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Title of Study: CASE STUDIES OF INSTRUCTIONAL PRACTICES IN PROOF-

BASED MATHEMATICS LECTURES 

 

Major Field: MATHEMATICS 

 

Abstract: This multi-case study investigates the teaching practices of four instructors who 

were teaching undergraduate level proof-based mathematics courses using lecture 

methods. Both interview data with the instructors and several video observations of each 

classroom were gathered throughout the course of a semester. The data analysis 

techniques were primarily qualitative, but included some quantitative methods such as 

frequency counts and percentages to give an overall picture of the instructors’ teaching. 

Analysis occurred in several phases, and used multiple units of analysis including the 

proof presentations, examples used in proof presentations, the class period, and the 

individual instructor questions.  

The first and second research questions addressed the pedagogical moves that the 

instructor makes during proof presentations, and the instructors’ allocation of class time. 

The instructors spent between 35% and 70% of their class time presenting proofs. The 

proof presentation techniques that were identified in the interviews were outline, 

examples, logical structure, and context. At least one of these strategies was observed in 

94% of the proof presentations in the video data. Three of the four instructors expected 

active engagement in 95% of their proof presentations, while the fourth expected active 

engagement in 50% of his proof presentations. The proportion of class time spent on 

interactive lecture ranged from 26% to 62%.  

The third and fourth research questions addressed the uses, types, and timing of 

examples during the instructors’ proof presentations. Examples used during the observed 

proof presentations were used to create a framework that describes the uses of examples, 

types of examples, and chronological placement of examples in their proof presentations.  

The fifth and sixth research questions addressed the questions posed by the 

instructors. The question rates ranged from 0.69 to 1.81 questions per minute, and that the 

percentage of higher order questions ranged from 30.1% to 54.2%. The percentage of 

questions to which students responded ranged from 35% to 52%. When restricting to only 

questions which were answered by students, if was found that in all four cases the 

percentage of answered questions that were higher-order matched the percentage of asked 

questions that were higher order. Thus, students were answering a variety of types of 

questions.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 Instructional practices at the undergraduate level have been largely unexamined despite 

repeated calls for such studies (Harel & Fuller, 2009; Harel & Sowder, 2007; Speer, Smith, & 

Horvath, 2010). Many of the studies that focus on teaching practice have occurred in lower 

division courses like calculus, where students are expected to be able to do computations and 

applications (Bressoud, 2011; Epstein, 2007; Speer & Wagner, 2009; Speer, 2008; Wagner, Speer 

& Rossa, 2007). In advanced mathematics courses, the content shifts to formal mathematics, and 

undergraduates are expected to be able to comprehend and write mathematical proofs. This 

transition is notoriously difficult for undergraduates (Grassl & Mingus, 2007; Larsen, 2009; 

Larsen & Zandieh, 2008; Selden & Selden, 2003; Tall 1997; Tall, 2008), but the ability to 

construct original proofs and the ability to read and validate proofs of others are essential skills 

for competency in modern mathematics.  

The way that formal mathematics is presented in the university classroom could have a 

profound impact on how undergraduate and graduate math majors learn to read and write 

mathematical proofs, and therefore impact their success or failure in their training as 

mathematicians. Because the content and expectation of the students is quite different, the 

teaching of mathematics at this level may need to be examined separately.  
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Although there has been an increase in efforts to reform undergraduate instruction, lecture is 

still widely used (Armbruster, 2000; Bressoud, 2011; McKeachie & Svinicki 2006). Studies that 

examine teaching often focus on where the instructor’s presentation method lies on the continuum of 

lecture to reform (McClain & Cobb, 2001; Sawada, Piburn, Judson, Turley, Falconer, Binford & 

Bloom, 2002; Steussey, 2006), but this emphasis on the presentation style tends to gloss over subtle 

features of teaching practice, namely, differences that may occur within a lecture format. A masterful 

lecturer may use examples, give summaries, check for student understanding, or make connections 

between different topics (McKeachie & Svinicki, 2006). Lecture can also be interactive, incorporating 

lots of questions that guide students through the material (Bagnato, 1973). In short, there may be 

significant variation among lecturers.  

In advanced mathematics courses that are taught using lecture methods, attending to the 

presentations of the proofs in class is an important element of students’ understanding of 

mathematical proof (Weber, 2004). Previous studies of teaching practice at this level have focused on 

proof presentations (Fukawa-Connelly 2012a; Fukawa-Connelly 2012b; Weber, 2004), while other 

studies have employed interview methods to gain instructors’ perspectives on their in-class proof 

presentations (Alcock, 2010; Weber, 2011). This study will contribute to the current body of literature 

on teaching advanced mathematics by investigating the allocation of class time, the example usage, 

and the questions posed by instructors in multiple case studies of instructors’ lectures. A foundation 

of knowledge about the range of current teaching practices in traditionally taught proof-based 

mathematics courses is necessary to interpret the existing research on teaching and learning proof 

(Fukawa-Connelly, 2012a), to inform curriculum development and future research (Speer, et. al, 

2010), and to ultimately improve student learning. 
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1.1 Statement of Purpose and Research Questions 

The purpose of this multi-case study is to examine the teaching practices of four mathematics 

instructors who were teaching different proof-based mathematics courses using lecture methods. In 

particular this study will investigate pedagogical tools that they use when presenting proofs in class, 

how they allocate time within lectures, how they use examples in conjunction with their proof 

presentations, and how they use questions in their lectures. The research questions are: 

1. What pedagogical moves do instructors plan to use to help students understand their proof 

presentations, and how often do they use these moves? 

2. How do instructors allocate their class time in traditionally taught proof-based undergraduate 

courses? 

3. What types of examples do instructors use in presentations of theorems and proofs in an 

upper-division proof-based mathematics course?  When do these examples occur 

chronologically in relation to the presentation of theorems or proofs? 

4. What are the instructors’ pedagogical purposes for the different types of examples when 

presenting the statement of a theorem or a proof?  

5. How often do instructors who are teaching advanced mathematics using lecture methods 

interact with their students by asking questions? 

6. What types of questions are asked by instructors who are teaching advanced mathematics using 

lecture methods, and what types of responses are expected of students? 

1.2 Research Design Overview 

  Under the oversight of the University’s Institutional Review Board, I recruited faculty 

members in the mathematics department who were teaching proof-based mathematics courses during 

a particular school year to participate in my study. Four instructors agreed to participate, all of whom 

were tenured faculty members with many years of teaching experience. The four participants were all 
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well respected by their colleagues, and three of the four have won teaching awards. The study 

consists of four interrelated case studies (Stake, 2005) to document different aspects of the 

participants’ teaching. Pseudonyms were given to all participants based on the courses that they were 

teaching.  

 Dr. A taught Introduction to Modern Algebra, a junior-level course which, according to the 

course catalog, covers introduction to set theory and logic, elementary properties of rings, integral 

domains, fields, and groups. Dr. C taught the senior level Introduction to Analysis (Advanced 

Calculus) course, covering properties of the real numbers, sequences and series, limits, continuity, 

differentiation and integration. Dr. G taught the senior level course in Geometry, which is an 

axiomatic development of Euclidean and non-Euclidean geometries. Dr. N taught the senior level 

Number Theory course which covers divisibility of integers, congruences, quadratic residues, 

distribution of primes, continued fractions, and the theory of ideals. The Introduction to Modern 

Algebra course is a required prerequisite for Number Theory, and recommended for Geometry and 

Advanced Calculus. 

 Both interview and observation data were collected from the four participants. An interview 

was conducted at the beginning of the semester. In this 1-hour interview, the participants were asked 

to describe what they do to help the students understand the proofs that they present in class. Video 

observation data were collected from each participant’s classrooms six or seven times throughout the 

semester. Observations were purposefully chosen to be spread throughout the semester, to be 

convenient for the instructor, and to avoid exam days. Since there was no noticeable variation in 

teaching style across different instruction days for each participant, the data can be considered 

saturated (Glaser & Strauss, 1967) in regard to the teaching methods used, therefore providing a fair 

snapshot of each instructors’ teaching. 

In every observation across all four cases, the instructors were standing at the board while the 

students are sitting in rows in desks. There were instances of back-and-forth discussion between the 
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instructor and students, but there was no evidence of any of the instructors initiating student-to-

student interactions in class. All of the participants self-reported that they used lecture methods, 

although Dr. C and Dr. G preferred to call their method “modified lecture” because of their attempts 

to engage their students.   

 The data were analyzed using several different methods to address the first research question. 

The interview data were analyzed using the constant comparative method, which is a qualitative 

analysis technique that is associated with grounded theory (Glaser & Strauss, 1967). The interviews 

gave the contextual and perceptual information needed to describe the setting in each of the four 

cases. From the interview data, four proof presentation strategies were identified, and levels of 

expected engagement were constructed. Each proof presentation was coded according to the proof 

presentation strategies that were used and the levels of expected engagement. This analysis showed 

that the instructors were using examples to varying degrees in their proof presentations, and that they 

were engaging the students in their proof presentations. These findings led to the development of 

research questions 3-6.   

The second research question was addressed by the construction of timelines for each 

observation that showed when the instructor was presenting definitions, statements of theorems, 

proofs, examples, or homework problems. The timelines also indicated when the instructor was 

speaking and when the student was speaking. This analysis of the observation data gives an overall 

picture of how the instructors utilize their time in class.  

The third and fourth research questions address how instructors use examples in conjunction 

with their proof presentations. To investigate this matter, examples were identified in the proof 

presentations and the constant comparative method was employed to develop categories of examples 

with similar properties. The different types of examples that occurred during the participants’ proof 

presentations were then synthesized with existing example types in the literature to establish the 
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pedagogical intentions of each example type. For categories that did not match with types of 

examples found in the literature, the pedagogical intentions were formed using inferences from the 

interview and observation data. The examples were then organized into a coherent descriptive 

framework that is grounded in observation and interview data. This framework illustrates when and 

how the different types of examples are used in the proof presentations. 

 Upon the completion of the analysis of the interview data, the construction of the timelines, 

and the analysis of the instructors’ example usage, another one-hour interview was conducted as a 

member check. This occurred approximately a year after the completion of the observations. In the 

follow-up interview the participants discussed the results of data analysis. The participants were 

presented with the categories that appeared in their interviews and the timelines that described the 

way that they utilized their time in class. They were presented with my descriptions of their classroom 

examples and excerpts of the transcripts from their teaching and were asked to comment on several 

instances when they used examples in proofs. They were asked to comment on the framework for 

example usage in proof presentations and the hypothesized intentions for the different types of 

examples that they used. They were also asked to describe the ways in which they interacted with 

their students, although a full analysis of their questions had not yet been completed.  

 The fifth and sixth research questions address the frequency and types of instructor questions. 

An analysis of the instructor questions was done using modifications of existing frameworks for 

question analysis. Each question was assigned to a level of Anderson’s Revised Bloom’s Taxonomy 

(Anderson & Krathwohl, 2001; Tallman & Carlson, 2012) to determine the cognitive engagement 

required to answer the question. The questions were also coded according to the expected response 

type, which was a category adapted from two sources: the Teaching Dimensions Observation Protocol 

(CCHER, 2009) and Mehan’s (1979) types of questions. Questions that did not require a verbal 

response were coded Rhetorical or Comprehension, and if the student was supposed to give a 

response, the response type was coded as Choice, Product, Process, or Meta-process. Percentages of 
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the different question types were calculated, and percentages of the types of questions that were 

answered by the students were also computed.   

 The results will be presented using the interviews as a backdrop for interpreting the results of 

the analysis of the instructors’ use of examples in proof presentations and their use of questions to 

interact with their students during their lectures.  

1.3 Researcher Perspectives and Assumptions 

 Since the methods of data collection and analysis in this study are qualitative, the 

assumptions and theoretical orientation of the researcher must be made explicit from the outset of the 

study. My experiences as a student in undergraduate and graduate level mathematics have guided my 

inquiry into the teaching of advanced mathematics. All of the advanced mathematics courses that I 

have taken have been taught using lecture methods, and I have been successful in all of my 

coursework. My primary assumption in regard to this study is that teaching mathematics using lecture 

methods needs to be examined more closely. I believe that in the effort to reform mathematics 

teaching, researchers and reformers alike have criticized traditional instruction without carefully 

examining the variation that occurs within lecture methods. An in-depth understanding of what 

instructors do in the classroom when teaching advanced mathematics can lay the groundwork for the 

interpretation of results about students’ proof-writing abilities, and can inform curriculum 

development and professional development programs. 

 In this study, I will examine the ways in which the instructors use examples and how they ask 

questions. Investigating with examples has been helpful to me in my own coursework, and although I 

have not taught a proof-based course, I do use examples in my own teaching. Also, as a student I 

frequently asked questions and participated in class discussions, and in my teaching I ask questions 

and interact with my students.  
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 Although I do believe that using examples and interacting with my instructors benefitted me 

as a student, I also believe that their use in the classroom and implications for student learning are 

highly nuanced. Because this study did not collect data from the students, I cannot make any claims 

about how the instructors’ use of examples or questions affected student learning. This study merely 

catalogues the use of examples in proof presentations and the frequency and types of questions used 

thus giving a foundational understanding of the variation that can take place among different lecturers 

in proof-based mathematics courses.  

1.4 Rationale and Significance 

 This study addresses a gap in the literature by exploring current teaching practices of 

mathematicians when presenting proof in undergraduate mathematics lectures, namely, the 

pedagogical tools that they use in proof presentations, how they utilize their class time, ways in which 

they use examples in their proof presentations, and a multi-dimensional analysis of the instructors’ 

questions. The participants of this study are four instructors teaching different upper-division proof 

courses at the undergraduate level. All of these instructors taught using some variation of lecture, 

meaning that the instructor was primarily standing at the board presenting the material while the 

students were taking notes. This knowledge of teacher practices in traditionally taught advanced 

mathematics courses lays a foundation of understanding about teaching practices upon which future 

studies can build.   

1.5 Summary of Findings 

 Four proof presentation strategies were identified from the participants’ interviews: outline, 

example, logical structure, and context. The presentation strategies that occurred in each proof 

presentation were recorded, and it was found that only four of the 64 proofs did not use any of the 

identified strategies. Also, examples were used by the instructors to varying degrees. One instructor 
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did not use examples in his proof presentation, while the other three used examples in approximately 

half of their presentations.  

 The interview data were also used to identify levels of expected engagement. It was found 

that three of the four participants expected students to actively contribute to 95% of their proof 

presentations. The fourth instructor expected active contribution for 50% of his proof presentations. 

Thus, the instructors were engaging their students in the majority of their proof presentations.  

 The allocation of class time was analyzed, and it was found that the instructors spent between 

35% and 70% of their class time presenting proofs. Across all four cases, the largest proportions of 

class time were spent on proofs and examples. The amount of time spent on straight lecture vs. 

interactive lecture was also analyzed. It was found that the instructors spent between 26% and 62% of 

their class time on interactive lecture.  

 The examples used during proof presentation were categorized, and the kinds of examples 

were synthesized with example types that occurred in the literature. In the analysis, a new kind of 

example surfaced. Metaphorical examples are used to compare an unfamiliar mathematical structure 

to a different (more familiar) mathematical structure via metaphor. The example types and the 

pedagogical purposes of the examples were organized into a descriptive framework of the instructors’ 

example usage in their proof presentations. This framework describes when and how the examples 

were used to motivate and support the presentation of the theorem/proof pair.  

 An analysis of the instructor questions showed that the instructors frequently engaged 

their students by asking questions. The rate of instructor questions ranged from 0.69 to 1.81 questions 

per minute. A more thorough analysis of the question types revealed that between 30% and 54% of 

the questions asked were higher-order. An analysis of the questions that were actually answered by 

the students revealed that the students were answering a variety of questions, including higher-order 

questions.
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CHAPTER II 
 

 

REVIEW OF THE LITERATURE 

 

 The purpose of this multi-case study is to examine the teaching practices of four 

mathematics instructors who were teaching different proof-based mathematics courses using 

lecture methods. In particular this study will investigate pedagogical tools that they use when 

presenting proofs in class, how they allocate time within lectures, how they use examples in 

conjunction with their proof presentations, and how they use questions in their lectures. To carry 

out this study, it was necessary to conduct a critical review of the current literature pertaining to 

this topic. This review took place throughout each phase of the study, and was refined throughout 

the entire process.  

 To conduct this literature search, multiple sources were used such as books, journal 

articles, dissertations, and conference proceedings. Sources were located initially by using ERIC 

and ProQuest, and additional sources were found by referencing the bibliographies of papers that 

I had previously located and by word-of-mouth referrals from colleagues in the field with whom I 

have discussed my work. Four main bodies of literature were considered pertinent to this study: 

the teaching and learning of mathematical proof, teaching practices of university mathematics 

instructors, the use of examples in teaching mathematics, and the use of questions in teaching in 

general and mathematics in particular. 
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This chapter will begin by providing a brief history of Research in Undergraduate 

Mathematics Education. Because this study is an investigation of teaching practices in advanced 

mathematics lectures, the study must be framed by results in two foundational research areas: 

research on the teaching and learning of mathematical proof, and research on teaching practices at 

the collegiate level. Then, studies that also investigate teaching practices in proof-based courses 

will be reviewed. Finally, since this study concentrates on teaching practices as they relate to 

example usage and instructor questions, the literature pertaining to those topics will be reviewed. 

 Throughout the review, the literature is synthesized to point out gaps, and each section 

concludes with a summary that focuses on the research implications for this study. The final 

section of the literature review is a summary that will illustrate how the findings in the literature 

bear on this study and contribute to the conceptual framework within which this study is situated. 

2.1 A Brief History of Research in Undergraduate Mathematics Education 

 Mathematics is one of the oldest and most respected disciplines. As long as mankind has 

been “doing” mathematics, mathematics education has also been present. Learning mathematics 

has long been considered part of becoming an educated member of society. Above the entrance to 

Plato’s academy was written “None but geometers enter here.” It is well known that Euclid’s 

Elements was one of the first widespread mathematics textbooks even before the printing press. 

As civilizations become more industrialized and more people were able to receive an education, 

mathematics has remained a pillar of the education system.  

 Although mathematics education has a long tradition, mathematics education research is 

a relatively young field (Selden & Selden, 1993). In the United States, The National Council of 

Teachers of Mathematics was formed in 1920 to support and equip mathematics teachers. 

Russia’s launching of Sputnik in the late 1950’s caused the U.S. government to increase funding 

for math and science education research. The majority of the research was on teaching K-12 

mathematics, though there were some projects directed at the teaching of college calculus, such as 
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the famous Harvard Calculus Consortium. Since the 1980’s, the field of research in 

undergraduate mathematics education has blossomed. Some of the first studies were of the form 

of “teaching experiments” or were extensions of theories that existed in K-12 mathematics 

education. Schoenfeld’s well-attended talk at the AMS/MAA meeting in 1990 sparked the loose 

organization of mathematicians who were interested in education research (Selden & Selden, 

1993). The Research in Undergraduate Mathematics Education (RUME) special interest group of 

the Mathematical Association of America was founded in 2000. 

Within RUME, there are several different research areas. Since Calculus and transition to 

proof are both areas of difficulty for undergraduates, there are large groups working in both of 

those areas. There are also groups working on teaching differential equations, number theory, and 

preparing graduate student teaching assistants, among other topics. 

 Mathematics education research is essentially social research, but like mathematics, there 

are two main purposes: Pure and Applied. Pure mathematics education research seeks to 

understand the nature of mathematical thinking, teaching, and learning. It is often exploratory, 

and combines methods from education, psychology, sociology, and cognitive science. Applied 

mathematics education research takes results from pure research and uses those understandings to 

improve mathematics instruction (Schoenfeld, 2000).  

 Another difference between research in mathematics and research in mathematics 

education is summed up in Henry Pollak’s statement, “there are no proofs in mathematics 

education” (Schoenfeld, 2011, p. 47). Because mathematics education is essentially social 

research, it cannot have the certainty that proof affords. However, there are alternative methods of 

gaining confidence in the results of education research. Studies in education can have descriptive 

power, explanatory power or predictive power. It is also important to take into account the scope 

of educational research studies when interpreting results (Schoenfeld, 2011).  

2.1.1 Implications for this Study. This study is investigating teacher practices, which 

can best be classified as pure research because the goal is to merely describe and catalog the 
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phenomenon of teaching. Since RUME is a much younger field than K-12 mathematics education 

research, the foundation of research-based knowledge of teacher practices had not been as 

thoroughly constructed (Speer, et. al, 2010). My research will address this gap in the literature by 

examining four interrelated case studies of teacher practice in proof-based mathematics at the 

university level by investigating the pedagogical moves that instructors use during their in-class 

proof presentations.  

 One aspect of my research is the development of a framework describing when and how 

examples are used by instructors to motivate and support their proof presentations. This 

framework has descriptive and explanatory power, as it is grounded in the interview and 

observation data as well as the literature.  

 This study will also examine the ways in which instructors use questions in their 

advanced mathematics lectures. The questions asked by the instructor will be analyzed using 

existing taxonomies that have proven to be useful in K-12 mathematics education. In particular, I 

have extended Anderson’s Revised Bloom’s Taxonomy (Anderson & Krathwohl, 2001) to 

encapsulate different types of questions that occur in proof-based mathematics courses.  

2.2 Research on the Teaching and Learning of Proof 

 Early research addressing teaching and learning mathematical proof focused on 

investigating student understanding. Students encounter variations of proof at different times 

throughout their schooling. As early as elementary school, students may be expected to form case 

arguments (Maher & Martino, 1996), and to reason about integers and prime numbers (Zazkis & 

Liljedahl, 2004). It is therefore important for pre-service elementary school teachers to have a 

basic understanding of proof that is consistent with the mathematical community. However, in a 

large scale study of pre-service elementary teachers, Martin & Harel (1989) found that more than 

half of their subjects accepted arguments as valid proofs which would generally not be accepted 

by mathematicians.  
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 Variations of proof also appear at the secondary level, particularly in Geometry. Bell, 

(1976) asked 32 fifteen year old students to construct two proofs. He found that over half of the 

students failed to construct a proof, and those who encountered some success seemed to prefer 

checking cases over proving generalities. There were many studies in the UK that assessed the 

effectiveness of Britain’s National Curriculum by investigating secondary students’ 

understanding of proof (Coe & Ruthven, 1994; Healey & Hoyles, 2000). These studies found that 

students seemed to prefer example-based arguments, although they recognized that their teachers 

preferred the rigor of more general arguments (Healey & Hoyles, 2000).  It may be that secondary 

students are not taught to value proof, because even their teachers demonstrate an inadequate 

understanding of what constitutes proof and do not view proof as a tool for learning mathematics 

(Knuth, 2002).  

Rigorous proof is generally an important part of the undergraduate curriculum for 

mathematics majors. This section will address the major difficulties that undergraduate students 

have with proof as found in the literature, and then will review some of the different teaching 

strategies and innovative curricula that address teaching mathematical proof. 

2.2.1 Student (Mis)Understanding of Mathematical Proof. My research focuses on 

proof as it appears in upper-division undergraduate mathematics courses, which are populated by 

mostly mathematics and secondary mathematics education majors. Current research studies have 

documented several difficulties that these students have with mathematical proof. Although the 

students’ effort is always a factor (Wu, 1999), research has found four major reasons that students 

struggle with reading and writing proofs (Weber, 2001). We’ll review some of the major results.  

 2.2.1.a. Mathematical language barrier. For students to begin a proof, they must first 

understand the statement that they are trying to prove. This means that they must read the 

statement and make sense of the symbols and language. Selden and Selden (1995) found that 

undergraduates in a bridge to proof course were unable to “unpack” logical statements using 
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quantifiers. Watkins (1979) suggests that special instruction may be necessary to teach students 

“Mathematical English.” 

This communication barrier is a major hindrance to proof writing. If students fail to 

interpret the mathematical language correctly, they will be unable to understand the statement, 

state the definitions, or begin to structure a proof (Moore, 1994). Proofs in an undergraduate level 

bridge to proof course were analyzed, and it was found that, on average, over 70% of a proof at 

that level can be constructed by using the assumptions and associated definitions (Savic, 2011). 

This suggests that students who are unable to state and use definitions, or who are unable to 

unpack the assumptions in the statement that they are trying to prove will have little success in 

proof writing.  

 2.2.1.b. Insufficient understanding of mathematics content. An important distinction 

between the formal mathematical definition and the images evoked in the students’ mind was 

made by Tall and Vinner (1981). The concept image is the total cognitive structure in a student’s 

mind that has been built up over the years, including all mental pictures and associated properties. 

It may be incomplete and may contain conflicting ideas. The concept definition is the formal 

mathematical definition that has been accepted by the mathematical community. 

 A student may struggle to write a proof if they do not have a flexible understanding of the 

mathematical concepts with which they are working. In other words, their concept image differs 

from the accepted concept definition. The literature contains many examples of students 

struggling with the content in advanced mathematics courses. In abstract algebra, students 

struggle with the concepts of normality, cosets, and quotient groups (Asiala, Dubinsky, Mathews, 

& Oktac, 1997). Nardi (2000) provides evidence that first year undergraduates at Oxford had 

difficulties with the foundational concepts of Group Theory. Moore (1994) found that students in 

a bridge to proof course had “little intuitive understanding of the concepts” (p. 251). In their work 

on student understanding of definitions, Edwards & Ward (2004) found that many students do not 
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use definitions the way mathematicians do, even when the student can correctly state and explain 

the definitions, and even in the apparent absence of any other course of action.  

 2.2.1.c. Students’ beliefs about mathematics and proof. Students’ belief systems 

concerning mathematics may also have an impact on their success (Moore, 1994; Schoenfeld, 

1985; Schoenfeld, 1989; Solomon, 2006). Solomon (2006) summarizes her findings in this way: 

“[Undergraduates’] beliefs about the nature of mathematics as a matter of certainty, rule-

following, isolation, abstraction and lack of creativity differ little from those identified by 

researchers into school mathematics. Again in correspondence with school research, their beliefs 

about learning mathematics emphasize speed and fixed ability” (p. 389). Students often do not 

view themselves as a mathematical authority, but are “consumers of others’ mathematics” 

(Schoenfeld, 1988). This view of mathematics leaves students feeling powerless, bound by the 

experts’ list of rules.  

Students’ beliefs may also affect their ability to solve problems and write proofs. What 

constitutes evidence in the students’ eyes may not be considered a proof to a mathematician; and 

a rigorous proof may not be convincing to the student (Harel & Sowder, 1998; Mills, 2010). 

Inexperienced students often attack problems with a naive empiricism; even if they are able to 

make deductive arguments, they don’t think to use that method (Schoenfeld, 1985). Students also 

tend to focus on checking the logic line-by-line rather than looking at the overarching argument 

in a proof (Selden & Selden, 2003; Mills, 2010).  

 2.2.1.d. Lack of strategic knowledge. Thus far, I have given several reasons that students 

may struggle with proof. They may have difficulty with the language and notation, the concepts 

themselves, or maybe they are still learning what their instructors mean by ‘proof.’ But what if a 

student does understand the concepts, and does understand what a proof should look like, but is 

still unable to construct a proof? Weber (2001) identifies another reason for student failure: a lack 

of strategic knowledge. The undergraduates in his study displayed the factual knowledge of the 

abstract algebra material, but when they were presented with statements to prove, they failed. 
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They were not sure what theorems were useful or when it was appropriate to use definitions or 

manipulate symbols. In contrast, doctoral students were able to quickly choose the strategy that 

would lead to a proof.  

In another study Weber (2006) outlined a strategy for proving theorems involving group 

isomorphisms. A computer programmed with the strategy was able to complete proofs of most of 

the statements, and students who were taught the strategy were able to prove significantly more 

theorems. So, it seems that when teaching students to be successful in writing original proofs, we 

must consider not only content and logic, but also strategies for proving in that particular area of 

mathematics.  

2.2.2 Reform Efforts for Teaching Proof. The previous section presented several 

reasons why students struggle with mathematical proof. There have also been efforts on the part 

of instructors and researchers to address student learning of proof. This section will outline some 

of the most important interventions. 

The Moore Method has been a famous example of reform since R. L. Moore himself 

taught at the University of Texas from the 1920’s to the 1970’s. He gave the students a list of 

definitions, axioms, and theorems, and had the students prove the theorems on their own and 

present them in class. Students were not allowed to consult other texts or other mathematicians. 

Current modified Moore Method courses have been toned down, though the emphasis is still on 

the students producing the mathematics (Krantz, 1999).  

 An inquiry based abstract algebra curriculum was developed by Leron and Dubinski 

(1995). They used ISETL computer programming to allow the students to explore structures in 

abstract algebra, and included group discussions. Their teaching style used activities, class 

discussion, and lots of examples.  Larsen (2009) created a curriculum for teaching group theory 

that is based on guided reinvention (Freudenthal, 1991) of the concepts. The instructor serves as a 
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guide to help the students attend to the properties of the algebraic structures that are 

mathematically important. 

Some small-scale interventions have also been reported, which may be able to be adapted 

to classroom settings. Weber (2006) taught a group of students a strategy for proving statements 

about group isomorphisms. The students, in an interview setting, were able to prove significantly 

more theorems after the intervention. Selden & Selden (2003) interviewed students, asking them 

to read student-produced proofs and check them for correctness. At first, the students’ validations 

were no better than chance, but throughout the interview process, their ability to verify proofs 

increased significantly. This gives evidence that the skill of reading and verifying mathematical 

proofs can be taught.  

2.2.3 Implications of Research on Teaching and Learning Proof. Research has shown 

that students struggle with proof for various reasons, whether it is difficulty with the notation, 

content, beliefs about proof that are inconsistent with the mathematical community, or a lack of 

strategic knowledge (Weber, 2001). Although there have been efforts to reform instruction at the 

advanced mathematics level, traditional lecture is still the primary method of delivery. Thus, a 

research-based understanding of classroom teaching practices in traditionally taught proof courses 

is critical for interpreting these results about students’ difficulties with proof (Fukawa-Connelly, 

2012a). 

2.3 Research on Teaching Practice of University Teachers 

 Lecture has long been the tradition in university teaching. Even today, it is the dominant 

style used in undergraduate Calculus (Bressoud, 2011), and this trend likely continues up through 

advanced mathematics courses as well. In a large-scale study designed to investigate the 

effectiveness of Inquiry Based Learning (IBL) mathematics courses at the University of Colorado 

Boulder, it was found that in non-IBL courses, the students spent 87% of their class time listening 

to the instructor talk (Laursen, Hassi, Kogan, Hunter, & Weston, 2011). Another large scale study 
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in Geoscience education found that across all academic levels (graduate, honors, major, and non-

major), instructional practices were teacher centered (Markley, Miller, Kneeshaw, & Herbert, 

2009).  

Although lecture is still widely used (Armbruster, 2000), few studies investigate in detail the 

teaching practices of instructors using primarily lecture methods. As Krantz (1999) points out, a 

masterful lecturer may include many different pedagogical moves to connect to his or her 

audience. Instructors can use examples, give summaries, check for student understanding, or 

make connections between different topics (McKeachie & Svinicki, 2006). Lecture can also be 

interactive, incorporating lots of questions that guide students through the material (Bagnato, 

1973). In advanced mathematics some instructors may rely on direct instruction but may still ask 

a lot of questions and encourage the students to ask questions and supply examples (Moore, 1994; 

Fukawa-Connelly, 2012a). 

The traditional lecture style of teaching mathematical proof should be investigated more 

closely in order to catalog the strategies that professors are using. Speer, Smith, & Horvath (2010) 

claim that although the “effects of instructional activities have been examined… the actions of the 

teachers using those activities have not” (p. 101). They conducted an extensive literature search 

for published articles addressing collegiate teaching practice in mathematics, only to find five 

articles that fit their criteria. All of the five articles were case studies with one faculty member as 

a participant, and all used observation and interview data to analyze the instructor’s teaching 

practices. Only one of the articles mentioned was an analysis of a proof-based course (Weber, 

2004). 

2.3.1 Implications of Research on Collegiate Teaching Practices. Although studies 

investigating teaching practice have proved to be foundational in K-12 mathematics education, 

there are not many studies that exist at the level of advanced undergraduate mathematics (Speer, 

et.al., 2010). Those that do exist are often single case studies, and many of these studies focus on 

non-traditional teaching methods. Large-scale studies on teaching practices have found that 
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lecture is the dominant style of instruction, and that in traditional courses students spend over 

80% of their time listening to the instructor speak (Armbruster, 2000; Laursen, et.al., 2011). This 

study adds to the existing literature by providing a larger study that incorporates four case studies 

of mathematics instructors teaching proof-based courses with traditional lecture methods in four 

different mathematics content areas.  

Speer et al. (2010) presented a framework for analyzing teaching practice. The seven 

dimensions of their framework are: (a) allocating time within lectures, (b) selecting and 

sequencing content within lessons, (c) motivating specific content, (d) asking questions, using 

wait time, and reacting to student responses, (e) representing mathematical concepts and 

relationships, (f) evaluating completed teaching and preparing for the next lesson, and (g) 

designing assessments and evaluating student work. This study will address the allocation of class 

time, the use of examples to motivate specific content and represent mathematical concepts and 

relationships, and the types of instructor questions in proof-based mathematics courses. 

2.4 Proof Presentations in Advanced Undergraduate Mathematics Classes 

 In a traditionally taught undergraduate course, students generally are expected to learn 

the material by attending lectures, reading the textbook, and doing the homework. If writing 

proofs is an expectation, then these three avenues for student learning are the ways in which the 

socio-mathematical norm of proof writing is established. Harel and Sowder (2007) state that the 

goal of instruction in these courses is to help students develop an understanding of proof 

consistent with the mathematical community. This is accomplished in part by the instructor 

modeling the mathematical behavior of proof writing in class (Fukawa-Connelly, 2010).   

Recent studies have found that instructors in advanced mathematics classes spend 

roughly half of their class time presenting proofs in class, on average (Weber, 2004; Mills, 2011). 

Therefore, the presentation of proof in class is a vital part of developing students’ understanding 

of proof in a traditional classroom.  
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 Despite its importance in developing young mathematicians, few studies have 

investigated instructors’ in-class proof presentations. Mejia-Ramos & Inglis (2009) performed a 

literature search in the top seven journals that have a history of publishing research in 

undergraduate mathematics education. They found 102 research papers addressing writing, 

reading, and understanding of proof by undergraduates, but none of the tasks in these papers were 

focused on proof presentation, either by instructors or by students. There are a few studies that are 

focused on investigating the proof presentations of instructors in lectures (Fukawa-Connelly, 

2012a; Fukawa-Connelly, 2010; Weber, 2004; Mills, 2011; Mills, 2012), and a study focused on 

students’ proof presentations in an inquiry-based abstract algebra class (Fukawa-Connelly, 

2012b). 

 This section contains literature that lies at the intersection of research on teaching 

practice and research on proof. Since presenting proof has been referred to as modeling the 

mathematical behavior of proof writing (Fukawa-Connelly, 2010), this section will first outline 

the strategies that mathematicians and successful graduate students employ when reading and 

writing proofs. Next, there will be a summary of studies that investigate instructors’ pedagogical 

views in regard to proof presentations. Lastly, there will be a presentation of studies examining 

the teaching practices of instructors when presenting proofs.  

2.4.1 Proof Writing Strategies of Experts. I have argued that a major goal of proof 

presentation is for the instructor to model the mathematical behavior of mathematicians when 

reading and writing proofs. Therefore, studies describing experts’ or successful graduate students’ 

practices when constructing and reading proofs can inform our understanding of the behavior that 

the instructors are attempting to model.  

 It is important to note that proofs are valued by mathematicians for multiple reasons, not 

just to determine the truth or falsity of mathematical statements (Rav, 1999). A recent study 

showed that when mathematicians read published mathematical proofs in their research area, they 

are often not checking for the correctness of the proof. Rather, they tend to focus on the 
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overarching ideas and methods in the proof, and often understand different steps in the proof by 

applying the ideas to specific examples (Mejia-Ramos & Weber, in press). They also check to see 

if the proof has a legitimate structure before proceeding with line-by-line validation (Weber, 

2008). The differences between how experts and novices read mathematical proofs was 

investigated using eye-movement data (Alcock & Inglis, 2012). They found that novices tend to 

focus on external features of proofs (i.e. embedded equations), while mathematicians read by 

jumping back and forth between different lines looking for the overall structure.    

 When writing proofs, mathematicians and advanced doctoral students tend to use 

empirical evidence to convince themselves of the truth or falsity of claims (Inglis, Mejia-Ramos 

& Simpson, 2007). They also may use examples to investigate definitions or structure a proof 

(Alcock, 2010; Weber, 2011).  

 Thus, if instructors are modeling their own behavior when presenting proofs in class, they 

are likely trying to teach students to value both overarching ideas as well as line-by-line 

verification, and they are likely to use examples in various ways.  

2.4.2 Instructors’ Pedagogical Views of Proof Presentations. There have been several 

studies that investigate mathematics faculty members’ pedagogy in regard to proof presentation 

(Weber, 2011; Alcock, 2010; Yopp, 2011; Hemmi, 2010). These studies have used interviews of 

faculty members to investigate why and how they teach proof, and have described how these 

mathematicians talk about their intentions and pedagogical perspectives.  

Two of the studies investigated the reasons that the participants presented proofs to their 

students. These studies found that math instructors present proofs to develop their students’ 

ability to write proofs on their own (Yopp, 2011) or when it illustrates a new proving technique 

(Weber, 2011). Other reasons for presenting proofs included cultural reasons, to expose students 

to proof, or to illustrate the truth of a theorem.  

Alcock (2010) identified four modes of thinking that the faculty members aim to teach their 

students by presenting proofs.  Instantiation is used to “understand a mathematical statement by 
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thinking about its referent objects,” (p. 69) and includes thinking about examples or images. 

Structural thinking is a way of reducing abstraction and making use of the logical structures to 

drive the construction of the proof. Creative thinking includes experimenting with examples with 

the hope to generalize or attempting to construct a counterexample. The goal of critical thinking 

is to check for the correctness of each line of a proof.  

 When considering a written proof that will be presented to students, mathematicians 

believe that adding introductory and concluding sentences to clarify the strategy of the proof 

improves the quality of the proof. They also believe that avoiding unnecessary equations and 

calculations and formatting the necessary equations so that they are on their own line improves 

the proof (Lai, Weber, & Mejia-Ramos, 2012).  

 Although these studies showed that the instructors take their students’ level of 

experience into account (Lai, et. al, 2013), they seemed to lack an arsenal of strategies for helping 

students understand their proof presentations (Weber, 2011; Alcock, 2010; Harel & Sowder, 

2009).  

2.4.3 Studies of Teaching Practice in Proof Presentations. Weber’s (2004) case study of an 

instructor’s teaching practice in introductory analysis lectures was highlighted by Speer, et al, 

(2010) as a model study of teaching practice. This instructor was able to clearly articulate his 

goals and beliefs about teaching analysis and student learning from his years of experience, and 

he chose a teaching style that was consistent with his beliefs. He made an effort to reveal the 

reasoning behind the proof construction so that students could learn to construct original proofs 

themselves. Weber (2004) identified three distinct proof presentation styles that were used by the 

instructor: logico-structural, procedural, and semantic. Although the instructor was unaware of 

research about teaching mathematical proof, the strategies that he used appeared to be designed to 

teach some of the cognitive skills discussed in the literature.  

Another study examines the pedagogical choices of an instructor, Dr. Tripp, in an abstract 

algebra course (Fukawa-Connelly, 2010; Fukawa-Connelly, 2012a). Several pedagogical content 



24 

 

tools (Rasmussen & Marrongelle, 2006) were identified, in particular the instructor ‘modeled 

mathematical behaviors’ such as proof writing, definition exploration, and example generation. 

Although Dr. Tripp self-identified as a traditional instructor, she used a significant amount of 

dialogue with her students when presenting proof (Fukawa-Connelly, 2012a). This proof 

presentation with dialogue pattern began with an instructor question that was directed at the 

entire class, which solicited a student response. Then, Dr. Tripp would either ask another question 

or comment on the response. She was observed to use a funneling pattern (Wood, 1994) which is 

a questioning sequence that begins with a higher-order question but reduces the cognitive load 

with each successive question. The outcome of this is that the questions that students ultimately 

answered were merely factual. These questioning sequences, however, were used by Dr. Tripp to 

model the mathematical thinking that is required to write the proof. This study gives an existence 

proof that university mathematics professors do not always use a “pure telling” method of proof 

presentation. 

2.4.4 Implications of Research on Proof Presentations. Recent studies have focused on 

their pedagogical views of proof presentation (Alcock, 2010; Harel & Sowder, 2009; Hemmi, 

2010; Lai, Weber, & Mejia-Ramos, 2012; Weber, 2011; Yopp, 2011). Though these studies 

describe how faculty members claim to help students comprehend their proof presentations, they 

do not describe what is actually happening in the classroom. Hemmi (2010) acknowledges that 

“the relationship between talk and reality is complex. The mathematicians’ talk about proof and 

the teaching and learning of proof is considered as shedding light on the practice, but not as an 

objective description of it” (p. 272). This study will both allow the instructors to shed light on 

their practice via interviews, as well as provide a description of their practices in the classroom.  

Investigations of instructional practice in traditionally taught proof-based mathematics 

courses have been single case studies (Fukawa-Connelly, 2010; Fukawa-Connelly, 2012a; Weber, 

2004). This study contributes by providing four interrelated case studies of mathematics 

instructors who are teaching in different content areas. 
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2.5 Example Usage in Mathematical Proof 

 It has been shown in the literature that mathematicians use examples in their own work in 

various ways (Alcock, 2010; Inglis, et al, 2007; Weber, 2011). Since the presentation of proof in 

class is an opportunity for the instructor to model the mathematical behavior of proof writing, the 

instructor is likely to use examples. This section outlines the literature on how examples are used 

by experts, how they have been used by students and teachers in the classroom, and then presents 

the rationale for the creation of my framework for example usage in proof presentations.  

2.5.1 Defining Example. The term “example” has had varied meanings in the literature. 

Watson & Mason (2005) say that an “example” is “anything from which the learner may 

generalize” (p. 3). Their use of example is learner-dependent, allowing the learner to 

construct examples that may not be mathematically accurate. Others have taken the 

learner out of the picture and refer only to a mathematical requirement in their definition 

of example. Zazkis & Leikin (2008) use example to mean an “instance, illustration, case, 

or element of a mathematical idea, object, process, or class.” Alcock & Weber (2010) use 

“example” in a much more restricted way, to mean “a mathematical object satisfying the 

definition of some concept.”  

In this study, I will consider a mathematical object an example if it has two 

properties: it must be specific and concrete as opposed to general and abstract. Specificity 

is a mathematical requirement; the object must represent a particular element of a larger 

class. Concreteness implies that students at this level must be able to either compute with 

or investigate properties of the mathematical object. Thus, concreteness is concerned with 

the accessibility of the mathematical object to the learner. Therefore, I will use the 

following definition: An example is a specific, concrete representative of a class of 

mathematical objects, where the class is defined by a set of criteria.  
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It is possible that a mathematical object can be mathematically specific but not 

concrete for a particular group of students. In an introductory analysis class, a function 

from the power set of the natural numbers to the real numbers can be defined by 

⋅⋅⋅⋅⋅⋅= naaaaAf 321.0)(  where 0=na  if An ∉  and 1=na  if An ∈  . This is a specific 

function, but most students at that level cannot investigate its properties because it is still 

too abstract to be accessible to them. However, if the instructor were to choose a specific, 

subset A , such as }3,2,1{=A   and show how  ⋅⋅⋅= 11100000.0)(Af , then the object is 

much more likely to be concrete to the students and would therefore be classified as an 

example. 

It is also possible that a mathematical object could not be mathematically specific enough to 

be classified as an example. In a presentation of a proof about the surjectivity of a composition of 

functions, an instructor in this study drew and labeled three “blobs” on the board to represent the 

three sets, arrows to represent the maps, and dots to represent elements of the set. Throughout the 

proof, he referred to the diagram. The diagram served as an alternative representation of the 

general proof and could not be said to specify a member of a class of functions with a given 

property. Therefore, it did not fit my definition of example and was said to be a generic diagram. 

This paper will investigate instructors’ uses of examples, and therefore the generic diagrams that 

appeared in the data will not be included in the results. 

Mathematical objects have multiple representations such as numerical, algebraic, or 

pictorial. In the same manner, examples may be represented in multiple ways. In this study, 

examples will not be classified by their representation, but rather according to their type and 

pedagogical use. 

2.5.2 Uses of Examples by Experts. Non-deductive reasoning often plays a critical role 

in experts’ mathematical argumentation, however experts are generally very clear about whether 
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or not an argument is a deductive proof (Inglis, Mejia-Ramos, and Simpson, 2007). Experts may 

use examples to varying degrees, and his or her research area or personal preference may 

influence the degree to which examples are used (Alcock & Inglis, 2008).  

 A mathematician interviewed in Alcock’s (2010) study stated that when he is presented 

with a new definition, he immediately begins to generate examples and non-examples to help him 

understand the definition. In another interview study, a mathematician described how he would 

choose a particular example that he would work side-by-side with the general proof (Weber, 

2011). This strategy is similar to Rowland’s (2002) generic example, which is a particular 

example whose steps mirror the general proof.  

 Experts’ uses for examples when testing and proving conjectures were described in a 

framework based on the responses of mathematicians in an online survey (Lockwood, Ellis, 

Dogan, Williams, & Knuth, 2012). This framework encompassed several types of examples, uses 

of examples, and example-related strategies. Since the framework is aimed to describe their 

example-related activity when determining the truth or falsity of a conjecture, some of the 

categories do not apply directly to proof presentations of known theorems in the classroom. The 

uses of examples that may apply to in-class proof presentations are: make sense of the situation, 

proof insight, generalize, and understand the statement of the claim.  

2.5.3 Uses of Examples in the Classroom. Harel and Sowder (1998) point out the 

dominance of empirical and inductive proof schemes among students, such as proof by example. 

Thus, examples can serve as a powerful tool for convincing students of mathematical arguments, 

but Harel and Sowder (1998) caution that “the empirical scheme should for mathematics students 

at some stage fill only confirming and conjecturing roles” (p. 277). Thus, one goal as students 

mature in their mathematical learning is to help them move towards the analytical proof schemes. 

Student-generated examples have been the topic of many research studies in 

undergraduate mathematics education. Dahlberg and Hausman’s (1997) found that students who 



28 

 

spontaneously generated examples when given the new definition developed a more sophisticated 

concept image and were more able to complete proving tasks associated with the definition. 

Watson and Shipman (2008) had two groups of junior high students using learner generated 

examples to explore a new mathematical idea. They found improvements across all levels of 

mathematical abilities, even among the low-achieving group of students. Harel (2001) observed 

number theory students explore with examples to notice patterns which they formed into 

conjectures. Some actually extracted a process from the pattern that would generalize into a 

deductive proof.  

 Mason and Watson (2001) encourage a particular type of example generation in the 

classroom. They define boundary examples to be examples that “distinguish between having or 

not having a specified property.” While boundary examples are often described by Mason and 

Watson as examples that help students to solidify the boundary around a particular mathematical 

definition, they also toy with the idea of boundary examples of a theorem or technique. They 

conjecture that complete understanding of a theorem or technique is directly related to one’s 

ability to construct boundary examples. 

 Iannone, Inglis, Mejia-Ramos, Simpson & Weber (2011) called into question whether 

example generation would improve a student’s ability to prove conjectures associated with a new 

definition. Using the same definition and proving tasks as Dahlberg and Hausman (1997) and a 

much larger sample size, they gave half of the students example generation tasks and the other 

half a sampling of worked examples to read. They found no significant difference in the two 

groups’ ability to prove or disprove the related conjectures. This suggests that using example 

generation tasks may be more nuanced than previously thought, but it still supports the 

importance of examples for students who are learning a new concept. 

 Studies of pre-service teachers show that they are largely unconscious of their example 

choices (Zodik & Zaslavsky, 2008) and need specific guidance about the role and nature of 
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mathematical examples and need to be made aware of common pitfalls in example selection 

(Rowland, 2008). When choosing examples, pre-service elementary teachers showed a strong 

preference for examples that they believed would make sense to their students, often without 

considering the mathematical correctness of the example (Zazkis & Leikin, 2008).  

 Pictures and diagrams are often an integral part of exemplification (Michner, 1978). 

Stylianou (2002) observed mathematicians solving problems, and found that they tended to 

construct their visual representations in steps, using what she called “structured visual qualitative 

exploration.” When teaching undergraduate analysis, a professor was observed presenting a 

diagram alongside a proof which he filled in step-by-step, modeling the behavior mathematicians 

(Weber, 2004).  

 Example spaces (Goldberg & Mason, 2008) are the set of examples that can be brought to 

mind for a particular mathematical object, together with associations and construction methods. 

Fukawa-Connelly, Newton, & Shrey (2011) explored the example space of a mathematical group 

in an abstract algebra class by identifying the mathematical purpose that each example served. 

They identified four purposes for examples: exemplifying a definition, creating/refining a 

definition, exploring a conjecture, or illustrating a proof.  

 The literature has shown that accessible examples can serve to introduce mathematical 

concepts, while diagrams also prove to be important organizational tools. Thus, the use of 

examples in proof presentations may be a natural way to connect the abstraction of mathematical 

concepts to students’ natural tendency to lean on examples. 

2.5.4 Purpose of the Framework for Example Usage in Proof Presentations. The 

literature contains an array of examples and ways that they could be used at different levels of 

instruction; however, there are no studies that focus explicitly on describing the ways that 

instructors use examples when presenting proofs in class. Section 4.3.1 of this paper will organize 
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the examples used in proof presentations into a coherent descriptive framework that is grounded 

in observation and interview data, and integrated with results from the literature.  

 The construction of this framework can be compared and contrasted to a social model, 

which is a consistent, dynamic system that represents the relationships between certain 

components and the behavioral outcomes that they produce for a particular social phenomenon 

(Schoenfeld, 2011). Social models are used to describe, explain, and ultimately predict behavior 

of individuals or groups of people.  

 The framework that I have developed is an organizational structure that illustrates the 

relationship between different types of examples and the presentation of theorems and proofs in 

mathematics lectures. My framework serves to describe the uses of examples that emerged from 

my observation data, and provides some insight into the pedagogical intentions of the instructors 

via interviews and synthesis with the literature. The framework is not intended to predict the 

behavior of instructors, but rather to describe and explain the roles that examples play in 

instructors’ proof presentations. 

2.5.5 Implications of Research on Example Usage. Although it has been argued that 

students’ natural tendency to produce empirical arguments should be discouraged (Harel & 

Sowder, 1998), research about how mathematicians reason with examples suggests that examples 

can be useful and appropriate for exploring and proving conjectures (Inglis, Mejia-Ramos, & 

Simpson, 2007), and may even lead to the production of a deductive proof (Harel, 2001).  

The literature has shown that examples have been used in various ways in the classroom 

by both teachers and students, and example generation tasks have been shown to be an effective 

tool for helping prospective teachers to think about their example usage in class (Rowland, 2008; 

Zodik & Zaslavsky, 2008). Similar tasks may also be useful for helping mathematics professors 

think about how they could use examples in proof presentations.  
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This research seeks to provide a framework for organizing the uses and types of examples 

that are used by instructors when presenting mathematical proofs in class. Although a framework 

for experts’ example usage when testing and proving conjectures has been constructed 

(Lockwood, et al, 2012), their uses of examples when presenting proofs to students has not been 

investigated. When presenting proofs, instructors may model the ways that they use examples in 

their own understanding of the mathematics content.  

2.6 Teacher-Student Interaction in the Classroom 

 Since mathematics learning can be viewed as an inherently social process, the ways in 

which instructors interact with their students has a great impact on student learning (Nickerson & 

Bowers, 2008). Research has shown that many of the questions posed by teachers in mathematics 

classrooms tend to require no more than factual responses (Sahin & Kulm, 2008; Fukawa-

Connelly, 2012a). This study will examine the questioning used by four different instructors who 

are teaching proof-based advanced mathematics courses at the undergraduate level.  

This section will describe the literature on interaction patterns in the classroom and 

taxonomies that are used for analyzing instructor questions. Then, I will present the rationale for 

the multi-dimensional approach that I have used to analyze the instructors’ questions. 

2.6.1 Interaction Patterns in Mathematics Classrooms. In grade-school traditional 

mathematics classes, a typical questioning pattern involves the teacher initiating with a question, 

the student responding, and the teacher evaluating the response and proceeding to the next 

question (Mehan, 1979). Similar results were found in adult education as well (Medina, 2001). 

These IRE questioning sequences are designed to evaluate whether or not the student knows the 

answer and often do not require the student to be involved in any mathematical thinking to 

participate. Elementary students have been seen to participate in class discussions by merely 

following the teacher’s linguistic and contextual cues (Voigt, 1989). Sahin & Kulm (2008) found 

that teachers asked more factual questions than higher-order, and that guiding questions were 



32 

 

rarely used. Although there are some who claim that asking higher-order questions can be linked 

to student achievement (Gall, 1970), others are hesitant to make such claims (Winne, 1979). 

 In Weber’s (2004) case study of an introductory analysis course, “most of the lectures 

consisted of Dr. T writing definitions, examples, proofs, and occasionally diagrams on the 

blackboard and the students studiously copying Dr. T’s writing into their notebooks. Students 

asked questions only infrequently and rarely participated in class discussions” (Weber, 2004 

p.118). Thus, Dr. T rarely interacted with his students using questioning and discussion.  

A contrasting case study showed that an abstract algebra instructor frequently used 

questions to devolve responsibility to students when presenting proofs (Fukawa-Connelly, 

2012a). Dr. Tripp used rhetorical questions to model the mathematical thinking involved in 

creating the proof’s structure, and she also asked a large number of questions that solicited 

student feedback. She often used a funneling pattern in her questioning (Wood, 1994). She would 

begin by asking a higher-level question but then she asked several successive questions in a row 

until the final question required merely a factual response or re-statement of something she 

previously said. Though she did devolve some responsibility for proof writing to students, the 

majority of students’ answers stated the next part of the proof or the next algebraic step.  

In summary, the research shows that questioning patterns in traditionally taught 

mathematics classes may reduce the cognitive demand on students and often merely require 

factual responses.  

2.6.2 Taxonomies for Analyzing Questions. There are many different ways to classify 

questions. Some classification schemes classify questions by the expected products, such as 

whether the questions require the student to make a choice, give factual information, give reasons 

for their thinking, or justify their thinking (Wood, 1999; Mehan, 1979). Mehan’s four types of 

questions are: 
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Choice- those that dictate that a student choose an answer from a short list of options 

(yes/no questions are classified as choice). 

Product- those that require the student to provide factual responses 

Process- those that call for students interpretations 

Meta-Process- those that ask students to reflect upon their thinking and justify their 

answers 

This type of classification is useful for questions that are intended to elicit responses. Although 

this is a reasonable way to catalog question types, the expected response type does not necessarily 

capture the cognitive processes required to answer the question. For example, a highly conceptual 

question could be presented in a multiple-choice format.  

 There may be questions that instructors pose that do not necessarily elicit responses. 

Rhetorical questions have been used to model the mathematical thinking involved in structuring a 

proof (Fukawa-Connelly, 2012a). Instructors may also ask comprehension questions, which are 

general questions that check for student understanding (CCHER, 2009). Comprehension 

questions, such as “Do you understand?” or “Does that make sense?” can often be answered using 

non-verbal cues such as facial expressions or a head nod.  

 The categories of cognitive processes in Anderson’s Revised Bloom’s Taxonomy are: 

remember, understand, apply, analyze, evaluate, and create (Anderson & Krathwohl, 2001). One 

problem with analyzing questions in this way is that the cognitive process needed by the student 

cannot be directly observed, and so the researcher must make inferences (Gall, 1970). 

Nonetheless, Bloom’s Taxonomy has been used heavily in K-12 mathematics education research 

with similar results: that instruction and assessment commonly emphasize remembering and 

reciting facts and that higher-order (apply understanding and above) questions are less frequent 

(Anderson & Krathwohl, 2001). 

Bloom’s Taxonomy is designed to analyze questions in all subject areas and is not 

specific to mathematics. Because of this, when Tallman & Carlson (2012) used Anderson’s 
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Revised Bloom’s Taxonomy to analyze Calculus 1 examinations, they made a slight adaptation to 

the “remember” category. They argued that students in Calculus 1 could apply a procedure 

without demonstrating understanding of the mathematics that they were using. Therefore, they 

parsed the “remember” category into “remember” and “recall and apply a procedure.” They found 

that 85% of the items coded on 150 Calculus 1 final exams could be solved by retrieving rote 

knowledge from memory or recalling and applying a procedure. Thus, their findings were 

consistent with studies examining questioning and assessment at the K-12 level.  

Bloom’s taxonomy has been used to investigate the types of questions that appear on 

computational mathematics examinations at the undergraduate level. This study differs in two 

distinct ways. First of all, the nature of the mathematics in these case studies is abstract as 

opposed to computational and may therefore influence the types of questions asked by the 

instructors. Secondly, this study investigates questions that were verbally posed by instructors in 

class, not written questions that have been constructed specifically for use on examinations. 

2.6.3 Rationale for a Multi-Dimensional Approach. Gall (1970) points out that there 

are several types of questions that do not fit well into the existing taxonomies. I have already 

noted that the response type of a question may not give a complete representation of the cognitive 

engagement required to answer the question. Thus, this study will consider the expected response 

types and cognitive engagement as separate dimensions, which will allow for a more in-depth 

classification of the question types. 

 Previous studies of teaching practice in proof-based mathematics courses have not 

focused explicitly on instructor questions, although research in K-12 mathematics teaching 

suggests that the types of questions asked by instructors when teaching proof is at a higher level 

than when instructors are teaching computational mathematics (Thompson, et. al., 1994). Weber 

(2004) found that the analysis instructor in his case study did not frequently interact with his 

students. Fukawa-Connelly (2012a) describes an abstract algebra instructor’s questions as “high 

level” and others as “factual,” noting that students primarily answered only factual questions. 
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This study contributes by providing more specific and detailed descriptions of the questions that 

were asked in lectures.  

 Past research has noted that in traditionally taught courses instructors tend to use a 

funneling pattern of questioning, where the instructor would begin with a higher order question 

and ask successively lower order questions (Wood, 1994; Fukawa-Connelly, 2012a).  Thus, I 

recorded for each instructor question whether or not the question was linked to another question 

and whether or not the question was actually answered by a student. This will allow for a separate 

analysis of the questions that were actually answered by students.  

 2.6.4 Implications of Research on Interactions. In traditionally taught courses, it has 

been shown that the IRE interaction pattern is prevalent, and that questions tend to be lower-

order. The questions that appear to be higher-order are often part of a funneling sequence of 

questioning, so that the students end up answering a lower-order question in the end. This study 

will investigate the type of questions that are asked by instructors in four proof-based 

mathematics courses that are taught in a traditional style. Using a two-dimensional taxonomy for 

assessing the level of questioning, along with a record of linked questions and student responses, 

this study will give a more in-depth look at instructor questions in advanced mathematics courses.   

2.7 Summary and Conceptual Framework 

 The review and critique of the literature has led to the development of a conceptual 

framework, which serves as a map of the territory being investigated (Miles & Huberman, 1994). 

“Development of a conceptual framework posits relationships and perspectives vis-à-vis the 

literature reviewed, thereby providing the conceptual link between the research problem, the 

literature, and the methodology selected for your research” (Bloomberg & Volpe, 2012, p. 86). 

This section will summarize the literature review, applying it directly to the research problem and 

methods used to investigate the research questions.  

Speer et al (2010)’s model for assessing teacher practice includes: (a) allocating time 

within lectures, (b) selecting and sequencing content within lessons, (c) motivating specific 
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content, (d) asking questions, using wait time, and reacting to student responses, (e) representing 

mathematical concepts and relationships, (f) evaluating completed teaching and preparing for the 

next lesson, and (g) designing assessments and evaluating student work. Research in 

Undergraduate Mathematics Education is a much younger field than research in K-12 

mathematics education (Selden & Selden, 2003), and thus a foundational research-based 

understanding of teacher practice at the undergraduate level has not yet been as firmly established 

(Speer, et al, 2010). This study will address this gap in the literature by investigating several 

different aspects of teaching practices in proof-based mathematics lectures: the allocation of class 

time among different types of content, motivating and representing mathematical concepts and 

relationships through examples, and questions posed by the instructors.  

 The transition to proof-based courses at the undergraduate level is notoriously difficult 

for students. The literature has identified several contributing factors to students’ difficulties 

including difficulties with the mathematical language and notation (Selden & Selden, 1995; 

Thurston, 1994), insufficient understanding of the definitions and concepts involved (Edwards & 

Ward, 2004; Moore, 1994), beliefs about mathematics and proof that are inconsistent with the 

mathematical community (Solomon, 2006), or a lack of strategic knowledge about the domain’s 

proof techniques (Weber, 2001). Although the participants in this study were unfamiliar with the 

research on students’ difficulties with proofs, many of the pedagogical strategies that they 

employed in their proof presentations were addressing these issues. 

Although there have been some reform efforts in proof-based mathematics courses 

(Leron & Dubinsky, 1995; Larsen, 2009), traditional lecture is still widely used in undergraduate 

education (Armbruster, 2000; Bressoud, 2011). Despite this, researchers have not identified the 

varying pedagogical practices that may occur among instructors who identify as traditional. Thus, 

a research-based understanding of teacher practice in traditionally taught proof based courses is 

necessary to “support and explain results of studies of students’ proof-writing abilities” (Fukawa-

Connelly, 2012a). The studies that do describe aspects of teacher practice in proof-based 
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traditional mathematics courses are single case studies (Fukawa-Connelly, 2010; Fukawa-

Connelly, 2012a; Weber, 2004). This study adds to the existing literature by providing a multi-

case study, and by combining observation data with interviews of the instructors.  

Since Mejia-Ramos and Inglis (2009) identified proof presentations as an area needing 

further research, there have been many studies focusing on instructors’ pedagogical perspectives 

of their proof presentations (Alcock, 2010; Weber, 2011; Yopp, 2011; Hemmi, 2010). There have 

also been case studies describing different aspects of in-class proof presentations (Weber, 2004; 

Fukawa-Connelly, 2010; Fukawa-Connelly, 2012a). The rationale for the investigation of proof 

presentations is that the instructors’ proof presentations are the primary way that the instructor 

models the mathematical behavior of proof writing to his students. This study will provide further 

justification for research on proof presentations by documenting the large proportion of class time 

that instructors spend on proof presentations.  

 Instructors in mathematics classes have been shown to use examples in various ways. 

When proving, students tend to prefer empirical arguments (Harel & Sowder, 1998). This 

tendency to reason with examples is not inherently problematic, in fact, expert mathematicians 

have been shown to use examples when formulating and testing conjectures and when 

constructing and verifying proofs (Inglis, et al, 2007; Lockwood, et al, 2012; Weber, 2011). Also, 

instructors claim that they use examples as a pedagogical tool in their proof presentations 

(Alcock, 2009; Weber, 2011). This study will document the when and how the four participants 

used examples in their proof presentations, providing a coherent framework that is grounded in 

observation and interview data and informed by the literature.  

 Questions posed by instructors at the K-12 level are understood to be primarily factual 

(Anderson & Krathwohl, 2001; Sahin & Kulm, 2008), with the exception of exchanges in which 

mathematical proofs are offered (Thompson, et al, 1994). In undergraduate level proof-based 

mathematics courses, some instructors do not interact with their students using questions (Weber, 
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2004), while others ask a variety of questions, including some higher-order questions (Fukawa-

Connelly, 2012a). Higher order questions were often followed by a sequence of narrowing 

questions so that the students eventually responded to a factual question (Fuakwa-Connelly, 

2012a).  This study will give an analysis of the types of questions asked by instructors in proof-

based mathematics classes as well as an analysis of the questions that were actually answered by 

the students. The level of the questions will be determined by a two-dimensional framework that 

is based on Anderson’s Revised Bloom’s Taxonomy (Anderson & Krathwohl, 2001) and 

Mehan’s (1979) four types of questions.
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CHAPTER III 
 

 

METHODOLOGY 

 

The purpose of this multi-case study is to examine the teaching practices of four mathematics 

instructors who were teaching different proof-based mathematics courses using lecture methods. 

In particular this study will investigate pedagogical tools that they use when presenting 

proofs in class, how they allocate time within lectures, how they use examples in 

conjunction with their proof presentations, and how they use questions in their lectures. 

The initial research questions were questions 1 and 2. The analysis of those questions led to the 

identification of two pedagogical moves, examples and questioning, which are the focus of 

research questions 3-6.  

1. What pedagogical moves do instructors plan to use to help students understand their proof 

presentations, and how often do they use these moves? 

2. How do instructors allocate their class time in traditionally taught proof-based 

undergraduate courses? 

3. What types of examples do instructors use in presentations of theorems and proofs in an 

upper-division proof-based mathematics course, and when do these examples occur 

chronologically in relation to the presentation of theorems or proofs? 
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4.  What are the instructors’ pedagogical uses for the different types of examples when 

presenting the statement of a theorem or a proof?  

5. How often do instructors who are teaching advanced mathematics using lecture methods 

interact with their students by asking questions? 

6. What types of questions are asked by instructors who are teaching advanced mathematics 

using lecture methods, and what types of responses are expected of students? 

This chapter describes the study’s research methodology and has sections that discuss the 

following areas: (a) rationale for research approach, (b) description of the research sample, (c) 

summary of information needed, (d) overview of research design, (e) methods of data collection, 

(f) analysis and synthesis of the data, (g) ethical considerations, (h) limitations of the study.  

3.1 Theoretical Perspective and Rationale 

 The epistemology underlying this study is constructionism, which is often referred to as 

radical constructivism (Von Glasersfeld,  1995). Crotty (1998) states that constructionism is, “the 

view that all knowledge, and therefore all meaningful reality as such, is contingent upon human 

practices, being constructed in and out of interaction between human beings and their world, and 

developed and transmitted within an essentially social context” (p. 43). Therefore, the researcher 

constructs his or her understanding of the data by engaging in interaction with the data and 

participants throughout the analysis process. The epistemology of constructionism adopts the 

point of view that it is impossible to describe social phenomena purely objectively, because any 

such description is subject to the researcher’s interpretations. Thus, to maintain trustworthiness, 

researchers using this epistemology must be upfront about their perspectives, and must clearly 

articulate all of the steps that were used in data collection and analysis.  

 The constructionist epistemology provided a lens through which to analyze my data. In 

particular, it allowed me to proceed with the analysis in an iterative manner. Von Glasersfeld 
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states that, “Empirical facts, from the constructivist perspective, are constructs based on 

regularities in a subject’s experience. They are viable if they maintain their usefulness and serve 

their purposes in the pursuit of goals” (Von Glasersfeld, 1995, p. 128). Thus, throughout the 

multiple phases of data analysis, I was constructing my results from the regularities that were 

occurring in the data. This process allowed me to identify areas of focus as I pursued my research 

questions. 

3.2 Research Design 

 This study is a descriptive multi-case study, as it seeks to describe the phenomenon of 

teaching proof-based mathematics courses in the context of real classrooms. Case study research 

is defined as “the in-depth study of one or more instances of a phenomenon in its real life context 

that reflects the perspective of the participants involved in the phenomenon” (Gall, Gall, & Borg, 

2007, p. 447). According to Yin (2003), “case study research is the method of choice when the 

phenomenon under study is not readily distinguishable from its context” (p. 4). Since the 

phenomenon of teaching proof cannot be divorced from other social aspects of the classroom the 

context is necessary for interpreting the results of this study.  

Case study research is commonly used to investigate teacher practice. Several recent 

studies that investigate teaching mathematics at the advanced level have been case studies 

(Weber, 2004; Fukawa-Connelly, 2012a; Fukawa-Connelly, 2012b), and multi-case studies at the 

K-12 level have also been conducted to investigate teacher practice (Zodik & Zaslavsky, 2008). 

Yin (2009) lists two major components of case study designs. Case studies can be single-

case studies or multi-case studies. They can also have one unit of analysis or several embedded 

units of analysis. This study is what Yin (2009) calls a Multi-Case Embedded Design. A diagram 

of this type of design is shown in Figure 1.  
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Figure 1: Multi-Case Embedded Design (Yin, 2009; p. 46) 

 

 

 

 

 

 

 This study is comprised of four interrelated case studies of mathematics instructors who 

are teaching upper-division proof-based mathematics courses. The embedded units of analysis are 

the proof presentations, the allocation of class time, the examples used in proof presentations, and 

the questions asked by the instructors. The context for each case is extremely important for 

interpretation of the results, but there is logic for drawing cross-case conclusions. In the past, 

some have compared multiple cases to multiple responses in a survey, that is, cross-case 

comparison follows “sampling” logic. This is a mistaken analogy because the selection of the 

cases is usually not done using statistical sampling methods. Rather, the logic for cross-case 

comparisons can be compared to the logic of a scientist who does multiple experiments. The 

scientist may conduct an experiment and draw a conclusion. Then, the scientist tries to replicate 

that experiment to provide robustness to his conclusions. Multi-case studies follow a similar 

logic. Cases can be selected to predict similar results, or to predict contrasting results for 

anticipatable reasons (Yin, 2009).  
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 Qualitative research is used to explore and describe social phenomena, and is often used 

to investigate the complexities of the sociocultural world (Bloomberg & Volpe, 2012). Teacher 

practice in the classroom is a complex social phenomenon which cannot be fully described by 

quantitative methods, thus, my data collection methods and theoretical perspective were 

essentially qualitative.  

 My study design, however, is an emergent mixed methods design. The quantitative aspect 

of the study occurred after the study was underway, thus, the design is called “emergent” 

(Creswell & Plano-Clark, 2011). The quantitative parts of the study were conducted by 

quantizing the qualitative data and computing descriptive statistics to provide a more in-depth 

picture of the instructional practices. Because the qualitative and quantitative methods were 

mixed at the data analysis phase, and no quantitative data were collected, the study is considered 

embedded in qualitative methodology, and can be described as “QUAL-quan” (Creswell & Plano-

Clark, 2011).  

 I began my study by investigating the first two qualitative research questions, and the 

conclusions that were drawn from those research questions led to other, more quantitative 

research questions. The first research question addressed the pedagogical moves that the 

instructors make when they are presenting proofs in class. The conclusions showed that the 

instructors used examples in their proof presentations to varying degrees, and that they interacted 

with their students frequently by asking questions during their proof presentations. This analysis 

led to the identification of two areas of instructional practice that I would further explore: use of 

examples and instructor questions. In particular, the fifth and sixth research questions which deal 

with the frequency and types of questions that are asked by the instructor required a significant 

amount of quantitative analysis, such as frequency counts and percentages.  
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Figure 2: Research Design Diagram 

 

 

 

 

 

 

 

 The research design diagram in Figure 2 outlines the flow of the data collection and 

analysis. The interview and observation data were collected. The interview and observation data 

were used to address the first research question, and the observation data were used to address the 

second research question. The conclusions drawn from the analysis of proof presentations led to 

the development of the 3
rd

-6
th
 research questions, addressing the examples used in proof 

presentations and the instructor questions. Upon the completion of the data analysis of examples 

used in proof presentations, follow-up interviews were conducted.  

3.3 Information Needed to Conduct the Study 

 This multi-case study investigates the teaching practices of four university teachers who 

are teaching proof-based upper-division mathematics courses. In particular, this study will focus 

on the tools that they identify for proof presentations, the ways that they allocate their class time, 
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the different examples that are used in proof presentations, and the types of questions that they 

ask their students. Contextual information describes the culture and environment of the setting, 

and is critical for case study research. This information was found by using the university’s 

course catalog, records of student enrollment, and interview data from the participants. Since the 

data contain interviews, perceptual information about the participants’ experiences in teaching 

proof-based courses shapes the interpretation of the data. The contextual and perceptual 

information is presented in Section 3.4: Research Participants and Settings.  

Table 1: Information Needed for the Study 

 What the Researcher Requires Methods 

Contextual  Organizational background, course 

descriptions, enrollment information. 

Course catalog, 

university records, 

interviews 

 

Perceptual Participants’ descriptions of their 

experiences teaching proof courses. 

Interviews 

Research Question 1 Participants’ views on the pedagogical tools 

that will help students to understand their 

proof presentations. 

 

Interviews 

Research Question 2 Analysis of the time allotted for various 

course components including presenting 

definitions, theorems, proofs and examples. 

Observations 

Research Question 3 Examples used in proof presentations and the 

context in which the examples were used. 

Observations 

Research Question 4 Participants’ reasons for using different types 

of examples. 

Interviews and 

inferences drawn from 

observations 

 

Research Question 5 Counts of the number of questions asked by 

instructors, total class time, and student 

responses. 

 

Observations 

Research Question 6 Analysis of instructor questions using the 

Cognitive Process dimension and Expected 

Response Type dimension 

Observations and 

inferences drawn from 

observations 
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 Six research questions were formulated, and the information needed to answer these 

questions is outlined in the table. In addition, an ongoing review of the literature was conducted 

to provide the theoretical grounding for the study.  

3.4 Summary of Data Collection and Analysis Procedures 

 The following summarizes each step that was used to carry out this research. An in-depth 

description of each stage of the research will follow.  

 1. Preceding the collection of data, a literature review was conducted to frame the study 

with existing results and to justify the purpose for this research. The literature review was 

ongoing throughout the entire research process, examining the contributions of others in the areas 

of mathematical proof, teacher practice at the university level, example usage in mathematics 

classrooms, and instructor questions.  

 2. I acquired approval from the Institutional Review Board to proceed with the research. 

The IRB application required me to be explicit about all data collection and analysis methods, and 

to ensure that this study would meet the standards for the protection of human subjects including 

informed consent documents and confidentiality. 

 3.  Research participants were identified by looking at the departmental teaching 

assignments. All instructors who were teaching proof-based undergraduate level mathematics 

courses were contacted in person and asked to participate in the study. Three participants 

volunteered to participate in the study. 

 4. Upon recruitment, a one-hour interview was scheduled with each participant. At the 

time of the interview, directions for data analysis had not yet been determined, so the interview 

questions were intentionally broad. The participants were asked to describe how they present a 
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proof in class, and what they do to help the students understand a presented proof. To help them 

focus, they were asked to describe a particular proof that they might present in their content area.  

 5. The interview data were analyzed using the constant comparative method to determine 

the different pedagogical moves that the instructors would make during proof presentations to 

help their students understand their presentation. The two overarching themes that emerged were 

expected engagement and proof presentation strategies. The four proof-presentation strategies 

that were identified from the interview data were outline, examples, logical structure, and 

historical context. 

 6. Throughout the course of the semester, approximately every two weeks, video-taped 

observations of each classroom were conducted. The camera was focused on the instructor and 

the chalkboard. Dates for the observations were discussed in advance with the instructor to avoid 

collecting data on exam days. Six or seven observations of each faculty member were made 

throughout the semester. 

 7. Initial analysis of the video data included making detailed logs of each observation that 

described the activities of the instructor, identifying and transcribing all instances of proof 

presentations, and looking for instances when the instructors were using the different pedagogical 

tools that they mentioned in their interviews. This initial analysis showed that the instructors, on 

average, were using half of their class time on proof presentations. This finding further justifies 

the importance of investigating proof presentations in advanced mathematics courses.  

 8. Although the data were initially collected as a pilot study, the data were so rich that my 

advisor and I decided that the data were sufficient for my dissertation study. Thus, a proposal was 

defended and accepted by her committee.  

9. Another participant was recruited, and an initial interview was conducted with this 

participant. In this case, the instructor was teaching a course with a distance-learning student, and 



48 

 

so all of the lectures were video-taped by the campus IT staff. In this case, a sampling of the 

video-taped lectures was used. This sample was comparable to the sampling from the other 

instructors. Proof presentations in this data were transcribed. 

 10. The observation data were analyzed to determine the incidents in which examples 

were used in conjunction with proof presentations. Examples were categorized using the constant 

comparative method, and then categories were compared to the types of examples that were 

identified in the literature. The types of examples that matched with examples found in the 

literature were named in a method consistent with the literature, and categories that were not 

found in the literature were identified as well.  

 11. A framework for example usage was constructed by determining the timing of when 

the examples were presented in conjunction with the theorem/proof pair and the pedagogical 

intentions of the instructor.  

 12. Timelines of each observation were constructed to record the content to which class 

time was allotted, and the source of the verbalization in the classroom. The categories for content 

were Definition, Theorem, Example, Proof, and Homework Problem. The categories for 

verbalization were Students Speaking and Instructor Speaking. These timelines can give a visual 

representation for how class time was spent. 

 13. The four participants were contacted again to participate in follow-up interviews to 

serve as a member-check. The participants were shown their timelines, the framework for 

example usage, and transcripts of their observations. They were asked specific questions about 

particular uses of examples, and asked to comment on their timelines and the framework. They 

were also asked to comment on the ways in which they questioned their students, although a 

detailed analysis of their questions had not yet been completed.  
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 14. The observation data were viewed again, and all of the questions asked by the 

instructor were transcribed into an Excel spreadsheet. Multiple dimensions were recorded for 

each question, including the time in which the question was asked, whether or not the question 

was linked to another question, whether or not there was a student response, the cognitive 

engagement required to answer the question, and the type of response expected of the student. 

The cognitive engagement dimension was an adaptation of Anderson’s Revised Bloom’s 

Taxonomy (Anderson & Krathwohl, 2001), and the expected response type was a modification of 

Mehan’s (1979) four types of questions.  

3.5 Definitions 

 3.5.1 Proof-Based Mathematics Course: A proof-based mathematics course is a course 

in which students are expected to comprehend written proofs and create original proofs for 

themselves.  

 3.5.2 Traditional Lecture: In this study, I will use the phrase traditional lecture methods 

to refer to teaching methods in which the instructor is the primary mathematical authority. In 

traditional classrooms the instructor is typically standing at the board presenting material while 

the students are sitting in rows in their desks.  

 3.5.3 Proof:  “The process an individual employs to remove or create doubts about the 

truth of an observation” (Harel & Sowder, 1998). For this study a mathematical presentation was 

coded as a proof if one of these three indicators was present: the instructor himself said or wrote 

the word “proof” in reference to the presentation, the instructor provided partial or complete 

justification for a claim, or the instructor worked a homework problem that required justification.  

 3.5.4 Proof Presentation: A proof presentation contains both the statement of the claim 

that is to be proved, the proof itself, and any comments or examples that precede or follow the 

theorem/proof pair that are related to the proof. The beginning and ending of the presentation 

were determined by natural breaks in the dialogue. 
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 3.5.5 Example: A specific, concrete representative of a class of mathematical objects, 

where the class is defined by a set of criteria.  

 3.5.6 Generic Diagram: A picture that is used to guide and structure a proof that lacks 

the specificity to be considered an example.   

 3.5.7 Question:  Any utterance that had the grammatical form of a question as well as an 

utterance that were intended to elicit a student response were considered questions. 

3.6 Research Participants and Settings 

  A purposeful sampling was used to select the participants in this study. In particular, 

criterion sampling (Bloomberg & Volpe, 2012) was used to select faculty members who were 

teaching proof-based upper-division mathematics courses at a large comprehensive research 

university. Four faculty members agreed to be interviewed and video-taped as they taught 

periodically throughout the semester. All four professors are tenured, have many years of 

teaching experience, and are well respected by their colleagues. Three of the four have won 

awards for their teaching. The four courses observed were Introduction to Modern Algebra, 

Number Theory, Geometry, and Introduction to Modern Analysis (Advanced Calculus). To 

protect the anonymity of the participants, masculine pronouns will be used for all of the 

participants throughout this paper regardless of their gender. 

The observation data revealed that in all four classrooms the instructors were 

standing at the board talking while the students were sitting in rows in their desks taking 

notes. Although there were varying degrees of interactions between the teacher and 

students, instances of student-to-student interactions were not observed. When asked 

what instructional method that they used in class, Dr. A and Dr. N said that they used 

lecture, while Dr. C and Dr. G were both more comfortable referring to their style as 

“modified lecture,” because they attempt to involve students. Several of the instructors 
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said that they did not use inquiry methods, which they described as “leaving them [the 

students] with open-ended problems.” 

 The interview data were used to present a summary of each participant’s views about 

teaching proof, which will provide a setting for the four case studies. In the interview, the 

participants were asked their purpose for presenting proof in class and what they do when they 

present proof in class to help the students understand. These questions were rather broad, and did 

not specifically focus on examples or questioning methods. The interview data were coded in an 

iterative process using the constant comparative method (Glaser & Strauss, 1967). Interview 

questions can be found in Appendix A, and the codes from the analysis are in Appendix B.  

3.6.1 Dr. A’s Algebra Class. Introduction to Modern Algebra is a course that serves two 

purposes at this university. It is both an introduction to proof, and covers either group theory or 

ring theory, depending on the choice of textbook. The university course catalog says that this 

course covers an introduction to set theory and logic, elementary properties of rings, integral 

domains, fields, and groups. The class consisted of 24 students, and because students who are 

minoring in mathematics often take this course there is a more diverse range of majors. There 

were six math education majors, eight math majors, six engineering majors, two computer science 

majors, one geography major, and one chemistry major. There was one sophomore, and the rest 

were approximately half juniors and half seniors. 

During the first week of classes, I sat down with Dr. A for our initial interview. The 

codes that he mentioned most frequently were: student understanding, level of audience, drawing 

pictures, and students should think about it at home. He seemed to be very focused on student 

understanding of the concepts. He said, “I try very hard to say to the students, 'What does the 

statement mean?' 'What do we have to prove?' Ok, 'What do we have to do to get this thing?'”   

He said that he likes to “not do stuff about proving things, I like to prove something and then talk 

about why I'm doing it in the middle of the proof. Of, um… I like to weave in, um, fundamentals, 
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foundational things, into the proof.” He expressed a desire to get into the algebra content and 

show the methods of proof within the content rather than teaching methods of proof first.  

When presenting the material in class, he mentioned several times that he doesn’t like to 

write out all of the details, because he believes that the students should get ideas from the lecture, 

and then go home and work out the details on their own. He also believes that there is value in 

showing students the thinking behind constructing a proof, and says that when presentations are 

“too slick” that they are often too fast for students to fully comprehend. He said that he enjoys the 

give and take with students, and that he likes to “just talk math and figure out what's true and 

what's not true and what we can understand, as opposed to the formal teaching and all.”  

3.6.2 Dr. C’s Advanced Calculus Class. The course catalog says that the introduction to 

modern analysis course covers properties of the real numbers, sequences and series, limits, 

continuity, differentiation and integration. There were 9 students in the class: five were math 

education majors, two were math majors, and two were engineering majors. Eight were seniors, 

and one was a junior. 

 Dr. C’s interview took place after the semester was already over, because the observation 

data collected from Dr. C was archival. Dr. C had taught a section with a distance learning 

student, and so all of the class periods were video-taped and already on file. The interview codes 

with the highest frequency were: examples, time constraints, asking for student input, proof is a 

means of verification, draw pictures, importance of applications, and proof is a means for 

communication.  

 He talked of being aware of where the students are by asking a lot of questions and 

getting the students to talk. He says that he likes to “have some sense that people are processing 

on what I am saying and with me before I move on.” He likes to include applications of results so 

that the students see the need for the mathematics and how it is situated among other 

mathematical areas.  
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 When presenting a proof, Dr. C talked a lot about the need to prepare students minds for 

formal proof.  “I try to prepare their minds for proof, and usually that happens by example and 

computation… Proof is the means by which we verify interesting facts that we observe. 

Sometimes facts are observed by calculation, and by patterns in lots of examples, and the proof 

verifies the facts.” So, this way of thinking about proof verifying the facts that we can discover by 

doing examples may influence his style of proof presentation.  

He also talked about showing the thinking behind the proof construction, and the value of 

a non-linear presentation. Dr. C likes to involve the students in proof presentations. He says, “I 

ask them to help me. I think I always ask them to help me, and I think that I have, well, I don't 

know. Hopefully I always ask them to help me, it depends on how much time we have. If I'm 

running short, I might not.” So, he does value student interaction, although he realizes that the 

time constraints of the classroom may not always allow for it.  

3.6.3 Dr. G’s Geometry Class. The university catalog describes this course an axiomatic 

development of Euclidian and non-Euclidian geometries. The class enrollment consisted of 9 

students: four math education majors, four math majors, and one engineering major. Eight of the 

students were seniors, and one was a junior.  

 The interview took place during the first week of classes. The codes that Dr. G mentioned 

most frequently were: level of audience, write out details, ask questions to students, wait for 

responses, interact with students, historical significance, skip details of difficult proofs, and 

comment about proof structure.  

 Dr. G emphasized that he wants the students to be interacting with him throughout his 

lecture. He said “I insist throughout, throughout my lecture that the students respond to me…  I 

just won't, I won't let them sit there. I just won't let them do it. So eventually, I just insist that I get 

some kind of response. You can say 'I don't know' if you absolutely have to, but you have to 

respond somehow.” He wants to have feedback from his students, possibly so that he can adjust 

the presentation of the material to the level of his audience.  
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 He also talked a lot about the historical significance of some of the famous proofs in 

geometry. He said that he would sometimes present a more difficult famous proof that he doesn’t 

expect the students to be able to reproduce. “Sometimes there are proofs that are just too far, the 

class is not ready, they're more advanced and so you might say something about the theorem, but 

either skip the details, or maybe skip the proof all together, but basically if it's something that I 

think the class has a chance of following then I'll do it. I think you should take every opportunity 

to do real mathematics in math classes.” 

He also said that when he presents a proof that is within the students’ ability, he makes a 

lot of comments about the structure of the proof and often asks students to tell him the next step 

as he walks through the proof. He also said that he would write out all of the details of the proof 

on the board.  

3.6.4 Dr. N’s Number Theory Class. The university course catalog says that this course 

covers divisibility of integers, congruences, quadratic residues, distribution of primes, continued 

fractions, and the theory of ideals. There were 14 total students in the class: seven were math 

education majors, six were math majors, and there was one engineering major. Thirteen of the 

students were seniors, and there was one junior. 

 The interview also took place during the first week of the semester. The codes that had 

the highest frequency in Dr. N’s interview were: level of audience, problem solving, ask for 

student input, ask questions, dealing with student responses, group projects, logic, and 

application.  

 Dr. N clearly wanted to make sure that his teaching style addressed the needs of the 

students. He talked about how the last few times he has taught Number Theory he has skipped the 

difficult proof of quadratic reciprocity and instead talked about how the principles of quadratic 

reciprocity can be applied to credit card transactions. He said, “I've tried to make it more applied, 

just to have a bigger audience, so, I'll put in to, in undergraduate number theory, I'll put in a unit 

on cryptography, and other applications of number theory.” He also advocated doing group 
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projects in Number Theory. These projects consist of giving the student groups a pattern to 

explore, with the hopes that they will discover a pattern and be able to come up with a theorem. 

He said that they often find all kinds of different patterns that he didn’t expect.  

 Another emphasis that Dr. N made was that all of mathematics is just problem solving. “I 

don't think of them as proofs, I think of them as solutions to problems. And, I think that that's 

what math is all about is solving problems, and, uh, a carefully reasoned, step by step solution is a 

proof. And, so when I'm presenting proofs, I'm presenting proofs to harder problems, so if I never 

go there, the students are never going to learn how to solve harder problems. And, uh, anyways, I 

view the focus of math is solving problems.” He referenced the work of Polya (1945), and talked 

about how he likes to incorporate Polya’s methods of asking questions to lead a student through 

the problem-solving process. Dr. N expressed that he couldn’t always teach in the style of Polya 

because of class size and time constraints, but that he believes it is what should be done.  

 He said that he likes to spend time in a class discussion brainstorming how to attack a 

proof. He starts by presenting the theorem, “I try to read the fact that we're trying to uncover, or 

the theorem, and I say, 'What's important here? What do you think of when you read this?' And, I 

ask for ideas, what relevant theorems might be true and things like that… And then we discuss 

whether or not they really are relevant or not, you know. And, uh, so, um, if I have time, I like to 

engage in that sort of thing. You know, that's what you do in real life when you're trying to solve 

a problem, is you try to think of things which are relevant to what you're doing, and you try to 

find things and piece them together into the proof of what you're trying to do.” He also mentioned 

that he is not worried about making mistakes in class, because that can show the students what 

solving problems in real life looks like.  

 Dr. N lamented that the students aren’t taught basic logic anymore. He talked about how 

he has to incorporate teaching basic logic to the students as he is presenting proofs in class. 

Another presentation tool that he mentioned was pattern generalization. He said that he likes to do 
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some numerical examples before presenting a theorem, in hopes that the students will be able to 

guess the statement of the theorem. 

3.7 Data Collection Methods 

 Participants were solicited from among the instructors who were teaching proof-based 

mathematics courses at the undergraduate level at a Midwestern research institution during the 

2010-2011 school year. Four experienced, tenured faculty members agreed to participate in the 

study.  The courses that they taught were Abstract Algebra, Number Theory, Geometry, and 

Advanced Calculus (Introduction to Modern Analysis). The instructors and their courses were 

described in detail in the previous sections.  

Multiple types of data were collected to achieve triangulation (Creswell & Plano-Clark, 

2007; Bloomberg & Volpe, 2012). The data sources are an initial interview with each participant, 

six to seven video-taped observations of each participant’s teaching, and a follow-up interview 

upon completion of the data analysis.  

 In the initial interview, the participants were asked to describe what they do to help the 

students understand a proof that they present in class. The interview method was used because it 

allows the participants to voice their own perspective of teaching advanced mathematics, and 

their comments as well as the existing literature are used to frame the data analysis. Because the 

interview was designed to frame the analysis of the observations, the initial interview questions 

were intentionally broad, asking the instructors to describe their experiences teaching proof-based 

courses, their philosophical stance on why we should ask students to do proofs, and why we 

should present proofs in class. Then they were asked how they decide whether or not to present a 

proof in their lectures, and what strategies they use when presenting a proof to help their students 

understand. Finally, they were asked how they assess student understanding of the proofs that 

they present in class. The initial interview questions can be found in Appendix A.  
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Table 2: Observation Data Collection 

 Algebra Adv Calc Geometry Num Thry 

Instructor Dr. A Dr. C Dr. G Dr. N 

# Students 24 9 9 14 

# Instruction Days 44 29 44 44 

# Observations 7 7 6 6 

Total time observed (min) 323 536 250 264 

 

 Dates for video observations were purposefully chosen to be approximately every two 

weeks of the semester, to be convenient for the instructor, and to avoid exam days. The number of 

instruction days and observations are recorded in Table 2. Three of the courses met three days a 

week for 50 minutes, while the fourth met for 75 minutes per class period. All four courses had 2-

3 mid-term exams and a comprehensive final exam, as well as periodic homework assignments.  

There was no noticeable variation in teaching style across different instruction days for 

an individual participant, and so the data can be considered saturated in regard to the teaching 

methods used (Glaser & Strauss, 1967), therefore providing a fair snapshot of each instructors’ 

teaching. 

Some of the video was collected by the university’s IT department, but the majority of 

the video was collected by either myself or a hired technician.  Technical difficulties in the data 

collection include one instance when the video camera battery died during an observation of Dr. 

G’s class, and another instance when part of the video file was corrupted in an observation of Dr. 

N’s class.  
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 Follow-up interviews were conducted in the spring semester of 2012. These interviews 

served as a member check, so the interview procedure varied slightly for each participant. The 

overall structure of the follow-up interview was to first allow the participant to comment about 

their thoughts on example usage and student interaction, then to share with the participant the 

analysis of their observation data, and then ask for any additional comments or explanations as 

needed. These were one-hour interviews that took place upon completion of data analysis of the 

observations, about a year after the completion of observation data collection. In the follow-up 

interview, the participants were presented with my descriptions of their classroom examples, 

excerpts of the transcripts from their teaching, and the timelines that showed how they partitioned 

their class time and the amount of time that the instructor and students were speaking. The 

participants were asked to comment on several instances when they used examples in proofs. 

They were also asked to comment on the framework for example usage in proof presentations and 

the hypothesized intentions for the different types of examples that they used. Although a detailed 

analysis of instructor questions had not yet been completed, they were also asked about their 

interactions with their students. The follow-up interview questions can be found in Appendix C.  

3.8 Data Analysis and Synthesis 

Qualitative data can be analyzed in several ways. The researcher can begin with a 

hypothesis and the data can be quantized and analyzed using quantitative methods, or the 

researcher can use the data to develop theory by taking notes and making memos, without 

explicitly coding the data. The constant comparative method combines an explicit coding 

procedure with the style of theory development (Glaser & Strauss, 1967). The researcher begins 

by coding each incident in his data into as many categories as possible as the categories emerge. 

This could be done through memo writing or by chunking the data onto cards. Then he compares 

the incidents that appear in each category so that the properties of the category begin to emerge. 

The language used may come directly from the data, or may be a description of the category that 
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the researcher creates. Over time, the researcher compares each incident to the description of the 

categories that have emerged. This will force the researcher to choose the most important 

characteristics of an incident, so that the same situation is not used over and over again in 

different categories. 

Data analysis occurred in several phases. The interview coding employed the constant 

comparative method (Glaser & Strauss, 1967) to identify themes in the data. For this study, the 

interviews were chunked into segments, and segments pertaining to the pedagogical tools that the 

instructors were using in proof presentations were extracted. These chunks were placed on index 

cards and sorted into piles. Two main themes emerged: comments that were focused on specific 

proof presentation strategies, and comments that referred to different ways that the instructors 

would interact with their students. Within those two themes, quotes pertaining to particular 

strategies were grouped into piles, and quotes pertaining to particular ways of interacting were 

grouped into piles. By comparing quote to quote, the characteristics of each category became 

clearer. Then the quotes were compared with the characteristics of each category as they 

developed.  

The most frequent proof presentation strategies that were mentioned by the participants 

were chosen to use for the analysis of the observations. The interaction categories pertained more 

to the expectation of the instructor than the actual actions of the students, and thus the name for 

this theme developed into expected engagement. The different categories fell easily into a 

hierarchy, from least expected engagement to greatest expected engagement, which is presented 

in Table 4.  

The frequencies of the codes as well as excerpts from the interviews were used to 

describe the contextual and perceptual information provided in Section 3.4. The interview data 

were also used to identify proof presentation tools and levels of expected engagement that were 
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mentioned by the participants. The observation data were viewed, activities were categorized, and 

all instances of proof presentations were transcribed. Each proof presentation was coded for the 

proof presentation tools that were used, and the level of expected engagement.  

The next phase was a more in-depth investigation of one particular proof presentation 

tool: the use of examples. The examples that were used in the proof presentations were analyzed 

using codes developed from the literature and new codes were developed and codes were 

modified throughout the analysis process. The examples were organized based on when they 

occurred within the presentation of the theorem/proof pair into a descriptive framework that 

describes the ways in which examples are used in proof presentations.  

The final phase of analysis of the observation data was a further exploration into the ways 

that the instructors engaged their students by asking questions. Each instructor question was 

transcribed and analyzed across several dimensions: the cognitive engagement, expected response 

type, student response, and whether or not the question was linked to another question. A separate 

analysis was conducted, restricting to only questions that were answered by the students. This 

was done to investigate the cognitive level of the questions that were actually answered by the 

students. 

3.8.1 Interview. The interviews were semi-structured, addressing what the instructors do 

when they present proofs in class, why they make those choices, and what they do to help 

students understand their presentation of proofs in class. The interview questions can be found in 

Appendix A. The interview data analysis served two purposes: to provide the settings for the case 

studies by describing the participants’ teaching philosophies, and to identify themes with which to 

analyze the observation data.  

The interview data were analyzed to give an overall impression of each participant’s 

views on teaching proof. The interview data were transcribed and broken into chunks which were 
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sorted into groups to identify themes, using the constant comparative method (Glaser & Strauss, 

1967). The themes that occurred in this analysis are given in Appendix B. The frequency with 

which these themes appeared in the interview data gives an impression of what each participant 

values when teaching proof-based courses. Excerpts from the interview data were also used to 

describe the settings for the case studies, as presented in Section 3.5. 

 

Table 3:  Coding Scheme for Proof Presentation Strategies     

 Description Interview Segments 

Outline Discussed the ideas of the proof 

before writing out the proof 

“Probably I’ll start with kind of an outline. 

And then after I sort of, hopefully, get the 

plan down, then I’ll say, ‘Ok, now we’re 

gonna write down the details.’” 

 

Examples 

 

Uses examples to motivate the 

theorem or proof, or to support 

students’ understanding of the proof 

I have to play with that statement in my 

brain to make sense of it. Well, how do I 

make sense of it? I start looking at 

examples. So, that's why I do that a lot. 

 

Logical 

Structure 

 

Discuss the logical structure of the 

statement or the proof, specific 

references to logic during a proof 

presentation 

“And, so then I make the statement on the 

board, and I point out if it’s an if-then 

statement, or if it’s a, both, if-and-only-if 

statement, and I talk about that, what we 

have to prove then.” 

 

Context 

 

Instructor points out the historical 

significance of the proof, or places the 

proof in context of the mathematical 

content area. 

I don’t know, I think everybody who is 

going to teach geometry in high school 

should see this. This is something that they 

should be aware of. 

 

Next, the types of expected engagement and proof presentation strategies that appeared 

in the analysis of the interview data were used for the analysis of the observations. Table 3 

summarizes the four proof presentation strategies that were mentioned the most frequently by the 

participants, along with excerpts from the interview data that give an impression of the types of 

comments made by the participants. 
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Table 4:  Coding Scheme for Expected Engagement     

 Description Interview Segments 

1 

 

Professor does not request active 

contribution during the proof presentation, 

and does not appear to engage students. 

 

(none) 

2 

 

Professor does not request active 

contribution during the proof presentation, 

but based on monitoring, non-verbal 

communication with students, or feedback 

from closed-ended questions. 

 

“I really try to make eye-contact and try to, 

you know, wake them up and make sure that 

they are following me.” 

“Well, first of all, I just try and watch 'em.” 

3 

 

Professor expects students to contribute 

some factual information during the proof 

presentation. 

 

“I'll say something like, well, 'this triangle is 

congruent to that one, why? Tell me why this 

triangle is congruent to that one. What's the 

reason that this one is congruent to that?” 

 

4 Professor expects students to contribute 

some factual information and some key 

ideas of the proof during proof 

presentation 

 

“I may discuss why I chose the next step, or 

give them the opportunity to suggest the next 

step” 

 

5 Professor expects students to generate the 

majority of the ideas for the proof during 

the proof presentation.  

 

“I try to read the fact that we're trying to 

uncover, or the theorem, and I say, 'What's 

important here? What do you think of when 

you read this?' And, I ask for ideas, what 

relevant theorems might be true and things 

like that.” 

“I will ask them to help me set up a strategy 

for what the proof is going to be” 

 

Table 4 summarizes the five levels of expected engagement sorted from least interaction 

to most interaction with excerpts from the interview data that are representative of the codes. The 

categories created from the interview analysis were used to analyze each proof in the observation 

data, which will be described in the following section. 

3.8.2 Initial analysis of observation data. The analysis of the observation data also took 

place in multiple phases. Detailed logs of each observation were created, which recorded the 

time, activities, examples used, and descriptions of what was happening in each chunk of class 

time. Each definition and theorem were included in full, and descriptions of the examples and 
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proof presentations were also included, as well as some of the interactions that occurred between 

the instructor and students. A sample log from each instructor can be found in Appendix D. 

Instances of proof presentation were identified using the following indicators: 

• Instructor wrote a formal proof on the board, and called it a proof himself.  

• Instructor provided partial or complete justification for an argument. 

• Instructor worked problems involving a proof from the students’ homework, or on the 

same level. 

 Because the homework problems required proof or some kind of formal justification, I 

also counted homework problems that were worked or discussed in class as proof presentations. 

Then transcriptions were then made of each instance of proof presentation, beginning with the 

introduction to the statement of the claim and ending after the proof at a natural break in the 

dialogue. Next, counts of the frequency of proof presentation and amount of time of proof 

presentation were computed to give a broad picture of how frequently proofs are presented in 

class.   

Once the transcriptions were complete, I read through each observation again, taking note of 

the amount of time spent on each proof presentation. The times were analyzed to determine the 

amount of class time spent on proof presentations, the number of proof presentations per 50 

minute class period, and the average amount of time spent on each proof presentation.  

The next phase of analysis used each proof presentation as the unit of analysis. Four proof 

presentation strategies were identified from comments made by the professors in the interview 

data. The four strategies are outline, examples, logical structure, and context. Descriptions of the 

four categories are listed in Table 3. For each proof presentation, I noted which of the four proof 

presentation strategies occurred. Some of the presentations contained none of these identified 
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strategies and some contained multiple strategies, in fact, there were proof presentations in my 

data that contained all four.  

 Next, each proof presentation was classified as one of the five levels of expected 

engagement. The categories for expected engagement were constructed from the 

interview data and are presented in Table 4.  

3.8.3 Identifying and coding examples in proof presentations. Three of the 

participants frequently used examples in their proof presentations. This section will discuss my 

definition of “example,” methods for identifying instances of examples in the data, the creation of 

categories of examples, and the creation of my framework for example usage. 

 3.8.3 a. Identifying Examples in the Data. The first step in analyzing the usage of 

examples was to go through all of the observation transcripts and pick out instances that satisfied 

my definition of example. Often, I needed to go back to the actual video footage to see what was 

taking place in the proof.  

Figure 3: Example usage in an observation of Dr. C’s lecture. 

Pf # Theorem Example Type? 

C.9.1 Proves that 

)()()( BAPBPAP ∪⊆∪

 

No examples used  

C.9.2 Absolute value proof. 

yxyx −≤−  

No examples used  

C.9.3 Proves the trichotomy 

law for the field of 

rational functions with a 

particular ordering.  

To explain a partial ordering. Ordering 

on subsets of N, by A<B if A is 

contained in B, and {1,2}, {3,4} are not 

comparable.  

 

Example to illustrate the fact that R has 

no zero divisors, prompted by student 

question. “You know that (x-2)(x-3)=0 

means x=2 or x=3” 

Start-up 

example 

 

 

 

 

 

Instantiation 

of sub-claim 

C.9.4 Prove that a subset of a 

finite set is finite. 

No examples used  
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I also looked at the detailed log of what was happening in the classroom to determine if 

there were any examples near the transcribed proofs that may have been associated with the proof 

in some meaningful way. I took notes on the ways that examples were used in and around each 

proof by making a table for each observation. The tables had three columns: the statement of the 

theorem to be proved, a description of the example(s) used, and notes about the type of example. 

A sample table is presented in Figure 3. Throughout the coding process and as the categories 

developed, I would refer to the tables for an overall picture of the examples that were used.  

 3.8.3 b. Creation of Coding Categories.  First, I identified all of the presentations of 

theorems or proofs that have included examples. I then viewed these portions of the video data 

multiple times, read through the transcripts, and noted the characteristics of each example, 

including the timing of the examples in relation to the presentation of the theorem/proof, the use 

of the example, and the interaction between the instructor and students (e.g. whether the example 

spontaneously generated in response to a student misconception). Constant comparison between 

the incidents of examples and the properties of each category as they developed helped to solidify 

the characteristics of the different types of examples.  

Some of the types of examples conformed to types of examples mentioned in the 

literature. In these cases, I used terminology consistent with the literature. The categories that 

were linked to example types in the literature were: start-up examples (Michner, 1979), pattern 

generalization examples (Harel, 2001; Rowland & Bills, 1999), boundary examples (Mason & 

Watson, 2001), instantiation of a claim or definition (Alcock, 2010), and generic examples 

(Rowland, 2002). 

Some minor changes were made to the categories that were linked to the literature. The 

name pattern generalization example was changed because the purpose is slightly different from 
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Harel’s (2001) two types of pattern generalization, in which the students are attempting to use 

examples to construct a proof of a given claim. In the context of this study, the examples are used 

to lead up to the statement of the claim, which is similar to activities given to students in studies 

on conjecturing (Morselli, 2006). Thus, the name was changed to pattern exploration to reflect 

the exploratory nature of these examples that lead up to the statement of the claim. It has been 

shown that students do not have a broad range of example generation strategies (Iannone, et al, 

2011), and that students who choose examples methodologically are better able to communicate 

their conjectures and even construct some proofs (Morselli, 2006). When an instructor uses 

pattern exploration examples, he is modeling a mathematically mature way to select examples 

that could lead to the formulation of theorems.  

Some of the types of examples did not match any of the types of examples found in the 

literature, so new categories were created in these cases. In particular, there were some examples 

that were instantiating, but were not instantiating the claim or a particular definition. In my data, I 

found examples that were instantiating sub-claims, notation, or just general mathematics 

concepts. The different types of instantiation were used for different purposes. Instantiation of a 

sub-claim is used to support students’ understanding of a proof, while instantiations of 

definitions, notation, or concepts were used to support students’ understanding of the underlying 

mathematical concepts.  

Another change was the addition of a code for metaphorical examples. One problematic 

example occurred when Dr. A was trying to discourage students from counting the identity 

element in S4 multiple times. The students were counting four “one-cycles.” Dr. A then 

commented that there were just multiple ways to write the same element, and he compared it to 

the fractions ½ and 60
30 , stating that these are not two different fractions. At first, this example 

was coded as instantiation, but it didn’t seem to fit into that category because the example was 

comparing the similarities between two different and distinct mathematical structures: 
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permutations on a finite set and equivalence classes of fractions. Thus, a metaphorical example is 

an example that is used to compare one mathematical structure to a different (more familiar) 

mathematical structure. The name was chosen because the example is serving as a linking 

metaphor, linking arithmetic to other branches of mathematics (Lakoff & Nunez, 2000).  

 Once the categories were formed, I began the process of delimiting the categories and 

assigning pedagogical intentions to the example types. Glaser and Strauss (1967) say that “some 

comparisons at this point can be based on the literature of other professional areas (p. 110).” I 

was able to link some of the categories to types of examples found in the literature on 

mathematics teaching and learning. This allowed me to form hypotheses about the pedagogical 

intention of the instructor in the context of the lecture. For categories that did not fit with example 

types that appeared in the literature, I also formed pedagogical intentions based on the properties 

of each category and the interview data.  

The timing of the example in relation to the presentation of the theorem and proof was an 

important factor in determining the pedagogical purpose of the example. Examples will be said to 

motivate a particular mathematical concept if they occur before the concept is presented, and 

support the concept if the example is given during or after the concept is presented. 

The resulting categories with their pedagogical intentions are: 

Warm-Up Examples occur before the statement of the claim and serve to prepare the students 

minds for the claim. 

Pattern Exploration Examples also occur before the statement of the claim and help the students 

to generalize the statement of the claim from concrete examples. 

Boundary Examples serve to highlight the necessity of the hypotheses of the claim and may occur 

before or after the statement of the claim. 
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Examples that Instantiate the Claim occur after the statement of the claim, and may serve to help 

students understand the claim, or to prepare them for the presentation of the proof. 

Generic Examples occur during the proof, and are written side-by-side with the proof so that 

students can take aspects of the particular example and apply it to the general proof. 

Instantiations of a Sub-Claim generally occur during a proof, and support the students’ 

understanding of a sub-claim, which may not be proved if elementary enough. 

Instantiations of Concepts, Definitions, or Notation serve to reinforce the mathematics content 

underlying the claim or proof, and may occur at any time. 

Metaphorical Examples can also be used at any time. These occur when an instructor compares 

some aspect of a mathematical structure to a different, more familiar, mathematical 

structure via metaphor. 

3.8.3 c. Creation of the Framework for Example Usage.  I constructed pedagogical uses of 

examples from the interview data and inferences from the observation data, and ascribed these to 

the types of examples that emerged in the observation data. Then, I began to look for 

relationships among the types and uses of examples (Glaser & Strauss, 1967), and also noted 

when the different types of examples were used in relation to the presentation of the theorem or 

proof. I created a timeline for the presentation, and placed the different types of examples on the 

timeline to represent where they occurred in the data. Some of the types of examples seemed to 

be independent of this timeline, because they dealt with content that could be discussed at 

different points throughout the presentation. Arrows were drawn on the timeline to represent 

whether the examples were intended to motivate or support students’ understanding of the claim 

or of the proof. 

 The framework that I have developed is an organizational structure that illustrates the 

relationship between different types of examples and the presentation of theorems and proofs in 

mathematics lectures. My framework serves to describe the uses and types of examples that 
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emerged directly from my observation data, and provides insight into the pedagogical intentions 

of the instructors via interviews and inferences from the observation data. The framework is not 

intended to predict the behavior of instructors, but rather to describe the types and uses of 

examples in instructors’ proof presentations, and to organize them chronologically with respect to 

the presentation of the theorem and proof. 

3.8.4 Creation of Observation Timelines. To investigate the ways that instructors 

allocate their class time, timelines were constructed of each observation. These timelines were 

inspired by the timelines presented in Atman et al.’s work investigating the problem solving of 

novice and expert engineers (Atman, Adams, Cardella, Turns, Mosborg, & Saleem, 2007). The 

timelines provided a visual way to organize my observation data, allowing me to find sections of 

the data quickly and efficiently, and showing trends that occur within the different types of 

content presented and the interactions between the instructor and students. 

The timelines have categories representing the different types of mathematical content 

that the instructor may present: definition, theorem, proof, example, or homework problem, and 

categories representing the source of verbalization, whether the instructor or students. The 

minutes in each observation are listed across the top of the timeline, and the timelines are shaded 

to represent when the codes were present in the observation. The timeline template was created in 

Microsoft Excel, and each template was shaded by hand as I watched the observation videos. A 

sample timeline is shown in Figure 4, and the timelines for all observations are in Appendix E. 

Since Dr. C’s class periods were 75 minutes long and the timeline template was for 50 minutes, 

only the first 50 minutes of these observations were coded in this particular analysis. 

To answer the question of how instructors allocate their class time, the number of 

minutes spent on each content code for each instructor was totaled and the percentages were 

calculated. To investigate the frequency of interactions between the instructor and student, the 
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number of one-minute intervals in which there was back-and-forth interaction between the 

instructor and students was totaled, and the percentages were calculated for each instructor.  

Figure 4: Timeline from an observation of Dr. G’s lecture 

 

It should be noted that in the timelines the code “proof” was only shaded when the 

instructor was actually doing a proof in class, whereas earlier the time counts for “proof 

presentations” included dialogue leading up to the proof, the presentation of the claim, the 

presentation of the proof, and any comments about the proof that followed the presentation. Thus, 

the percentage of time that instructors spend on proof presentations is more than the percentage 

of time that they spend on just the proofs themselves.  

3.8.5 Identifying and Classifying Instructor Questions. When beginning my analysis 

of interaction patterns, I used the Teaching Dimensions Observation Protocol (CCHER, 2009), 

which is an observation instrument developed as part of the Culture, Cognition, and Evaluation of 

STEM Higher Education Reform, an NSF funded project at the University of Wisconsin-

Madison. This instrument was designed to analyze a class observation in two-minute slices, and 

each two-minute chunk was coded along five different categories. One of the dimensions was 

Instructor/Student Interactions, and another dimension was Cognitive Engagement of the 

Students. The Instructor/Student Interactions had the sub-codes: instructor rhetorical question, 

instructor comprehension question, instructor display question, student response, student novel 

question, and student comprehension question.  
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While investigating my data with this instrument, I quickly discovered that the categories 

that were listed for instructor/student interactions were insufficient for my purposes. First of all, 

the data that I collected was from the instructor and not the students, so I was not able to do an 

analysis of the questions posed by the students. Secondly, all of the questions asked by the 

instructor that required a student response were lumped into the “instructor display questions” 

category. Thus, I decided to parse the “instructor display question” category using Mehan’s 

(1979) four types of questions: Choice, Product, Process, Meta-Process.  

I also decided that the categories that were used for cognitive engagement of the students 

were not very applicable to the advanced mathematics courses that I was observing, and it was 

difficult to really gauge the cognitive engagement of the students because I only collected data 

from the instructor. Thus, I decided to use Tallman & Carlson’s (2012) adaptation of Anderson’s 

Revised Bloom’s Taxonomy to measure the cognitive engagement of the instructor questions.  

 While still using my adapted version of the TDOP, I found that measuring the class in 2-

minute intervals was still too large of a grain size to really capture the interactions between the 

instructor and students. Thus, I changed my unit of analysis to be the individual questions posed 

by the instructor. At this point, I abandoned the TDOP entirely, and focused on analyzing 

questions along two dimensions: Expected Response Type and Cognitive Engagement.  

 Because the literature mentioned that instructors often link questions using a funneling 

pattern (Wood, 1994), I also decided to keep track of which questions were linked, and whether 

or not there was a student response. This way, I can track not only the frequency of different 

types of questions that occur, but I can also do a separate analysis on the questions that were 

actually answered by the students.  

 All of the questions that were posed by the instructor in the observation data were 

transcribed. Like Van Zee and Minstrell (1997), this included all utterances that had the 

grammatical form of a question and some alternative forms. For example, when presenting a 

proof, one particular instructor would often begin a statement and then pause and look at the 
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students. In these situations the instructor appeared to be expecting the students to complete the 

statement, and so this situation was coded as a question.  I also included questions that did not 

involve the explicit seeking of information, such as rhetorical questions or questions to check 

student understanding.  

 For each question, I noted whether or not there was an audible response from the 

students. Since the video was directed at the instructor and the board and not at the students, I 

could not identify or code any nonverbal responses to the questions.  

 Then each instructor question was coded along two dimensions, the Expected Response 

Dimension (adapted from CCHER, 2009; Mehan, 1979) and the Cognitive Process Dimension 

(Anderson & Krathwohl, 2001). First, I coded two videos from each instructor according to the 

descriptions of the categories in the works of CCHER (2009), Mehan (1979) and Anderson & 

Krathwohl (2001). Then, I looked at each category and noted the types of questions that occurred 

in each category. Because all of the examples of questions in the literature on Bloom’s taxonomy 

were of lower-level mathematics content, it was necessary for me to solidify the types of 

questions that occur in each category in the context of proof-based mathematics. I then created a 

document that summarized the types of questions that occurred in each category of Anderson’s 

Revised Bloom’s Taxonomy, which can be found in Appendix F.  I used this document to code 

the questions in the remaining videos. A description of each category is given below:  

3.8.5 a. The Expected Response Dimension. The Expected Response dimension records the 

type of response that the instructor seems to expect from the students. The initial categories were 

found in the Teaching Dimensions Observation Protocol (CCHER, 2009), which used rhetorical, 

comprehension, and display. Rhetorical questions are questions that the instructor did not intend 

for the students to answer. Comprehension questions could often be answered by the students 

with non-verbal responses such as making eye contact, facial expressions, or nodding their heads. 
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So, display questions were used by the instructor when a response was expected. This category 

contained most of the questions, and so I saw the need to parse this category so that the 

instrument would describe the questioning of the instructors in more detail. Thus, the display 

category was parsed by using Mehan’s (1979) four types of questions: choice, product, process, 

and meta-process. The types of questions that were used in the Expected Response Type 

dimension are described in more detail in the following sections.  

 Rhetorical Questions. The question was coded as rhetorical if the instructor either 

answered it himself immediately after posing it, or if he did not wait for the students to 

respond to the question (and it was not linked to another question). 

Comprehension Questions.  Questions such as “Does that make sense?” “Ok?” and “Any 

questions?” were coded as comprehension questions. These often had no verbal response 

from the students, but the instructor would look at the students and gauge their 

understanding based on non-verbal cues.  

 Choice Questions. Yes/No questions or questions where the instructor asked students to 

choose between two or more options were coded as choice questions.  

Product Questions. Questions that require a factual response or short answer were coded 

as product questions. 

Process Questions. When the question required more than just a short answer, or required 

the student to make interpretations, describe computations, or explain the mathematics 

content, they were coded as process questions.  

Meta-Process Questions. Questions requiring the student to reflect on their thinking or 

formulate the grounds for their reasoning were coded as meta-process questions. 
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Questions requesting a student to expound upon their response, such as Minstrell’s 

(1997) reflective tosses, are included as meta-process questions.  

 It became apparent that the most important parsing of this dimension was into rhetorical, 

factual (choice or product) and  

3.8.5 b. The Cognitive Process Dimension. Each question was also analyzed to determine its 

cognitive level based on Anderson’s Revised Bloom’s Taxonomy (Anderson & Krathwohl, 

2001). Because the Bloom’s Taxonomy codes are not specifically tailored to mathematics 

content, one slight revision to the categories was made. The “remember” category was parsed into 

“remember” and “apply a procedure” as in Tallman & Carlson’s framework (2012). This was 

done because often in mathematics students can apply a procedure without understanding the 

mathematics, and therefore the cognitive action of applying that procedure is more at the level of 

“remembering” than it is “applying.” The following are brief descriptions of each level of the 

taxonomy as found in Anderson & Krathwohl (2001) and Tallman & Carlson (2012). For this 

paper, the cognitive level will be parsed into lower order (remember, apply  procedure, 

understand) and higher order (apply understanding, analyze, evaluate, create).  

Remember. Students are prompted to retrieve knowledge from long term memory. 

Apply a Procedure. Students must recognize and apply a procedure. 

Understand. Students are prompted to make interpretations, provide explanations, make 

comparisons, or make inferences that require understanding of a mathematics concept. 

Apply Understanding. Students must recognize when to use a concept when responding 

to a question or when working a problem. 

Analyze. Students are prompted to break material into its constituent parts and determine 

how the parts relate to one another and to an overall structure or purpose. 
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Evaluate. Students are prompted to make judgments based on criteria and standards. 

Create. Students are prompted to reorganize elements into a new pattern or structure. 

Figure 5: Sample Coding Spreadsheet for Question Analysis 
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So, questions on assignment 4. Does anybody have 

anything that they would like me to talk about this 

morning? N Y CQ   HW 

1:13 

Whenever you have sets S union T subset of U, 

how is your proof going to go? Just give me a 

generic structure for the proof. Not even referring 

yet to what’s specifically in problem 8.22. N Y PRQ A PF 

2:18 

Now, in this case, when you’re doing proofs about 

the power set, the one thing that looks a little odd 

is that you’re not using a little letter x for the 

elements, the elements of this.. this set S is the 

power set of what?  N Y PDQ U PF 

 

 The transcribed questions were entered into Microsoft Excel spreadsheets. The first 

column contained the time in the observation when the question occurred, the second column 

contained the text of the transcribed question, the third column recorded whether or not the 

question was linked to another question, the fourth column recorded whether or not the question 

was answered by a student, the fifth column contained the code for Expected Response Type, the 

sixth column contained the code for the Cognitive Process, and the seventh column recorded the 

type of mathematics content that was being presented when the question was posed. For example, 

a section of a spreadsheet is presented in Figure 5. 
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 Since the instructors are teaching in different content areas and the content areas or the 

makeup of the individual classes may have an effect on the instructors’ use of questions, the 

results will be presented as separate but interrelated case studies. For each instructor, tables will 

be presented that show the types of questions asked along the two dimensions. Also, the question 

rate, response rate, percentage of higher-order questions, and the percentage of student-answered 

questions that were higher order will be computed for each instructor. 

The rate at which the instructors asked questions was computed by dividing the total 

number of questions asked by the total amount of time observed. The response rate was computed 

by dividing the number of questions that received student responses by the total number of 

questions. The percentage of higher order questions was computed by summing up the total 

number of questions asked that fell into the top four Bloom’s levels and dividing that number by 

the total number of questions. The percentage of student-answered questions that were higher 

order was computed by summing up the student-answered questions that fell into the top four 

Bloom’s levels and dividing by the total number of student-answered questions. A similar 

computation was made to determine the percentages of instructor questions that required higher-

order response types: Process and Meta-Process.  

3.9 Ethical Considerations 

 In qualitative research, as in any research with human subjects, the protection of the 

subjects is a primary concern. This study was conducted under the supervision of the institution’s 

IRB. The IRB status was expedited, because it was anticipated that no serious ethical threats were 

posed to any of the participants. The safeguards that were employed to ensure the protection of 

the rights of the participants included informed consent, confidentiality, and security of the data.  

All subjects were volunteers, and written informed consent documents were obtained 

from all subjects. Consent documents can be found in Appendix G-H. These documents informed 

the participants of how the data would be used and stored. 
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Confidentiality means that “the researcher can identify a person’s given responses, but 

promises not to do so publicly” (Babbie, 2007).  Although background information such as the 

participants’ specific area of research, gender, and ethnicity may give insight into their teaching 

philosophy, these specifics have been intentionally excluded to protect the identities of the 

participants. The participants have also been given pseudonyms in all reports of this research.  

Cautionary measures were used to ensure the safety of all research related records and 

data. The data have been kept in my office and in a secure Dropbox file, and only my advisor and 

I have access to the data.  

3.10 Issues of Trustworthiness 

 In quantitative research, the issues of validity  (meaning that your measure accurately 

reflects the concept it was intended to measure) and reliability (a quality of a measurement 

method that suggests that the same data would be collected each time in repeated observations of 

the same phenomenon) are central to the quality of research (Babbie, 2007). Qualitative inquiries 

have similar issues of trustworthiness, although different terminology and assessment measures 

are used. Guba & Lincoln (1998) use the terms credibility and dependability for the standards of 

good and convincing research. Credibility refers to whether the participants’ perceptions are 

accurately represented by the researcher’s portrayal of them. Dependability refers to whether or 

not one can track the processes and procedures used to collect and interpret the data (Bloomberg 

& Volpe, 2012).  

 The criterion of credibility involves both methodological and interpretive credibility 

(Mason, 1996).  To enhance the methodological credibility of the study, triangulation of data 

collection methods was used. The data gathered from the initial interviews, observations, and 

follow-up interviews yielded a fuller and richer understanding of the participants’ teaching 

practices. Interpretive credibility was addressed in various ways. First, my perspectives and 

assumptions are clarified upfront (see Section 1.3).  Secondly, to ensure that my views did not 

influence the portrayal of the participants’ perspectives, I made use of a member-check. This 
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allowed the participants to speak for themselves after reviewing my data analysis. Thirdly, I used 

“peer debriefing” by discussing my findings and data with colleagues; both fellow researchers 

and mathematics instructors. Data analysis has taken place over the course of three years, and 

during that time my methods and results have been presented at professional conferences, 

exposed to blind reviewers, and discussed with peers in a weekly professional seminar on proof. 

These constant and ongoing discussions have provided accountability and given me opportunities 

to discuss problematic issues in coding and analysis with colleagues who are familiar with my 

work.  

 The dependability of a qualitative study refers to whether the findings are consistent and 

dependable with the data collected (Lincoln & Guba, 1985). The dependability of this study was 

addressed by providing detailed and thorough explanations of how the data were collected and 

analyzed. In addition, I have kept all records of previous reports on the data and data analysis that 

show a record of the evolution of my thinking and document the rationale for the choices made 

during the research process, therefore leaving an “audit trail” (Linclon & Guba, 1985).  

3.11 Limitations and Delimitations 

 Delimitations are boundaries that were set in place to narrow the scope of the study. 

Delimitations of this study include that this study focuses on the teaching practices of university 

instructors who are teaching proof-based courses using traditional methods. This study took place 

during one particular school year at a Midwestern research institution. Therefore the findings of 

this study cannot be directly generalizable, but aspects of the phenomenon under study may be 

transferrable to a similar context (Linclon & Guba, 1985).  

 This study contains certain limitations, some of which are related to the common 

critiques of qualitative research, and others that are particular to this study. Qualitative research in 

general is limited by researcher subjectivity, because the data analysis ultimately is determined by 

the thinking and choices made by the researcher. Recognizing this limitation, I attempted to be as 
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transparent as possible throughout the research process, and discussed decisions with colleagues 

along the way.  

A limitation of this particular study is that I only observed four instructors, and they were 

each teaching one course. It is therefore difficult to distinguish whether specific teaching 

practices are employed because of the content that is being presented, or if the practices observed 

are a reflection of the instructor’s personal teaching style. 

3.12 Chapter Summary 

 In summary, this chapter provided a detailed description of this study’s research 

methodology. Qualitative case study methodology was employed to investigate the teaching 

practices of instructors who are teaching undergraduate proof-based mathematics courses using 

lecture methods. The participants in the study were four mathematics faculty members at a large 

Midwestern research university who were teaching proof-based courses. The participants self-

identified as traditional instructors using either lecture or “modified” lecture methods. The data 

collected were interviews with all four participants, 6-7 video-taped observations of their teaching 

spread throughout the semester, and a follow-up interview to review and comment on the data 

analysis.  

 A review of the literature was used to situate the study and provide a framework for the 

data analysis. Four embedded units of analysis were used to address particular research questions. 

An analysis of each individual proof was used to address the first research question. An analysis 

of the time allotted for each entire class period was used to address the second research question. 

An analysis of each example used in proof presentations was used to address the third and fourth 

research questions. Additionally, an analysis of each instructor question was used to address the 

fifth and sixth research question. Through a comparison with the literature, interpretations and 

conclusions were drawn, and recommendations were made for both educational practice and 

further research. This study is intended to provide a basis to inform further research on teacher 

practice and to be useful in professional development of collegiate teachers.
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CHAPTER IV 
 

 

FINDINGS 

 

The purpose of this multi-case study is to examine the teaching practices of four 

mathematics instructors who were teaching different proof-based mathematics courses using 

lecture methods. This chapter will present the findings of the data analysis used to examine the 

six research questions.   

The first finding, presented in Section 4.1, is the identification of four proof presentation 

strategies from the interview data: Outline, Examples, Logical Structure, and Context. I coded 

each proof presentation to determine which, if any, of the strategies were used by the instructors. 

I found that the instructors used an identified pedagogical strategy in almost all of their proofs. 

Three of the four instructors used examples in half of their proof presentations, while the fourth 

rarely used examples in his presentations. I also determined the level of expected engagement for 

each proof presentation, finding that three of the four instructors expected students to contribute 

to 95% of their proof presentations.  

The second finding, presented in Section 4.2, is that the instructors spent between 35% 

and 70% of their class time on proof presentations. The largest proportions of class time across all 

cases were spent on proof and examples. The instructors engaged students in interactive lecture to 

varying degrees, from 26% to 62% of their class time.
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The third finding of this study, presented in Section 4.3, is the development of a 

descriptive framework for the instructors’ example usage during their in-class proof 

presentations. The different types of examples are described and illustrated using excerpts from 

the observation and interview data.  

The fourth finding of this study, presented in Section 4.4, is that instructors who are 

teaching proof-based mathematics courses using lecture interact with their students frequently, 

asking approximately one question per minute on average. Students are responding to between 

35% and 52% of their instructor’s questions. The instructors asked between 30% and 42% higher-

order questions, and that between 29% and 57% of questions answered by students were higher-

order. Thus, these instructors were asking higher-order questions, and students were responding 

to them at the same rate.  

4.1 Pedagogical Moves in Proof Presentations 

 The results in this section address the first research question, “What pedagogical moves 

do instructors plan to use to help students understand their proof presentations, and how often do 

they use these moves?”  

The analysis of the interview data led to the identification of four proof presentation 

strategies, and the construction of levels of expected engagement. The methods used to extract 

these categories from the interview data was described in Section 3.6.1.Then, each proof 

presentation in the observation data was coded according to the proof presentation strategies that 

occurred in that presentation and the level of expected engagement that the instructor used.  

4.1.1. Proof Presentation Strategies. The four proof presentation strategies that were 

identified in the interview data are presented in Table 6, and the discussion that follows goes into 

a more detailed description of the strategies.  
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Table 5:  Proof Presentation Strategies     

 Description 

Outline Discussed the ideas of the proof before writing out the proof 

 

Examples 

 

Used examples to motivate the theorem/proof or to support students’ 

understanding of the theorem/proof 

 

Logical 

Structure 

 

Discussed the logical structure of the statement or the proof, or made 

specific references to logic during the proof presentation 

Context 

 

Instructor pointed out the historical significance of the proof, or placed the 

proof in context of the mathematical content area. 

 

When asked what they do to help students understand a proof presentation, several of the 

participants described a process of outlining or talking informally about the key ideas of the proof 

before they began to write the proof on the board. For example, Dr. N said that before he begins 

to present a proof in class, he tries to “read the… theorem, and I say, ‘What’s important here? 

What do you think of when you read this?’ And I ask for ideas, what relevant theorems might be 

true…” This strategy was labeled outline. It sometimes took a form similar to Leron’s (1985) top-

down approach in which he begins a proof by giving an overview, but other times it was just an 

informal discussion about how to begin the proof. When coding, I looked for instances where the 

faculty member discussed with students about the ideas of the proof before starting the proof, and 

I also looked for when the professor was very clear about what was just informal talk and what 

was a formal proof. 

 The mathematicians also mentioned drawing pictures or using specific examples to help 

students understand the meanings of terms or statements, to motivate the proof, or to support 

students’ understanding of the theorem or proof.  In the observation data, I was looking for proofs 

in which the professor presented algebraic, numerical, or pictorial examples to explain the 

mathematical statements or the proof strategy.  
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 Though the mathematicians who participated had differing views about whether the logic of 

proof writing should be taught along with content or separately, they all mentioned that they 

spend time talking about logical structure. When Dr. A begins a proof presentation, he says, “I 

make the statement on the board, and I point out if it’s an if-then statement, or if it’s a, both, if-

and-only-if statement, and I talk about that, what we have to prove then.” When analyzing the 

data, proofs in which the professor used the outline strategy often also emphasized logical 

structure, but not always. Indicators of logical structure included pointing out when hypotheses 

are used, explicitly discussing the structure of the statement to be proved, or summarizing the 

logic of the proof after the proof was completed.  

Table 6:  Percentages of proofs using each presentation strategy    

 Dr. A Dr. C Dr. G Dr. N 

Total Number of Proofs in 

Observation Data 

 

 

12 

 

22 

 

22 

 

8 

Outline 

 

42% 68.2% 54% 63% 

Examples 

 

67% 50% 4% 50% 

Logical Structure 

 

25% 54.5% 36% 50% 

Context 

 

17% 13.6% 27% 38% 

None of these 8.3% 0% 13.6% 0% 

 

 The final strategy that emerged from the interview data was context. This code was used in 

instances when the professor placed the ideas of the proof in historical context, pointed out 

standard arguments as they appeared in presentations, or highlighted the key ideas and how they 

fit within a larger context of the mathematical content area. For example, when describing how he 

presented the proof that trisecting an angle is impossible, Dr. G said that “…the whole idea that 

you can prove that it’s impossible, no matter what you do… that’s kind of a big thing to 

understand right there.” When presenting the proof, he emphasized the standard arguments 

required to show that a construction is impossible.  
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 Each proof was analyzed and coded with the presentation strategies that occurred in the 

proof. There were only four of the 64 proofs that used none of the identified strategies and there 

were some that used all four.  

4.1.2. Expected engagement. By expected engagement, I mean the extent to which the 

professor seemed to expect students to contribute to the proof presentation. The individual proofs 

were the unit of analysis, and a code (1-5) was assigned to each proof representing different 

levels of expected engagement. Proofs coded 1 or 2 represented instances where the instructor did 

not seem to expect the students to be actively contributing to the proof presentation. The code 3 

was assigned to proofs in which the instructor seemed to expect students to contribute factual 

information, and 4 or 5 was assigned to proofs in which the professor expected students to 

contribute both factual information and key ideas for the proof presentation. To determine the 

level of expected engagement, I looked for both the types of questions that the instructor posed as 

well as the amount of time that he waited for a response. For example, if the instructor posed a 

question and immediately answered his own question, I assumed that he did not expect the 

students to respond. The coding scheme for expected engagement is summarized in Table 8. 

Table 7:  Levels of expected engagement    

 Description 

1 

 

Professor does not request active contribution during the proof presentation, and does 

not appear to engage students. 

 

2 

 

Professor does not request active contribution during the proof presentation, but seems 

to adapt the presentation based on monitoring, non-verbal communication with students, 

or feedback from closed-ended questions. 

 

3 

 

Professor expects students to contribute some factual information during the proof 

presentation. 

 

4 Professor expects students to contribute some factual information and some key ideas of 

the proof during proof presentation 

 

5 Professor expects students to generate the majority of the ideas for the proof during the 

proof presentation.  
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Of the 42 proofs that were analyzed in this phase of analysis, 16.6% of them were coded 1 or 

2, 50% of them were coded with a 3, and 33.3% were coded with a 4 or 5. So, this means that in 

well over half of the proof presentations, the faculty members expected the students to actively 

contribute to the presentation, whether by providing some factual information or actually helping 

to contribute key ideas for the proof. The data for each professor is shown in Table 8. Since this 

was a study of faculty members and not students, there were no data collected about the actual 

number of students who participated in class, or the other ways in which students were engaging.  

Table 8:  Percentages of proofs for each level of expected engagement    

 Dr. A Dr. C Dr. G Dr. N 

 

# Proofs in Obs. Data 

 

 

12 

 

22 

 

22 

 

8 

Coded 1 

 

8.3% 4.5% 0% 0% 

Coded 2 

 

41.7% 0% 

 

4.5% 0% 

Coded 3 

 

41.7% 13.6% 

 

54.5% 50% 

Coded 4  

 

8.3% 63.6% 36.4% 37.5% 

Coded 5 0% 13.6% 4.5% 12.5% 

 

4.1.2 a Illustration of Level 1-2 from the Data. The next few sections will give examples 

of different instances of proof presentations from the observation data and how they were coded 

for expected engagement. Because the video camera was directed at the instructor, any comments 

from the students are simply labeled ‘Student.’ It is not necessarily the case that the same student 

spoke each time. Also, single quotes are used to identify times when the instructor was writing on 

the chalk board while talking aloud.  

 The expected engagement code 1 or 2 represents proof presentations where the faculty 

member did not appear to expect the students to actively contribute to the proof presentation. This 

does not imply that there was no interaction at all, or that the students were not engaged in other 

ways such as note-taking or non-verbal communication. In most of these instances, the instructor 

used monitoring to adapt his presentation. For example, he would ask if the students understand, 
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watch their reactions, and modify the presentation if he deemed necessary. One such example is 

taken from Dr. A’s class, where he presented a proof that the composition of homomorphisms is a 

homomorphism. 

Dr. A:  What does that mean? ‘G, H, um, P groups. HG →:θ ,’ and uh, let’s see… 

theta... let’s say psi, ‘ PH →:ψ , homomorphisms, then θψ o  is a 

homomorphism.’ So, we know that composition is an operation on mappings. 

So, when I say theta and psi are homomorphisms, first of all, they are 

mappings of the underlying point-sets. So these are mappings. Hence, their 

composition makes sense. So, their composition is a mapping. So, the 

question here is… we know this is a mapping (circles θψ o ).  Is it a 

homomorphism?  

Dr. A:  So, ‘Proof:’ What do you need to do to prove this? Um, well, we have to 

show that multiplication in G, if you take multiplication and take it under the 

composition, it is the multiplication of the factors in P, uh, of the images in 

P. So, we ‘Let Ggg ∈21 ,  ,’ and we ‘Consider )( 21ggθψ o ’ Ok? What is 

that equal to? Well, first off, it is equal to ‘ ))(( 21ggθψ ’ that is… that’s 

what the definition is of a composition. Ok? Theta, though, is a 

homomorphism. So this is ‘ ))()(( 21 gg θθψ ’ Now, all these guys have big 

symbols here… lots of symbols. This is a single element in H, (circles )( 1gθ  

with his finger) this is a single element in H (circles )( 2gθ  with his finger). 

Now, would it be better if I put those stars and diamonds and dots in there for 

everybody, or are you ok with this? Ok? And so we have this. But this now, 

and we totally forget G for a minute, this is an 1h  (circles )( 1gθ  with his 

finger), this is an 2h  (circles )( 2gθ  with his finger), these are just elements 



87 

 

in H. The image of the product is the product of the image, because psi is a 

homomorphism.  

Dr. A:  So, this is, this uh, theta a homomorphism, and now we do this as ‘

))())((( 21 gg ψθψθ ’ and this is because psi is a homomorphism. But now, 

again, we go back to the definition, this is ‘ )))())(()((( 21 gg θψθψ oo ’ and 

so, if you take this guy on the product, you end up with here, the product of 

the images. So, here, the image of the product is the product of the images. 

So, it is (writes ‘ θψ o  is a homomorphism’). Ok?  

 

So, Dr. A did ask some questions, however, he did not wait for a reply from the students. The 

questions posed were used to model his mathematical thinking, without the expectation that the 

students would actively contribute to the proof presentation.  

 4.1.2 b. Illustration of Level 3 from the Data. Proofs coded 3 represent an instance 

where the professor did expect the students to actively engage in the presentation, but only to 

contribute factual information. There did not appear to be an expectation that the students would 

create any of the big ideas for the structure of the proof. An example of this level of expected 

engagement comes from Dr. G’s presentation about the summit angles of a half-rectangle.  

 

Dr. G:  A half rectangle is a convex quadrilateral with two right angles at the base. And, 

what I want to prove is that in a half-rectangle, I want to look at these two 

angles… this is going to look like a test problem before we’re through… If I look 

at those two angles, I claim that the greater side is across from the greater angle. 

So, ‘In a half-rectangle, the greater side is across from the greater summit angle.’ 

Those are the summit angles. So, what I want to do, what’s the theorem? The 

theorem is angle 1, well, let’s do it this way. ‘Suppose BC is bigger than AD,’ 

and I want to prove that angle 1 is, uh, bigger than angle 2. Suppose this is true. 
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Ok, Well, let’s see, let’s ‘choose a point E so that B*E*C and BE congruent to

 AD.’ So, pick a point so that those two things are congruent. What kind 

of an animal is this? DABE? It has a name.  

Student:  Saccheri rectangle? 

Dr. G:  It’s not a Saccheri.. don’t say rectangle.  

Student:  Saccheri Quadrilateral?  

Dr. G:  Saccheri quadrilateral. Ok? ‘So, ABED is a Saccheri quadrilateral.’ What do I 

know about summit angles of Saccheri quadrilaterals?  

Student:  They’re congruent? 

Dr. G:  Yeah. We proved that on a test, I think, or on a previous test, or a homework. 

‘Angle 3 congruent to angle 4.’ Oh, now it’s gonna look like the test we just 

did, because angle 1, degree measure, is bigger than angle 3, which is the 

same in degree measure as angle 4, and this angle is… how does that 

compare with angle 2? How does angle 4 compare with angle 2?  

Student:  It’s exterior.  

Dr. G:  It’s exterior, isn’t it? It’s exterior to this triangle. (re-draws part of the 

picture to emphasize that angle 4 is exterior) Angle 4 is exterior to the 

triangle, so it’s, um, bigger than angle 2. Ok. 

 In this proof, Dr. G expected the students to respond to most of his questions. When he is 

outlining the structure of the proof, he seems like he is going to ask the students how to begin the 

proof, but he doesn’t wait for their response. He then lays out the beginning of the proof, and 

begins to ask the students factual questions along the way. Because he asks the same question 

multiple times and waits for a student response, Dr. G is communicating his expectation that 

students will respond. When Dr. G hears the desired response, he takes that information and 

immediately proceeds to the next step in the proof. The students do dialogue with Dr. G, and they 

contribute to the proof, however, Dr. G is clearly in control of the construction of the proof.   
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4.1.2 c. Illustrations of Level 4-5 from the Data. Since the expected engagement level of 4 or 

5 may differ slightly from the way lecture style proof presentations have been conceptualized in 

the past, I included three examples, one from each faculty member. This excerpt from Dr. N’s 

class was coded 4, because the students give the key ideas for how to construct a proof of 

uniqueness.  

 

Dr. N:  Um, all right, well, unfortunately after all that success, you still have 

uniqueness to prove. And, um, you’d like to think that maybe uniqueness was 

part of what you were doing, but it’s really hard to justify that. So, the best 

way to prove uniqueness is to… I mean, what’s the standard way that you 

prove that there’s only one formula? There’s sort of a standard strategy that 

you do. When you’ve done this already… we did this for the division 

algorithm. You remember what I said? At the end there’s a uniqueness part 

of the division algorithm, and… how did we prove that uniqueness was 

actually true? Yeah, so let me write up here, ‘proof of uniqueness’ And 

there’s always sort of a standard way. So, you’ve proved that there is a 

formula, and you want to show that that formula is unique, so what’s the 

strategy for doing it?  

Student:    Assume there’s two, and show it isn’t possible.  

Dr. N:   Exactly! All right, that’s all I want you to say is just assume that there’s two. 

Assume there’s two and then show that they are actually the same. So, 

‘Suppose there are two such formulas for the same n.’  

Student:  So are we just proving contradiction? 

Dr. N:  Yeah, this would be an example of proof by contradiction. What’s the opposite of 

uniqueness? The opposite of uniqueness is that there’s more than one. So, I’m 

going to assume that there are… this is kind of a specialized version of proof by 
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contradiction. It always works for uniqueness. You always assume there are two, 

and then you try to prove that they are actually the same. So, suppose there are 

two such formulas, um, so the first one we got was that over there, let me just 

summarize it, ‘ 01... ababan
k

k +++= ’ and for the second one, we have to use 

a different letter for the coefficients, b is the same, but I’m going to change the a 

to a c, and the k to an l, because it’s possible that if I did it in some other crazy 

way, maybe I got more, uh, more digits or something. ‘ 01... cbcbcn
l

l +++= ’ 

And now the strategy is to prove that something is wrong with this. Suppose 

there are two different ones. Suppose they are actually different. We have two 

different formulas. Now, how would I know that these are really different? What  

specifically would.. what would happen that would tell me that these are really 

different? Now, you sort of have to hone in on what’s the difference between the 

two formulas. You know, what’s the specific difference. Now, if they are really 

different, something has to happen.  

Student:  (mumbles) 

Dr. N:  Now, you’re saying a, but there are a lot of a’s, you have to be specific.  

Student:  ja  is not equal to ic , or jc . 

Dr. N:  No, that’s not correct, or, what did you say at the end? 

Student: jc  

Dr. N:  jc , ok, right, ok? So, it doesn’t matter that this digit is not equal to that one, it’s 

the corresponding ones. So, what Nathan is saying here is that ‘ jj ca ≠  for some 

j.’ Not for all of them, but for one of them, they have to be different. Ok, now 

this is really hard to motivate until you’ve seen this kind of proof, but, one of 

them, I know that in one of them they are different, but I want to pick, I want to 
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sort of be real specific about j. I want to say, ‘take j to be’ Now, j could be zero, 

it could be 1, it could be anything in those ranges there, but I want to work 

specifically with j having a real specific property here. You know, until you get 

into this, it’s really hard to motivate. Do you know what I want j to be? I want the 

two digits to be different, but I want to know something more about j. (mumbles) 

You have to learn this… 

Student: The smallest one? 

Dr. N: The smallest one, there we go. You got it. You know, when you’re trying to 

hone in, you always want to go to an extreme case… 

 

Dr. N continues to ask the students questions about how to structure the proof, and asks 

the same question in different ways until the students give an answer. Although the students 

are contributing significant ideas to the proof, this presentation is still teacher-centered. When 

the students give the expected answer, Dr. N spends a little bit of time explaining why the 

answer that the student gave is correct, and then carries on with the proof.  

One common approach in Dr. G’s class was to have the students identify the 

contradiction at the end of an indirect proof. The students didn’t structure the proof, but they 

did contribute a key idea to the proof by identifying the contradiction. Here is an example of 

this type of engagement.  

 

Dr. G: So, I was going to say, we did this proof before, but I was just going to remind 

you how it goes. How do I show that if Euclid 5 is true, then the converse to 

alternate interior angles is true? This is what I want to prove (underlines 

‘converse to AIA’ writes ‘prove this’ underneath) But, since I’m assuming Euclid 

5 is true, I get to use this. (underlines ‘Euclid 5’ and writes ‘Use this in my proof’ 

underneath.) So, let’s see, I want to show the converse to alternate interior angles 

is true, so I say, ‘suppose that k is parallel to l,’ and I need to ‘prove that angle 1 
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is congruent to angle 2.’ So how do I do that? Well, suppose it’s not. ‘Suppose 

angle 1 is not congruent to angle 2.’ Well, then what are we going to do, is use 

my protractor axiom to reproduce angle 1 right here. I’m running out of letters. n. 

So, let’s choose n through Q so that angle 3 is congruent to angle 1.  

Student:  So, you’re saying that angle 1 is bigger than angle 2? 

Dr. G:  This picture makes it look greater, It would, it’s gonna be the… it’s gonna be 

the same argument if it were smaller. So, I’m just assuming they’re different. 

Ok, I claim that we’re going to get a contradiction here already. I claim I’m 

done. Where is my contradiction? Well, what do I… let me… what do I 

know about n and k? 

Student:  They’re lines.  

Dr. G:  They’re lines, I do know that. That’s correct, but I would hope to know more.  

Student:  Parallel. 

Dr. G: Why?  

Student:  Alternate interior. 

Dr. G: Alternate interior angles? Ok, so ‘k is parallel to n by alternate interior 

angles.’ It’s not the converse, but the theorem itself.  

Student:  And then Euclid 5, there’s a contradiction because it says there’s a unique 

parallel.  

Dr. G:  Right. I get to use Euclid 5 in my proof, and now I’ve just built two lines 

parallel to k through the point Q. Now, ‘both l and n are parallel to k and 

through Q.’ That’s a contradiction. So, that didn’t happen. Those angles were 

the same. 
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Dr. C presents a proof that the intersection of any collection of open sets is open. This proof 

was coded as a 4 because Dr. C asks a combination of factual questions and leading questions 

about the main ideas in the proof.  

Dr. C: The intersection of any collection of open sets is open. So, the very first thing 

I need to do is set up notation. I take a vaguely worded statement like that 

with words only, and I need notation to start proving anything. So, tell me 

how the first couple of sentences here are. “Let..” What notation am I 

introducing?  

 

Student: Let S be an open set? 

 

Dr. C: Well, the phrasing here is that I have a collection of open sets. So, do I need 

just an S? What else do I need?  

 

Student: A T? 

 

Dr. C:  (smiles) 

 

Student: Do you just need, like, a subscript? 

 

Dr. C: I need a subscript. Let’s do a subscript. Because we need to model the kind of 

situation where we had an infinite collection of sets. So, let’s do a subscript. 

[…] Now, we’re going to let O be the union of the sets O-alpha, where alpha 

runs through my index A. (writes α
α

OO
A∈

= U )  So, what we have to do here to 

use this fact is show that every point in O is an interior point, then I need to 

comment on that. So, let’s “let x be in O.” Now, how am I going to prove that 

x is an interior point? (pause) Well, an interior point is a point where there’s a 

neighborhood around it that stays inside your point. But, if I have a collection 
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like αO sets, well, there’s various sets involved, but if I pick a specific number 

x, if it’s in the union of all of the sets, what can you tell me? What’s the first 

fact you can say for sure about x? If it’s.. 

 

Student: It’s in some lO .  

 

Dr. C: Correct. So, if it’s in the union, it’s in one of the sets. (writes, “Then αOx ∈  

for some α ”) So, if it’s in the collection, it’s in one of the sets. Now, what do 

I know about that set being open? What does the set  αO  being in the 

collection… oh, the set αO  being open, what does that tell me? How am I 

going to prove whether x is an interior point of big O or not? Is this set known 

to be open or closed? 

 

Student: Open. 

 

Dr. C:  Since αO  is open, what can I say? 

 

Student: x  is in the interior of αO . 

 

Dr. C:  Mmm-hmm. “Since x is in αOint ,” so what does that tell me about an 

epsilon? There’s an epsilon we can find, now.  

 

Student: There is an epsilon greater than zero such that the epsilon neighborhood 

around x is contained… 

 

Dr. C: That is correct. “So, there is some positive epsilon so that that neighborhood 

N(x, ε ) is a subset of αO ” not contained in as an element, but contained in as 

a subset. Subset sign there, these are both sets. And, so, what does that tell 
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me? If this neighborhood is contained in αO , what does that say about my big 

conglomeration O that is the union of everything? What’s the relationship of 

this neighborhood with this O that is the union of all the sets? Is the 

neighborhood contained in the union of all the sets?  

 

Student: Yes. 

 

Dr. C: If it’s contained in one of them, it’s contained in the union of everything, sure! 

“So, N(x, ε ) is contained in O” And, is that enough to say that x is an interior 

point of O? Am I done? Yes, I’m done. “So, x is in the interior of O, so O is 

open.” So, that’s a good representative proof.  

In all of these proofs, the instructor is still leading the discussion, but is giving a proof 

presentation with dialogue that leads the students through the mathematical thinking needed to 

construct the proof (Fuakwa-Connelly, 2012a).  

 

4.1.3 Summary of Pedagogical Moves in Proof Presentations 

Four proof presentation strategies were identified in the interview data: Outline, 

Examples, Logical Structure, and Context. Each of these strategies was used to varying 

degrees by the four instructors. It should be noted, however, that very few of the proofs 

observed (between 0% and 13%) used none of the identified strategies. Thus, the instructors 

were using the pedagogical strategies that they mentioned to help their students understand 

the proofs that they presented in class.  

Another finding is that three of the instructors used examples in over half of their proofs, 

while the fourth rarely used examples at all. The ways in which the instructors used examples 

in their proof presentations will be discussed further in Section 4.3.  
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The instructors engaged their students in varying ways. Only two of the observed proofs 

required no engagement of the students. Three of the four participants expected active 

engagement (levels 3-5) in 95% of their proof presentation, while the fourth expected active 

engagement in 50% of his proof presentations. Thus, although the instructors all taught using 

lecture methods and they facilitated all of the proof presentations, they did engage their 

students. The questions asked by the instructors will be investigated further in Section 4.4. 

4.2 Allocation of Class Time 

The results presented in this section are in response to the second research question, 

“How do instructors allocate their class time in traditionally taught proof-based undergraduate 

courses?” This section presents the amount of class time that instructors spent on proof 

presentations, which were the unit of analysis in Section 4.1. Timelines were created to assess the 

timing and the amount of time spent on the presentation of different types of content: Definition, 

Theorem, Proof, Example, and Homework Problems. The timelines show instances when 

examples and proofs were presented in conjunction, which was mentioned as a proof presentation 

strategy in Section 4.1, and will be discussed further in Section 4.3. The timelines also show the 

source of verbalization, whether the instructor or students. An analysis of the timelines was 

conducted to compute the percentage of time spent in interactive lecture versus straight lecture.  

When identifying a proof presentation in the data, I included the statement of the theorem 

or claim, the proof itself, and any examples or comments related to the proof that occurred either 

before or after the proof. Also, discussions of homework problems that required justification were 

also considered proof presentations. Thus, the amount of time spent on proof presentations is 

more than the amount of time spent just on the individual proofs. The percentage of class time 

spent on proof presentations is summarized in Table 9.  
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The first result for how instructors allocate their class time was that they spend approximately 

half of their class time, on average, presenting proofs. 

Table 9: Time Spent on Proof Presentations 

 Algebra Adv Calc Geometry Num Thry 

Instructor Dr. A Dr. C Dr. G Dr. N 

# Instruction Days 44 29 44 44 

# Observations 7 7 6 6 

# Proofs Observed in Data 19 22 22 9 

%  Time on Proof Presentations 40% 49% 70% 35% 

A second result presents the content to which class time was allotted. The four content 

codes were Definition, Theorem/Claim, Proof, Example, and Homework Problem. The actual 

timelines for each instructor can be found in Appendix E, and percentage of time spent on each 

content code is summarized in Table 10. 

Table 10: Allocation of Class Time  

 Dr. A Dr. C Dr. G Dr. N 

Definition 7.2% 7.2% 2.8% 3.8% 

Theorem/Claim 7.2% 5.0% 13.2% 6.9% 

Proof 29.2% 41.0% 54.4% 29.1% 

Example 38.9% 21.8% 2.4% 26.8% 

Homework Problem 2.5% 30.7% 2.4% 20.3% 

 

Table10 shows that across all participants, the categories of proof and examples tend to 

be the highest percentages, with a few exceptions. It should be noted that Dr. G almost never used 

examples in his proof presentations. Upon further analysis of the data, it was found that he used 
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generic diagrams to organize 19 of the 22 proofs that he presented in class. He would draw a 

picture next to the proof that served as a guide to structure the proof. He would then fill in the 

picture as the proof progressed. Although the picture may have been concrete to the students, it 

was not a specific representative of a class, because it was at the same level of generality as the 

proof. Therefore, the generic diagrams were not examples. When asked about this in the follow-

up interview, Dr. G said “If I’m teaching geometry, I don’t have many specific geometries that 

[the students] are familiar with to start with. If I’m teaching number theory, well, students have a 

lot of experience with integers long before we begin talking about congruences.” Thus, he is 

suggesting that the content of Geometry is not as conducive to exemplification as Number 

Theory.  

Figure 6: Varying degrees of teacher-student interactions in lectures

 

Homework problems were discussed in class to varying degrees. It can be noted that Dr. 

A and Dr. G did not frequently discuss homework problems in the observation data. When asked 

about this in the follow-up interview, Dr. G was surprised that the data did not capture him 

working homework problems. He said that he generally assigns homework problems that are due 

every two weeks, and that the students may not have homework questions each day, but the entire 

class period before the homework is due is generally spent answering questions about homework 

problems.  Dr. A said that his philosophy was that the students should do homework on their 
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own, and so he did not ask about the homework in class. Dr. N and Dr. C usually began each 

class period answering questions from the homework, and then proceeded into the content for the 

day.  

The timelines showed that the instructors were interacting with students to varying 

degrees, as demonstrated by Figure 4. Each one-minute slice of the timelines was analyzed to 

determine if there was any back-and-forth between the instructor and students. One-minute slices 

in which only the instructor was speaking were coded “Straight Lecture,” while one-minute slices 

in which both the instructor and students were speaking were coded “Interactive Lecture.”  

Table 11: Proportion of 1-Minute Slices Spent on Interactive vs. Straight Lecture  

 Dr. A Dr. C Dr. G Dr. N 

Interactive Lecture 26.1% 61.5% 36.4% 45.2% 

Straight Lecture 73.9% 38.5% 63.6% 54.8% 

 

The number of one-minute segments in which there was back-and-forth interaction 

between the instructor and students were totaled for each instructor and the percentage of 

one-minute segments was calculated. This is presented in Table 11. The percentages of class 

time spent on interactive lecture range from 26% to 61.5%. This result shows that lecture in 

these classes was not always monolog, but frequently contained dialogue between the 

instructor and students.  

4.3 Example Usage in Proof Presentations 

The results presented in this section are in response to the third and fourth research questions, 

“What types of examples do instructors use in presentations of theorems and proofs in an upper-

division proof-based mathematics course, and when do these examples occur chronologically in 
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relation to the presentation of theorems or proofs?” and “What are the instructors’ pedagogical 

uses for the different types of examples when presenting the statement of a theorem or a proof?” 

The results that are presented are an analysis of the interview data and observation data, using 

results from the literature to guide the analysis, as described in Sections 3.6.3 c and 3.6.3 d.   

This section will present a descriptive framework that organizes the uses of examples in 

relation to the proof presentations. Although all of the participants taught in a lecture style, there 

was a rich collection of examples in the observation data. This suggests that proof presentations 

in these lectures do contain elements of empirical reasoning and are not strictly rigorous and 

formal. The framework will be presented first, followed by descriptions of the different elements 

of the framework. Included in these descriptions will be evidence from both of the interviews and 

the observation data illustrating the different types of examples that occurred and their 

pedagogical purposes.  

4.3.1 Framework for example usage in proof presentations. Upon analysis of the 

interview data and the proofs that were captured in the observations, four primary purposes for 

using examples surfaced: to motivate the claim or proof, to persuade students of the plausibility 

of the claim, to generate proof insight, or to support students’ understanding of the claim, proof, 

or the underlying mathematics content. In this paper, examples will be said to motivate a 

particular mathematical concept if they occur before the concept is presented, and support the 

concept if the example is given during or after the concept is presented. The four uses of 

examples in proof presentations are presented in Table 12, along with illustrative excerpts from 

the interview data.  
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The timing of the examples in relation to the statement of the claim or the presentation of the 

proof often sheds light on the pedagogical use that the example serves, along with the 

mathematical content and the context in the teacher-to-student dialogue. Although three of the 

four of the participants did not clearly articulate in the interviews that they use examples to 

persuade students of the plausibility of a mathematical claim, the fact that they often used 

examples in lieu of a formal mathematical proof showed that they were using examples as a form 

of justification.  

The diagram in Figure 7 illustrates the types of examples were used and how they interact 

with the statement of the claim and the presentation of the proof. Flow from left to right is 

chronological. Start-Up Examples and Pattern Exploration Examples occur before the statement 

of the claim and serve to motivate the statement of the claim. Therefore the arrows from the ovals 

Table 12: 

Pedagogical Uses of Examples in Proof Presentations 

 

Use Illustrative Excerpts from Interview Data 

Motivate basic intuitions or claims  “I try to prepare their minds for proof, and usually that 

happens by example and computation.” 

 

Provide evidence for the 

plausibility of the claim or of a 

sub-claim 

 

“It [the example] served as a plausibility argument.” 

Support students’ understanding of 

the claim, proof, or underlying 

mathematical content 

“And, when I read a complicated theoretical statement, it 

sounds like Chinese the first time through. And, I have to 

play with that statement in my brain to make sense of it. 

Well, how do I make sense of it? I start looking at 

examples. So, that’s why I do that a lot [in class].” 

 

Generate proof insight “If you’re trying to prove something, it can be very hard, 

and a way to start is to simplify the statement. In other 

words, uh, take out some of the variables, or specialize 

some of the variables and see if you can prove just one case. 

And, so I do talk about this to try to get an idea about how 

the general proof might go.” 



102 

 

containing Start-up Examples and Pattern Exploration are pointing to the rectangle labeled 

Statement of the Claim. Boundary Examples may occur before or after the statement of the claim 

and serve to support students’ understanding of the claim by highlighting the necessity of the 

hypotheses in the claim. Thus, the oval containing Boundary Examples is elongated on both sides 

of the rectangle labeled Statement of the Claim, and the arrow is pointing towards the Claim.  

Figure 7: Framework for Example Usage in Proof Presentations 

 

 

 

 

 

 

 

 

Instantiation of Claim occurs after the claim is presented and may be used by the instructor to 

either support the students’ understanding of the claim or to motivate the method of the proof. 

Thus, the arrows point to both the Claim and the Proof. Generic Examples and Instantiation of a 

Sub-Claim are examples that are embedded within the proof itself and serve to support students’ 

understanding of the proof. Thus, those ovals are contained within the rectangle labeled Proof. 

The examples in the dotted box are time-independent examples. Since Instantiation of 

Definitions, Concepts, or Notation or Boundary Examples could occur at any time throughout the 
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presentation of the claim or proof and could be used to motivate or support either the claim or 

proof, they are not sequentially listed with the rest of the examples.  

4.3.2 Illustrations of Example Types from the Data  

 4.3.2 a. Start-up Examples. These examples are used to motivate basic intuitions or 

claims (Michner, 1978), or, in the words of Dr. C, to “prepare the students’ minds” for the 

statement of the claim. This type of example appeared twice in my data, both in Dr. C’s class. In 

his interview, Dr. C said, “I think that there are people who are very abstract oriented in how they 

think, but I’m not, really. I think I get to abstraction in my brain through looking at patterns in 

concrete examples. So, that’s one way I kind of grease the wheels and get them [the students] to 

think about something a little more abstractly. You know, as soon as they are kind of thinking 

about the concrete thing, then they can think about the abstract thing.” Here is one instance when 

he used that strategy: 

 Dr. C began with two open intervals in R, (0,2) and (1,3), noting that the union of these 

sets is still open. Then he asked, “What about an infinite collection of open sets?” He created the 

collection of sets )2,0( 1
jjO −= . Then, he prompted a discussion about whether or not 2 is 

included in jj O
∞

=1U , and the students decided that )2,0(1 =∞

= jj OU was open. Next, Dr. C 

created a new infinite collection )2,0( 1
jjO += , and after some discussion the student decided 

that ]2,0(1 =∞

= jj OI  was not open. Dr. C also did similar examples with closed sets. After the 

start-up examples, Dr. C presented and proved the theorem: “(a) The union of any collection of 

open sets is open. (b) The intersection of any finite collection of open sets is open.”  After the 

proof of that theorem, he presented the corresponding theorem regarding closed sets with no 

general proof.  
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 4.3.2 b. Pattern Exploration. Examples showing a pattern that are used before the 

statement of the claim to lead students either to the discovery of the claim, or to provide evidence 

of the plausibility of the claim will be called pattern exploration examples. 

 It should be noted that the purpose of these examples is slightly different from Harel’s 

(2001) two types of pattern generalization that are used by students to ascertain themselves or to 

persuade others to believe that a given claim is true. In both result pattern generalization and 

process pattern generalization, the claim is already given to the students, and they are attempting 

to use examples to construct a proof of the claim. This is different from using examples that show 

a pattern to motivate the statement of the claim. 

 Example generation by students has been shown to lead to conjectures in the context of 

elementary number theory (Morselli, 2006). Morselli concluded that the level of mathematical 

sophistication of the students has an impact on whether or not the students have a method for 

their example exploration or whether they explore examples “at random.” Thus, when an 

instructor engages students in example exploration in an in-class presentation, the instructor is 

modeling a mature mathematical approach to selecting and exploring examples in a way that can 

lead to the development of a conjecture. 

In his interview, Dr. N described how exploring patterns can lead to the construction of 

theorems: “Well, if it’s a proof of a pattern, I certainly emphasize computation. First, you have to 

compute a lot to try to figure out what the pattern is… You're going from examples to theorems… 

you go through a lot of examples, you try to find something that's always true, and then you 

conjecture a theorem.” Dr. N said that having students discover the theorem on their own by 

looking for patterns in examples is “a lot more fun” than just giving them the statement of the 

theorem. 
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 This type of example appeared once in my data. It was used by Dr. N when he was 

lecturing about estimating the number of steps in Euclid’s Algorithm, an algorithm used to find 

the greatest common divisor of any two integers a and b. 

 He began by stating that the “worst cases” for Euclid’s Algorithm (meaning pairs of 

numbers that will have the maximum number of steps) happen when the two numbers are 

consecutive Fibonacci numbers. He illustrated Euclid’s Algorithm for a=13 and b=8 to show that 

there are 5 steps. He then used a=144 and b=89 to show that there are 10 steps. It was clear that 

these examples using Fibonacci numbers would have the most steps because the quotient was 1 

for each step. Next, he stated Lamé’s Theorem: “The number of steps in Euclid’s algorithm for 

integers a and b is less than or equal to five times the number of digits of the smallest of a or b.” 

Because the pattern in the computational examples preceded and foreshadowed the statement of 

the theorem, this was coded as pattern exploration.  

When asked about these examples in the follow-up interview, Dr. N agreed that they could be 

called pattern exploration, and that although the students may not have been able to articulate the 

pattern after only two examples, they served as a “plausibility argument.” Thus, to the students, 

the two examples may not have been enough to convince them that the pattern was a definite 

pattern that was uniquely determined by its mathematical properties, but may have served to 

convince the students that it was a plausible pattern (Stylandes & Silver, 2009). 

4.3.2 c. Instantiation of the Claim. When an example is used after the statement of the claim 

to give an instance when the claim holds, this is called instantiation of the claim. Instantiation of 

a claim may be used to persuade students of the plausibility of the claim, support students’ 

understanding of the claim, or to generate proof insight.  

Dr. N described instantiation of a claim as one of two techniques to help students understand 

a claim. He said, “…the other way around is looking at theorem and trying to understand how to 
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produce examples out of it. So, I spend a lot of time doing that. So, here's a theorem, can you give 

me like a special case of it or something.”  

 This type of example was used by all of the instructors, and occurred most frequently in 

the observation data. Dr. N and Dr. C both used instantiation of a claim twice, and Dr. G used it 

once. Dr. A used instantiation of a claim 6 times, and one of those times the instantiation was in 

lieu of a general proof. This happened when Dr. A was proving that in the symmetric group, a 

conjugate of a k-cycle is a k-cycle. In the follow-up interview, Dr. A said that he presented an 

example instead of a proof because the general proof has both heavy notation and induction, and 

that an example was enough to convince the students that the claim was correct.  

 Dr. N used instantiation when he presented the claim that “The GCD of two Fibonacci 

numbers nf  and mf  is ),gcd( mnf .” He chose 8f
 
and 12f , and stated that n and m do not have to 

be “next to each other.” He then said, “ 8f  turns out to be, uh, 21? Is that right? And 12f  is 144, 

and the greatest common divisor of that is 3, which is equal to 4f . So, that’s an example of that. 

So, um, that’s an amazing fact about the Fibonacci numbers.” He then proceeded to give a start to 

a proof. He did not present a complete proof, but left the remaining details as a homework 

problem.  

 Dr. G used a pictorial representation of an example to instantiate a claim. On this 

occasion, Dr. G had just written this statement on the board: “In a projective plane where each 

line meets n points, (a) there are a total of 12 +− nn points; (b) there are a total of 12 +− nn  

lines.” He then said, “Before we prove this theorem, let’s just talk about these projective planes a 

little bit. Uh, what’s the smallest projective plane I can possibly have? By smallest, I mean 

smallest number of points and smallest number of lines.” With a little bit of input from the 

students, he concluded that the case when 3=n  is the smallest projective plane, with seven 
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points and seven lines. He drew a picture of that particular projective plane, and then proceeded 

into a proof of the theorem.  

 The picture served to support the students’ understanding of the statement of the claim by 

inserting a particular value for n, therefore it is a pictorial representation of an example that 

instantiates the claim. In his follow-up interview, Dr. G said that he used this example to “get the 

student involved in thinking about: What is a projective plane? What does one look like?” He said 

that he thought the example was used both to help students understand the claim and to lead 

students to an understanding of the proof. 

 4.3.2 d. Boundary Examples. Boundary examples serve to highlight the necessity of the 

hypotheses of the claim. The instructor can provide examples where some of the hypotheses do 

not hold, and then show that the conclusion doesn’t hold. Or, they can be examples that show 

how a change in the hypotheses also changes the conclusion to create a different but related 

theorem. These examples are used to persuade students of the plausibility of the claim or to 

support their understanding of the claim. 

 Dr. A talked about using examples after the statement of a claim to “show why the 

hypotheses are necessary.” Dr. C also referred to this type of example when he said, “through 

computing examples and looking for cases where the theorem does and does not hold, I think you 

can prepare them for understanding the parts of the hypotheses, the steps in the proof, [and] the 

statement [of the theorem].” 

 In my observation data, Dr. A used a boundary example once. He was proving the 

division algorithm, and used a numerical example to show why the restriction on the remainder is 

necessary for uniqueness. He showed that for the numbers 75 and 8, we have that 118875 +⋅= , 

and 510875 −⋅= , and then he summarizes, saying “but, the secret of this thing over here is 

[circles the condition ‘0 ≤ r < b’ in the theorem] you want that remainder right there… So, these 
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two things [points to the 11 and the -5] do not fit into this condition right here. And, I would 

imagine most of you are happy to say that I can play the game… I can get r so that it is in this 

range.” Thus, the example showed that there could be many ways to write the number 75, but the 

restriction on the remainder is what is necessary for the uniqueness result in the theorem. 

 Dr. C used two boundary examples to highlight the necessity of the hypotheses for the 

Heine-Borel Theorem. Dr. C proved that the set {1,3,5,7…} is not compact in R using the 

definition. Then, he presented the Heine-Borel Theorem, which states that a closed, bounded set 

of real numbers is compact. He asked the students why the previous set was not compact, and the 

students said “It is not bounded above.” Dr. C then said, “Let’s have another example [of a non-

compact set]. What property of the Heine-Borel theorem should we contradict now?” The 

students said that they need an open set (note that they really only needed a set that was not 

closed). Dr. C then asked for an open set, and with some prodding, students chose (0,1). Dr. C 

then proved, using the definition, that (0,1) is not compact. These two examples showed the 

necessity of the closed and bounded conditions in the Heine-Borel theorem.  

 When asked about this classroom episode, Dr. C confirmed that he was using these 

examples to help students understand the hypotheses of the theorem, and commented about why 

he didn’t give a general proof of the Heine-Borel Theorem. He said, “So, I have presented that 

entire proof in class, but I don’t typically now. Why not? Well, it’s really long, and I think that, as 

we get older, I think we have more of an ability to listen for a long stretch to something, and then 

somehow process it in one go and make sense of it. But, I think when you’re younger that is very 

difficult. A proof that takes almost the entire class period to present is almost certainly too long.” 

This, he explained, was why he presented some examples to help students understand and be able 

to apply the statement of the theorem. Note that Dr. C used the word “argument,” in reference to 

the boundary examples, as though Dr. C felt that presenting the examples in lieu of the proof still 

served to convince the students of the truth of the Heine-Borel theorem. 
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 4.3.2 e. Generic Examples. Instructors may use generic examples in conjunction with a 

general proof presentation. Generic examples are specific, often numerical, examples that mirror 

the general proof. They are presented side-by-side with the proof, and the instructor makes 

references back and forth as the presentation progresses. These examples can be used to generate 

proof insight or support students’ understanding of the proof. 

 Dr. N described using a carefully chosen example to get an idea of how the proof will go 

in his interview: “and, so I do talk about this to try to get an idea about how the general proof 

might go. So, that is, that is a common approach as well. Well, commonly a theorem will say to 

prove that something is true for all integers n. And, so the most basic specialization is just to pick 

a particular integer and work with that one. You know, and see if you can do it for that. You 

know, you have to be careful about the choice of example that you're going to use this technique 

on.” 

 This type of example appeared once in Dr. N’s class. Dr. N was presenting a general 

proof of the claim that there is a unique representation of any integer in a particular base. The 

theorem is stated, “Let b be an integer greater than one. Every integer n greater than or equal to 

one has a unique representation as 01

1

1 ... abababan
k

k

k

k ++++= −

− , where ba j <≤0  for all 

j, and 0≠ka .” In the middle of the proof, Dr. N stopped to give an example. The computational 

example mirrored the general proof, which served to help the students understand the process that 

they were using in general. The following excerpt occurred after Dr. N had stated the theorem and 

started the general proof.  

Dr. N: Ok, so I just used the same thing again, I repeat again… I’m going to 

continually keep going like that… And, so we repeat this process, and so  

‘Repeating at the jth step, we have 11 ++ += jjj abqq , where ba j <≤ +10 .’ The 

remainder always satisfies that it’s between zero and b. Ok, so I’m just going to keep 
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dividing over and over again. So, if you do it in practice… it might actually be worth 

throwing some numbers up so that you can compare that against the theory, the 

theoretical formula. So, uh, ‘73 base 5’. Last class we said that 351473 +⋅= , and 

this was 0a (labels the 3) and this was 0q  (labels the 14). So, then 45214 +⋅= , 

and this is 1a  (labels the  4) and this is 1q  (labels the 2). And then, um, the next 

quotient is 2502 +⋅= , so this would be 2a , and this would be 2q . So... well, you 

can kind of imagine what the three steps are in there… and so now, do you notice 

anything about this process here that is allowing me to stop? What is it about this 

process that is allowing me to stop and say, ‘I can finally stop dividing’? 

Student 1: You get zero for… 

Dr. N: I get zero for the quotient, Ok, that’s right. So, that’s the tip off, I get zero for 

the quotient. But, why are you forced to get a quotient that is zero? You have to 

detect a pattern in order to… 

Student 2: The quotients are always deceasing. 

Dr. N: The quotients are always decreasing. That’s right, exactly right. If you look 

at the pattern, here, the quotients go from 14 to 2 to 0. And, whenever you do that 

the quotients are always decreasing. Ok? (continues with the general proof)  

 Dr. N used the numerical example to show the students that the quotients were 

decreasing, which was a crucial step in the general proof. He also tied the general notation of the 

proof to the numbers in the example, so that the students could have a more concrete 

understanding of the general proof. When asked about his use of this example, Dr. N said, “I 

usually… that level of the audience, or at least part of the audience is not comfortable with a large 

amount of algebra up on the board, and so I feel like, uh, they have grown comfortable, to some 
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extent, with numbers. So, when you put numbers on there, that, uh, makes it easier to reach them. 

And, uh, so that’s the reason for doing it. I feel like, uh, you learn better when you go back and 

forth between the two instances.”  

 Dr. A had one instance of a generic example, although he did this example in lieu of the 

general proof instead of beside the general proof. He was addressing the claim that a particular 

map from nZ  to nZ  was well-defined. So, he chose [4] and [4+3n], which were two different 

representations of the same equivalence class, and showed that they mapped to the same 

equivalence class. In the example he presented, the 4 and 3 are merely acting as placeholders, in 

other words, if they were replaced by variable names the proof would have been generalized.  

 4.3.2 f. Instantiation of a Sub-Claim. These are examples that are used during the proof 

of a claim to help students understand a sub-claim or a particularly difficult logical point. These 

are classified as different from the examples that instantiate a claim because their purpose is not 

to help students understand the main claim that is to be proved, but to support students’ 

understanding of the proof. They are often used in lieu of a proof of a sub-claim, and so they also 

serve to persuade students of the plausibility of a sub-claim. These types of examples were used 

once by Dr. N and twice by Dr. C.  

 In the middle of the proof of Lamé’s theorem, Dr. N claimed that he can use the function 

)(log)( 10 xxf =  to determine the number of digits of a number. The class seemed puzzled by 

this notion, so Dr. N presented an example to the side of the board to instantiate the sub-claim. 

He gave the example of 5643, where
43 10564310 << , so therefore 45643log3 10 << , and  

then stated that the number of digits of the number 5643 is the ceiling of 5643log10 . Dr. N 

commented on this example in his follow-up interview. He said that “it’s kinda funny that you 
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have to explain that to math majors. I’m always shocked when I get asked about that stuff... I’m 

sure I didn’t plan it.” He did not spend time presenting a general proof of the sub-claim. 

 Dr. C was proving the statement “If 
2

x is even, then x is even.” He was using the fact 

that primes cannot be “broken up,” and so he used a numerical example “If 6 divides a product 

xy, you could have 2 going in to x and 3 going in to y. Six can be broken up, you know? But that 

can’t happen with 2.” In the middle of another proof, he wanted to use the fact that the Real 

Numbers have no zero divisors. He claimed that her students used that fact all the time, citing the 

familiar exercise of solving quadratic equations by factoring. He said, “You know that 

0)3)(2( =−− xx  means either 2=x or 3=x .” 

 4.3.2 g. Instantiation of Definitions, Notation, or Concepts. These examples serve to 

reinforce the mathematics content underlying the claim or the proof. They may occur at any time, 

and often appear to be spontaneously generated by the instructor. If presented before the claim, 

they can be used to motivate basic intuitions or claims. They can also be used to support students’ 

understanding of the claim or proof.  

In his initial interview, Dr. A talked about how he would stop in the presentation of a proof to 

ask students questions about the definitions, concepts, and notation. “There is a lot, as we go 

down through [the proof] of recalling definitions and that kind of thing. What does it mean to do 

this? What does it mean to do that? Do you understand what this symbol means?”  

Dr. G said that “from time to time [I] try to do examples that are just illustrations of the 

definition: ‘So, here’s a new thing, a projective plane. So, let’s draw a picture of a projective 

plane.’ And I think I do that reasonably often.” Although Dr. G mentioned this in his interview, 

the observation data did not capture him using this technique. Instantiation of definitions, 

concepts, and notation were used nine times by Dr. A and seven times by Dr. C.  
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 When proving a statement about bounded sequences, Dr. C asked the class to give some 

examples of a bounded sequence (they had previously defined a bounded sequence). These 

examples served to instantiate the definition of a bounded sequence. One student suggested “1, 2, 

3, 3, 3, 3, 3…” Dr. C said that this is a bounded convergent sequence, and asked if the students if 

they could think of a bounded sequence that does not converge. Another student suggested “

( )n
1− .” Then Dr. C asked the class what it means to say that a general sequence is bounded, and 

the students began to reconstruct the definition. He then proceeded to prove the general claim 

using this definition. 

One class day, Dr. A presented a set and a relation on that set, and proved that it was an 

equivalence relation. In the proof, he asked the students to tell him some of the elements in an 

equivalence class of a particular element. This example was an instantiation of the definition of 

an equivalence relation, and also gave students a deeper understanding of the relation that was 

given.   

Dr. C used an example to talk about the “universe of discourse” in a proof about divisibility. 

This example was prompted by a student misunderstanding about the values that x could take in 

the theorem. Dr. C said, “And so the integers are understood in that context because usually what 

we mean is that 6 is divisible by 3 if you can take 6 divided by 3 and the answer is still an integer. 

What does it mean to say pi is divisible by the square root of two? Uhh, well, we don’t even 

discuss it, because pi is a real number, square root of two is a real number, and so you divide 

them, you get a real number. Every number is divisible by every other number if you think about 

it that way. So, so divisibility when you talk about it this way has to be the integers.” So, the 

example was not used to instantiate the theorem itself, but to instantiate the concept of a universe 

of discourse.  
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Instantiation of notation was used by Dr. C when he was proving that 
2
1

+
+=

n
n

ns  converged. 

He first asked students, “If n=100, what is ns ?” Then he asked them to compute 1s , 2s , and  3s . 

These examples were used to help the students make sense of the notation and begin to see the 

pattern of the sequence.  

 4.3.2 h. Metaphorical Examples. Whenever an example was used to compare one 

mathematical structure to a different (more familiar) mathematical structure, I refer to this as a 

metaphorical example. This is unlike instantiation because the instructor is comparing two 

different structures rather than giving an instance of a structure. Metaphorical examples may 

occur at any time throughout the presentation of the claim or proof, and can be used to either 

motivate basic intuitions or claims, or to support students’ understanding of the mathematical 

content involved in the proof. One metaphorical example was captured in my data. It was used by 

Dr. A.  

 When enumerating the different types of elements in 4S , the students tried to count four 

representations of the identity as different elements. Dr. A wanted to discourage this behavior and 

help the students to understand that though the elements are written differently, they represent the 

same element of 4S . Dr. A said, “Well, they’re all the same, so I just do that (writes ‘1-cycles: 

(1)’). That’s all the 1-cycles we have. Yeah, you can come up and write (4), but that’s equal to 

that, so, I just, you wrote it different. It’s not different. That’s the only one cycle.” Then a student 

asks, “So, there’s only one 1-cycle?” to which Dr. A replied, “It’s the identity. And, your eyes are 

telling me that that confuses you. Ok, like we do a lot, you can write ½ equal to 60
30 , that’s not 

two fractions, that’s one fraction.”  

 Since there are mathematical differences in the two structures, this is not really 

instantiation. Dr. A is comparing the unfamiliar structure to a more familiar structure using a 
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metaphor, because in both instances an element can be written in different ways. In reference to 

this example, he said “well, I think students get lost on, uh, equivalence relations. They don’t 

really understand, uh, that this is one thing but it’s got all kinds of different representations, and a 

little set of all of these different representations, but are mathematically considered the same 

thing. So, I think fractions help them.” 

4.3.3 Summary of Example Usage in Proof Presentations. A theoretical contribution 

of this paper is precise definition of “example” that combines the mathematical requirements 

found in previous definitions (Alcock & Weber, 2010; Zazkis & Leikin, 2008) with a learner-

dependent requirement, as found in Mason & Watson (2005). In this paper, an “example” is a 

specific, concrete representative of a class of mathematical objects, where the class is defined by 

a set of criteria. The mathematical requirement is that the object must be a specific representative 

of a class of mathematical objects, but in order for an object to be an example it must be concrete 

to the learner. In other words, the learner must be able to either compute with it or investigate its 

properties.  

The framework highlights four pedagogical uses for examples: to motivate basic 

intuitions or claims, to persuade students of the plausibility of the claim or of a sub-claim, to 

support students’ understanding of the claim, proof, or the underlying mathematical content, or to 

generate proof insight.  

The summary presented here categorizes the examples that were used during proof 

presentations on the class days that were observed in the data. Thus, it is a subset of the 

instructors’ example usage. It is possible that these individuals may use examples differently 

when teaching a different course, or that different instructors may use examples in different ways 

when teaching a particular course. Despite the small size of the study, I have obtained a rich 

collection of examples that leads nicely to the construction of a framework for example usage in 
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proof presentations. Follow-up interviews served as a member check to allow the participants to 

comment on their pedagogical intentions when presenting specific examples in proof 

presentations. A summary of each participant’s example usage in proof presentations is given in 

Table 13.  

Table 13: Summary of Example Usage in the Data 

 

 Dr. C Dr. A Dr. G Dr. N 

     

Start-Up 2 0 0 0 

Pattern Exploration 0 0 0 1 

Boundary Examples 2 1 0 0 

Instantiation of Claim 2 6 1 2 

Generic Examples 0 1 0 1 

Instantiation of Sub-Claim 3 0 0 1 

Instantiation of Definition 3 6 0 0 

Instantiation of Concepts or Notation 4 3 0 0 

Metaphorical Example 0 1 0 0 

 

The most common type of example used in proof presentations was instantiation. Pattern 

exploration appeared in the Number Theory course, likely because the mathematics content lends 

itself well to this type of exemplification (Morselli, 2006). Dr. C used start-up examples and 

boundary examples, which were both mentioned by Dr. C in his interview.  

Dr. G rarely used examples in his proof presentations; however, he did use generic 

diagrams in 19 of the 22 proofs observed. In his follow-up interview, Dr. G said that he did not 

use examples because of the mathematics content that he was presenting. Thus, the mathematics 
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content may have a direct influence on the types or frequency of examples used in proof 

presentations. 

4.4 A Multi-Dimensional Analysis of Instructor Questions 

Results in this section will address the fifth and sixth research questions, “How often do 

instructors who are teaching advanced mathematics using lecture methods interact with their 

students by asking questions?” and “What types of questions are asked by instructors who are 

teaching advanced mathematics using lecture methods, and what types of responses are expected 

of students?” These questions were investigated by an analysis on each question posed by the 

instructor.  

Previous research on teaching proof-based mathematics courses, such as Weber's (2004) 

study showed that the students rarely participated in class discussions, while in Fukawa-Connelly 

(2012) the teacher asked a lot of questions, including high-level questions, but the questions that 

the students actually answered were lower-level, primarily factual. The analysis that follows will 

investigate the questioning of the four participants in their lectures. Results will be presented as 

separate but interrelated case studies. 

The main findings are that the instructors interacted frequently with their students by 

asking questions, from .69 to 1.81 questions per minute, on average. Also, the students responded 

to between 35% and 52% of the questions that were posed.  

When the questions were analyzed using Anderson’s Revised Bloom’s Taxonomy, it was 

found that between 30% and 54% of the instructors’ questions are higher-order (meaning Apply 

Understanding and above), and of the questions that were answered by students, between 31% 

and 57% of those were higher-order. So this study has found that there was no noticeable 

difference between the cognitive level of the questions posed by the instructor and the questions 

that were actually answered by students.  
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The percentage of questions that were asked that required more than just a factual 

response ranged from 13% to 35%. But again, the percentage of questions that students answered 

that required more than just a factual response ranged from 23% to 48%. Thus, this study has 

found that students are answering higher-level questions to a greater degree than has been 

indicated in past studies. The results also show that meta-process questions are infrequent.  

4.4.1 Frequency of Instructor Questions. The fifth research question addresses the 

frequency with which instructors ask questions in advanced mathematics lectures. The average 

number of questions per minute for the four instructors ranged from 0.69 questions per minute to 

1.81 questions per minute. So, it appears that instructors at this level do frequently interact with 

their students by asking questions. This shows that lectures are not necessarily monologues by the 

instructor, but do involve interaction with the students.  

Table 14: Frequency of Instructor Questions 

 Algebra Adv Calc Geometry Num Thry 

Instructor Dr. A Dr. C Dr. G Dr. N 

# Students 24 9 9 14 

# Instruction Days 44 29* 44 44 

# Observations 7 7 6 6 

Total time observed (min) 323 536 250 264 

Total # Questions 224 969 262 235 

Question Rate (per min) 0.69 1.81 1.05 0.88 

Response Rate 35% 47% 46% 52% 

* Dr. C’s class meetings were 75 minutes long, while the other three courses met for 50 minutes 

per class. 

 The rate of student responses ranged from 35% to 52%, but three of the four instructors 

had response rates close to 50%. Note that this analysis considers rhetorical questions and 
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comprehension questions in the question count, and those types of questions typically do not 

require an audible response on the part of the student.  

 Instructors also linked some questions together, either by re-phrasing the question or 

asking a related question that reduced the cognitive load, as in Wood’s (1994) description of 

funneling or focusing questioning patterns. It was not unusual for the instructor to ask two or 

three linked questions before a student would give an answer. For example, Dr. C asked the 

following questions about the limit of a given sequence: “So, what is the limit in this case? 

(pause) Do you guys remember how to find that limit? (pause) When n is very large, what is 

happening to sn? (pause) Like, when n is 100, what is sn?” A student answered the final question, 

which led Dr. C into another line of questioning focused around plotting the terms of the 

sequence to see if they could determine the limit.  

 It should also be noted that although the average response rate is computed in Table 14, 

the questions that were asked were frequently clumped together into sequences of interactive 

lecture. Refer to Table 11 to see the percentages of 1-minute slices of class time that were coded 

interactive vs. straight lecture.  

4.4.2 Illustrations of Question Types from the Data. 

The types of questions were coded while watching the video observations, and thus, the 

codes were assigned based on the actual phrasing of the question as well as the timing and 

mathematics context surrounding the question. Often, the instructor’s body language came into 

play, for example, the instructor may pose a question without looking at the students, and then 

answer the question himself. The body language of the instructor communicated to the students 

that the question was rhetorical.  

 4.4.2.a. Rhetorical Questions. Many of the rhetorical questions that occurred within my 

data were instances where the instructor was asking a question to either motivate content or to 
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model the thinking that the instructor expects the students to do independently. Some examples 

include: 

• Can you see that the answer is "no?" It does not require the function to be constant. 

• So, this implies that cb=da, and what’s this implication from? It’s symmetry of equality.  

• Now, what’s your goal? Your goal is to take the set S, which is a subset of the set T, and 

show that it is finite. 

The use of rhetorical questions may be a characteristic of the individual instructor, because the 

percentage of rhetorical questions varied wildly, from Dr. A using 40.6% rhetorical to Dr. C 

using 7.1% rhetorical.  

 4.4.2.b. Comprehension Questions. This type of question was used by instructors to 

check for student understanding, and often did not require an audible response on the part of the 

student. Typical examples of this type of question include: 

• Does that make sense? 

• Anything seem tricky, or was everything clear? 

• Does this make sense, or do you guys have a question? 

• Ok? 

All of the instructors used comprehension questions in varying degrees, from Dr. G with 3.1% 

comprehension questions to Dr. C with 16.6% comprehension questions.  

 4.4.2.c. Choice Questions. Choice questions are either yes/no questions or questions that 

require the student to choose between two or more options. Here are some examples of choice 

questions that were lower order and examples of choice questions that were higher order.  

• Lower order. “Now, you remember that we had a definition of even and a definition of 

odd that we had last time, right?” “So, therefore, is this set open or closed by our 

definition?” 
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• Higher order.  “Now, if I take the intersection of open sets, is it open?” “Now, does that 

seem like an easier proof to you?” (asking students to look at two different proofs and 

evaluate which one makes more sense to them) 

Choice questions were used by all of the instructors, and hit all of the Bloom’s levels except for 

create, because the nature of a choice question does not allow for the student to create a new 

structure. 

 4.4.2.d. Product Questions. Product questions require a student to give a factual 

response, or to give the name of a particular mathematical object. Some examples of product 

questions at different Bloom’s levels are: 

• Lower order. “What property of a graph does (d) describe? There's a word for this…” 

“So, what do I get when I square that out?” “But, just look at the other end of the 

spectrum. The identity is the littlest subgroup of G, what’s the biggest?” 

• Higher order. “Can you make a true version of the statement?” “So, now you need to help 

me figure out the collection of sets.” (Asking students to create a collection of sets that 

has certain properties) 

All of the instructors used product questions frequently.  

 4.4.2.e. Process Questions. Process questions require the student to give their 

interpretations or opinions, or to describe a mathematical computation, or to explain mathematics 

content. Some examples of process questions include: 

• Lower order. “So, the best way to prove uniqueness is to… I mean, what’s the standard 

way that you prove that there’s only one formula?” “We’re not ready to substitute yet 

until we get it in an external form that models 11.9d that we’re trying to use. So, what 

algebraic manipulation needs to be done?” 
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• Higher order. “I have to know something about this, so what would you do? Something 

you know about Fibonacci numbers.” “You stop when the quotient is finally zero. But, 

why are you forced to get a quotient that is zero? You have to detect a pattern in order 

to…” 

All of the instructors used process questions frequently.  

 4.4.2.f. Meta-Process Questions. Questions that require a student to reflect upon their 

thinking or to formulate the grounds for their reasoning are meta-process questions. Some 

examples are: 

• Lower order. “So, do, are any of these pictures helpful to you for any particular reason?” 

• Higher order. “Absolute value of k. Keep it inside absolute values, don’t get rid of them. 

Correct. Why did you do that, [student]?” “So, any guesses about what I'm about to tell 

you I want a limit point to be, if that's the notion of limit that I've got in my head right 

now?” 

Most of the instructors did not use meta-process questions frequently. Dr. C used them the most, 

with meta-process questions making up 3.7% of his total questions.  

4.4.3 Case Studies of Instructor Questions. Since each instructor was teaching in a 

different content area with a different group of students, we must consider each classroom as a 

separate case study. The next sections will give specific information about each instructor’s use 

of questions, including some excerpts from their interviews to shed light on their perspective in 

regard to interacting with their students using questions.   

 4.4.3.a Dr. A’s Questions: In the observations of Dr. A, it was found that 40.6% of the 

questions that he asked were rhetorical. When asked about this, Dr. A said, “I didn’t want to 

take… you see, that’s the thing. I’m impatient. Very impatient. And so, you’re absolutely right. I 

do question, but I’m not particularly wanting them to answer.” He also said “I feel 
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uncomfortable… I mean, if I’m asking you a question and you’re sitting there and struggling with 

it, I don’t want to just keep putting you on the spot. I want to move on. I’m very uncomfortable 

embarrassing anybody or making them feel uncomfortable.”  

 Another thing that may have affected Dr. A’s questioning was his view of the students in 

that course. In his follow-up interview, Dr. A said “Well, you know, I thought they [this class] 

were particularly weak.” He also expressed that he didn’t think the students were trying very 

hard, and mentioned that “they didn’t do the extra credit problems… which I found very strange.” 

It may be that the perception that Dr. A had of this particular class influenced the types of 

questions that he asked of the students.  

Table 15: Dr. A’s Questions 

 Lower order Higher Order Total 

Rhetorical 33.1% 11.1% 44.2% 

Choice 7.6% 7.1%  14.7% 

Product 16.5% 3.9% 20.4% 

Process 4.9% 8.0% 12.9% 

Meta-Process 0% 0% 0% 

Total 62.1% 30.1%  

 

 Dr. A asked 44.2% rhetorical and 7.5% comprehension questions. Thus, only 48.4% of 

his questions were questions that elicited a response from the students. His overall response rate 

was 35%. The table shows that 30.1% of Dr. A’s questions were higher order (meaning Apply 

Understanding or above) and 12.9% require more than a factual response (either a process or 

meta-process response). When restricting to only questions that were answered by students, 31% 

of questions answered by students were higher order, and 13% required more than a factual 

response (either a process or meta-process).  



124 

 

 4.4.3.b. Dr. C’s Questions: Dr. C commented that when he lectures he tries to talk to his 

students and get them to talk back. He said, “I ask them to help me. I think I always ask them to 

help me, and I think that I have, well, I don't know. Hopefully I always ask them to help me, it 

depends on how much time we have. But, I want them, one of the things that I want them to do is 

to do some meta thinking as well as some detail thinking.” 

Table 16: Dr. C’s Questions 

 Lower Order Higher Order Total 

Rhetorical 5.2% 1.8% 7.0% 

Choice 8.5% 5.8% 14.3% 

Product 21.5% 14.5% 36.0% 

Process 6.4 % 18.3% 24.7% 

Meta-Process 1.3% 2.3% 3.6% 

Total 42.9% 42.7%  

 

 When students answered incorrectly, and Dr. C would either re-direct by asking another 

question, or just remain silent and continue to look at the students. When asked about this strategy 

in the follow-up interview, he said, “I just try to let them have a chance to think about it. And, I 

think, if you say to somebody, ‘No, you’re wrong!’ Then their brain doesn’t have a chance to 

process on it. But, if you say, ‘Hmmmm…’ Then, all the sudden they are still thinking. Well, 

what’s better? Is it better for me to talk or for them to think? It’s better for them to think!” 

 It is also interesting to note that Dr. C asked some meta-process questions. He tended to 

have a one-on-one dialogue with individual students, and in these situations he would sometimes 

ask them to explain their thinking.  

Dr. C asked 7% rhetorical and 14.1% comprehension questions, with an overall response 

rate of 47%. The table shows that 42.7% of Dr. C’s questions were higher order (meaning Apply 
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Understanding or above) and 28.3% require more than a factual response (either a process or 

meta-process response). When restricting to only questions that were answered by students, 43% 

of questions answered by students were higher order, and 29% required more than a factual 

response. 

 4.4.3.c. Dr. G’s Questions: In the initial interview, Dr. G described the types of questions 

that he uses when teaching this course. He said “I ask little questions like: 'why is this angle 

congruent to that angle?' 'What's the next step? What do I do here?' Mostly I ask questions of 

students and insist on an answer. The worst thing, I think, from a teacher's point of view, is if you 

try to ask a question, and the class just stares at you, and you can't get any response. That's when 

you want to throw up your hands and quit.” 

Table 17: Dr. G’s Questions 

 Lower Order Higher Order Total 

Rhetorical 21.4% 11.9% 33.3% 

Choice 4.5% 1.6% 6.1% 

Product 10.6% 11.0% 21.6% 

Process 8.4% 27.0% 35.4% 

Meta-Process 0.4% 0% 0.4% 

Total 45.3% 51.5%  

 

 Most of the proofs that were presented in the Geometry class used proof by contradiction. 

Dr. G would often go through the proof, asking questions along the way, and then stop and ask 

the students to spot the contradiction. This type of questions was coded as a Process/Analysis 

question, and was the most frequent type of question that Dr. G asked. 
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 Dr. G asked 33.3% rhetorical and 3.1% comprehension questions. He had a response rate 

of 46% overall. The table shows that 51.5% of Dr. G’s questions were higher order (meaning 

Apply Understanding or above) and 35.8% require more than a factual response. When restricting 

to only questions that were answered by students, 55.4% of questions answered by students were 

higher order, and 35% required more than a factual response.  

 4.4.3.d. Dr. N’s Questions:  In his interview, Dr. N praised the work of Polya (1945), and 

talked about how he thought that using questions and interacting with students was the best way 

to teach. He also mentioned that because of class sizes and time constraints, he was not always 

able to teach in the way that he thought was best. He said, “well, my uh, usual pattern, well, it 

slows the class down, so I'm not always afforded the liberty of doing it the way that I like, my 

usual pattern is to ask questions of different pieces. Polya gives an example in his book of leading 

a student through a, uh, solving a problem by asking questions. So, that was his belief; that you 

have to ask questions and have to learn how to ask questions…” 

Table 18: Dr. N’s Questions 

 Lower Order Higher Order Total 

Rhetorical 6.3 % 4.3% 10.6% 

Choice 4.3% 1.3% 5.6% 

Product 13.2% 20.0% 33.2% 

Process 7.3% 25.1% 32.4% 

Meta-Process 0% 1.7% 1.7% 

Total 31.1% 52.4%  

 He asked a lot of linked questions, and when students answered incorrectly, he would 

take some fragment of the students’ comment that was correct and re-work it into another 

question. When asked about that technique, he said, “when you read “How to solve it” by Polya, 

he has a sample dialogue with a student where he does exactly that. You’re not supposed to, 
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you’re not supposed to, like, give up, you’re supposed to re-word the question, or ask the students 

to think about a different way of asking about it, or something like that. So, that’s intentional.” 

Dr. N asked 10.6% rhetorical and 16.6% comprehension questions in the observation 

data. His overall response rate was 52%. The table shows that 52.4% of Dr. N’s questions were 

higher order (meaning Apply Understanding or above), and 34.1% require either a process or 

meta-process response. When restricting to only questions that were answered by students, 57% 

of questions answered by students were higher order, and 34% required more than just a factual 

response.  

4.4.4 Summary of Instructor Questions. This study has shown that these instructors 

interacted with their students frequently during their lectures. Their question rate ranges between 

0.69 and 1.81 questions per minute. Although it is the case that the occurrences of questions are 

often clumped together, the average longest period of straight lecture ranges from 5.7 to 11.7 

minutes. Thus, although all of the instructors were using lecture methods, the lectures were not 

monolog. They were all engaging their students by using questioning.  

The percentage of questions asked that were higher-order (apply understanding and 

above) ranged from 30.1% to 54.2%, and the percentage of questions requiring more than just a 

factual response (process or meta-process questions) ranged from 12.9% to 35.8%. This result 

stands in contrast to Tallman & Carlson’s (2012) analysis of Calculus 1 final exams. They found 

that 85% of the items on the exams required no more than rote memorization or applying a 

procedure. The differences could be attributed to the level of the mathematics content or to the 

distinction between in-class questions and assessment items.  

The students answered the questions at rates ranging from 35% to 52%, but three of the 

four participants had response rates close to 50%. Dr. A’s response rate was lower because he 

used more rhetorical questions than the other instructors. When restricting to only the questions 
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that were answered by the students, Table 18 shows that the percentage of answered questions 

that are higher order is similar to the percentage of higher-order questions asked by each 

instructor. Similarly, the percentage of answered questions that require more than just a factual 

response is not noticeably different from the percentage of questions asked that require more than 

just a factual response. Thus, this result shows that students were answering higher-order 

questions in the same proportions that instructors were asking them.  

Table 19: Summary of Instructor Questions 

 Dr. A Dr. C Dr. G Dr. N 

Total Number of Questions 

Coded 

224 969 262 235 

% Higher Order 54.2% 42.7% 51.5% 30.1% 

% Process/Meta-Process 34.1% 28.3% 35.8% 12.9% 

Response Rate 35% 47% 46% 52% 

% of Answered Questions that 

are Higher Order 

57% 43% 55.4% 31% 

% of Answered Questions that 

are Process/Meta-Process 

34% 29% 35% 13% 

 

This result is different from other studies investigating instructor practices in proof-based 

lectures. Weber (2004) found that in Dr. T’s analysis course “students asked questions only 

infrequently and rarely participated in class discussions” (p. 118). In Fukawa-Connelly’s (2012a) 

case study of an abstract algebra instructor, he found that the instructor asked a variety of 

questions, including some higher-order questions, but they were generally contained in a 

sequence of questions so that students actually answered mostly factual questions.  
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A limitation of this analysis of instructor questions is the lack of inter-rater reliability. All 

of the questions were coded independently. To strengthen this result, inter-rater reliability should 

be established. 

4.5 Chapter Summary 

 This chapter presented the findings of this multi-case study on instructional practices in 

proof-based undergraduate mathematics lectures. Initial analysis of the observation data showed 

that the instructors spent, between 35% and 70% of their class time presenting proofs. Thus, 

instructors at this level spend large proportions of their class time presenting proofs in class. This 

finding has already been cited to provide further justification for research on teacher practices 

when presenting proofs (Lai, et al., 2012).  

The interview data were used to identify four proof presentation strategies that the 

instructors said that they used to help their students understand their proof presentations: Outline, 

Examples, Logical Structure, and Context. It was found that at least one of these pedagogical 

strategies was used in all but 6.3% of the total proof presentations observed. Thus, the instructors 

were not just presenting straight proofs, but were adapting the proof presentations based on their 

perceptions of their students’ pedagogical needs. 

The strategy of examples was used to varying degrees across the four cases. In particular, 

three of the four instructors used examples in half of their proof presentations, while Dr. G only 

used examples in one out of the 22 proof presentations. Dr. G did use generic diagrams to 

structure 19 of the proof presentations. The pictures he drew were serving as an alternative 

representation of the general proof, and were therefore not classified as examples. This finding set 

the background for a deeper analysis of the ways in which instructors use examples in their proof 

presentations.  



130 

 

The interview data were used to construct levels of expected engagement. Each proof 

presentation was coded according to the level of expected engagement. In three of the cases, the 

instructors expected the students to be actively engaged in 95% of their proof presentations by 

giving factual information as well as contributing big ideas for the proof. The fourth instructor 

expected active engagement in 50% of his proofs. Although the proofs were presented in a lecture 

style, the proof presentations were more dialogue than monologue, similar to Fukawa-Connelly’s 

(2012a) finding. This result inspired an analysis of the instructors’ questions. 

Timelines were constructed of each observation. The timelines noted both the content 

that was being presented and the source of vocalization. Across all four cases, the instructors 

spent the most proportion of class time on examples and proofs. The timelines gave a visual 

representation of the interaction between the instructor and students. Each one-minute segment 

was coded as “straight lecture” or “interactive lecture.” The proportion of 1-minute intervals that 

were coded “interactive lecture” ranged from 26% to 62%.  

The rich collection of examples that were used in proof presentations in the observation 

data were used to construct a descriptive framework of instructors’ example usage in proof 

presentations, which is illustrated in Figure 5. This framework is chronological from left to right, 

and demonstrates when the different types of examples are likely to occur. Arrows indicate 

whether the examples serve to motivate or support the students’ understanding of the theorem or 

the proof.  

Analysis of the examples used in proof presentation showed that instantiation was the 

most frequent type of examples used. Dr. C mentioned the use of start-up examples and boundary 

examples, and both were observed in his proof presentations. Instructors’ example usage 

appeared to be content specific to some degree. Pattern exploration was only observed in Dr. N’s 

number theory class, and examples were used very infrequently in Dr. G’s geometry class.  
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 The analysis of the instructor questions revealed that in all four cases instructors were 

engaging their students frequently by asking questions. The question rates for the instructors 

ranged from 0.69 to 1.81 questions per minute. The percentage of higher-order questions asked 

by the instructors ranged from 30.1% to 54.2%, and the percentage of questions requiring more 

than just a factual response ranged from 12.9% to 35.8%. Thus, the instructors were asking a 

variety of questions, including a high percentage of higher-order questions.  

 The percentage of questions to which students responded ranged from 35% to 52%. 

When restricting to only questions that were answered by students, the percentages of higher-

order questions matched the overall percentage of higher order questions for all four case studies. 

Also, the percentages of answered questions requiring more than just a factual response matched 

the overall percentages as well. Thus, the students were responding to higher-order questions and 

to questions that required more than just a factual response.
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CHAPTER V 
 

 

CONCLUSION 

 

The purpose of this multi-case study is to examine the teaching practices of four 

mathematics instructors who were teaching different proof-based mathematics courses 

using lecture methods. The conclusions from this study follow the research questions and 

findings and therefore address four areas: (a) pedagogical moves made by the instructors 

when presenting proofs in class; (b) allocation of class time among various content-

specific activities and types of lecture; (c) examples used during in-class proof 

presentations; (d) questions posed by the instructors in class. This chapter first gives a 

summary of the results for each case study, and then a discussion and interpretation of the 

major cross-case findings in light of the literature as well as implications for future 

research. 

5.1 Summary of Each Case Study 

 5.1.1 Dr. A’s Abstract Algebra Class. Dr. A’s class was comprised of 24 students, and 

he mentioned in his follow-up interview that he thought this class was particularly weak. He 

indicated that his perception of their ability had an effect on his teaching. He established that he 

was using lecture methods. He emphasized in the interviews that he believed 
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that students should only get ideas from a lecture and should spend time thinking about the 

concepts at home. He also said that he likes to weave in discussions about proof techniques into 

the content rather than talking about them at the beginning of the semester.  

 When asked what strategies that he would use to help students understand his proof 

presentations, he said that he would talk about logical structure and have discussions with 

students about what the mathematics content means and ask them how they would prove a certain 

statement. Of the 12 presentations of theorems and proofs in his data, he used outline in 42% of 

those and logical structure in 25%. In his interview he only mentioned drawing pictures, but not 

any particular types of examples, however, he used examples in 67% of his presentations. He also 

did not mention context as a strategy, but he used it in 17% of his presentations.  Dr. A 

frequently used examples to instantiate definitions, claims, and notation in his proof 

presentations. He was observed using a generic example once and a boundary example once. He 

was also the only instructor observed who used a metaphorical example. Dr. A spent 40% of his 

class time on proof presentations, and 29.2% of that time was on the actual proofs themselves. He 

only worked homework problems 2.5% of the time, which is in line with his philosophy that 

students should be independent. He used examples in 38.9% of his class time. 

 Dr. A said that he would often ask students the meaning of certain definitions or notation, 

and he also said that during a proof presentation he may ask students to give the next step. Half of 

his proof presentations were coded 3 or above, meaning that students were expected to participate 

in the proof presentation. Also, 73.9% of his class time was spent on straight lecture with no 

student interaction. He frequently asked rhetorical questions, using them to motivate the 

mathematics content that he was presenting. He verified this technique in the follow-up interview. 
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  5.1.2 Dr. C’s Advanced Calculus Class. Dr. C’s class was comprised of 9 students, all 

of whom were upper classmen, and mostly mathematics or mathematics education majors. Dr. C 

preferred to describe his teaching style as “modified lecture.” In the interview, Dr. C expressed 

that abstract mathematical concepts must be motivated with examples and that proof methods and 

techniques must be explicitly taught.  

He mentioned the proof strategies of examples, logical structure, and outline in the 

interview. Dr. C used all of these strategies frequently, and all of the 22 proofs captured in the 

video data had an identified presentation strategy. Dr. C had a wide range of example types, 

including start-up examples, boundary examples, and different types of instantiation. Dr. C spent 

49% of his class time on proof presentations, and expected active engagement in 95% of his 

presentations. Dr. C would involve students the most at the beginning of his proof presentations, 

asking students to help him set up the structure of the proof. It was also noteworthy that Dr. C 

spent a large portion of class time on homework problems, around 30%. Students often asked 

homework questions at the beginning of class.  

Dr. C used interactive lecture most frequently, using 61.5% of his class time interacting 

with the students. He said “I try to talk to my students and get them to talk to me. I try to have 

some sense that they are processing what I’m saying and with me before I move on.” All but one 

of his proof presentations required active engagement from the students. A little over 42% of Dr. 

C’s questions were higher order, and 28% of his questions required more than just a factual 

response. Dr. C infrequently asked rhetorical questions.  

5.1.3 Dr. G’s Geometry Class. Dr. G’s geometry class had 9 students enrolled, eight of 

whom were math or math education majors.  Dr. G also preferred to call his style “modified 

lecture” but he contrasted his methods with inquiry-based methods, because he said he didn’t 

“leave them with open-ended problems.” Dr. G was emphatic that he expected his students to 
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interact with him in class, and said that when his students don’t respond to his questions he just 

wants to “throw up his hands and quit.”  

Dr. G talked about the proof presentation strategy of outline the most. He said that he 

likes to give students a “plan of attack” before presenting a complicated proof. He said that he 

likes to motivate the content with examples, but says that for non-Euclidian geometry “real 

examples… are hard to come by, because you’re talking about something like the Poincare disc 

or the Klein bottle…”  He said that it is easier to find examples in courses like number theory. He 

also described the importance of the historical context of many of the proofs in Geometry. In his 

22 proof presentations, Dr. G only used examples in one presentation, but used outline in about 

half of them. Although he did not use examples, he did organize most of his proofs with a generic 

diagram, which was a picture that served as an alternative representation of the general proof. 

Dr. G did engage his students in his proof presentations, expecting active engagement in 

95% of his presentations. The most frequent way that he involved students in his presentations 

was to set up the proof until he got to the point where there was a contradiction, and then he 

would have the students explain why there was a contradiction. This may be because proof by 

contradiction is common in that particular mathematics content area.  

Dr. G used interactive lecture in 36.4% of his class time. He asked 33% rhetorical 

questions, but still had a response rate of 46% overall. It was found that 51.5% of his questions 

were higher order, and that 55% of the questions answered by students were higher order. 

5.1.4 Dr. N’s Number Theory Class. The number theory course had an enrollment of 14 

students, and all but one were mathematics or mathematics education majors. Dr. N confirmed 

that he used lecture methods because of time constraints, but said that he tries to involve students 

using questioning as much as possible, citing Polya’s use of questioning to lead students through 

problem solving. He said that he likes to include group projects as well.  
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The proof presentation strategies that he mentioned were outline, examples, and logical 

structure. In his proof presentations, he used these three strategies frequently. Dr. N used 

examples to instantiate, and also used pattern exploration and generic examples. He also 

mentioned that he likes to ask questions when presenting proofs so that the students can be led 

through the process. Observations showed that he expected active engagement in all of the 8 

proofs he presented.  

Dr. N spent 35% of his class time presenting proofs, and 45% of his class time was spent 

using interactive lecture. He often had casual conversations with the students about the 

mathematics, especially about the history around the mathematics that was being presented.  

 Of the questions posed by Dr. N, 52.4% were higher order. The students responded to 

52% of Dr. N’s questions, and of the questions answered by students, 57% were higher order. 

5.2 Pedagogical Moves During Proof Presentations 

 Literature addressing students’ difficulties with mathematical proof showed that students 

struggled with the mathematical notation (Selden & Selden, 1995), the mathematics content 

(Moore, 1994), held beliefs about proof that were inconsistent with the mathematical community 

(Schoenfeld, 1989; Solomon, 2006), or lacked strategic knowledge (Weber, 2001).  

Previous interview studies of mathematics instructors showed that they seemed to lack an 

arsenal of strategies for helping students understand their proof presentations (Weber, 2011; 

Alcock, 2010; Harel & Sowder, 2009). One explanation is that the instructors are experienced, 

and have well established patterns of knowledge and behavior when teaching. Schoenfeld (2011) 

writes that “decision making and resource access are largely automatic when people are engaged 

in well-practiced behavior” (p. 16). Thus, it is possible that the instructors, in an interview setting, 

were unable to recall the routine strategies that they use in class. Another possible explanation is 

that these instructors are not accustomed to discussing their teaching strategies, and may be 
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unable to clearly articulate the methods that they use and why they use them. Therefore, it is 

apparent that observation of instructors as they present proofs is necessary to have a more 

complete understanding of the strategies that they use. 

This study found that the four instructors used various proof presentation strategies and 

levels of expected engagement during their proof presentations. In their interviews, the instructors 

discussed the strategies that they use to help their students understand the proofs that they present 

in class. Four proof presentation strategies were identified in the interview data: outline, 

examples, logical structure, and context. It was found that across the four cases, the instructors 

were using these strategies in their proof presentations. In fact, an identified proof presentation 

strategy was used in all but four of the 64 total proofs observed in the data. This result shows that 

the instructors were not just presenting proofs to demonstrate the truth of theorems in the 

mathematics content, but they were adapting their proof presentations based on their perceptions 

of their students’ pedagogical needs.  

A study examining mathematicians’ views of a good pedagogical proof showed that they 

“valued an introductory sentence that makes transparent the proof framework that will be 

employed” (Lai, et al., 2012). A written or verbal statement of this type was coded as outline in 

this study. This method addresses students’ lack of strategic knowledge by making the proof’s 

strategy explicit. The instructors used outline most frequently in between 42% and 68% of their 

proof presentations. Thus, the instructors in this study were using a strategy that is widely 

accepted by mathematicians as good pedagogical practice. 

Examples were used by the instructors to varying degrees. Three of the four instructors 

used examples in half of their proof presentations, while the fourth rarely used examples. 

Comments about the logical structure of the proof were made by the instructors in 25-54% of 



138 

 

their proof presentations. The context of the proof in history or within the mathematical content 

was mentioned in between 13.6% and 38% of the proofs presented.  

 This study found that three of the four instructors expected students to contribute to 95% 

of their proof presentations. The fourth instructor expected students to contribute to 50% of his 

proof presentations. Thus, the instructors’ proof presentations were not monologue, but were 

similar to the proof presentation with dialogue strategy identified by Fukawa-Connelly (2012a).  

5.3 Allocation of Class Time 

 In Mejia-Ramos & Inglis’s (2009) literature search, they determined that there was a 

dearth of studies about proof presentations. Several recent studies have focused on proof 

presentations (Alcock, 2010; Weber, 2011; Fukawa-Connelly, 2012a; Hemmi, 2010; Yopp, 

2011), and their rationale for doing so is that proof presentations are an important way in which 

instructors model the mathematical behavior of proof writing. This study has found that 

instructors spend large portions of their class time (between 35% and 70%) on proof 

presentations. This finding further justifies that instructor proof presentations are an important 

topic for further research.  

 The timelines constructed of each lecture were analyzed to determine the percentage of 

time that was spent on interactive lecture. The range of class time spent on interactive lecture was 

from 26% to 62%. Thus, the instructors were discussing with their students to varying degrees, 

but there was a significant portion of class time spent on interactions between the instructor and 

students.  

5.4 Example Usage During Proof Presentations   

 The framework presented in this study describes the example usage of four instructors in 

their proof presentations. The framework highlights four pedagogical uses for examples: to 

motivate basic intuitions or claims, to persuade students of the plausibility of the claim or of a 
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sub-claim, to support students’ understanding of the claim, proof, or the underlying mathematical 

content, or to generate proof insight. In this framework, the term motivate is used when an 

example precedes the presentation of the mathematics content, and support is used when the 

example follows the presentation of the mathematics content. The types of examples used by the 

four instructors were: pattern exploration, boundary examples, instantiation of a claim, generic 

examples, instantiation of a sub-claim, metaphorical examples, and instantiation of definitions, 

notation, or concepts. These example types were organized on a timeline that visually displays 

when the example types were used chronologically in the presentation of the theorem or proof, as 

presented in Figure 7.  

Many of the elements of my framework reflect the use of examples by students and experts 

when grappling with a mathematical concept as found in previous literature, but the organization 

of examples based on their pedagogical uses and timing within actual observed lectures is 

original. The identification of a metaphorical example that was used in a proof presentation is 

also original.  

Two of the instructors in my study linked their own reasoning with examples to what they do 

in their in-class proof presentations. Thus, the literature on how mathematicians reason with 

examples is linked to how they use examples in their teaching. Many of the recent studies 

investigating experts’ use of examples claim that a deeper understanding of how successful 

mathematicians generate and use examples can be useful for designing instructional practices 

(Lockwood, et al, 2012; Mejia-Ramos & Inglis, 2007). If this is the case, it is also necessary to 

understand how mathematics instructors are already using examples in their in-class proof 

presentations, which is the question addressed in this study. 

This framework can be compared and contrasted with Lockwood et al.’s (2012) framework 

for mathematicians’ example usage when conjecturing and proving. Many of the uses for 
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examples that they identified were similar to those found in my study, such as checking or 

verifying, making sense of the situation, proof insight, and understand the statement of the 

conjecture. Since their framework dealt with conjectures and not with presenting known 

theorems, they included using examples to “break the conjecture” which was not found in the 

proof presentations in my data. Using examples to “motivate basic claims or intuitions” was also 

described by Michner (1978).  

Mathematicians use reasoning with examples to convince themselves of the validity of a 

published theorem or proof (Weber & Mejia-Ramos, 2011). Three of the four instructors in my 

study used examples relating to the theorem in lieu of a general proof on occasion, which 

suggests that they were using the examples as a form of justification.  

 Studies have shown that students tend to be more comfortable reasoning with examples 

than constructing deductive proofs (Harel & Sowder, 1998). The use of examples in proof 

presentations has been identified by mathematics instructors as a strategy that can help students 

comprehend the proofs presented in class (Alcock, 2010; Weber, 2011). Although the participants 

in this study were unfamiliar with the literature on examples, many of the types of examples that 

occurred were similar to types of examples that have been previously identified.  

 There were also examples in the data that could not be linked to existing types of 

examples. Metaphorical examples were identified in this study. A metaphorical example is an 

example comparing properties of a mathematical structure to a different but more familiar 

mathematical structure.  

Three of the four instructors used examples frequently in their proof presentations. The 

three instructors who used examples did so in half of their proof presentations, and the fourth (Dr. 

G) only used examples in one of the 22 proofs observed. Dr. G commented that he did not use 

examples because he felt that examples were not readily available in the mathematics content that 
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he was teaching. A pattern exploration example was used by Dr. N in his number theory course, 

and was not observed in any of the other cases. Exploring number theoretic conjectures with 

examples is frequently used by mathematics education researchers because of its accessibility to 

students and experts alike (Harel, 2001; Lockwood, et al; Inglis, et al, 2007). The varied use of 

examples in proof presentations suggests that the mathematics content that they are presenting is 

one factor influencing the instructors’ example usage. 

Although Dr. G did not use examples in his proof presentations, he did use generic 

diagrams to organize and guide his proof presentations. These pictures were not representative of 

a specific member of a class of mathematical objects, but were at the same level of generality as 

the proof; thus they did not fit the definition of example used in this paper (see Section 3.4.5). 

5.5 A Multi-Dimensional Analysis of Instructor Questions 

 Questions posed by instructors at the K-12 level are understood to be primarily factual 

(Anderson & Krathwohl, 2001; Sahin & Kulm, 2008), with the exception of exchanges in which 

mathematical proofs are offered (Thompson, et al, 1994). In previous studies of  undergraduate 

level proof based mathematics courses, some instructors do not interact with their students using 

questions (Weber, 2004), while others ask a variety of questions, including some higher-order 

questions (Fukawa-Connelly, 2012a). Higher order questions were then followed by a sequence 

of narrowing questions so that the students eventually responded to a factual question (Fuakwa-

Connelly, 2012a).   

This study found that across all four case studies, instructors were frequently interacting 

with their students by asking a variety of questions, including between 30% to 54% higher-order 

questions. Between 35% to 52% of questions answered by students were higher-order.  Thus, 

although there may be instances of funneling patterns in the instructors’ questioning, the students 

were responding to a variety of questions, including higher-order questions.  
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5.6 Implications for Future Research 

 This study did not collect data from students and can therefore make no claims about how 

the various teaching practices observed in this study impacted student learning. Future research 

could investigate this manner. Further research into teaching practices could include studies in 

which I collaborate with the instructor to investigate their use of examples or questioning 

patterns. This collaboration could be used throughout the data collection and analysis presenting a 

more detailed description of the instructor’s pedagogical intentions regarding their teaching 

practices.  
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APPENDICES 
 

 

 

Appendix A: Interview Questions 

 

1. What courses have you taught recently (in the last 3-5 years) in which you presented proofs in 

class? 

2. Describe the balance of proof presentation vs. application/calculation in these courses. 

3. Why should we present proofs in class? 

4. Why should we ask students to read and write proofs? 

5. How do you decide whether or not to present a certain proof in class? 

 

We are interested in what you do in class when you present proofs. To help you focus, think of a 

specific proof that you will present in class this semester, or that you’ve presented before. The 

next few questions will be focused on how you will present that proof. 

6. Describe ways in which you help students understand the statement you plan to prove. (i.e. 

illustrate with examples, recall preliminary facts, relate to similar results, place result in larger 

context, etc.) 

7. Describe how you present the proof. (i.e. board use, dialogue with students, etc.) 

8. Describe ways in which you help the students understand the proof. (i.e. structural comments, 

emphasize difficult steps, do examples, draw a diagram, involve students, etc.) 

 

9. In general, when you present proofs in class, what additional things do you do to help the 

students understand? 

10. How do you assess students’ understanding of the mathematical proofs you present in class?
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BegAppendix B: Interview Analysis Codes     

Theme Codes 

Value of proof in mathematics Historical Significance 

Proof is foundational to mathematics 

Proof is good mental training 

Proof is a means for verification 

Proof is a means for communication 

 

Emphasis in Class Student Understanding 

Problem Solving 

Rigor 

Teaching methods of proof 

Student Discovery 

Logic 

Application 

Axiomatic Structure of Mathematics 

Independence (Think about it at home) 

Group Projects 

 

Factors influencing proof presentations Level of audience 

Covers the main topics 

Time constraints 

Demonstrates a method of proof 

Level of difficulty of proof 

 

Proof presentation tools Warm-up 

     Outline 

Examples 

     Draw Pictures 

Motivate steps 

Ask for student input 

Emphasize structure of proof 

     Structure of statement 

Write out details 

Non-linear presentation 

Skip details 

Skip difficult parts of some proofs 

 

Interaction Asks questions to students 

Eye contact 

Students ask questions 

Wait for responses 

Adapting to student feedback 
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Appendix C: Follow-Up Interview Questions 

General: 

 What is your overall philosophy when teaching proof-based courses?  

 How would you describe your teaching style in this particular course?  

  (Read the section about his interview data)  

 Do you have any comments or anything you would like to add? 

 

Example Usage: 

 In what ways did you use examples when presenting proofs in class?  

 (Show them the model, comment on the ways that they used examples from 

 observation data) 

 What effect does example usage in proofs have on student learning?  

 Do you have any additional comments? 

 

Student Involvement: 

 In what ways and how frequently did you involve your students in class?  

 (Show them their graphs, and discuss them) 

 Comments? 

 How did you involve your students in class when presenting proofs?  

 (Here is what I observed)  

 How do you think these methods affected student learning?  

 Do you have any additional comments? 

 

Textbook Usage: 

 Why did you choose the textbook that you used for this course? 

 What are the big idea (organizational) things that you like about this text, and 

 things that you don’t? Did you plan to deviate from the text in the way you 

 structure the course? Why or why not? 

 Did you state definitions, theorems, and proofs straight from the book, or did you 

 re-word them? Do you think that had an effect on student learning? 

 What about the way the text presents material do you try to emulate in your 

 lectures? What do you try to do differently? 

Strategic Thinking: 

Strategic thinking is defined as a skill separate from content knowledge or the 

knowledge of logic and what constitutes a proof. It is defined as heuristic 

guidelines that students can use to recall actions that are likely to be useful or to 

choose which action to apply among several alternatives. This includes 

knowledge of the domain’s proof techniques, knowledge of which theorems are 

important and when they are likely to be useful, and knowledge of when and 

when not to use symbol manipulation (or brute force tactics). 

In what ways did you foster strategic thinking when presenting a proof?  

How do these methods affect student learning?  
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Appendix D: Sample detailed log from each instructor 

Obs A.8 Proof #  

0:00-9:00 Proof A.8.1 Homework Question: For a, b natural numbers, a~b iff a=b10^k 

some integer k, show ~ is an equivalence relation. Give a 

complete set of equivalence class representatives.  

9:00-10:15 Organization Looking for other examples 

10:15-16:55 Example Equivalence Class: Let C be the collection of subsets of 

{1,2,3,4} and X~Y iff there is a 1-1 correspondence. What are 

the equivalence classes?  

Student asks whether or not to include the empty set as an 

equivalence class. 

16:55-29:54 Proof A.8.2 Prove that a/b~c/d iff ad=bc is an equivalence relation on the 

rationals.  

30:00-32:24 Lecture Where are we going? Gives an outline of the next three topics: 

Least Integer Principle, Division Alg, Euclidian Alg. 

32:24-37:40 Lecture Least Integer Principle: Equivalent to Principle of Induction. 

Can we prove this? No. It is an axiom on N 

37:40-41:00 Lecture The Division Algorithm: States the beginning, with a=bq+r. 

Asks what restrictions should be placed on r. Gives a numerical 

example: 26=4*4+10, but that’s no good. We want 26=4*6+2. 

Why? Student says, “Because 2<4.” Instructor writes 0≤ r < b. 

Can we prove this? Writes “Proof,” but then decides not to prove 

it. 

41:00-43:30 Lecture Uses of the division algorithm: modular arithmetic. a~r(modn) 

iff a-r=nq. This is a relation, why? Student starts to answer, but 

then instructor says, “any subset of Z×Z is a relation.” 

43:30-49:50 Proof A.8.3 Claim: equivalence modulo n is an equivalence relation.  

49:50-53:00 Lecture States Prop: Let n be a positive integer, the collection 

equivalence classes of integers modulo n is denoted by nZ . 

Furthermore, a complete set of representatives are {0, 1, 2, …, n-

1}. There are n equivalence classes.  

Comments on how to prove the prop using the division 

algorithm and uniqueness.  

53:00-53:47 Example Say n is three. Then who else is in the equivalence class of 1? 

Two students guess numbers, then one says “four” Students are 

starting to pack up and leave.  
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Obs C.6 Proof #  

0:00-4:00 Comments Hands back homework and solutions to homework, discusses 

grades, comments about student performance on the homework. 

Mentions that this is a review for their exam. Students take time 

to look at homework and formulate questions.  

4:00-14:00 Lecture 

HW 

Problem 

Solution 

Given several different relations, decide if they are symmetric, 

transitive, or reflexive.  

A,B sets. A~B iff A contained in B.  

S={1,2,3} R={(1,1),(1,2),(2,2),(1,3),(3,3)} Draws a diagram with 

three points and arrows representing relations. 

x, y real numbers. x~y iff x-y is irrational. (Uses a numerical 

counterexample to show not transitive) 

x~y iff (x-y)^2<0. (Discusses the logic of an if-then statement 

when the antecedent is false) 

x~y iff |x-y|<2. (Interprets absolute value as distance on a number 

line. Draws a diagram of a number line)  

14:00-15:37 Lecture 

HW 

Problem 

Solution 

Show that )()()( CBCACBA ×∪×=×∪ . Projects the proof 

onto the board. Discusses her choice of letters of the elements in 

the set. Asks for questions. There are none. 

15:37-17:30 Lecture 

HW 

Problem 

Solution 

Student asks about a homework problem: Prove or give a 

counterexample. “For every positive integer n, n^2+4n+8 is 

even.” She describes her solution. Instructor says “There was no 

flaw in your logic, you mis-read the instructions. You have to say 

that it’s false and give a counterexample.” 

17:30-19:30 HW 

Comments 

More random comments on HW problems, office hours, asks for 

more questions on this assignment, there are none.  

19:30- HW 

Comments 

Projects homework solutions on the board:  

Choosing intervals on which given functions are one to one.  

Given a function on the naturals, show it is not surjective.  

Prove that a given function on the integers is bijective. (Sketches 

a graph of the function, a sequence of dots) 

More comments about homework solutions 

25:03 Lecture Defines the ceiling and floor functions. With numerical examples, 

and sketches a graph of both step functions.  

27:53- HW 

Comments  

Goes over HW solutions: 

Examples and non-examples of functions from N to N that are 

injective, surjective, or both, or neither. Sketches graphs of some 

of the functions.  

32:00-34:30 Comments Informal comments about use of letters in mathematics. 

34:30- 35:30 Student 

question 

Student asks for an example of a surjective proof.  

35:30-43:40 C.6.1 Proves Theorem: Suppose BAf →:  and CBg →: if fg o

is surjective, then g is surjective.  

43:40- 55:30 C.6.2 Instructor works problem from exam review: Prove that 

)\()\()(\ CABACBA ∩=∪  
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55:30-1:09:30 C.6.3 
Proves 

6

)12)(1(
...21 222 ++

=+++
nnn

n  by induction.  

1:09:30-

1:19:30 

C.6.4 Proves that for all real x>3, there is a real y<0 such that 

y

y
x

+
=

2

3
.  

 

 

 

Obs G.4   

0-1:09 Lecture 

Definition 

Draws a picture to remind students of the definition of Same side of a 

line and opposite sides of the line, plane separation axiom 

1:09-2:40 Lecture 

(Prep for 

proof) 

Plane separation axiom: Let l be a line, P, Q, R points not on l.  

1. If P and Q ssl and Q, R ssl, then P, R ssl. 

2. If P, Q ssl and Q, R, osl, then P, R, osl. 

3. If P, Q, osl and Q, R, osl, then P, R ssl. 

2:40-9:32 Proof G.4.1 If P ≠ Q are points, then there is a line l so that P, Q are on the opposite 

sides of l 

10:30-18:36 Proof G.4.2 Stick Lemma 

19:00-23:10 Proof G.4.3 Z Theorem 

23:10-24:50 Definition If P, Q, R are non-collinear points, then triangle PQR is the three 

segments PRQRPQ ∪∪ . (draws a sketch) 

24:50-30:20 Proof G.4.4 Pasch’s Little Thm.  

30:20-31:00 Pf 

Comments 

Comments about how Pasch’s Little Theorem relates to a future theorem 

that they will prove. 

31:00-32:20 Def AB and AC are opposite rays if (draws a sketch, asks student to finish 

the def) Student says “A*B*C” 

32:20-33:00 Def If AB and AC are not opposite rays, then angle BAC is the union of the 

two rays.  

33:00-34:16 Lecture 

with 

student 

input 

So, we don’t allow opposite rays to be an angle.  

Let’s think about how we would define the interior of an angle. (shades 

the interior on the picture) Student suggests the intersection of the two 

half planes. 

34:16-35:40 Def (Sketches an angle with an interior point, and refers to it as he writes the 

def) D is interior to angle BAC if 1. B, D are on same side of AC, 2. C,D 

ss of AB.  

35:40-36:12 Lecture 

with 

student 

input 

What do you think it might mean to be interior to a triangle? (sketches 

picture) Student suggests the intersection of the three half planes. 

Instructor says this will work, but we can also express it as interiors of 

angles. 

36:12-36:30 Def D is interior to triangle BAC if D is interior to all three angles. 

36:30-38:00 Lecture (shades the picture to illustrate that the interior of a triangle is the 

intersection of the interior of two of the angles) So, this is a theorem, 

which is exercise 4.  

38:01-46:13 Proof G.4.5 Angle Chord Lemma 
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Obs N.7 Proof #  

0-2:30  Small talk with students 

2:00-3:07 Lecture Worst cases of Euclid’s Algorithm, when the greatest number of 

steps occur. 

3:07-6:21 Examples A=13, b=8 Worst cases are Fibonacci numbers. Goes through the 

algorithm to show that there are 5 steps.  

A=144, b=89 Goes through the algorithm to show that there are 10 

steps. 

6:21-7:45 Theorem Lame’s Theorem: The number of steps in Euclid’s algorithm 

applied to a, b is less than or equal to five times the number of 

digits of the smallest of a or b. 

7:45-22:50 Proof Follows the book on page 106. 

Uses an example to show that the log base 10 tells how many 

decimal digits a number contains. 

22:50-26:47 Proof 

N.7.1 

Homework Problem: Calculate a formula for the sum, j=1 to n of 

jj rq  

26:47-36:44 Proof 

N.7.2 

Homework Problem: The GCD of two Fibonacci numbers f_n and 

f_m is f_(n,m) 

38:00-45:00  Statement of the Fundamental Theorem of Arithmetic 
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Appendix E: Timelines 

Observations for Dr. A 
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Observations for Dr. C 
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Observations for Dr. G 
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Observations for Dr. N 
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Appendix F: Bloom’s Taxonomy Coding Descriptions 

Remembering Applying a 

Procedure 

Understanding Applying 

Understanding 

Analyzing Evaluating Creating 

Retrieve 

relevant 

knowledge 

from long-

term memory 

Recall a 

familiar 

definition, 

formula, 

result, or 

proof 

technique 

Cite 

Identify 

Recall 

List 

 

Students must 

recognize what 

knowledge or 

procedures to 

recall when 

directly 

prompted to do 

so. 

Perform 

computations in 

a familiar 

context 

Using a 

procedure that 

does not require 

deep 

understanding 

Plug-in numbers 

to a familiar 

function 

Compute the 

base case for an 

induction proof 

Make 

interpretations, 

provide 

explanations, 

make 

comparisons, or 

make inferences 

that require 

understanding of 

a mathematics 

concept 

Explain in your 

own words 

Interpreting 

definitions 

Explain the 

implications of a 

condition or 

definition 

Understand and 

explain the steps 

in a given proof 

Explain, interpret, 

or modify 

notation 

Describe the 

elements of a 

given set 

Describe the 

graph of a given 

function 

Classifying 

Recognize when 

to use or apply a 

concept  

Applying a 

procedure in an 

unfamiliar 

context 

Deciding which 

theorem or 

definition to 

apply and using 

it. 

Applying a 

theorem, result, 

or proof 

technique to an 

unfamiliar 

context. 

Plug-in numbers 

to an unfamiliar 

function (prime 

counting 

function) 

Computing in an 

unfamiliar 

context (different 

bases) 

Identifying 

properties of a 

certain function 

 

 

Break material 

into parts and 

determine how 

they relate. 

Examine, 

organize, 

generalize, 

differentiate 

Detecting a 

contradiction 

Determining 

the next step in 

a proof (when it 

is more than 

just interpreting 

a definition) 

Deconstruct a 

statement into a 

plan for a proof 

Focusing 

Clarifying the 

statement to be 

proved 

Breaking down 

the proof into 

parts 

Determining 

how the 

elements fit or 

function within 

a structure 

Make 

judgments 

based on 

criteria and 

standards. 

Conclude, 

testing, justify, 

proving, 

validate, 

defend, assess 

Give a more 

efficient 

computation 

Which proof 

method is 

best? 

Justify your 

thinking 

Justify a step 

in a proof 

Explain why a 

certain method 

was used. 

Put elements 

together to form 

a coherent or 

functional whole 

Reorganize 

elements into a 

new pattern or 

structure. 

Hypothesizing 

Designing 

Constructing 

Construct a set or 

function that has 

certain properties 

Conjecture 

Formulate a new 

definition 
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Appendix G 

INFORMED CONSENT DOCUMENT - INTERVIEW 

 

Project Title: Exploring how mathematicians’ instructional values influence 

proof  presentations in the university classroom: A mixed methods investigation. 
  

Investigators:   

Melissa Mills, PhD Student, Oklahoma State University Mathematics  

Department 

Dr. Lisa Mantini, Professor of Mathematics, Oklahoma State University 

Mathematics Department 

Purpose:   

This is an exploratory research study investigating what mathematics 

faculty members think about the presentation of mathematical proof, and 

how these thoughts manifest themselves in the faculty members’ actual 

practices in class. This is a mixed methods study of mathematics faculty 

members who are teaching proof-based upper division mathematics 

courses.  

Procedures:  

This portion of the study will be an interview about your values in 

teaching mathematical proof, your expectations of student performance, 

and your ideas about presenting mathematical proof in the classroom.  

The interview will be audio taped and transcribed by the primary 

investigators. The investigators will analyze the data to look for themes, 

and will use these to modify the observation instrument if necessary.  The 

interview will last approximately 1 hour.  

Risks of Participation: 

There are no known risks associated with this project which are greater 

than those ordinarily encountered in daily life. 

Benefits:  

The expected benefits are a chance to reflect upon teaching values, which 

may positively affect the instructors’ confidence or ability to present 

mathematical proof. 

Compensation:  

There will be no formal compensation for participation in this study. 

Confidentiality:   

The records of this study will be kept private. Any written results will 

discuss group findings and will not include information that will identify 

you. Research records will be stored securely and only researchers and 

individuals responsible for research oversight will have access to the 

records. The data will be stored separately from the consent documents to 

ensure confidentiality. It is possible that the consent process and data 
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collection will be observed by research oversight staff responsible for 

safeguarding the rights and wellbeing of people who participate in 

research. The data will be kept until the final draft of the report is 

completed.  

Contacts:  

If you have further questions about both the research and the subject’s 

rights, you may contact:    

Melissa Mills     Lisa Mantini 

PhD Student      Faculty/Advisor 

Mathematics Department   Mathematics Department 

431 MSCS     410 MSCS 

405-744-8412     744-5777 

memills@math.okstate.edu   mantini@math.okstate.edu  

 

If you have questions about your rights as a research volunteer, you may 

contact Dr. Shelia Kennison, IRB Chair, 219 Cordell North, Stillwater, OK 

74078, 405-744-3377 or irb@okstate.edu.  

Participant Rights:   

Participation in this study is voluntary, and you may discontinue the 

research activity at any time without reprisal or penalty. There are no 

foreseeable risks should you choose to withdraw.  There are no reasons 

that will justify terminating your participation in the study.  

Signatures:      

 

I have read and fully understand the consent form.  I sign it freely and voluntarily.  A 

copy of  

this form has been given to me. 

________________________                  _______________ 

Signature of Participant   Date 

 

I certify that I have personally explained this document before requesting that the 

participant  

sign it. 

________________________       _______________ 

Signature of Researcher   Date 
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Appendix H 

INFORMED CONSENT DOCUMENT – OBSERVATION 

 

Project Title: Exploring how mathematicians’ instructional values influence 

proof  presentations in the university classroom: A mixed methods investigation. 
Investigators:   

Melissa Mills, PhD Student, Oklahoma State University Mathematics  

Department 

Dr. Lisa Mantini, Professor of Mathematics, Oklahoma State University 

Mathematics Department 

Purpose:   

This is an exploratory research study investigating what mathematics 

faculty members think about the presentation of mathematical proof, and 

how these thoughts manifest themselves in the faculty members’ actual 

practices in class. This is a mixed methods study of mathematics faculty 

members who are teaching proof-based upper division mathematics 

courses.  

Procedures:  

Faculty members will be observed in the regular classroom setting. Notes 

will be taken using an observation instrument developed by the 

investigators. The faculty member and chalk board will be video taped to 

capture gestures and the material written on the board. The video 

recordings will not be transcribed, but will be used by the investigators as 

a reference when the observation instrument is insufficient, and short 

clips may be used when presenting the results at the Research in 

Undergraduate Mathematics Education Conference.  The instrument will 

address how the instructor presents proofs in class, types of questions 

asked, usage of examples or illustrations, style of written presentation on 

the board, and overall proof presentation methods.  

Risks of Participation: 

There are no known risks associated with this project which are greater 

than those ordinarily encountered in daily life. 

Benefits:  

The expected benefits are a chance to reflect upon teaching values, which 

may positively affect the instructors’ confidence or ability to present 

mathematical proof. This study will fill a gap in the current research 

literature by investigating the current practices of faculty members when 

presenting proofs, which could lead to further development of teaching 

practices to improve the quality of education.  

Compensation:  

There will be no formal compensation for participation in this study. 
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Confidentiality:   

The records of this study will be kept private. Any written results will 

discuss group findings and will not include information that will identify 

you. Research records will be stored securely and only researchers and 

individuals responsible for research oversight will have access to the 

records. The data will be stored separately from the consent documents to 

ensure confidentiality. It is possible that the consent process and data 

collection will be observed by research oversight staff responsible for 

safeguarding the rights and wellbeing of people who participate in 

research. The data will be kept until the final draft of the report is 

completed.  

Contacts:  

If you have further questions about both the research and the subject’s 

rights, you may contact:    

Melissa Mills     Lisa Mantini 

PhD Student      Faculty/Advisor 

Mathematics Department   Mathematics Department 

431 MSCS     410 MSCS 

405-744-8412     744-5777 

memills@math.okstate.edu   mantini@math.okstate.edu  

If you have questions about your rights as a research volunteer, you may 

contact Dr. Shelia Kennison, IRB Chair, 219 Cordell North, Stillwater, OK 

74078, 405-744-3377 or irb@okstate.edu.  

Participant Rights:   

Participation in this study is voluntary, and you may discontinue the 

research activity at any time without reprisal or penalty. There are no 

foreseeable risks should you choose to withdraw.  There are no reasons 

that will justify terminating your participation in the study.  

Signatures:      

I have read and fully understand the consent form.  I sign it freely and voluntarily.  A 

copy of  

this form has been given to me. 

________________________                  _______________ 

Signature of Participant   Date 

 

I will allow portions of my video-taped lectures to be used in conference presentations. 

________________________                  _______________ 

Initials of Participant   Date 

 

I certify that I have personally explained this document before requesting that the 

participant sign it. 

________________________       _______________ 

Signature of Researcher   Date
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