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The effect of micro-oxygenation on phenolic compounds was evaluated in wines 

made from a traditional vinifera variety, Ruby Cabernet, and a French-American hybrid 

variety, Chambourcin. Skin contact times (SCT) prior to pressing were 6 and 12 days.  

Injection of oxygen commenced after pressing and occurred daily for 16 weeks. Three 

levels of oxygen were applied: control, low (2.1 mL O2 per fermentation vessel per day) 

and high (21 mL O2 per vessel per day). Samples were collected weekly over 16 weeks 

and an additional sample was collected after approximately 18 months of storage. 

Our analyses showed that in both wines oxygenation treatment generally did not 

significantly affect the content of most of the phenolic compounds analyzed during the 

initial 16 weeks of treatment. After 18 months, oxygenated Chambourcin wines had 

lower monomeric anthocyanins compared to controls. Oxygenated 12-day SCT Ruby 

Cabernet wines had lower concentrations of monomeric anthocyanins than controls from 

16 weeks on and after 18 months storage. Oxygenated 12-day SCT Ruby Cabernet wines 

also had lower concentrations of long polymeric pigments (LPP) than controls after 18 

months of storage. Tannins in 12-day SCT Chambourcin wines showed significant 

oxygen effect for the 16-week experimental period, but none after storage. In terms of 

antioxidant capacity, oxygenation effect was also insignificant. Liquid chromatography 

analysis of individual phenolic compounds also showed that oxygenation had an 

insignificant impact on most of the phenolics content and composition after 16 weeks. 

Catechin, myricetin and quercetin were the major phenolics identified.  

Although the observed effects of micro-oxygenation were generally consistent 

with an accelerated ageing process, quality-related effects on the phenolic compounds in 

both wines were not readily apparent from the chemical testing performed.  It is possible 

that an experimental design with a lone SCT treatment and with varying oxygenation 

levels could better demonstrate the effects of the oxygenation treatment. As chemical 

analyses alone cannot fully describe the quality of a wine, sensory testing may be 

beneficial in detecting differences.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 Phenolic compounds are a prominent component in grapes and grape wines. 

Different classes of phenolics are found in the skin, flesh and seed of the grape berry. The 

type of phenolic compounds found in grapes, grape juices, and grape wines can vary 

depending on a multitude of factors.  For instance, variety, geographical origin, soil type, 

environmental conditions and grape processing/handling techniques can all effect 

phenolic compound composition (Thimothe and others 2007; Russo and others 2008). 

The compositional differences of these phenolics in turns influence the taste and overall 

organoleptic characteristics of the wine produced. Apart from environmental and post-

harvest handling factors, vinification practices also can have a huge influence on the 

phenolics content of the finished wine. The skin-contact time, or the duration at which the 

skins and seeds of the grapes stay in contact with the must (a mixture of grape juice and 

partially pressed grape berries) can directly impact the amount of phenolics extracted into 

solution. In general, the longer the duration of skin contact, the higher the concentration 

of phenolics extracted. Another vinification practice, the ageing process, probably the 

will significantly alter the phenolics structure of the wine. Most of these changes during
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ageing bring about positive contributions, resulting in “smoothness” and “balance", the 

characteristics synonymous with a good red wine. 

 Currently, plant phenolics have attracted much attention due to recent findings 

concerning their antioxidant, anticancer and antimicrobial properties. For instance, grape 

phenolic extract had been shown to be highly effective against specific virulence traits of 

Streptococcus mutans, a known dental pathogen (Thimothe and others 2007) and certain 

phenolic fractions extracted from a Petite Syrah wine were found to be effective in 

inhibiting the oxidation of low-density lipoprotein in vitro (Teissedre and others 1996). 

Bilberry extract containing phenolic compounds, including anthocyanins, have been 

shown to inhibit growth of human colon carcinoma cells and human leukemia cells in 

vitro. From this bilberry extract, pure malvidin and delphinidin glucosides (anthocyanins) 

were isolated and have displayed apoptotic effects in human leukemia cells (Katsube and 

others 2003).  

 Oxygen has been recognized as an important player in the course of the life of a 

wine. Oxygen participates in numerous microbiological and biochemical processes that 

ultimately affect the organoleptic properties of the finished wine (Parish and others 

2000). One of the recent innovations in enology is the introduction of minute quantities 

of oxygen during the ageing process; this is termed micro-oxygenation. This process 

introduces controlled amounts of oxygen into the wine to induce favorable changes such 

as improved palatability, enhanced color stability, increased oxidative stability and 

decreased vegetative aromas and reductive characters (Parish and others 2000). Micro-

oxygenation is supposed to mimic the diffusion of oxygen into wine during oak barrel 
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ageing, where air escapes into the wine through the permeable wooden staves. This is an 

obvious contrast to the periodic aerated racking process, where large doses of oxygen are 

added to the wine instead (Paul 2002).  

The practice of micro-oxygenation has been shown to be beneficial. Oxygen 

participates in the polymerization of polyphenolic compounds that produces stable forms 

of anthocyanins that resist discoloration by sulfur dioxide, and therefore helps to provide 

color stability in red wines across a range of wine pH values. Periodic racking processes 

have also been instrumental in decreasing green, herbaceous aromas. However, oxygen 

also has its destructive effects. Too much oxygen can lead to over-polymerization where 

the large molecules are unable to remain suspended in solution and this results in the 

precipitation of polymeric materials and a loss of color intensity (Paul 2002; Cano-López 

and others 2006). 

 Color is one the factors used in the quality evaluation of red wine. Anthocyanins, 

a major group of phenolics in grapes, play a vital role in the color of young red wines. 

Anthocyanins are instable and they react with other phenolic compounds, mainly 

flavanols, to form more stable, colored compounds during wine maturation (Atanasova 

and others 2002; Cano-Lopez and others 2008). Therefore, the quantities of free 

anthocyanins decrease during ageing, dropping to about 20% of the initial number. 

Tannins are the other major phenolics that contribute to bitterness and astringency 

sensations, two important components of the overall mouthfeel of red wines. Astringency 

is an important factor as it gives a certain bite to red wine. The composition of these 

phenolic compounds can be estimated by various chemical methods; however these 

analyses are insufficient in providing a comprehensive picture of the overall quality of a 
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wine. Therefore, sensory evaluation can be instrumental in giving the researcher a 

glimpse of a different dimension that cannot be readily observable with chemical 

analysis. With the outcomes of chemical testing and evaluation by trained sensory 

panelists in hand, a winemaker is better able to  form an educated conclusion regarding 

which techniques succeed in improving wine quality and which do not.  

 Chambourcin is a French-American hybrid that was first cultivated in France in 

the regions of Loire Valley. Its exact parentage is unclear; however, the National Grape 

Registry has this variety listed under the Seyve-Villard 12-417 x Seibel 7053 parentage 

(Iowa State University Viticulture 2008). In the U.S., Chambourcin is currently grown in 

Pennsylvania, New Jersey, and Virginia (Hudson Valley Wine Magazine) as well as in 

various Midwestern states and is typically used to produce dry red wine that is deeply 

colored (Iowa State University Viticulture 2008) and rich in fruity flavors (Hudson 

Valley Wine Magazine).  

 Ruby Cabernet is a traditional Vitis vinifera variety popular in California. This 

variety is commonly used in a blend, as it lacks complexity in its varietal form (Wine 

Searcher 2012). Chambourcin and Ruby Cabernet are two of grape varieties cultivated in 

Oklahoma. They have shown to be resistant to environmental elements, and therefore 

have potential to be made into wine. The purpose of this research projects is to test the 

,effect of micro-oxygenation on the phenolic compounds of Chambourcin and Ruby 

Cabernet wines. The specific objectives of this project are as follows: 

 To determine the effect of micro-oxygenation on the phenolics content of 

Chambourcin and Ruby Cabernet wines by spectrophotometric method. 
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 To determine the effect of micro-oxygenation on the individual phenolic 

compounds of Chambourcin and Ruby Cabernet wines by high-performance 

liquid chromatography. 

 To determine the effect of micro-oxygenation on the antioxidant capacity of 

Chambourcin and Ruby Cabernet wines. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

CHEMICAL COMPOSITION OF GRAPES AND WINES 

Sugars and Organic Acids 

 The most abundant sugars present in grapes are glucose and fructose. These are 

essential substrates for the fermentation process in winemaking, where they are converted 

to ethanol and carbon dioxide by yeast. Sucrose is also present in grapes in minor 

quantities. Together glucose, fructose and sucrose comprised over 90% of total sugars in 

grapes (Johnson and Carroll 1973). Even in wines fermented to absolute dryness still 

contain between 0.1-0.2% of unfermented sugars (Vine and others 2002). 

Minerals 

 Potassium is the most abundant cation in grape berries. While potassium is 

essential for grapevine growth and development, in excess it can cause a decrease in free 

acid levels. Potassium also combines with tartaric acid to form potassium bitartrate in 

wines. Potassium bitartrate is largely insoluble in wines and it precipitates out of solution 

during winemaking and storage, which leads to an increase in wine pH. Elevated pH in 
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turn causes deleterious effects in wine quality, such as greater susceptibility to microbial 

spoilage, decrease in color stability and possibly unsatisfactory sensory attributes (Davies 

and others 2006). Besides potassium, calcium, sodium, magnesium and iron are also 

present in grape berries (Vine and others 2002).  

Pectic Substances 

 Pectic substances are a group of closely related polysaccharides that can be 

classified into two groups: (1) neutral pectic substances (arabans, 1-4 galactans and 1-4 

arabinogalactans) and (2) acidic pectic substances, or pectins, which are exclusively 

made of galacturonic acids. Pectin is a component of the cell wall of grape berry and 

calcium chelation of the pectic components is essential in maintaining the cell wall 

stability (Chardonnet and others 1997).  According to Silacci and Morrison (1990), the 

total pectin concentration in Cabernet Sauvignon grapes increased during the period of 

rapid berry growth following veraison (the onset of ripening), but decreased during 

ripening. In winemaking, commercial pectic enzymes preparations are sometimes added 

to wine prior to pressing to enhance juice release (Lea and Piggott 1995).  

Nitrogenous Compounds 

 Amino acids, peptides and proteins are some of the nitrogenous compounds found 

in grapes and they made up less than 1% of grape composition.  The content of these 

compounds vary depending on grape variety, vineyard locale, climate and other factors. 

During fermentation, amino acids are required as a catalyst in synthesizing nitrogen into 

the free ammonium state that is required by yeasts. Red wines, which have a higher 
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phenolics content, tend to precipitate protein complexes much more that the white variety 

(Vine and others 2002). 

Phenolic Compounds 

The most fundamental phenolic compound is the phenol, which is a benzene ring 

with a single hydroxyl group (OH). Phenol is not found naturally in grapes or wine, but 

various substitution patterns of this basic structure form the many phenolic compounds 

found in wine. Phenolic compounds contribute significantly to the overall quality of wine 

and they can be divided into two major groups -- flavonoid and non-flavonoid. 

Flavonoids consist mainly of anthocyanins, flavanols (catechin, epicatechin, epicatechin 

gallate) and flavonols (quercetin, kaempferol, myricetin) (Waterhouse 2002; Pѐ rez-

Magariño and others 2008). The non-flavonoid subgroup includes the phenolic alcohols, 

aldehydes, acids and their derivatives, and other related compounds such as stilbenes 

(Pѐ rez-Magariño and others 2008) (Figure 1).  

Many factors can influence the content of phenolics in wine and that includes the 

grape characteristics and winemaking practices, such as length of maceration and 

frequency of pumping over (Cano-López and others 2008). Maceration time is the time 

where the grape skins stay in contact with the juices for a specific amount of time. 

Pumping over is the practice of pumping the fermented wine over the cap (i.e. the layer 

of skins and seeds that floated to the surface of the liquid).  
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Figure 1. Classes of phenolics 

FLAVONOIDS 

The flavonoids in grapes and wine have the same ring system as shown in Figure 

2, and all have the same hydroxyl substitution groups on ring A, at position 5 and 7. The 

differences in the oxidation state and substitution on ring C define the different classes of 

flavonoids. Flavonoids are the major phenolics in red wine and they are mostly derived 

from the skins and seeds of grapes during the fermentation process (Waterhouse 2002). 

 

Figure 2. The flavonoid ring system (Reproduced from Waterhouse 2002) 

 

 

Flavanoids Non-Flavonoids 

Phenolic acids, 

alcohols, 

aldehydes and 

their derivatives Flavanols 

Flavonols 

Anthocyanins 

Stillbenes 

PHENOLIC COMPOUNDS 
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Anthocyanins 

In red wine, the signature deep maroon hue provides visual cues about the wine’s 

quality and character. In fact, one of the many criteria of wine tasting is the evaluation of 

color. The major contributors of the color of young red wine, the anthocyanins (Revilla 

and others 1999; Cano-López and others 2008; Pѐ rez-Magariño and others 2008), are 

one of the most studied phenolics in wines. There are almost exclusively located in the 

outer layers of the grape skins and are sensitive to pH (Jensen and others 2008). The term 

“anthocyanin” implies a glycoside. Its non-glycoside counterpart is the anthocyanidin, 

which is never found in grapes or wine, except in trace quantities (Waterhouse 2002) 

(Figure 3).  

 

Figure 3. Anthocyanidin structures (Reproduced from Waterhouse 2002) 

In red wine, some of the monomeric anthocyanins present include delphinidin-3-

monoglucoside, cyanidin-3-monoglucoside, petunidin-3-monoglucoside, peonidin-3-

monoglucoside, and malvidin-3-monoglucoside, with malvidin-3-monoglucoside being 

the dominant species (Mazza 1995) (Figure 4).  
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Figure 4. Malvidin-3-monoglucoside (Reproduced from WSU Viticulture & Enology 2012) 

Anthocyanins are highly unstable (Cano-López and others 2006) and their 

interactions with other phenolics results in the color changes observed in maturing wines 

(Cano-López and others 2008). These changes of color in maturing wines are due to the 

reaction of anthocyanins with other phenolics in wines, resulting in more stable 

polymeric pigments. The anthocyanin monomers and polymeric pigments are 

distinguishable on the basis of their behavior at different pHs and their susceptibility to 

bleaching by bisulfite (SO2) (Somers and Evans 1977). According to Cabrita and others 

(2000), at 520 nm, monomeric anthocyanins showed a large decrease in absorbance when 

pH is raised from 1 to 5, whereas the absorbance due to polymeric pigments are stable 

under those conditions. Additionally, the red color of monomeric anthocyanins is easily 

bleached by excess bisulfite addition, whereas the polymeric pigments continued to show 

absorbance at 520 nm.  

Flavanols 

Flavanols or flavan-3-ols are the most abundant class of flavonoids in grapes and 

wine and include simple monomeric catechins (Figure 5). They are mainly located in the 
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seed and skin of berry and are bitter and astringent (Waterhouse 2002). Tannins are 

polymeric flavanols containing catechin, epicatechin, epicatechin gallate or 

epigallocatechin (Harbertson and others 2003). They contribute to the astringency that is 

essential to the overall mouthfeel of red wine (Parish and others 2000). Astringency is 

considered to be a tactile sensation which is caused by a reaction between salivary 

proteins and flavanols (Parish and others 2000). It is supposed to add a certain bite to the 

wine. The delicate balance of astringency is hard to achieve: if the wine is too astringent, 

it will be judged unfavorably harsh; on the other hand if the astringency is too low, the 

wine is considered flat (Gonzáléz-Sanjosé and others 2008).  

 

Figure 5. Catechin (Reproduced from WSU Viticulture & Enology 2012) 

Flavonols 

Flavonols are found in plants in glycoside form and in grapes, are mainly located 

in the skin. Three forms of simple flavonol aglycones in grapes include quercetin (Figure 

6), myricetin and kaempferol, and they occur with a diverse combination of glycosidic 

forms (Waterhouse 2002), with D-glucose being the most common sugar residue 

(Häkkinen 2000). Other sugar residues include D-galactose, L-rhamnose, L-arabinose, D-
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xylose and D-glucuronic acid (Hakkinen 2000). Other flavonols identified in grapes 

include isorhamnetin, laricitrin and syringetin (Castillo-Muñoz and others 2007).  

 

Figure 6. Quercetin (Reproduced from Waterhouse 2002) 

NON-FLAVONOIDS 

Phenolic Acids 

Phenolic acids can be divided into two categories: hydroxycinnamic acids and 

hydroxybenzoic acids. The four most common hydroxycinnamic acids include caffeic, 

ferulic, sinapic and p-coumaric acids (Häkkinen 2000). Hydroxybenzoic acids are derived 

directly from benzoic acid. Variations in the structures of the individual hydrobenzoic 

acids depend on the methylations and hydroxylations of the aromatic ring. These acids 

include p-hydroxybenzoic, gallic, vanillic, syringic and protocatechuic acids (Häkkinen 

2000). In red wines, gallic, vanillic, syringic, p-coumaric, caffeic and ferulic acids have 

been identified (Buiarelli and others 1995). 

Stillbenes  

Stillbenes appear in trace quantities in grapes and wine. Even so, they have drawn 

considerable attention due to their potential anti-carcinogenic properties as well as their 
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possible role in preventing heart disease. The principle stillbene in grapes is resveratrol 

(Figure 7), and it appears in both cis and trans isomers, including the glucosides of both 

isomers (Figure 8). All forms are found in wine, but cis-resveratrol is absent in grapes. 

Derivatives of resveratrol are found only in grape skins, especially in red grapes 

(Waterhouse 2002). 

 

Figure 7. Resveratrol (Reproduced from WSU Viticulture & Enology 2012) 

 

Figure 8. Trans-piceid, the resveratrol glucoside (Reproduced from Waterhouse 2002) 

 

EFFECT OF MICRO-OXYGENATION ON PHENOLIC COMPOUNDS IN WINE 

Oxygen is an important player in many of the reactions that occur during 

winemaking (Cejudo-Bastante and others 2011). In oak barrels, oxygen permeates the 
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wine through the bungholes or staves, and also through diffusion of air found in the 

headspace. Wine is also exposed to air during the filtration or racking processes (Parish 

and others 2000; Kelly and Wollan 2003). However, the introduction of oxygen into the 

wine through these processes is difficult to control. Moreover, according to Kelly and 

Wollan (2003), the barrel’s own diffusion rate is less than 2.5 mL/L/month, thus 

supplementation with additional oxygen could be beneficial.  

Since the 1990s, wineries have been introducing small amount of oxygen 

continuously into wine in a controlled way -- a process referred to as micro-oxygenation. 

This process is aimed at manipulating the oxygen-requiring processes that occur in wine 

to bring about desirable changes in aroma and texture (Paul 2002). Micro-oxygenation 

has been shown to stabilize wine color, soften the astringent tannins (Parish and others 

2000), and decrease unpleasant green, herbaceous notes (Parish and others 2000; 

Gonzáléz-Sanjosé and others 2008).  However, too much oxygen can lead to adverse 

effects. For instance, oxygen can cause polymerization where the large molecules formed 

are unable to remain solubilized, causing precipitation and loss of color intensity. Also, 

excess oxygen may also contribute to oxidation of phenolics, which effects are often 

detrimental and irreversible (Cano-López and others 2006). 

The effect of micro-oxygenation on the phenolics profile of red wines has been 

explored in multiple studies. A few studies have indicated that the addition of oxygen to 

red wines leads to an increase in color density as more polymeric pigments are formed 

(Cano-López and others 2006, 2008; du Toit and others 2006). As mentioned earlier, 

anthocyanins are the major phenolics contributing to the color of young red wines, but 

they are highly unstable (Cano-López and others 2006). Anthocyanins participate in 
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many reactions during fermentation and maturation to form more stable colored 

compounds (Cano-Lopez and others 2006). This perhaps explains the conversion of the 

red-bluish color of young red wines to the red-brownish color of aged wines (Atanasova 

and others 2002). A few mechanisms for the formation of new pigments from 

anthocyanins have been proposed: 

1. Direct reactions between anthocyanins and flavanols  

Using LC/MS, Remy and others (2000) showed the formation of two covalent 

structures between tannin and native pigments in red wines. These structures differ in the 

linkage position of the anthocyanin moiety. One of these structures, denoted T-A, was 

formed when malvidin-3-glucoside was linked by its C-6 or C-8 top as a terminal unit in 

the original derived pigment. The second structure, A-T, was formed from direct reaction 

between malvidin-3-glucoside and catechin. Similarly Cano-López and others (2006) also 

identified the same compound as Remy and others (2000), that is malvidin-3-glucoside-

(epi)catechin.  

2. Condensation reaction between anthocyanins and flavanols mediated by 

acetaldehyde 

Acetaldehyde is produced as a byproduct of yeast metabolism. It can also form 

when ethanol is oxidized in the presence of oxygen. The condensation process between 

anthocyanins and flavanols in the presence of acetaldehyde yields ethyl-bridged pigments 

which are expected to be favored by the presence of oxygen (Atanasova and others 

2002). According to Dallas and others (1996), reaction between cyanidin-3-glucoside and 

procyanidins in the presence of acetaldehyde resulted in the formation of two polymeric 

pigments that disappeared after 12 days. In another model solution containing peonidin-
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3-glucoside in place of cyanidin-3-glucoside, two colored compounds were developed, 

but they became undetectable after 10 days. The researchers attributed the disappearance 

of these colored compounds to polymerization to higher molecular weight compounds, as 

evidenced by the presence of precipitation in both of the model solutions. 

In a different study (Atanasova and others 2002), new ethyl-linked pigments were 

formed due to the condensation of dephinidin-3-glucoside, petunidin-3-glucoside, 

peonidin-3-glucoside and malvidin-3-glucoside with epicatechin. Cano-López and others 

(2006) also identified some ethyl-linked compounds formed from malvidin-3-glucoside 

with epicatechin: malvidin-3-glucoside-ethyl-dicatechin, malvidin-3-glucoside-ethyl-

catechin and malvidin-3-coumarylglucoside-ethyl-catechin. These compounds are present 

in both the control and micro-oxygenated wines, but are higher in micro-oxygenated 

wines. In another study, also by Cano-López and others (2008), ethyl-linked compounds 

were also found in greater concentration in micro-oxygenated wines. These ethyl-linked 

compounds are purple in color and are less sensitive to bleaching by SO2 than monomeric 

anthocyanins. 

3. Reaction between anthocyanins and compounds with polarisable double bonds 

such as vinyl phenols or pyruvic acid 

Vinyl phenols and pyruvic acid are some of the byproducts of yeast metabolism. 

These compounds have polarisable double bonds and have been shown to react with 

anthocyanins to form pyranoanthocyanins (Atanasova and others 2002; Cano-López and 

others 2006). Pyranoanthocyanins are important to the color of red wines as they are very 

stable and resistant to oxidation (Cano-López and others 2006).  
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In the study by Fulcrand and others (1996a), two malvidin-derived pigments, A 

and B, formed from major anthocyanins [malvidin 3-monoglucoside and malvidin-3-(6-

p-coumaroyl) monoglucoside] with 4-vinylphenol were identified. In another study by 

Atanasova and others (2002), an oxygenated red wine that had been stored for 7 months 

was shown to have pyranoanthocyanins adducts. These pyranoanthocyanins adducts were 

formed from the reactions of pyruvic acid with delphinidin-3-glucoside, petunidin-3-

glucoside, malvidin-3-glucoside, malvidin-3-acetylglucoside and malvidin-3-p-

coumaroyglucoside.   

Similar results were reported by Cano-López and others (2006). In this study, 

multiple pyranoathocyanins were detected in the micro-oxygenated wines: petunidin-3-

glucoside pyruvate, vitisin A (malvidin-3-glucoside pyruvate), acetyl vitisin A (malvidin-

3-(acetylglucoside) pyruvate) and coumaryl vitisin A (malvidin-3-(coumarylglucoside) 

pyruvate). At the end of the study, Cano-López and others (2006) reported the 

concentration of vitisin A-like compounds (petunidin-3-glucoside pyruvate, vitisin A and 

coumaryl vitisin A) was increased in the micro-oxygenated wines and the greatest 

increase was observed in the wines receiving the highest dose of oxygen. Meanwhile, 

these compounds had lower concentrations in control wines. Besides 

pyranoanthocyanins, Cano-López and others (2006) also detected a different group of 

anthocyanins, referred to as the hydroxyphenyl-pyranoanthocyanins, which were formed 

from the reactions between anthocyanins with vinyl derivatives.  The compounds 

detected included malvidin-3-glucoside-4-vinylphenol, pinotin A (malvidin-3-glucoside-

4-vinyl-catechol) and malvidin-3-glucoside-4-vinylguaiacol.  
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The success of micro-oxygenation on the promotion of color density depends on 

several factors: age of the wine, timing of oxygenation, initial phenolics contents, and 

dosage of oxygen. Oxygenation is more effective in young red wines when it is 

performed after malolactic fermentation. Malolactic fermentation is the process where 

tart-tasting malic acid, which occurs naturally in grape must, is converted to the softer-

flavored lactic acid. Micro-oxygenation is also more effective when the red wine has a 

higher initial phenolics content (Cano-López and others 2008), probably because oxygen-

mediated color-stabilizing reactions in the wine require substantial beginning 

concentrations of appropriate substrates. This observation was supported by results 

observed by du Toit and others (2006), where a decrease in total phenolics content in 

micro-oxygenated red wines was found. The dosage of oxygen is also crucial as oxygen 

oxidizes ethanol to acetaldehyde, and acetaldehyde participates in many reactions that 

contribute to the formation of new pigments (Atanasova and others 2002; Cano-López 

and others 2006; Dallas and others 1996; Fulcrand and others 1996b). However, as 

mentioned earlier, too high a dosage may yield the opposite effect. It should be pointed 

out that oxygenation doesn’t always increases the color intensity of red wine, as observed 

by du Toit and others (2006).  

 

EFFECT OF SKIN CONTACT TIME ON AROMA CONTENT IN WINE 

Skin contact or maceration time is the period when the macerated grapes and its 

juices (collectively referred to as ‘must’) are held in contact for a period ranging from 3 

to 14 days in order to extract the compounds that contribute to flavor and color (Schmidt 
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and Noble 1983). Extended skin contact time usually results in greater extraction of 

tannins and anthocyanins. Anthocyanins, which are mainly found in grape skin, are 

extracted during this time and they give rise to the vivid maroon hue that is commonly 

associated with red wine. However, some grape species are not suitable for extended skin 

fermentation, as in muscadine grapes, which resulted in greater astringency (Gómez-

Plaza and others 2002). Studies focusing on the effect of skin contact time on the 

phenolics profile of red wines are scarce. The few papers found on this subject were on 

the aroma profile or free volatiles of wines subjected to different duration of skin contact.  

In a study by Schmidt and Noble (1983), the researchers analyzed two Cabernet 

Sauvignon wines by descriptive analysis. There were two vintages, 1977 and 1978, and 

both were subjected to skin contact time (SCT) of 2 to 7 days. For the 1977 vintage (SCT 

2, 3, 3.5, 4, 5, and 6 days), they found the major change in aroma character (canned green 

bean/canned asparagus aroma and berry aroma) occurred between 2 and 3 days of skin 

contact. Vegetative notes as defined by “canned green bean/canned asparagus” decreased 

with extended SCT but the berry aroma increased. In the 1978 vintage (SCT 2, 3, 4, 5, 6 

and 7 days), only those wines made with 2 and 7 SCT were significantly different in 

terms of aroma and astringency increased with extended SCT. Overall, this study 

concluded that the differences of aroma due to SCTs between 2 and 7 days were very 

small. 

In another study (Maggu and others 2007), evaluated whether skin contact time 

and the pressure applied during pressing could impact the composition of aroma 

compounds in the juice and ultimately the finished wine. In this study, the compound 

pivotal to the varietal characteristics of Sauvignon Blanc wines, 2-methoxy-3-
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isobutylpyrazine (IBMP), was evaluated along with S-(3-hexan-1-ol)cysteine (3MH-S-

sys), which was the pre-cursor to the passion fruit-like aroma of thiol 3-mercapto-hexanol 

(3MH). IBMP and 3MH are both volatile and IBMP is located largely in the skin (95%).  

In this study, they found that longer skin contact time (32h) and increasing pressure 

resulted in greater concentration of 3MH-S-sys and IBMP in the juice during laboratory 

trials using a grape crusher/destemmer. This study evaluated these compounds in the 

must, but not in the finished wine. 

 

ANTIOXIDANT CAPACITY  

Antioxidants are substances that can reduce oxidative stress in the human body by 

scavenging free radicals. Oxidative stress is characterized by an imbalance between free 

radical production and antioxidant capacity, causing the accumulation of oxidative 

products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). 

Free radicals are generated due to the stress imposed on the  body, for instance a high fat 

diet, obesity, hyperglycemia, and smoking, to name a few. The increase and 

accumulation of free radicals can lead to various bodily disorders, such as DNA damage, 

LDL (low-density-lipoprotein) oxidation and protein oxidation. In time these disorders 

can lead to the development of chronic illnesses such as atherosclerosis, cancer, and 

diabetes mellitus. Antioxidants, with their ability to neutralize free radicals, can exert 

protective effects in human bodies that can ultimately lead to lower risk of chronic 

diseases and better health. The effectiveness of antioxidants to neutralize free radicals is 

termed antioxidant capacity. The higher the antioxidant capacity, the higher capacity the 
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compound has to quench free radicals (Vizzotto and others 2007). Antioxidant capacity 

can be measured using methods such as Trolox Equivalent Antioxidant Capacity 

(TEAC), Ferric Reducing Antioxidant Power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl 

(DPPH) Assay and Oxygen Radical Absorbance Capacity (ORAC). The summary of 

each of these methods is as follows: 

1. Trolox Equivalent Antioxidant Capacity (TEAC)  

In this assay, ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) is 

oxidized by peroxyl radicals or other oxidants into its radical cation ABTS·
+
, which is an 

intense-colored compound. The antioxidant capacity is measured as the ability of the 

antioxidant to decrease the color-forming reaction, which is measured using a 

spectrophotometer. The radical cation ABTS·
+ 

has several maximum-absorption 

wavelengths: 415, 645, 734 and 815 nm. Wavelengths of 415 and 734 nm are commonly 

used (Prior and others 2005).  

2. Ferric Reducing Antioxidant Power (FRAP) 

This assay measures the reduction of ferric-tripyridyltriazine (Fe
3+

-TPTZ) to the 

ferrous form (Fe
2+

-TPTZ), which is an intense blue compound. Absorbance is read at 593 

or 595 nm (Gil and others 2002; Prior and others 2005). This assay is very similar to 

TEAC. Unlike TEAC which is conducted at neutral pH, the FRAP assay requires acidic 

pH at 3.6 to maintain iron solubility (Prior and others 2005).  

3. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay 

The DPPH· radical forms a deep purple color in solution; the DPPH assay is 

based on the ability of antioxidants to reduce the DPPH· radical into the pale yellow 
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nonradical form (Seeram and others 2008). The radical scavenging activity is followed 

spectrophotometrically by the loss of absorbance at 515 nm (Huang and others 2002; 

Prior and others 2005) or 517 nm (Seeram and others 2008). 

4. Oxygen Radical Absorbance Capacity (ORAC)  

ORAC measures the inhibition of peroxyl radical (ROO·) by antioxidants.  Of all 

the methods mentioned above, ORAC is widely considered to be the standard method for 

measuring antioxidant capacity in the nutraceutical, pharmaceutical and food industries 

(Huang and others 2002).  In this assay, the peroxyl radical reacts with a fluorescent 

probe and results in the loss of fluorescence over time. Currently, the ORAC assay 

employs fluorescein (3’,6’-dihyroxy-spriro [iso-benzofuran-1[3H], 9’[9H]-xanthen]-3-

one) as the fluorescent probe (Huang and others 2002; Prior and others 2005). The blank, 

sample and Trolox standard (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) 

are mixed together with the fluorescein solution in a 96-well microplate and incubated at 

a constant temperature (37°C) before the addition of AAPH (2,2’-azobis(2-

amidinopropane)dichloride, the peroxyl radical generator) to initiate the reaction. The 

fluorescence intensity (excitation: 485 nm, emission: 530 nm) is measured every minute 

for 35 minutes in the microplate reader (Huang and others 2002) (Figure 9). Some of the 

advantages of the ORAC assay are as follows (Prior and others 2005): 

1. It provides a controllable source of peroxyl radicals that models the reactions of 

antioxidants with lipids in food and biological system. 

2. The original ORAC assay was configured to measure only hydrophilic 

antioxidants. Now, this assay can be altered to measure lipophilic antioxidants as 

well by modifying the radical source and solvent. 
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3. Traditional antioxidant methods measure the extension of the lag phase only. The 

ORAC assay however, measures the oxidation reaction for an extended time 

(about 35 min), and therefore can prevent underestimation of antioxidant activity 

and account for potential effects of secondary antioxidant products. The ORAC 

assay uses the AUC (Area Under the Fluorescence Decay Curve) method to 

calculate the protective effect of an antioxidant and this method accounts for lag 

time, initial rate and total extent of inhibition in a single value. 

 

  

Figure 9. Schematic of the principle of ORAC (Reproduced from Huang and others 2002) 
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4. The ORAC assay is readily automated. The availability of microplate pipetting 

systems helps to minimize error associated with manual pipetting, and also allows 

multiple analyses to be completed at a single time. 

However, the ORAC assay also has some disadvantages. For instance, small 

temperature variations in the wells can lead to decreased reproducibility. Also, the 

analysis time is relatively long compared to other available methods. Lastly, not all 

instruments are readily available at some laboratories (Prior and others 2005). 

In wine, the common opinion is that the radical scavenging capacity is related to 

its phenolic content. This fact was demonstrated by Scalzo and others (2012). In this 

study, three fractions were obtained from all red and white wines studied. The first 

fraction was the unfractionated portion (UND), where the dried wine aliquot was brought 

back to its original volume with phosphate buffer and diluted with cold water. The 

second fraction was the water-eluted portion from a C-18 column (FR1) and the third 

fraction (FR2) was the methanol-eluted portion of compounds retained by the C-18 

column. FR2 contained the phenolic compounds and FR1 essentially had all the non-

phenolics such as the hydroxy acids (tartaric, malic, lactic and succinic), glucose, fructose 

and glycerin. According to this study, ORAC activity was detected in all fractions, but it 

was found almost exclusively in all FR2 fractions of both red and white wines, with a 

small fraction in FR1. This result suggests that the phenolics are the compound that 

contributes to the ORAC activity. However, this study also stressed the importance of 

considering the use of peroxyl (ORAC), superoxide anion, and hydroxyl radical assays 

collectively to determine the total antioxidant profile of a food product. The antioxidant 

capacity by ORAC of some red wines is summarized in Table 1 below. 
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Table 1. ORAC values of some red wines 

Wine Type ORAC Value (µmol TE/mL wine)* Source 

Cabernet Sauvignon 6.0 – 87.0 Lee and Rennaker, 2007 

Cabernet Sauvignon 8.9 – 24.4 Li and others, 2009 

Cabernet Gernischet 9.6 – 18.0 Li and others, 2009 

Merlot  19.0 – 21.0 Li and others, 2009 

Merlot  3.1 – 82.8 Lee and Rennaker, 2007 

Blend 14.5 – 22.8 Li and others, 2009 

Muscat Hamburg 15.2 Li and others, 2009 

Rose Honey 20.0 Li and others, 2009 

* TE – Trolox equivalent 

The red wines analyzed by Li and others (2009) were from different geographical 

origins in China. They were 2003 to 2006 vintages. On the other hand, the wines from 

Lee and Rennaker (2007) were made from grapes cultivated in the Snake River Valley of 

Idaho and vintages were from 2000 to 2003. Information on the winemaking process was 

not available for either study. 

The effect of different enological practices on the antioxidant capacity of red of 

wines was evaluated by Villaño and others (2006). A total of 27 monovarietal samples 

were used: 8 Cabernet Sauvignon, 9 Tempranillo and 10 Syrah wines. During the 

maceration and fermentation processes, wine samples were collected on different days for 

analysis. This study found maceration time to have a positive effect on antioxidant 

capacity. Even though each of the three types of wine had different maceration times, at 

the end of the process, the final ORAC value was at least 2-fold the initial. This study 

also examined the effect of clarification processes using albumin or gelatin and 

membrane filtration on antioxidant capacity. There was a decrease in antioxidant capacity 

for wines clarified with both albumin and gelatin, as compared to non-clarified wines;  

statistical analysis showed no significant differences (p<0.7731) between the two fining 
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agents. As for filtration, there were no significant differences in antioxidant capacity due 

to the filtration process (p<0.3514). 

 

PHENOLIC COMPOUNDS AND THEIR HEALTH BENEFITS 

 Consumption of fresh fruits and vegetables has long been associated with the 

prevention, delay or onset of chronic degenerative diseases, including cancer. These 

products contain relatively large quantities of phytochemicals, which may work 

synergistically to incur disease-preventive action (Zafra-Stone and others 2007).   

 Some of these phytochemicals in plants are the phenolics and they have shown to 

promote cardiovascular health. In general, higher consumption of saturated fats and 

cholesterol leads to higher mortality rate from cardiovascular heart disease (CHD) 

(Frankel and others 1993).   An epidemiological study conducted in France in 1992 

revealed a shocking finding -- the French population exhibited a lower incidence of CHD 

compared to other industrialized nations despite consuming a diet high in saturated fat.  

This anomaly came to be known as “The French Paradox.  A solution was proposed to 

explain this paradox that related the decrease in CHD to a relatively high consumption of 

red wine.  Subsequent studies have indeed shown that moderate consumption of beer, 

wine and spirits are all inversely related to CHD; particularly the consumption to wine 

and beer. For example, Renaud and de Lorgeril (1992) concluded that the intake of red 

wine led to a reduction in CHD. On a related note, phenolic compounds are also found to 

inhibit the oxidation of low density lipoprotein (LDL), whose effect is implicated in the 

development of atherosclerosis (Kerry and Abbey 1997). Kerry and Abbey (1997) found 
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that red wine separated into catechins, monomeric anthocyanidins and phenolic acids 

fractions all inhibited LDL oxidation as well as red wine as a whole. Similar results were 

also obtained from other studies using Petite Syrah (Sirrah) wines (Frankel and others 

1993; Teissedre and others 1996).  

Besides CHD, phenolics have also demonstrated protective effect against cancers. 

Phenolics, especially anthocyanins are capable of inhibiting the growth of multiple types 

of tumors such as human colon cancer cells (Kang and others 2003; Zhao and others 

2004) and esophageal tumors in rats (Wang and others 2009). Anthocyanins are also 

shown to be apoptotic against human leukemia cells (Katsube and others 2003) and 

helped to decrease the incidence of type-2 diabetes (Ghosh and Konishi 2007).  

 

QUANTIFICATION METHODS OF PHENOLICS 

Spectrophotometric Method 

1. Total Phenolics Assay  

The quantification of phenolics can be achieved spectrophotometrically using the 

Total Phenols (or Phenolics) Assay by Folin-Ciocalteu reagent. In this assay, phenolics 

react with the Folin-Ciocalteu reagent only under basic conditions. The sample to be 

tested is adjusted to the required basic condition by the addition of a sodium carbonate 

solution. During the reaction, the phenolic proton is dissociated to form the phenolate 

anion, which is capable of reducing the Folin-Ciocalteu reagent. The original intense 

yellow solution of the Folin-Ciocalteu reagent is reduced to blue. One of the drawbacks 

of this assay is that the Folin-Ciocalteu reagent is non-specific to phenolics as it can be 
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reduced by a number of non-phenolic compounds such as vitamin C and copper iodide 

[Cu(I)] (Huang and others 2005).  

2. pH Differential Method 

Anthocyanins undergo structural transformations that are reversible with pH 

change. At pH 1.0, anthocyanins appear as a colored oxonium form and at pH 4.5, they 

are a colorless hemiketal form. Using this knowledge, the content of total monomeric 

anthocyanins can be determined by measuring the absorbance at two different pH values. 

The sample to be tested is prepared using two different buffers and absorbance is taken at 

520 nm and 700 nm, to correct for haze. The final absorbance value is calculated using a 

formula. This absorbance value is then used in a second formula to calculate the total 

monomeric anthocyanins content, expressed as cyanidin-3-glucoside. This method is 

more accurate as it corrects for the interferences of anthocyanins degradation products 

and other interfering compounds (Giusti and Wrolstad 2000).  

3. Harbertson-Adams Assay 

This assay was developed by Drs. Harbertson and Adams at the University of 

California at Davis. It has the ability to quantify multiple phenolics that are considered 

important in wines such as anthocyanins, tannins, short and long polymeric pigments and 

non-tannin iron-reactive phenols (Viticulture & Enology University of California Davis 

2005). This assay has multiple steps where each step requires the addition of at least one 

buffer. One of the biggest advantages of this assay is that the reaction occurs in the 

micro-cuvette itself, and therefore require very small amount of sample. After vortexing 

and incubation at room temperature for a fixed amount of time, the sample is read at a 

specific wavelength. 
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This assay operates on the ability of protein (Bovine Serum Albumin - BSA) to 

precipitate tannins and some of the red pigments. The pigments that bind to BSA are not 

released by washing and are stable in the presence of bisulfite. These observations 

suggest that these pigments are polymeric. However, the pigments precipitated by BSA 

using centrifugation do not account for all the pigments present in the wine. Some of the 

pigments are still suspended in the supernatant fraction. Thus, BSA is able to fractionate 

the polymeric pigments into two distinguishable classes: short polymeric pigments (SPP) 

that are still suspended in the supernatant fraction and long polymeric pigments (LPP) 

that precipitate along with the tannins.  

Liquid Chromatography Method 

Reverse-phase high-performance liquid chromatography (RP-HPLC) has been the 

instrument of choice for the purpose of detecting phenolic compounds in grape and grape 

products such as wine. This instrument is normally used with a photodiode array detector 

(PDA). Due to recent developments in separation science, HPLC-PDA is now used in 

conjunction with a mass spectrometry (MS) detector equipped with an electrospray 

ionization source (ESI-MS) to confirm peak identification. Since there are a significant 

number of phenolic compounds in each phenolic class, where each of them has different 

absorption maximum, it is common to quantify each of these classes at their maximum 

absorption wavelength. Most phenolics absorb at 280 nm, so this is a good wavelength to 

evaluate overall sample complexity. Hydroxycinnamates like caffeic acid absorb at 320 

nm, and flavonols such as quercetin have a maximum at about 365 nm. Anthocyanins 

have absorption maxima at 520 nm (Waterhouse and others 1999). 



33 
 

In a study by Nicoletti and others (2008), HPLC-PDA-ESI-MS was used to 

identify and quantify the phenolics in grapes. In order to develop a library containing 

retention times and UV-visible and mass spectra, stock solutions of major phenolics in 

grapes were prepared and subjected to analysis using the RP-HPLC and both PDA and 

ESI-MS detection. The software product “Class VP” was employed to compare the 

closeness of spectra of the standards and the corresponding phenolic compounds 

separated from the grape extracts. A similarity index (SI) was calculated using the 

software and an SI value closer to unity was considered to be indicative of greater 

similarity. In this study, the calibration graphs for all 15 standards showed correlation 

coefficient above 0.99. Detection wavelength was set at 520 nm for anthocyanins and 

280, 306, 320 and 370 nm for other analytes. Mobile phase used was acetonitrile in water 

with 5% formic acid. 

In a similar study, Gomez-Alonso and others (2007) separated phenolic 

compounds from grape seed and skin extracts and also from wine prepared from the Vitis 

vinifera Cencibel using HPLC-PDA and fluorescence detection. The wavelengths chosen 

were nearly identical to Nicoletti and others (2008): Anthocyanins at 520 nm and others 

at 280, 320 and 360 nm. However, the mobile phases used were drastically different than 

Nicoletti and others (2008): (A) ammonium phosphate, 50 mM, pH=2.6, (B) 20% A and 

80% acetonitrile and (C) phosphoric acid, 200 mM, pH=1.5. As in the study by 

Montealegre and others (2006), the most noticeable difference was the choice of mobile 

phases -- water/acetic acid (97.5/2/5) and acetonitrile/solvent A (80/20), where the 

detection wavelengths only varied slightly. The summary of compounds detected and 

their respective wavelengths are shown in Table 2 below: 
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Table 2. Detection wavelengths of phenolics by HPLC/PDA 

Phenolics Wavelength used (nm) 
Gallic acid 280

a,b
 

Catechin 280
a,b

, 275
c
 

Epicatechin 280
a,b

, 275
c
 

Epicatechin gallate 275
c
 

Protocatechuic acid 280
b
, 275

c
 

Caftaric acid  320
a,b

 

Caffeic acid 320
a,c

 

Coutaric acid 320
a
 

Coumaric acid 320
a,c

 

Fertaric acid 320
a
 

Ferulic acid 320
a,c

 

Cyanidin-3-glucoside 520
a, b

 

Delphinidin-3-glucoside 520
a, b

 

Peonidin-3-glucoside 520
a,b

 

Petunidin-3-glucoside 520
a,b

 

Malvidin-3-glucoside 520
a,b

 

Myricetin-3-glucoside 360
a
, 365

c
 

Quercetin-3-glucoside 360
a
, 370

b
, 365

c
 

Kaempferol-3-glucoside 360
a
, 370

b
, 365

c
 

Isorhamnetin-3-glucoside 360
a
, 365

c
 

Rutin 370
b
 

Trans-resveratrol 320
a
, 306

b
 

Trans-piceid 306
b
 

Procyanidin B1 280
a
,275

c
 

Procyanidin B2 280
a
,275

c
 

Procyanidin B3 280
a
,275

c
 

Procyanidin B4 275
c
 

 
a
Gomez-Alonso and others (2007) 

b
Nicoletti and others (2008) 

c
Montealegre and others (2006) 

 

Capillary Electrophoresis Method 

Capillary electrophoresis or capillary zone electrophoresis (CZE) is analytical 

method used to separate ions under the influence of an electric field. CZE operates under 

the basic principle of opposites attract, that is negatively-charged ions will migrate 
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towards the positively-charged electrode and vice-versa. The strength and expediency of 

CZE lies in the fact that ions move at different rates and the velocity of migration is 

dependent upon the electrophoretic mobility of the ions and the electro-osmotic mobility 

of the buffer in the capillary (European Pharmacopoeia 2005). CZE has been used to 

separate anthocyanins in blackcurrant juice within the time range expected from liquid 

chromatography analysis (da Costa and others 2002). In that study, four anthocyanins 

(cyanidin and dephinidin-3-glucosides and 3-rutinosides) were separated using uncoated 

fused-silica capillary under very acidic condition (pH 1.8). 

 

TITRATIBLE ACIDITY, PH AND TOTAL ALCOHOL OF WINE 

In grape berries, the dominant organic acids are malic and tartaric acids. The 

acidity in wine helps to balance out the alcohol and residual sugars. The presence of acids 

also aids in other capacities such as helping in the selection of desirable micro-organisms, 

enhancing the fruity character, increasing microbial protection of SO2 and promoting a 

desirable color hue and color stability. Titratible acidity (TA) is often confused with pH. 

The pH value measures the strength of the acids in solution, meanwhile TA is the 

approximation of the solution’s total acid content. The TA method involves titrating the 

wine to the phenolphthalein endpoint or pH=8.2 with a diluted sodium hydroxide 

solution. TA is expressed as g tartaric acid equivalent/100 mL.  

According to the Code of Federal Regulations, Title 27 Part 24 (GPO Access 

2010b), the fixed acid level of the juice or wine may not be less than 5.0 gram per liter 

after the addition of ameliorating material. This states that the acid content in wine may 
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not be less than 0.5% after amelioration. For alcohol content, the Code of Federal 

Regulations, Title 27 Part 4 (GPO Access 2010a) states: table wine is grape wine having 

an alcohol content not in excess of 14% by volume and can be designated as “light 

wine,” “red table wine,” “light white wine,” “sweet table wine,” etc., as the case may 

be. The majority of red wines sold in the USA is labeled as table wine and hence, should 

have less than 14% alcohol by volume. 

In a study performed by Lee and Rennaker (2007), TA was determined by 

titration to an endpoint of pH=8.1. In that study, Cabernet Sauvignon wines had TA 

values ranging from 5.70-6.83 g tartaric acid/L, and Merlot wines from 4.97-6.90 g 

tartaric acid/L. In the same study, these red wines had pH values ranging from 3.3-3.8.  

These represent very typical pH and TA values for red wines made from V. vinifera 

grapes. 
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CHAPTER III 

 

 

MATERIALS AND METHODS 

 

WHOLE RAW GRAPE 

Grape collection and storage 

Grapes were obtained from the Oklahoma State University Fruit Research Station 

in Perkins, Oklahoma and transferred to Robert M. Kerr Food and Agricultural Products 

Center at Oklahoma State University in Stillwater, Oklahoma. They were stored in the 

freezer at -20°C until further processing. For raw grape analysis, approximately 450 g of 

each variety was collected randomly and stored at -20°C until homogenization.  

Homogenization 

Grape berries were submerged in liquid nitrogen prior to homogenization. Using a 

Waring® blender (Woodbridge, ON), berries were pulverized until a powdered 

consistency was reached. Each variety was separated into three bags, vacuum-sealed and 

stored at -20°C until extraction. 
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Extraction of phenolic compounds 

Twenty grams of homogenized grape were weighed into a 100 mL volumetric 

flask. The flask was filled with extraction solvent consisting of 40% acetone (Fisher 

Scientific, Fair Lawn, NJ), 40% methanol (Pharmco-AAPER, Brookfield, CT), 20% 

deionized water (EMD Millipore, Billerica, MA) and 0.1% glacial acetic acid (Pharmco-

AAPER, Brookfield, CT) by volume and vortexed for 10 to 20 seconds. The sample was 

then incubated in a 60°C reciprocal shaking water bath (Precision Scientific) for 60 min 

at 60 rpm. After 60 min, the sample was cooled down to room temperature and 

homogenized using a PowerGen 700 homogenizer (Fisher Scientific, Fair Lawn, NJ) for 

30 s. After homogenization, the sample was crudely filtered using Miracloth® 

(Calbiochem, La Jolla, CA) into an amber bottle and froze at -20°C until further analyses. 

Soluble solids and pH 

Percent soluble solids or % sugar was measured using a bench-top refractometer 

(Leica Auto ABBE, Buffalo, NY) with sample temperature compensation. This 

procedure was performed on the day of winemaking on freshly pressed grape juice.   

Grape must pH was measured using a bench-top Accumet AB 15 pH meter (Cole-

Parmer, Vernon Hills, IL) that had been calibrated prior to use. Measurements were taken 

on freshly pressed grape juice. This procedure was performed on the day of winemaking. 

Total phenolics content (TPC)  

Total phenolics content in the grape extracts was determined using a modification 

of the method of Singleton and Rossi (1965). Results were expressed as gallic acid 
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equivalents (GAE) per 100 g tissue. Equivalent gallic acid concentration in each sample 

was calculated using a standard curve prepared from gallic acid (Sigma-Aldrich, St. 

Louis, MO). All grape extracts and gallic acid standard solutions were treated in the same 

manner as listed below.  Briefly, 0.5 mL of extract or gallic acid solution was added into 

25 mL volumetric flask. Next, 1 mL Folin-Ciocalteu solution (Fluka Chemica, St. Louis, 

MO) was added, followed by 5 mL of deionized water (EMD Millipore, Billerica, MA). 

The contents were mixed and allowed to stand at room temperature for 5-8 min. After 5-8 

min, 10 mL of 7% (w/v) of sodium carbonate solution (Sigma-Aldrich, St. Louis, MO) 

were added and deionized water was used to fill the flask to volume. The prepared 

solution was left at room temperature for a total of 2 hours, after which absorbance was 

read at 765 nm by a spectrophotometer (Beckman DU® 520, Brea, CA). 

Total anthocyanins content 

Total anthocyanins were measured using the pH differential method first reported 

by Giusti and Wrolstad (2000). Absorbance was taken at 520 nm and 700 nm and a 

formula was used to calculate the total anthocyanins content expressed as mg cyanidin-3-

glucoside/100 g tissue. For this assay, one mL grape extract was added to a 25 mL 

volumetric flask, which was then brought to volume using potassium chloride buffer, pH 

1.0 (Sigma-Aldrich, St. Louis, MO) and mixed well. One mL of grape extract was added 

to another 25 mL volumetric flask and sodium acetate buffer, pH 4.5 (Fisher Scientific, 

Fair Lawn, NJ) was used to fill the flask to volume and mixed well. These solutions were 

allowed to stand at room temperature for 15 min to equilibrate. After 15 min, absorbance 

was taken for all solutions at 520 and 700 nm (Beckman DU
®
 520 spectrophotometer, 

Brea, CA). The overall absorbance value was calculated using the formula below: 
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 A = (A520 – A700)pH 1.0 - (A520 – A700)pH 4.5   

Using the A value above, the total anthocyanins content (expressed as mg cyanidin-3-

glucoside/100 g tissue) was then calculated using the following formula: 

Total anthocyanins = A x MW x [1/ε] x DF x 100   

  Where   A = Absorbance  

MW = Molecular weight of cyanidin-3-glucoside, 457.16 mol/g 

ε = Molar extinction of cyanidin-3-glucoside, 29600 

DF = Dilution factor of sample 

100 = Conversion factor to per 100 g tissue or 100 mL juice basis 

RED WINE 

Fermentation vessels preparation 

Food-grade plastic fermentation vessels (5 gal) and their accompanying lids were 

purchased from a plastic products retailer (U.S. Plastic Corp., Lima, OH). Using a 

spherical cardboard template with three holes 120° apart, the bottom of each vessel was 

marked for drilling. Drilling was performed using a 19.05 mm (0.75 inch) drill bit and the 

holes were then plugged with plastic tube fittings. These tube fittings were essentially a 

hollow tube with the ends fitted with two caps with holes in them. One end of the open-

ended tube was fitted with a PTFE/silicone septum (adjusted to fit using a cork borer) 

before being secured with the accompanying cap. The cap held the septum in place so 

wine would not leak from the vessel and the needle from the syringe could penetrate 
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through to deliver oxygen. The cap on the opposite end of the tube fitting was also 

secured to hold the apparatus in place. 

     

  Figure 10. Bottom of fermentation                       Figure 11. End of tube inside 

                     vessel                                                                     fermentation vessel 

  

 

General preparation 

Grape berries were retrieved from the freezer and left to thaw in the cooler for 48 

hours prior to wine-making. On the day of winemaking, all grape berries were weighed 

and their weights recorded.  

Crushing and destemming 

Grape berries were crushed and destemmed using a small scale commercial 

crusher/destemmer (Model Jolly 60, St. Patrick’s of Texas, Austin, TX).  Must was 

collected in clean plastic totes and weighed. Small samples of the must were collected to 

be analyzed for pH and % soluble solids. All must was pooled together in a large metal 

vessel where wine yeast Saccharomyces cerevisiae (Lalvin Bourgovin RC 212, Montreal, 

CAN), yeast nutrients (Fermaid), potassium metabisulfite (an antimicrobial agent, 
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Presque Isle Wine Cellars, North East, PA), acid (a blend of malic, tartaric and citric 

acids) and table sugar (Great Value, Bentonville, AR) were added and mixed together. 

Acid and sugar were added to adjust the pH of the must to approximately 3.6 and the 

sugar content to 24%. After the additions, 25 kg of must was weighed and placed in each 

fermentation vessel. For each grape variety, 12 vessels were used. A total of 24 vessels 

were filled and the leftover must was discarded. All 24 vessels were then placed on 

elevated shelves to allow subsequent access for oxygen introduction.  

Fermentation and pressing 

Must was allowed to undergo fermentation. Every other day, the cap (i.e. the layer 

of skins and seeds that floated to the surface of the liquid) was punched down using a 

kitchen-style whisk until pressing. On the 6th day, 6 vessels of each variety were pressed 

using a small-scale water-powered bladder press (Zampelli Enotech JRL, Italy), where 

the wine and pomace were separated. The wine was poured back into the vessel and the 

pomace discarded.  A total of 12 vessels were pressed and these were labeled as the 6-

Days Skin Contact Time treatment. On the 12th day, the remaining 12 vessels were 

pressed and these were the 12-Days Skin Contact Time treatment. All vessels were 

placed on the elevated shelves where oxygen injection through the bottom of the vessel 

commenced the day after pressing. 

Oxygen injection and sample collection 

Oxygen injection commenced immediately the day after pressing. Food-grade 

oxygen was used. A syringe adapter apparatus (Supelco, St. Louis, MO) was affixed to 

the output of the gas regulator attached to the oxygen tank.  The adapter enabled a 
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syringe (1 and 10 mL Pressure-Lok
®
 Series A, Supelco, St. Louis, MO) to be inserted in 

order to withdraw oxygen. Oxygen levels were assigned as control, low and high. For the 

low oxygen level, 2.1 mL/day/vessel were delivered and for high level, 21 

mL/day/vessel. The oxygen was injected slowly and distributed evenly among the three 

holes. Every week, for a total of sixteen weeks, a small amount of wine was collected 

from each vessel for analysis before beginning oxygen injection. Samples were drawn 

from the top of the vessel and the headspace was displaced with food-grade nitrogen 

before capping and securing with parafilm. 

Racking and bottling 

All vessels were racked at about week 10 to remove sediments from the wine. 

This process was accomplished by manually siphoning the wine into another vessel while 

leaving the sediments behind. The vessel containing the sediments was rinsed out and the 

wine was poured back into it. Headspace was displaced with food-grade nitrogen before 

capping and securing with parafilm. At the end of oxygen injection, all wines in the 

vessels were bottled in 1L plastic soda bottles (U.S. Plastic Corp., Lima, OH) and capped. 

Bottled wine was stored for further analyses at a later date. The entire winemaking 

process is illustrated in Figure 12. 
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Figure 12. Winemaking process 
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Oxygen radical absorbance capacity (ORAC) assay 

Chemical and reagents 

Potassium phosphate dibasic anhydrous was purchased from Fisher Scientific 

(Fair Lawn, NJ), sodium phosphate monobasic anhydrous was available from Amresco 

(Solon, OH). Other chemicals include fluorescein (3’,6’-dihyroxy-spriro [iso-benzofuran-

1[3H], 9’[9H]-xanthen]-3-one) from Sigma-Aldrich (St. Louis, MO), Trolox (6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid) standard from Fluka (St. Louis, MO) and 

AAPH [2,2’-azobis(2-amidinopropane)dichloride] from Acros Organics (Fair Lawn, NJ). 

Sample preparation and procedures 

Wine sample was diluted 1000-fold with phosphate buffer prior to usage. No 

other preparation was performed. 

Figure 13. Layout of ORAC microplate 
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  Antioxidant capacity by ORAC was performed using a modified method of 

Huang and others (2002).  ORAC values were obtained using the BioTek
®
 Synergy™ 2 

microplate reader (BioTek Instruments, Inc., Winooski, VT). To ensure consistency, all 

reagents except AAPH were added to the microplate using the BioTek
®
 Precision™ 

Microplate Pipetting System. This system was fully-automated using the Precision 

Power™ software (version V2.03.2).  

Trolox standard (100 µM), fluorescein stock (376 µM) and phosphate buffer (pH 

7.0) were prepared in advance. For our purpose, Trolox was diluted 1:1 to generate a 50 

µM working concentration and fluorescein was diluted 1000-fold. AAPH (306 mM), the 

peroxide radical generator was made fresh daily. All reagents including diluted wine 

samples were prepared using the phosphate buffer. First, 160 µL of fluorescein was 

added to all wells, followed by 20 µL of phosphate buffer (blank) in the second row. 

Subsequently, 20 µL of 50 µM Trolox was added to the adjacent row. The pipetting 

system was programmed to dilute the Trolox standard into two additional working 

concentrations, resulting in a total of 3 Trolox concentrations (50, 25 and 12.5 µM). 

Lastly, 6 rows of the plate were filled with 20 µL of diluted sample. The first and last 

columns, including the top and bottom rows of the plate were left unused (Figure 13). 

After pipetting, the microplate was loaded onto the BioTek
®
 Synergy™ 2 

microplate reader, which is controlled by the Gen5 software (version 5.1) where the plate 

was incubated for 10 min at 37°C prior to AAPH addition, which was performed 

manually. The reader was programmed to record the fluorescence of all working wells 

every minute for 35 minutes, after which greater than 90% degradation of fluorescence 
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was expected. The total area for each well was calculated using the Area under the 

Fluorescence Decay Curve (AUC) method according to Eq. 1 below: 

  AUC = f1/f0 + …. fi/f0 + ….  f34/f0 + f35/f0          Eq. 1 

where fo is the initial fluorescence reading at 0 min and fi is the fluorescence reading at 

time i. For all wells containing Trolox and sample, the net area for these wells were 

obtained by subtracting the average blank area from the total area. Taking into account 

the dilution factor and sample volume, the final ORAC value was calculated and 

expressed as µmol Trolox equivalents (TE)/100 mL of wine.  

High-performance liquid chromatography (HPLC) 

Chemicals and reagents 

HPLC-grade acetonitrile was purchased from Acros Organics (Fair Lawn, NJ) 

and HPLC-grade methanol was from Pharmco-AAPER (Brookfield, CT). Formic acid 

(>99%) and sodium acetate trihydrate were available from Fisher Scientific (Fair Lawn, 

NJ). The type-HP 2 β-glucuronidase enzyme was purchased from Sigma-Aldrich (St. 

Louis, MO). Deionized water was produced using the Milli-Q system (EMD Millipore, 

Billerica, MA). Individual phenolic standards (11 total), anthocyanins standards (4 total) 

and an internal standard (7-ethoxycoumarin) were obtained from various retailers as 

follows:  

 From Sigma-Adrich (St. Louis, MO) – Gallic acid, caffeic acid, p-coumaric acid, 

catechin hydrate, epicatechin gallate, resveratrol, quercetin hydrate, kaempferol, 
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cyanidin chloride, delphinidin chloride, pelargonidin chloride, and malvidin 

chloride.  

 From Indofine Chemical Company, Inc. (Hillsborough, NJ) – Myricetin and 7-

ethoxycoumarin. 

 Ferulic acid was purchased from Fluka (St. Louis, MO). 

Phenolic standards preparation 

All individual phenolic and anthocyanins standards, including the internal 

standard, were made into stock solutions using HPLC-grade methanol (500 ppm for 

anthocyanins, 250 ppm for isorhamnetin and 750 ppm for others). They were 

subsequently mixed together to form a standard mixture of 37.5 ppm for most 

compounds, except isorhamnetin at 12.5 ppm and anthocyanins at 25 ppm.  

Enzymatic hydrolysis of wine  

 Wine was subjected to enzymatic hydrolysis prior to HPLC analysis. An aliquot of 

4 mL wine was filtered through a pre-conditioned Sep-Pak filter (Waters Corporations, 

Milford, MA) and eluted with 8 mL of acidified methanol (0.1% v/v hydrochloric acid). 

An internal standard, 7-ethoxycoumarin, was added in the amount of approximately 37.5 

ppm in total solution. The eluent was dried completely in a SpeedVac evaporator 

(ThermoSavant, Model SPD 121P), where the heat setting was turned off. After drying, 

the wine solid was reconstituted with 500 µl 50% HPLC-grade methanol. After that, 110 

µL 0.78M acetate buffer, 100 µL 0.3M vitamin C solution and 50 µL β-glucuronidase 

enzyme were added. The solution was vortexed to mix and incubated at 37°C for 17 

hours in a reciprocal shaking bath (Precision Scientific, Model 50, Waltham, MA). After 
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incubation, 250 µL of cold HPLC-grade methanol was added and the solution was 

centrifuged (Fisher Scientific Centrific™) for 25 min at 4000 rpm. The supernatant was 

then transferred to a HPLC vial for injection.  

Procedures  

Phenolics analysis on the HPLC was carried out using modified methods of 

Thimothe and others (2007) and Perati and others (2012). The HPLC system was from 

Dionex Corporation (Sunnyvale, CA) and consisted of a P680 pump, a TCC-100 

temperature-controlled column compartment, an ASI-100 automated sample injector and 

an Ultimate 3000 photodiode array detector. The HPLC system operated on Chromeleon 

software version 6.80. Separation was achieved by a gradient elution at 40°C with a 

SunFire™ C18 column (4.6 mm x 250 mm x 5 µm), including a SunFire™ C18 guard 

column (4.6 mm x 20 mm), both from Waters Corporations (Milford, MA). Flow rate 

was set at 0.80 mL/min. The gradient elution employed two mobile phases: (A) 10% 

formic acid, and (B) 10% formic acid, with 22.5% methanol and 22.5% acetonitrile. The 

elution parameters were as follows: 0 min 94% A, 5 min 70% A, 30 min 20% A, 42 min 

40% A, 50 min 94% A, and 65 min 94% A. Data acquisition was applied for 65 min and 

chromatograms were acquired at 280, 320 and 370 nm for phenolic acids, flavanols, 

flavanols and stillbenes, and also at 520 nm for anthocyanins. Phenolic compounds were 

identified by comparing their retention times with those of pure standards and by 

occasional spiking using standard stock solutions. 
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Titratible acidity (TA) 

Five mL of grape wine was added to a 250 mL Erlenmeyer flask and diluted with 

100 mL distilled water. Sample was titrated to endpoint of pH 8.2 using 0.1 N NaOH 

(Acros Organics, Fair Lawn, NJ). Volume of NaOH used was recorded and result was 

calculated as % tartaric acid using the equation below: 

TA = (mL NaOH) x (N of NaOH) x (milliequivalent weight of tartaric acid) x 100 

Sample size (g or mL) 

TA = [mL NaOH x 0.1 x 0.075 x 100] / 5 

Free and bound SO2 

The SO2 test was performed using the oxidation/aeration apparatus. A sample of 

20 mL wine was measured into a round bottom flask and 10 mL of 25% phosphoric acid 

(Ricca Chemical Company, Arlington, TX) and some boiling beads were added to it.  

The impinger was filled with 10 mL 3% hydrogen peroxide (VWR, West Chester, 

PA) and three drops of indicator (50/50 mix of methyl red and methyl blue indicator 

solutions). The indicator changed the peroxide solution in the impinger bright purple, but 

was adjusted to a light gray-green color using a diluted 0.01 N sodium hydroxide (Fisher 

Scientific, Fair Lawn, NJ). By applying vacuum, the SO2 in its gaseous form was released 

from the wine and captured in the peroxide solution, causing it to turn bright pink. The 

pink solution was then titrated with 0.01 N NaOH until the initial light gray-green color 

was achieved. The volume of NaOH used was recorded and the free SO2 was calculated 

as: 
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 Free SO2 = normality of NaOH x mL NaOH x 1600 = mL NaOH x 16 

For bound SO2, the solution in the impinger was discarded and replaced with 

fresh one. The same procedure was repeated, except that heat was applied to the sample 

while under vacuum. Similarly, the titration was performed until a light gray-green color 

was obtained.  The same equation above was used to calculate the bound SO2. Total SO2 

was calculated by the addition of free and bound SO2. 

Total SO2 = Free SO2 + Bound SO2 

Total alcohol 

Total alcohol was determined using a boiling point differential method by using 

an ebulliometer. Since alcohol boils at a lower temperature than water, the boiling point 

of water-alcohol mixtures changes as a function of their concentrations. Prior to 

analyzing wine, the boiling point of water was determined to set the “zero” point where 

the alcohol content of samples would be measured against. After filling the ebuilliometer 

with wine, it was allowed to boil and the thermometer reading was taken after the 

mercury level had stabilized. The boiling temperature of the wine was referred to the 

reference chart to determine % alcohol. This method is adequate only if the wine has less 

than 0.5% sugar.  

Harbertson-Adams assay  

This assay was developed by Drs. Harbertson and Adams at the University of 

California, Davis. It has the ability to quantify multiple phenolics that are considered 

important in wines such as anthocyanins, tannins, pigments and non-tannin iron-reactive 
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phenols (Viticulture & Enology University of California Davis 2005). This assay operates 

on the ability of protein (bovine serum albumin - BSA) to precipitate tannins and some of 

the red pigments. The pigments that bind to BSA are not released by washing and are 

stable under the presence of bisulfite. These observations suggest that these pigments are 

polymeric. However, the pigments precipitated by BSA using centrifugation do not 

account for all the pigments present in the wine. Some of the pigments are still suspended 

in the supernatant fraction. Thus, BSA is able to fractionate the polymeric pigments into 

two distinguishable classes: short polymeric pigments (SPP) that are still suspended in 

the supernatant fraction and long polymeric pigments (LPP) that precipitate along with 

the tannins.  

Chemicals and reagents 

This assay requires preparation of multiple solutions such as model wine, washing 

buffer, resuspension buffer, anthocyanin buffer, ferric chloride reagent, bleach solution 

and BSA solution. Deionized water was produced using the Milli-Q system (EMD 

Millipore, Billerica, MA). The make-up of all the reagents is as follows: 

 Model wine – Potassium bitartrate (Sigma-Aldrich, St. Louis, MO), 95% ethanol 

(Pharmco-AAPER, Brookfield, CT), hydrochloric acid to adjust pH (VWR, 

Radnor, PA) and deionized water. 

 Washing buffer – Sodium chloride (Gibbstown, NJ), glacial acetic acid (Pharmco-

AAPER, Brookfield, CT), sodium hydroxide to adjust pH (Acros Organics, Fair 

Lawn, NJ) and deionized water. 
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 Resuspension buffer – Sodium dodecyl sulfate (Sigma-Aldrich, St. Louis, MO), 

triethanolamine (Sigma-Aldrich, St. Louis, MO), hydrochloric acid to adjust pH 

(VWR, Radnor, PA) and deionized water. 

 Anthocyanin buffer – Maleic acid (Acros Organics, Fair Lawn, NJ), sodium 

chloride (EMD, Gibbstown, NJ), sodium hydroxide to adjust pH (Acros Organics, 

Fair Lawn, NJ) and deionized water. 

 Ferric chloride reagent – Ferric chloride (Sigma-Aldrich, St. Louis, MO), 

hydrochloric acid to adjust pH (VWR, Radnor, PA) and deionized water. 

 Bleach solution – Potassium metabilsulfite (Presque Isle Wine Cellars, North 

East, PA) and deionized water. 

 BSA stock solution – Bovine serum albumin (Sigma-Aldrich, St. Louis, MO) and 

deionized water. 

The very first step of this assay determines the total phenolics content which is 

measured as mg/L catechin equivalents (CE). The second step is two-fold: total 

polymeric pigments are determined first. Then, by using BSA, the SPP is quantified next 

and subtraction is performed to obtain the LPP. The precipitated pellets are then washed 

and re-suspended to measure the content of tannins. The last step quantifies total 

anthocyanins, which is expressed as mg/L malvidin-3-monoglucoside, instead of mg/L 

CE. The procedures are too long to be reproduced here, but are presented in Appendix B. 

Statistical Analysis 

For each of the variety of grapes, three levels of oxygenation (control, low=2.1 

mL O2/bucket/day and high=21 mL O2/bucket/day) and two SCTs (6 and 12 days) were 
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examined. Two independent wine preparations (bucket) were evaluated for each of the 

six (3 x 2 factorial) oxygen/SCT combination. Five repeated measures (week = 1, 4, 8, 12 

and 16) were recorded for each bucket. Data were analyzed using mixed model methods 

for repeated measure experiments. The level of significance for all tests was set at α = 

0.05. The output for this project was generated using SAS software, Version 9.3 of the 

SAS System. Copyright © 2012 SAS Institute Inc. SAS and all SAS Institute Inc. product 

or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, 

USA.  
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CHAPTER IV 

 

 

RESULTS AND DISCUSSIONS 

 

Harbertson-Adams Assay 

Total Phenolics Content 

 Statistical analysis showed that for Chambourcin wines, oxygenation treatment 

had no significant effect (p = 0.7263) on the total phenolics analyzed. However, the SCT 

by week interaction was significant (p = 0.0251) and this is illustrated in Figure 14.  For 

all weeks, the 12-day SCT treatment yielded significantly higher total phenolics means 

than the 6-day treatment (p < 0.0007); however, this difference was not consistent across 

weeks.  

For Ruby Cabernet wines, oxygenation treatment also showed insignificant effect 

(p = 0.4337) in total phenolics. As with the Chambourcin, the interaction between SCT 

and week was significant (p < 0.0001, Figure 15). At weeks 1, 4, 8 and 12, the 12-day 

SCT treatment yielded significantly higher total phenolics means than the 6-day SCT 

treatment (p < 0.0001); however, at week 16, there was no SCT effect (p = 0.1056) 

(Figure 15).  



63 
 

 

Figure 14. Least square means of skin contact time (SCT) by week combinations for total 

phenolics content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect 

was observed) 

      

Figure 15. Least square means of skin contact time (SCT) by week combinations for total 

phenolics content of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT 

effect was observed) 
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While statistical analyses were not performed to verify statistically significant  

compositional differences between the two varieties, the Chambourcin wines were 

observed to have lower total phenolics than the Ruby Cabernet, with the latter having 

approximately twice as much (Figures 14 and 15). The skin contact period, also known as 

maceration time, helps to extract phenolic compounds from the grapes into solution and 

as a result, longer time will translate to higher phenolics content. The data obtained in 

this study was consistent with this model. Overall, the total phenolics content in both 

wines fluctuated slightly over the course of 16 weeks in both SCT treatments (Figures 14 

and 15).  

Statistical analysis performed on samples from week 16 and week 94 (~18-

month) storage revealed significant SCT by week interaction for total phenolics content 

of both wines (p < 0 .0231). In Chambourcin wines, at weeks 16 and 94, 12-day SCT 

treatment yielded significantly higher means than 6-day SCT (p < 0.0001), with greater 

difference observed at week 16.  This result is consistent with previous findings (Figure 

14). For the Ruby Cabernet wines, the difference between the two SCT treatments at 

weeks 16 and 94 was insignificant (p > 0.1211). However, there was a significant drop of 

total phenolics content in the bottled samples (week 94) for both of the SCT treatments, 

where the largest drop was observed in the 12-day SCT wines.  Looking at the individual 

SCT treatment, the total phenolics content of both wines dropped after storage of 18 

months (Tables 9a and 10b, Appendix A). Again, this is expected as phenolics are known 

to polymerize and/or bind with other constituents in the wine and precipitate out of 

solution during extended storage.  Indeed, this is a desirable part of the normal ageing 

process for red wines. 
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Tannins Content 

For Chambourcin wines, there was significant SCT by week interaction (p = 

0.0006) for tannins content, as shown in Figure 16. At weeks 1, 4, 8, 12 and 16, the 12-

day SCT yielded significantly higher tannins content than the 6-day SCT treatment (p < 

0.0238). Longer maceration time will yield higher tannins contents, as tannins are mainly 

located in the seed and skin of grape berry (Waterhouse 2002).  

The SCT by oxygen interaction was also significant (p = 0.0299) for the 

Chambourcin wines. It was revealed at 6-day SCT, there was no oxygen effect (p = 

0.3631). At 12-day SCT, the oxygen effect was significant (p = 0.0218), with the tannins 

content of the control wines being higher than the high-oxygenated wines (p = 0.0074).  

 

Figure 16. Least square means of skin contact time (SCT) by week combinations for tannins 

content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was 

observed) 
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For Ruby Cabernet wines, the only significant effect on tannins content was the 

SCT effect (p < 0.0001) -- 12-day SCT treatment yielded significantly higher tannins 

concentration than the 6-day SCT treatment (899 vs. 644 mg CE/L) (Table 8b, Appendix 

A).  

Tannins, which are made of polymers containing catechin, epicatechin, 

epicatechin gallate or epigallocatechin (Harbertson and others 2003) are one of the major 

phenolics in wine. The lower total phenolics in Chambourcin grapes also contributed to a 

lower tannins content, where the 12-day SCT treatment showed a higher amount (Figure 

16). In the Ruby Cabernet, the tannins content alone accounted for approximately half of 

the total phenolics. In fact, throughout the 16 weeks treatment period, the tannins content 

of the Ruby Cabernet stayed relatively constant: 6-day SCT at approximately 600 mg 

CE/L and 12-day SCT at 900 mg CE/L (results not shown). 

The tannins content of the Chambourcin and Ruby Cabernet wines were analyzed 

after approximately 18 months of storage (week 94). The tannins content of the 

Chambourcin showed highly significant SCT by week interaction (p = 0.0029). At week 

16, the tannins of 12-day SCT treatment were significantly higher than the 6-day SCT (p 

= 0.0159); by week 94, this difference was much larger. For both SCT treatments the 

tannins content of Chambourcin wine declined noticeably after storage (Tables 9a, 

Appendix A). For Ruby Cabernet however, the only significant effect was the week 

effect (p = 0.0471), where the tannins amount decreased after storage (Table 10a, 

Appendix A) and no difference was seen between skin contact times after 94 weeks 

storage.  
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Anthocyanins Content 

Anthocyanins are the glycosides of anthocyanidins, which are typically the 

second most abundant class of phenolics in grapes (Harbertson and others 2003). They 

are responsible for the red hue of red grape berries and are the predominant color 

pigments of young red wines. The five major anthocyanins found in red wine are the 

monoglucosides of malvidin, cyanidin, peonidin, pelargonidin and petunidin. Due to the 

acylation of the sugar residues, these five anthocyanins can be found as ten or more 

chemically unique forms (Harbertson and others 2003). In the Harbertson-Adams assay, 

the anthocyanins content was quantified as a whole and expressed in terms of milligram 

malvidin-3-glucoside per liter wine, where malvidin-3-glucoside is the predominant 

species. 

Statistical analysis showed that for Chambourcin wines, oxygenation treatment 

had no significant effect (p = 0.6710) on the content of monomeric anthocyanins. 

However, the SCT by week interaction was significant (p = 0.0008) and this is illustrated 

in Figure 17. At week 1, the 6-day SCT treatment yielded significantly higher monomeric 

anthocyanins means than the 12-day treatment (p = 0.0035). This trend was also observed 

in weeks 8 and 12 (p < 0.0075). At week 4 and 16 however, there was no SCT effect (p > 

0.1797). Contrary to total phenolics and tannins, the monomeric anthocyanins did not 

seem to follow the trend where longer maceration time would yield greater concentration 

of phenolics. This suggests that the bulk of extractable anthocyanins in Chambourcin 

grapes are extracted by the sixth day of maceration; it should be noted that the 

anthocyanins content of both the 6- and 12-day SCT treatments were indeed very similar 

in values across the weeks (Table 7b, Appendix A) and the statistically significant 
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differences in anthocyanins content observed for weeks 1, 8, and 12 may not represent 

practically-observable differences in wine quality.  

 

Figure 17. Least square means of skin contact time (SCT) by week combinations for monomeric 

anthocyanins content of Chambourcin wines (asterisk [*] denotes week where significant SCT 

effect was observed) 
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was observed. At week 16 however, the declining trend reached a break point where the 

oxygenated wines (both low and high) suffered a notable decrease. At week 16, the 

control wines had significantly higher anthocyanins content than the low and high 

oxygen-treated wines (p < 0.0008). 

 

Figure 18. Least square means of skin contact time (SCT) by oxygen by week combinations for 

monomeric anthocyanins content of Ruby Cabernet wines (RC = Ruby Cabernet, O2 = oxygen, 

double asterisk [**] denotes week where significant oxygen effect was observed) 
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monomeric anthocyanins can be attributed to the formation of polymeric pigments, as 

shown by many research studies done to date (Dallas and others 1996; Es-Safi and others 

1999; Cano-López and others 2006). Polymeric pigments are composed of anthocyanins 

and flavan-3-ols.  

Of the two wines, the Ruby Cabernet seemed to exhibit a larger decrease in 

anthocyanins content in the 16-week timeframe, particularly the samples with the higher 

SCT treatment (Figure 18). One possible explanation could be that the Ruby Cabernet 

wines were more “sensitive” to oxygenation treatments, possibly due to having higher 

concentrations of oxygen-sensitive substrates, and therefore underwent a much more 

extensive polymerization process during ageing. This polymerization effect in turn, 

seemed to be propagated further by the higher SCT treatment.  

 The analysis of the Ruby Cabernet wines after 18 months of storage (week 94)  in 

comparison to samples from week 16 revealed significant SCT by oxygen by week 

interaction (p = 0.0055), which was similar to our previous finding (Figure 18). At week 

94, in the control and low-oxygenated wines, the 12-day SCT treatment yielded 

significantly lower anthocyanins content that the 6-day SCT treatment (p < 0.0118). This 

further reiterates the speculation that the decrease in the concentration of monomeric 

anthocyanins in the Ruby Cabernet wine was due to a compounded effect of oxygen and 

high SCT treatments.  

Similarly, statistical analysis was also performed on the bottled Chambourcin 

wines as above after storage. In Chambourcin wines, significant oxygen by week 

interaction (p = 0.0401) was detected. The bottled control wines had significantly higher 
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monomeric anthocyanins content than the bottled low-oxygenated wines (p = 0.0457), 

and partially so for the bottled high-oxygenated wines (p = 0.0535). This is a complete 

reversal of what was observed previously, where the only significant effect was the SCT 

by week interaction (p =0.0008, Figure 17). It appears as if oxygenation treatment had a 

greater impact on the loss of monomeric anthocyanins than skin contact treatment over 

time. The decline in the concentration of these pigments during ageing is expected as 

monomeric anthocyanins polymerize and form complexes with other compounds.  

Overall, the changes observed appeared to be consistent with the kind of effect expected 

in micro-oxygenation application. 

Polymeric Pigments Content 

Polymeric pigments are the stable forms of color compounds in red wines. As red 

wine ages, the monomeric anthocyanins form polymeric pigments with flavonols, either 

by direct reaction or indirectly through cross-linking of individual units (Harbertson and 

others 2003). These polymeric pigments are categorized into short (SPP) and long (LPP) 

forms, and are less sensitive to pH changes than monomeric anthocyanins (Gao and 

others 1997).  
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Figure 19. Least square means of skin contact time (SCT) by oxygen by week combinations for 

SPP content of Chambourcin wines (Cham = Chambourcin, O2 = oxygen, asterisk [*] denotes 

week where significant SCT effect was observed, double asterisk [**] denotes week where 

significant oxygen effect was observed) 

 

In Chambourcin wines, the three-way interaction of SCT by oxygen by week (p = 

0.0295) was significant for SPP content, as illustrated in Figure 19. Overall, there was a 

rising trend in the SPP content of Chambourcin wines. The 6-day SCT wines seemed to 

have higher mean SPP content than the other treatment throughout the weeks, but 

according to statistical analysis, only at week 8, 12 and 16 was the SPP content of 6-day 

SCT treatment significantly higher than the 12-day SCT treatment (p < 0.0053). The 

effect of oxygen on the SPP content was neither readily apparent nor consistent. There 

were only a few instances where this effect could be seen -- at week 12, for 6-day SCT, 

the SPP content of the high-oxygenated wines was significantly higher than the control 

and low-oxygenated wines (p < 0.0252); at week 16, for 12-day SCT, the high-
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oxygenated wines showed higher SPP content than the control wines (p = 0.0302), but 

not the low-oxygenated ones (p = 0.2478).  

In the Ruby Cabernet wines, the only significant effect on SPP content was the 

week effect (p < 0.0001), where there was a steady increase until week 12, then the 

content became level (Table 8a, Appendix A). 

In the Chambourcin wines, the higher SPP content of the 6-day SCT treatment 

(Figure 19) again challenged the notion of longer maceration time giving rise to higher 

phenolics content. It should be noted that the higher SPP content also coincided with the 

higher monomeric anthocyanins content in these wines (Figure 17). According to 

Atanasova and others (2002), ethyl-bridged pigments were formed as anthocyanins 

glycosides condensed with epicatechin. These ethyl-linked products fit the description of 

SPP, where Harbertson and others (2003) expected to contain low molecular weight 

compounds such as malvidin-3-glucoside-catechin adducts. We speculate that the higher 

SPP content of the 6-day SCT wines were due to more monomeric anthocyanins being 

available to form complexes with catechin or epicatechin; higher levels of oxygenation 

may have facilitated this process.   

Statistical analysis of samples from weeks 16 and 94 of the Chambourcin wines 

was revealed to have significant SCT by oxygen by week interaction (p = 0.0054) for the 

SPP content. For week 16, the 6-day SCT wines had significantly higher SPP means than 

the other treatment (p < 0.0052), which was the trend noted previously (Figure 19). For 

the bottled samples (week 94), only the oxygenated wines (low and high) had 

significantly higher SPP content in the 6-day SCT treatment (p < 0.0081). In terms of 
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oxygenation effects, there were a few instances where it was significant -- in the bottled 

samples of 12-day SCT treatment, the high-oxygenated wines has significantly lower SPP 

content than both the control (p = 0.0065) and low-oxygenated wines (p = 0.0092). The 

Ruby Cabernet wines, however, only had significant week effect (p = 0.0005).  The SPP 

content of Ruby Cabernet wines dropped after storage (Table 10a, Appendix A).  

 

Figure 20. Least square means of skin contact time (SCT) by week combinations for LPP content 

of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was observed) 

 

For Chambourcin wines, the LPP content was not affected by oxygenation (p = 

0.2253), but SCT by week interaction was significant (p < 0.0001). Figure 20 shows the 

SCT by week interaction effect of LPP in Chambourcin wines. At week 1, 6-day SCT 

treatment had a significantly higher LPP means than 12-day SCT (p < 0.0001). At week 4 

and 8, SCT effect was insignificant (p > 0.0914). At week 12, 12-day SCT yielded 

significantly higher LPP means than 6-day SCT (p = 0.0002). At week 16, the observed 
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p-value for the difference in LPP content between skin contact times was 0.0836.  This 

difference is insignificant at the 95% confidence level (p < 0.05) but significant at the 

90% confidence level (p < 0 .10).  Henceforth we will refer to such differences as being 

marginally significant. 

In Ruby Cabernet, the effect of oxygen treatment was also insignificant (p = 

0.0632) for the LPP content. The SCT by week interaction was highly significant (p < 

0.0001) and is illustrated in Figure 21. At week 1, LPP for 12-day SCT treatment was 

significantly lower than 6-day SCT (p < 0.0001) and the reverse was true at week 4 (p < 

0.0001). No SCT effect was seen at  

 

Figure 21. Least square means of skin contact time (SCT) by week combinations for LPP content 

of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT effect was observed) 
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week 8 (p = 0.3938). But, at week 12, 12-day SCT yielded higher LPP means than 6-day 

SCT (p = 0.0010) and at week 16, this difference was only marginally significant (p = 

0.0749).  

In general, the LPP content showed an erratic fluctuation pattern in the 6-day SCT 

treatment in both wines (Figures 20 and 21). The 12-day SCT showed an increase from 

week 1 till 12, at which the level then started to decline (Figures 20 and 21). The 

inconsistent pattern of the LPP level could be due to the formation-and-breakdown cycle 

of pigment polymers -- while heavy polymers precipitate out of solution, new ones are 

constantly being formed.  

After 18 months storage (week 94), the LPP content of Chambourcin and Ruby 

Cabernet wines was analyzed in comparison with week 16 samples.  The SCT by week 

interaction was significant (p = 0.0133) for Chambourcin wines as previously noted 

(Figure 20). The bottled samples (week 94) had significantly higher LPP content in the 

12-day SCT treatment (p = 0.0006), but at week 16, the LPP means between the two SCT 

treatments was insignificant (p = 0.0797). This is not surprising considering the LPP level 

had been seen to fluctuate during the 16-week experimental period.  

As for the Ruby Cabernet wines, the three-way effect of SCT by oxygen by week 

was significant (p = 0.0389). It should be noted that the only significant effect prior was 

the SCT by week interaction (Figure 21). A notable oxygen effect was that for the 12-day 

SCT bottled samples (week 94), the control treatment had significantly higher LPP 

content than both the oxygenated wines (p < 0.0156). The reverse was observed for the 
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week 16 samples, where both the low- and high-oxygenated wines had significantly 

higher LPP amount than the control (p < 0.0203).  

Information on the potential use of LPP and SPP values is scarce. However, there 

is one direct application where the ratio of LPP to SPP can be used to predict a wine’s 

response to fining agents. Common commercial fining agents like gelatin or casein tend 

to remove the LPP fraction while leaving the SPP fraction undisturbed. Hence, wine with 

high LPP/SPP will be more susceptible to fining agents (Harbertson and others 2003). 

Harbertson and others (2003) measured the ratio of LPP to SPP in a limited number of 

wines from 1998 vintage and they found that even wines made from the same grape 

variety (Cabernet Sauvignon) had very different LPP/SPP values. This seems to suggest 

that the formation of polymeric pigments is influenced by many factors and the LPP/SPP 

value is perhaps not an adequate parameter to predict the quality of a red wine.  

 

Individual phenolics by HPLC 

Red grape has a wide array of phenolics compounds. These compounds contribute 

to sensory characteristics of red wines, especially the color and astringency (Mazza and 

others 1999). Phenolic acids such as gallic, ferulic, caffeic, ρ-coumaric, caftaric and 

protocatechuic acids have been identified in wines. Flavan-3-ols including catechin and 

epicatechin and flavonols such as quercetin, myricetin and kaempferol have also been 

identified (Sartini and others 2007; Nicoletti and others 2008).  The glucoside form of 

flavonols is commonly found in red wines; however those in galactoside, rutinoside and 
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glucuronide forms have also been detected in varying ratios (Castillo-Muñoz and others 

2007; Gómez-Alonso and others 2007).  

In the present study, nine non-anthocyanin phenolics were identified: catechin, 

myricetin, quercetin, gallic acid, caffeic acid, ρ-coumaric acid, along with traces of 

ferulic acid, resveratrol and kaempferol. The major non-anthocyanin compounds detected 

in all wines were catechin, quercetin and myricetin. Since ferulic acid, resveratrol and 

kaempferol only appeared in a small number of wines and in trace quantities, they were 

not used in the statistical analysis. 

Catechin 

Catechin is one of the major flavan-3-ols found in wines, along with the phenolic 

acid, gallic (Waterhouse 2002). Statistical analysis showed that in Chambourcin wines, 

oxygenation treatment had no significant effect (p = 0.3234) on the catechin content 

analyzed. However, the SCT by week interaction was significant (p = 0.0040) and this is 

illustrated in Figure 22. At week 1, 8, 12 and 16, the 12-day SCT treatment yielded 

significantly higher catechin means than the 6-day treatment (p < 0.0303). However, 

there was no SCT effect at week 4 (p = 0.1866).  
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Figure 22. Least square means of skin contact time (SCT) by week combinations for catechin 

content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

Oxygenation treatment also had no significant effect on the catechin content of 

the Ruby Cabernet wines (p = 0.2021). The SCT by week interaction was significant 

however (p = 0.0034) (Figure 23). According to Figure 23, for week 1, the catechin 

content of SCT 6 treatment was significantly higher than SCT 12 (p = 0.0462). At week 

4, 12 and 16, the reverse was true (p < 0.0068), with week 8 being marginally significant 

(p = 0.0742). In general, the 12-day SCT treatment yielded higher catechin content.  
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Figure 23. Least square means of skin contact time (SCT) by week combinations for catechin 

content of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

In a study by de Villiers and others (2005), the catechin content in 5 types of red 

wines (Cabernet Sauvignon, Merlot, Pinotage, Ruby Cabernet and Shiraz) ranged from 

32-58 ppm (Table 3). Meanwhile, Gómez-Alonso and others (2007) obtained an average 

of 31 ppm catechin from 10 Cencibel wines. Both of these studies utilized wines that 

were not subjected to any kind of manipulation, and hence may be used as a comparison 

to the current study. Comparing to the research of de Villiers (2005), our study found 

lower amounts of catechin, especially the Chambourcin wines, whose range was from 9-

17 ppm (Table 7c, Appendix A). The Ruby Cabernet wines in this current study had 

approximately 9-27 ppm of catechin (Table 8e, Appendix A). The catechin content in our 

Ruby Cabernet wines was considered low compared to the study of de Villiers and others 

(2005), where this particular variety was also tested (Table 4). 
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Table 3. Average phenolic content of 5 red wines (de Villiers and others, 2005) 

 

Compound Concentration (ppm)(n=13) 

Gallic acid 20.6 - 36.7 

Catechin 31.8 - 57.5 

Caffeic acid 7.7 - 33.1 

ρ-Coumaric acid 5.7 - 7.1 

Myricetin 4.0 - 8.0 

Quercetin 7.4 – 15.0 

 

Table 4. Comparison of phenolic content of Ruby Cabernet wines from two studies 

Compound de Villiers (2005) Present study (ppm) 

 (n=13)(ppm) Lowest  level detected Highest  level detected 

Gallic acid 20.6 1.1 4.4 

Catechin 31.8 9.3 26.6 

Caffeic acid 7.7 0.4 1.5 

ρ-Coumaric acid 7.1 0.4 2.0 

Myricetin 8.0 2.1 5.4 

Quercetin 8.3 0.7 5.1 

 

Gallic acid 

Both Chambourcin and Ruby Cabernet wines had significant skin contact by 

oxygen by week interaction (p < 0.0359) for gallic acid content. This three-way 

interaction for Chambourcin wines is shown in Figure 24. From Figure 24, the level of 

gallic acid over the 16-week timeframe showed significant fluctuations. At a glance, it 

appears the gallic acid content of the 12-day SCT treatment was higher than the 6-day 

SCT in all weeks. However, according to statistical analysis, this effect was only 

significant at week 8 (p < 0.0349) and week 16 (p < 0.0009). There were some significant 

oxygen effects at week 1 and 12, but they didn’t contribute any meaningful insight in 

terms of which oxygenation treatment was better overall.  
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Figure 24. Least square means of skin contact time (SCT) by oxygen by week combinations for 

gallic acid content of Chambourcin wines (Cham = Chambourcin, O2 = oxygen, asterisk [*] 

denotes week where significant SCT effect was observed, double asterisk [**] denotes week 

where significant oxygen effect was observed) 

 

The three-way interaction effect of the Ruby Cabernet wines is illustrated in 

Figure 25. As with the case of Chambourcin wines, the gallic acid content of the Ruby 

Cabernet also demonstrated erratic fluctuation patterns. Again, statistical analyses didn’t 

reveal any clear conclusions. 

Gallic acid content ranged from 21-37 ppm in the study of de Villiers and others 

(2005) (Table 3). Similarly, Gómez-Alonso and others (2007) quantified 20 ppm of gallic 

acid in some Cencibel wines (n=10). Comparing those findings to the present study, the 

amount of gallic acid detected in our study was much lower, at less than 4.5 ppm (Tables 

7e and 8f, Appendix A). The relatively low amount of gallic acid may be attributable to  
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Figure 25. Least square means of skin contact time (SCT) by oxygen by week combinations for 

gallic acid content of Ruby Cabernet wines (RC = Ruby Cabernet, O2 = oxygen, asterisk [*] 

denotes week where significant SCT effect was observed, double asterisk [**] denotes week 

where significant oxygen effect was observed) 

 

the use of C18 cartridges. These cartridges are a popular choice to isolate phenolic 

compounds in wines and have been postulated to clean up a sample by removing sugars 

and organic acids. Sugars will interfere with chromatographic analysis, so their removal 

is beneficial. But, the cartridge can cause of a low recovery of phenolic acids such as 

gallic, caffeic, ferulic and ρ-coumaric, due to the alcohol reducing the retention of some 

phenolics by the sorbent. Gallic acid is especially susceptible to this loss (Pérez-

Magariño and others 2008).  In addition, it is also possible that factors related to climate 

and/or growing season could be responsible for the relatively low gallic acid 

concentrations observed in the tested wines. Comparative data would need to be collected 

over time to test this hypothesis. 
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Caffeic and ρ-coumaric acids 

In terms of caffeic acid, both wines showed insignificant oxygen effect (p > 

0.1099). SCT by week interaction was significant however for both wines: Chambourcin, 

p = 0.0032 and Ruby Cabernet, p = 0.0338. For Chambourcin wines, the SCT by week 

interaction is illustrated in Figure 26. Only at week 16 that12-day SCT treatment yielded 

significantly higher caffeic acid means than 6-day SCT (p = 0.0008).  

 

Figure 26. Least square means of skin contact time (SCT) by week combinations for caffeic acid 

content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was 

observed) 
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Figure 27. Least square means of skin contact time (SCT) by week combinations for caffeic acid 

content of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

For the Ruby Cabernet wines, the SCT by week interaction is illustrated in Figure 

27. At week 1 and 8, no SCT effect was observed (p > 0.2721). At week 4, 12-day SCT 

yielded significantly higher caffeic acid means (p = 0.0002) than 6-day SCT. The same 

was also observed at week 12 (p = 0.0101) and week 16 (p = 0.0462).  

For Chambourcin wines, the only significant effect on ρ-coumaric acid content 

was the week effect (p = 0.0029). The content of ρ-coumaric acid seemed to fluctuate 

across the weeks with no discernible trend (Table 7a, Appendix A). 

For Ruby Cabernet wines, three significant effects were observed on ρ-coumaric 

acid content: oxygen (p = 0.0190), SCT (p = 0.0009), and week (p < 0.0001). For 

oxygenation treatment, the low oxygenated wines had significantly higher ρ-coumaric 

acid means than the high oxygenated ones (p = 0.0068) (Table 8c, Appendix A). For the 
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SCT effect, the 12-day SCT treatment had significantly higher ρ-coumaric acid means 

than 6-day SCT (Table 8b, Appendix A). In terms of week effect, it was revealed the 

content of ρ-coumaric acid increased steadily from week 1 till week 8, and at week 12, 

the level dipped and rose again (Table 8a, Appendix A).   

Looking at the present study, the quantity of caffeic and ρ-coumaric acids in both 

of the wines was low. The amount detected for these phenolic acids was less or 

approximately 2 ppm, which were considerably lower than those reported by de Villiers 

and others (2005) (Table 3).  The low recovery of these phenolic acids could be due to 

the use of C18 cartridges as noted above in the discussion of gallic acid contents.  Again, 

it is also possible that factors related to climate and growing season could be responsible 

for the relatively low values observed.  

Myricetin and quercetin 

For Chambourcin wines, the concentrations of the flavonol myricetin had 

significant SCT by week interaction (p = 0.0003). The SCT by week interaction for 

myricetin is illustrated in Figure 28, where for all weeks 1, 4, 8, 12 and 16, the means of 

6-day SCT treatment were significantly higher than the 12-day SCT (p < 0.0122), with 

greater difference occurring early in the experiment. 
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Figure 28. Least square means of skin contact time (SCT) by week combinations for myricetin 

content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

For Ruby Cabernet wines, myricetin showed insignificant oxygenation effect (p = 

0.1680) but significant SCT by week interaction effect (p = 0.0021), which is shown in 

Figure 29. At weeks 1 and 12, there were no SCT effect (p > 0.6502). At week 4, the 

difference was marginally significant (p = 0.0578). At week 8, the myricetin content of 

SCT 6 was higher than SCT 12 (p = 0.0030), as well as week 16 (p = 0.0005). 
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Figure 29. Least square means of skin contact time (SCT) by week combinations for myricetin 

content of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

The content of myricetin seemed to hover in the 5 ppm range for both of the 

Chambourcin and Ruby Cabernet wines (Tables 7c and 8e, Appendix A), and this 

coincided with the median range as reported by de Villiers and others (2005) in Table 3.  

As with the case of myricetin in Chambourcin wines, the significant effect 

observed for quercetin was the SCT by week interaction (p = 0.0001) (Figure 30). As 

demonstrated in Figure 30, for all weeks (1, 4, 8, 12 and 16), the average of quercetin 

content in the 6-day SCT treatment was significantly higher than the 12-day SCT (p < 

0.0185), with greater difference observed early in the study.   
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Figure 30. Least square means of skin contact time (SCT) by week combinations for quercetin 

content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

Figure 31. Least square means of skin contact time (SCT) by week combinations for quercetin 

content of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT effect was 

observed) 
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For Ruby Cabernet wines, oxygenation treatment had no impact on quercetin 

content (p = 0.5302). The significant SCT by week interaction is shown in Figure 31 (p = 

0.0303). From Figure 31, at week 1, 8 and 12, no SCT effect was observed (p > 0.4043). 

At week 4, the quercetin average of 6-day SCT was significantly higher than the 12-day 

SCT (p = 0.0162), as well as for week 16 (p = 0.0197).  

From Tables 7c and 8e in Appendix A, we see that the concentration of quercetin 

declined over the course of 16 weeks in all wines. While statistical analysis was not 

performed to detect differences between varieties,  Chambourcin wines had a higher 

observed quercetin content than the Ruby Cabernet (Tables 7c and 8e, Appendix A). It 

should be noted that the highest concentration detected (14 ppm) came from a 6-day SCT 

treatment wine. In general, a longer SCT treatment will be expected to yield higher 

concentration of phenolics in wine. However, in the current study, this was not always 

the case. Per statistical analysis, both myricetin and quercetin seemed to be more 

concentrated in the 6-day SCT wines than the 12-day SCT ones (Tables 7c and 8e, 

Appendix A).  

The content of flavonols (myricetin, quercetin and kaempferol) is of particular 

interest since they are indicative of co-pigmentation potential. This co-pigmentation 

association involves the anthocyanins glycosides and their “cofactors” such as certain 

flavonoids and phenolic acids; quercetin in particular has been shown to contribute 

significant color enhancement (Boulton 2001). A correlation was observed at present 

study in the Chambourcin wines, in which the quercetin concentration was declining 

consistently as the SPP content increased (Figure 19). This is by no means a scientific 
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proof that co-pigmentation has taken place; it was simply a hypothesis that would require 

further examination to prove.  

Monomeric anthocyanins 

The anthocyanins profile varied between the two wines. Chambourcin wines had 

a major anthocyanin eluting at approximately 11.5 min and the Ruby Cabernet had one at 

13.7 min (Figures 32 and 33). The specific identities of these peaks were not been 

positively confirmed. Nevertheless, the peak areas were substantial and there was no 

evidence that those peaks were polymeric pigments. According to Ginjom and others 

(2011), polymeric pigments eluted at 520 nm as a distinct hump below the completely 

separated monomeric anthocyanins. In this current study, the peaks at 520 nm separated  

 

 Figure 32. Sample chromatogram of a Chambourcin wine at 520 nm 
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Figure 33. Sample chromatogram of a Ruby Cabernet wine at 520 nm 
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study, the extracts from some interspecific hybrid grapes (Baco Noir and Noiret) had very 

different anthocyanins fingerprint than those of the Vitis vinifera (Pinot Noir and 

Cabernet Franc) extracts. These hybrids had a much higher concentration of delphinidin 

and petunidin, where the Noiret extract contained up to 30 times more. It perhaps would 

be fair to assume the Chambourcin grape used in this current study to also contain a 

different anthocyanins profile than the Ruby Cabernet. If the retention times of the two 

major peaks in both of the wines were any indication (11.5 min and 13.7 min), these two 

varieties of grape did indeed have two very different major anthocyanins.  

A few publications have stated that red wines required no preparation step prior to 

HPLC analysis (Revilla and others 1999; García-Beneytez and others 2003), even though 

in some cases a filtration process was performed (Waterhouse and others 1999; Pérez-

Magariño and others 2008).  In the present study, the wine sample underwent a filtration 

process by C18 cartridge to remove the sugars and organic acids, and was then processed 

further by enzymatic hydrolysis. The hydrolysis step was meant to simplify the 

chromatographic data and should not cause a huge difference in the concentration of the 

anthocyanins compounds present initially in the sample. However, the use of the C18 

cartridge may have contributed to the loss of phenolic acids as noted previously.  

 

Antioxidant capacity by ORAC 

In wine, the common opinion is that the radical scavenging capacity is related to 

its phenolic content. For a substance to impart antioxidant power, it has to be readily 
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oxidizable.  Wine contains high levels of substances with the catechin group molecular 

structure, which is very reactive with oxidants (Waterhouse 2002).  

 

Figure 34.  Least square means of skin contact time (SCT) by week combinations for antioxidant 

content of Chambourcin wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

For the Chambourcin wines, the SCT by week interaction was significant (p = 

0.0020) for the antioxidant content, as was the SCT by oxygen interaction (p = 0.0208). 

The SCT by week interaction is shown in Figure 34, where at week 1, 4, 8, 12 and 16, the 

12-day SCT treatment produced significantly higher antioxidants means than 6-day SCT 

(p < 0.0184). This is not surprising considering higher SCT treatment will yield higher 

total phenolics, which translates to higher antioxidant capacity. In terms of the SCT by 

oxygen interaction effect, there was significant oxygenation treatment (p = 0.0015) for 

the 12-day SCT treatment. At 12-day SCT, the control wines had significantly higher 
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antioxidant content than the high oxygenated wines (p = 0.0004), and the low oxygenated 

wines had greater antioxidant content than the high oxygenated ones (p = 0.0115) (Table 

7d, Appendix A). 

 

Figure 35. Least square means of skin contact time (SCT) by week combinations for antioxidant 

content of Ruby Cabernet wines (asterisk [*] denotes week where significant SCT effect was 

observed) 

 

For Ruby Cabernet wines, oxygenation has no significant impact on the 

antioxidants content (p = 0.7172). As with the Chambourcin wines, the SCT by week 

interaction was significant (p = 0.0220), as shown in Figure 35. At week 1, 4, and 8, the 

12-day SCT treatment yielded significantly higher means than the 6-day SCT treatment 

(p < 0.0001). However, at week 12 and 16, there were no SCT effect (p > 0.0797).  

 Chambourcin wines were observed to have noticeably lower total phenolics 

content than the Ruby Cabernet, and also possessed much lower ORAC values (Tables 7b 
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and 8d, Appendix A). In both wines, the 12-day SCT treatment had higher antioxidant 

activity. No discernible trend was observed for the antioxidant activity of the 

Chambourcin wines (Figure 34). Nevertheless, in the Ruby Cabernet wines there seemed 

to be a notable drop in antioxidant activity over time for the 12-day SCT wines (Figure 

35). As mentioned previously, the Ruby Cabernet wines perhaps were more “sensitive” to 

oxygenation treatments and therefore polymerized more, causing the loss of phenolics 

due to precipitation. Perhaps if oxygenation treatments had been continued, we might 

have seen that over time, oxygen would have accelerated the polymerization process even 

more, causing the loss of phenolics due to precipitation and a subsequent decrease in 

antioxidant capacities.  

Antioxidant capacity of some red wines from China was quantified by Li and 

others (2009), whose amounts ranged from 960-2440 µmol Trolox equivalents (TE)/100 

mL. In this current study, the values obtained were from 1800-3700 µmol TE/100 mL. As 

mentioned previously, the Ruby Cabernet wines, for both SCT treatments, had higher 

ORAC values due to higher total phenolics (Table 8d, Appendix A). Scalzo and others 

(2012) reported that wine fractions containing phenolic compounds showed the highest 

ORAC activity, which suggested that the phenolics were the components responsible. 

Meyer and others (1997) tested the inhibition of human LDL oxidation in vitro by using 

14 grape phenolic extracts. The study found that the level of inhibition was comparable to 

those previously found for wines; however, a pure catechin standard used as a 

comparative measure rated consistently higher. More examination is necessary to 

determine the synergistic or antagonistic effects of grape phenolics on antioxidant 

activity (Meyer and others 1997). The information obtained could be beneficial in 
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developing the most ideal enological practices to achieve the maximum antioxidant 

capacity possible. 

 

Total alcohol content of wine 

 For red wine, the Code of Federal Regulations (CFR) Title 21 states that it should 

contain not in excess of 14% alcohol by volume in order to be labeled as “Table Wine”. 

The wines tested in this study ranged from 12.9-14.3% alcohol, where some wines were 

slightly above the FDA’s specification. For both wines, the alcohol content was in the 

same range and no obvious distinction was observed in the oxygenation treatments (Table 

11, Appendix A).  

 

pH and titratible acidity of wine 

 The pH of the Chambourcin wines ranged from 3.4-3.7 and the Ruby Cabernet 

ones were higher at 3.7-3.9 (Tables 12 and 13, Appendix A). The desirable range of red 

wine should be between 3.4 and 3.7 (MoreWine!). Higher pH will negatively impact the 

color intensity and wine with higher pH is more likely to lose its quality quickly (Acuvin 

2012). 

The titratible acidity (TA) measurement is used to quantify tartness in juice or 

must. Wines with less than 0.5 g tartaric acid/100 mL are considered bland and levels 

exceeding 0.8 g tartaric acid/100 mL are categorized as sharp (Vine and others 2002). 

The wines analyzed in this study were in the range of 0.6-0.7 g tartaric acid/100 mL, 
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which could be considered to have medium tartness (Table 14, Appendix A). In the study 

of Lee and others (2007), the Cabernet Sauvignon wines had TA values ranging from 0.6-

0.7 g tartaric acid/100 mL, and Merlot wines from 0.5-0.7 g tartaric acid/100 mL. 

 

Total phenolics and monomeric anthocyanins of raw grape 

 Total phenolics content of raw grapes is expressed as mg of gallic acid 

equivalents (GAE) per gram of fresh weight (FW). Chambourcin and Ruby Cabernet had 

3.8 mg GAE/g FW and 5.5 mg GAE/g FW, respectively (Table 15, Appendix A). Du and 

others (2012) reported the total phenolics content of seven dark grape varieties and the 

value ranged from 1.2-2.2 mg GAE/g FW, which was lower than those reported in the 

current study. Oikonomakos and others (2009) reported the total phenolics content of 

Cabernet Franc whole grapes to have 5.3 mg GAE/g FW, which was comparable to the 

amount quantified in this study. 

 Total monomeric anthocyanins in raw grapes are quantified as cyanidin-3-

glucoside (C3G) per gram of fresh weight (FW). In Chambourcin grape, the total 

monomeric anthocyanins content was 0.4 mg C3G/g FW and Ruby Cabernet grape had 

0.6 mg C3G/ g FW (Table 15, Appendix A). Compared to the values by Bu and others 

(2012), which was in the range of 0.05-1.7 mg C3G/g FW, the result obtained in this 

current study was approximately in the median range.  

  



99 
 

 

REFERENCES 

 

 

 

 

Acuvin [Internet]. Napa, CA; c2002-2012 [Assessed 2013 Mar 22]. Available from: 

http://www.accuvin.com/Monitoring%20Acids%20and%20pH%20in%20Winem

aking.pdf. 

 

Atanasova V, Fulcrand H, Cheynier V, Moutounet M. 2002. Effect of oxygenation on 

polyphenol changes occurring in the course of wine-making. Anal Chim Acta 

458:15-27.Boulton R. 2001. The copigmentation of anthocyanins and its role in 

the color of red wine: A critical review. Am J Enol Vitic 52(2):67-87. 

 

Boulton R. 2001. The copigmentation of anthocyanins and its role in the color of red 

wine: A critical review. Am J Enol Vitic 52(2):67-87. 

 

Cano-López M, Pardo-Mínguez F, López-Roca JM, Gómez-Plaza E. 2006. Effect of 

microoxygenation of anthocyanin and derived pigment content and chromatic 

characteristics of red wines. Am J Enol Vitic 57(3):325-31. 

 

Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. 2007. 

Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J 

Agric Food Chem 55(3):992-1002. 

 

Dallas C, Ricardo-da-Silva JM, Laureano O. 1996. Products formed in model wine 

solutions involving anthocyanins, procyanidin B2 and acetaldehyde. J Agric Food 

Chem 44:2402-7. 

 

de Villiers A, Majek P, Lynen F, Crouch A, Lauer H, Sandra P. 2005. Classification of 

South African red and white wines according to grape variety based on the non-

coloured phenolic content. Eur Food Res Technol 221:520-8. 

 

Du B, He BJ, Shi PB, Li FY, Li J, Zhu FM. 2012. Phenolic content and antioxidant 

activity of wine grapes and table grapes. J Med Plants Res 6(17):3381-7. 

 

Es-Safi NE, Fulcrand H, Cheynier V, Moutounet M. 1999. Studies on the acetaldehyde-

induced condensation of (-)-epicatechin and malvidin-3-O-glucoside in a model 

solution system. J Agric Food Chem 47(5):2096-102. 

http://www.accuvin.com/Monitoring%20Acids%20and%20pH%20in%20Winemaking.pdf
http://www.accuvin.com/Monitoring%20Acids%20and%20pH%20in%20Winemaking.pdf


100 
 

Gao L, Girard B, Mazza G, Reynolds AG.1997. Changes in anthocyanins and color 

characteristics of Pinot Noir wines during different vinification processes. J Agric 

Food Chem 45(6):2003-8.  

 

García-Beneytez E, Cabello F, Revilla E. 2003. Analysis of grape and wine anthocyanins 

by HPLC-MS. J Agric Food Chem 51(19):5622-9. 

 

Ginjom I, D’Arcy B, Caffin N, Gidley M. 2011. Phenolic compound profiles in selected 

Queensland red wines at all stages of the wine-making process. Food Chem 

125:823-34. 

 

Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. 2007. HPLC analysis of 

diverse grape and wine phenolics using direct injection and multidetection by 

DAD and fluorescence. J Food Comp Anal 20:618-26. 

 

Harbertson JF, Picciotto EA, Adams DO. 2003. Measurement of polymeric pigments in 

grape berry extracts and wines using a protein precipitation assay combined with 

bisulfite bleaching. Am J Enol Vitic 54(4):301-6. 

 

Hebrero E, Garcia-Rodriguez C, Santos-Buelga C, Rivas-Gonzalo JC. 1989. Analysis of 

anthocyanins by high performance liquid chromatography-diode array 

spectroscopy in a hybrid grape variety (Vitis vinifera x Vitis berlandieri 41B). Am 

J Enol Vitic 40(4):283-91. 

 

Li H, Wang X, Li Y, Li P, Wang H. 2009. Polyphenolic compunds and antioxidant 

properties of selected China wines. Food Chem 112:454-60. 

 

Mazza G. 1995. Anthocynins in grapes and grape products. Cri Rev Food Sci Nutr 

35(4):341-71. 

 

Mazza G, Fukumoto L, Delaquis P, Girard B, Ewert B. 1999. Anthocyanins, phenolics, 

and color of Cabernet Franc, Merlot, and Pinot Noir wines from British 

Columbia. J Agric Food Chem 47(10):4009-17. 

 

Meyer AS, Yi OS, Pearson DA, Waterhouse AL, Frankel EN. 1997. Inhibition of human 

low-density lipoprotein oxidation in relation to composition of phenolic 

antioxidants in grapes (Vitis vinifera). J Agric Food Chem 45:1638-43. 

 

MoreWine! [Internet]. Concord, CA [Assessed 2013 Mar 22]. Available from: 

http://www.morewinemaking.com/public/pdf/wredw.pdf 

 

Nicoletti I, Bello C, De Rossi A, Corradini D. 2008. Identification and quantification of 

phenolic compounds in grapes by HPLC-PDA-ESI-MS on a semimicro separation 

scale. J Agric Food Chem 56:8801-8. 

 

http://www.morewinemaking.com/public/pdf/wredw.pdf


101 
 

Oikonomakos I. 2009. Influence of solvent extraction and winemaking steps on 

antioxidant activity of red grapes [Dissertation]. 

 

Pérez-Magariño S, Ortega-Heras M, Cano-Mozo E. 2008. Optimization of a solid-phase 

extraction method using copolymer sorbents for isolation of phenolic compounds 

in red wines and quantification by HPLC. J Agric Food Chem 56(24):11560-70.   

 

Revilla I, Pѐ rez-Magariño S, Gonzáléz-Sanjosé ML, Beltrán S. 1999. Identification of 

anthocyanin derivatives in grape skin extracts and red wines by liquid 

chromatography with diode array and mass spectrometric detection. J Chromatogr 

A 847:83-90. 

Sartini E, Arfelli G, Fabiani A, Piva A. 2007. Influence of chips, lees and micro-

oxygenation during aging on the phenolic composition of red Sangiovese wine. 

Food Chem 104:1599-1604. 

 

Scalzo RL, Morassut M, Rapisarda P. 2012. Oxygen radical scavenging capacity of 

phenolic and non-phenolic compounds in red and white wines. Central Eur J Bio 

7(1):146-58. 

 

Thimothe J, Bonsi IA, Padilla-Zakour OI, Koo H. 2007. Chemical characterization of red 

wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic 

extracts and their biological activity against Streptococcus mutans. J Agric Food 

Chem 55(25):10200-7. 

 

Waterhouse AL, Price SF, McCord JD. 1999. Reversed-phase high-performance liquid 

chromatography methods for analysis of wine polyphenols. Method Enzymol 

299:113-21.  

 

Waterhouse AL. 2002. Wine phenolics. Ann NY Acad Sci 957:21-36. 

 

 

 

  



102 
 

CHAPTER V 

 

 

CONCLUSIONS 

 

Wine is a complex chemical system. One component of particular interest in 

wines is the phenolic compounds, which have a large impact on the overall sensory 

perception of a given wine. One group of phenolics, anthocyanins and anthocyanin 

polymers, gives the red wine its signature color.  Another group of phenolics, which may 

loosely be described as tannins, provides the astringency and body that add a certain 

amount of complexity and appeal to a red wine. Bitterness, although it should be 

minimal, is another desirable character of red wine provided by phenolic compounds.  

The phenolics in red grapes and red wines have been researched extensively. 

Many methods exist for the identification and quantification of the different kinds of 

phenolics in grapes and wines. In fact, there has been effort to use anthocyanins 

composition to predict grape cultivar (Ryan and Revilla 2003). The content and 

composition of phenolics in wines are dependent on the grape berry, on which genetic 

and environmental conditions can have a huge impact (Thimothe and others 2007), and 

also on vinification practices such as skin contact time and the pressure applied during 

pressing (Maggu and others 2007). Ageing of wine is solely for the purpose of improving  
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wine quality by allowing flavors and aromas to develop. Micro-oxygenation is a 

relatively new method first introduced in early 1990s as an alternative to barrel ageing 

(Carlton and others 2007). Similar to traditional barrel ageing, micro-oxygenation is 

purported to bring about desirable changes in wine, but in a shorter time. 

Based on statistical findings, the effect of micro-oxygenation on the content of 

most phenolic compounds, both the major and individual components, was not readily 

apparent in the wines tested. However, in general, the changes in phenolics content and 

composition were consistent with the kind of accelerated ageing processes expected to 

occur with the application of micro-oxygenation. In terms of sensory attributes, it is 

nevertheless possible that the micro-oxygenation treatments did have a detectable impact 

on final wine quality. Sensory testing will be required to evaluate this question. Aside 

from the phenolics content, the effect of oxygenation on the antioxidant capacity was also 

not significant. This suggests that the possible advantages of micro-oxygenation need not 

incur a significant loss in antioxidant activity in red wines. 

The graphical presentation of the total phenolics, anthocyanins and tannins 

contents of the Ruby Cabernet wines tended to indicate that this variety was more 

“sensitive” to oxygenation treatments as opposed to the Chambourcin variety in the sense 

that the changes seen in the concentrations of these compounds were larger in magnitude 

over the duration of the study in the oxygenated Ruby Cabernet wines. This was perhaps 

due to the higher initial total phenolics content measured in the Ruby Cabernet wines, 

which provided a higher concentration of substrates available to participate in oxygen-

mediated chemical reactions. Thus, Ruby Cabernet wines might possibly benefit more 

than Chambourcin wines from the practice of micro-oxygenation, particularly if the 
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oxygen treatments were adjusted to accommodate the change in phenolics content over 

time. However, this practice would necessarily be time consuming, as samples would 

need to be collected and analyzed at a frequent interval, perhaps including sensory 

analysis, in order to justify changes in oxygen treatment. 

The results of this study might indicate that wines made from traditional vinifera 

grapes might benefit more from micro-oxygenation than wines made from hybrid grapes 

such as Chambourcin.  However, given that the initial total phenolics content of 

Chambourcin is relatively low, more studies with additional hybrid varieties would need 

to be done to substantiate this hypothesis.  

Examining the possibilities for future research, a number of possible 

improvements in the experimental design could be considered.  For example, it is 

possible that an experimental design with a lone SCT treatment and with varying 

oxygenation levels could better demonstrate the effects of the oxygenation treatment. 

Perhaps, it would also be beneficial to introduce the oxygen in small aliquots throughout 

the day so as to not overwhelm the system. Since the oxygen bubbles are supposed to 

dissolve into the wine solution as they travels to the top of the vessel, the design of the 

fermentation vessel should allow for adequate distance to facilitate full gas exchange and 

dissolution (Cano-López and others 2006). Using a larger volume of wine and having 

more replications per treatment would also be beneficial.   

In all, predicating wine quality simply by chemical analyses is difficult. We 

anticipate that sensory analysis will be able to detect subtle differences that are not 
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readily apparent from chemical testing. We plan to conduct sensory evaluation of some of 

the wines from this research project at a later date. 
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APPENDIX A 

 

Table 5. 
1
p-Values of all statistical analysis of Chambourcin wines 

a. 16-Week Samples: Harbertson-Adams and Antioxidant (ORAC) Assays  

Effects 
Total 

Phenolics 

Monomeric 

Anthocyanins 
SPP LPP Tannins Antioxidant 

SCT <0.0001 0.0380 <0.0001 0.1652 <0.0001 < 0.0001 

OXY 0.7263 0.6710 0.2103 0.2253 0.1923 0.0115 

SCT*OXY 0.2830 0.3965 0.6780 0.7888 0.0299 0.0208 

WEEK <0.0001 <0.0001 <0.0001 0.0004 <0.0001 < 0.0001 

SCT*WEEK 0.0251 0.0008 0.0002 <0.0001 0.0006 0.0020 

OXY*WEEK 0.2126 0.1152 0.5770 0.4143 0.6618 0.3788 

SCT*OXY*WEEK 0.7055 0.8784 0.0295 0.6033 0.9187 0.6121 

 

b. 16-Week Samples: HPLC Analysis 

Effects Gallic Catechin Caffeic ρ-Coumaric Myricetin Quercetin 

SCT <0.0001 <0.0001 0.0046 0.1615 <0.0001 <0.0001 

OXY 0.0850 0.3234 0.1099 0.2291 0.0423 0.0041 

SCT*OXY 0.3462 0.3982 0.2022 0.1167 0.1802 0.0939 

WEEK <0.0001 <0.0001 <0.0001 0.0029 <0.0001 <0.0001 

SCT*WEEK 0.0001 0.0040 0.0032 0.4439 0.0003 0.0001 

OXY*WEEK 0.0002 0.3324 0.1700 0.7378 0.3679 0.2828 

SCT*OXY*WEEK 0.0017 0.6220 0.1429 0.5051 0.5708 0.2375 

 

 

c. 18-Month Storage Samples: Harbertson-Adams Assay 

Effects 
Total 

Phenolics 

Monomeric 

Anthocyanins 
SPP LPP Tannins 

SCT <0.0001 0.1779 <0.0001 0.7355 0.0002 

OXY 0.8964 0.0834 0.2257 0.3354 0.4298 

SCT*OXY 0.0837 0.1725 0.0482 0.9232 0.3333 

WEEK <0.0001 <0.0001 <0.0001 0.0178 <0.0001 

SCT*WEEK 0.0142 0.5167 0.0023 0.0133 0.0029 

OXY*WEEK 0.3958 0.0401 0.0567 0.2583 0.0733 

SCT*OXY*WEEK 0.9517 0.3162 0.0054 0.1673 0.0790 

 
1
Numbers in bold denotes significant effects (α = 0.05) 

SCT – Skin contact time effect 

OXY – Oxygen effect 
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Table 6. 
1
p-Values of all statistical analysis of Ruby Cabernet wines  

a. 16-Week Samples: Harbertson-Adams and Antioxidant (ORAC) Assays  

Effects 
Total 

Phenolics 

Monomeric 

Anthocyanins 
SPP LPP Tannins Antioxidant 

SCT <0.0001 0.6024 0.0845 0.0027 <0.0001 0.0001 

OXY 0.4337 0.0795 0.9035 0.0632 0.4757 0.7172 

SCT*OXY 0.4511 0.2729 0.6201 0.0591 0.8179 0.3511 

WEEK <0.0001 <0.0001 <0.0001 <0.0001 0.1296 0.0001 

SCT*WEEK <0.0001 <0.0001 0.2041 <0.0001 0.2317 0.0220 

OXY*WEEK 0.1179 0.0125 0.4073 0.2561 0.3823 0.2933 

SCT*OXY*WEEK 0.2453 0.0157 0.9448 0.2480 0.3982 0.5007 

 

b. 16-Week Samples: HPLC Analysis 

Effects Gallic Catechin Caffeic ρ-Coumaric Myricetin Quercetin 

SCT <0.0001 0.0128 0.0012 0.0009 0.0147 0.0792 

OXY 0.6516 0.2021 0.1904 0.0190 0.1680 0.5302 

SCT*OXY 0.6118 0.3224 0.8156 0.2452 0.2977 0.1949 

WEEK <0.0001 0.0006 0.0043 <0.0001 <0.0001 <0.0001 

SCT*WEEK 0.0830 0.0034 0.0338 0.1482 0.0021 0.0303 

OXY*WEEK 0.0368 0.2027 0.3949 0.2008 0.7843 0.8820 

SCT*OXY*WEEK 0.0359 0.0714 0.7946 0.4873 0.0838 0.1698 

 

 

c. 18-Month Storage Samples: Harbertson-Adams Assay 

Effects 
Total 

Phenolics 

Monomeric 

Anthocyanins 
SPP LPP Tannins 

SCT 0.4923 0.0017 0.2880 0.3102 0.6452 

OXY 0.0620 0.0049 0.3142 0.5702 0.1520 

SCT*OXY 0.0608 0.0145 0.1741 0.6527 0.2249 

WEEK <0.0001 <0.0001 0.0005 0.0023 0.0471 

SCT*WEEK 0.0231 0.0083 0.2247 0.0824 0.1170 

OXY*WEEK 0.4248 0.0036 0.9080 0.0440 0.2150 

SCT*OXY*WEEK 0.1523 0.0055 0.9636 0.0389 0.2491 

 
1
Numbers in bold denotes significant effects (α = 0.05) 

SCT – Skin contact time effect 

OXY – Oxygen effect 
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Table 7. 
1 
LS-means of Chambourcin wines (16-week samples) 

7a. WEEK (Week effect) 

Week ρ-Coumaric (ppm) 

1 1.5±0.1
b,c

 

4 1.3±0.1
c
 

8 1.9±0.1
a
 

12 1.6±0.0
b
 

16 2.1±0.1
a
 

 

7b. SCT*WEEK (Skin contact time by week interaction effect) 

SCT Week 
Total Phenolics 

(mg CE/L) 

Anthocyanins 

(mg M3G/L) 

LPP 

(Au) 

Tannins 

(mg CE/L) 

Antioxidant  

(µmol TE/100 mL) 

6 1 777.1±12.4
b,c

 399.4±3.8
a
 0.6±0.0

b,c
 209.8±3.9

b
 2182.7±31.3

d,e
 

6 4 657.5±23.4
d
 327.1±10.2

c
 0.2±0.0

d
 108.0±5.6

e
 2049.0±54.9

e,f
 

6 8 626.2±8.2
d
 313.9±2.7

c
 0.9±0.2

b
 89.9±4.6

f
 1837.0±33.5

g
 

6 12 639.3±9.1
d
 285.1±2.1

e
 0.1±0.1

d
 72.9±9.5

f
 2005.6±39.3

f
 

6 16 633.3±9.4
d
 237.2±1.9

g
 1.0±0.2

b
 114.5±6.6

e
 1977.0±49.6

f
 

       

12 1 918.6±12.4
a
 373.4±3.8

b
 0.2±0.0

d
 236.8±3.9

a
 2380.1±31.3

b
 

12 4 883.1±23.4
a
 333.3±10.2

c
 0.3±0.0

c,d
 170.1±5.6

c
 2594.7± 54.9

a
 

12 8 766.7±8.2
c
 300.3±2.7

d
 0.7±0.2

b,c
 148.1±4.6

d
 2312.9±33.5

b,c
 

12 12 793.2±9.1
b
 268.0±2.1

f
 1.6±0.1

a
 196.6±9.5

b
 2266.2±39.3

c,d 

12 16 756.7±9.4
c
 233.4±1.9

g
 0.5±0.2

b,c,d
 143.8±6.6

d
 2202.8±49.6

c,d,e
 

 

 

7c. SCT*WEEK (Skin contact time by week interaction effect) 

SCT Week Catechin (ppm) Caffeic (ppm) Myricetin (ppm) Quercetin (ppm) 

6 1 8.7±0.3
e
 0.4±0.0

d
 5.3±0.1

a
 14.1±0.4

a
 

6 4 13.0±0.5
b,c

 0.6±0.0
b,c

 4.9±0.1
a
 12.9±0.3

b
 

6 8 12.1±1.1
b,c,d

 0.7±0.1
b,c

 4.2±0.1
b
 9.2±0.4

c
 

6 12 11.4±0.3
d
 0.7±0.0

b,c
 2.7±0.1

d
 5.0±0.2

e
 

6 16 11.5±0.5
c,d

 0.6±0.1
b,c

 3.3±0.1
c
 4.2±0.2

f
 

      

12 1 10.7±0.3
d
 0.4±0.0

d
 4.4±0.1

b
 12.4±0.4

b
 

12 4 14.1±0.5
a,b

 0.5±0.0
c,d

 2.9±0.1
d
 6.9±0.3

d
 

12 8 17.0±1.1
a
 0.8±0.1

b
 2.9±0.1

d
 6.1±0.4

d
 

12 12 14.9±0.3
a,b

 0.8±0.0
b
 2.2±0.1

e
 3.2±0.2

g
 

12 16 17.0±0.5
a
 1.1±0.1

a
 2.7±0.1

d
 3.3±0.2

g
 

 



111 
 

7d. SCT*OXY (Skin contact time by oxygen interaction effect) 

 

Oxy SCT 
Tannins 

(mg CE/L) 

Antioxidant  

(µmol TE/100 mL) 

Control 6 117.1±5.6
c
 2042.4±40.5

c
 

Low 6 114.1±5.6
c
 1970.4±40.5

c
 

High 6 125.8±5.6
c
 2018.0±40.5

c
 

    

Control 12 194.3±5.6
a
 2468.0±40.5

a
 

Low 12 178.2±5.6
a,b

 2375.4±40.5
a
 

High 12 164.9±5.6
b
 2210.6±40.5

b
 

 

 

7e. SCT*OXY*WEEK (Skin contact time by oxygen by week interaction effect) 

Oxygen SCT Week SPP (Au) Gallic (ppm) 

Control 6 1 0.8±0.0
m,n

 1.2±0.1
l
 

Control 6 4 0.9±0.0
k
 2.3±0.3

e,f,g,h
 

Control 6 8 1.2±0.0
d,e,f,g

 2.4±0.3
e,f,g,h

 

Control 6 12 1.3±0.0
c
 2.2±0.1

f,g,h
 

Control 6 16 1.4±0.0
a,b

 1.9±0.2
g,h,i

 

Low 6 1 0.9±0.0
l,m

 1.6±0.1
i,j,k

 

Low 6 4 0.9±0.0
k
 2.8±0.3

d,e,f
 

Low 6 8 1.2±0.0
e,f,g

 2.6±0.3
d,e.f

 

Low 6 12 1.3±0.0
c,d

 2.6±0.1
d,e,f

 

Low 6 16 1.5±0.0
a
 1.9±0.2

h,i,j
 

High  6 1 0.8±0.0
l,m

 1.3±0.1
k,l

 

High  6 4 1.0±0.0
k
 2.6±0.3

d,e,f,g
 

High  6 8 1.2±0.0
c,d,e,f

 3.0±0.3
c,d,e

 

High  6 12 1.4±0.0
b
 2.6±0.1

d,e,f
 

High  6 16 1.4±0.0
a
 2.0±0.2

g,h,i
 

     

Control 12 1 0.8±0.0
m,n

 2.7±0.1
d,e,f

 

Control 12 4 0.9±0.0
k,l

 2.4±0.3
e,f,g,h

 

Control 12 8 1.1±0.0
j
 4.2±0.3

a
 

Control 12 12 1.2±0.0
g,h

 2.5±0.1
e,f,g

 

Control 12 16 1.2±0.0
e,f,g

 3.7±0.2
a,b,c

 

Low 12 1 0.8±0.0
n
 3.2±0.1

c,d
 

Low 12 4 0.9±0.0
k
 2.8±0.3

d,e,f
 

Low 12 8 1.1±0.0
j
 3.9±0.3

a,b,c
 

Low 12 12 1.2±0.0
f,g,h

 3.2±0.1
c,d

 

Low 12 16 1.3±0.0
c,d,e

 3.3±0.2
c,d

 

High  12 1 0.8±0.0
n
 1.5±0.1

j,k,l
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High  12 4 0.9±0.0
k
 3.5±0.3

a,b,c,d
 

High  12 8 1.1±0.0
i,j

 4.0±0.3
a,b

 

High  12 12 1.1±0.0
h,i

 3.3±0.1
c,d

 

High  12 16 1.3±0.0
 c,d

 3.3±0.2
b,c,d

 

 
1
LS-mean ± standard error  

a - n 
LS-means with the same letter are not significantly different (α = 0.05) 

 

CE – Catechin equivalent 

M3G – Malvidin-3-glucoside 

SPP – Short polymeric pigments 

LPP – Long polymeric pigments 

Au – Absorbance unit 

TE – Trolox equivalent 

ppm – part per million 
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Table 8. 
1
LS-means of Ruby Cabernet wines (16-week samples) 

8a. WEEK (Week effect) 

Week SPP (Au) ρ-Coumaric (ppm) 

1 0.9±0.0
d
 0.4±0.0

d
 

4 1.1±0.0
c
 1.0±0.1

c
 

8 1.3±0.0
b
 1.6±0.2

a,b
 

12 1.4±0.0
a
 1.5±0.1

b
 

16 1.5±0.1
a
 2.0±0.2

a
 

 

8b. SCT (Skin contact time effect) 

SCT 
Tannins 

(mg CE/L) 

Coumaric 

(ppm) 

6 644.3±20.5
b
 1.0±0.1

b
 

12 898.7±20.5
a
 1.5±0.1

a
 

 

8c. OXY (Oxygen effect) 

SCT Coumaric (ppm) 

Control 1.3±0.1
a
 

Low 1.5±0.1
a
 

High 1.0±0.1
b
 

 

8d. SCT*WEEK (Skin contact time by week interaction effect) 

SCT Week 
Total Phenolics  

(mg CE/L) 

LPP 

(Au) 

Antioxidant 

(µmol TE/100 mL) 

6 1 1370.6±20.0
c,d

 1.4±0.0
d,e

 2743.6±60.9
c,d

 

6 4 1207.5±47.4
e
 0.4±0.0

f
 2934.1±104.9

c
 

6 8 1321.7±39.4
d,e

 1.9±0.2
c,d

 2681.4±66.1
c,d

 

6 12 1328.0±40.7
d,e

 0.9±0.4
e,f

 2474.7±185.4
c,d

 

6 16 1362.5±98.0
c,d,e

 2.5±0.2
b,c

 2651.1±196.1
c,d

 

     

12 1 1678.8±20.0
b
 0.5±0.0

f
 3375.5±60.9

b
 

12 4 1657.8±47.4
b
 0.8±0.0

f
 3725.9±104.9

a
 

12 8 1851.5±39.4
a
 1.7±0.2

d,e
 3437.8±66.1

b
 

12 12 1882.3±40.7
a
 4.1±0.4

a
 2950.4±185.4

c
 

12 16 1593.7±98.0
b,c

 3.2±0.2
a,b

 2411.4±196.1
d
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8e. SCT*WEEK (Skin contact time by week interaction effect) 

SCT Week Catechin (ppm) Caffeic (ppm) Myricetin (ppm) Quercetin (ppm) 

6 1 26.6±2.8
a
 0.7±0.1

c,d
 5.3±0.2

a
 5.0±0.3

a
 

6 4 11.6±0.4
c,d

 0.4±0.0
d
 4.3±0.3

b
 3.7±0.2

b
 

6 8 9.4±1.1
d
 0.8±0.2

c,d
 3.7±0.0

b
 2.2±0.2

c,d
 

6 12 10.7±1.7
c,d

 0.6±0.1
c,d

 2.7±0.2
c,d

 1.0±0.1
e
 

6 16 9.3±1.2
d
 0.8±0.2

b,c
 3.6±0.2

b
 0.9±0.1

e
 

      

12 1 16.6±2.8
b,c

 0.6±0.1
c,d

 5.4±0.2
a
 5.1±0.3

a
 

12 4 20.3±0.4
a,b

 0.8±0.0
c,d

 3.1±0.3
b,c

 2.6±0.2
c
 

12 8 12.8±1.1
c,d

 0.9±0.2
b,c

 3.4±0.0
b
 2.0±0.2

d
 

12 12 19.9±1.7
a,b

 1.3±0.1
a,b

 2.9±0.2
c
 1.1±0.1

e
 

12 16 18.9±1.2
b
 1.5±0.2

a
 2.1±0.2

d
 0.7±0.1

f
 

 

8f. SCT*OXY*WEEK (Skin contact time by oxygen by week interaction effect) 

Oxygen SCT Week 
Anthocyanins  

(mg M3G/L) 
Gallic (ppm) 

Control 6 1 338.8±10.2
b,c

 1.1±0.1
g
 

Control 6 4 306.6±10.8
 d,e,f

 1.9±0.3
e,f

 

Control 6 8 283.4±14.7
 e,f,g,h

 2.2±0.3
d,e,f

 

Control 6 12 211.8±27.5
i,j,k

 2.3±0.2
d,e

 

Control 6 16 177.1±16.5
k
 2.0±0.2

e,f
 

Low 6 1 332.7±10.2
c,d

 1.4±0.1
f,g

 

Low 6 4 297.3±10.8
d,e,f,g

 2.1±0.3
d,e,f

 

Low 6 8 272.7±14.7
 f,g,h,i

 2.6±0.3
b,c,d,e

 

Low 6 12 218.1±27.5
h,i,j,k

 2.0±0.2
e,f

 

Low 6 16 176.1±16.5
k
 2.2±0.2

d,e
 

High  6 1 333.1±10.2
c,d

 2.0±0.1
e,f

 

High  6 4 294.4±10.8
 d,e,f,g

 2.0±0.3
e,f

 

High  6 8 256.2±14.7
 g,h,i,j

 1.8±0.3
e,f,g

 

High  6 12 196.7±27.5
k,j

 2.3±0.2
d,e

 

High  6 16 151.6±16.5
k
 2.0±0.2

e,f
 

     

Control 12 1 390.1±10.2
a
 2.4±0.1

c,d,e
 

Control 12 4 319.1±10.8
 c,d,e

 2.2±0.3
d,e,f

 

Control 12 8 293.8±14.7
 d,e,f,g

 2.4±0.3
c,d,e

 

Control 12 12 222.1±27.5
 h,i,j,k

 3.2±0.2
b,c,d

 

Control 12 16 202.9±16.5
k,j

 4.4±0.2
a
 

Low 12 1 387.3±10.2
a
 2.3±0.1

d,e
 

Low 12 4 323.4±10.8
c,d,e

 3.2±0.3
b,c,d

 

Low 12 8 289.4±14.7
 e,f,g,h

 2.8±0.3
b,c,d,e
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Low 12 12 136.3±27.5
k,l

 3.1±0.2
b,c,d

 

Low 12 16 48.4±16.5
m

 3.2±0.2
b,c

 

High  12 1 370.3±10.2
a,b

 2.1±0.1
e,f

 

High  12 4 300.3±10.8
 d,e,f

 3.6±0.3
a,b

 

High  12 8 262.0±14.7
 g,h,i,j

 2.3±0.3
d,e

 

High  12 12 149.3±27.5
k
 3.3±0.2

b
 

High  12 16 60.4±16.5
l,m

 2.7±0.2
b,c,d,e

 

 
1
LS-mean ± standard error  

a - m 
LS-means with the same letter are not significantly different (α = 0.05) 

 

CE – Catechin equivalent 

M3G – Malvidin-3-glucoside 

SPP – Short polymeric pigments 

LPP – Long polymeric pigments 

Au – Absorbance unit 

TE – Trolox equivalent 

ppm – part per million 
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Table 9. 
1
LS-means of Chambourcin wines (18-month storage samples) 

9a. SCT*WEEK (Skin contact time by week interaction effect) 

SCT Week 
Total Phenolics 

(mg CE/L) 

LPP 

(Au) 

Tannins 

(mg CE/L) 

6 16 633.3±8.8
b
 1.0±0.2

a
 114.5±6.2

b
 

6 94 430.2±10.9
c
 0.1±0.0

b
 35.8±6.6

c
 

     

12 16 756.7 ±8.8
a
 0.5±0.2

b
 143.8±6.2

a
 

12 94 614.6±10.9
b
 0.5±0.0

a
 118.2±6.6

b
 

 

 

9b. OXY*WEEK (Oxygen by week interaction effect) 

Oxygen Week 
Anthocyanins 

(mg M3G/L) 

Control 16 236.6±2.5
a,b

 

Control 94 64.2±5.1
c
 

   

Low 16 228.3±2.5
b
 

Low 94 46.8±5.1
c,d

 

   

High 16 241.0±2.5
a
 

High 94 46.0±5.1
d
 

 

9c. SCT*OXY*WEEK (Skin contact time by oxygen by week interaction effect) 

Oxygen SCT Week 
SPP 

(Au) 

Control 6 16 1.4±0.0
d
 

Control 6 94 2.3±0.1
a,b

 

Low 6 16 1.4±0.0
d
 

Low 6 94 2.5±0.1
a
 

High  6 16 1.4±0.0
d
 

High  6 94 2.5±0.1
a
 

    

Control 12 16 1.2±0.0
f
 

Control 12 94 2.2±0.1
b
 

Low 12 16 1.3±0.0
e,f

 

Low 12 94 2.1±0.1
b
 

High  12 16 1.3±0.0
e
 

High  12 94 1.8±0.1
c
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1
LS-mean ± standard error  

a - f 
LS-means with the same letter are not significantly different (α = 0.05) 

 

CE – Catechin equivalent 

M3G – Malvidin-3-glucoside 

SPP – Short polymeric pigments 

LPP – Long polymeric pigments 

Au – Absorbance unit 
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Table 10. 
1
LS-means of Ruby Cabernet wines (18-month storage samples) 

 

10a. WEEK (Week effect) 

Week 
SPP 

(Au) 

Tannins 

(mg CE/L) 

16 1.5±0.1
a
 758.3±34.1

a
 

94 0.7±0.0
b
 415.3±40.1

b
 

 

 
10b. SCT*WEEK (Skin contact time by week interaction effect) 

SCT Week 
Total Phenolics 

(mg CE/L) 

6 16 1362.5±98.0
a
 

6 94 727.6±81.4
b
 

   

12 16 1593.7 ±98.0
a
 

12 94 661.6±81.4
b
 

 

 

10c. SCT*OXY*WEEK (Skin contact time by oxygen by week interaction effect) 

Oxygen SCT Week 
Anthocyanins 

(mg M3G/L) 

LPP 

(Au) 

Control 6 16 177.1±16.5
a
 2.6±0.4

a,b,c
 

Control 6 94 19.1±3.4
c
 1.7±0.3

c,d
 

Low 6 16 176.1±16.5
a
 2.6±0.4

b,c
 

Low 6 94 17.3±3.4
c
 1.6±0.3

c,d,e
 

High  6 16 151.6±16.5
a
 2.2±0.4

c
 

High  6 94 8.6±3.4
c,d

 1.7±0.3
c,d,e

 

     

Control 12 16 202.9±16.5
a
 1.8±0.4

c,d
 

Control 12 94 9.6E-14±3.4
d
 2.5±0.3

c
 

Low 12 16 48.4±16.5
b,c

 4.1±0.4
a
 

Low 12 94 8.9E-14±3.4
d
 0.8±0.3

d,e
 

High  12 16 60.4±16.5
b
 3.8±0.4

a,b
 

High  12 94 9.3E-14±3.4
d
 0.5±0.3

e
 

 
1
LS-mean ± standard error  

a - e 
LS-means with the same letter are not significantly different (α = 0.05) 

 

CE – Catechin equivalent 

M3G – Malvidin-3-glucoside 

SPP – Short polymeric pigments 

LPP – Long polymeric pigments 

Au – Absorbance unit  
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Table 11. 
1
Average alcohol content of Chambourcin and Ruby Cabernet wines 

Variety Week SCT Oxygen Level Alcohol Content (%) 

     

Chambourcin 16 6 Control 12.9±0.3 

   Low 14.3±0.5 

   High 13.9±0.0 

     

Chambourcin 16 12 Control 14.0±0.1 

   Low 13.9±0.3 

   High 13.9±0.3 

     

Ruby Cabernet 16 6 Control 14.2±0.6 

   Low 14.3±0.8 

   High 14.1±0.3 

     

Ruby Cabernet 16 12 Control 13.8±0.1 

   Low 14.1±0.3 

   High 13.5±0.3 

 
 

1
Arithmetic mean ± standard deviation (n = 2) 
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Table 12. 
1
Average pH of Chambourcin wines 

Variety Week SCT Oxygen Level pH 

     

Chambourcin 4 6 Control 3.4 

   Low 3.4 

   High 3.5 

     

Chambourcin 8 6 Control 3.5 

   Low 3.5 

   High 3.5 

     

Chambourcin 12 6 Control 3.5 

   Low 3.5 

   High 3.5 

     

Chambourcin 16 6 Control 3.5 

   Low              3.5 

   High 3.5 

 

     

Chambourcin 4 12 Control 3.6 

   Low 3.6 

   High 3.7 

     

Chambourcin 8 12 Control 3.5 

   Low 3.5 

   High 3.6 

     

Chambourcin 12 12 Control 3.5 

   Low 3.5 

   High 3.5 

     

Chambourcin 16 12 Control 3.5 

   Low 3.5 

   High 3.5 

 
 

1
Arithmetic mean (n = 2), standard deviation was zero 
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Table 13. 
1
Average pH of Ruby Cabernet wines 

Variety Week SCT Oxygen Level pH 

     

Ruby Cabernet 4 6 Control 3.7 

   Low 3.7 

   High 3.7 

     

Ruby Cabernet 8 6 Control 3.7 

   Low 3.7 

   High 3.7 

     

Ruby Cabernet 12 6 Control 3.7 

   Low 3.7 

   High 3.7 

     

Ruby Cabernet  16 6 Control 3.7 

   Low 3.7 

   High 3.8 

     

     

Ruby Cabernet 4 12 Control 3.8 

   Low 3.8 

   High 3.9 

     

Ruby Cabernet 8 12 Control 3.8 

   Low 3.8 

   High 3.8 

     

Ruby Cabernet 12 12 Control 3.7 

   Low 3.7 

   High 3.7 

     

Ruby Cabernet 16 12 Control 3.7 

   Low 3.7 

   High 3.7 

     
 

1
Arithmetic mean (n = 2), standard deviation was zero 
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Table 14. 
1
Average titratible acidity (TA) of Chambourcin and Ruby Cabernet wines 

Variety Week SCT Oxygen Level TA (g tartaric acid/100 mL) 

     

Chambourcin 16 6 Control 0.7 

   Low 0.7 

   High 0.7 

     

Chambourcin 16 12 Control 0.6 

   Low 0.6 

   High 0.6 

     

Ruby Cabernet 16 6 Control 0.7 

   Low 0.7 

   High 0.7 

     

Ruby Cabernet 16 12 Control 0.7 

   Low 0.6 

   High 0.6 
     

 

1
Arithmetic mean (n = 2), standard deviation was zero 
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Table 15. 
1
Average total phenolics and anthocyanins of raw grapes 

Variety 
Total Phenolics  

(mg GAE/g FW)
2
 

Total Anthocyanins  

(mg C3G/g FW)
3
 

   

Chambourcin 3.8± 0.0 0.4±0.0 

   

Ruby Cabernet 5.5± 0.4 
0.6±0.0 

 
 

1
Arithmetic mean ± standard deviation (n = 2) 

2
Milligram gallic acid equivalents per gram fresh weight 

3
Milligram cyanidin-3-glucoside per gram fresh weight 
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APPENDIX B 

 

Modified Adams Assay for Phenolics in Wine 
 
 
 
1. Total Iron-Reactive Phenolics 
 

THIS VALUE WILL DETERMINE DILUTIONS FOR TANNIN & POLYMERIC 

PIGMENT ANALYSES 
 
 
1.1 Into a reduced volume cuvette, pipette in the following order: 

 

75 µL of wine sample (using a 200 µL pipette). 
 

800 µL Resuspension Buffer (using repeating pipettor). Vortex 

and incubate for 10 minutes at room temperature. 

 

1.2 Zero spectrophotometer with 875 µL Resuspension Buffer at 510 nm  

 

1.3 Read samples at 510 nm (after 10min incubation, Step 1.2).  
 

= Iron-Reactive Phenolics  Background.  
 
 
1.4 Add 125 µL of Ferric Chloride Solution to each cuvette (using repeating pipettor).  
 

Vortex and incubate for 10 minutes at room temperature.  
 
 
1.5 Add 125 µl FeCl to zero cuvette, zero Spectrophotometer with 875µL 

resuspension buffer + 125 µL Ferric Chloride Solution at 510nm.  

 

1.6 Read samples at 510 nm (after 10min incubation, Step 1.4).   
= Iron-Reactive Phenolics Final.  

 

 

DISCARD ALL CUVETTES ASSOCIATED WITH THIS ANALYSIS 
 

 

1.7 Enter values into Total Iron-Reactive Phenolics worksheet (Wine_Assay.xls)  
 
 

Based on the value calculated for Total Iron-Reactive Phenolics, the spreadsheet will 

generate dilutions for tannin and polymeric pigment analyses. Use these dilutions in 

parts 2 and 3 of this assay protocol.  
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2.   Polymeric  Pigment  –  Measures  “A”  and  “B” 
 
 
Use the Wine volume and Model Wine volume generated in the Total Iron-Reactive 

Phenolics worksheet (Wine_Assay.xls) in step 2.1. 

 

 

2.1      Into a reduced volume cuvette, pipette in the following order: 

 

____µL Wine Sample – see above 

Total volume = 500 µL 

 

____µL Model Wine – see above 

 

  

 

1.0 mL Washing Buffer (using repeating pipettor). 
 

Vortex and incubate for 10 minutes at room temperature. 

 

2.3 Zero Spectrophotometer with 1.0 mL Washing Buffer at 520nm.  

 

2.4 Read samples (Step 2.1) at 520 nm.  
 

= MEASUREMENT  “A”  
 
 
2.5 To each cuvette add 120 µL Bleaching Reagent (using repeating pipettor). Vortex 

and incubate for 10 minutes at room temperature.  

 

2.6 Zero Spectrophotometer with 1.0 mL Washing Buffer at 520 nm.  

 

2.7 Read samples (Step 2.5) at 520 nm.  
 

= MEASUREMENT  “B”  

 
 
 
DISCARD  ALL  CUVETTES  ASSOCIATED  WITH  THIS  ANALYSIS 
 
 
 
2.8 Enter values for MEASUREMENT “A” and MEASUREMENT “B” into the Wine 

Phenolics Worksheet (Wine_Assay.xls).  
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3.     Tannin  &  Polymeric  pigment  Measurement  “C” 
 
 
Use the Wine volume and Model Wine volume generated in the Total Iron-Reactive Phenolics 

worksheet (Wine_Assay.xls) in step 3.1. 

 

 

3.1      Into a 1.5mL Eppendorf tube, pipette the following: 

 

____µL Wine Sample – see above 

Total volume = 500 µL 

 

____µL Model Wine – see above 

 

  

 

1.0 mL Protein Solution (using repeating pipettor) 
 

Incubate for 15 minutes at room temperature with occasional inversion 

 

3.2 Centrifuge at maximum speed for 5 minutes to form a pellet.  

 

Part  I  

 

3.3 Into a reduced volume cuvette, pipette the following:  
 
 

1.0 mL supernatant (from step 3.2) (using 1ml pipette) 

 80 µL bleaching reagent (using repeating pipettor)  

Vortex and incubate for 10 minutes at room temperature.  

 

3.4 Zero Spectrophotometer with 1.0 mL Washing Buffer at 520 nm.  

 

3.5 Read absorbance of samples (step 3.3) at 520 nm   
=  MEASUREMENT  “C”.  

 
 
 
DISCARD  ALL  CUVETTES  ASSOCIATED  WITH  THIS  ANALYSIS 
 
 
 
3.6 Enter values for MEASUREMENT “C” into the Wine Phenolics Worksheet 

(Wine_Assay.xls).  
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Part  II 

 

3.7 Carefully aspirate remaining supernatant from pellet (step 3.2).  
 
 
3.8 Add 500 µL Washing Buffer (using repeating pipettor), close the lid and gently invert the 

tube.  

 

3.9 Centrifuge at maximum speed for 5 minutes.  

 

3.10 Carefully aspirate the supernatant.  
 
 
3.11 Add 875 µL of Resuspension Buffer to the pellet (step 3.9) (repeating pipettor). 

Incubate for 20 minutes at room temperature WITHOUT mixing.  

 

3.12 After 20 minutes, vortex sample to resuspend pellet.  
 
 
3.13 Transfer resuspended pellets to cuvettes (using 1 mL pipette). 

Incubate for 10 minutes at room temperature.  

 

3.14 Zero Spectrophotometer with 875µL Resuspension Buffer at 510 nm.  

 

3.15 Read samples at 510 nm (Step 3.13).   
= BACKGROUND  TANNIN  

 
 
3.16 Add 125 µL Ferric Chloride solution to each cuvette. Vortex and incubate for 10 

minutes at room temperature.  

 

3.17 Zero Spectrophotometer with 875 µL Resuspension Buffer + 125 µL of Ferric 

Chloride solution at 510nm.  

 

3.18 Read absorbance of samples at 510 nm (Step 3.16).   
= FINAL  TANNIN  

 
 
 
DISCARD  ALL  CUVETTES  ASSOCIATED  WITH  THIS  ANALYSIS 
 
 
 
3.19 Enter values for BACKGROUND TANNIN and FINAL TANNIN into the Wine 

Phenolics Worksheet (Wine_Assay.xls).  
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4. Anthocyanin, measurement “D” 

 

4.1      Into a reduced volume cuvette, pipette in the following order: 

 

400 µL Model Wine (using repeating pipettor). 
 

100 µL wine sample (using 200 µL pipette). 
 

1.0 mL Anthocyanin Buffer (using repeating pipettor). 

Vortex and incubate for 5 minutes at room temperature. 

 

4.2 Zero Spectrophotometer with Anthocyanin Buffer at 520 nm.  

 

4.3 Read samples at 520nm (step 4.1).   
=  MEASUREMENT  “D”  

 
 
 
DISCARD  ALL  CUVETTES  ASSOCIATED  WITH  THIS  ANALYSIS 
 
 
 
4.4 Enter values for MEASUREMENT “D” into the Wine Phenolics Worksheet 

(Wine_Assay.xls).  
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SOLUTION RECIPES 
 
Model  Wine 
 
In 1.0L Schott bottle dissolve 5.0g potassium bitartrate in 800mL de-ionized (DI) water 

(magnetic heater/stirrer). Cool to room temperature, add 120mL of 96% Ethanol, stir 5 minutes 

(without heating), adjust to pH3.3 with hydrochloric acid (HCl), & make volume up 1.0L with 

distilled water. Store at room temperature. 

 

Washing  Buffer 
 
In 1.0L Schott bottle dissolve 9.86g sodium chloride (NaCl) in 500mL DI water, add 12mL 

glacial acetic acid, & adjust to pH4.9 with sodium hydroxide (NaOH). Make volume to 1.0 L 

with DI water. Store @ room temp. 

 

Resuspension  Buffer 
 
In 1.0L beaker, dissolve 50g SDS in 800mL of DI water, add 50mL triethanolamine, stir gently 

(magnetic stirrer) to dissolve SDS. When pH stabilises adjust to pH9.4 with HCl. Transfer to 

1.0L Schott bottle, rinse beaker with 100mL of DI water & add to bottle. Make volume to 1.0 L 

with DI water. Store @ room temp. 

 

Anthocyanin  Buffer 
 
In 1.0L Schott bottle, dissolve 23g of maleic acid & 9.93g NaCl in 800mL DI water. Adjust to 

pH1.8 with NaOH & make to 1.0L with DI water. Store @ room temp. 

 

Ferric  Chloride  Reagent 
 
In 1.0L Schott bottle, dissolve 2.7g ferric chloride in 800mL DI water, add 800<L conc. HCl 

(12.1 N; 33-37%) & make to 1.0L with DI water. Store @ room temp. 

 

Bleach  Solution 
 
In 50mL Falcon tube, dissolve 2.0g of potassium metabisulfite in 25mL DI water, prepare 

fresh as required. Discard unused solution. 

 

Preparing  Protein  Stock  Solution  for  storage 
 
In 500mL glass beaker, dissolve 10g of BSA (Bovine Serum Albumin) granules into 250mL of 

DI water to max. soluble concentration of 40mg/mL. Aliquot 1.0mL of concentrated 

(40mg/mL) BSA solution into screw cap vials. Store at –80°C. 

 

Preparing  Stored  Stock  Protein  Solution  for  use 
 

Thaw frozen aliquot of protein stock solution (40 mg/mL). Transfer protein stock solution to 

50 mL Falcon tube, add 39mL of Washing Buffer & mix well. Final concentration 1 mg/mL 

→ sufficient quantity for 40 assays.
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