-

rameter that is influenced by the size (resolution) of the image analyzed, and is 

therefore an unreliable key process output variable for quantifying surface mor-

phology
19

. It is well known that image quality is easily affected by environmental 

and instrumental factors. Also, sometimes due to optical errors (e.g., from im-

proper focus) some areas of the surface may be occluded. This study addresses 

these foregoing concerns. 

Aim of the study 

Demonstrate that the graph theoretic invariant Fiedler number is robust to image 

size.  

In this study, we quantify the sensitivity of the Fiedler number (λ2) to varia-

tion in image size. For this purpose, we generate artificial surfaces (Figure 4-27), 

of resolution 900 pixel × 900 pixel with multiple heterogeneous features (four in 

total, see Table 4-7). These features have distinct characteristics with respect to 

their texture
20

 (i.e., hue of the feature), and size. They are uniformly distributed on 

the surface using the procedure described previously for Case 1 (Sec. 4.5.1 ) with 

identical density (3%, for each feature). For example, Figure 4-27 shows a typical 

                                                 
19

 This concern can be countered mathematically as per the reasons tendered in Sec. 4.4.1. We 

recall that λ2 is obtained from the normalized Laplacian  , which is scaled based on the degree  , 

and therefore independent of the image size.     
20

 The textures are in gray scale; 1 is white, and 0 is black. 
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simulated surface, on which the four features listed in Table 4-7 are present. 

Pertinently, the overall image is a gray scale image (background hue 0.8) as op-

posed to the binary images used in the studies thus far. Hence, we apply the edge 

weighted approach detailed in Sec. 4.4.4.  

Table 4-7: Scale and texture parameters for the different features simulated for studying the influence 

of image scale on the Fiedler number. 

Size Texture 

1 +   (   ) 0.40 

2 +   (   ) 0.48 

3 +   (   ) 0.5 

5 +   (   ) 0.55 

We generated 138 images of the type shown in Figure 4-27. For each simu-

lated image generated, we measure the Fiedler number at different areal scales, 

starting from 100 pixel × 100 pixel area (L1) around the center (shown with a red 

bordered box in Figure 4-27), 200 pixel × 200 pixel (L2, green border), and so on, 

until the whole image is covered (900 pixel × 900 pixel (L9)).  

 
Figure 4-27: Gray-scale surface generated with heterogeneous defects to study the effect of image size 

on the Fiedler number.    
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Figure 4-28: Fiedler number measurements at different image levels, the bar is ±1σ long. 

The corresponding mean Fiedler number (λ̅ ) for different image levels (i.e., 

(λ̅ |  )          {      }) is presented in Figure 4-28 (see also Table 4-8), 

from which we perceive that above the scale of 500 pixel × 500 pixel (L5) and 

beyond, the mean Fiedler number (λ̅ ) seems to have converged. This observation 

is further verified using Tukey’s pairwise multiple comparison test for different 

image levels (Figure 4-29), which reveals that the difference in λ̅  for image 

levels at L5 and above are (barring one instance) statistically insignificant (α = 

5%). 
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Table 4-8: Descriptive statistics for the Fiedler number (λ2) at different image levels. 

IMAGE LEVEL PIXEL SIZES MEAN STD. DEV RANGE IQR 

L1 100 sq. pixels 0.1285 0.1091 0.4599 0.1577 

L2 200 sq. pixels 0.2281 0.1068 0.5025 0.1498 

L3 300 sq. pixels 0.2786 0.1178 0.5813 0.1711 

L4 400 sq. pixels 0.3158 0.1076 0.4585 0.1459 

L5 500 sq. pixels 0.3503 0.1233 0.5964 0.2062 

L6 600 sq. pixels 0.3631 0.1277 0.5525 0.2185 

L7 700 sq. pixels 0.3580 0.1175 0.5185 0.1765 

L8 800 sq. pixels 0.3904 0.1194 0.6058 0.1693 

L9 900 sq. pixels 0.4100 0.1297 0.5367 0.2059 

Number of data points 138 

Pooled standard deviation 0.1179 

Standard error 0.0100 

 This result has an important practical implication – the Fiedler number (λ2) is 

independent of image size beyond a certain threshold, which is approximately 0.3 

times the area of the image obtained under normal conditions. From a practical 

standpoint, this study indicates that the Fiedler number (λ2) for a homogeneous 

surface (such as a CMP processed surface) is independent of the image size if the 

area analyzed is sufficiently large (at least greater than third the usual image area).  

Hence, even under conditions where an image obtained may be occluded due 

to optical errors, as long as more than a third of the area of the image is useable, 

the Fiedler number obtained from such an image will not vary significantly from 

that of an optimal image. An implication of this is evident from Figure 4-30, 

which shows the SEM micrograph of an alumina substrate. The original image is 

about 580 px. × 580 px. Samples were taken at different location on the image, 

totally 5 samples were taken for each smaller image level. After about 300 px. × 



 

238 

 

300 px. image size (about fourth of the total image area), the Fiedler number 

converges statistically.  

Inferences from the study 

The Fiedler number (λ2) is found to be robust to changes in image size. The dif-

ference in Fiedler number is statistically insignificant (at 5% level of confidence) 

for portions that are greater than approximately one third of the area of the origi-

nal image.    

 

Figure 4-29: Tukey’s pairwise comparison test applied to the mean Fiedler number measured at 

different image levels. 
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Figure 4-30: Left: Alumina substrate sample (courtesy FEI). Right: Mean Fiedler number at various 

image sizes. 

Case 4(b): Effect of direction of measurement 

It is contended that the direction of measurement can also affect the Fiedler 

number of a surface. As a practical analogy, consider the surface quality of a 

lapped wafer measured with a stylus-based surface roughness profiler. It is often-

times noted that the surface roughness measurement will defer (assuming that the 

surface is homogenous) depending on the direction in which the readings are 

taken.  

This study aims to quantify the difference in Fiedler number due to the direc-

tion in which a surface is measured. Thus far, we have used pixel rows for con-

structing the graph nodes (see Eqn.(4-2)); in this study, we will investigate wheth-

er there is a significant difference if pixel columns were instead used (for a ho-

mogenous surface).  
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Aim of the study 

Quantify the difference in Fiedler number (λ2) due to row-wise versus column-

wise pixel computations (contingent on the surface being homogenous). 

The difference in surface characteristics due to direction of measurement is 

often inconsequential in surfaces bereft of certain features contingent on the 

manufacturing process, e.g., polishing/lapping. For instance, for a well-polished 

CMP surface, it is not easy to identify the axial and radial directions of wafer 

rotation from the micrograph image.  

However, in surfaces generated using processes, such as turning where tool 

feed marks are evident on the surface; the roughness measurement will depend on 

the direction in which the stylus of the profiler scans the surface. Under such 

conditions, it is standard practice to take surface roughness measurements cutting 

across, i.e., perpendicular to the feed marks. In this study, we use the three types 

of surfaces simulated in Sec. 4.5.1, Case 1(a). For each type of surface morpholo-

gy (Figure 4-6) we generate 21 instances, and compute the Fiedler number (λ2) 

using both pixel rows and columns for nodes. The results are graphically depicted 

in Figure 4-31 below, where we notice that the difference between row and col-

umn pixel computations of the Fiedler number is negligible.  

This assertion is corroborated using a two sample paired t-test. The results 

from the statistical analysis are presented in Table 4-9, where we notice that the p-

value >> 10% for pairwise comparisons between Fiedler number computed with 

pixel rows and pixel columns. Based on this evidence, we can conclude that given 
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a homogenous surface, the difference between row-wise and column-wise pixel 

computations of the Fiedler number are not statistically significant. 

Inferences from the study 

The Fiedler number (λ2) is found to be robust to direction of measurement for a 

homogeneous surface, i.e., the difference between Fiedler number computed 

using row-wise and column-wise comparisons is not statistically significant. 

 

Figure 4-31: Fiedler number for three different surface morphologies taken in the row-wise and 

column-wise pixel directions. 
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Table 4-9: Paired t-test results for row-wise and column-wise Fiedler number estimates. 

MORPHOLOGY 

TYPE 

MEAN STD. DEV. RANGE IQR 

ROW COL. ROW COL. ROW COL. ROW COL. 

TYPE 1 0.8184 0.8179 0.0076 0.0079 0.0311 0.0270 0.0103 0.0095 

TYPE 2 0.7156 0.7296 0.0516 0.0483 0.1799 0.1864 0.0908 0.0575 

TYPE 3 0.6565 0.6650 0.0224 0.0273 0.0818 0.0970 0.0266 0.0386 

PAIRED T-TEST 

DIFFERENCE IN FIEDLER NUMBER BETWEEN ROW-WISE AND COLUMN-WISE MEASUREMENT 

MORPHOLOGY 

TYPE 
p-value t-stat 

Confidence 

interval 

Pooled 

standard deviation 

TYPE 1 0.6874 0.4502 -0.0017 0.0027 0.0048 

TYPE 2 0.2827 -1.1041 -0.0404 0.0124 0.0581 

TYPE 3 0.2492 0.0581 -0.0234 0.0064 0.0328 

 

4.5.5 Case 5:  Surfaces with deterministic (non-random) patterns 

Case 5(a): Different morphologies 

We now illustrate a case in which the features occur in a repeating pattern as 

opposed to a random manner. Some examples of such surfaces are, patterned 

semiconductors, nanostructured substrates, micro-channels, aligned carbon nano-

tubes, etc. [33]. Two types of binary surfaces of resolution 1000 pixel × 1000 

pixel, with feature densities (i.e., proportion of white color patterns) identically 

maintained at 19% are artificially generated (Figure 4-32). Since the surfaces are 

completely deterministic (there are no randomly determined locations, densities, 

or sizes), the need for replicates is precluded. 

Aim of the study 

Demonstrate that the graph theoretic invariant Fiedler number can capture mor-

phology of deterministic patterned surfaces. 
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Although, the feature density is the same for both patterns, the Fiedler num-

bers (λ2) are significantly different. For pattern A (left side of Figure 4-32) λ2 is 

estimated at 1 (this surface has a bipartite graph structure, a scenario we will 

describe in detail in the forthcoming section (Sec. 4.5.6)). While for pattern B 

(right side of Figure 4-32), the Fiedler number is 0.89. Thus, the Fiedler number 

can discern topological differences on patterned surfaces that cannot be captured 

using statistical parameters such as feature density. 

 

Figure 4-32: Two types of simulated structured surfaces.  

Pattern A: Box patterns, Pattern B: X-type pattern. 

As an illustrative example using real images, consider the SEM micrographs 

for various inorganic and organic samples shown in Figure 4-33. It is observed 

that the Fiedler number is sensitive to the different patterned morphologies. 
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Figure 4-33: SEM micrographs of different organic and inorganic samples (courtesy of FEI). 

Case 5(b): Effect of pattern defects  

This ability of the Fiedler number (λ2) to discern differences in surface topol-

ogy can be valuable from a quality monitoring perspective. Consider Figure 

4-34(a), which shows a surface with two types of features embedded. As a practi-

cal analogy, we might consider the bottom half of Figure 4-34(a) as a process 

related defect. For instance, the surface in Figure 4-34(a) could be a nanolithogra-

phy-processed sample, the bottom half of which has been exposed (or etched) 

imperfectly due to anomalies with the UV beam traverse system. We estimate the 

feature density and Fiedler number statistics for different levels (percentage) of 

defects. In this case, 10% defective would mean 100 rows out of 1000 of the 

surface (the image resolution is 1000 pixel × 1000 pixel), have been defectively 

etched.  
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The resulting feature density (proportion of white colored elements) and 

Fiedler number plotted against defect density in Figure 4-34(b) and Figure 4-34(c) 

respectively, reveal that the Fiedler number is more sensitive to the occurrence of 

defects in comparison to the feature density statistic. 

 From Figure 4-34, we observe that the feature density:  

i. has no discernible trend (it is almost identical for 20% and 40% defect 

levels), therefore the opportunity to correlate surface quality and feature 

density are limited, and  

ii. has large variation, therefore only statistically tenuous inferences with 

respect to the surface quality (if any) can be made. 

 In contrast, the Fiedler number has an unequivocal trend with little variation 

(except close to the 60% level, because the defects become more dominant over 

the rest of the surface). In other words, it is possible using an SPC approach that 

the occurrence of process defects can be detected with smaller Type II (failing to 

detect) error when the Fielder number is used as a key process output variable 

compared to popular statistical parameters, such as feature density, which are 

routinely used for quantification of such binary surfaces. 

Inferences from the study 

1. The graph theoretic invariant Fiedler number can capture morphology of 

deterministic patterned surfaces. 

2. The Fiedler number is more sensitive to changes in surface morphology in 

terms of pattern related mistakes compared to conventional parameters, such 

as defect density.  
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Figure 4-34:  Effect of defective patterning. 

(a) Pattern A with bottom half incorrectly patterned (50% defective), (b): Behavior of feature density vs. percentage defective, (c): Behavior of Fiedler number vs. percentage defective. 
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4.5.6 Case 6: A Limiting case – deterministic repeating patterns map-

ping to bipartite network graphs 

 If you make a theory, for example, and advertise it, or put it out, then you must 

also put down all the facts that disagree with it, as well as those that agree with it. 

− Richard Feynman, “Cargo-Cult Science,” speech at Caltech (1974) 

Keeping with the above injunction by Feynman, we present a limiting case 

for the graph theoretic approach, where the Fiedler number λ2 is not sensitive to 

changes in surface morphology. In this case, we study surfaces that have a deter-

ministic repeating morphology of a kind that leads to a special type of graph 

network, namely, a bipartite graph. We briefly alluded to such graphs in Sec. 

4.5.2 and Sec. 4.5.5, where we noticed that under certain circumstances the 

Fiedler number equals 1 (λ2 = 1).  

Such scenarios present a limiting case for the graph theoretic approach in 

quantifying surface morphology, because under bipartite graph conditions the 

Fiedler number becomes equal to one (λ2 = 1) regardless of the morphology of the 

surface [179, 180, 185]. We will demonstrate that this is an inescapable mathe-

matical consequence
21

 [179, 180, 185] (the proverbial brick wall), and not a 

chance simulation-based outcome.  

Therefore, the Fiedler number cannot be used as a discriminant for surface 

morphology when the graph network representation (of the surface) becomes 

                                                 
21

 This result has been proved in literature, we are only demonstrating the mathematical implica-

tions, and not proving a theorem. 
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bipartite, although, there are ways around the problem, which we will explore 

towards the end of this section.  

Aim of the Study 

1. Explore limiting cases for the graph theoretic approach, using the bipartite 

graph as a demonstrative example, where λ2 = 1. 

2. Suggest modifications to the approach whereby the above limitation can be 

overcome. 

Procedure 

The surfaces simulated (Figure 4-35) in this study are strictly deterministic. 

In that, the sizes of the features, their locations, and densities do not vary. Moreo-

ver, the features occur at regular intervals, separated by a specific distance. Nine 

different such surfaces (total area 1024 pixel × 1024 pixel) are investigated, six of 

which are shown in Figure 4-35. These surfaces are labeled β1 through β9. The 

subscript is of significance, and denotes the distance between the features (as 

usual colored white and 1 pixel × 1 pixel in area).  

For instances, 6 pixel × 6 pixel portions of two example surfaces β1 and β2 (of 

the nine simulated) are shown in Figure 4-36, from which we notice that the 

Manhattan distance between neighboring features is 2
n 

where, n is the subscript of 

the test image. Therefore, the Manhattan distance between features for image β1 is 

equal to 2 ( (  )      ), for β2 the Manhattan is equal to 4, ( (  )     

 ), and so on.  
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We notice that the choice of feature distance is a dyadic sequence. The total 

area of each image βn is fixed at 1024 pixel × 1024 pixel. This is done so that the 

total image is exactly divisible by the feature distance, which eliminates any 

eventuality of ‘edge effects’ from the image size. This precaution will be conse-

quential in computation of the isoperimetric number (Cheeger’s number,  ( ), 

see Sec. 4.4.2) for the various images. 

We analyze the structure of the network graph, alongside the examination the 

various matrices (similarity  , degree  , combinatorial Laplacian  , and normal-

ized Laplacian  ), along with the eigen spectra μ  and λ  (of   and  , respective-

ly) for two cases β1 and β2. From these we generalize the results to all instances 

through β9. In addition, since the images are binary in nature, we will use the ε 

neighborhood approach for analysis (Sec. 4.4.3) of the surfaces (βn,    

 {      }) in this study. 
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Figure 4-35: A 100 pixel × 100 pixel section of the surfaces (total 1024 pixel × 1024 pixel) simulated for 

testing bipartite graph structures. 

 

Figure 4-36: Two cases β1, β2 of the surfaces simulated for this study. 

These are 6 pixel × 6 pixel sections of the total 1024 pixel × 1024 pixel area of the surface. The Manhat-

tan distance between features (white colored) is βn
.   
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Analysis of surface type β1 

A 6 pixel × 6 pixel section of β1 (out of 1024 pixel × 1024 pixel total area) is 

shown in Figure 4-36. As in previous cases, the white colored pixels (features) are 

coded 1, and the black colored pixels are coded 0 (see Figure 4-37). We recognize 

from Figure 4-37 that the alternate rows of the image β1 are identical, i.e., row 1 is 

identical to rows 3 and 5; while row 2 is identical to rows 4 and 6.  

The Euclidean norm between row 1 and row 2 is 1.732, and between row 1 

and 3 is 0. Indeed, all (pairwise) distinct pixel rows will be 1.732 in Euclidean 

measure, whereas the Euclidean distance between identical pixel rows is zero. 

The average of all row-wise Euclidean distances (taken pairwise) is estimated at 

0.8660. We also recall, that in graph theoretic mapping      (   ) used in 

this work, each row is taken to represent a node of the graph   (   ). 

Consequently, on applying the threshold function in Eqn. (4-27), if any 

(pairwise) pixel rows have a Euclidean norm greater than 0.8660, then the corre-

sponding nodes are connected with an edge. Which implies, there is an edge 

connecting node 1 and node 2 (which correspond to row 1 and 2, respectively), 

but no edge connections exist between node 1 and node 3. The resulting similarity 

matrix   for the image β1 is shown in Figure 4-37. 
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Figure 4-37: Coding for image β1, and the resulting similarity matrix  . 

Examination of the similarity matrix   (Figure 4-37) can be useful in a visual 

context. Since nodes 1 and 2 are connected (we observe,  (   ) = 1), while row 1 

and 3 are not ( (   ) = 0), and so on, we can draw the graph network in Figure 

4-38. This graph is a typical bipartite graph (also called 2-colorable). All nodes 

(in the graph) can be assigned to either of two sets, for didactic reasons we will 

call these sets Red and Blue, with the nodes in each set colored likewise. For 

instance, the nodes 1, 3 and 5 are grouped in the Blue set, while nodes 2, 4 and 6 

are grouped in the Red set (Figure 4-38).  
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Figure 4-38: Graph network for image β1, 

Notice the graph is 2-colorable or bipartite, i.e., only two ‘colors’ (i.e., the nodes are either colored red 

or blue) are sufficient to separate the graph into two subsets. All blue colored nodes are connected to 

all the red colored nodes.  

Using the similarity matrix   in Figure 4-37, we can draw the node connec-

tions, as shown in Figure 4-38. For example, the Blue node 1 is connected to the 

Red nodes 2, 4, and 6, (see the first row of the similarity matrix  , which is also 

color indexed). Continuing in this manner, we notice that edges exist only be-

tween nodes in differently colored sets; nodes in the same set are not connected – 

Blue nodes are only connected to Red nodes. This means, the graph can be exact-

ly partitioned into two sub-graphs using two colors, hence the term 2-colorable. 

The network graph for β1 is shown in Figure 4-41, and as expected, the bipartite 

structure is evident. 
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We summarize the following salient characteristics from the graph for β1, re-

ferring to Figure 4-38: 

i. Nodes are assigned to either of exactly two sets, in our case these are 

‘colored’ Red and Blue. The Euclidean distance between nodes in the 

same set is equal to zero. 

ii. Nodes in the same set are not connected. Edge connections exist only 

between nodes in different sets; i.e., Blue nodes only connect with 

Red nodes, and not among themselves.  

iii. A node from one set connects to all nodes in the other. A Blue node is 

connected to all Red nodes. 

iv. Both (Red and Blue) sub-graphs have exactly the same number of el-

ements (for the small section considered, three elements each). 

Properties (i) and (ii) imply the graph network is bipartite. Properties (iii) and 

(iv) ensure that the bipartite graph is complete and balanced, respectively. 

An additional observation can be made from Figure 4-38; the minimum edges 

to be severed to isolate a node for the network in Figure 4-38 is exactly equal to 3 

(note the pink line in Figure 4-38). That is, the Cheeger number equals 3 ( ( )  

 , see Sec. 4.4.2). These implications can be generalized to the entire 1024 pixel × 

1024 pixel area of β1.  

Since every alternate row of β1 is identical, each set, Blue and Red, will have 

exactly 512 elements. Taking an element (viz. a node) in a set, e.g., a node k from 

set Blue, we know that node k will be connected to all 512 nodes in set Red. The 
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same reasoning can be extended to all nodes in the graph. Every node will be 

connected to 512 other nodes (from a differently colored set). Thus in order to 

separate any node from the graph, exactly 512 edges will have to be severed. In 

other words, the Cheeger number for β1 (taking the entire 1024 × 1024 area), 

equals 512, therefore for β1,  ( )     . 

  

Figure 4-39: The degree matrix and combinatorial Laplacian matrix for image β1 

The degree matrix  , and combinatorial Laplacian   for β1 are shown in Fig-

ure 4-39 (for the 6 pixel × 6 pixel section only), from the latter we can extract the 

non-normalized eigenvalues μ . These eigenvalues of   (μ ) are [0, 3, 3, 3, 3, 6], 

arranged in the ascending order. We notice that μ   , non-normalized Fiedler 

number μ   , and μ   . The first eigenvalue equals zero, the second equals 3 

(note also  ( )   ), and the last eigenvalue μ  equals 6  (i.e.,   ( )). These are 

in keeping with well-known properties of bipartite graphs [181, 188]. We will 

explain the reason for this eigen sequence in further depth following the analysis 
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for β2. If we extend the analysis to entire the 1024 pixel × 1024 pixel area, it is 

easy to see that, μ   , μ     , and μ         . 

 
Figure 4-40: The normalized laplacian   for β1. 

Using the degree matrix   and the combinatorial Laplacian  , we obtain the 

normalized Laplacian     
 

 

      
 

 

  (see Eqn. (4-9)), shown in Figure 

4-40. The eigen spectrum λ  is [0, 1, 1, 1, 1, 2]. We notice, λ1 = 0, the Fiedler 

number λ2 = 1, and λ6 = 2. As expected [179, 180, 185],   λ   , with λ2 = 1 

(because the graph is bipartite), and λ6 = 2 for the same reason. This eigen spec-

trum when the analysis is extended to the entire 1024 pixel × 1024 area is λ1 = 0 

(occurring once); λ2 = 1 (repeated 1022 times); and λN=1024 = 2 (occurring once).   
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Figure 4-41: Network graph (40 nodes only) for image type β1 (left), and zoomed-in portion showing the bipartite structure. 
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Figure 4-42: Coding for image β2, and the resulting similarity matrix  . 

Analysis of surface type β2 

Continuing with our analysis with surface type β2, and following similar rea-

soning as before; we code the image and obtain the similarity matrix (for a 6 pixel 

× 6 pixel region) as shown in Figure 4-42. We notice that rows 1 and 5 of the 

image β2 are identical (so are rows 2, 3, 4, and 6). The Euclidean norm between 

distinct rows is estimated at 1.4142, and the overall average of all pairwise dis-

tances is 0.7071; therefore the threshold r equals 0.7071 in Eqn. (4-27).  
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Figure 4-43: Graph network for image β2. 

Notice the graph is 2-colorable or bipartite, i.e., only two ‘colors’ (i.e., the nodes are either colored red 

or blue) are sufficient to separate the graph into two subsets. All blue colored nodes are connected to 

all the red colored nodes. 

As result, the similarity matrix   takes the form shown in Figure 4-42, with 

the graph network shown in Figure 4-43. Using the set notation established previ-

ously for the analysis of β1, we assign nodes 1 and 5 to the Red set (because node 

1 and 5 are identical), and likewise nodes 2, 3, 4, and 6 to the Blue set. Subse-

quently, the following salient features are evident from the network graph for β2: 

i. As before, nodes belong to either of exactly two sets, ‘colored’ Red 

and Blue. The Euclidean distance between nodes in the same set 

equals zero. 

ii. Nodes in the same set are not connected. Edge connections exist only 

between nodes in different sets; i.e., Blue nodes only connect with 

Red nodes and not among themselves.  
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Figure 4-44: Network graph (40 nodes only) for image type β2 (left), and zoomed-in portion showing the bipartite structure
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iii. A node from one set connects to all nodes in the other. A Blue node is 

connected to all Red nodes. 

iv. Both (Red and Blue) sub-graphs do not have the same number of el-

ements. Therefore, the bipartite graph is not balanced. 

These conditions imply that the graph is a complete (but not balanced) bipar-

tite graph. The network graph for β2 is shown in Figure 4-44, from which the 

bipartite structure is evident. We observe from Figure 4-43 that the Red set has 

less number of nodes. 

The following additional interesting characteristics are noted for β2 on refer-

ring to Figure 4-45: 

v. Since every fourth row of β2 is identical (as opposed to every alternate 

row for β1), one of the sets (or sub-graphs) has fewer number of 

nodes. We will color the set with fewer nodes as Red. Nodes 

{       } belong to the Red set, and the rest of the nodes, 

{             } are assigned to the Blue set. 

vi. Due to the bipartite graph for β2 being complete but not balanced, the 

nodes in the two sets have different degrees. Whereas, in case of β1 all 

nodes had the same degree (equal to 3), the degree of a node for β2 

depends on the set (Red or Blue) in which a particular node is as-

signed. For nodes in the Red set (i.e., set with fewer nodes), the de-

gree is equal to 4 (for the 6 pixel × 6 pixel region), while for nodes in 
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the Blue set the node degree is equal to 2. Hence, the maximum de-

gree (dmax) is equal to the cardinality of the set with the larger number 

of nodes, while the minimum degree (dmin) is equal to the cardinality 

of the set with smaller number of nodes. These observations are anno-

tated in Figure 4-45. 

 

Figure 4-45: Additional observations based on node degree and set coloring for image β2. 

vii. Since the graph is a complete bipartite graph, we can estimate the 

Cheeger number ( ( )) based on the minimum degree (dmin). For the 

6 pixel × 6 pixel region, the minimum degree (dmin) is equal to 2 

(nodes in the Blue set). Therefore,  ( )         for this case, as 

the severing of 2 edges from any node in the Blue set is sufficient to 

isolate the node (break the graph). 
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viii. On generalizing these observations for the entire 1024 pixel × 1024 

pixel area, the Red set will contain 256 nodes (every 4
th

 row in 1024 

rows is identical), whereas the Blue has 768 (= 1024 – 256) nodes. 

The nodes in the Red set have the maximum degree, viz. 768 (each 

node in the Red set is connected to all the nodes in the Blue set), the 

nodes in the Blue set have the minimum degree (256). Therefore, for 

β2,   ( )     . 

   

Figure 4-46: The degree matrix and combinatorial Laplacian matrix for β2. 

Next, we compute the degree matrix   and the combinatorial Laplacian   for the 

6 pixel × 6 pixel region of β2, are shown in Figure 4-46. From which we notice 

that the degree for nodes 1 and 5 (first and fifth row of   in Figure 4-46) are 

equal to 4 (= dmax), while the degree for the rest of the nodes is equal to 2 (= dmin) 

agreeing with our previous observations.  
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The (non-normalized) eigenvalues μ  computed from   are [0, 2, 2, 2, 4, 6] 

arranged in the ascending order. Implying, μ   ; Fiedler number μ   ( )  

      ; μ        ; and μ               . Based on these non-

normalized eigenvalues (μ ) the following additional observations can be made:  

ix. As expected, the Cheeger number  ( ) is equal to the minimum de-

gree     . 

x. The minimum degree (    ) appears | |    times as an eigenvalue 

in the eigen spectrum μ  of  . Where, | | is the cardinality of the set 

with more nodes, i.e., Blue set. 

xi. The maximum degree (    ) appears | |    times as an eigenvalue 

in the eigen spectrum μ  of  . Where | | is the cardinality of the set 

with fewer nodes, i.e., Red set. 

xii. These are results are readily extensible to the entire 1024 pixel × 1024 

pixel area of β2. It can be verified that μ    (occurring once); 

Fiedler number μ   ( )           (repeated 767 times); 

μ                    (repeated 255 times); and 

μ                      (occurring once). The Cheeger 

number  ( )  
    

   for β2.  

xiii. These results can be induced over all images β1 through β9 because all 

the images studied form complete bipartite graphs. They have the 

same structure as β2, and share the same properties. We note that alt-

hough β1 is a complete and balanced bipartite graph, these observa-
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tions hold nonetheless (for β1), because, β1 is a special symmetric 

case of β2 through β9. 

xiv. The Cheeger number  ( ) for all cases β1 through β9 (and beyond) is 

⌈
 

  ⌉, where n is the subscript of the corresponding surface β, and K is 

the size of the image in pixels along one dimension. For this study K 

= 1024; the relationship implicitly assumes the image is square (see 

Table 4-10). 

The network graphs for some of the cases tested in this study are shown in 

Figure 4-47. It is evident on examination of results presented in Table 4-10 along 

with the various network graphs of Figure 4-47 that as the distance between 

features increases, the network becomes less well connected (while maintaining 

the bipartite structure). 

Table 4-10: Various properties for images β1 through β9. 

n 2n
 

h(g)=⌈
  

  ⌉  

 (Calculated) 
       

Fiedler Number  

(Non-normalized) 

computed  

μ  

Fiedler Number  

Normalized  

computed 

λ  

1 2 512 512 1 

2 4 256 256 1 

3 8 128 128 1 

4 16 64 64 1 

5 32 32 32 1 

6 64 16 16 1 

7 128 8 8 1 

8 256 4 4 1 

9 512 2 2 1 
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Figure 4-47: The network graphs for some tested cases. 

The network graph is representative of 40 nodes. Notice the decrease in connectivity as the distance between features increases. 
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Figure 4-48: Normalized Laplacian matrix   for β2 

The normalized Laplacian   for β2 is shown in Figure 4-48. The eigen spec-

trum λ  is [0, 1, 1, 1, 1, 2]. As before, λ1 = 0, the Fiedler number λ2 = 1, and λ6 = 2. 

Additionally, the non-zero elements of   (barring the diagonal, which is 1) are 

 
 

√         
 which for image β2 are  

 

√   
  

 

√ 
. Additionally, the non-

diagonal, non-zero elements correspond to the non-zero elements of the similarity 

matrix   (see Figure 4-42, therefore,    
 

√         
   ).  

The above relationship is easily generalized for all such situations. 

  
  

√ ( )      

    

  
  

√⌈
 
  ⌉  (  ⌈

 
  ⌉)

    

(4-32) 
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Overcoming the bipartite graph limitation 

This study confirms that the deterministic repeating pattern of types β1 

through β9 have a bipartite graph structure. The Fiedler number λ2 for such types 

of surfaces equals 1 (see Table 4-10). Therefore, in such scenarios, the Fiedler 

number (λ2) is unable to discriminate between different surface morphologies. 

Given that deterministic repeating patterns represent an important class of nano-

surfaces, it is vital to resolve this limitation. There are three possible ways to 

overcome this impediment: 

i. Using the non-normalized Fiedler number μ2: In case the image size re-

mains fixed, we can estimate the non-normalized Fiedler number μ , which 

we observe Table 4-10 decreases in inverse proportion to the distance βn
 be-

tween features. 

ii. Using the normalized Fiedler vector   : This preposition is based on our 

experience from Sec. 4.5.4, where the features extracted from    proved val-

uable for distinguishing the surface morphology. Accordingly, we plot the 

Fiedler vector for the three test patterns β2, β4, and β6 in Figure 4-49.  

From Figure 4-49, we notice that the peaks in    appear to be modulated 

at the distance between features for different image types. Thus, instead of 

using the Fiedler number λ2, which is identically 1 for all cases tested (Table 

4-10), we could instead use the Fiedler vector    as a discriminant in cases 

where the graph network becomes bipartite. 
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Figure 4-49: The Fiedler vector for three test patterns β2, β4, and β6. 

 

iii. Using the Kirchoff indices    and    : In Sec. 4.4.2, we described the 

combinatorial and normalized Kirchoff indices. We now estimate these for 

surfaces β1 through β9, these are shown in Table 4-11. Since it is known that 

the combinatorial Kirchoff index is dependent on the degree of the graph, we 

will instead devote our attention to the normalized Kirchoff index   . 

From Table 4-11, we note that unlike the Fiedler number λ2, the normal-

ized Kirchoff index    seems to be sensitive to the change in surface mor-

phologies. A concave-like trend is observed on plotting     vs. βn, as shown 
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in Figure 4-50, which implies that     can be a useful discriminant for the bi-

partite graph. 

Table 4-11: Kirchoff indices for images β1 through β9. 

n 2n
 

Combinatorial Kirchoff 

Index 

   × 10
8
 

Normalized Kirchoff 

Index 

   × 10
6
 

1 2 536.1 1.047 

2 4 402.1 1.309 

3 8 234.5 1.637 

4 16 125.8 1.851 

5 32 649.8 1.970 

6 64 33.01 2.033 

7 128 16.64 2.064 

8 256 8.350 2.080 

9 512 4.182 2.088 

 

 

Figure 4-50: Normalized Kirchoff index (log scale) vs. image type. 
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Inferences from the study 

1. The graph theoretic invariant Fiedler number λ2 fails as a discriminant to 

capture differences (because λ2 = 1, identically) in surface morphology for de-

terministic patterned surfaces that have an underlying bipartite graph network. 

2. Instead, in such scenarios (where a bipartite graph is formed) the Fiedler 

vector    is more sensitive to changes in surface morphology. 

3. If the size of the image is maintained fixed, then the non-normalized Fiedler 

number μ  can also be used as a discriminant for surface morphology for bi-

partite graphs representations.   

4. If computation overhead is not a concern, the normalized Kirkoff index     

could be used as a discriminant for bipartite-like surfaces. 
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4.6 Verification with Experimentally Acquired CMP  

 Surfaces 

We now apply the approach described in Sec. 4.4 for characterizing CMP 

polished wafers. Blanket copper (Cu) C14500 series wafers (dia. 40.625 mm) are 

polished on a bench top CMP setup (Buehler Automet 250). We note that this 

particular copper alloy has Tellurium (Te) added as an alloying element to en-

hance machinability, which limits the surface finish that can be achieved [62].  

The wafers are initially lapped to within 10 nm (Sa) using 0.3 µm alumina 

abrasives. The lapped wafers are subsequently CMP processed in three intervals 

of 3 minutes each (total 9 minutes of CMP), using alkaline colloidal silica slurry 

(70 nm particle size, 10 pH). The polished samples are cleaned with DI water, and 

a coating of benzotriazole (BTA) and isopropyl alcohol solution is applied to 

prevent corrosion. Near-specular surface quality (see Figure 3-3) was obtained 

using optimal processing conditions (identified a priori). After each polishing 

interval (which lasts 3 minutes) the wafer surface morphology is captured using a 

laser interferometer (MicroXAM) with an integrated optical camera.  

We obtain the surface profile and corresponding optical images at six ran-

domly selected positions on the wafer. We also confirmed these experimental 

results with a different wafer and obtained additional surface readings at two 

randomly chosen areas for each polishing interval.  



 

273 

 

  
Figure 4-51: Blanket copper wafers after 9 minutes of CMP with 70 nm colloidal silica slurry. 

4.6.1 A Review of Wafer Metrology Approaches in Semiconductor 

Manufacturing 

Tools currently used in nanotechnology research labs offer atomic-level resolu-

tion for characterizing nanoscale surfaces but are barely adequate to meet the 

requirements of high-volume nanomanufacturing. For example, an Atomic 

Force Micro-scope (AFM) gives nearly atomic-level surface resolution, albeit at 

a very slow rate; it would be impossible to use AFM to characterize surfaces in 

commercial-scale high-rate operations.  

– S. Bukkapatnam, et al., "Nanomanufacturing systems: opportunities for industrial 

engineers," IIE Transactions, (44)7, pp. 492-495, 2012/07/01 2012. 

Surface metrology for semiconductor wafers is complicated due to the pres-

ence of patterned device structures (which may not be periodic) [9, 20, 195, 196], 

which affect the transmission and reflection of light waves incident on the sur-

face. Furthermore, contact metrology is not preferred in semiconductor metrology 

due to the possibility of surface damage.  

Stokowoski and Vaez-Iravani [170] provide a historic perspective on the evo-

lution of semiconductor wafer inspection technology from standalone bright field 

and dark field systems to the hybrid systems predominant currently [197, 198].  
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In industrial CMP scenarios, the approach used for wafer metrology is con-

tingent on throughput and yield considerations [170], and is typically a multi-step 

process [170, 195]. Conventional optical microscopy is preferred due to cost and 

time advantages; it is mainly used for detecting catastrophic surface defects, such 

as scratches, pitting, and delamination [199-201]. In many optical inspection 

systems [199, 200, 202, 203] imperfections are treated in a statistical process 

control (SPC) context, with event counts relating to wafer defects.  

However, as we demonstrated in several instances (Sec. 4.5), such defect 

count approaches may not be appropriate for evaluating surface quality, and are 

often inadequate quantifiers of surface morphology.  

Automated optical inspection methods usually employ some form of post-

processing algorithms to detect and classify defects. Neural networks [204, 205], 

image filtering [198, 203, 206], and pixel comparison algorithms [195, 196, 200, 

207] are some of the post-process defect classification methods that are incorpo-

rated into newer optical inspection systems. Although, high wafer examination 

rates almost matching production speeds ( > 100 wafers per hour) are reported 

using optical systems [26, 170], they are confined to preliminary inspection stag-

es, because, evaluation of key process output variables, namely, within wafer non-

uniformity (WIWNU), step height, scratch depth, etc., is not possible with con-

ventional microscopy. 

Dimensional parameters in semiconductor wafers are measured using laser 

and glancing light metrology methods [206, 208-211]. Energy-based metrology 
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[212-214], e.g., scanning and transmission electron microscopy (SEM, TEM) are 

used for detection of particulate and near-surface/sub-surface imperfections, 

chiefly slurry residue, device fracture, peeling, contact failures, etc. Since the time 

required for SEM/TEM metrology is relatively long, wafers are inspected in small 

batches.  

Characterization of chemical and atomistic level defects are carried out using 

mass spectrometry approaches, namely, µ-Raman, secondary ion mass spectrome-

try (SIMS), vapor phase decomposition (VPD), total X-ray fluorescence. These 

may require more than one production shift, and are sometimes destructive [26]. 

Therefore, such methods are employed over sparse sample sizes. Steele, et al.[26] 

summarize some of the salient aspects of methods widely used for industrial 

wafer metrology (reproduced in Table 4-12). These challenges are summarized 

below in Graphic XI. 

 
Graphic XI: Challenges for semiconductor wafer metrology. 
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Table 4-12: Salient aspects of some of the wafer metrology methods used in the semiconductor industry 

(after Steele, et al.[26]) 

ANALYTICAL METHOD ADVANTAGES DRAWBACKS 

OPTICAL  

MICROSCOPY 

 In-line 

 Inexpensive 

 Non-contact/Non 

destructive 

 Nano-particle and 

chemical residue de-

tection is limited 

LASER BACKSCATTER-

ING 

 In-line 

 Inexpensive 

 Can detect small 

residue particles 

 Non-contact/Non-

destructive 

 Chemical residue 

detection not possible 

VAPOR PHASE DECOM-

POSITION INDUCTIVELY 

COUPLED MASS SPEC-

TROMETRY  

(VPD ICP-MS) 

 Extreme sensitivity to 

a wide range of de-

fects/contaminants 

 Off-line 

 Only for bare silicon 

 Destructive 

 Complex 

 No topography image 

(only spectra) 

TOTAL REFLECTION X-

RAY FLUORESCENCE  

(TXRF) 

 Very sensitive 

 Nondestructive in 

most cases 

 Some topography 

mapping capability 

 Off-line  

 Limited wafer area 

covered 

 Un-patterned wafers 

only 

SECONDARY ION MASS 

SPECTROMETRY  

(SIMS) 

 Extreme sensitivity to 

a wide range of de-

fects/contaminants 

 Sub-surface can be 

mapped 

 Off-line  

 Expensive 

 Destructive 
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4.6.2 ε Neighborhood Graph Theoretic Approach for CMP Wafer 

Morphology Quantification 

We note that the Te particles present in the Cu metal-matrix significantly bi-

ases the surface measurement readings obtained from the laser interferometer and 

can therefore be construed as extraneous artifacts having little bearing on the 

actual surface finish. We used a two-step Canny image filtering technique [177] 

for eliminating the regions with Te from the optical image ( , Figure 4-52(a)) and 

therefore minimizing the bias.  

The Canny filter is a well-established and predominant edge detection ap-

proach used in image processing applications. In the first step, the Canny filter 

parameters were set such that the resulting image consists mainly of regions with 

Te inclusions (indicated with yellow arrows in Figure 4-52(b)). The application of 

the Canny filter converts the grayscale image   into a binary image [177]. In the 

second step, the filter is set to capture both the prominent features on the surface, 

as well as, Te inclusions as shown in Figure 4-52(c) (yellow and green arrows). 

We term the image from step 1 and stage 2 as   , and   , respectively. The 

difference,         , in Figure 4-52(d) is a binary image largely consisting of 

relevant surface features (green arrows only) with Te rich regions removed. The 

Canny filter parameters are the only heuristically adjusted parameters in the entire 

approach. They are estimated only once using a representative image and remain 

fixed for all subsequent images (for all experimental CMP surfaces obtained in 

this study). A similar two stage approach using Gaussian filtered binary images 
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for defect detection in patterned wafers has been documented by Nichani, et 

al.[206].  

 
Figure 4-52: Canny filtering applied to CMP surfaces. 

(a): Representative optical image. (b): Binary image obtained after the first Canny filter step capturing 

mostly the Te affected regions (  ). (c) Binary image obtained after the second Canny filter step 

capturing both Te regions and surface features (  ). (d): The difference image with the Te areas largely 

discounted (  ). 

Next, we estimated the Fiedler number for CMP polished Cu test wafers (af-

ter the Canny filtering procedure). Representative results shown in Figure 

4-53(a)-(b) depict the optical micrographs for a lapped Cu wafer (before CMP), 

and after 9 minutes of CMP processing, respectively. The corresponding Canny 

filtered images using the procedure described above are shown in Figure 4-53(c) 

and (d). Their graph eigenvector maps (   vs.   ) are plotted in Figure 4-53(e)-

(f).  
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It is evident that as the wafer surface is polished over time, the number of dis-

tinct clusters in the eigenvector map reduces from over 100 for the lapped surface 

to < 20 after 9 minutes of CMP. Concurrently, the Fiedler number reduces from 

0.85 to 0.65 (Figure 4-56 (a)).We also note that there is a less significant decrease 

in Fiedler number between 3 minutes and 6 minutes of polishing compared to the 

last 9 minutes. The corresponding network graphs (with 40 nodes out of 1131 

total) presented in Figure 4-54, shows a gradual reduction in network connectivity 

with progressive CMP stages.  

Additionally, the trajectories of eigenvectors ( 2,  3, and  4) corresponding to 

the three smallest non-zero eigenvalues (λ2, λ3, and λ4, respectively) of the normal-

ized Laplacian matrix   for different processing stages are mapped in Figure 

4-55. The eigenvector trajectories show a gradual reduction in the number of 

distinct node clusters with CMP (consistent with Figure 4-53(e)-(f), and Figure 

4-55). A Tukey’s pairwise comparison test based on Fiedler numbers at different 

stages confirms this observation: the p-value is < 0.01 for pairwise difference 

between as lapped and all other stages; the same is true for comparisons with the 

9 minute CMP stage. This is however not the case (p-val. > 0.01) between 3 

minute and 6 minute stages.  

Another salient aspect of this result is noted in the similarity of Type 1 

(Figure 4-6 (a)) defects illustrated in Sec. 4.5.1 with the lapped (before CMP) case 

in Figure 4-53(c). The Fiedler numbers are nearly identical for both cases (0.81, 

compare Table 4-3 and Table 4-13) for such a type of topography. Also, the 
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topography in Figure 4-53(c) appears to be a close combination of defect Types 2 

and 3. Consequently, the Fiedler numbers (0.66) estimated from CMP stages 

represented by Figure 4-53(c) are closer to the respective simulated cases (0.64 to 

0.69). This further strengthens the assertion that the Fiedler number can capture 

changes in surface topology as opposed to mere density of detected features.  

We also tested the approach with binary images obtained by applying only a 

one-step Canny filter. In this case only the lower threshold images (  ) are used, 

which leaves the Te rich areas as is, but minimizes the eventuality of losing valu-

able surface feature information due to excessive filtering. The results are summa-

rized in Figure 4-56(b) and Table 4-13, from where it is indicative that an ade-

quately designed binary filter can also be effective for surface characterization. 

We have also utilized different kinds of edge detection filters, such as Prewitt, 

Sobel, etc., with comparable results. 

As noted earlier, the ε neighborhood representation essentially captures the 

topography of nanoscale imperfections. Hence, it is better suited for situations 

where defect density and distribution are to be quantified.  
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Figure 4-53: ε neighborhood graph representation applied to CMP surfaces. 

(a)–(b): Representative optical images for as received and 9 minutes CMP polished wafer, (c) – (d) The 

binary Canny filtered images corresponding to (a) and (b) respectively, and (e) – (f): The respective 

maps of the two smallest eigenvectors (   vs.    ).  
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Figure 4-54: Graph networks (40 nodes only) for different stages of CMP obtained using the ε neighborhood approach. 

Notice the gradual reduction in connectivity with CMP processing time. 
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Figure 4-55: The trajectories of three smallest eigenvectors. 

  2,  3, and  4, are obtained from the normalized Laplacian   using the ε neighborhood representation for various CMP stages. 
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Figure 4-56: Evolution of Fiedler number with polishing time. 

(a) Using two Canny filtering steps to remove Te inclusions, and (b) using one Canny filter (Te inclu-

sions not removed). 

4.6.3 Edge Weighted Graph Theoretic Approach for CMP Wafer 

Morphology Quantification 

The approach presented in the previous section used filtered images for graph 

representation. Selecting the correct filter parameters can be challenging, and 

filtering may lead to loss of valuable information. For example, in the previous 

case there was a complete loss of image texture information (due to Canny filter-

ing).  

Therefore, in this study, we eliminate the filtering step and use the (gray 

scale) optical micrograph. For this purpose, we use the edge weighted approach 

outlined in Sec. 4.4.4, that compares the texture differences in the surface image 

based on a Gaussian radial basis function instead of Euclidean distances from 

filtered binary images.  

The optical micrographs are acquired as 1131 × 1451 (1.64 mega pixel) gray-

scale tagged image files (TIFF format). The TIFF format is popular in scientific 
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image processing applications due to its high fidelity and resolution in compari-

son to other formats. The image obtained is a matrix of integers between 0 and 

255 that indicates pixel contrast, with zero indicating black and 255 white. We 

use Eqn. (4-28) and Eqn. (4-30) for calculating the pairwise pixel row differences.  

In this case, we note that heuristic filter threshold parameters are precluded. 

Figure 4-57(a)-(b) shows representative (graphically rendered) similarity matrices 

for an as lapped and 9 minutes polished CMP wafer, respectively. These corre-

spond to the surfaces in Figure 4-53(a)-(b). The Fiedler number estimated for 

different stages is depicted in Figure 4-57(c). We note that the mean Fiedler 

number reduces from close to 0.75 for lapped wafers to 0.33 for 9 minutes CMP 

processed wafers. This implies the surfaces have become relatively homogenous 

due to CMP. This is consistent with the change in connectivity of the graph net-

works (with 40 nodes out of 1131 nodes shown) for various CMP stages shown in 

Figure 4-58. 

The results from the edge weighted graph seem to agree well with the ε 

neighborhood approach, these are juxtaposed in Table 4-13. Tukey’s multiple 

comparison procedure indicates significant difference in λ̅  between stages (p-val 

< 0.01) for all comparisons paired with as lapped and 9 minutes CMP stages, but 

is not statistically significant (p-val > 0.01) for comparisons between 3 minute 

and 6 minute stages.  
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Table 4-13: Fiedler number estimates across CMP stages using different approaches. Each estimate 

includes 8 points, two of which are obtained from confirmation runs.  

 

Polishing 

Stage 

 

ε neighborhood approach 

Dual Canny Filtered 

Image 

ε neighborhood approach 

Single Canny Filtered 

Image 

Edge weighted 

approach  

Gray Scale Image 

λ̅     
 λ̅     

 λ̅     
 

As lapped 0.81 0.036 0.84 0.038 0.75 0.066 

3 minutes 0.76 0.024 0.78 0.034 0.46 0.152 

6 minutes 0.72 0.034 0.74 0.357 0.49 0.151 

9 minutes 0.66 0.017 0.66 0.032 0.33 0.148 

 

 

 
Figure 4-57: Edge weighted graph representation applied to CMP processed surfaces. 

(a) – (b) Similarity matrices for lapped and 9 minutes CMP processed wafer surfaces, these 

correspond to micrographs depicted in Figure 4-56 (a) and (b), respectively. (c) Fiedler num-

ber vs. polishing time directly estimated from gray scale images. 
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Figure 4-58: Graph networks (40 nodes only) for different stages of CMP obtained using the edge weighted representation.  

Notice the gradual reduction in connectivity with CMP processing time. 
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4.6.4 Verification with Local Surface Roughness Measurements 

We proceeded to verify the graph theoretic results using locally measured 

conventional statistics, such as Sa, feature counts (which are obtained from binary 

filtered optical images), and 2D Fourier transform energy (sum-of-square magni-

tude). We considered the 3D wafer topography   obtained using a laser interfer-

ometer (MicroXAM), and compared its corresponding optical micrograph. By 

juxtaposition, we note the coordinates of Te inclusions,   {        }.  

Subsequently, conventional surface roughness statistics, such as arithmetic 

mean (Sa), root mean square (Sq), peak-to-valley depth (Sz), etc., were evaluated 

at 20-30 randomly generated non-overlapping square shaped areas measuring 35 

µm × 35 µm from the set      . This measurement scale was determined 

heuristically. Since we have obtained 3D wafer topography readings at 6 random 

wafer locations after every 3 minutes of CMP, there are a total of 100 – 200 

measurements available at every polishing interval. These local surface roughness 

statistics are shown in Figure 4-59 and subsequently tabulated in Table 4-14.  

An interesting aspect of these results is noted from Figure 4-59, where both 

feature count and conventional surface roughness parameters, such as Sa are 

observed to decrease with CMP over time, implying that surface quality improves 

both in terms of defect density and texture. However, this might not always be the 

case, as imperfections, such as nano-scratches and rugosity, preside over funda-

mentally different length scales (frequency) and may therefore occur independent-

ly of each other (a similar analogy is the difference between surface roughness 
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and waviness) [8, 57]. In this context, the two graph approaches, ε neighborhood 

and edge weighted representations, can be applied in a complimentary fashion, 

the former for characterizing nanoscale imperfections, and the latter for quantifi-

cation of surface texture morphology. 

The trend of locally measured surface features with CMP stages corroborates 

well with the Fiedler number (Table 4-15). It is noteworthy that the correlation 

coefficient (ρ) ranged from ~ 80% to 99% for all comparisons between conven-

tional parameters and Fiedler number as shown in Table 4-15. These results are a 

further confirmation in favor of the Fiedler number as a statistic for surface char-

acterization.  

Moreover, conventional statistics are often cumbersome to obtain, sensitive 

to artifacts, such as material inclusions, and scale dependent. Also, 3D surface 

profiles require significant post-processing to eliminate systemic bias, and deter-

mining the appropriate sampling lengths can be computationally demanding. 

These challenges can be overcome by using the presented approach. 

Table 4-14: Conventional statistics measured at different stages of CMP (100-200 measurements for 

each stage) 

Quantifier  
Feature 

Count (%) 
Sa (nm) Sq (nm) Sz (nm) 

Energy 

(× 10
-5

) 

Stage µ σ µ σ µ σ µ σ µ σ 

As lapped 5.06 0.49 9.35 1.46 11.33 1.53 39.82 4.63 1.73 0.62 

3 minutes 2.65 0.56 8.96 1.78 10.59 1.76 32.92 2.99 1.55 0.51 

6 minutes 1.41 0.36 7.93 0.44 9.47 0.48 32.42 2.12 0.93 0.04 

9 minutes 0.47 0.09 7.34 0.27 8.76 0.33 29.23 1.97 0.87 0.05 
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Table 4-15: Correlation coefficients ρ for various conventional parameters (Table 4-14) when com-

pared with the mean Fiedler number (Table 4-13) obtained across CMP stages  

Correlation Coefficient ρ 

Parameter 

  
̅̅ ̅ from ε neighbor-

hood approach using 

single Canny filtered 

image 

  
̅̅ ̅ from ε neighbor-

hood approach using 

dual Canny filtered 

image 

  
̅̅ ̅ from edge 

weighted approach 

gray scale image 

Sa (nm) > 0.99 > 0.99 0.81 

Sq (nm) > 0.99 > 0.99 0.87 

St (nm) 0.92 0.92 0.98 

Energy 0.93 0.94 0.77 

Feature count (%) 0.94 0.94 0.93 

 

 
Figure 4-59: Verification with conventional roughness parameters. 

(a)-(d): Conventional statistics vs. CMP stage, (a) percentage feature count, (b) arithmetic mean 

roughness (areal Ra, i.e., Sa), (c) root mean squared roughness (areal Rq, i.e., Sq), and (d) Sum of 

square of Fourier transform magnitude (energy).  
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4.6.5 The nature of the defect distribution for CMP processed wafers 

In this section, we investigate the nature of the defect (count) distribution for 

CMP processed wafers. For reasons of consistency with the presented graph 

theoretic approach, we compute the number of defects that occur per pixel row of 

the Canny filtered image    (i.e., the difference image       from the Canny 

filtering process described in Sec. 4.6.2). Doing so is analogous to the row-wise 

pixel comparisons (Eqn. (4-2)) used for representing CMP surfaces as network 

graphs.  

Aim of the study 

Investigate the nature of the defect count distribution for CMP processed surfaces. 

The empirical probability distributions of defect counts (taken row-wise) are 

shown in Figure 4-60 (each distribution is approximated from close to 10,000 data 

points for every CMP stage). From Figure 4-60(a), we observe that the mean 

defect count reduces significantly with progressive CMP stages. In addition, we 

can discern that the shape of the defect count distribution changes (Figure 

4-60(b)) with CMP over time. A Gaussian-like distribution is evident for the 

initial (before CMP) stage, which evolves into a heavy-tailed (right skewed) shape 

after 9 minutes of CMP (see also Table 4-16).  
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Figure 4-60: Empirical (~10,000 data points each) distribution of defect counts for different CMP 

stages. 

(a): Histograms of defect counts for different CMP stages. Note the change in location and shape of the 

distribution with CMP stages. 

(b) Empirical frequency distribution for different CMP stages. Note the steady evolution towards a 

more heavy-tailed shape with progressive CMP stages.  
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Further continuing with our study, we now fit theoretical probability distribu-

tions to the defect count data. We note that the simplest (and well-known) distri-

butions, which fit reasonably well (by visual observation), are preferred over 

more complex (but statistically better fitting) candidates. For instance, referring to 

the probability distribution plots shown in Figure 4-61, the extreme value distribu-

tion (not shown in Figure 4-61) was assessed statistically (using the Anderson-

Darling statistic) to be a better fit than the Gaussian distribution for the 6 minute 

CMP stage
22

. However, for reasons of simplicity we chose the Gaussian distribu-

tion, which although departs significantly at the tails, fits the majority of the data 

amicably.   

The different distributions and their parameters used in this study are shown 

in Table 4-16. Given the complex nature of the data, three candidate distributions 

are evaluated for the 9 minute CMP stage, namely the gamma, negative binomial, 

and Weibull distributions. For this particular CMP stage (9 minute), we observe 

that the negative binomial and gamma distribution both (visually) seem to fit the 

data reasonably. This is pertinent because the negative binomial converges to a 

Poisson distribution as the parameter r → ∞ [215, 216]
23

. This implication helps 

to justify the practical suitability of some of the simulated cases presented in Sec. 

                                                 
22

Although, continuous distributions ,such as the Gaussian, gamma, and Weibull would not be 

typically used for fitting discrete integer data , we make an exception based on the large number of 

data points available, this allows us to treat the defect distribution as continuous and real valued.  
23

 Also, the negative binomial distribution can be approximated using a gamma-Poisson mixture 

function, i.e., a mixture of Poisson distributions convoluted over a gamma distribution; see the 

www.wikipedia.org page on the negative binomial distribution.  

(http://en.wikipedia.org/wiki/Negative_binomial) 
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4.5, especially, Sec. 4.5.2, Case 2(a) where the defects were simulated from a 

spatial Poisson process.  

Inferences from the study 

1. The distribution of defect counts over a CMP processed wafer is not station-

ary, and changes over time with CMP.  

2. The defect counts are approximately Gaussian distributed for the as-lapped 

(before CMP) stage, but progressively become more heavy-tailed (pronounced 

right skew) with CMP. 

3. The wafer defect count distribution after the final CMP stage (9 minutes 

CMP), is well represented with three candidate distributions, namely, negative 

binomial, gamma, and Weibull.  

4. Since the negative binomial is known to converge to the Poisson distribution, 

some of the simulated case studies (e.g., Sec. 4.5.2, Case 2(a)) can be evoca-

tive of practical scenarios. 
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Table 4-16: Candidate distributions for different CMP stages. 

Stage 
Candidate 

Distribution 
Parameters 

Mean Var. Mean Var. 

Theoretical Empirical Estimate 

Initial 

(as lapped) 
Gaussian 

mean: 51.8 

variance: 247.63 
51.8 247.63 51.4 264.95 

3 minutes Gaussian 
mean:24.7 

variance: 167.31 
24.7 167.31 24.5 170.94 

6 minutes Gaussian 
mean:13.7 

variance: 66.68 
13.7 66.68 12.5 76.51 

9 minutes Gamma 
shape: 2.03  

scale: 2.511 
5.1 12.81 

4.4 15.20 9 minutes 
Negative 

Binomial 

r = 3.4 

p = 0.4060 
5.1 12.56 

9 minutes Weibull 
shape: 1.45 

scale: 5.66 
5.1 12.81 

 

 
Figure 4-61: Theoretical distributions fitted to the data over different CMP stages (~ 10,000 data 

points per stage).  
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4.7 Summary 

We have presented an approach invoking algebraic graph theoretic concepts 

as a means to quantify evolving nano-surface morphology. The approach is 

demonstrated to be capable of capturing surface morphology variations in near-

specular CMP processed Cu wafers using non-contact optical micrographs and 

therefore overcomes much of the lacunae (e.g., scale dependency and bias) en-

countered in nanoscale surface metrology. Since reticent off-line characterization 

methods, such as interferometry are precluded, the approach can be valuable for 

in-line assessment of wafer surface integrity so that timely corrective action may 

be taken to minimize yield losses in semiconductor CMP. Specific contributions 

are as follows: 

1. Two parallel methods to represent optical micrograph images as graph 

networks are detailed. The first graph representation called ε neighborhood 

approach uses binary filtered micrographs to quantify nanoscale wafer im-

perfections, such as scratches and pits. The second called edge weighted 

approach directly uses gray scale micrographs and captures textures as-

pects of the surface.  

2. The Fiedler number was assessed to be a better quantifier of surface mor-

phology in comparison to conventional defect count measurement. Three 

different defect distributions, with identical defect counts and bearing a 

close resemblance to actual CMP surfaces, were simulated. The Fiedler 

numbers estimated for the three cases were significantly different (p-val < 
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0.01), indicating that the Fiedler number is more responsive to changes in 

surface morphology. 

3. The approach was verified against experimentally acquired CMP wafer sur-

face micrographs and topography scans (obtained using a laser interferome-

ter). Both methods of graph representation were used. The estimated 

Fiedler numbers were compared with locally sampled (35 µm × 35 µm) 

conventional surface characterization parameters, namely; Sa, Sq, St, Ener-

gy (sum of squares of FFT magnitude), and percentage defect count. The 

correlation coefficient ρ between conventional parameters and Fiedler 

number was estimated to be in the range of ~ 80 – 99% for all combina-

tions tested.  

4. It was observed that as the surface quality improves, the mean Fiedler 

number generally decreases and is significantly different (p-val < 0.01) 

than at the start of CMP. For lapped (before CMP) wafer surfaces, the 

Fiedler number is in the range of 0.75 to 0.85. After 9 minutes of CMP the 

Fiedler number decreases to ~ 0.65 when evaluated using the ε neighbor-

hood approach. Using the edge weighted approach the Fiedler number af-

ter 9 minutes of CMP showed a more significant decrease to ~ 0.3.  
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 5 Future work  

Future Directions for Further Application of the Graph-

theoretic Approach  

he following directions for further research have emerged concerning the 

graph theoretic approach for surface morphology inspections: 

 

1. Using higher order Laplacian eigenvectors   , instead of only the second 

eigenvector    for quantification of surface morphology. 

2. Applying the graph theoretic approach for process diagnosis (i.e., classifi-

cation of process state), instead of restricting the approach to process mon-

itoring. 

3. Expanding the scope in terms of the quantifiers, and modifying the ap-

proach, such that the nodes are constructed based on the peculiarities of 

the process. 

5.1.1 Using Eigenvectors k > 2 

In response to the contention that the higher order eigenvectors  k , k > 2 

may contain useful information, but are not being used in this work, we tender a 

brief comment. In particular, we recognize that the eigenvectors    might contain 

more information than merely a scalar invariant, namely, λ2. The eigenvectors, for 

example, can be useful for image classification and monitoring purposes in a SPC 

scenario. 

T 
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For instance, using the first three non-zero eigenvectors,  2,  3, and  4, one 

can construct control charts as described by Huang, et al. [217] (the approach 

involves transforming the eigenvectors into Hilbert space), and subsequently 

monitor the surface morphology in an SPC setting.  

5.1.2 Using the Graph Theoretic Approach for Process Diagnosis 

 

Figure 5-1: A neural classifier of the process state using Laplacian eigenvalues of the obtained surface. 

Another direction for future research is to use the graph theoretic approach 

for process diagnosis, as opposed to only measurement of surface morphologies. 

For example, using the Laplacian eigenvalues λ  from the image and process 

conditions Φ a neural network can be trained that classifies the process state in 

terms of the surface type (Figure 5-1). In essence, we classify the process out-

comes into different clusters. 

By doing so, if the surface is classified in a different cluster than the one ex-

pected (given the process conditions), we can re-trace the path (using the neural 
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network) to identify which process condition might have drifted and therefore 

caused an out of control condition. In effect, we can create a dictionary of process 

conditions that can lead to a deterioration of surface finish.  

This can be valuable from a process diagnosis point of view, because, using 

such an a priori knowledge of the effect of specific process conditions on the 

surface morphology, an operator can quickly troubleshoot the process before the 

losses become catastrophic.  

5.1.3 Modifying the Approach using Differently Shaped Nodes and 

Other Graph-theoretic Quantifiers 

Thus far, the approach has been applied to surfaces that are homogenous, i.e., 

the features on the surface are not orientated in any particular direction. This 

constraint needs to be relaxed for application to manufacturing processes, such as 

UPM where there are prominent material flow signatures. 

For example, the bottom-half of Figure 5-2 shows an Al 6061 surface pro-

cessed using our UPM setup. The process has a directional component, given the 

feed marks observed on the surface. Experts have suggested that aspects of the 

surface, such as form, texture, bearing volume, etc., which are critical to function-

al performance of the component, are contingent on the direction and areal scale 

of measurement [6, 56]. Some of these aspects are depicted on the top row of 

Figure 5-2 (after Jiang , et al. [56]). 

By adapting the node shape used for graph theoretic quantification (See Eqn. 

(4-2)), e.g., instead of the pixel rows, one could consider diagonal pixels, or pixel 
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boxes, and by careful correlation with empirical observations, it might be possible 

to forward function specific graph theoretic quantification of surface morphology. 

 

Figure 5-2: Top: Scale-dependent attributes of a surface (after Jiang, et al. [56]), and Bottom: A sample 

UPM surface showing prominent feed marks. 

 Additionally, apart from a single quantifier (Fiedler number), various other 

invariants of the graph network, such as mean distance, diameter, ratio of eigen-

values, graph coloring parameters, etc., can be used to elucidate the different 

physical aspects [193, 218, 219]. 
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 6 Conclusions 

n this chapter we summarize the intellectual merit and contributions of this 

research. The objectives of this research are reiterated below: 

Research Objectives  

1. To forward approaches for monitoring and identification of incipient anoma-

lies in nanomanufacturing process, specifically UPM and CMP, based on in 

situ sensing techniques. 

2. To suggest methods for surface quality assessment of nanomanufactured 

ultraprecision components that can be incorporated in line and are capable 

of capturing subtle nanoscale surface morphology variations.  

The research satisfying these objectives is divisible into three components: 

1. Identification and monitoring of surface morphology variations in ul-

traprecision machining (UPM) process using in situ sensors (detailed in 

Chapter 2). 

2. The integration of a physical process model and wireless sensor data for 

prediction of process anomalies in chemical mechanical planarization 

(CMP) (detailed in Chapter 3). 

3. The quantification of surface morphology in ultraprecision processes using 

a graph theoretic approach (detailed in Chapter 4). 

 

I 
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6.1 Real-time Identification of Incipient Surface Morphology 

Variations in Ultraprecision Machining (UPM) Process 

This part of the research (detailed in Chapter 2) achieves the first objective in 

context of the UPM process with the goal stated under. 

Goal 1 
(Satisfying Objective 1) 

Develop an approach that can quantify ultraprecision surface morphologies in a 

rapid and parsimonious manner. 

Intellectual merit 

Monitoring of surface quality in ultraprecision machining has been largely 

pursued on a post-process basis [86, 220]. That is, the surface is characterized 

after the machining operations have been completed. Hence, a defective product 

is not often detected until it has reached the inspection stage, which compromises 

process yield. 

Sensor-based monitoring in UPM has been investigated extensively [53, 77]. 

These prior efforts are mostly concerned with investigation of specific phenomena 

in UPM (e.g., effect of depth of cut, type of cutting regime), as opposed to predic-

tion of incipient process anomalies. As a result, most of the research in sensor-

based monitoring in UPM relies upon traditional signal processing techniques, 

such as frequency spectrum analysis, statistical feature extraction, and data-driven 

modeling. These methods are not sufficient for predicting the onset of UPM 

process defects in a timely manner, because: 
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i. The analysis is mostly post hoc, and is therefore reticent. For example, 

one has to wait close to 2-10 seconds for the signals to be gathered and 

analyzed before a process drift is detected [17, 77]. It is too late by then, 

in a practical sense, to take any corrective action. For instance, with typi-

cal (conservative) cutting conditions of 4 mm/min feed rate and 1200 

RPM, in about five seconds the tool has traversed (linearly) more than 

three hundred micrometers, and the spindle has made one hundred revolu-

tions. 

ii. Current analytical approaches use only one type of sensor for process 

monitoring; multi-phenomena sensing has not been pursued extensively. 

The novelty of this research lies in addressing the above two aspects in UPM 

process. It provides the mathematical framework for integrating a class of neural 

networks known as recurrent neural networks (RNN) that have the ability to 

capture complex signal patterns and accurately predict the process state [79], with 

responsive Bayesian particle filtering (PF) techniques [81]. By fusing these two 

approaches, we not only predict surface related defects in situ during the process, 

but also use data from multiple sensors.  

 This work provides the intellectual foundation for future research in the fol-

lowing aspects: 

i. In situ and in real-time defect prediction in UPM. 
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ii. Extends the state-of-art in sensor-based monitoring by fusing two power-

ful signal analysis techniques, namely, recurrent neural networks and 

Bayesian particle filtering. 

iii. A method for simultaneous multi-phenomena sensing using several sig-

nals (7) acquired from different types of sources (vibration, force, and 

acoustic emission).  

iv. Provides a means to analyze non-stationary signal patterns, and over-

come computationally intensive retraining of neural networks.  

v. Demonstrates a technique to detect surface morphology changes in UPM 

in a timely manner. 

Contributions 

Specific contributions of this work are as follows: 

i. A diamond turning setup was instrumented with multiple in situ sensors 

for UPM process monitoring. 

ii. Near-specular surface finish was obtained on Al 6061 workpieces using 

conditions identified from empirical tests. 

iii. A recurrent predictor neural network - particle filter (RPNN-PF) approach 

was devised for predicting UPM process anomalies using information 

from multiple sensors. 

iv. Surface morphology variations in UPM were detected within 15 ms of 

their inception using the RPNN-PF approach. 
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6.2 Process-Machine Interaction (PMI) Model-based Moni-

toring of the Chemical Mechanical Planarization (CMP) 

Process using Wireless Vibration Sensors 

This work is described in Chapter 3 (see also Appendices I, II) and is intend-

ed toward achieving the first objective in context of CMP. This work accomplish-

es the following two goals (continuing from the previous section): 

  Goal 2 

(Satisfying Objective 1) 

Identify and statistically quantify those aspects of MEMS wireless sensor signal 

components that are relevant to the CMP process dynamics, and therefore useful 

from a real-time monitoring perspective. 

  Goal 3 

(Satisfying Objective 1) 

Explain based on process dynamics and physical phenomena, the reason for 

certain vibration sensor patterns observed in CMP, and thereby facilitate real-time 

process prognosis. 

Intellectual merit 

In this work, we integrated (sensor) data-driven process monitoring methods 

with a physical model of the CMP process. Due to this outcome, we showed that 

process drifts can be identified from sensor data patterns, and predicted a priori 

from the process dynamics. In other words, we not only identify that there is a 

change in the process state, but also, (i) why there is a change, and (ii) more perti-

nently, when such a change in signal patterns is likely to occur. 
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Consider for example, the glazing of the polishing pad during CMP [153, 

165]. This process anomaly can damage the semiconductor wafer surface, inhibit 

the surface quality, and consequentially affect the process yield. Sensor data alone 

may not be sufficient to identify the onset of pad glazing, given the complex 

nature of signal patterns in CMP.  

This is because the signal patterns indicating pad glazing may not be obvious, 

and are often dominated by other sources, such as from spindle errors, extraneous 

environmental conditions, variations in polishing load, and the characteristic 

electromagnetic response of the sensor. In other words, the signals are contami-

nated, and information relevant to the process state is occluded by the complex 

and broadband characteristics of the signal patterns.  

By using a hierarchical multi-scale physical model to describe different as-

pects of the process (the detailed formulation of the model is documented in 

Appendix III), we can identify beforehand the physical source of signal patterns. 

This allows us to focus solely on signal patterns contingent to certain phenomena, 

such as pad glazing, and thereby anticipate process drifts. The physical model 

essentially indicates what to look for in the signal patterns when certain types of 

process drifts are imminent.  

The integration of a nonlinear differential equation model incorporating mul-

ti-scale aspects of the process with wirelessly acquired vibration signals for pre-

dicting anomalies in a CMP process is the novel intellectual outcome of this work. 
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This completes the loop between physics-based modeling and data-driven moni-

toring in CMP, an aspect that has not been addressed thus far in the literature. 

Contributions 

The following are some of the practical contributions from this work: 

i. A CMP setup was integrated with miniature MEMS sensors of differ-

ent types (vibration and sound). This enabled sustained wireless data 

acquisition at moderately high sampling rates (> 750 Hz).  

ii. The complex non-stationary and nonlinear CMP vibration signal pat-

terns were studied using contemporary analysis tools (recurrence quan-

tification analysis, signal dimensions, and chaotic embedding), and 

their behavior correlated with process conditions. 

iii. A nonlinear differential equation model of CMP process dynamics was 

invoked for explaining some of the complex characteristics of experi-

mentally acquired vibration signals in CMP. 

iv. The PMI-model generated solutions when used in conjunction with 

experimentally acquired vibration signals were able to capture the 

CMP process dynamics under evolving scenarios (e.g., changes in pol-

ishing load, pad glazing, spindle speed) with high fidelity (R
2 

> 75%). 

Thus, this work enables in situ monitoring of CMP process using sensor data, 

which is closely monitored using a physical model.  
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6.3 A Graph Theoretic Approach for Quantification of Ul-

traprecision Surface Morphology 

This work detailed in Chapter 4, achieves the second objective for quantifica-

tion of nanoscale surface morphologies, and has the following goal. 

Goal 4 
(Satisfying Objective 2) 

Develop an approach that can quantify ultraprecision surface morphologies in a 

rapid and parsimonious manner. 

Intellectual merit 

Approaches for quantification of surface morphology rely largely on statisti-

cal parameters [8, 54]. Experts in this area have identified the inadequacy of 

characterizing surfaces, especially nanoscale surfaces, using statistical parameters 

[5, 9, 29, 56, 57]. However, instead of exploring fundamentally novel quantifica-

tion approaches, more statistical parameters are continually added to the extensive 

set already available [171].  

In this research, instead of trying to fit a surface topography to a statistical 

distribution (which is the essence of statistical metrology), and subsequently 

extract all manner of moments from the resulting distribution, we try to unearth 

the underlying geodesic relationship from the topography of a surface using graph 

theoretic techniques. The difference is analogous to characterizing a city by 

measuring the average height of its buildings (statistical approach) vs. analyzing 

the density and connections of its streets (graph theoretic approach).  
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Such a graph theoretic quantification of surface morphology has not been at-

tempted thus far. The methods developed to represent a surface in graph theoretic 

form, and subsequently quantify its morphology with graph invariants are the 

novel outcomes of this research. 

The graph theoretic representation succeeds in mapping the topological rela-

tionships of a surface, and is therefore distinct from the statistical distribution 

mapping approach of conventional metrology. We have shown with various 

simulated and experimentally acquired surfaces that graph theoretic invariants, 

such as Fiedler number are more responsive to subtle changes in surface mor-

phology (particularly for nanoscale surfaces), compared to traditional statistics-

based quantifiers. The intellectual merit of this work is justified on the following 

grounds: 

i. Methods for representing surfaces in graph theoretic form from optical 

images were developed. 

ii. The graph theoretic invariant Fiedler number (λ2) was tested as a 

means to detect surface morphology changes. Using both simulated, 

and empirically obtained surfaces, graph theoretic invariants were 

shown to be responsive discriminants of surface morphology varia-

tions that were not captured using traditional statistical measurements.  
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Contributions 

The graph theoretic approach for quantifying nano-surface morphology offers 

several practical benefits: 

i. Since surfaces can be quantified using optical micrograph images, reticent 

surface mapping techniques are precluded. Because optical microscopy is 

quicker than profile mapping techniques (SEM, AFM, and laser interfer-

ometry), the approach is easily adapted for in-line surface quality monitor-

ing. This is valuable from a process control standpoint, because graph the-

oretic invariants (e.g., Fielder number (λ2)) can be used as a means to 

identify process anomalies in a timely manner, and therefore expensive 

yield losses can be minimized.    

ii. Since optical imaging is non-contact and non-destructive, the possibility of 

damage to the specimen is avoided. For instance, if a diamond/tungsten 

tipped stylus is used to measure a mirror finished aluminum part, a scratch 

will be inevitably generated on the surface, i.e., the process of measuring 

the surface can affect the functional integrity of the component. 

iii. Nanoscale surfaces have heterogeneous features occurring at multiple 

scales. The measurement of multi-scale characteristics using wavelet and 

fractal approaches is computationally expensive. The graph theoretic rep-

resentation is a significantly faster approach and does not require profile 

mapping at different scales. 
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iv. We have shown using near-specular CMP processed surfaces that the 

graph theoretic invariant Fiedler number (λ2) captured visibly prominent 

surface morphology changes that were not identified using statistical 

quantifiers, such as arithmetic mean roughness (Ra), root mean square 

roughness (Rq), skewness (Rsq) and kurtosis (Rku). 

6.4 Closure 

This research presented approaches for real-time in situ monitoring and in-

spection of surface morphology in two precision nanomanufacturing applications, 

ultraprecision machining (UPM) and chemical mechanical planarization (CMP). 

The key outcomes from this research are listed herewith:  

1. An ultraprecision diamond turning machine is instrumented with three minia-

ture accelerometers, a 3-axis piezoelectric dynamometer, and an acoustic 

emission (AE) sensor for process monitoring. The machine tool is used for 

face turning aluminum 6061 discs to a surface finish (Sa) in the range of 15-

25 nm. A real-time monitoring approach, based on predicting and updating the 

process states from sensor signals (using advanced neural networks and 

Bayesian analysis) is reported for detecting the incipient surface variations in 

UPM. Experimental investigations show that variations in surface characteris-

tics during UPM can be detected within 15 ms of their inception using the 

RPNN-PF approach, as opposed to 30 ms or higher with the conventional sta-

tistical change detection methods tested.  
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2. A Buehler (model Automet
®
 250) bench top CMP machine was instrumented 

with miniature MEMS 3-axis accelerometer (Analog Devices ADXL 335) and 

audio sensors (Analog Devices ADMP 401). The CMP setup is used for fin-

ishing blanket copper workpieces to a surface finish of Ra ~ 5 nm. While the 

sensor signals are sensitive to variations in the CMP process, the extraneous 

noise prevents the direct use of raw signal patterns for early detection of de-

fects. Consequently, instead of primarily monitoring the raw sensor signal pat-

ters, we isolated signal features that are indicative of process state from those 

that are mere artifacts, and thus potentially valuable for process monitoring.  

3. A deterministic process-machine interaction (PMI) model that can associate 

different complex time-frequency patterns to specific CMP process mecha-

nisms was invoked. The PMI model captures the effects of the non-uniform 

structural properties of the polishing pad, pad asperities, and machine kine-

matics on CMP dynamics using a deterministic two degree of freedom nonlin-

ear differential equation. 

4. The deterministic PMI model were used to explain not just the physical 

sources of various time-frequency patterns observed in the measured vibration 

signals, but also their variations with CMP process conditions. The features 

extracted from experimental CMP vibration data, such as power spectral den-

sity over the 115 − 120 Hz band, and nonlinear recurrence measures were sta-

tistically significant estimators (R
2 

~ 75%) of process parameter settings. 
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5. We developed an algebraic graph theoretic approach for surface morphology 

quantification from optical micrographs of ultraprecision components, such as 

CMP processed copper (Cu) wafers polished to near-specular finish. The ap-

proach is based on treating various heterogeneous features (e.g., pits, ridges, 

scratches) as a stationary mixture of random fields, allowing for compact 

graphical representation of the surface morphology. Two complementary 

methods to realize graph representations and subsequently overcome some of 

the lacunae associated with conventional statistics-based surface metrology 

quantifiers were reported. Our experimental findings established close correla-

tions (ρ ~ 80% − 99%) between the graph topological invariant Fiedler num-

ber and conventional surface roughness statistics measured over local scales. 

6. The graph theoretic approach, by primarily employing optical microscopy, 

eschews relatively reticent profile mapping techniques, such as laser interfer-

ometry and atomic force microscopy. Thus, by invoking the algebraic graph 

theoretic topological invariant Fiedler number of the graph reconstructed from 

the images, surface morphology of ultraprecision components, such as semi-

conductor wafers can be assessed from optical micrographs and therefore ena-

ble timely, non-contact, and in situ metrology of such surfaces.  
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Appendix I: Operating Principle of the Mi-

croXAM Optical Interference Surface Profi l-

ing Microscope 

he MicroXAM interferometer is primarily used in our studies for obtaining 

the surface profile of specular finished UPM and CMP surfaces in a non-

contact manner. The operating principle of the instrument is based on profiling 

the surface topography of a specimen by analyzing optical interference patterns. 

Referring to Fig. 1, a collimated beam of light from an illuminator is split (using a 

beam splitter), one part of the beam is focused on the test specimen, and the sec-

ond on a reference specimen [5, 6, 9, 56, 169, 221, 222]. On recombination of the 

two beams, an interference pattern is obtained. This interference pattern is ana-

lyzed (after imaging with a CCD camera) using proprietary computer software 

(called MapVue) to reconstruct the peaks and valleys on the test specimen.  

In the particular instrument model used in our study, two possible optical 

modes of operation based on the wavelength of light (white and green light) are 

possible. Either mode is activated from the software environment. In our studies, 

we primarily use the green light (547.8 nm wavelength) mode. In addition, the 

instrument is equipped with two objective lens magnifications (Fig. 1), we use the 

higher 50x magnification for our measurements.  

 

T 
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Objective Magnification 50x 10x 

Numerical aperture 0.55 0.30 

Measurement area (μm) 165 × 125 827 × 626 

Spatial sampling (μm) 0.22 × 0.26 1.1 × 1.3 

Optical resolution (μm, @ 550 nm) 0.50  0.92 

Working distance (mm) 3.4 7.4 

Depth of focus (μm, @550 nm) 1.16 3.89 

Maximum surface slope  22.6° 4.8° 

Fig. 1: Schematic diagram of the MicroXAM surface profiling interferometer (image courtesy KLA-

Tencor). 
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Appendix II: Identification of Physical 

Sources of Vibration Sensor Signal Patterns 

in Chemical Mechanical Planarization (CMP) 

Process 

e detail the battery of tests conducted to ascertain the physical sources 

of dominant vibration sensor signal patterns observed in chemical me-

chanical planarization (CMP) process. A Buehler (model Automet
®
 250) bench 

top CMP machine is instrumented with miniature MEMS 3-axis accelerometer 

(Analog Devices ADXL 335) and audio sensors (Analog Devices ADMP 401). 

The CMP setup is used for finishing blanket copper workpieces to a surface finish 

of Ra ~ 5 nm. While the sensor signals are sensitive to variations in the CMP 

process, the extraneous noise prevents the direct use of raw signal patterns for 

early detection of defects. Consequently, instead of primarily monitoring the raw 

sensor signal patters, we isolate signal features which are indicative of process 

state from those which are mere artifacts, and thus potentially valuable for process 

monitoring.  

The frequency spectrum of typical MEMS vibration sensor signals acquired 

during the CMP process contains three dominant components, namely: 

1. Component 1:  A low frequency component in the 0.5 – 1 Hz region; 

2. Component 2: Broadband frequency regions centered around 25 Hz 

and 50 Hz; 

3. Component 3: A broadband frequency region at approximately 120 

Hz. 

W 
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Nine empirical tests are reported to ascertain the underlying physical cause of 

each of these components. The inferences are summarized herewith:   

 Component 1 is shown to result from eccentricity errors in the polish-

ing head (spindle);  

 Component 2 is most likely a conjoined effect due to sensor charac-

teristics, electromagnetic interference from machine elements, and 

structural vibration;  

 Component 3 is observed to respond to changing downforce (polish-

ing load) conditions, and process state, such as pad wear, and as such 

is useful for process monitoring applications.  

 In addition, a −110 dB background (white) noise is evident through-

out the frequency spectrum of CMP vibration signals; this is ex-

plained as originating from measurement errors and environmental 

factors. 

Introduction 

Chemical mechanical planarization (CMP) is considered a vital component of 

back-end-of-line (BEOL) processes in semiconductor manufacturing as it is the 

process of choice for obtaining both local and global planarity on a variety of 

semiconductor materials [19, 21]. Since CMP is often the final step before wafer 

test and packaging stages, wafer anomalies and defects resulting from CMP can 

lead to irrecoverable waste of labor, material resources, and potential revenue. It 
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has been estimated that significant damage to a 300 mm wafer may cause ~ 

$100,000 in losses [22]. Under such circumstances, conventional statistical pro-

cess control (SPC) techniques are of limited utility. SPC techniques are typically 

incapable of distinguishing subtle inherent process drifts, such as gradual pad 

wear, slurry coagulation, slurry contamination, etc., from process noise [22, 105-

107]. It is therefore desirable to ensure defect-free operation in CMP by employ-

ing real-time in situ sensor-based process monitoring approaches [22].  

Toward this end, in situ process monitoring techniques have been tailored 

specifically for CMP applications. Current CMP monitoring techniques are pre-

dominantly based on piezoelectric (force, vibration, and friction sensors) [112-

115], acoustic emission (AE) [53, 125, 126], laser [130, 131], electro-chemical 

[132], and thermo-optical [134-136] sensing elements. These sensing approaches 

are mainly geared towards detection of polishing endpoint and control of process 

inputs, such as downforce, slurry flow rate, pH, pad wear, etc. Though, they have 

been investigated as possible avenues for in situ defect detection during CMP, 

factors relating to cost and maintainability have stymied their large scale adapta-

bility [108]. Apart from cost, these sensing systems require careful attention to 

calibration and location, e.g., in situ optical sensing systems for CMP wafer end-

point detection typically need specially designed polishing pads with optical filter 

windows [131, 135]. Also, the added bulk of these sensing systems constrains the 

scant real estate available on the equipment, and may superimpose undesirable 
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vibrations on the machine. Lastly, due to their high power consumption, these 

sensing systems are not amicable for non-intrusive wireless applications.  

In our work, MEMS sensors akin to those embedded in smart phones and 

video game systems are used for CMP process monitoring [223]. Apart from 

being inexpensive, MEMS sensors: (i) are powered by low capacity sources, such 

as lithium polymer batteries, (ii) can be easily replaced, (iii) preclude amplifica-

tion and expensive DAQ systems required in piezoelectric based systems, and (iv) 

can lend towards close proximity monitoring of the process owing to their minia-

ture size. These factors combine to make MEMS sensors an attractive choice for 

wireless in situ monitoring applications. However, MEMS sensing systems pre-

sent a new set of challenges: 

i. Low sampling rates: In contrast to piezoelectric sensors, MEMS sen-

sors are typically powered by 3.3 – 5V DC sources. This relatively 

low power input does not lend for sustained high sampling rates. Typ-

ical sampling rates of MEMS sensors are below 1 kHz, compared to 

over 50 kHz possible with a piezoelectric system. 

ii. Susceptibility to external noise: Since on-board filters and DAQ 

cards are not used, the ability to mitigate extraneous noise sources is 

limited. 

iii. Impeded applicability for monitoring manufacturing processes: 

Piezoelectric sensors for manufacturing applications are crafted with 

extreme precision [224, 225]. For example., a piezoelectric crystal is 
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cut and ground in particular crystal orientations that minimizes noise 

and cross talk between sensing axes. In contrast, MEMS sensors are 

largely designed for use in consumer electronics and automotive ap-

plications that do not demand such precision. Hence, significant vari-

ability may exist in response characteristics between sensors.  

Before the developed sensor array can be used for defect detection purposes, 

it is imperative to study the nature of signals acquired from the process in order to 

understand the physical source of particular sensor signal characteristics. By 

doing so, we can begin to isolate those signal features which are indicative of 

process state and thus potentially valuable for process monitoring, from those 

signal patterns which may be mere artifacts. The results from the tests conducted 

to isolate such dominant signal features are summarized herewith. 

Experimental Setup 

CMP machine 

Fig. 2 shows a Buehler (model Automet
®
 250) metallographic polishing ap-

paratus instrumented with MEMS vibration and sound sensors. Round copper 

workpieces of diameter 40.6250 mm ± 0.1 mm (1.625 in.), and thickness ~ 12.5 

mm ± 2 mm (0.5 in.) are polished on this apparatus. In order to accommodate 

machining operations for mounting the sensing system, C14500 series copper is 

used for polishing experiments. This particular copper series is 99.5% pure with 

tellurium (Te) as an alloying element. Te improves the machinability rating of 
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copper [62], but limits the surface finish that can be achieved. Defect free, mirror-

like finish with Ra ~ 5 nm is reported in this work (see Fig. 3). The polishing 

machine shown in Fig. 2 comprises a polishing platen whose rotational velocity 

can be adjusted between 10 – 300 RPM in both clockwise and counterclockwise 

directions. A workpiece is located on the steel workpiece holder (workholder), 

and the spindle lowered on the platen. The spindle senses contact with the platen 

and adjusts to a set distance of ~ 2.5 mm (0.1 in.) above the platen. The spindle 

can be set to rotational speeds between 30 – 60 RPM (0.5 – 1 Hz) in intervals of 

10 RPM, and allows motion only in one (clockwise) direction.  

Downforce (polishing load) is applied by a pneumatic system. Compressed 

air is supplied to actuators, which impress upon the workpiece to the set load. The 

downforce can be adjusted between ~ 2 – 10 lb. (~ 1 – 4.5 kg) in integer steps. 

The applied downforce is continuously monitored by a microprocessor-based 

system, which adjusts the air pressure. In case of deficit from the set load, a sys-

tem of solenoids let additional air into the pneumatic cylinder in which the actua-

tors move freely. Valves are activated by a secondary solenoid to relieve air if an 

excess downforce is detected. 

Polishing slurry is supplied by means of a peristaltic pump powered by a reg-

ulated DC source. A maximum slurry flow rate of 100 ml/min can be supplied. 

The spindle location can be adjusted by means of a knob to various offset posi-

tions with respect to the platen. This adjustment provides for an eccentric polish-

ing action. Ideally, the offset position is set such that the workpiece is well within 
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the polishing pad circumference at its outer most point, and approximately the 

center of the workpiece coincides with the platen center at the innermost position. 

The polishing pad is affixed by means of a pressure sensitive adhesive on a 

metallic plate having a magnetic backing. The plate with the polishing pad is held 

by magnetic means on the polishing platen. Stability of the polishing platen is 

maintained by a vacuum system, which couples the platen to a motor in the base 

of the machine.  

 
Fig. 2: Buehler Automet® 250 experimental CMP polishing setup showing the sensor arrangement and 

various machine elements. 
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Fig. 3: Surface of copper workpiece obtained after CMP. Photograph of a single crystal diamond 

cutting tool (top) and its reflection on the polished surface (bottom).  

Sensing system 

The sensing system comprises of MEMS vibration and sound sensors (one 

each). The vibration sensor is a model ADXL 335 tri-axial accelerometer manu-

factured by Analog Devices (see Fig. 4). This vibration sensor is similar to the 

accelerometer used in the Nintendo Wii
®
 video game controller (ADXL 330). The 

sound sensor is a model ADMP 401 MEMS microphone also manufactured by 

Analog Devices. These sensors are mounted on breakout boards supplied by 

SparkFun
®
 Electronics. In this work, data gathered from the accelerometer is 

presented. The accelerometer is capable of measuring vibration between ± 3g, and 

has a maximum sampling rate of 1600 Hz for each axis at 3.3V DC power input. 

Data transmission takes place wirelessly. The sensing arrangement for gathering 

vibration data is shown in Fig. 4.  

The sensors convey data to an XBee
® 

radio transmitter (IEEE 802.15.4 Pro-

tocol RF module) supplied by Digi International. The transmitter wirelessly 
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communicates with a coupled receiver. The receiver is powered by USB attach-

ment that connects to a laptop. The transmitter is fixed on a pinout board (also 

supplied by SparkFun Electronics). A 3.3V DC lithium polymer battery powers 

the (transmitter) pinout board. The power input is regulated to minimize voltage 

fluctuations and subsequently directed to both the transmitter and sensor. Power 

regulation is critical for amicable performance of the sensor-transmitter-receiver 

schema, since excessive variations in input potential can cause spurious fluctua-

tions in sensor data.  

Two transmitters are fixed by adhesive in a plastic enclosure, one each for the 

vibration and audio sensor. The power source for the transmitters are located 

diametrically opposite in a similar plastic enclosure (Fig. 2). These enclosures 

have aluminum covers to reduce electromagnetic interference. The transmitter and 

battery enclosures are fixed onto aluminum rests by means of industrial strength 

Velcro
®
 connections. One face of these aluminum rests are shaped in a circular 

manner and bolted onto a shaft collar fastened to the spindle. The total weight of 

the transmitter pair is ~ 50 gm., which is equivalent with the battery weight. The 

sensors are located in a specially machined aluminum container to minimize 

electromagnetic noise. The sensor enclosure is sealed with an aluminum cover.  

Since soldered connections are easily broken, Molex
®
 connections are used to 

allow the slight twisting motion of the workpiece during polishing. The complete 

sensing system is fabricated to maintain equitable distribution of weight, because, 
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weight discrepancies on these attachments can cause the spindle to wobble – akin 

to an unbalanced shaft.  

In this work we use the data gathered from the vibration sensors in tangential 

(VX) and radial (VY) directions (in the X-Y plane with respect to the rotating 

spindle) because the applied downforce constrains the movement of the work-

piece in the vertical direction. Therefore, the observed magnitude of the vibration 

sensor response in the vertical direction (VZ) was diminished.  

 

Fig. 4: Components of wireless sensor array mounted on the CMP setup for gathering vibration 

signals.  

Experimental Procedure 

MEMS sensor data is often contaminated by a high level of extraneous noise 

relating to; (i) sensor response characteristics, (ii) sensor placement, (iii) dynamic 

instability and geometrical inaccuracy of mechanical components, (iv) interfer-
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ence from electromagnetic sources, such as motors and pumps, and (v) other 

significant environmental conditions, such as temperature and acoustic noise 

[225].  

Therefore, in order to understand the process dynamics, it is necessary to 

identify the sources of prominent features observed from sensor signal data. In 

addition, by identifying those components of the sensor data that may be mere 

artifacts signal processing techniques focusing on noise reduction and multi-scale 

resolution can be applied with less likelihood of losing valuable information 

relating to the process.  

The task of identifying sensor data patterns is oftentimes more conducive in 

the frequency domain as compared to the time domain. For example, Fig. 5 (a) 

shows a typical vibration time series data gathered during CMP polishing. From 

the time series, a prominent low frequency component with time period of ~ 2 

seconds (0.5 Hz) is observed. The frequency spectrum (see Fig. 5 (b)), Fast Fouri-

er Transform (FFT), of the signal reveals the following characteristics: 

1. Low frequency component in the 0.5 – 1 Hz region. The 1 Hz component 

can be surmised as an integer multiple of the peak at 0.5 Hz. 

2. Broadband frequency regions centered around 25 Hz and 50 Hz. 

3. Broadband frequency region around 120 Hz. 

4. A relatively small background (white) noise evident throughout the spec-

trum. 

Given these signal characteristics, our objectives are as follows: 
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1. Isolate the cause of the foregoing signal characteristics. 

2. Delineate characteristics that are pertinent to the process state from those 

which maybe artifacts. 

In order to achieve these objectives, we conduct the various tests described in 

the forthcoming sections. 

 

Fig. 5: Typical vibration sensor data in the tangential (VX) direction obtained during CMP of copper 

workpieces under the following condition; 30 RPM spindle speed, 150 RPM platen speed, and 2 lb. 
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down force. (a): Time series plot showing ~ 20 seconds of the total (180 seconds) data, time period 

between prominent low frequency components ~ 2 seconds (b): FFT frequency spectrum of the data, 

showing presence of 4 main components, e.g., low frequency component (0.5 Hz – 1 Hz) seen in (a) is 

marked by 1. A zoomed in view of component 1 is shown in the inset. 

 

Ambient response of sensor 

The vibration sensor was mounted on a pneumatically stabilized vibration 

isolation table, and data collected at ~ 690 Hz sampling rate. The sensor data 

reveals the presence of a prominent broadband region around the 25 Hz and 50 

Hz, and integer multiples thereafter (Fig. 6). This broadband region was ~ 4 – 5 

times the white noise characteristic (component 4) of the sensor. The white noise 

was estimated at 5 × 10
−5

 units in the frequency spectrum for sensor data calibrat-

ed in g-force units (Fig. 6 (a)). In decibels, the base noise translates to ~ −110 dB 

mean, with the 25 Hz region peaking at ~ −80 dB (Fig. 6 (b)). Thus, the region 

marked by 2 in Fig. 5 (b), can be attributed to some extent as having originated 

from the sensor characteristics. Presence of resistors and capacitors on the sensor 

board can lead to such typical low frequency noise component termed flicker 

noise (see e.g., [225]). However, as comparison with Fig. 6 (b) shows, component 

2 does not completely account for the energy observed during polishing. Thus 

additional contribution of the spindle motor (60V permanent magnet DC gear 

motor, modulated from AC mains), cannot be completely ruled out [225]. Inter-

estingly, the white noise spectrum (component 4) seems to be agreement with Fig. 

5 (b). 
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Fig. 6: FFT (a) and Power spectral density (PSD) (b) of ambient vibration sensor data gathered for ~ 

30 seconds at ~690 Hz. Portions marked 2, partially accounts for corresponding components (Fig. 5 

(b)). Portion marked 4 is the white noise component, and is in agreement with Fig. 5 (b).  
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Influence of load and spindle speed 

Full factorial design of experiments tests (T 1) were conducted under differ-

ent load and spindle speed conditions for both polishing and no-polishing cases. 

For the no-polishing case the workpiece was mounted on the spindle and polish-

ing simulated without actual contact between the pad and the workpiece. These 

tests were in accordance with a 2 × 2 full factorial design of experiment (T 1) for 

a total of four treatment conditions, with load and spindle speed as main factors 

each at two levels of; 2 lb. and 8 lb., 30 RPM and 60 RPM, respectively. The 

platen speed was maintained constant at 150 RPM. Each treatment condition was 

replicated thrice. Vibration sensor data in the tangential (VX) and radial direction 

(VY) was gathered for 3 min test runs, at ~ 690 Hz, yielding ~ 120,000 data points 

(for each interval, for each sensor direction). From this data set, the first and last 

30 seconds of data was quarantined in order to eliminate presence of transient 

elements in the signal. Thus, ~ 80,000 data points are used for this analysis. We 

present the results from the VX direction vibration sensor. The observations drawn 

from this data were subsequently corroborated with the VY direction data.  
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T 1: 2 x 2 full factorial design of experiment for Test 1 

Treatment 

Condition 

Process Variables 

Downforce 

(load) lb. 

Spindle (Head) 

Speed RPM 

1 2 30  

2 8 60 

3 2 30 

4 8 60 

Fixed (constant) factors 

Platen Speed (RPM): 150 

Pad type: Buehler microcloth 

Polishing time : 3 min 

Slurry flow rate: 25 ml/min 

 

Observation of the spectrum at ~ 120 Hz (component 3) shown in Fig. 7 re-

veals that during polishing the energy content in this component is almost twice 

as high (Fig. 7, (b1) and (b2)) compared to the no polishing state for the same 

load (Fig. 7, (a1) and (a2) ). Secondly, for the same test condition i.e., polish or 

no-polish, as the load is increased from 2 lb. (Fig. 7 (a1) and (b1)) to 8 lb. (Fig. 7, 

(a2) and (b2)) the magnitude of frequency component 3 increases in the range of 

50% – 75%. However, this apparent variation can lead to ambiguous results under 

lax test conditions. A more complete test to ascertain the effect of load on the 120 

Hz region, which quantifies the variation in signal component 3 is presented in the 

forthcoming section.  

Fig. 8 shows a comparison of signals between the 30 RPM vs. 60 RPM spin-

dle rotation with all other factors maintained identical. As spindle speed is in-

creased to 60 RPM (Fig. 8 (a2) and (b2)), for both the no polish (Fig. 8 (a1) and 

(a2) ) vs. polish conditions (Fig. 8, (b1) and (b2)) we notice the following:  
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i. 50 Hz region (component 2) is ~ 1.5 – 2 times higher compared to 30 RPM 

conditions. 

ii. 120 Hz region (component 3) is not significantly affected by change in 

spindle speed. 

iii. 25 Hz region (component 2) is attenuated with the 50 Hz region. 

iv. White Gaussian noise (component 4, see Fig. 5) does not change signifi-

cantly for various conditions tested. 

v. Several broadband regions between 50 Hz and 100 Hz which were insignif-

icant in the 30 RPM case, particularly around the 75 Hz region, become 

prominent.  

Notably, component 2 remained unaffected when load was varied (i.e., spin-

dle speed maintained constant - compare left ((a1), (b1)) and right ((a2), (b2)) 

panels in Fig. 8) for both polish and no-polish conditions. However, a variation in 

spindle speed (i.e., load maintained constant) significantly alters both the shape 

and magnitude of component 2 (compare left ((a1), (b1)) and right ((a2), (b2)) 

panels in Fig. 8). This may lead to the conjecture that component 2 is likely a 

combination of aspects associated with the spindle machine elements and sensor 

characteristics. Given this association of component 2 with extraneous noise, it 

would not be conducive to use the same from a process monitoring standpoint.  

 The effect of spindle speed on component 1 which represents the low fre-

quency component (0.5 – 1 Hz) region of the signal is apparent in Fig. 9. For the 

30 RPM condition (Fig. 9, (a1) and (b1)) component 1 first appears at 0.5 Hz and 



 

357 

 

~ 1 Hz (the first integer multiple), at 60 RPM, (Fig. 9, (a2) and (b2)) this compo-

nent is seen at 1 Hz and 2 Hz (the first integer multiple). Interestingly, the magni-

tude of component 1 appears to be higher during polishing (Fig. 9, bottom panel) 

compared to no-polishing state (Fig. 9 top panel). However, this observation is 

only affirmed in 9 of 12 total cases – thus being less reliable from process moni-

toring applications in comparison to component 3 as an indicator of applied down 

force. This test leads to the following inferences: 

Referring to Fig. 7 

i. Magnitude of the vibration signal in the 120 Hz region, i.e., component 3, is 

responsive to polish vs. no-polish states. The magnitude of component 3 is 

almost double during polish state in comparison to no-polish state.  

ii. Increase in down force from 2 lb. to 8 lb. lead to increase of 50% – 75% in 

magnitude of component 3 in the frequency spectrum.  

Referring to Fig. 8 

iii. Component 2 is likely an artifact emerging from a combination of the charac-

teristics of the sensor response, and mechanical, electromagnetic aspects of 

the spindle motor. 

iv. Taken together (i) and (ii), help associate component 3 as a likely indicator of 

process dynamics responsive to variation in downforce.  

Referring to Fig. 9 

v. Low component frequency, i.e., component 1, appears irrespective of polish-

ing vs. no polishing conditions. 
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vi. Component 1 is closely correlated with the spindle speed. The first peak ap-

pears at frequencies corresponding to the spindle RPM. At 30 RPM, the first 

peak is seen at 0.5 Hz. Similarly, at 60 RPM, the first peak appears at 1 Hz. 

This observation was confirmed with the spindle speed at different RPM set-

tings. 

vii. From (v) and (vi), component 1 can be conjectured to be a result of the spin-

dle dynamics. However, the possibility of close resonance among machine 

elements leading to component 1 cannot be ruled out at this stage.  

  



359 

 

 

Fig. 7: Comparison of No Polishing (a, top panel) vs. polishing condition (b, bottom panel) wrt to different down force conditions for identical spindle speed of 

30 RPM. 2 lb (left panel, marked suffix 1) and 8 lb. load (right panel, marked suffix 2). Magnitude of component 3, representing the 120 Hz region is markedly 

higher for polish vs. no polish condition (compare top and bottom panels). 8 lb. load leads to ~ 50% increase in magnitude of component 3 (compare left and 

right panels).  
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Fig. 8: Comparison of No Polishing (a, top panel) vs. polishing condition (b, bottom panel) wrt to different spindle speed conditions, with 30 RPM (left panel, 

marked suffix 1) and 60 RPM (right panel, marked suffix 2) for identical downforce of 2 lb. Magnitude of component 3, does not change significantly with 

RPM. 
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Fig. 9: Zoomed in portions of conditions corresponding to Fig. 8. Sharp peaks in the frequency spectrum appear corresponding to the spindle speed. No Polish-

ing (a, top panel) vs. polishing condition (b, bottom panel) wrt to different spindle speed conditions, with 30 RPM (left panel, marked suffix 1) and 60 RPM 

(right panel, marked suffix 2) for identical downforce of 2 lb. 
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Influence of machine elements 

In order to further ascertain the origin of component 2 (see Fig. 7), sensor da-

ta was gathered during the course of the various machine elements (see Fig. 10) 

being activated just before and after polishing. A linear motion (Fig. 10 (b)) is 

imparted to the spindle by a 12V DC motor before and after polishing. This motor 

engages with a gear and pinion assembly via a toothed belt drive, and drives the 

spindle in the vertical direction. This vertical motion allows the workpiece to 

make contact and disengage from the platen before and after polishing respective-

ly. Rotational motion to the spindle is imparted by a different 60V permanent 

magnet DC (PMDC), 1/6 HP eccentric shaft gear motor. It must be noted that the 

two motors never operate in unison. The machine operates according to the fol-

lowing sequence: 

a. Before polishing phase (Fig. 11) 

i. Wafer is mounted on the holder (Fig. 11 (a)). 

ii. Spindle is lowered onto the platen, during this phase the 12V motor is en-

gaged (Fig. 11 (b)). 

iii. Machine senses contact between the work piece and base, spindle stops 

lowering and holds position (Fig. 11 (c)). 

iv. Air is supplied to pneumatic actuators to apply set load upon the work-

piece (Fig. 11 (c)). 

v. Polishing begins after delay of ~ 1 seconds with slurry pump being acti-

vated concurrently (Fig. 11 (d)). 



 

363 

 

b. After polishing phase 

i. Spindle stops rotating after set polishing time. 

ii. 60V motor is disengaged; phase (iii) and (iv) begin after a delay of ~ 3 – 

4 seconds.  

iii. Pneumatic actuators rise and disengage from the workpiece. 

iv. Spindle begins to raise up to default position by means of the 12V motor.  

The effect of machine components on vibration patterns can be isolated by 

gathering data during the spindle lifting and lowering phases for polishing. Analy-

sis of vibration data (VZ, ~ 500 Hz sampling rate) during the lowering phase 

enables measurement of spindle vibration due to activation of the 12V DC motor 

engage phase. Similarly, vibration measurements taken during the disengage 

phase allows; (i) isolation of pneumatic actuator vibration pattern, (ii) estimating 

the ambient contribution of the 60V PMDC motor during the 3 – 4 seconds delay 

before the pneumatic actuators lose contact with the workpiece, and (iii) a second 

measurement of the 12V motor vibration characteristics.  

Analysis of vibration sensor data during from the engage phase (lowering) of 

the spindle is shown in the top panel of Fig. 12 (a1 and a2). Bottom panel of Fig. 

12 (b1 and b2) depicts the same during the disengage (lifting) phase. During the 

engage phase, the vibration dynamics of the 12V motor fails to show presence of 

dominant frequencies (Fig. 12 (a2)) – indicating that this phase is composed of 

Gaussian white noise. On the other hand, during the disengage phase the data 

reveals (Fig. 12 (b)) presence of dominant frequencies at integer multiples of 50 
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Hz. This is in accordance with the 50 Hz AC power supply specification for the 

motor. Furthermore, juxtaposition (Fig. 12 (b2)) of the frequency spectrum from 

the lifting phase and experimental data (e.g., Fig. 12 (a1)) obtained during polish-

ing shows close agreement in the magnitude of the 50 Hz region (component 2). 

The prominent 200 Hz frequency region in evidence Fig. 12 (b2) is likely due to 

action of the pneumatic actuators. Also, comparison of Fig. 12 (a2) and Fig. 12 

(b2) reveals that the overall contribution of the 12V motor (deemed white noise) 

is minuscule in comparison to that of the 60V motor. Also, we cannot perceive the 

presence of a dominant frequency in Fig. 12 (b2) in the 120 Hz region (compo-

nent 3). 

 Hence, component 3 may be considered as a viable indicator of polishing 

state, and not a mere artifact. More pertinently, the results from this test can lead 

us to infer with greater confidence that the 50 Hz frequency region (component 2) 

most likely is a resultant combination of electromagnetic effects from the system 

– in particular, the 60V DC gear motor, and sensor noise characteristics Fig. 10).  
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Fig. 10: Photographs showing the main components of the polishing machine: DC motors (12 VDC motor for the linear stage, and 60 V PMDC gear motor for 

spindle rotation), drive arrangement, pneumatic system for controlling downforce, and microcontroller. 
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Fig. 11: Sequence of operations just prior to start of polishing (a) Workpiece is loaded on the spindle along with the sensor (not shown) (b) The spindle is 

lowered onto the platen by means of the linear drive motor along a gear and pinion rack (c) The pneumatic system is activated, and applies the set downforce, 

after a delay of ~1 seconds the polishing action (d) begins with slurry being dispensed synchronously. The sequence operates in reverse after the end of polish-

ing.  

 

(a)

(c)

(b)

(d)
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Fig. 12: Vibration sensor data gathered during the spindle engage, (top panel, marked a) and disengage phases (bottom panel, marked b). The time series for 

the two phases and their frequency spectrum are shown in the left (suffix 1) and right panels (suffix 2) respectively. 
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Tests with varying load conditions 

As noted in the foregoing, the region around ~ 120 Hz (component 3) in the 

frequency spectrum was responsive to the different levels of downforce applied 

upon the workpiece. The following experimental procedure was followed to 

further study the effect of applied downforce on the sensor signal patterns. Three 

identical workpieces initially lapped to a surface finish Ra ~ 10 nm were polished 

on the CMP setup for one minute. Each workpiece was subjected to three differ-

ent downforce conditions of 2 lb., 5 lb., and 8 lb. with spindle (head) and platen 

(base) speed maintained at 60 and 150 RPM respectively. In addition, each of the 

workpieces were polished thrice for a given load. A fresh polishing pad and silica 

slurry at 100 ml/min flow rate was used for each experiment. Thus, there are 9 

data points for each load condition giving a total of 27 test points. Sensor data was 

gathered for the complete 1 minutes run of the experiment. Sampling rate was set 

at ~ 690 Hz for both the tangential (VX) and radial direction (VY) vibration sensor 

channels. The first and last 5 seconds of the data are not used for the analysis to 

exclude transient signal features, thus in all ~ 35,000 vibration sensor data are 

obtained for each of the 27 test points.  

Since the frequency spectrum of the vibration signals show marked broad-

band characteristics in the region of interest (component 3), a Gaussian weighted 

window with a mean centered at 117.5 Hz and standard deviation of 0.4 Hz was 

used to capture the energy content in this region. Though this could be considered 

a relatively broader window size, it minimizes the possibility of losing pertinent 
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information, albeit at the risk of being more inclusive of extraneous noise. The 

result from this analysis is shown in Fig. 13. The following inferences can be 

drawn from these analysis:  

i. The energy content (sum of squares of amplitudes in the frequency 

spectrum) in the 115 – 120 Hz region is significantly different for the 

three loads applied (Fig. 13 (a) and (b)). A statistical ANOVA analy-

sis of the data confirms this observation – the p-value was close to ze-

ro (<< 0.01), with R
2
 ~ 80% in a linear regression setting. Tukey’s 

pairwise comparison tests also revealed statistical significance at the 

95% confidence level for all pairwise combinations tested.  

ii. The energy content in the 115 – 120 Hz region, tends to increase with 

applied load, however the trend is not linear. For calibrated g-force 

units, the average increase in energy when load is increased from 2 lb. 

to 5 lb. is ~ 50%, while from 5 lb. to 8 lb. the increase is only ~ 25%.  

iii. For the 2 lb. and 5 lb. downforce conditions, the energy values appear 

to be more tightly clustered in comparison to the 8 lb. load condition 

(Fig. 13 (a1) and (b1)). Close examination of the figure shows that the 

majority of the anomalous behavior stems from data from workpiece 

#3.  

Inspection of workpieces showed that workpiece #3 has a tendency to fit 

more tightly compared to other workpieces in the holder. Presence of burrs and 

sharp notches from machining operations are known to cause the workpieces to 
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wedge. When a workpiece is wedged in the holder, the pneumatic actuators are 

hindered from applying the correct load. In cases of severe wedging damage to 

the platen can result. On the other hand, minor occurrence of workpiece wedging 

is harder to detect, since a susceptible workpiece can slide freely when initially 

loaded, but may get wedged due to agglomeration of slurry particles within the 

holder during polishing – as is most likely the case with workpiece # 3. When 

workpiece # 3 was censored and the data reanalyzed, a much tighter variation 

with lesser ambiguity is in evidence (Fig. 13 (a2) and (b2)).  

Thus from this experiment, it can be concluded that the sensor signals are 

sensitive to the variation in downforce. The energy content in the 120 Hz region 

(component 3) is responsive to the applied load, and the difference in energy 

levels wrt to down force is statistically significant. In general, an ~ 75% increase 

in mean energy level is observed for a corresponding increase in applied load 

from 2 lb. to 8 lb.  
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Fig. 13: Effect of applied down force (load) on energy content in the ~120 Hz region (component 3). Tangential sensor results shown in the top panel, radial 

sensor results shown in the bottom panel. Left panel shows data from all workpieces, right panel with workpiece 3 censored. 

 

(a1)

(b1)

(a2)

(b2)



372 

 

Modal analysis of machine structure 

We previously Fig. 6 delineated the ambient behavior of the sensor. In the 

foregoing, the presence of a prominent broadband characteristics at ~ 25 Hz 

followed by sharp peaks at integer multiples was noticed. The region around 25 

Hz was noted as a likely manifestation of sensor ambient response. Next, we 

hypothesized the effect of the motors and other machine elements associated with 

rotational and linear motion aspects of the spindle, namely; the 50 Hz frequency 

likely originating as a result of electromagnetic behavior of the machine compo-

nents.  

With this test, we intend to further confirm the above hypothesis by monitor-

ing the vibration response characteristics (modal testing) of the polishing machine 

structure by subjecting it to impacts. In order to characterize the resonance behav-

ior of the polishing machine, tests were conducted by exciting the machine struc-

ture under different conditions. These modal analysis tests are carried out accord-

ing to the following schema: 

1. Two different hammers are used to excite the column supporting the 

spindle head; (i) hard rubber mallet with a wood handle, and (ii) stain-

less steel hammer with a steel handle. 

2. The workpiece holder is loaded under the following conditions (i) 

with no workpieces affixed, and (ii) with four workpieces, each 

weighing ~ 250 gm.  
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The MEMS vibration sensor is mounted and calibrated to gather data in the 

vertical direction (along the column). The sensor is fixed on the spindle head with 

double-sided adhesive tape. Sampling frequency ~ 690 Hz is maintained. In ac-

cordance to the orientation change of the sensor, the traditionally tangential direc-

tion (VX) of the sensor now monitors vibration in the vertical (z-axis, machine 

coordinate) direction whilst the radial direction sensor (VY) now measures along 

the horizontal (y-axis, machine coordinate) direction in the X-Y plane.  

The machine column is subjected to impacts at ~ 2 seconds intervals for a to-

tal of 25 seconds (~10 – 11 impacts). Each of these experiments is repeated twice. 

Typical results from this test are shown in Fig. 14 (y-direction sensor data for 

modal tests conducted with the rubber mallet, no workpieces mounted). We ob-

serve from Fig. 14 (a) that the resulting structural excitations are damped within a 

short time (~ 0.35 sec) attesting to the high relative stiffness of the machine as-

sembly. Also, the low sampling frequency (~ 690 Hz) of the MEMS vibration 

sensors used for these tests do not afford the higher resolution typically possible 

with wired piezoelectric sensors, where the sampling frequency can be set to well 

over 10 kHz. However, as evidenced before (see Fig. 5), the various vibration 

signal components of interest are within 250 Hz, i.e., less than half the maximum 

sampling frequency of the MEMS sensors. Hence, the data acquired from our 

MEMS vibration sensors can serve as a reasonable estimate of the various active 

resonant frequencies in the machine structure.  
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 In contrast to the ambient sensor characteristics (Fig. 6), the 25 Hz and 50 

Hz regions (component 2) for these tests are of comparable magnitude (Fig. 14 

(b)). In the ambient sensor test (Fig. 14 (a)), the 25 Hz frequency dwarfed the 50 

Hz region. On the contrary, for this test the 50 Hz frequency is almost twice as 

large in magnitude compared to the ambient case. Secondly, component 3 is 

absent in the Fig. 14 (b), thus indicating that it (component 3) is unrelated to the 

modal characteristics of the machine. Also, we observed that the presence of 4 

workpieces seems to damp the resonance behavior in the 50 Hz region by ~ 50% 

compared to the no work piece condition depicted, however the 25 Hz region is 

not significantly affected.  

These tests characterize the vibration patterns emerging from resonance asso-

ciated with the machine structure. Component 2 can therefore be considered as a 

combined manifestation of sensor ambient response (25 Hz), electromagnetic 

interference from machine components (50 Hz), and structural resonance (50 Hz).  
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Fig. 14: Modal analysis results from striking with a rubber mallet when no workpieces are mounted, 

taken in the y-direction. The machine structure seems to depict a resonance in the region of component 

2 (25, 50 Hz) and its multiples.  
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Influence of spindle start and stop positions 

In previous sections we alluded to the possibility of low frequency (0.5 – 1 

Hz, component 1) component arising out of mechanical and geometrical errors 

from the spindle. However, we have not thus far eliminated the possibility that 

two coupled frequencies might also cause such behavior. Low frequency modu-

lated patterns are a common phenomenon associated with vibrations and acoustics 

caused when two signals or waveforms of very close frequencies or very far apart 

frequencies interact. The result of the interaction of the first kind is the addition of 

a low frequency component corresponding to the difference of the two interacting 

frequencies. The second form of interaction results in an amplitude modulation of 

the higher frequency signal by the lower frequency signal. In either case the re-

sulting waveform shows a periodic low frequency oscillation. 

Akiyama, et al. [226, 227] attributed low frequency patterns (called beats by 

the author) observed in induction motors to an eccentricity in the rotor. The fre-

quency at which the beats occurred was found to be twice the slip frequency of 

the induction motor due to the interaction of the electromagnetic and mechanical 

systems of the motor. Tests were conducted on prepared versions of four com-

monly found eccentricities in rotors, namely:  

(a) Static eccentricity due to axial misalignment of shaft and rotor centers,  

(b) Dynamic eccentricity akin to whirling of a bent shaft,  

(c) Inclined eccentricity from angular misalignment between shaft and rotor axis, 

and  
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(d) A combination of the first two types.  

Observation of vibration signal data showed that the beat phenomenon oc-

curred only in cases (b) and (d) with the latter showing lower vibration amplitude, 

leading to the conclusion that beats in induction motors are a result of dynamic 

eccentricity caused by a bent and axially misaligned shaft which leads to a whirl-

ing-like action. Similar low frequency modulated components are documented 

[228-230] to occur in rotating machinery, primarily due to eccentricity and imbal-

ance in bearings. 

Carter, et al. [119] attributed similar low frequency components observed in 

the friction force sensor signal in the CMP process, noting its correlation with the 

frequency of rotation of the carrier. Dornfeld, et al. [112] utilized piezoelectric 

and acoustic emission sensors for end point detection in CMP process. The spec-

trum of the vibration signal obtained from the piezolelectric sensors shows similar 

low frequency components. The frequency of these components varies with the 

head (carrier) RPM but there is no change in the magnitude, further confirming 

the hypothesis that the low frequency components are a result of some form of 

eccentricity in the head (carrier) rotor or shaft.  

In this test, we monitor the effect of starting the spindle at measured positions 

on the corresponding vibration pattern. We also monitor the vibration signal when 

the spindle is suddenly stopped. For the first part of the test, the workholder is 

loaded with a workpiece and the spindle is manually rotated to marked positions. 

In all, 8 radial positions at intervals of 45° are designated as starting positions and 
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polishing commenced. Vibration sensor data in the tangential and radial are gath-

ered at sampling rate of ~ 690 Hz. Polishing continues for ~ 1 minutes Each test is 

repeated thrice. Representative results, for the quick start test at positions of 0°, 

180°, and 315° are shown in Fig. 15 (a), (b), and (c) respectively. Fig. 15 we 

notice that the starting point of the characteristic low frequency component (com-

ponent 1) is dependent upon the starting position of the spindle. The highest 

amplitude position along the time series is observed at the 180° (Fig. 15 (b)) 

position. The 0° (Fig. 15 (a)) and 315° (Fig. 15 (c)) positions are similar implying 

that the spindle returns to the original state (displacement) after every rotation. 

Pertinently, this indicates that component 1 is likely caused by geometrical errors 

in the spindle. Similarly, when the spindle rotation is suddenly stopped, a corre-

sponding abrupt termination of the low frequency waves was observed.  

These observations help mitigate the possibility of structural resonance as a 

cause for component 1, since; partial waves are unlikely in case of periodic be-

havior originating from structural resonance. 
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Fig. 15: Quick start operation of the spindle, beginning at (a) 0°, (b) 180°, and (c) 315° positions. The 

starting position and phase of component 1 (low frequency component corresponding to spindle speed) 

appear to be correlated. The 0° (a) and 315° (c) are similar. Component 1 attains it highest magnitude 

at 180° position. 
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Verification with data gathered from wired piezoelectric sensors 

In the previous tests, we have not eliminated the presence of sensor attach-

ments as possible cause of some of the characteristics observed from the vibration 

sensor data. The added weight from the sensing system, namely; the shaft collar, 

sensor rest, and sensor power attachments can cause imbalance in the spindle. 

Such an imbalance can lead to whirling of the spindle shaft, and thus influence the 

vibration patterns.  

Toward this end, the MEMS wireless sensors and associated attachments are 

disassembled from the machine. Instead, piezoelectric vibration sensors are 

mounted on various positions (see Fig. 16) on the machine. The sensors shown in 

Fig. 16 are Kistler (model 8728A500) miniature piezoelectric accelerometers; 

data is gathered at a sampling rate of 10 kHz, and subsequently amplified. The 

sensors are mounted in the following positions on the machine; (i) the machine 

base, (ii) inside the spindle casing nearer to the spindle shaft, and (iii) casing of 

the 60V motor. Representative results are as follows: 

1. The 5 kHz wide frequency spectrum for the polish vs. no polish con-

dition is shown in Fig. 16, Prominent peaks are not seen over 500 Hz. 

This attests to the viability of wireless sensors with their characteris-

tics low sampling rates being adequate for monitoring CMP process. 

2. In the 0 – 500 Hz frequency range, the polish vs. no polish cases show 

results similar to those discussed earlier. During polishing the 120 Hz 

region (component 3) has much higher magnitude (Fig. 17 (b2)) com-
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pared with the same during no-polish condition (Fig. 17 (a2)). This 

observation corroborates for component 3 as an indicator of applied 

down force.  

3. Similar to previous observations, prominent peaks in the FFT corre-

sponding to the spindle rotation speed are seen in the 0.5 – 1 Hz re-

gion (component 1) (Fig. 17 (a), and (b)). 

4. The 50 Hz region (component 2) is present for both polish and no-

polish conditions (Fig. 17 (a2), and (b2)).  

This test confirms the following: 

i. Component 1 (0.5 – 1 Hz) is most likely due to geometry and eccen-

tricity errors from the spindle. 

ii. Component 2 (25 Hz, 50 Hz) most likely originates from structural 

resonance and added electromagnetic effects associated with the ma-

chine elements, particularly the spindle motor, and thus can be con-

sidered as extraneous noise of little importance from a process moni-

toring standpoint. 

iii. Component 3 (120 Hz) is sensitive to the polishing forces acting at 

the workpiece-pad interface. 

 



 

382 

 

 

Fig. 16: Position of Kistler (model 8728A500) piezoelectric vibration sensors located on machine. 

MEMS sensor attachments are removed for tests conducted with piezoelectric sensors. 
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Fig. 17: Vibration signals obtained from piezoelectric sensor mounted near the motor (a) During no 

polish condition (b) During polishing at 5 lb. down force. Component (1) corresponding to spindle 

speed (40 RPM) is seen for both polishing (b1) and no-polish conditions (a1). Component 3 – 120 Hz 

region is ~ 4-5 times higher during polishing (b2) compared to no-polish condition (a2). 
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Influence of pneumatic system 

Though, the possibility of component 1 arising from structural resonance ef-

fects has been somewhat mitigated, the likelihood of observed periodic air pres-

sure oscillations from the pneumatic system as a cause (for component 1) has yet 

to be eliminated.  

During polishing, air is periodically let into the cylinders of the pneumatic ac-

tuator in order to maintain the set down force. This action is regulated by the 

microcontroller board shown in Fig. 18. The microcontroller in turn activates a 

system of solenoids (set at normally closed position) that allow the entry of air 

into the actuator cylinder. The entry of air into the cylinder can subject the ma-

chine to impact loads causing possible resonating vibration in the machine. To 

investigate this possibility, vibration sensors were mounted on the spindle and 

solenoid (see Fig. 18). Vibration data was gathered during polishing at different 

loads and RPM conditions. The sampling rate for each sensor was maintained at ~ 

690 Hz. Representative results are shown in Fig. 19. 

The solenoid activation process is observed on disassembly of the protective 

casing around the spindle head. A click is heard, and indicator lights are visible 

each time the solenoid is activated. With activation of the solenoid the needle on 

the air pressure indicator drops momentarily in the range of 2 – 3 psi.  

The solenoid vibration data depicts sharp peaks as shown Fig. 19. These 

peaks correspond to the characteristic clicking sound of the solenoid which was 

noted with a stop watch. Though, the solenoid activates at regular intervals, the 
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period between successive activations do not correspond with component 1 (see 

Fig. 6). Also, the solenoid activation rate is observed to vary with applied down 

force as opposed to spindle speed. For example, at 2 lb. load the solenoid clicks at 

~ 2 seconds intervals (Fig. 19 (a)); while at 8 lb. load the interval is ~ 0.5 seconds 

(Fig. 19. (b)). This is likely, because, at high load greater pressure needs to be 

maintained inside the actuator, which in turn increases the tendency for air to 

escape from the actuator seals.  

Since the solenoid activation is not observed to be in phase with the low fre-

quency component corresponding to spindle speed (component 1), the possibility 

of the pneumatic system as cause for the same can be eliminated.  
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Fig. 18: MEMS vibration sensor mounted on pneumatic solenoid to monitor the behavior of the 

pneumatic system.  

Solenoid

Vibration Sensor

Transmitter

Sensor battery



387 

 

 

Fig. 19: The solenoid activation cycles for differing load conditions (a) 2 lb., and (b) 8 lb. for the same 

spindle speed of 60 RPM. The solenoid activation frequency does not seem to be correlated with 

spindle speed, but is more reflective of applied downforce. 

25 30 35 40 45 50 55 60 65 70 75
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (seconds)

M
a
g
n
it
u
d
e
 (

g
-f

o
rc

e
)

25 30 35 40 45 50 55 60 65 70 75
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (seconds)

M
a
g
n
it
u
d
e
 (

g
-f

o
rc

e
)

(a)

(b)

2 lb.

8 lb.



388 

 

Effect of pad wear 

Lapped workpieces (Ra ~ 15 nm) were polished on the CMP setup in 3 min 

intervals with silica slurry. The polishing conditions were as follows; platen speed 

150 RPM, head speed 60 RPM, and downforce 4 lb. Vibration sensor data was 

gathered during the experiments at sampling rate ~ 690 Hz, akin to tests detailed 

in the foregoing sections. After 3 minutes of CMP the average workpiece Ra 

improved to ~ 7 nm. Subsequently, pad wear was accelerated by soaking the pad 

in slurry for ~ 45 minutes. At the end of 12 minutes of CMP, glazing of the pol-

ishing pad is observed (Fig. 20 (a)). In the same interval, scratches were seen on 

the workpiece (Fig. 20 (b)), and Ra increased to ~ 22 nm. The FFT of the tangen-

tial direction (VX) vibration sensor obtained after 3 minutes, and at the end of 12 

minutes (when glazing of pad is observed) are compared in Fig. 21 (a) and (b) 

respectively. The magnitude of component 3 increases by ~ 30 – 40% at the end 

of 12 min (Fig. 21 (b)) of CMP, indicating the effect of pad wear on vibration 

data. Thus component 3 can be considered as being responsive to changes in 

process parameters (downforce), and process conditions, such as pad wear. 
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Fig. 20: (a) Glazed pad after 12 minutes of CMP (b) Scratches on workpiece observed at the end of 12 

minutes of CMP. 
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Fig. 21: FFT of experimental vibration data obtained for (a) new pad vs. (b) glazed pad 
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Summary 

Various spectral components of vibration sensor signal patterns from CMP 

were identified, and their respective underlying physical sources isolated. In all, 

three dominant components are of interest: 

1. Component 1 manifests in the low frequency region between 0.5 – 1 Hz. 

The first dominant peak in this region was observed to coincide with the 

spindle (head) speed. Pertinently, the appearance of high amplitude por-

tions for this component was shown to be spatially related with the spin-

dle location with respect to the platen. Tests  

(see T 2) conducted with regard to component 1 indicate that it is most 

likely a result of spindle shaft eccentricity.  

2. Component 2 comprises of two broadband frequency regions centered 

around 25 Hz and 50 Hz. It is found to be likely from a conjoined effect 

of sensor ambient characteristics, electromagnetic interference from ma-

chine elements, and vibration from the machine structure (see T 3) 

3. Component 3 is observed in the region in the vicinity of 120 Hz; typically 

centered at 117.5 Hz (T 4) provides a brief summary of the tests conduct-

ed to arrive at the following inferences: 

 The spectral energy content for component 3 almost doubles during 

polishing in comparison to situations where no contact is made be-

tween the workpiece and pad.  
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 A statistically significant relationship was observed between the 

spectral energy content with changing downforce. Higher energy 

content is observed at higher downforce conditions. However, this 

trend is not linear. The average increase in energy when load is in-

creased from 2 lb. to 5 lb. is ~ 50%, while from 5 lb. to 8 lb. the in-

crease is only ~ 25%. 

 Component 3 was observed to capture subtle changes in process 

state, such as pad wear. Due to pad glazing the magnitude of FFT 

peaks was ~ 50% higher in comparison to conditions where a fresh 

pad is used.  
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T 2: Tests and corresponding observations relating to 0.5 Hz – 1Hz component (Component 1) 

Source(s) Test conducted Observation(s) Inference(s) 
P

o
li

sh
in

g
 h

ea
d

 (
sp

in
d

le
) 

ec
c
en

tr
ic

it
y

 

Full factor DoE with vary-

ing spindle speeds  

Dominant peaks in the frequency 

spectrum corresponding to the spindle 

speed. E.g., for spindle speed set at 30 

RPM, a prominent peak is observed at 

0.5 Hz, and integer multiples thereon  

Component 1 is present during both 

no polish and polish states 

Frequency of component 

1 is identical to the set 

spindle speed. 

Quick stop and start tests 

with spindle set at various 

positions 

 

The start point of component 1 is 

dependent upon the starting position 

of the spindle 

When the spindle rotation is suddenly 

stopped, a corresponding abrupt ter-

mination of component 1 is observed 

Highest amplitude of component 1 is 

observed at a particular radial position 

of the spindle head 

Component 1 does not 

result from structural 

resonance, but is likely 

due to eccentricity errors. 

 

Piezoelectric vibration 

sensors at various locations 

on the machine. Fixtures 

used for MEMS sensors are 

removed  

 Dominant peaks in the frequency 

spectrum corresponding to the spindle 

speed. 

Component 1 does not 

result from imbalance due 

to sensor fixtures used for 

MEMS sensors. 

Sensors mounted in the 

vicinity of the machine 

pneumatic system  

Period between activation cycles of 

the pneumatic valves are dependent 

upon the applied downforce and not 

on set spindle speed 

Component 1 does not 

result from activation of 

the pneumatic valves. 
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T 3: Tests and corresponding observations relating to 25 Hz, 50 Hz component (Component 2) 

Source(s) Test conducted Observation(s) Inference(s) 

A
m

b
ie

n
t 

se
n

so
r 

n
o
is

e,
 e

le
ct

ro
m

a
g
n

et
ic

 i
n

te
rf

er
en

ce
, 
a
n

d
 

st
ru

ct
u

ra
l 

re
so

n
a
n

ce
 

Response of sensor ob-

served under ambient 

conditions  

Presence of a prominent broadband region 

around 25 Hz and relatively less prominent 

peak at 50 Hz, and integer multiples thereafter 

Presence of measurement 

noise due to sensor re-

sponse characteristics. 

Measurement noise mani-

fests in 25Hz region. 

Sensor data gathered in the 

course of various machine 

elements being activated 

prior and subsequent to 

polishing  

No peaks observed in the 0.5–1 Hz region 

Dominant peaks in integer multiples of 50 Hz 

observed during the spindle disengage phase 

Broadband noise observed during the spindle 

engage phase just prior to commencement of 

polish 

Machine elements, particu-

larly 60V PMDC spindle 

motor causes electromag-

netic interference manifest-

ing in the 50 Hz broadband 

spectrum. 

Modal analysis of the 

machine structure. Struc-

ture is excited using differ-

ent types of hammers  

Dominant peaks corresponding to 25 Hz, 50 

Hz, and integer multiples thereon.  

Both 25 Hz and 50 Hz region show prominent 

broadband characteristics.  

No peaks observed in 0.5 Hz – 1 Hz region, or 

120 Hz region 

25 Hz, 50 Hz region accen-

tuated by natural vibration 

frequency of the machine 

structure. 

Structural vibration not a 

cause for 0.5 – 1 Hz or 120 

Hz components. 

Piezoelectric vibration 

sensors at various locations 

on the machine. Fixtures 

used for MEMS sensors 

are removed  

Dominant peaks corresponding to 25 Hz and 50 

Hz 

Magnitude of 50 Hz region does not change 

significantly between polish vs. no polish states 

 

Electromagnetic interfer-

ence manifesting in the 50 

Hz broadband spectrum. 



 

395 

 

 

T 4: Tests and corresponding observations relating to 120 Hz component (Component 3) 

Source(s) Test conducted Observation(s) Inference(s) 

P
ro

ce
ss

 p
a
ra

m
et

er
s,

 s
u

ch
 a

s 
d

o
w

n
fo

rc
e,

 p
a
d

 

w
ea

r,
 f
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ct
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n

 a
t 
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e 

p
a

d
-w

o
rk

p
ie

ce
 i

n
te

r
fa

ce
. 

Full factor DoE comparing 

polish vs. no polish states  

Energy in 120 Hz region increases by ~ 75% 

– 100% during polishing vs. no polishing 

state maintaining constant load and speed.  

Spindle speed does not seem to significantly 

affect energy in component 3. 

Component 3 is responsive 

to polishing condition, and 

is not effected significantly 

by changing spindle speed. 

Full factor DoE with varying 

downforce 

 

Energy in 120 Hz increases with increasing 

downforce, in a statistically significant man-

ner (p-val < 0.1) 

Component 3 is signifi-

cantly correlated with the 

applied downforce. 

Polish vs. no polish experi-

ments with piezoelectric 

sensors  

Peak corresponding to 120 Hz is ~ 4 times 

higher during polishing vs. no polish condi-

tions 

Component 3 is not an 

artifact related with MEMS 

sensors, but may capture 

the both friction (due to 

polishing) and motor 

torque. 

Experiments simulating pad 

wear  

Peak corresponding to 120 Hz is ~50% in 

worn pad condition compared to fresh pad 

Increased friction at pad-

workpiece interface due to 

worn pad is reflected in 

component 3 
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Appendix III: Formulation of the Determinis-

tic Process-Machine Interaction (PMI) Model 

for CMP 

 
Fig. 22: Schematic representation of the CMP setup, showing an infinitesimal misalignment ϕ in the 

sensor and machine axes. 

n Chapter 3, we used wireless MEMS vibration sensors (accelerometers) 

mounted in close proximity to the workpiece (cylindrical copper discs) to 

capture the CMP process dynamics. A schematic representation of the setup is 

shown in Fig. 22 above (see also Figure 3-3(d)). The sensors acquire vibration 

patterns along their tangential and normal axes denoted as  ⃗  and   , respectively. 

Under ideal circumstances, the sensor axes ( ⃗    ) can be assumed to align along 

the machine axes (    ⃗ ).  

However, in practice it is often observed that the sensor axes ( ⃗    ) may not 

be precisely aligned with the machine axes (    ⃗ ). Due to this misalignment in the 

sensor and machine axes (viz. denoted as ϕ in Fig. 22), the sensor signal patterns 

acquired along either of the directions  ⃗  and    captures the process dynamics from 

I 
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both the normal and tangential directions with respect to the machine coordinates 

(    ⃗ ).  

Therefore, in formulating the CMP process dynamics we assume an infinites-

imal misalignment ϕ between the sensor and machine axes as shown in Fig. 22. 

Also in Fig. 22 the mean separation distance between the wafer and pad is repre-

sented as   ( ) (see Ref. [145, 149, 231]). The significance of the dynamic term 

  ( ) will become clear as we proceed through the PMI model formulation. 

Physically, the effect of misalignment can also be elucidated from the per-

spective of mode-coupling phenomena encountered in mechanical processes 

where sliding friction (e.g., CMP) plays a prominent part (see Ref. [232]). Perti-

nently, the dynamics of sliding friction processes are often captured using 2 de-

gree of freedom systems in the literature [232].  

In this work, the overall dynamics of the CMP process dynamics is captured 

using a 2 degree of freedom, nonlinear differential equation lumped-mass model 

of the form, 

   ̈   [   ( )]    ̇    ( ) (1) 

where,  ̈ is the acceleration (vibration),  ̇ is the velocity, and   the displacement 

along the direction  ⃗ , and the RHS term,   ( ) is the tangential force acting 

along the axis  ⃗  (see Fig. 22). In the forthcoming, we will explain how the various 

terms in Eqn. (1) relate to the CMP process dynamics. 
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Formulation of CMP process dynamics as a 2 degree of freedom 

lumped-mass system 

 
Fig. 23: Normal   ( ) and friction forces   (   ) in terms of the machine coordinates (    ⃗ ). 

We first formulate the process dynamics along the vertical direction  ⃗  of the 

machine axes (    ⃗ ). Using a lumped-mass model as shown in Fig. 23, the normal 

  ( ) and friction force   (μ  )acting along the machine axis  ⃗  and   , respec-

tively, are written as (referring to Fig. 23),  

  ( )    ̈    [    ( )]     ̇, (2) 

  (μ  )  μ  ( ) (3) 

In Eqn. (2),   is the displacement,  ̇ is the velocity, and  ̈ the acceleration 

along the vertical machine axis  ⃗ . Additionally,    and    represent the damping 

and stiffness coefficients, respectively, and   is the inertial mass of the system.  

In Eqn.(3), μ is the kinetic coefficient of friction at the wafer-pad interface. 

Essentially,   (μ  ) is a scaled form of   ( ) contingent on μ. Such a relation-
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ship connecting   ( ) and   (μ  ) is often considered in literature for sliding 

friction systems (see e.g., Hoffmann, et al. [232]). 

Next, the forces along the sensor axes ( ⃗    ) are formulated similarly using a 

lumped-mass system representation. Accordingly, the force    along the sensor 

axis   , can be written as (see Fig. 24), 

  ( )    ̈    [   ( )]     ̇ (4) 

where,              , and  ( )    ( )     .  
 

 
Fig. 24: Tangential force   ( ) represented in terms of the sensor coordinates ( ⃗    ). 

From the above equation, it is apparent that 

  ( )    ̈    [              ( )     ]     ̇ (5) 

Subsequently, resolving   ( ) in the direction of the machine coordinates (    ⃗ ), 

  ( ) can be expressed in terms of as   ( ) and   (μ  ) as, 

  ( )    (μ  )        ( )     . (6) 

Using the above method,   ( ) is similarly expressed as, 

  ( )    ( )        (μ  )     . (7) 
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Essentially, Eqn. (6) and (7) imply that the forces   ( ) and   ( ) along the 

sensor axes ( ⃗    ) are closely coupled with the normal   ( ) and friction   (μ  ) 

forces. On further simplification Eqn. (6) and (7) reduce to, 

  ( )    ( )  [     μ     ] (8) 

  ( )    ( )   [     μ    ] (9) 

From, Eqn. (5) and (8), we can write   ( ) as, 

  ( )

[     μ     ]
   ( ) (10) 

  ̈    [              ( )     ]     ̇

[     μ     ]
   ( ) (11) 

Treating   and μ as constants, the denominator term in the above two equa-

tions can be set equal to  . Further recalling,  ( )    ( )      and   

           , we can reconcile the LHS of (10) and (11) as, 

  ( )

 
 

  ̈    [   ( )]     ̇

 
 (12) 

on letting, 

   
 

 
,   

  

 
,   

  

 
, and   ( )  

  ( )

 
  

(13) 

and thereby noting that   ( ) is essentially a scaled form of   ( ) acting along  ⃗ . 

The CMP process dynamics can be captured using a 2 degree of freedom, nonlin-

ear differential equation lumped-mass model of the form, 

   ̈   [   ( )]    ̇    ( ). 

Where,  ̈ is the vibration,  ̇ is the velocity, and   the displacement direction 

x. Also,   (= 2 N-s/m) and   (= 1000 N/m ) represent the damping and stiffness 
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coefficients of the lumped mass system, with    (=30 N) treated as the inertial 

mass of the system. With the RHS term   ( ) in the above equation representing 

the tangential force along the axis  ⃗ .  

From Eqn. (8), it is evident that the normal force   ( ) at the wafer-pad in-

terface can be treated as the excitation force to drive the structure (Fig. 22). The 

essence of the subsequent model development is to delineate the multi-scale 

aspects of   ( ).  

The normal force   ( ) is a nonlinear function of  , as evident from Eqn. 

(16) through (19). Furthermore,   ( )  is expressed as (see Fig. 25),  

  ( )       ̅( ) ⋅   ( ) (14) 

where    is the applied downforce,  ̅( ) the effective load at the wafer-pad inter-

face, and   ( ) the effective contact area at the wafer-pad interface [149, 158]. 

The dynamic RHS terms  ̅( ) and   ( ) are obtained from Eqn. (16) and (17), 

respectively. 
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Fig. 25: Free body diagram showing the effective  ̅( ) and nominal    loads. 

The expressions for  ̅( ), and   ( ), are obtained based on consideration of 

process dynamics at the following scales:  

 Wafer-pad asperity interface mechanics: The polishing action at wafer-

pad interface is formulated according to Borucki’s model [149], which is 

based on the Greenwood and Williamson approach [158]. Unlike previous 

approaches, we capture the effects of vibrations and bulk pad behavior on 

the wafer-pad separation distance. 

 Bulk pad structural dynamics: During polishing the bulk structure of the 

pad is considered to cyclically compress and relax in response to the dy-

namic load  ̅( ). This aspect affects the mean separation between the wa-

fer and pad, as well as the effective structure stiffness.  

 Machine level kinematic effects: Effects of geometrical inaccuracies of 

machine elements and eccentricity in spindle motion introduce low fre-
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quency cyclic displacements that are assumed to independently superim-

pose on the vibrations generated due to wafer-pad interface and pad struc-

ture effects. 

Wafer-pad asperity interface effects 

The Greenwood-Williamson (GW) approach [158] is used to compute the re-

al contact area and pressure in wafer-pad asperity models by Luo, et al. [138, 144, 

148], Qin, et al. [150], and Borucki [149]. The model by Borucki [149] is used in 

this work, since it provides a closed-form solution for obtaining the mean-

separation distance between wafer and pad. Essentially the GW model suggests a 

probabilistic distribution of pad asperities primarily to determine the area of 

contact at the interface. Most abrasive finishing processes consider such an ap-

proach to model uncertainty in the nature of contact [3, 140, 233]. 

In addition to the assumptions made by the GW model [158], we impose the 

following conditions:  

i. The pad asperity probability density function  ( ) is stationary, and 

does not change with time – an assumption valid for at most a minute 

of polishing as shown by Borucki [149].  

ii. The dynamics effects of slurry particles and hydrodynamic pressure 

distribution due to the slurry film is negligible. 

iii. Pad deformations are purely elastic. The various constants used in the 

PMI model are identical to those used by Borucki [149], these are 

listed in T 5 below. 
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T 5:CMP process constants used in the PMI model 

Constant Value 

Asperity density    2 x 10
8 

/m
2
 

Curvature of asperities    2 x 10
4 

m
-1

 

2D Young’s modulus of pad    119 MPa 

Asperity height distribution  ( )       = 0,    = 15 x 10
-6

 m 

Coefficient of sliding (dynamic) friction μ 0.75 

 

 

Fig. 26: SEM micrographs of the Buehler MicroCloth polishing pad. 

Images are  at different magnifications (left: 100X, right: 200X) depicting a dense collection of fibrous 

asperities (courtesy of Buehler).  

The surface of a CMP pad may be visualized as being composed of a rela-

tively dense network of fibers (Fig. 26) forming asperities. Considering the as-

perity heights to be Gaussian distributed with probability density function  ( )   

(Fig. 27), the probability that an asperity of height   makes contact with wafer 

surface at a distance  , where (   ), from the nominal plane (see Fig. 27) of 

the pad is given by, 

 (   )  ∫  ( )  
 

 

   (15) 

using Hertzian contact formulation [158], the total expected effective load  ̅( ) 

over the wafer is given by, 
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 ̅( )  
 

 
⋅
  ⋅     ⋅   ( )

  

 
 ⁄

∫ (   )
 

 ⁄   ( )  
 

 

   (16) 

where the effective (real) contact area   ( ) between the wafer and pad may be 

modeled as, 

  ( )      ⋅   ∫
   

  
  ( ) 

 

 

    (17) 

where   ( ) is the effective stiffness determined by the bulk structural properties 

of the pad,      (= 13 x 10
-4

 m
2
 for dia. 40.625 mm wafer used in our experi-

ments) is the nominal or the projected area of contact between the wafer,    (= 2 x 

10
8 

m
-1

) is the curvature of the pad asperities, and    (= 2 x 10
8 

/m
2
) is the asperity 

density.  

 

Fig. 27: The Greenwood-Williamson (GW) model applied to CMP. 

GW model considers the polishing pad with Gaussian distributed asperities and the wafer to be 

relatively smooth. 

Bulk pad structure effects 

The polishing pad (Buehler MicroCloth) used in this work has a porous rayon 

top layer backed by a pressure sensitive adhesive layer (~ 2 mm thick). With 

respect to the CMP pads used in industry, such as SUBA and IC series [155], the 
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pad used in our study resembles the latter, since both MicroCloth and IC series 

have prominent asperities and are relatively rigid [149].  

The MicroCloth pad is adhesively fixed to a stainless steel bimetallic plate, 

which in turn is held (magnetically) on the polishing platen. The polishing pad 

system, comprising of the MicroCloth pad along with the bimetallic plate is con-

sidered as contributing to the overall bulk pad dynamics. We found that applying 

the IC 1000 pad parameters [149] gives comparatively closer agreement with 

experimental data. 

As the wafer is held down on the pad with an applied downforce   , the pad 

and wafer separation distance (ignoring viscoelastic behavior of the pad) is as-

sumed to settle to a nominal distance   ( ) given by [149], 

  ( )         
   

 |   ∫ (   )
 

 ⁄   ( ) 
 

 

   |     (   ) (18) 

The values of   ( ) varied in the range of 35 µm – 38 µm as    is decreased from 

8 lb. (35.6 N) to 4 lb. (17.8 N). These values are consistent with literature [231].  

 

Fig. 28: Behavior of the bulk pad material at different load conditions. 
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As the downforce    increases, the asperities compress (Fig. 28), and   ( ) – 

the effective pad stiffness increases. The pad structure parameters chosen were 

consistent with those of porous pads, such as MicroCloth and IC 1000. We use 

two sigmoid functions [94] to represent the nonlinear variation of   ( ) with 

displacement and also account for pad heterogeneity [154]. This behavior is 

consistent with observed polishing pad behavior documented by Bastawros, et al. 

[145]. At high   , an increase in   ( ) leads to increase in  ̅( ) and reduced 

  ( ) (Eqn. (16) and (18)). With the asperities compressed, the effective contact 

area between the pad and wafer   ( ) also increases.  

  ( )  {
    

  

 
       

    
  

 
      

 (19) 

where    is the standard deviation of the pad asperity distribution  ( ) . 

Machine kinematic effects 

As shown in Fig. 29, a small angular error   in the spindle axis translates into 

additional periodic displacement 

         ( )    (
    

  
) (20) 

where   is the distance between the center of the wafer to the spindle axis, and   

is the spindle speed. 

Since the time and length scales over which the effects due to spindle error 

occur are much larger than those of the asperity-pad induced vibrations, we ignore 
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the effect of small time-scale asperity and pad-induced vibrations on the spindle 

error-induced displacements   . 

 

Fig. 29: Component representing spindle inaccuracy. 

Consequently, the spindle motion introduced from kinematic effects  ̈  is 

formulated as, 

 ̈  (
  

 
)
 

     (21) 

In Eqn. (20) an inaccuracy (  = 0.018°) in the vertical plane was determined 

through extensive experimental studies [160] to be inherent to the system, leading 

to the low frequency pattern ( ̈ ) discussed in Sec. 3.1, represented in Eqn. (21).  

Since the time and length scales over which the effects due to spindle error 

occur are much larger than those of the asperity-pad induced vibrations, we ignore 

the effect of small time-scale asperity and pad-induced vibrations on the spindle 

error-induced displacements   . 
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Appendix IV: Data Management  

 

ince this research is funded via several NSF grants (CMMI 0700680, CMMI 

0729552, CMMI 0927557, CMMI 1000978), a plan for data management 

was carefully devised for wide dissemination purposes. We now present a brief 

description of the data stored, as well as, the organization of the data files, images, 

and codes for wider dissemination
24

. 

Data from the UPM Process 

Type of data acquired 

 Piezoelectric force, vibration, and acoustic emission (AE) data are ac-

quired in the UPM process. 

 Cutting force and vibration data are collected along three axes, while the 

AE data is along one axis (see Figure 2-5); data from each type of sensor 

is stored in a separate folder.  

Format of data and description of content 

 The vibration and cutting force data is available in several ASCII files 

numbered sequentially (the data is divided into multiple files in order to 

avoid one unwieldy large file). 

                                                 
24

 The National Science Foundation (NSF) mandates that proposals submitted for funding consid-

eration on or after January 18, 2011 must include a supplementary document of no more than two 

pages describing a Data Management Plan (see www.nsf.gov/eng/general/dmp.jsp). 

S 
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 The files containing the cutting force and vibration data are preceded by 

12 header lines. These are lines of text describing the acquisition date and 

time.  

 Data is preserved in four columns; the first of four columns contains the 

time stamp at which a particular instance of data was acquired. The next 

three columns contain the vibration (or force) output corresponding feed, 

tangential and depth of cut directions, respectively. 

 The AE data differs from the force and vibration data in only one aspect; 

the AE data has only two columns – the time stamp, and output (in mV).  

Data from the CMP Process 

Type of data acquired 

 Wireless MEMS vibration data are acquired for the CMP process (see 

Figure 3-3(b)). The vibration data is along three axes: tangential, radial, 

and vertical for most cases.  

 In some cases vibration along only the tangential and radial direction is 

acquired (the vertical direction vibration was not found to be sensitive to 

process conditions).  

 The data is acquired at ~ 675 – 680 Hz. 

 Format of data and description of content 

 The data is stored in ASCII format. There is one file per experimental 

condition; the files do not have any header lines.  
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 The tangential direction vibration data is stored in the first column, the ra-

dial direction vibration in the second column, and vertical direction vibra-

tion in the third. 

Profile and Surface Roughness Data 

Type of data acquired 

 Surface profiles are acquired in four ways, by taking a screen shot of 

the 3D surface profile, screenshot of the 2D surface, profile stored in 

an array, and roughness values (Ra, Rq, Rz, etc.) noted by hand on pa-

per. 

Format of data and description of content 

 The screenshots are saved as uncompressed .TIFF metafiles. These are 

readily converted into grey scale arrays using popular applications, 

such as MATLAB. 

 The profiles are stored as .SDF files (scientific data format), viz. a 

widely used format for storing multi-dimensional arrays.  

Storage and Accessibility 

The data totaling close to 150 GB along with computer code (several hundred 

MATLAB scripts) currently resides in two hard-drives of the Pentium IV PC used 

by this student. This PC (barring some peripheral equipment and video cards) was 

acquired by the PIs for research purposes. 
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A back-up copy of the data is stored in an external flash memory hard-drive. 

These are located at the Advanced Technology Research Center (ATRC) labs 

under the purview and discretion of the dissertation adviser (Dr. S.T.S. Bukkapat-

nam). Shown below in Fig. 30 is the high-level folder organization of the data in 

context of this dissertation. 

 

Fig. 30: High-level folder organization of the data used in this dissertation. 
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