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Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT 

 

Abstract: This research investigates an approach rooted in nonlinear stochastic dynamic systems 

principles for personalized prognostics of cardiorespiratory disorders in the emerging point-of-
care (POC) treatment contexts. Such an approach necessitates new methods for (a) quantitative 

and personalized modeling of underlying cardiovascular system dynamics to serve as a virtual 

instrument to derive surrogate (hemodynamic) signals, (b) high-specificity diagnostics to identify 

and localize disorders, (c) real-time prediction to provide forecasts of impending disorder 
episodes, and (d) personalized prognosis of the short-term variations of the risk, necessary for 

effective treatment decisions, based on estimating the distribution of the times remaining till the 

onset of an anomaly episode. The specific contributions of the dissertation work are as follows:  

1. Quantitative modeling for real-time synthesis of hemodynamic signals. Features 

extracted from ECG signals were used to construct atrioventricular excitation inputs to a 

nonlinear deterministic lumped parameter model of cardiovascular system dynamics. The model-

derived hemodynamic signals, personalized to an individual’s physiological and anatomical 
conditions, would lead to cost-effective virtual medical instruments necessary for personalized 

POC prognostics.  

2. Random graph representation of the complex cardiac dynamics for disorder 
diagnostics. The quantifiers of a random walk on a network reconstructed from vectorcardiogram 

(VCG) were investigated for the detection and localization of cardiovascular disorders. Extensive 

tests with signals from PTB database of PhysioNet databank suggest that locations of myocardial 
infarction can be determined accurately (sensitivity of ~88% and specificity of ~92%) from 

tracking certain consistently estimated invariants of this random walk representation.  

3. Nonparametric prediction modeling of disorder episodes. A Dirichlet process based 

mixture Gaussian process was utilized to track and forecast the evolution of the complex 
nonlinear and nonstationary cardiorespiratory dynamics underlying of the measured signal 

features and health states. Extensive sleep tests suggest that the method can predict an impending 

sleep apnea episode to accuracies (R
2
) of 83% and 77% for 1 step and 3 step-ahead predictions, 

respectively.  

4. Color-coded random graph representation of the state space for personalized 

prognostic modeling. The prognostic model used the stochastic evolution of the transition 
pathways from a normal state to an anomalous state in the color-coded state space network to 

estimate the distribution of the remaining useful life. The prognostic model was validated using 

the data from ECG Apnea Database (Physionet.org). The model can predict the estimated time till 

a disorder (apnea episode) onset to within 15% of the observed times 1-45 min ahead of their 
inception.  
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  CHAPTER I 

1. INTRODUCTION 

1.1 Research motivation 

Cardiovascular disease (CVD) is a leading cause of mortality, accounting for 30% of deaths 

worldwide (see Figure 1-1) [1]. On the basis of heart disease and stroke statistics updated in 2012, 

each day more than 3,400 Americans experience a new or recurrent stroke and 2,400 die of 

CVDs. The direct and indirect costs of medical devices, physicians, professionals, hospital 

services, and prescribed medication for CVD diagnosis and treatment were estimated at around 

$324 billion in 2009 [2]. Healthcare costs escalate exponentially with delay in detection of 

cardiovascular disorders [3]. The development of affordable and accessible medical 

instrumentation that supports clinical points-of-care (POC) diagnoses is essential for promoting 

early detection, thereby reducing the costs of treating cardiovascular disease. Furthermore, 

innovative research on prognostic approaches capable of forecasting early states of the diseases to 

facilitate effective preventive treatment is crucial for improving the patients’ quality of life and 

alleviating socio-economic imbalances in the nation. 

One of the most common goals in healthcare for the next decade is the transformation from 

reactive damage control to proactive and personalized wellness [4]. A new P4 medicine 

 Prediction, Prevention, Personalization, and Participation  based on integrating the concepts of 

a systems approach to diseases, emerging technologies, and advanced analytical tools, provides a 

personal basis for healthcare delivery to maximize wellness for each individual rather than 
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treating diseases (see Figure 1-2) [5]. P4 system provides deep insights into disease mechanisms, 

stratification of complex diseases, personalized treatments, and metrics for assessing wellness [4, 

6]. It has been shown in the last 5 years that P4 system has significantly improved the way cancer 

is diagnosed and treated. Cardiovascular diseases and neurodegenerative disorders are the next 

targets for P4 system [6]. The realization of the P4 system in healthcare enables early diagnosis 

and real-time prognosis, especially for at-risk (e.g., critical care) populations, which can 

significantly lower  treatment cost and reduce mortality and morbidity risks [3].  

 

Figure 1-1 Major causes of death, and diagnosis and treatment costs of major diseases 

 

Figure 1-2 Cross-interdisciplinary fields constituting the P4 healthcare system  
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A major challenge to achieving P4 system in healthcare originates from the inadequacy of 

effective mathematical and computational platforms to capture the complexity of  cardiovascular 

diseases [5]. Although efforts have been made in the last five years to develop a comprehensive 

approach to responding to these challenges, many difficulties have impeded the wide 

implementation of P4. One major limitation is the insufficiency of comprehensive concepts and 

practical schemes, including modeling approaches that can capture complex individualized 

physiological systems and disease mechanisms, methods for diagnosing distinct subtypes of 

diseases for an impedance match against proper drugs, and prediction and prognostic frameworks 

to provide reliable metrics for assessing wellness.  

This research is an effort to address the technical barriers to a P4 system for cardiovascular 

diseases. Specifically, this research provides mathematical and computational schemes to address 

the diagnostic and prognostic issues in realizing the proactive and personalized diagnosis and 

treatment of cardiovascular disorders. The following aspects must be considered in  developing 

such effective schemes: (1) a quantitative model that can capture the underlying cardiorespiratory 

couplings and generate noninvasive surrogate hemodynamic signals, (2) high-specificity 

diagnostic methods to identify and localize disorders, (3) real-time prediction methods that can 

drive advanced prognostic and preventive therapies, and (4) prognostic approaches that provide 

accurate risk indicators and survival assessments of the disease’s progression. 

1.2 Research objectives 

This research addresses various phases for the development of prognostic schemes that 

support the implementation of the P4 system for cardiorespiratory disorder treatments. These 

phases include modeling the complex interactions between different physiological processes and 

control mechanisms unique for each individual’s cardiovascular system, developing diagnostic 
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methods to detect and localize the disorders given the complex dynamics of the underlying 

cardiovascular system, and providing prediction and prognostic method to derive the distribution 

of time to abnormal conditions and reliable risk indicators to facilitate intervention therapies and 

preventive treatments. Interdisciplinary methods based on combining principles from nonlinear 

stochastic dynamic systems, random graph theory, and sensor-based modeling are used to 

characterize the complex dynamic, capture the coupling effects, and monitor long-term health 

transitions and short-term degradations of the underlying cardiovascular system.  

Modeling the cardiovascular system, local diagnosis of cardiovascular diseases, and 

prediction of the pathological transitions must be addressed prior to the development of 

prognostic schemes. The research methodology needs to focus on the system dynamics approach 

that characterizes the coupled stochastic nonlinear nonstationary dynamics of the underlying 

cardiovascular system. With these emphases, the broad research objectives are as follows: 

 Develop an effective data-driven cardiovascular model to provide surrogate 

hemodynamic signals for the individualized diagnosis and prognosis of cardiovascular 

disorders.   

 Characterize nonlinear stochastic spatiotemporal dynamic of cardiac vectors and quantify 

the recurrence patterns of Vectorcardiogram (VCG) for high-specificity diagnosis of 

cardiorespiratory disorders. 

 Develop a real-time prediction model to forecast the evolutions of the underlying coupled 

nonlinear and nonstationary cardiorespiratory dynamics that provides risk assessment for 

cardiorespiratory disorders. 

 Develop and implement a prognostic framework for a P4 system of healthcare using the 

developed diagnostic, and prediction models. 
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1.3 Major contributions 

The proposed research will provide mathematical and computational frameworks to develop 

effective prognostic schemes for the implementation of P4 system healthcare for the diagnosis 

and treatment of cardiorespiratory disorders. Several case studies focusing on diagnosis and 

prognosis of cardiorespiratory related diseases, e.g., myocardial infarction and obstructive sleep 

apnea have been used to validate the proposed models. The specific contributions of the 

dissertation are divided into two groups—methodology and application: 

A. Methodology contributions 

(1) Development of an overall prognostic scheme for the implementation of the P4 system 

of healthcare.  

(2) A new real-time ECG-driven cardiovascular system model capable of capturing the 

mechanical-electrical coupling of the heart chambers, valves, and pulmonary and 

systemic circulations to generate surrogate hemodynamic signals with the applications to 

POC diagnosis. 

(3) A stochastic representation of the complex cardiac excitation and propagation dynamics 

as a random walk on a network reconstructed from VCG signals. 

(4) A prognostic model based on topological transitions of state space vectors for the 

preventive treatments of cardiovascular disorders. 

B. Application contributions 

(1) A myocardial infarction (MI) detection and localization model using topological and 

dynamic quantifiers of aperiodic and recurrent local transitions of VCG trajectories 

which can accurately (at a sensitivity of ∼88% and specificity of ∼92%) identify five 

typical MI types and healthy individuals. 



6 

 

(2) Quantifiers of the coupled nonlinear and nonstationary cardiorespiratory dynamics 

underlying the measured physiological signals used as significant features for the 

prediction and prognosis of sleep apnea onset. 

1.4 Organization of the dissertation 

This chapter presents the research motivation, research objectives, research contributions, 

and the dissertation organization. The rest of the dissertation is organized as follows: 

Chapter 2: Background: Brief descriptions of the cardiovascular system physiology, 

cardiovascular electrical activities, and electrocardiogram (ECG) and vectorcardiogram (VCG) 

monitoring systems are provided. Next, the analysis tools including nonlinear analysis and 

recurrent quantification analysis (RQA) used to capture the dynamics underlying cardiovascular 

system are introduced. Finally, graph theory and a network representation of the VCG octant 

transition are presented. 

Chapter 3: Overall methodology: An overview of the research methodology is followed 

by a list of the individual tasks composing the overall methodology. The research methodology is 

grouped into four parts: modeling of the cardiovascular system, diagnosis of local cardiovascular 

disorders, prediction of the cardiovascular system’s dynamic evolution, and prognostics approach 

for cardiovascular disorders. 

Chapter 4: Modeling of the cardiovascular system: The approach, implementation, and 

clinical validation of the ECG-driven cardiovascular system model are presented. Application of 

the model towards virtual instrumentation is also covered in this chapter. 

Chapter 5: Diagnostics of local cardiovascular disorders: A probabilistic approach to 

quantifying the aperiodic patterns and the stochastic transitions of the cardiac vector in the 3-D 

octant state space is introduced. High-specificity diagnostic methods for identifying and 

localizing disorders using the VCG octant transition network are presented. A case study in 
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detecting and localizing 5 types of myocardial infarctions (MIs) and healthy individuals to 

validate the approach is also detailed. 

Chapter 6: Prediction of the cardiovascular system’s dynamic evolution: A feature 

extraction method and Dirichlet process based mixture Gaussian process (DPMG) prediction 

model capable of tracking and forecasting the evolutions of the cardiorespiratory dynamics 

captured from the measured physiological signals are presented. Data from obstructive sleep 

apnea (OSA) patients and healthy individuals collected from Physionet.org and from a wireless 

multisensory platform are used for model validation. 

Chapter 7: Prognostics approach for cardiovascular disorders: The prognostic schemes 

necessary for the implementation of a P4 system for cardiovascular disease treatment are 

introduced in this chapter. The methodology, implementation, and validation of the model are 

investigated and validated through the case study of deriving the distribution of time to next sleep 

apnea onset with the data from the Apnea ECG database—Physionet.org. 

Chapter 8: Conclusions and future work: This chapter summarizes the research 

contributions and the future work. 
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CHAPTER 2 

2. BACKGROUND 

2.1 Physiology of the human cardiovascular system 

The human cardiovascular system consists of three main components as shown in Figure 

2-1: the heart, systemic circulation, and pulmonary circulation. The right side of the heart pumps 

blood through the lungs via the pulmonary circulation, and the left side of the heart pumps blood 

through the peripheral organs. The pumping action is enabled using a pulsatile two-chamber 

pump composed of an atrium and a ventricle. Each atrium acts as a weak primer pump for the 

ventricle, helping to move blood into the ventricle. The ventricles then supply the main pumping 

force that propels the blood either through the pulmonary circulation (the right ventricle) or 

through the peripheral circulation (the left ventricle). Complex physiological mechanisms of the 

heart controlled by the central nervous system cause recurring heart contraction signals called 

cardiac rhythms that transmit action potentials throughout the heart muscle to cause the heart’s 

rhythmical beat. 

The heart has two special functions: (1) generating rhythmical electrical impulses to cause 

rhythmical contraction of the heart muscle and (2) conducting these impulses rapidly through the 

heart. When this system functions normally, the atria contract about one sixth of a second ahead 

of ventricular contraction. Atrial contraction allows the filling of the ventricles before the blood is 

pumped through the lungs and peripheral circulation. These rhythmical pumping and conduction 

actions of the heart are affected by heart diseases such as myocardial infarction. Myocardial 
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infarction often results from damage to the heart muscle cells (myocytes) due to the interruption 

of the blood supply. It is often manifested as a bizarre heart rhythm or an abnormal sequence of 

contractions of the heart chambers, severely affecting the pumping effectiveness of the heart, 

even to the extent of causing death.  

 

Figure 2-1 Structure of the cardiovascular system [1] 

Systems have been designed to monitor cardiac activities towards timely detection of CVD. 

Most of the systems are based on measuring the potential electrical changes when the cardiac 

impulse passes through the heart. If electrodes are placed on the skin on opposite sides of the 

heart, electrical potentials generated by the current can be recorded: such a recording is known as 

an electrocardiogram (ECG). The ECG system developed by Augustus Waller in 1889 and 

improved by Willem Einthoven in 1901 is still in use and serves as the gold standard for clinical 

diagnosis of cardiovascular disorders. In 1904, Einthoven developed “Einthoven triangle,” which 

measures the three channels of ECG signals (Leads I-III) and derives the direction of the electric 

heart vector.  

A normal ECG waveform is composed of a P wave, a QRS complex, and a T wave (see 

Figure 2-2). The QRS complex is often, but not always, three separate waves: the Q wave,  the R 
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wave, and the S wave. The P wave is caused by electrical potentials generated when the atria 

depolarize before atrial contraction begins. The QRS complex is caused by potentials generated 

when the ventricles depolarize before contraction, that is, as the depolarization wave spreads 

through the ventricles. Therefore, both the P wave and the components of the QRS complex are 

depolarization waves. The T wave is caused by potentials generated as the ventricles recover 

from the state of depolarization and is known as a repolarization wave. This process normally 

occurs in the ventricular muscle 0.25 to 0.35 second after depolarization. Thus, the 

electrocardiogram is composed of both depolarization and repolarization waves. 

 

Figure 2-2 Typical ECG signal, mechanical event diagrams, and various ECG signal waveforms 

corresponding to heartbeat conditions 

In 1956 Ernest Frank redesigned the lead configuration by proposing three pairs of leads to 

measure the electric heart vector in the Cartesian coordinate system. This redesign led to the 

advent of the vectorcardiogram (VCG). The VCG signals capture the electrical potential of the 

heart as an electric heart vector in a three orthogonal coordinate system as shown in Figure 2-3. 

Dower et. al. [2, 3] showed that the linear transformation between a VCG and 12-lead ECG 

preserves useful information regarding the heart dynamics. In addition, Edenbrandt and Pahlm [4] 

proved that VCG criteria for the diagnosis of, for example, myocardial infarction and right 

ventricular hypertrophy, are superior to the corresponding 12-lead ECG.  
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Figure 2-3 Electrode placements in a VCG measurement system  

2.2 Primer on nonlinear dynamic analysis 

Many natural phenomena are subject to nonlinear dynamics. The study of nonlinear 

dynamics is typically restricted to systems which respond disproportionately (nonlinearly) to 

initial conditions or perturbing stimuli. Nonlinear systems may exhibit chaos, which is classically 

characterized as sensitive dependence on initial conditions. A typical nonlinear dynamic system 

can be described as follows: 

                  , 

where      is a   -dimentional state space vector,      is a nonlinear vector field,   is the time, 

and the        term accounts for the dynamic noise of  extraneous phenomena [5, 6]. The 

hypothesis that cardiac rhythms are associated with chaotic dynamics has motivated the 

investigation of continuous ECG and VCG signals using nonlinear dynamic analysis. The 

physiological cardiovascular regulation is known to be associated with the parasympathetic and 

sympathetic control of cardiac dynamics. Thus, the nonlinear measures of ECG and VCG signals 

recorded during different cardiac cycles can capture the behavior of the complex cardiovascular 

system. 
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Phase space (or state space) methods provide powerful tools for the analysis of the dynamics 

of a nonlinear system. The phase space is reconstructed from the delayed coordinates of the 

measurements      and is given as: 

                                              , 

where   is the embedding dimension and   is the delay time. The minimum sufficient embedding 

dimension   is defined by the false nearest neighbor method [7, 8] and the optimal   is selected 

by  minimizing the mutual information function [9]. 

 Recurrence is the fundamental characteristic of state vectors that can be exploited to 

capture the dynamics of the underlying system in the phase space. A powerful tool for visualizing 

and characterizing recurrence properties is the recurrence plot [10-12]. The recurrence plot is 

formed by calculating the distance from each state vector to all other state vectors and mapping 

the distance to a color scale (continuous or binary). The recurrence plot is expressed as: 

                                         

where   is the number of measured points       ,   is a threshold distance,      is the Heaviside 

function, and     is a norm.  

Recurrence quantification analysis (RQA) of the recurrence plot has been widely used to 

capture the aperiodic and recurrent features of the VCG trajectory and the laminar or chaotic 

behaviors of heart rate variability in the phase space. The RQA defines measures based on the 

distribution of recurrence point density, diagonal structures, and vertical structures in the 

recurrence plot. The definitions of various RQA measures and their relationships with cardiac 

system dynamics are summarized in Table 2-1. 
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Table 2-1 Mathematical definitions of the RQA quantifiers and their relationships to cardiac 

system dynamics 

RQA Features Description  
Recurrence Rate RR  

 

  
     
 
      

      the indicator of whether the point   is a recurrent point of i (i.e., lies in an ε-

neighborhood of i) in the state space. 

   the length of the time series. 
Recurrence rate characterizes the global aperiodicity of cardiovascular activities and it is 
closely related to the heart rate dynamics [12] 

Determinism 
DET  

       
      

     
 
   

 

      probability distribution (estimated from histogram transformations) of the lengths   of 
the diagonal lines. 
Determinism measures the repeating or deterministic patterns in the heart dynamics and 
shows how well the circulatory system functions [10, 11]. 

Average diagonal length 
DIA  

       
      

      
      

 

Longest diagonal length LMAX                      
    the total count of diagonal lines in the recurrence plot. 

LMAX indicates stability of heart dynamics and small LMAX implies two close cardiac 
vectors in state space will diverge quickly from each other. 

Entropy ENTR               
      

 

The predictivity of heart activity decreases with increasing entropy 
Laminarity 

LAM  
       
      

       
   

 

      probability distribution of the length   of the vertical lines. 
LAM values is proportional to the time  the heart takes to move from one activity to another 
and it provides non-stationary information for the heart system [10]. 

Trapping time 
TT = 

       
      

      
      

 

TT measures how long the cardiac vector remains in a specific state. 
Longest vertical line 

length 
                                  
    the total count of vertical lines in the recurrence plot. 

LMAX is used to detect and quantify the laminar phases (chaos-chaos transitions) before a 

life-threatening cardiac arrhythmia occurs [10, 13]. 
Recurrent time type 1 RT1  

 

 
   

    
    

  
   
  the average of the minimum time difference between points in the neighborhood of a 

point   on the reconstructed trajectory [14]. 
Recurrent time type 2 RT2  

 

 
   

    
    

  
   
  the average return time (i.e., the minimum time difference between the recurrence 

points in the neighborhood of point   on the reconstructed trajectory with all successive time 
points excluded)  [14]. 

Recurrence period 
entropy density 

RENT              
 

 
  

     

       
 

Kolmogorov entropy estimated from the recurrence plot [15]. 

RENT is used to quantify deterministic structure of the system. 
Transitivity 

TRAN  
   
 
   

   
 
   

 

    the number of triangle links. 

    the number of connected triplets of links in the network with the phase space vectors as 

the nodes and the recurrences as the links. 
TRAN measures the psychophysiological variables of heart rate variability with circadian 
rhythmicity [16] 
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2.3 A graph-theory perspective of nonlinear dynamic systems 

Graph theory offers a new way to quantitatively characterize the topological and dynamic 

properties of a complex system. A graph        of a network consists of a set of vertices (or 

nodes)    and a set of edges (or connections)  . The presence of the edges between two vertices 

represents any type of interaction or connection between the vertices. The interpretation of the 

edges depends on the types of connections modeled e.g., correlations, coherence, and mutual 

information. The information from the graph connectivity is completely described by an 

adjacency matrix  . Each entry     stands for the existing edge between vertices   and  ; i.e., if 

there is a connection between vertices   and       = 1; otherwise    =0. Graphs can be 

categorized into different types: undirected, when information can flow in both directions along 

edges connecting vertices or directed, when information can flow in only one direction. Graphs 

can be unweighted, when the edges have the same significance or weighted, if weights are 

assigned to each edge. Figure 2-4 shows an example of a network representation of the functional 

connectivity of the human brain. 

 

Figure 2-4 Construction of the brain network from a functional connectivity data set extracted 
from neuroimaging (fMRI) or neurophysiological (MEG, EEG) signals. 

The network measures characterize global and local connectivity of the complex network. 

Definitions of various network measures and their interpretations are summarized as follows:  

Binarize 

 

Binarize & 
Symmetrize 
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Table 2-2 Description of basic network measures 

Basic concepts and measures  

Basic concepts and 

notation  

 : is the set of all nodes in the network, and   is the number of nodes 

 : is the set of all links in the network, and   is number of links 
     : is a link between nodes   and   (       
   : is the connection status between   and    

   : is the weight of the link       

Degree 

       
   

 

Degree of a node   

Shortest path length  

         
       

 

Shortest path length (distance), between nodes   and   

where     is the shortest path (geodesic) between   and  . Note that     ∞ for all 

disconnected pairs  ,  .  
Number of triangles  

   
 

 
          
     

 

Number of triangles around a node    

Measures of integration  

Characteristic path 

length  
  

 

 
    

 

 
 

           

   
      

 

Characteristic path length of the network [17] 

where    is the average distance between node   and all other nodes.  

Global efficiency  

  
 

 
    

 

 
 

    
  

       

   
      

 

Global efficiency of the network [18] 

where    is the efficiency of node  .  
Clustering coefficient  

  
 

 
    

   

 

 
 

   
        

   

 

Clustering coefficient of the network [17]  

where    is the clustering coefficient of node   (  = 0 for    < 2).  

Transitivity  

  
         

            
 

Transitivity of the network [19] 

 Transitivity is not defined for individual nodes.  

Measures of segregation 

Local efficiency  

     
 

 
       
   

 
 

 
  

               
  

        
            

 

Local efficiency of the network [18]  

where        is the local efficiency of node  , and         is the length of the 

shortest path between   and  , that contains only neighbors of  .  
Modularity  

              

   

 

 

   

 

Modularity of the network [20] 

where the network is fully subdivided into a set of non-overlapping modules  , 
and     is the proportion of all links that connect nodes in module   with nodes in 

module  .  

Measures of centrality and resilience 

Closeness centrality  

  
   

   

           
 

Closeness centrality of node   [21] 
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A random walk has been used to analyze the topological properties and dynamic features 

of graphs representing complex systems such as the World Wide Web, social networks, food 

webs, and interacting biological networks [13, 22-24]. Given a graph and starting point, a random 

walk on a graph is defined as a sequence of nodes whose neighbors are selected randomly. It is a 

time-reversible finite Markov chain [22]. Let        be a connected graph with starting node   . 

If at the     step, we are at node   , the sequence of random nodes               is a Markov 

chain. The probability matrix of this Markov chain is              where     is defined as: 

     

 

    
             

                   

   

where         is the transition probability from node   to node  . Let   be the adjacency matrix of 

  and   the diagonal matrix with             ; then     . The random walk rule can be 

expressed as:  

                 , 

where                 . It is noted that    
  is the probability that starting at  , we reach   in t 

steps and    
  is equal to the    entry of   . 

Three important measures for the quantitative theory of random walks are access time 

(hitting time), cover time, and mixing rate: 

(a) Access time,    , is the expected number of steps before node   is visited, starting from 

node  . The sum                      is called the commute time, which is the 

expected number of random walk steps starting at   and visiting node   before reaching 

node   again. 
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(b) Cover time,  , is the expected number of steps to reach all of the nodes in the graph 

given a starting distribution. If the starting distribution is not specified, cover time is the 

maximum values of the cover time from every node in the graph. 

(c) Mixing rate,  , is the expected number of steps required for     to converge to a 

stationary distribution. It quantifies how fast the random walk converges to its limiting 

distribution. 
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CHAPTER 3 

3. RESEARCH METHODOLOGY 

 

Figure 3-1 Overview of research methodology 

This chapter outlines the road map of the research reported in subsequent chapters. Figure 

3-1 portrays a schematic of the overall methodology employed to develop prognostic schemes for 

the implementation of the P4 system in cardiovascular disease diagnosis and treatment. Four 

modules constitute the overall research methodology as follows: 
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(i) Modeling of the cardiovascular system 

(ii) Diagnosis of local cardiovascular disorders 

(iii) Prediction of incipient disorder episodes 

(iv) Prognostics approach for cardiovascular disorders 

Physiological signals such as ECG, VCG, heart sounds, and hemodynamics collected from 

two data sources—Physionet  Databases (physionet.org) and a wireless multisensory platform 

(COMMSENS Oklahoma State University lab)—have been used as the input information for two 

modeling, diagnosis modules. The lump parameter model of the cardiovascular system developed 

in the modeling module is used as a virtual cardiovascular instrument to generate other surrogate 

hemodynamic signals without the need for expensive instrumentation and/or invasive clinical 

procedures. The diagnosis module suggests a new, high-specificity diagnostic method to identify 

and localize cardiovascular disorders using the stochastic transition quantifiers of the cardiac 

vectors in the octant space. The prediction module provides a method for real-time tracking and 

forecasting of the evolutions of the underlying dynamics of the surrogate signals and local 

information of the disorder states generated from the model and diagnosis modules. The 

prognostic module, followed by the diagnosis and prediction of the disorder’s states, provides a 

method for estimating the risk and provides the reliability assessment. The risk indicators from 

the prognostic model facilitate precise and timely preventive treatments and personalized 

therapies. The combination of these four modules constitutes a comprehensive prognostic 

scheme, which is necessary for the implementation of the P4 system.  

3.1  Modeling the cardiovascular system 

The first part of the research methodology involved developing a data-driven cardiovascular 

system model capable of generating multiple synchronized hemodynamic signals. A real-time 
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lumped parameter cardiovascular dynamics model with the atrioventricular activation function 

derived from ECG features was used to capture the physiological mechanisms and interactions in 

the cardiovascular system. The model represented the coupled dynamics of the heart chambers, 

valves, and pulmonary and systemic blood circulation loops in the form of nonlinear differential 

equations. The features extracted from ECG signals, including the time profile and respiratory 

components, were used to estimate the timings and amplitudes of the atrioventricular activation 

input functions. 

To capture the unique characteristics of the cardiovascular system and real-time rendering of 

the hemodynamic signals from the measured ECG signal, an offline statistical model was used to 

map the model parameters to appropriate ECG features. A set of significant parameters, including 

the elastance characteristics, respiratory coupling, and gain and offset of model blood pressures, 

was selected for the parameter tuning. While the model-generated pressure waveforms can be 

compared with those from the actual recordings, only certain extreme values of the waveforms 

were considered clinically important. We have developed a method based on Anderson–Darling 

statistics and Kullback–Leibler divergence to compare the clinical measures (i.e., systolic and 

diastolic pressures) estimated from model waveform-extrema with those from actual 

measurements. Detailed descriptions of the model components, the parameter estimation 

approach, and the clinical validation procedures are presented in Chapter 4. 

3.2 Diagnosis of local cardiovascular disorders 

The second part of the research methodology involved developing a diagnostic method for 

detecting and localizing cardiovascular disorders. In this part, a probabilistic approach was used 

to quantify the aperiodic pattern and the stochastic transitions of the VCG trajectory in the 3-D 

octant state space. The variations of the transitions, which may be viewed as the output of the 
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cardiac process, were used to quantify the spatiotemporal dynamics underlying the cardiovascular 

disorders.  

A high-specificity diagnostic method for identifying and localizing heart impairment is 

summarized in four steps. First, the transitions of the cardiac vector among eight octants (defined 

by embedding the VCG signals in the Euclidean three-dimensional coordinate system) were 

represented as a network with the node set as the octants and the edge set as the plausible 

transitions. Second, a random walk process was used to estimate the number of transitions (signal 

lengths) necessary for consistent estimation of the octant network quantifiers. Third, various 

local, residence, transitional, and topological features were extracted from the network with the 

signal lengths determined from previous steps for the localization of the disorder. Finally, 

hierarchical classification and regression tree (CART) models were used to classify different 

types of diseases. The development of the model and a case study for the detection and 

localization of six typical types of MIs (282 recordings) from the Physionet PTB Database are 

described in Chapter 5. 

3.3 Prediction of incipient disorder episodes 

The third part of the research methodology involved developing a prediction model capable 

of tracking and forecasting the evolutions of the cardiorespiratory dynamics captured from the 

measured physiological signals. 

The prediction was performed through three phases—feature extraction, feature prediction, 

and disease classification. In the first phase, features were extracted on the basics of recurrence 

quantification analysis (RQA), which can capture the coupled nonlinear and nonstationary 

cardiorespiratory dynamics underlying the measured signals gathered from a custom-designed 

wireless wearable multisensory suite. In the second phase, a Dirichlet process based mixture 
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Gaussian process (DPMG) prediction model was employed to forecast the onset of the disorder 

episodes based on analyzing the complex evolutions of the extracted features. Finally, a Support 

Vector Machine (SVM) classification model was used to discern the normal and the abnormal 

states from the predicted values.  

In order to facilitate the method implementation, we developed a prototype of a wireless 

multisensory platform capable of synchronously gathering multiple heterogeneous signals, 

including VCG, ECG, sound, and respiration, and wirelessly transmitting the data to a host 

computer for on-line prediction and subsequent therapeutic decision support. The prediction 

model was tested with two sources of data: (1) the Apnea-ECG database from Physionet.org and 

(2) a wireless multisensory platform developed at COMMSENS lab at Oklahoma State 

University. The prediction approach, the wireless multisensory platform, and the case study for 

the prediction of OSA onset are described in Chapter 6. 

3.4 Prognostics approach for cardiovascular disorders 

The final part of the research methodology combined three previous modules—modeling, 

diagnosis, and prognosis—to develop a prognostic scheme for the implementation of the P4 

system for cardiovascular disease treatments.  

The prognostic scheme derived the distribution of the time to failure of new observations 

collected from the heart rate variability (RR interval) signals. Two features—power spectrum 

density and longest vertical line of recurrence plot derived from RR interval signals  using the 

sliding window concept—were used to reconstruct the multivariate state space. The embedded 

feature state space was partitioned into various clusters using a Dirichlet process. The state space 

was represented as a directed graph        where the node set   was the state vectors and the 

edge set   was the transition in the state space. An eigen projection method was employed to 
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account for the scattering and overcrowding of the adjacent  nodes in the state space. The state 

vectors were projected to the 2
nd

 and 3
rd
 smallest Laplacian-eigen vectors that were subjected to 

the force directed strategy. Distribution of the time to abnormal onset of a new normal 

observation was estimated by considering the stochastic evolution of the normal state vectors to 

the abnormal state in the state space. For a case study, data from the Apnea-ECG database 

Physionet.org were investigated to validate the prognostic performance. The details prognostics 

approach are presented in Chapter 7. 
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CHAPTER 4 

4. LUMPED PARAMETER NONLINEAR CARDIOVASCULAR SYSTEM 

MODELING FOR POC PERSONALIZED SIGNAL GENRATION 

 

Numerical modeling of the cardiovascular system provides anatomical and physiological 

quantifications of the patient-specific cardiovascular system dynamics. Furthermore, 

cardiovascular models based on noninvasive medical signals could provide invaluable data on the 

in vivo environment where cardiovascular devices are expensive or inaccessible. We present an 

approach to deriving a real-time, lumped parameter cardiovascular dynamics model that uses 
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features extracted from online ECG to generate certain surrogate hemodynamic signals. The 

surrogate hemodynamic signals can be utilized as the input signals for the diagnostics, prediction, 

and prognostic models in chapters 5, 6, and 7, respectively. The model was tested using 

hemodynamic signals from the PhysioNet MGH/MF Waveform database. The results suggest that 

the model can capture the salient time and frequency patterns of the measured central venous 

pressure, pulmonary arterial pressure, and respiratory impedance signals (R
2
>0.65). The results 

indicate the potential of a virtual instrument platform that can support more responsive, and cost-

effective diagnostic medical equipment especially for point-of care diagnosis and personalized 

treatment. 

4.1 Introduction 

Cardiovascular diseases are the leading cause of mortality in the U.S. [1]. Delivery of 

cardiovascular healthcare, especially to rural and isolated communities, remains a major 

challenge despite over $10.83 billion spent annually on medical devices for cardiovascular 

diagnostics and treatment [2]. The development of affordable and accessible medical 

instrumentation is essential for promoting early diagnosis, thereby reducing cardiovascular 

disease treatment costs. A virtual cardiovascular instrument (VCI) in which the multiple data sets 

necessary for clinical diagnostics are generated through transformation of one measured signal 

can obviate the need for expensive clinical diagnostic instrument suites and thus has the potential 

to alleviate healthcare cost and access issues. Analytical lumped parameter [3-5], and/or 

computational (e.g., finite element) [6-8] modeling of the complex interactions among electrical, 

mechanical, and chemical processes that underpin cardiovascular dynamics is essential to the 

development of a VCI. Lumped parameter models offer lower computational cost and a 

straightforward physical interpretation of the dynamic interactions among the elements of a 

cardiovascular system. The present study extends our recent work [9] in developing a lumped 
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parameter model to relate the states of a cardiovascular system to online ECG signal features. 

Analogous to the virtual instruments used in engineering measurement practice [10], the model 

utilizes a single channel of the ECG to generate multiple virtual hemodynamic signals including 

pressure, volume, respiratory impedance, and blood flow rate.  

Similar mathematical model-based platforms, such as LiDCOplus [11] and Picco2 [12] are 

used in critical care settings to provide estimates of blood pressure, stroke volume variations, and 

cardiac output. These platforms rely on invasive arterial pulse pressure measurements to estimate 

hemodynamic signals. They are, therefore, limited in their applications for easy bedside 

monitoring across a range of medical settings.  The contributions of the present approach emerge 

from the methods to (a) derive atrioventricular activation functions based on relating the 

measured ECG signal events to the functions of various aspects of the cardiovascular processes; 

(b) estimate the parameters of a cardiovascular dynamics model so that real-time rendering of the 

hemodynamic signals from the measured ECG is facilitated; and (c) test the similarity of 

clinically relevant systolic and diastolic pressures extracted from the model to those from actual 

measurements. Although the approach is limited to capturing certain timing- and magnitude-

related parameters of the activation functions from ECG signals and  does not explicitly consider 

the effects of various control and regulation mechanisms of the circulatory system, our 

experimental investigations suggest that the model can capture the salient time and frequency 

patterns of certain measured hemodynamic signals (e.g., central venous pressure (CVP), 

pulmonary arterial pressure (PAP), and respiratory impedance(RI)). and provide real-time 

estimates of systolic and diastolic pressures—the key indicators in clinical practice.  We 

anticipate that the present approach will spur further extensions that can lead to VCIs capable of 

generating certain hemodynamic signals relevant for diagnostics without the need for expensive 

instrumentation and/or invasive clinical procedures. This paper is organized as follows: Sec. 4.2 
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summarizes previous research on cardiovascular system modeling, Sec. 4.3 presents the 

formulation of the cardiovascular dynamics model and the parameter estimation procedures, Sec. 

4.4 describes the implementation of the heart model and comparisons of model outputs with 

measured hemodynamic signals, and Sec. 4.5 contains a discussion of the model applicability and 

concluding remarks. 

4.2 Background and literature review 

The advent of digital computers has allowed the quantitative modeling of the complex 

mechanisms and interactions in the cardiovascular system [13, 14]. Notably, Avolio [15] 

employed impedance characteristics of arterial segments in a lumped parameter fluid dynamics 

model of the circulation system. Rideout and Dick’s [16] difference-differential equation 

circulation system model was based on segmenting the arterial flow along the axial and radial 

directions of a cylindrical coordinate system. Guyton et al.’s seminal model [17] used more than 

350 compartments to analyze the underlying interactions and predict the circulation states of the 

cardiovascular system. Subsequently, research efforts to simulate cardiovascular pathologies 

based on Guyton’s model have been reported [18-20]. In many of these lumped parameter 

models, atrioventricular activation functions can be characterized effectively in terms of a time-

varying elastance      [21, 22] that describes the average instantaneous variation of pressure (   

for a unit change in the volume     of an atrium     or ventricle    , i.e.,          
  

  
    . 

Normalized      of the left ventricle has been shown [23] to be fairly independent of 

loading
 
conditions, contractile state, and the heart rate. Subsequently, Burkhoff et al. [24] and 

Kass et al. [25] showed that  -  characteristics are nonlinear during the ejection phase of a 

cardiac cycle, when intraventricular pressures exceed the aortal and pulmonary arterial pressures 

to propel blood out of the ventricles, as well as in the isovolumic relaxation phase, when the 
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intraventricular pressures decrease rapidly to cause the aortic and pulmonary valves to abruptly 

close. Senzaki et al. [26] presented a method to estimate the end-systolic elastance of the left 

ventricle from a single cardiac cycle. Klotz et al. [27] used Doppler-echocardiography and radio-

nuclide
 
ventriculography to capture P-V characteristics at every heart-beat. These earlier methods 

to estimate      used data collected from expensive instrumentation under well-defined 

conditions from ex vivo or in vivo experiments on an animal (e.g., dog or rat) heart, or a specified 

group of patients. Therefore, the derived elastance curves tend to have limitations for capturing 

the real-time beat-to-beat and inter-subject variations in      characteristics.  

In the present work, certain temporal intervals and amplitudes of the recorded ECG and 

ECG-derived respiration signals were used to estimate the parameters of      in real time. Such 

ECG feature combinations are known to be unique to an individual’s cardiovascular system [28, 

29]. Therefore, the ECG-derived parameters of      tend to capture the effects of physiological 

differences among individual cardiovascular systems. 

4.3 Research approach 

Our modeling approach to generating certain surrogate hemodynamic waveforms from 

measured ECG features is summarized in Figure 4-1. The dataset from PhysioNet’s MGH/MF 

waveform database [30] was used in this paper. We selected 20 recordings (subjects in the 42-84-

year age range) in critical care settings with a variety of medical conditions. Each recoding 

consisted of synchronous measurements of ECG (lead-II), central venous pressure (CVP), 

pulmonary arterial pressure (PAP), and respiratory impedance (RI) gathered over 12-86 min 

duration at 360 Hz sampling rate. To reduce the simulation runtime and nonstationarity effects, 

signals gathered from each subject were partitioned into 60 sec segments. The approach integrates 

the following four tasks: 
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(A) Signal conditioning and feature extraction: We extracted respiratory components and 

ECG events (e.g., the peaks of P, R, and T waves and the offset of the T waves) to formulate the 

activation functions. A phase space reconstruction method was utilized to extract critical events 

from the measured ECG signal (see Sec. 4.3.1).  

(B) Cardiovascular model formulation: The model is based on extending Korakianitis and 

Shi’s [31] cardiovascular dynamics model with  activation functions obtained from ECG features 

as excitation inputs (see Sec. 4.3.2).  

(C) Parameter estimation: The salient model parameters were estimated in real time using a 

multiple regression model with a compact set of ECG features selected as independent variables. 

The regression model coefficients were estimated offline (see Sec. 4.3.3).  

(D) Model validation: We validated the model by comparing the time and frequency patterns 

of the outputs with those of the recordings from the database (details in Sec. 4.3.4). 

 

Figure 4-1 Summary of the virtual simulation cardiovascular model 
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4.3.1 Signal conditioning and feature extraction 

4.3.1.1 De-noising and respiration extraction 

Low frequency components (0-0.05 Hz) of raw ECG signals are mostly associated with  

wandering baseline anomalies [32], and high frequencies (>80 Hz) with the noise from the 

ambient environment, measurement devices, and other artifacts. A band-pass filter with a 0.06-40 

Hz passband was employed to remove these extraneous components and retain the ECG features 

vital for respiration and fiducial point extraction [33]. An amplitude demodulation method [34] 

was employed to extract the respiration signal         from the ECG. Here, we formed a pulse 

series with the local average of RR interval values as the pulse intervals; the series was load-

modulated by the corresponding R amplitudes. The respiration signal         was extracted from 

linear interpolation of the resulting pulse series. 

4.3.1.2 ECG event detection 

First, a wavelet filter [35] was used to detect R peaks in the de-noised ECG signal. Next, a 

vector time series was obtained by embedding the de-noised ECG signal in a three-dimensional 

state space with 12 ms time-delay [36]. As shown in Figure 4-2, the trajectories in the 

reconstructed state space portray three loops the smallest loop (marked with the solid green line) 

captures predominantly the P-wave behavior; the largest (the dotted black line), the QRS 

complex; and the third (the dashed red line) captures the T wave characteristics. The maximum 

vector magnitudes in the P and T loops were taken to locate the peaks of the P and T waves. The 

peaks of the Q and S waves were identified at the minimum points in the time domain in PR 

interval and RT interval, respectively, in the de-noised ECG signal. The J point, defined as the 

junction of the QRS complex and the ST segment, was designated as the first inflection point 

(location where ECG waveform changes from concave to convex) after the S peak. The offset of 

the T wave was set at J + 80 ms if the heart rate (HR) was less than 100 beat/min, J + 72  if 100   
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HR   110, J + 64 if 110   HR   120, and J + 60 if HR   120 [37]. The extracted ECG events 

thus were used to derive the time profiles of the activation functions and the covariates for a 

regression model to estimate the model parameters.  

 

Figure 4-2 Extraction of P, T loop, and QRS complex from VCG 

4.3.2 Cardiovascular model formulation 

4.3.2.1 Activation functions 

The present cardiovascular model uses the elastance characteristics of the four heart 

chambers and the events extracted from the ECG signal to construct the activation (excitation) 

functions. Electromechanical delays are neglected because they tend to be a fraction of the signal 

sampling intervals as well as the time scales of the features (> 0.1 sec) considered in this study. 

We used the same activation function (  ) for both atria and an identical activation function (  ) 

for both ventricles. 

The activation function of the atria (see Figure 4-3), whose support is assumed to be 

contemporaneous with the atrial systole period, takes the form of the following raised cosine 

function [38]: 
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  Eq. 4-1 

Here, the onset,   , and the offset,    , of the atrial systole are marked as the times of P peak 

and R peak events, respectively. 

 

Figure 4-3 Atrioventricular activation functions synthesized from ECG features 

Following Chung et al.’s findings [39], we used two raised cosine functions to approximate 

the ventricle activation function during the isovolumic contraction, ejection, and  relaxation 

processes (which take place between the end diastole    and end systole    of a cardiac cycle) as: 

        

 
 
 

 
            

       

     
              

           
       

     
            

                                                         

  Eq. 4-2 

where   ,     and    are assumed to be synchronous with R peak, T peak, and T offset event, 

respectively (see Figure 4-3). Accordingly, the ventricular activation starts at the R peak, reaches 

the maximum amplitude at the T peak (the beginning of the ventricular ejection), and subsides at 

the offset of the T wave. The raised cosine functions used in the present study to approximate 

activation functions are similar to those used in [31]. Ottesen and Danielsen’s [40] comparative 

study suggested that the activation function shapes  based on different premises have very 

marginal differences. 
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4.3.2.2 Cardiovascular system 

We adapted  the model suggested by Korakianitis and Shi [31] to capture the dynamics of 

the four heart chambers, namely, right and left ventricles and atria and the two systemic and 

pulmonary circulations of the cardiovascular system. All four sets of equations for the chambers 

assumed a similar form. For example, the dynamics of left ventricle volume (   ) and pressure 

(   ) are given by: 

 
    

  
                -      Eq. 4-3 

                           Eq. 4-4 

where     depends on the angular position of the aortic valve leaflets    as: 

               
                

   Eq. 4-5 

The elastance functions for the ventricles and atria are expressed in terms of the ECG-

derived activation functions as: 

                                              Eq. 4-6 

                                                

where                     capture the amplitude (gain) of the elastance waveforms, and γ 

quantifies the coupling strength of the respiratory effect on the cardiovascular system activation  

beyond constricting and dilating the activation functions in Eqs. (4-1, 4-2) based on changes in 

heart rate. According to Chung et al. [39], ventricular elastance depends on the free wall, 

pericardium, and thoracic chamber pressures. Assuming the environmental pressure to be 

invariant and the body movement to be negligible, the intrathoracic chamber pressure increases 

during expiration, concomitant with the chest/rib cage contraction, and decreases during 

inspiration, concomitant with the chest expansion. The instantaneous elastance is thus influenced 
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by respiration. Since the respiration signal         aggregates the aforementioned expansions 

and contractions, we used the coupling parameter γ to quantify the (first order) sensitivity of the 

elastance functions to respiration, and hence the thoracic chamber pressure. 

Aortic valve dynamics is expressed as [31]: 

     
   

                            

    
  

                                         

                                                          Eq. 4-7          

where      is a unit step function and the remainder of the symbols are listed in the Appendix 

(Table A1). 

The systemic circulation loop consists of the aortic sinus, artery, arteriole, capillary, and vein 

segments, and each individual component is modeled by considering the local blood flow 

resistance, the elasticity of blood vessels, and the inertia of blood.  The systemic pressures and 

flow rates are given by: 
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   Eq. 4-8 

The variation of pressures and flow rates across the pulmonary loop are quantified using 

similar function forms as detailed by Korakianitis and Shi [31]. Altogether, the cardiovascular 

process dynamics are expressed in terms of deterministic nonlinear differential equations with the 

parameters and activation functions estimated from the measured ECG [9].  

4.3.3 ECG-based parameter estimation 

The model parameters include the elastance characteristics of the left and  right ventricles 

(i.e.,     ,     ,     , and     ), the respiratory coupling γ, and six other parameters, namely, Gpa, 

Opa, Gra, Ora, Gpv, and Opv, that quantify the gain and offset of the pulmonary arterial pressure 
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     , right atrial pressure (   ), and pulmonary venous pressure (   ) signals. Quantification of 

these parameters requires complex, invasive measurements taken over several conditions [41].  

 We developed an offline statistical model that maps these model parameters to appropriate 

ECG features. The present method is able to adaptively estimate the model parameters and is 

more responsive to anatomical and physiological characteristics of individual subjects as well as 

real-time physiological changes as captured in ECG patterns compared to conventional parameter 

selection methods [4, 42]. Figure 4-4 describes the training (dashed line) and simulation (solid 

line) phases of the virtual cardiovascular model. The training phase consists of building an 

empirical multiple regression model to estimate a set of model parameters from the selected ECG 

features. The simulation phase consists of generating certain hemodynamic signals from the 

cardiovascular model whose parameters are estimated from online ECG features using the trained 

regression model. 

 

Figure 4-4 Summary of ECG-based parameter estimation method for virtual cardiovascular 

model 

4.3.3.1 Parameter tuning 

The purpose of parameter tuning is to determine an optimized model parameter set that 

minimizes the mean square error between the simulation model outputs and the measurements 
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from recording signals. The model-estimated pressure signals     and      are compared with 

measured central venous pressure (CVP) and pulmonary arterial pressure (PAP) signals, 

respectively. The vector of tuned parameters consists of Gpa, Opa, Gra, Ora, Gpv, Opv, γ,     ,     , 

    , and     . A global optimization-based pattern search algorithm [43] was used to find the 

optimized parameters. The optimization problem is defined as follows: 

             min          s.t          Eq. 4-9   

where        is the objective function,     ,         and         The pattern search 

algorithm consists of two phases: the search step and the poll step. Initially,    is assigned as the 

starting point and ∆k is the coarseness of the grid    defined over  . In the search step, the 

objective function is evaluated at a finite number of points on the mesh   .                 , 

the search step is considered successful; then the mesh is coarsened to ∆k+1 ≥ ∆k, and the search 

step is restarted from the improved point     . If an improved point is not found on the mesh, the 

poll step is invoked by considering the initial points that are the neighbors of    on the mesh. 

Objective functions at the neighboring mesh points are evaluated to see if a lower function value 

can be found. If an improved mesh point is found (i.e.,  ( k+1) <  ( k)), ∆k+1 > ∆k is set, and the 

search is restarted from the improved point. Otherwise, the search is started with mesh refinement 

∆k+1 < ∆k. Multiple (>20) starting points have been used to minimize the probability that the 

algorithm will converge to a local minimum [44]. 

4.3.3.2 ECG-based parameter estimation model 

We identified the following four groups with a total of 15 ECG features that can collectively 

track much of the subject-to-subject variations in anatomical and physiological characteristics to 

estimate the salient model parameters: (i) sample averages of P, QRS, T peak amplitudes, (ii) 

sample averages of RR, PR, ST, QT intervals, (iii) standard deviations and differences between 

intervals, and (iv) the area swept by the ST segment. These features were selected based on Israel 
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et al.’s [29] finding that an ECG trace expresses cardiac features unique to an individual. From a 

physiological standpoint, changes in R and T amplitudes in frontal and precordial leads are 

associated with instantaneous changes in the volume and output of the left ventricle [45, 46]. 

Specifically, the R amplitude is sensitive to the radial movement of the heart (dilation) in relation 

to the chest wall and the T wave amplitude to the variations in the ratio of the endocardial to the 

epicardial surface area of the left ventricle.  

The heart rate (estimated from RR interval) is determined by the vagal-sympathetic 

mechanisms, and the systolic period (estimated from intra-beat intervals of ECG) is affected by 

the sympathetic efferent discharge frequency (Fcon), which in turn influences the peak elastance 

[42]. A rise in Fcon increases the maximum elastance and shortens the ventricular systole. Also, 

according to Akselrod et al. [47], short term fluctuations of heart rates are affected by the 

autonomic control levels at pacemaker sites. Pagani et al. [48] showed that low frequency heart 

rate fluctuations provide an index of sympathetic efferent activity, which are associated with the 

peak ventricular elastance. The standard deviations of the ECG intervals (RR, ST, PR, QT 

intervals) can therefore be used to capture the effects of vagal and sympathetic neural activities, 

and hence contribute to the estimation of the peak ventricular elastance. 

The selected features, extracted via phase space analysis described in Section 4.3.1.2, were 

used as predictors for a regression model to derive model parameters. It may be noted that many 

ECG features contain redundant information, and each model parameter tends to be sensitive to a 

different combination of features. We used principal component analysis (PCA) to address these 

redundant and diverse relationships. The subsets of ECG features whose contributions to the 

principal components are the largest were selected for parameter estimation.  
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To predict the parameters of the cardiovascular model, we considered a multiple linear 

regression model       , where   is an       vector of model parameters,   is an       

full-column rank matrix of predictors (i.e., ECG features),   is a       vector of unknown 

regression model coefficients, and   is an independent Gaussian random variable. A backward 

stepwise procedure [49] was used to select the most predictive feature combinations. The 

procedure begins with considering all variables in the model and sequentially deleting one 

variable at a time. A partial F-test for each variable in the presence of the others is conducted with 

the test statistic   
         

 
    

                 
 ~        . The stepwise procedure continues until the 

smallest F has p-value > 0.05. A k-fold cross validation was used to assess for the generalizability 

of the regression model. A random 90% of the dataset was selected for fitting the multiple 

regression model and the remaining 10% for validation. This process was repeated 20 times to 

assess the consistency of the regression coefficients. 

4.3.4 Model validation 

While the model-generated pressure waveforms can be compared with those from the actual 

recordings, only certain extreme values of the waveforms are considered clinically important [50, 

51]. For example, many of the clinical assessment procedures for a subsequent coronary heart 

disorder use the extrema (systolic and diastolic) blood pressure waveforms [52]. Therefore, one 

needs a test procedure that weights the waveform conformance according to the clinical 

importance of the specified portion or pattern of the waveform. In this study, the Anderson-

Darling goodness of fit test [53] was used to measure the similarity of the systolic and diastolic 

pressures between the model outputs and the actual measurements. A two-sample Anderson-

Darling statistic is defined as: 
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        Eq. 4-10 

                          Eq. 4-11 

where       and       are the empirical distribution functions of the measured (n samples) and 

model-derived (m samples) pressure (systolic and diastolic) signals, respectively, and       is 

the empirical distribution function of the combined sample size an      . The distinct 

values in the combined dataset, ordered from smallest to largest, are denoted as          . Here, 

we aimed to compare the systolic and diastolic blood pressure values extracted from the model 

waveform to those from the measurements. As stated in the foregoing, the Anderson-Darling 

statistic is more appropriate for the present context than the other two-sample statistics (e.g., K-S 

test, Cramer-von Mises) because it  places more weight on observations in the tails of a 

distribution [53, 54] through the use of the weight function                   in Eq. 4-10. 

The test statistic can be estimated from a sample (  ) as: 

    
     

      
  

 

 
 

               
 

           
       

 

  
    

 

 
 

               
 

           
       

 

  
    Eq. 4-12 

where    is the number of observations of the combined sample equal to   ,    is the sum of the 

number of samples combined samples with values less than    plus one half the number of values 

in the combined samples equal to   , and    and    are the sums of the number of samples from 

the measured and model-derived signals, respectively, that are less than    plus one half the 

number of values in that group that are equal to   . 

Under the null hypothesis that      and      are drawn from the same distribution, the 

variance of the test statistics    in Eq. 4-12 is given by:  
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  Eq. 4-13 

where          are derived from [54]. If the test statistic    in (13) is above a critical value given 

by             , then one can reject (at significance level α 0.05) the hypothesis that the 

measurements and the model-derived signals were drawn from the same distribution.  

 In addition, Kullback-Leibler (KL) divergence [55] was used  to assess the closeness of 

the systolic and diastolic pressure distributions of the model outputs to  the actual measurements. 

KL divergence is given by: 

                                
 
   , Eq. 4-14  

where     are the density functions of the measured and the model-derived signal, respectively. 

As KL divergence          is an asymmetric measurement, we used               

            as a symmetrized metric to compare the distribution similarity. The larger  the KL 

divergence value, the farther apart are the two signals [55]. The KL divergence value equals zero 

when the two distributions are identical. 

4.4 Implementation details and results 

The model was implemented in the Matlab/Simulink environment. The sample times of the 

signal sources and the model were matched so that the outputs of the model were synchronized 

with the input ECG signal. Every simulation was run for 60 sec. The transient effects were noted 

to subside by the end of 10
 
sec. Therefore, data collected after 10 sec of the simulation was used 

for further analysis. The model outputs consist of waveforms of the pressure, volume, flow rate 

from the four heart chambers, and the pulmonary and systemic circulation modules.  

PCA was employed to reduce the statistical redundancy between the high dimensional ECG 

features without significant loss of information. The application of PCA suggested that the first 
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four principal components could explain approximately 78% of the variations in the data, and 

thus these four were considered for further studies. None of the other components captured more 

than 5% of the variation in the feature values. Table 4-1 shows the descriptions of 15 features and 

the contributions of each feature in four principal eigen directions. The larger the coefficients, the 

higher the contribution of that feature to the variation along that eigen direction. It is evident that 

all except the RR standard deviation (RR Std) and the difference ST PR contributed to one of 

the leading components. The remaining 13 significant ECG features were used as predictors in 

the training and simulation phases.  

Table 4-1 Contribution of ECG features to the first four principal components 

Feature Description (Unit) Comp  1 Comp 2 Comp 3 Comp 4 

R AmpAvg Average of R peak amplitudes (mV) -0.03 0.36 -0.10 0.27 

P AmpAvg Average of P peak amplitudes (mV) -0.26 0.26 0.00 -0.41 

T AmpAvg Average of T peak amplitudes (mV -0.10 0.35 -0.08 0.37 

RR Avg Average of RR intervals (s) 0.31 0.15 -0.25 -0.01 

PR Avg Average of PR intervals (s) -0.10 0.12 -0.04 -0.45 

ST Avg Average of ST intervals (s) 0.42 0.05 0.07 -0.21 

QT Avg Average of QR intervals (s) 0.42 0.03 0.11 -0.24 

RR Std Standard deviation of RR intervals (s) -0.03 0.16 0.09 -0.27 

PR Std Standard deviation of PR intervals (s) 0.28 0.17 -0.12 0.40 

ST Std Standard deviation of ST intervals (s) 0.05 -0.11 -0.65 -0.11 

QT Std Standard deviation of QT intervals (s) 0.05 -0.10 -0.65 -0.11 

ST-PR ST, PR interval differences (s) 0.23 -0.02 0.08 0.05 

QT-PR QT, PR interval differences (s) 0.44 -0.02 0.12 -0.01 

ST Area Average of ST segment area (mV s) -0.01 0.54 0.05 -0.02 

STAreaSd Stand. Dev. of ST segment area (mV s) 0.06 0.52 -0.10 -0.05 

 

In the training phase, the coefficient vectors of the empirical regression model were 

estimated offline. First, the pattern search (optimization) method described in Section 4.3.3.1 was 

used to tune the parameters pertaining to the elastance (    ,     ,     , and     ), the offsets and 

gains of pressures (Gpa, Opa, Gra, Ora, Gpv, and Opv), and the respiration coupling γ. The tuned 

parameters were regressed offline with selected ECG features to estimate the empirical regression 

model. Table 4-2 lists the significant ECG features (with p-value < 10
-3

) and the corresponding 

coefficients of the empirical regression model. The subsequent simulation phase involved 
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generating the hemodynamic signals in real time from the parameterized model. The model 

parameters in the simulation phase were estimated using the regression model with the selected 

ECG features as predictors. The values of the various parameters used in the model are listed in 

the Appendix (Table A2). 

Next, we compared the salient hemodynamic signals extracted from the model outputs with 

the actual measurements in the database. The following combinations of signals were compared: 

i) Chamber pressures and volumes with ideal profiles [56]. 

ii) Right atrial pressure       from the model with the measured central venous pressure (CVP). 

iii) Pulmonary arterial pressures from the model       with those from actual measurements 

(PAP).  

iv) Pulmonary vein pressure from the model       with the measured respiratory impedance (RI). 

v) Systolic and diastolic (max and min) pressure values estimated from the model versus 

measurements. 

Table 4-2 Coefficients of regression model to estimate model parameters from ECG features 
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Gpa 3.24      0.3  -0.22 0.7     

Opa 2.35 0.52  -0.1 0.68          

Gra 0.4   0.1    -0.21     0.3 -0.14 

Ora -0.3     0.25 -0.18        

Gpv 4.35   0.91    0.12 0.25    -3.23  

Opv 10.51 1.14    -0.26      -3.16   

γ 1.32 -2.8 0.12       0.45   1.37 -1.48 

     0.94  0.25 0.12   -1.15 1.35     0.25 0.25 

     0.92  0.2   3.19  -3.29   -0.97  1.72  

     0.12  0.19      2.41 -2.31  -0.35  0.41 

     0.09 0.15       0.14   -0.13   
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4.4.1 Pressure and volume waveforms 

The various patterns of the model-generated waveforms of pressures (Figure 4-5) and 

volumes (Figure 4-6) of the four heart chambers lay within similar ranges of values as those of 

ideal profiles [56]. For the left ventricle, the pressure ranged from 0 to 125 mmHg, the volume 

varied between 70-130 ml, and the shapes (e.g., skewness and support) of the pressure and the 

volume waveform patterns are also comparable with  those of the ideal profiles [56]. 

 

Figure 4-5 Waveform of pressure (P) of left atrium and left ventricle (left), right atrium and right 
ventricle (right) 

 

 Figure 4-6 Waveform of volume (V) of left atrium and left ventricle (left), right atrium and right 

ventricle (right) 

4.4.2 Pulmonary arterial pressure comparisons 

Figure 4-7 shows the measured pulmonary arterial pressure (PAP) and the model output 

(   ) waveforms in time (left) and frequency (right) domains. In the time domain, the pulmonary 

arterial pressure values range from 10mHg through 30mHg for both measured and model-

generated waveforms and exhibit similar patterns, including the skewness and rise and drop rates. 



47 

 

The frequency spectrum portrait shows the presence of respiratory and heart rate components at 

0.15 Hz, and 0.93 Hz, respectively for both measured and model-derived data. Since PAP is 

measured at the phlebostatic axis, which is found at the intersection of the midaxillary line and a 

line drawn from the fourth intercostal space at the right side of the sternum on the thorax, the 

respiration is also included. These similarities between the pulmonary arterial pressure 

waveforms suggest that the model-generated     signals can be a suitable surrogate for PAP.  

 

Figure 4-7 Comparison of (left) time and (right) frequency portraits of model derived (solid red 
line) and measured (dashed blue line) pulmonary arterial pressures  

4.4.3 Right atrial pressure and central venous pressure comparisons 

The model-generated right atrial pressure (   ) waveform was compared with the measured 

central venous pressure (CVP) waveform. Since CVP captures the blood pressure in the thoracic 

vena cava near the atrium of the heart, it is considered  a reasonable surrogate of     [56]. Figure 

4-8 shows the variation of CVP and     in time (left) and frequency (right) domains. It may be 

noted that the     waveform captures the amplitudes, and the time-domain patterns including the 

skewness and rise and drop rates of the CVP waveform. The frequency portraits were almost 

identical for both waveforms, with the frequency peaks of respiratory components at 0.15 and 

0.24 Hz, and heart-rate components at 0.93 Hz. The similarities between the signal waveforms in 

both the time and frequency suggest that     derived from the model output may serve as a viable 

surrogate for CVP. 
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Figure 4-8 Comparison of (left) time and (right) frequency portraits of model-derived right atrial 

pressure (   , solid red line) and the measured central venous pressure (CVP, dashed blue line) 

4.4.4 Pulmonary vein pressure and respiratory impedance comparisons 

A comparison of the waveforms of the low frequency (  0.3 Hz) component of the 

pulmonary vein pressure (   ) and the respiratory impedance (RI) measurement in the time 

domain is shown in Figure 4-9. The time-domain patterns contained in the low frequency 

component of the       waveform, including the respiratory components, are consistent with those 

of the RI, the change in the chest movement during the respiratory process. The     captures the 

pressure of blood returning from the lung to the left atrium of the heart. As the elastance of the 

thorax can be assumed to be constant, the low frequency of the pulmonary venous pressure can be 

used for the measurement of the respiratory volume [57, 58]. Evident from the figure is that the 

low frequency components of the model-generated     signal can be used to approximate the RI 

measurement. However, further analyses and calibration of the elastance of the thorax are needed 

to estimate the actual values of the respiratory signals.  

 

Figure 4-9 Comparison of the waveforms of the model-derived pulmonary venous pressure      

and the measured respiratory impedance RI 
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Correlation coefficients   and R
2
 statistic values were calculated to quantitatively assess the 

correlations between the model-derived and measured signals (    vs. PAP,     vs. CVP, and     

vs.  RI). A 10-fold cross validation was used to evaluate the accuracy of the model with an 

independent dataset. First, we randomly partitioned the dataset into 10 subsets, one of which was 

used for testing and other nine to build the parameter regression model. For model validation, the 

ECG features of the testing subset were used to estimate the model parameters. This process of 

partitioning followed by training and testing was repeated 20 times. Table 4-3 summarizes the 

average   and R
2 
values of the various model-derived vs. measured waveforms. It is observed that 

the     waveform matches well with the RI’s with    = 0.77 and R
2
 = 0.79. The correlations 

between other model-derived signals and the actual measurements are substantial (  ≥ 0.68, and 

R
2
 ≥ 0.70). 

Table 4-3 Model-derived vs. measured waveform comparisons 

Signal waveform 

comparisons 
   R2 

    vs. PAP 0.71 0.73 

    vs. CVP 0.68 0.70 

    vs. RI 0.77 0.79 

4.4.5 Systolic and diastolic pressure comparisons 

A two-sample Anderson-Darling goodness-of-fit hypothesis test and KL divergence were 

used to evaluate the similarity of the systolic and diastolic values from the model outputs with 

those from the measured pressure profiles. During each heartbeat, the blood pressure varies 

between the maximum (systolic) and minimum (diastolic) values. Four sets of systolic (upper tail) 

and diastolic (lower tail) pressure samples were obtained from the pressure value distribution, 

each obtained by considering the 4th, 5th, 6th, or the 7th percentile (4-7% of) the observed signal 

realizations. The choice of extreme values (4-7%) was determined based on prior results [59] that 

suggested that the augmentation (extreme) portions of an atrial pressure waveform are roughly 
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5% of the  pulse pressure (i.e., waveform amplitude) for heart rates in the 60-110 beat/min range. 

Table 4-4 summarizes the rejection rate (at significance level α   0.05) of the Anderson-Darling 

test with the null hypothesis that the tails of the model-derived pressure waveforms and those of 

the measured pressure waveforms emerge from the same distributions. It is noted that for most of 

the comparisons the rejection rates are below 10%. These low rejection rates, in the 4-7% cut-off 

range, further indicate that the systolic and diastolic pressures of PAP and CVP can be 

statistically captured by the model-generated      and     waveforms, respectively.  

Table 4-4 Average rejection rates from Anderson-Darling test 

Extre

me  

value 

cut-off  

Pulmonary Arterial 

Pressure 

vs. 

Pulmonary Arterial 
Pressure 

Central Venous 

Pressure  

vs. 

Right Atrial 
Pressure 

Systole Diastole Systole Diastole 

4% 5% 5% 5% 10% 

5% 0 0% 5% 10% 

6% 5% 5% 5% 10% 

7% 10% 10% 10% 15% 

 

 

Figure 4-10 KL convergence variations of systole and diastole pressures between model outputs 
and actual measurements 

Next, KL information       was used to quantify the difference between the distributions of 

the extrema of the pressure waveforms from the model outputs and those from the measurements. 

Figure 4-10 shows the variation of the     of the systolic and diastolic pressures of the model-
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derived signals and those of the actual measurements at a threshold of 5%. It is noted that the 

average KL information of the model-generated systolic and diastolic samples vs. those from 

recorded pressures are below 0.14. Such low values of KL information suggest that systolic and 

diastolic pressures from the model are comparable to those from actual measurements [55]. 

4.5 Conclusions 

This paper reports an approach to generating multiple synchronized hemodynamic signals 

from cardiovascular systems in real time using ECG features. The research is among initial 

efforts to use ECG to formulate activation functions for cardiovascular dynamic models. ECG 

features are used to construct atrioventricular excitation inputs to a nonlinear deterministic 

lumped parameter model of cardiovascular system dynamics. Traditional approaches to acquiring 

these hemodynamic signals, such as atrial blood pressure, cardiac output, or the opening angles of 

the heart valves, require invasive and/or expensive medical instruments [60, 61]. Important events 

of the ECG signal are extracted by using wavelet analysis and a phase space method. Respiration 

components extracted from ECG play an important role in the representation of the model 

outputs. It is noteworthy that the model outputs were correlated substantially with the measured 

signals when the activation function included the respiration components. The salient time and 

frequency patterns of the model outputs, including right atrial pressure (   ), pulmonary arterial 

pressure      , and the low frequency components of pulmonary vein pressure (   ) were 

statistically consistent with those of actual recordings. The waveforms of    ,     and      were 

substantially correlated with those of PAP, CVP and RI with R
2
 of 0.73, 0.7, and 0.79, 

respectively. In addition, the results from a two-sample Anderson-Darling hypothesis test and KL 

information comparisons suggest strong statistical similarities between the distributions of model-

derived and measured diastolic and systolic pressure values. 
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The similarities of the time and frequency domain characteristics as well as the statistically 

indistinguishable distribution of the tails of the model outputs and the measured waveforms 

indicate the suitability of using ECG features to form the excitation inputs for the cardiovascular 

model. Apart from the accuracy of the model outputs, the causal relationship captured in the 

model between the patterns of  ECG and certain hemodynamic signals can provide valuable 

information for diagnosis because certain pathologies not easy to diagnose from the ECG patterns 

may be enhanced in the model outputs, such as pressure, volume, and blood flow rate signals. 

Further, the model provides an efficient tool for quantitatively assessing the underlying couplings 

between the mechanical and electrical components of heart dynamics and an ECG. It can also be 

used to simulate certain hemodynamic signals under specific cardiac disorders for each individual 

heart and to analyze the dependencies among ECG and other signal features and pathologies. 

Taken together, the results point to the viability of a virtual cardiovascular instrument platform 

where the derived hemodynamic signals can be used for clinical diagnosis and treatment. Such a 

platform can offer the advantages of cost efficiency and time savings. 

Pertinently, the current model is limited by the use of the ECG alone to extract multiple 

hemodynamic signals. The ECG recordings may not effectively capture certain aspects of 

cardiovascular dynamics, especially those related to systemic and pulmonary circulations that 

determine the patterns of various hemodynamic signals. Furthermore, the model uses highly 

simplified expressions to model the effects of vascular components of cardiovascular regulation 

and hemodynamics and mostly ignores the effects of the nervous system and the kidney in rapid 

and long term control of arterial pressures. The model also does not contain explicit descriptions 

of the neural control scheme (e.g., autonomic nervous control of heat rate, myocardial 

contractility and vasomotor tone), hormones, volume receptors, and metabolism that might play 

important roles in characterizing the cardiovascular system dynamics.  Since the dynamics of the 
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cardiovascular system are characterized as a lumped parameter model where the model 

components (e.g., heart chambers, heart valves, arteries, arterioles, capillaries, and vein segments) 

are treated as homogeneous elements, the model is not applicable in modeling the heart with 

localized disorders. To further improve the model’s accuracy, it is necessary to improve the 

structures of the dynamics model by involving other important effects of the circulatory 

hemodynamics, pulmonary mechanics, and ventilator control, as well as using more generalized 

regression models for parameter estimation. Also, the suitability of the model to characterize the 

complexity of the human cardiovascular system (e.g., homeostatic processes, adaptive control of 

heart rate, and varying degrees of contractility) and to capture the dynamics of larger sets of 

individuals (e.g., age groups, genders, disorders, and medication conditions) remains to be 

investigated. A more comprehensive visualization and quantification of the heart, hemodynamic 

couplings, and their relationship with ECG and other signal features can lead to more responsive 

and cost-effective healthcare delivery.  

APPENDIX 

Table A1 Nomenclature and subscripts 

Nomenclature Subscripts (cont’) 

C compliance ao aortic valve 
e elastance mi mitral valve 

K,k coefficient po pulmonary aortic valve 

M mass ti tricuspid valve 

 P pressure pas pulmonary aortic sinus 

 Q flow rate par pulmonary arterioles 

V volume pa pulmonary arterial blood  

  phase angle pcv pulmonary capillary 

Subscripts  pv

n 

pulmonary vein 

0 initial value, offset value. sas systemic aortic sinus 
1,2,... subscript state variables sar systemic arterioles 

s systole sat systemic arterial blood 

d diastole scv systemic capillary 

lv left ventricle svn systemic vein 

rv right ventricle   

la left atrium   

ra right atrium   
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Table A2 Cardiovascular system parameters 

Left heart Right  heart 

Par. Init. Val. Unit Par.

a 

Init. Val. Unit 

  0.2    0.2  

CQao 350 ml/(s mmHg
0.5

) 

smmHg
0.5

 

mmHg
0.5)

 

CQpo 350 ml/(s mmHg
0.5

) 

CQm

i 

400 ml/(s mmHg
0.5

) CQti 400 ml/(s mmHg
0.5

) 

Elvs 2.5 mmHg/ml Ervs 1.15 mmHg/ml 

Elvd 0.1 mmHg/ml Ervd 0.1 mmHg/ml 

Plv,0 1 mmHg Prv,0 1 mmHg 

Vlv,0 5 ml Vrv,0 10 ml 

Elas 0.25 mmHg/ml Eras 

ax,m

ax 

0.25 mmHg/ml 

Elad 0.15 mmHg/ml Erad 0.15 mmHg/ml 

Pla,0 1 mmHg Pra,0 1 mmHg 

Vla,0 4 ml Vra,0 4 ml 

Systemic Circulation Pulmonary Circulation 

Par. Init. Val. Unit Par. Init. Val. Unit 

Csas 0.08 ml/mmHg Cpas 0.18 ml/mmHg 

Rsas 0.003 mmHg s/ml Rpas 0.002 mmHg s/ml 

Lsas 62x10
-6 

mmHg s
2
/ml Lpas 52x10

-6 
mmHg s

2
/ml 

Csat 1.6 ml/mmHg Cpa 3.8 ml/mmHg 

Rsat 0.05 mmHg s/ml Rpa 0.01 mmHg s/ml 

Lsat 0.0017 mmHg s
2
/ml Lpa 0.0017 mmHg s

2
/ml 

Rsar 0.5 mmHg s/ml Rpar 0.05 mmHg s/ml 

Rscp 0.52 mmHg s/ml Rpcp 0.25 mmHg s/ml 

Rsvn 0.075 mmHg s/ml Rpv 0.006 mmHg s/ml 

Csvn 20.5 ml/mmHg Cpv 20.5 ml/mmHg 

Csvc 1.5 ml/mmHg Cpvc 1.5 ml/mmHg 

Vlv0 800 ml Vrv0 500 ml 

Aortic and Mitral Valve Pulmonary and tricuspid Valves 

Par. Init. Val. Unit Par. Init.Val. 

Val 

Unit 

Kp,ao 5500 rad/(s m) Kp,po 5500 rad/(s m) 

Kf,ao 50 1/s Kf,po 50 1/s 

Kb,ao 2 rad/(s m) Kb,po 2 rad/(s m) 

Kv,ao 7 rad/(s m) Kv,po 3.5 rad/(s m) 

Kp,mi 5500 rad/(s m) Kp,ti 5500 rad/(s m) 

Kf,mi 50 1/s Kf,ti 50 1/s 

Kb,mi 2 rad/(s m) Kb,ti 2 rad/(s m) 

Kv,mi 3.5 rad/(s m)  Kv,ti 3.5 rad/(s m) 
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CHAPTER 5 

5. A RANDOM THEORETIC APPROACH FOR DISORDER 

DIAGNOSTIC AND LOCALIZATION 

 

A high-specificity diagnostic approach systematically translates the measured and derived 

physiological signals into organized and classified conditions of the cardiovascular disorder. We 

present a diagnostic approach for the detection and localization of cardiovascular disorder based 

on representing complex spatiotemporal patterns of cardiac dynamics as a random walk network 
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reconstructed from the evolution of VCG signals across a 3-dimensional state space. Extensive 

tests with signals from PTB database of PhysioNet.org suggest that locations of MI can be 

determined accurately (sensitivity of ~88% and specificity of ~92%) from tracking certain 

consistently estimated invariants of this random walk representation. The high accuracy of the 

diagnostic approach presented in this chapter is critical for the state detection; hence, the 

prognostic performance of the prognostic model in chapter 7. 

5.1 Introduction 

Myocardial infarction (MI), also referred to as heart attack, is a major cause of mortality in 

the US and worldwide. Roughly half a million Americans have had a recurrent MI, and an 

estimated 800,000 new MI patients has been identified in 2012 [1]. MI results from a prolonged 

coronary artery occlusion and insufficient blood perfusion of the heart muscle (myocardium). 

When the blood supply to the  myocardium is interrupted,  the cardiac cells (myocytes) become 

dysfunctional or necrotic due to the lack of oxygen, causing a disruption in the regulation and 

flow of charged ions within the intracardiac conduction pathway [2]. Consequently, the complex 

dynamics that determines the instantaneous mean electric axis of the heart during the myocardial 

depolarization (QRS-loop in Figure 5-1 (b)) and repolarization (T-loop in Figure 5-1 (b)) is 

dramatically affected [3]. For example, during the depolarization, as the excitatory current (or 

wave) moves through the ventricular myocardium, nonconductive necrotic myocardium is 

bypassed. The deviation of the depolarization pathway from the normal trajectory after the MI 

events generates instantaneous changes specific to the location and size of the infarcted areas [2]. 

5.2 Background and literature review 

The MI locations may be broadly classified into anterior, inferior, posterior, inferolateral, 

anteroseptal, anterolateral and posterolateral. Expeditious detection of the location, not just the 
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presence and extent of MI can dramatically increase survival rates by allowing customized 

procedures (e.g., reperfusion therapy, cardiac catheterization, or coronary bypass surgery) 

necessary to treat each type of MI [4]. Attempts have been made to use morphological features 

from electrocardiogram (ECG) signals for MI localization. For example, ST elevation and Q 

wave elongation in precordial leads V1-V3 suggest an acute anterior MI, ST elevation and Q-

wave elongation in leads II, III, and AVF, along with ST depression in leads I and AVL suggest 

an inferior MI [5]. Similarly, ST elevation and Q elongation in leads I, AVL, V5, V6, together 

with ST depression in leads II, III, and AVF suggests a lateral MI [6]. In addition, features 

derived from wavelet transforms of ECG have also been attempted to detect MI location [7]. The 

limited success of these approaches have deemed the ECG alone insufficient, and concomitant 

elevated cardiac biomarkers to be necessary for MI localization [8]. Given the insensitivity of 

traditional ECG measures and the length of time before cardiac enzymes can be detected (> 5hrs), 

this recommendation underscores the need for features that can track the local spatiotemporal 

variations discernible from ECG to advance MI localization. 

One technique that has garnered significant attention in recent years to visualize 

spatiotemporal distribution of electrocardiac activity is the vectorcardiogram (VCG) [9, 10]. The 

VCG, collected using Frank Vx, Vy, and Vz leads (see Figure 5-1 (a)) or transformed from the 

traditional 12-lead ECG, can capture much of the spatiotemporal behavior of instantaneous 

electrical potentials throughout each cardiac cycle in a 3-dimensional state space [11]. Numerous 

studies have attempted to quantify the spatiotemporal patterns, including the shape and magnitude 

of the P, QRS and T loops (Figure 5-1 (b)) in an effort to distinguish healthy individuals from 

patients with MI [12, 13]. While these attempts have been met with varied success,  aufberger’s 

pioneering work introduced the possibility of using octant-wise (see Figure 5-2 (a)) distribution 

of VCG to more sensitively detect MI [14]. Due to computer processing limitations this potential 
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was not fully realized until the authors [10] extracted features that quantify the morphology of 

VCG in different octants to sensitively classify MI.  

 

Figure 5-1 (a) Time-portrait of 3 VCG channels (Vx, Vy, and Vz) and (b) representative VCG 

trajectory showing P, T, and QRS loops embedded in a human torso-referenced 
Cartesian coordinate system  [9] 

However, the aforementioned features are not adequate for accurate localization of MI. This 

is because as mentioned in the foregoing, when VCG pathways change due to a specific MI, the 

sequence of transitions between octants, not just the VCG morphology varies at least locally. 

Consistent quantification of these local transitions is challenging because significant variations 

exist in how these transitions occur from beat to beat, even within a 20 sec long recording. These 

variations result from the effects of intrinsic and extraneous control mechanisms that determine or 

be determined by cardiac excitation and impulse propagation patterns through cardiac myocytes, 

as well as the effects of cardiorespiratory interactions [15, 16]. A probabilistic approach is 

therefore necessary to quantify these local transitions. 

5.3 Research approach 

5.3.1 Octant network representation 

In the present investigation we represent spatiotemportal dynamics underlying the measured 

VCG signals as a near-stationary random walk network [10]. Random walk representations are 

(

a) 

(

b) 

 (a)  (b) 
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emerging as convenient means to analyze complex systems innate to physical, biological and 

social sciences, notably for extracting quantifiers of important network topology and dynamics, 

such as the salient nodes in a hyperlink network page-ranking algorithm, or convergence rate to a 

stationary distribution in sampling problems. Here, we identify a set of features that quantify the 

local topology of VCG random walk network (e.g., clustering, density, assortativity, centrality, 

transition rates, sojourn time and mixing rate) for sensitive estimation of MI locations, present a 

method to determine the length of a signal segment necessary to provide consistent estimate of 

these features, and discuss the physiological basis for their sensitivity.  

The evolution of VCG across eight octants over a short recording (< 1 min) is represented as 

a random walk taken on a complete octant network     , where nodes             represent 

the different octants (Figure 5-2 (a)). This random walk process essentially captures the spatial 

transition dynamics, as discerned from VCG, of the cardiac vector in octant space during the 

depolarization and repolarization processes of a cardiac cycle, and it can be represented as a 

directed random graph          (see Figure 5-2 (b)). Here the adjacency matrix   is the 

transition matrix of the Markov chain underlying the random walk, i.e.,        , the transition 

probability between nodes (octants) i and j, and the edge set                is the collection 

of the plausible transitions i.e., pij > 0. It may be noted that the adjacency matrix is nonnegative, 

generally asymmetric, and has zero diagonal (since transitions happen only when a VCG vector 

crosses an octant boundary). Thus, the aperiodic and recurrent patterns in a VCG trajectory 

(which may be viewed as an output of cardiac processes) are represented in terms of an 

irreducible Markov chain formed by the random walk on the octant network (Figure 5-2 (c)), and 

spatiotemporal cardiac dynamics underlying VCG can be captured by estimating the random walk 

quantifiers and topological measures of octant transition network. 
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Figure 5-2 (a) Representation of VCG transitions between octants as a random walk, where     is 

the transition probability from octant   to octant   and     from octant   to octant  . Generally 

         leading to a directed weighted graph representation of VCG random walk; (b) A 

directed weighted graph representation of stochastic transitions of VCG trajectory in the octant 

space; (c) Normalized and color-coded adjacency matrix of  the undirected weighted graph from 

(b) where the transition probabilities are scaled such that the largest probabilities in the graph 
equals 1 (deep red color). Complex network measures extracted from this adjacency matrix are 

used for localizing MI.  

5.3.2 Random walk on the octant network 

The chief quantifiers of a random walk may be expressed in terms of  a fundamental matrix 

[17]             
                 , where            is the diagonal matrix 

containing the stationary probabilities   ’s,   is the transition probability matrix, and the matrix 

        is such that      , 1     8. In this context, as random walk proceeds from an 

arbitrary initial node marked by the starting point of a VCG segment, the probability       of 

finding the walk at a node i becomes independent of the number n of transitions.  The rate   at 

which such a (stationary) random walk converges to this limiting distribution    is called the 

mixing rate. Mixing rate can be used to estimate the convergence rate of the measures extracted 

from cardiac dynamics reconstructed from VCG to those of a stationary attractor.  

The mixing rate of a random walk can be expressed in terms of a normalized digraph 

Laplacian     
 

        
 

   [18]. To account for the asymmetry of a directed weighted graph 

representing the VCG random walk,    is decomposed as a sum of a symmetric and a skew-

(

a) 

(

c) 

 (a)  (b)  (c) 
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symmetric part, i.e.,         where                 and             . Let       

     be the singular values of    ,            the eigenvalues of    , and       

     the singular values of  . The following result holds on the mixing rate of the random 

walk on the octant transition network [18]: 

Result 1. The mixing rate   of the random walk on the octant transition network remains 

bounded by the singular values as 

  
          

          
  

It may be noted that maximum likelihood estimates       updated under stationary 

conditions from observations after every transition n converge in mean to P [19]. Consequently, 

the estimates of the singular values    and    converge, and hence the mixing rate estimates       

converge in mean to  . 

 

Figure 5-3 Variation of mixing time of VCG octant random walk network for recordings from 

inferior MI (dashed blue line), anterior MI (dotted red line), and healthy control subjects (solid 

green line). The signal segments were 25 sec long. It may be noted that the mixing times 
converge to their limiting values in three cases after 10 sec 

The mixing time  -1
, defined as the expected number of transitions needed for a random 

walk process to converge to a distribution, can be used to estimate the number of transitions, and 
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hence the signal length necessary to provide a consistent estimate of the random walk quantifiers. 

As shown in Figure 5-3, the mixing rates of VCG random walk estimated based on       stabilize 

after about 8 sec, corresponding to roughly 12 beats. Overwhelmingly, the mixing times converge 

to values < 3 transitions for healthy control (HC) recordings indicating fairly laminar VCG 

trajectories. However for MI recordings, mixing rates converge to between 2.5-7 transitions, 

indicating an increase in erratic movements of VCG trajectories. Based on this result, we have 

therefore used 10 sec long signal segments to derive consistent estimates of various features for 

MI localization (see 5.4). 

Additionally, hitting time [17]                   and commute time                

                  of a random walk can be used to estimate the expected lengths of the 

pathways between any two octants   and  , as well as those of various VCG loops. A notion of 

length or distance signifies the pathway of propagating electric waves along the cardiac 

conduction system, and is therefore important for defining topological measures for the VCG 

octant transition network. As stated in the foregoing, manifestations of MI modify the conduction 

pathways, especially near infarcted areas, thereby altering the path-lengths of the waves. The 

local topology measures of the octant transition network quantify these changes in the transition 

rates and VCG trajectory patterns. For example, Figure 5-4 shows the transition matrix   

estimated for 6 different groups in the database, namely healthy control (HC), inferior (I), 

inferolateral (IL), anterior (A), anteroseptal (AS), anterolateral (AL). We group I and IL into 

inferior MI family (IF) and A, AS and AL into anterior MI family (AF). There exists a significant 

difference between the transition matrices estimated for different groups. In particular, the 

estimated value of     
 
    was much higher for inferior MI compared to those estimated for 

anterior MI. This is reasonable because trajectories of VCG cardiac vector within octants 1 to 4 
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(the right side of the sagittal plane) are the measurements of the action potential propagating on 

the surface of cardiac muscle in the inferior portion of the heart. Inferior necrosis damages the 

heart muscles in these octants. As a result VCG trajectory meanders away from these octants 

thereby reducing the transitions across these octants. Thus the random walk network topology can 

be spatially associated with the cardiac conduction process.  

 

Figure 5-4 a) Transition probabilities of VCG random walk for three different groups of patients 

(color coded based on the transition probability estimates) b) locations of eight octants (1-8) in a 

3-D space [10] 

Based on the foregoing qualitative observations of how the characteristics of the VCG and 

the topology random walk network constructed therefrom vary with MI manifestation, we had 

extracted following four groups of 161 features from the measured signals and their random walk 

representation for MI localization: 

(1) Local octant features: These include 48 features, such as the minimum, average, variance, 

maximum, azimuth, and elevation of the vector magnitudes. These features have been 

employed in our earlier study for MI identification [10]. 

(a)  

(b)  
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(2) Octant residence features: The 12 features in this group include sojourn times in each 

octant, and the velocity of the vector magnitudes.  

(3) Octant transition features: The16 features in this group include the arrival and the 

departure rates between each pair of octants. These are essentially the estimates of 

elements pij of the transition matrix P. 

(4) Network topology features: The 85 of this group are various quantifiers of the topology of 

the random walk network, including the degree assortativity (48), density clustering (17), 

distances and cycles that include those related to the estimates of     and     (12), and 

betweenness centrality (8) [20].  

These features were used as part of a hierarchy of classification and regression tree (CART) 

models [21] described in the following section to identify the various MI locations.  

5.4 Implementation details and results 

The method was tested using VCG signals from PTB database of Physionet [22]. Some 448 

VCG recordings (368 MIs and 80 HCs) available in the PhysioNet PTB Database were 

considered for this investigation. Each recording contains 15 simultaneous heart monitoring 

signals, namely, the conventional 12-lead ECG and the 3-lead Frank (XYZ) VCG. The signals 

were digitized at 1 kHz sampling rate with a 16-bit resolution over a range of ±16.384 mV. The 

80 recordings were acquired from 54 healthy subjects and the 368 recordings from 148 MI 

patients. 282 acute MI recordings without former MI were investigated in this study. Among the 

acute MI recordings, 117 belonged to inferior family (IF) with 74 inferior (I) and 43 inferolateral 

(IL), 133 to anterior family (AF) with 35 anterior (A), 42 anterolateral (AL) and 56 anteroseptal 

(AS), and 32 with less common or undetermined locations. The VCG signals were recorded for at 

least 30 sec with an average length of ~2 min. 
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We employed a classification and regression tree (CART) –an established method for 

creating clinical rules for medical diagnosis [21]– to distinguish between the five different MIs 

and HC groups using the aforementioned features. A CART model  recursively partitions the 

multidimensional space formed by 161 features (48 octant morphology features [10], 16     

values, 85 network topology features [20] and 12 octant sojourn time features) into subsets of the 

feature space, each representing the feature values for HC or each type of MI. Such high-

dimensional feature space containing highly redundant information and with limited number of 

recordings degrades the classification accuracy and efficiency. Anderson-Darling (AD) and 

Kolmogorov Smirnov (KS) tests were therefore applied to yield a subset of 10 features (see Table 

5-1 ) that are significant for MI localization. 

Table 5-1 Summary of the selected features employed in the optimal classifiers (CART 1, CART 

2, and CART 3) 

 
CART MODEL 

 
FEATURE DEFINITION 

 
DESCRIPTION 

CART 1 
Inferior family  
Anterior family 

Healthy control 

Oct7Var = var(V7) 
where V7 is VCG vector magnitude set in octant 7 

Vector magnitude variance in octant 7 

InStr6 =     
 
        

where     is the inward link weight from octant   

to octant 6 

Sum of inward link weights to octant 6 

Oct1Var  = var(V1)  
where V1 is VCG vector magnitude set in octant 1 

Vector magnitude variance in octant 1 

Oct8Var = var(V8) 

where V8 is VCG vector magnitude set in octant 8 

Vector magnitude variance in octant 8 

Oct2Num =     
  

     

where   
  sojourn time in octant 2 of VCG 

trajectory in heart cycle    , and   is the number 

of heart cycles 

Summation of sojourn time in octant 2 of the VCG 
vector 

CART 2 
Inferior  
Inferolateral 

Clust2 = 
  

   
   

   
  
    

   
   

  
               

 

where   is the number of triangles around octant 

2;   
    and   

   are the number of outward and 
inward links from octant 2; and     is the 

connection status between i and j:     = 1 when 

link (i, j) exists (when i and j are neighbors);    = 0 

otherwise (    = 0 for all i) 

Average number of directed-triangles around 
octant 2 

Oct4Max = max(V4)  

where V4 is VCG vector magnitude set in octant 4 

Amplitude of the maximal vector in octant 4 

CART 3 
Anterior 

Anterolateral 
Anteroseptal 

OutOct4Rate (  ) = 
      
 
   

       
 
   

 
 

 

where     is the expected probability of transition 

from octant   to octant   updated from the 

observations under stationary condition 

Departure rate of VCG trajectory from octant 4 to 
all other octants 
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Clust5 =  
  

   
      

      
      

                 
 

where   is the number of triangles around octant 

2;   
    and   

   are the number of outward and 
inward links from octant 5; and     is the 

connection status between i and j:     = 1 when 

link (i, j) exists (when i and j are neighbors);    = 0 

otherwise (    = 0 for all i) 

Average number of directed-triangles around 
octant 5 

InDrg3 (   
  ) =                                                                              

where   is the number of octants in the network 

Number of inward transitions connected to octant 
3 from all other octants 

 

 

 

Figure 5-5 a) A summary of the hierarchical CART models to classify Inferior (IF) and Anterior 

(AF) MIs from Healthy Control (CART 1); two subgroups of inferior MIs, namely, Inferolateral 

(IL) and Inferior (I) (CART 2); and three subgroups of anterior MIs, namely, Anterior (A), 
Anterolateral (AL), and Anteroseptal (AS) (CART 3). All CART models are specified in terms of 

a treestructure with the solid lines denoting the TRUE branch (i.e., the condition stated at a node 

of the tree holds) and the dashed line denoting the FALSE branch. The optimized CART 1, 
CART 2, and CART 3 model structures are showed in (a), (b), and (c), respectively. 

While morphological features of VCG octants were largely adequate to classify between HC 

and MI, transition features were found to be highly sensitive to MI location (see Figure 5-5). 

Here, CART 1 (Figure 5-5 (b)) provides the rules to distinguish between HC, IF and AF, CART 2 

(Figure 5-5 (c)) between I and IL, and CART 3 (Figure 5-5 (d)) between A, AS and AL. 

Evidently, the transition probabilities (e.g., OutOct4Rate) and topology quantifiers (e.g, InDrg3, 

(

a) 

(b) CART 1 (c) CART 2 (d) CART 3 

(a)  
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Clust2, Clust5) of the VCG random walk network are the key features for identifying the various 

MI locations. The results from the hierarchical classifications, summarized in Table 5-2, suggest 

that the accuracies of classification among 5 types of MIs and HC exceed 85% with an average 

sensitivity of ~88% and average specificity ~92%. The results also indicate that compared to AF 

cases, the IF cases (inferior and inferolateral MI) can be more accurately localized. The lower 

classification accuracies for the AF family may be attributed to the spatial overlap of the affected 

regions in the three anterior MI groups.  

Table 5-2 Summary of the results from hierarchical CART classification: Normalized confusion 

matrix from (a) CART 1, (b) CART 2, and (c) CART 3 classifiers suggest that MI locations can 
be identified with sensitivity of > 84%, and specificity of > 86%. (d) Classification accuracies 

calculated from the confusion matrices suggest that the accuracies of all classification cases 

exceed 85%. Inferior MI family (I and IL) can be identified most accurately with the best 
classification results in terms of high (> 90%) sensitivity and specificity. 

 Act. 

Class'n 
 IF A F HC 

     

   Act. 

 

Class'n 

 A  AS  AL 

 IF 0.94 0.03 0.06 

 

   Act. 

Class'n 
 I IL 

 

 A 0.88 0.02 0.02 

 AF 0.02 0.93 0.07 

 

 I 0.9 0.09 

 

 AS 0.06 0.85 0.14 

 HC 0.04 0.04 0.87 

 

 IL 0.1 0.91 

 

 AL 0.06 0.13 0.84 

 

 

 

5.5 Discussion 

Thus, complex network analysis is used to capture the relationship between local variations 

in physiological conduction system of the heart and the spatiotemporal dynamics of VCG. The 

results suggest that the network measures identified in the present work can be used to 

characterize the propagation patterns of the cardiac action potential during the depolarization 

(roughly contemporaneous with heart contraction and manifestation of P and QRS loops in VCG) 

    Groups 
Metric 

IF AF HC I IL A AS AL 

Accuracy 0.91 0.91 0.91 0.91 0.91 0.86 0.86 0.86 

(a)  (b)  (c)  

(d)  
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and repolarization (contemporaneous with heart relaxation and manifestation of T loop) phases 

for accurate MI localization. Parenthetically, an atrial depolarization phase is marked by the 

generation of rhythmical impulse from the sinus node and its propagation through the 

atrioventricular node via the intermodal pathways, and ventricular depolarization by the spread of 

impulse signal through A-V bundle, Purkinje fibers, and to all parts of the ventricles. The spread 

of impulse for repolarization of the heart for the next contraction is marked by a T wave. The 

cardiac conduction patterns are susceptible to the damaged heart tissues resulting from MI. 

Accurate MI localization from using the topological and dynamic features of the random walk 

network support the clinical evidences that the distortion of the contour and orientation of QRS 

and T loops in VCG signals provide an accurate diagnosis for MI [23]. 

5.6 Conclusions 

In summary, we have introduced a method for MI localization based on capturing the 

complex cardiac excitation and propagation dynamics as a random walk network reconstructed 

from VCG signals. Various topological and dynamic quantifiers of the random walk network 

were found to be sensitive to the location of cardiac tissues damaged as a result of an MI and, 

consequently, they serve as effective features for MI localization. Extensive tests conducted using 

data from PTB database of PhysioNet suggest that hierarchical CART classifier to identify 

different MI types has a sensitivity of ~88% and specificity of ~92% (standard deviation <5%). 

Such random walk network quantifiers can be applied to detect various cardiovascular disorders 

related to the deviation of the intracardiac conduction pathways such as tachycardia and 

bradycardia. It may be noted that the VCG signals wherefrom the octant network is reconstructed 

can be derived from 12-lead ECG signals using Dower and other transformations [24]. 

Consequently the present method can be implemented as part of a diagnostic system for MI 

localization based on ECG signals (3 or 12 lead) recorded from standard ECG machines, which 
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are accessible to most medical facilities.  The ongoing investigations are aimed at capturing more 

fine-grained transitions within an octant (beyond the currently used transitions between octants) 

as well as deriving separate network representations for various cardiac processes (repolarization 

versus depolarization) towards further enhancing the sensitivity and specificity of MI localization. 
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CHAPTER 6 

6. DIRICHLET PROCESS BASED MIXTURE GAUSSIAN PROCESS 

MODELS FOR PREDICTION OF DISORDER EVOLUTION 

 

This chapter describes a prediction method to forecast the future states of the disorder 

evolution using the measured and derived physiological signals. The distribution of the predicted 

values provides a comprehensive risk indicator metric for the performance of the prognostic 

model investigated in chapter 7. We introduce a Dirichlet process-based mixture Gaussian 
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process (DPMG) model to predict the onset of abnormal state based on tracking complex 

evolution of the cardiovascular dynamic underlying the extracted signatures. Extensive testing 

with signals from the multisensory suite developed at COMMSENS lab and PhysioNet's OSA to 

forecast the onset of obstructive sleep apnea (OSA) suggests that the accuracies (R
2
) are 83% and 

77% for 1-min and 3-min ahead prediction, respectively.  

6.1 Introduction 

Obstructive sleep apnea (OSA) is a common sleep disorder that affects 24% of adult men 

and  9% of adult women  [1]. An OSA episode is marked by the obstruction of pharyngeal 

airways and interruption of the airflow during sleep. It is known to reduce the sleep quality and 

other allied physiological processes vital for the cognitive and restorative functions [2]. 

Furthermore, due to the irregular sympathetic stimulation at the end of obstructive phase 

untreated OSA patients are also at increased risk for developing cardiovascular disorders, such as  

hypertension, coronary artery diseases, and stroke [3].  

Noninvasive ventilation therapies, such as continuous positive airway pressure (CPAP) that 

delivers air with a pre-determined fixed pressure into the pharynx, and other oral appliances 

designed to prevent throat constrictions and deliver oxygen to the lung continuously, are used to 

treat OSA. Such treatments can minimize the sleep apnea (measured in terms of a apnea-

hypoapnea index AHI) and thereby improve sleep quality, subjective wellness, and mental health, 

thus reducing stroke risk [4].  

Despite its wide use, an estimated 46-83% of patients with OSA have been reported to be 

nonadherent to the use of CPAP beyond 4 hours. This is because CPAP devices often over-treat 

air supply to accommodate the differences in respiration patterns during the different sleep stages 

(e.g., REM, N1, N2) [5], and such excessive airflow oftentimes leads to extreme dryness of nose 
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and throat [4]. Real-time monitoring of OSA can be vital towards calibrating airflow to address 

this issue. Even better, the prediction of OSA events would allow proactive adjustment of airflow 

and body positions to mitigate OSA and improve the adherence of the patient to the CPAP 

therapy. Such a prediction-based approach needs a wearable multisensory suite for continuous 

data acquisition during sleep and methods to track and forecast the evolution of cardiorespiratory 

dynamics from measured signals. While some advances in wearable sensors for sleep monitoring 

have been reported, few, if any work has been reported towards using signals acquired from these 

units for prediction of OSA episodes. 

In this paper, we introduce a method based on using data gathered from a wireless wearable 

multisensory suite to predict the occurrence of sleep apnea events. A unique wireless wearable 

multisensory suite is developed to continuously collect the cardiac and respiratory signals in real-

time during sleep. Quantifiers of the coupled nonlinear and nonstationary cardiorespiratory 

dynamics underlying the measured signals are used as the inputs to predict the onset of sleep 

apnea events. We developed a novel DPGM model to predict the complex evolution of the OSA 

signatures. As mentioned in the foregoing, these predictions can be timely for automatic 

adjustment of airway pressure patterns in CPAP, supplemental oxygen devices, or to change the 

body posture such as slight adjustment of torso or chin position that avert the collapse of the 

airways, which precedes an OSA episode. Continuous OSA monitoring and prediction using the 

wireless wearable multisensory suite can thus improve the efficiency of OSA treatment, 

especially in out-of- hospital, at-home conditions. 

6.2 Background and literature review 

The field of medicine is on the verge of transformation where healthcare would be provided 

on a personal basis to prevent the illness rather than treat it post-trauma. This systems approach to 
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personalized healthcare is based on integrating concepts of systems biology and medicine known 

as (P4) personalized, predictive, preventive and participatory medicine [6]. Much of the current 

P4 emphasis is on collecting physiological data from ECG, CAT scan, genomic data, diet, etc., 

into large data warehouses and using advanced information infrastructures for predicting and 

monitoring chronic non-communicable diseases [6, 7]. It was also noted that early detection of 

acute disease episodes through noninvasive monitoring is effective for patients with chronic 

disorders because treatment costs escalate exponentially with delay in detection [8].  

Among the chronic conditions, OSA and sleep-related breathing disorders affect the fourth 

of the US population [9]. Several OSA detection and prediction approaches based on correlating 

the statistical patterns of heart rate, respiration rate, and oxygen saturation (SpO2) signals during 

OSA episodes have been attempted [10]. For example, spectral energy of intrinsic mode functions 

were extracted from empirical mode decomposition of flow rate signals (from a CPAP machine) 

to estimate likelihood of OSA episodes [11]. Similarly, support vector machines (SVMs) 

developed using linear, polynomial and radial basis kernel functions, networks, clustering 

algorithms with wavelet features have been applied to distinguish cases with OSA from those 

which do not have sleep apnea [12]. Although, considerable attention of OSA detection methods 

has been given, prediction of (forecast) an impending OSA episode, necessary for calibrating 

CPAP therapy, have not been reported in literature. The few current reported (e.g., dynamic belief 

networks [13, 14]) use limited data from OSA patients to predict OSA episodes ~ 1 sec ahead or  

just predict the evolution of the physiological signals (i.e., heart rate, chest volume, blood oxygen 

saturation). These methods do not capture variations in nonlinear and nonstationary dynamics of 

the cardiorespiratory system responsible for the onset of OSA or sleep-related breathing disorder 

events. Also, the development of a wearable multisensory unit that would facilitate gathering of 
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signals necessary of prediction without causing palpable discomfiture remains elusive. The 

present work is aimed at addressing these gaps. 

The present approach uses a wearable multisensory wireless unit customizable to the specific 

conditions of the patient such as age, gender, BMI, and diseases for continuous monitoring and 

prediction of OSA episodes. Also, since underlying cardiorespiratory dynamics is nonlinear, 

signal analysis and prediction methods based on the nonlinear and nonstationary characteristics 

were investigated to establish these relationships. 

6.3 Research approach 

The key contributions of the present research are in (a) the development of an economical 

wearable wireless multisensory unit capable of measuring signals essential for sleep monitoring, 

including ECG, heart sound, respiration, and SPO2 synchronously without causing posing 

significant discomfort or constraints on motion, and (b) a method to provide accurate prediction 

of an impending OSA episode by considering the nonlinear and nonstationary cardiorespiratory 

dynamics underlying the measured signals and the features extracted therefrom. As summarized 

in Figure 6-1, we use the data from sleep apnea-ECG database as well as signals gathered from 

our wearable multisensory unit for training and testing of the predictor and classifier. While the 

PhysioNet database consists of signals gathered from chronic OSA patients, the signals from the 

wearable multisensory unit were gathered from healthy subjects (to assess false positive rates). 

Various quantifiers of topology of the nonlinear attractor of cardiorespiratory dynamics 

reconstructed from the measured signals, including laminarity, determinism, entropy, recurrence 

rate were extracted as features  to identify an OSA event using a support vector machine (SVM) 

classifier. The evolution of (t) was tracked using a nonparametric Dirichlet process based 

Gaussian mixture (DPMG) prediction method that effectively captures nonlinear nonstatationary 
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evolution. The k-step (minutes) look-ahead predictions        of feature values were used to 

detect an impending OSA episode 1-3 minutes earlier with an accuracy of 70-90%. Such 

predictions can be vital to initiate adjustments or therapeutic interventions to avert an impending 

OSA episode [15]. The remainder of this section describes the two main contributions of this 

work, namely the multisensory suite and the prediction method. 

 

Figure 6-1 Overall approach for OSA episode prediction 

6.3.1 Wireless wearable multisensory platform 

We have developed a multisensory platform capable of synchronously gathering multiple 

heterogeneous signals, including VCG, ECG, sound, and respiration (see Figure 6-2 for 

screenshot of real-time streaming VCG, 3-D color coded VCG, and a standard display of 12-lead 

derived ECG), and wirelessly transmit the data to a host computer for on-line OSA prediction and 

subsequent therapeutic decision support. Such multi-channel data is necessary to track the 

dynamic decouplings known to precede the state transitions that lead to the onset of OSA 

episodes. Novel aspects of the proposed multi-sensor unit are as follows. (1) The sensors are 

judiciously chosen to capture the complementary aspects of the heart operation, viz. electrical 

(ECG), acoustic (sound), and mechanical (respiration). (2) Due to the use of MEMS technology, 

the total footprint of the wireless unit is highly adjustable and remains lightweight, and hence 

highly wearable. (3) The hardware platform in this context contributes towards affordable, yet 
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powerful, early warning (prognostic) systems for sleep apnea treatment. (4) The wireless 

(Bluetooth) platform along with the sensors and microprocessor components are integrated into a 

customized garment to continuously monitor and predict sleep apnea episodes [16]. The wireless 

design utilizes a class I Bluetooth device with response frequency range of 0.176-90Hz, sampling 

rate of up to 2 kHz, and 16 bit resolution.  

 

Figure 6-2 Screenshot of 3-channel streaming VCG, 3-D color coded dynamic VCG, and 12-lead 

transformed ECG signals 

 

 

 

Figure 6-3 Wireless wearable multisensory suite 

We have embedded the multisensory platform as part of a garment (see Figure 6-3) to 

enhance the wearability of the sensor suite. The fusion of information from VCG, heart sound, 

and respiration provide adequate information to track variations and detect transitions in 

cardiorespiratory dynamics during sleep. 
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6.3.2 Prediction model 

Among nonparametric prediction models, Gaussian process (GP) can simplify the modeling 

efforts, but the computational overhead with covariance matrix inversion scales as a cube of the 

signal length and the assumption of a stationary covariance function impede its wide applications. 

In our previous work [17], we used local Gaussian process (LGP) to address the nonstationary 

issue. We used local topological characteristics including recurrence properties of dynamics 

reconstructed from a signal to partition the signal into near-stationary segments. While prior 

investigations suggest that LGP can be effective in predicting the evolution of nonlinear 

nonstationary processes, one needs to specify the threshold of a correlation index to determine the 

boundaries in the state space. Furthermore, estimation of the topological characteristics (in the 

form of recurrence maps) can be computationally intensive and somewhat sensitive to parameters 

such as the threshold. Towards addressing this limitation, we have investigated a Dirichlet 

process based Gaussian process mixture (DPMG) model to predict the evolution of the signal 

features.  

In the DPMG model, the state space reconstructed from a signal feature is partitioned into 

various clusters using a Dirichlet process [18], such that each cluster follows a multivariate 

Gaussian distribution. A local GP expert   can be fitted for each cluster. A GP expert model [17] 

seeks a mapping           where       is the input for the prediction model comprised of 

historic realizations of an extracted feature,     is the output (future feature), and  ∼

          
 ). In DP, the symmetric prior assignment probability for   clusters can be given as 

[18] 
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where   > 0 is a concentration parameter. This is conjugate to the multinomial distribution of 

cluster indicators of   data points,                     
    

   (where    is the number of 

data points in each cluster,       ). The following holds for the posterior distribution:  

                                     
      

   
 

 
    

 
   

  
 

 

 
      

     

That said,                ∼     
 

 
      

 

 
    , and as   ∞ , we can update the 

posterior indicator distribution using Gibbs sampling,  

                    
              

     

     

                 
 

     

               Eq. 6-2 

where       is the number of data points in cluster   before the assignment of data point  . The 

distribution for a new input within a mixture cluster                ∼           Here, the 

parameters    and    are the mean and the covariance for cluster  , with Gaussian distribution 

and an inverse Wishart distribution prior, respectively. We can obtain the weight for each cluster 

as: 

                       
               

          
 
         

     Eq. 6-3 

For a realized signal feature (i.e., input)    , we can obtain local predictions       

         from each local GP expert, 

  

           
                 

   
  
  

                

        
                 

   
  
        

.          Eq. 6-4 

Here,       
        

  
 

 and      
      

  
 

, are the observation samples (input and 

output) in cluster  , and   is the covariance matrix defined in terms of a covariance function [17]. 

Then the prediction for input    can be expressed as a weighted sum 
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              Eq. 6-5 

For multi-step predictions, after the first step, the input to the DPMG model is a Gaussian 

random vector, as obtained from previous-step prediction. We assume the new input    ∼

          , where     and    can be estimated from Eq. 6-4. The output distribution in each 

cluster is given by  

                                                                        Eq. 6-6  

The integration in Eq. 6-6 is a complicated function of   , a closed form expression for the 

output distribution was not sought, and we used a Monte Carlo approach to approximate the 

expression at the right side of (6) as: 

                         
 

 
        

     
        

 
      Eq. 6-7 

where        is the total number of random samples.  The expert function is evaluated with 

samples from the random input distribution            , and the average is used as the predicted 

feature value. The performance of the DPMG model for multi-step ahead prediction of sleep 

apnea was compared as part of the following validation study with that from the Autoregressive 

Moving Average (ARMA) and Empirical Mode Decomposition (EMD) prediction techniques 

[19]. 

6.3.3 Clinical validation 

The two sources of data used in this research are collected from the Apnea-ECG Database – 

Physionet.org and from the wireless multisensory platform developed by COMMSENS (OkState) 

lab. The first source of data is 20 recordings that include an ECG signal sampled at 100Hz, 16 bit 

resolution, synchronized with a set of minute-wide apnea annotations. The annotations of sleep 

apnea are made by a human expert and are based on supplementary signals including chest and 

abdominal respiratory effort, oronasal airflow, and oxygen saturation signals. The second source 

of data was collected from six healthy male subjects and two subjects with suspected sleep apnea 
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(age range of 25-40) using the wireless wearable multisensory suite. The subjects participating in 

this research were trained to use the devices and the corresponding software with professional 

technicians at the COMMSENS lab. However, because of the nature of the sleep testing 

procedure, the data collection processes were performed entirely at the subject’s home. In 

addition to the suite, a portable sleep recording device (from Zeo) with automated algorithms to 

distinguish between sleep and wakefulness stages [20], was used to record the sleep stages and 

rate the sleep quality using an average sleep score. Both the multisensory suite and the portable 

sleep monitoring device wirelessly record sleep stages and provide sleep and wakefulness 

patterns that are quantified into four stages of sleep: wakefulness, rapid eye movement (REM) 

sleep, light sleep (combined Stages 1 and 2 of sleep), and deep sleep (combined Stages 3 and 4 of 

sleep) [21]. The portable sleep recording device with a subject wearing the multisensory suite is 

shown in Figure 6-4. Software with an appropriate graphical user interface was provided to assist 

subjects with data collection. 

 

 

Figure 6-4 A multisensory suite with portable sleep monitoring device 

The procedure for clinical validation in this study consists of collecting signals from the 

multisensory suite and the portable sleep device for two consecutive nights from each subject. For 

the first experimental epoch (sleep through one night), each subject was requested to use only the 
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sleep device (from Zeo) during sleep. The sleep pattern and quality score from the sleep device 

were collected. The purpose of this experiment is to collect the sleep quality score of subjects 

without wearing the multisensory suite, for validation purposes. For the second experimental 

epoch (i.e., the second night), the subject(s) donned the multisensory suite and used the sleep 

device. The signals from both devices were collected in real-time and saved in a secure location 

in a computer accessible via a relational database management system. The purpose of this 

experiment was to validate the effect of wearing the wireless multisensory suite on sleep quality, 

as well as to glean circumstantial estimates of the accuracy (sensitivity and specificity) of the 

predictions compared against the sleep events recorded by the sleep device and the signals picked 

up by the sound sensor. 

6.4 Implementation details and results 

6.4.1 Feature extraction 

First, a band-pass filter with a pass band in the range of 0.06-40Hz was employed to remove 

the noise, artifacts, and base-line wandering and retain the critical features for the R peak 

extraction from the VCG signals. After de-noising, the R peaks of the ECG signal are detected by 

using wavelet transformation [22]. The heart rate time series known as RR intervals is calculated 

as the time difference between consecutive R peaks. Abnormal heart rates characterized by at 

least 80% increase over the previous beat’s are eliminated. The power spectral density (PSD) of 

the RR intervals in a low frequency band (0.04 to 0.12 Hz) is used to capture the heart rate 

variability in OSA patients. The PSD time series is formulated such that each point is the average 

power spectral density of one minute of the RR interval time series. The normalized PSD (NPSD) 

feature is considered to account for inter-subject variability.  
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Recurrence quantification analysis (RQA) is employed to capture the nonlinear and 

nonstationary characteristics of the RR interval signals. The time delay    , which is 

determined based on the mutual information test [23],  and the embedding dimension    , 

based on the false nearest neighbors test [24], were used to reconstruct the phase space. The 

threshold of the recurrent plot is identified as 10% of the maximum phase space diameters [25]. 

The RQA features are extracted based on a sliding window concept with a window size of 600 

data points and a sliding step of 60 data points corresponding to a 10 min length and a 1 min step 

of the RR interval time series, respectively. The 10 min length for the sliding window was 

selected to accommodate the longest likely sleep apnea episode a subject may experience. The 

sliding step of 60 sec is sufficient to characterize the cyclic variance of the heart rate which 

ranges from 20 to 60 sec. The recurrence features of each sliding window extracted from the 

recurrence plot of the 10 min RR interval in the phase space qualify for the recurrent 

characteristics of heart rate variability in OSA patients. The features extracted from the 

recurrence plot are the recurrence rate (RR), determinism (DET), average length of the diagonal 

lines (DIA), length of the longest diagonal line (LMAX), entropy (ENT), laminarity (LAM), 

trapping time (TT), length of longest vertical line (LVM), recurrence time of 1st type (RT1), 

recurrence time of 2nd type (RT2), recurrence period entropy density (RENT), and transitivity 

(TRAN). 

6.4.2 Classification model 

We employed a nonlinear support vector machine (SVM) classification model to discern 

sleep apnea events based on the extracted PSD and RQA features. An SVM classifier separates a 

set of binary labeled training data with a maximal margin hyper-plane, i.e., it is oriented as far 

away as possible from the closest members of both classes (known as the support vectors) [26]. If 

no linear separation exists, the original input space of features    is transformed to another 
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isomorphic space where the training set becomes linearly separable or mostly linearly separable. 

We need not compute the transform      explicitly; instead we only need to estimate the inner 

product of the mapped patterns,                        where     denotes the inner product. 

The inner product is expressed as a linear combination of specified kernel functions. Based on the 

kernel function used, SVMs are categorized into linear, (Gaussian) radial basis function (RBF), 

polynomial, and multilayer perceptron classifiers. In the present work, we selected the Gaussian 

RBF kernel based on its superior performance over other classifiers in K-fold cross validation 

studies. 

 

Figure 6-5 KS statistic indicates the maximal feature distribution differences between sleep 

apnea and non-apnea groups. 

To reduce the high dimensionality of the input space (14 features), the features that most 

effectively classify the input space into sleep apnea and non-apnea groups were selected based on 

the Kolmogorov Smirnov (KS) statistic. Figure 6-5 shows the KS statistic values of 14 features. 

The two significant features with the highest KS statistic— NPSD and LVM —were selected as 

the inputs of the classifier. Figure 6-6 (a) shows the distribution of the sleep apnea and nonapnea 

events in the 2D feature space of NPSD and LVM and Figure 6-6 (b) the classification boundary 

using Gaussian RBF. It may be noted that the nonapnea feature values are clustered in the green 

dot circle with low NPSD and LVM values. Table 6-1 summarizes the sensitivity and specificity 
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of the classification with different percentages of training data. It is noted that the average 

sensitivity and specificity for all classification cases are above 75% with standard deviation < 6% 

even with 10% of the data for training. With 90% of data used for training, the sensitivity and 

specificity increased remarkably to 92.56% and 86.92%, respectively. The high classification 

accuracies possible from the SVM model allows the use of the feature values predicted from the 

DPMG model to forecast the onset of an impending apneic event. 

 

Figure 6-6 a) Distribution of apnea and nonapnea events in 2D feature space (NPSD and LVM). 
b) The classification boundary of the selected Gaussian RBF kernel used as part of the SVM 

classifier. 

Table 6-1 Comparison of the accuracy (sensitivity and specificity) of Support Vector Machine 
classification at different training levels  

  Acc. (%) 

Training 

Apnea NonApnea 

Mean Std. Mean Std. 

10% 80.82 5.63 75.52 4.45 

50% 86.75 3.24 82.45 3.25 

90% 92.56 2.88 86.92 2.24 

 

6.4.3 Prediction results 

Among the prediction methods tested, DPMG yields the highest R
2
 and classification accuracy 

for different prediction horizons as summarized in Table 6-2. Here we quantified the performance 

of the feature predictions in terms of the R
2 
statistic, and the performance of overall apnea event 
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forecasts in terms of classification accuracy. It is noted that the DPMG model performs better 

than the classical ARMA and EMD models both in prediction and classification. Furthermore, 

when the prediction horizon increases, the accuracy of the DPMG model does not drop 

significantly. Figure 6-7 shows the training and prediction data of the LVM, NPSD features and 

the sleep apnea status with the prediction point started at the 341
st
 min. It is observed that the 

DPMG model with different prediction horizons can capture the trend and the amplitude of the 

observation features. Thus it yields reasonably high prediction accuracies of apnea conditions 

(i.e., 83% for 1 step-ahead prediction and 77% for 3 step-ahead predictions). 

Table 6-2 Comparison of the accuracies for 1 min and 3 min look-ahead predictions of OSA 

episodes with different models  

Method 

R
2  

(first/last 

Step) 

Classification  

accuracy  

(first/last step) 

ARMA 0.37/0.1 0.4/0.03 

EMD 0.45/0 0.67/0.53 

DPMG 0.92/0.51 0.83/0.77 
 

 

Figure 6-7 Observation from 300
th
 to 380

th
 min and multiple step-ahead predictions from 341

th
 to 

380
th
 min of sleep apnea status, LVM, and NPSD features from patient a05. 
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Table 6-3 summarizes the average percentage of the total sleep time spent in each of the four 

stages of the sleep, namely, awake, rapid eye movement (REM), light sleep and deep sleep. The 

average was computed using the recordings of the portable sleep device taken from 8 subjects 

over two nights with and without donning the multisensory suite. It may be noted from the table 

that no significant changes exist in any of the four sleep stages between the 'No Suite' and 'With 

Suite' cases. This indicates that the multisensory suite may not adversely affect the quality of the 

sleep from a "comfort of wear" standpoint. All the eight subjects who have participated in this 

study have also affirmed that they found it comfortable to wear the suite to sleep.  

Table 6-3 Comparison of the average percentage of time durations in four stages of sleep with 

and without adorning the wearable multisensory suite 

Duration (%) Wake REM Light Deep 

No suite 0.49 34.75 52.36 12.39 

With Suite 0.74 38.29 49.80 11.17 

 

Figure 6-8 shows a representative 350 min long signal segments collected from a subject 

who donned the multisensory suite to sleep for 434 minutes. This subject suspects that he suffers 

from sleep apnea and showed several signs of sleep apnea including loud snoring and disturbed 

sleep. The signals shown in the figure include synchronously gathered sound (black), sleep stage 

(blue) signals along with the online one-minute-ahead sleep apnea predictions (red). The start of 

the signal strip coincides with the time when the subject begins to sleep, as indicated by the 

transition from wake to light sleep stage. It may be noted that no apneic episode was predicted 

during the 25 min long deep sleep, or during the stable light sleep stage in the 200-300 min range. 

More pertinently, the first apnea event predicted at the 60 min mark precedes the transition from a 

deep to light sleep. Also the 2
nd

, 3
rd
, 4

th
, 6

th
, 7

th
, and 9

th
 apnea events are predicted near the 

transitions from a deep sleep to a light or REM sleep. Two apparent false positive apnea 

predictions (events 8
th
 and 10

th
) occur at 225

th
 min and 336

th
 min marks in REM sleep stage. 
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Offline training epochs to estimate the parameters of the classification and prediction models 

using the longitudinal data collected from a subject might further improve the sensitivity and 

specificity of the predictions. 

 

Figure 6-8 Real-time sound signal, sleep stage pattern, and one-minute ahead prediction of sleep 
apnea in subject ID008 from the starting of sleep to 350

th
 min 

6.5 Conclusions 

We have developed an approach to provide 1-3 min ahead early warning of an impending 

sleep apnea episode based on using a wearable wireless multisensory suite and a novel nonlinear 

nonstationary process prediction method. The wearable wireless multisensory system can serve as 

a viable platform to continuously and noninvasively acquire physiological signals to track 

cardiorespiratory dynamics, and quantitatively assess apneic conditions for prediction of OSA 

episodes. Testing of the wearable sensory suite among eight mostly healthy subjects suggests that 

our sensory suite does not adversely impede the comfort and quality of sleep. The prediction 

approach was extensively tested using 20 recordings from the Physionet database and 10 

recordings from 8 subjects wearing the multisensory unit. These tests indicate that the 

classification and prediction accuracies (R
2
) of 70-90% are possible from the present approach. It 

was also evident that the longest vertical length (LVM) of the recurrence plot and normalized 

power spectral density (NPSD) are the most sensitive features for OSA episode prediction with 
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offline OSA classification accuracy of up to 88%. More pertinently, DPMG was shown to 

provide OSA prediction accuracy of 83% 1 step-ahead and 77% for 3 step-ahead. This amounts to 

some 20-40% improvement in prediction accuracy compared to other methods tested. Such early 

prediction can spur the development of adaptive flow control systems for CPAP devices and to 

the advent of devices to induce minor adjustments to body positions to mitigate OSA.  

The ongoing investigations are focused on testing the approach on additional subjects to 

extract consistent benchmarks of the performance of the multisensory suite and the prediction 

method. Also, it may be noted that the predictions reported in the present work are based on the 

SVM classification model derived from multiple subjects. We are currently investigating the 

customization of the classification and predictions to subjects, which we believe can further 

improve the performance of our approach. Additionally, we are pursuing methods to mitigate 

OSA episodes that take advantage of the early prediction capability. 
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CHAPTER 7 

7. NONPARAMETRIC MODELING APPROACH FOR PERSONALIZED 

PROGNOSIS OF CARDIORESPIRATORY DISORDERS 

 

This chapter describes an approach to deriving personalized estimates of remaining useful life 

(RUL) distributions (e.g., time till an abnormal condition) based on the diagnostic method and 

Dirichlet process mixture prediction model presented in chapters 5 and 6, respectively. The 

prognostic approach is based on deriving a state space network representation of the pathways of 
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transition from various healthy states to abnormal states. The prognostic model is validated using 

data from the ECG Apnea Database (Physionet.org). The average prediction accuracy (R
2
) is 

reported as 0.75%, with 87% of observations within the 95% confidence interval. Estimated risk 

indicators at 1 to 3 min till apnea onset are reported as 85.8 5.7%, 80.2 10.1%, and 

75.5 10.8%, respectively.  

7.1 Introduction 

Chronic disorders such as obesity are considered an epidemic afflicting nearly 133 million 

Americans and utilizing 75% of the nation’s healthcare spending [1]. The transition of obese 

patients into other chronic conditions, such as obstructive sleep apnea (OSA) [2-4] and life-

threatening cardiovascular diseases (CVDs) is particularly alarming [5]. Approximately 70% of 

OSA patients are obese [6], and 4% with  a CVD [7], such as atrial fibrillation and hypertension. 

Therefore, the continual monitoring of health status and assessment of health risks for each 

individual are necessary to help mitigate transition into more serious chronic or acute disorders, 

and to potentially reverse some chronic disorders. 

Growing healthcare costs and recent technological advancements such as those in genomics 

and wireless sensors are fueling the desire to transform healthcare practice from reactive “damage 

control” to a more proactive and personalized wellness process [8-10]. The emphasis on disease 

prevention, early detection, and preventive treatments will revolutionize the way clinicians 

evaluate their patients. Current medical prognostic practice relies primarily on comparison to 

"population norms" extracted from certain genetic and environmental factors to estimate a 

patient’s predisposition to a disease [11]. But it is not uncommon for clinicians to encounter 

individuals with high predisposition to a disease who remain healthy. Population norms do not 

provide personalized, dynamic quantification, and the ability to forecast the risks in an individual 
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who is undergoing a transition to a serious chronic or acute condition, especially over the short-

term. 

Recent studies suggest that deterioration in a patient’s health status is often preceded by 

remarkable changes in heart rate variability dynamics and/or  coupling dynamics among the 

cardiovascular processes [12-14]. These changes are evident to hospital staff hours before the 

acute onset. The pathways of the transitions between various chronic and acute health statuses 

can be monitored by tracking the short term transitions and long term degradation processes 

underlying the physiological signal dynamics. Such transitions are difficult to discern using 

traditional clinical features (measures), such as heart rate and respiration profiles. However, 

nonlinear dynamic quantifiers rooted in nonlinear dynamic systems theory (e.g., local topology 

analysis and recurrence quantification analysis features) could be used not only to monitor, but 

also to predict transitions well before they become evident. These prediction methods would 

allow the forecast of diseases from months to years before observable symptoms of disease occur. 

This research introduces a method to visually represent the transitional pathways of 

abnormal states in the dynamic state space of the underlying system and a new method using the 

local topology of cardiovascular dynamics to track the degradation transitions and derive the 

remaining useful life (RUL) distribution. The new systems dynamic representation and evolution-

based prognostic method facilitate the forecasting of acute or chronic health transitions. 

Furthermore, accurate risk indicators derived from the distribution of RUL support the 

development of preventive treatments and intervention therapies for proactive and personalized 

wellness processes. The organization of the remainder of the chapter is as follows: section 7-2 

reviews the literature on the current prognostic approaches; section 7-3 describes the overall 

methodology of the proposed prognostic method; implementation of the methodology and a case 
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study in estimating the distribution of remaining time to sleep apnea onset are presented in 

section 7-4; and the conclusions are provided in section 7-5.  

7.2 Background and literature review  

Prognostic models are intended to provide reliable predictions about the RUL of components 

or systems undergoing degradation processes. Prognostic models can be categorized broadly into 

model-based approaches and data-driven approaches. Model-based methods use an explicit 

mathematical model of the degradation process to predict the future evolutions of the degradation 

state and, thus, the RUL of the system. Data-driven methods are used when an explicit model of 

the degradation process is not available, but a statistical model that can capture the historical 

trend of the data is derivable. Biological and mechanical systems are the two major target areas 

for most of the research in prognostics. In this research, we have summarized the published works 

on prognostic models using model-based and data-driven approaches in mechanical and 

biological (with a focus on cardiovascular) systems.  

Model-based and data-driven prognostic approaches have been receiving increasing attention 

for maintenance practices in mechanical systems. Model-based methods characterize the dynamic 

degradation state by explicitly using mathematical models of the degradation process. Pulkkinen 

et al., [15] and Ray et al., [16] proposed non-linear stochastic damage models to characterize  

fatigue crack dynamics. Kim and Kolarik [17] developed a real-time conditional reliability 

prediction for an individual component using model performance data, and formulated real-time 

conditional reliability predictions based on regression analysis. Lu et al., [18] modeled the 

degradation signal of an individual product by exponential smoothing and calculated the 

predictive reliability based on the S-normal distribution of the performance variable. Chinnam et 

al., [19] modeled the degradation process using a general polynomial regression with the 
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reliability function following a T- distribution. Jianhui et al., [20] introduced an integrated 

prognostic process based on data from model-based simulations under nominal and degraded 

conditions. Chelidze and Cusumano [21] suggested a general method for tracking the evolution of  

hidden damage processes using the reconstructed phase space of the reference system. Many 

Bayesian-based prognostic approaches [22-24] modeled stochastic damage processes using the 

exponential degradation function for the degradation signal to update the RUL distribution with 

the assumption that failure occurs when the degradation signal reaches some given failure 

thresholds. Data-driven methods are used when historical sensory signals (i.e., vibration, cracking 

data) have been collected but an explicit model of the degradation process is not available. Data-

driven models update the RUL distribution by building statistical models that fit the historical 

data. On this basis, autoregressive moving averages [25], artificial neural networks [26, 27], and 

relevance vector machines [25, 28] have been used to assess the distribution of the remaining 

time. Recently, ensemble approaches based on the aggregation of multiple model outcomes have 

been introduced to combine the advantages of superior robustness and accuracy with respect to 

single models [29, 30]. 

Providing medical prognostics model for biological systems plays an important role in 

directing disease diagnosis and treatment pathways. In this section we focus on medical 

prognostic approaches for cardiovascular disorders. Not many studies have been reported on 

model-based approaches to prognosis due to the limitations in modeling anatomical and 

physiological characteristics of the cardiovascular system. A typical model-based prognostic tool 

is the KARDIO system [31]. This is a rule-based system built from anatomical and physiological 

knowledge that is able to diagnose and predict the conditions of the heart from the trigger of 

cardiac arrhythmias in the patient. For a data-driven prognostic model, different statistical 

models, including Cox’s proportional-hazards model [32-35], the Kaplan-Meier model [36-38], 
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and the Mantel log rank test [39-41] have been used to predict expected RUL. The most powerful 

predictors of CVD risks in the statistical models are age, gender, body mass index (BMI), blood 

pressure (BP), total cholesterol, LDL cholesterol, HDL cholesterol, smoking habits, diabetes, 

hypertension, and albuminuria [42-45]. More personalized risk assessment approaches pursued 

include the tracking of various types of cholesterol [46-48]; evolving BP, BMI, body shape 

measurements [49-51]; biomarkers such as C-Reactive Protein, and N-terminal pro-brain 

natriuretic peptide [52-55]; ECG analysis [56-59]; electron beam CT scans [60-62]; cardiac 

magnetic resonance [63-65]; and genetic variation [66, 67].  

Current prognostic models are derived from limited data gathered from small population 

sizes; hence these models need some form of baseline adjustments before they can be generalized 

to different subjects. These approaches are rooted in comparisons to "population norms" and are 

not able to capture the physiological dynamics of individuals. Furthermore, few efforts (if any) 

have been reported towards using continuous tracking nonlinear transitions. Current medical 

practices capture data only during a short period (i.e., ambulatory signals, clinic measurements); 

such short-term data  is not able to capture  long-term degradation, which leads to less accurate 

risk estimation [68]. Methods based on tracking the nonlinear and nonstationary evolution of the 

dynamic underlying monitoring physiological signals need to be investigated to facilitate 

individualized treatments and timely prevention therapies.  

7.3 Research approach 

  The contributions of the present research are (a) a representation of a transition state 

space network that is able to optimally separate the state vectors in regions with different 

dynamic characteristics and visually track the dynamic transitions of abnormal states in the state 

space (b) a prognostic method for estimating the distribution of the time to failure by considering 
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the stochastic evolution of the normal state vectors to the abnormal state in the state space of the 

underlying measured signal dynamics. As summarized in Figure. 7-1, we used data from the 

Apnea-ECG database (Physionet.org) for training and testing the classification and prognostic 

model. 

 

Figure 7-1 Overall approach for prognostic model 

The prognostic model provided the RUL distribution and a risk indicator for the abnormality 

onset using the topological transitions of state space vectors reconstructed from the condition 

monitoring features  . This work was inspired by the concept of symbolic dynamics, which 

allows characterizing the dynamic system based on partitioning its phase space into   mutual 

disjoint Dirichlet clusters. The state classification of the phase space and the evolutions of state 

vectors were utilized to represent a complex network with the nodes classified as state vectors 

and the edges as the plausible state evolutions. A Laplacian-projection method was employed to 

maximize cluster separation and highlight the local transitions of the state space vectors. The 

stochastic evolution of      among clusters visually presented in the Laplacian-projection system 

was used to derive the distribution of time to an onset of a failure. Distribution          of the 

random variable time to failure  (or RUL) is derived from the probability that in a phase space 

network, there exists a path from a normal state    to an abnormal state with specific length  . 



109 

 

The remainder of this section describes two main contributions of this work: a state space 

network representation and a prognostics approach. 

7.3.1 Color coded state space representation 

State space reconstruction for multivariate time series has been used for the state space 

network representation. The embedded state space is represented as a directed graph        (see 

Figure 7-2 (a)) with the node set                 as state vectors and edge set   as the 

plausible evolutions of the state vectors in the state space. The distances between the nodes are 

Euclidian distances in an  -dimensional embedding space. Figure 7-2 shows a state space 

network in 3-D with the nodes classified into normal and abnormal states (solid and empty 

circles) and grouped in different clusters with distinct colors using the Support Vector Machine 

(SVM) classification and Dirichlet process based mixture Gaussian process (DPMG) models [69] 

mentioned in chapter 6. Since the proposed prognostic method focuses on tracking the dynamic 

transitions of the state vectors in the network, visualization of the state transitions is very 

important. However, due to the high embedding dimension (M>8) of the state space and the 

overcrowding of adjacent state vectors in the same cluster, visualization of the state vector 

evolutions in the state space becomes obscured. Towards addressing these limitations, we have 

investigated the Laplacian-eigen projection method for the visualization of state space vector 

transitions in a 2-D coordinate system.  

 
(a)  
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Figure 7-2 Graph representation of the reconstructed state space 

The Laplacian-eigen projection method provides two distinct advantages that legitimate the 

layout limitations of the state space network. First, it provides mathematical formulations of the 

Non-deterministic Polynomial-time hard (NP-hard) problem leading to a methodical solution for 

the network layout. The second advantage is the fast computational speed in representing a big 

network with thousands of nodes in real life such as the World Wide Web, social networks, and 

transportation hub systems. The Laplacian matrix is defined as      , where   is the degree 

matrix and   is the adjacent matrix associated with the graph       . Projection of state vectors 

in the 2
nd

 and 3
rd

 smallest Laplacian-eigen vectors is subjected to a force-directed strategy [70] 

from which adjacent space vectors are projected more closely without overcrowding the nodes. 

Figure 7-2 (b) shows the projection of the state space in the Laplacian-eigen vector coordinate 

system. It is noted that the state vectors are separately grouped in different clusters and the 

transitions among adjacent state vectors are perceptible in each cluster. This Laplacian-eigen 

projection representation is used for further analysis of the prognostic model.  

(b)  
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7.3.2 Prognostic model 

The stochastic transitions of the state vector in the state space network have been used to 

derive the distribution of RUL. Figure 7-3 depicts the structure of a subgraph containing a 

transition path (red line) from  normal state     in cluster    to abnormal state     in cluster 

    . Each Dirichlet cluster    is represented by a distinct color. Solid nodes and empty nodes 

represent state vectors with abnormal and normal conditions, respectively. An onset of failure is 

detected when a transition from an empty node to a solid node occurs. The posterior distribution 

of the indicator is given as: 

                     
 

 
      

 

 
       Eq. 7-1 

where            are the historical observations,     is the concentration parameter,    is the 

number of data points in cluster   , and   is the number of clusters in the state space. The 

probability density function of a new input,   , belonging to cluster   , is given as 

                        where    and    are the mean and covariance of cluster   . The 

probability that    is within cluster    is given as              
             

               
   

 and the 

distances from    to state vector   are   
        

  . 

 

Figure 7-3 Structure of a subgraph with a transition path from a normal to an abnormal state 
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The RUL distribution at    is updated based on the distribution of the transition time for    to 

first reach an abnormal state. An abnormal state can be reached from a normal state    starting in 

cluster    (         with cluster sequence length from 1 to     . Figure 7-4 lists all of the 

possible cluster paths that an abnormal state can be reached from a normal state. 

 

Figure 7-4 All possible paths to abnormal state from a normal state in cluster    

The conditional probability distribution of transition time   for a new normal condition input 

   within cluster    to reach the first failure onset is given as: 

   
                               

      
      
    Eq. 7-2 

where   is the cluster sequence length and    is the cluster indicator. The probability density 

function of the time to the next anomalous onset given the normal input    in cluster    and the 

cluster sequence   is computed recursively as: 

    
                              

 
   
   

    ) Eq. 7-3 

  
           

 
                            

                                    

 
      

         

 
    
     

  
    
    

  

The nonparametric density of time to failure is updated  as [71]: 
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,  Eq. 7-4 

where   
          is the density of   given input    in the cluster indexed by   and           , 

  is the concentration parameter, and   is the inverse Wishart prior. The estimated density of 

time to failure is expressed as a weighted sum  

               
      

           .  Eq. 7-5 

The RUL distribution in Eq. 7-5 is used to derive the expected time to failure onset and          

is used as the risk indicators. 

7.4 Implementation details and results 

7.4.1 Feature extraction and classification model 

Two groups of features have been used to differentiate sleep apnea states from normal ones. 

The first group of features is the power spectral density (PSD) of the RR intervals in a low 

frequency band (0.04 to 0.12 Hz).This feature captures the heart rate variability in OSA patients. 

The PSD time series is formulated such that each point is the average power spectral density of 

one minute of the RR interval time series. The normalized PSD (NPSD) feature is considered to 

account for inter-subject variability. The second feature group is the recurrence quantification 

analysis (RQA) quantifiers of the RR interval signals. RQA is employed to capture the nonlinear 

and nonstationary characteristics of the RR interval signals. The features extracted from the 

recurrence plot are the recurrence rate (RR), determinism (DET), average length of the diagonal 

lines (DIA), length of the longest diagonal line (LMAX), entropy (ENT), laminarity (LAM), 

trapping time (TT), length of the longest vertical line (LVM), recurrence time of 1st type (RT1), 

recurrence time of 2nd type (RT2), recurrence period entropy density (RENT), and transitivity 

(TRAN). 
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Table 7-1 Comparison of the accuracy (sensitivity and specificity) of Support Vector Machine 

classification at different training levels  

Acc. (%) 

Training 

Apnea NonApnea 

Mean Std. Mean Std. 

10% 80.82 5.63 75.52 4.45 

50% 86.75 3.24 82.45 3.25 

90% 92.56 2.88 86.92 2.24 

 

 We employed a nonlinear support vector machine (SVM) classification model and 

Kolmogorov Smirnov (KS) statistic for the feature selection. The SVM separates a given set of 

binary-labeled (e.g., apnea or non-apnea) training data with a hyper-plane that is maximally 

distant from them [72]. To reduce the high dimensionality of the input space (14 features), the 

features that most effectively classify the input space into sleep apnea and non-apnea groups were 

selected based on the Kolmogorov Smirnov (KS) statistic. The two significant features with the 

highest KS statistic— NPSD and LVM —were selected as the inputs of the classifier. Table 7-1 

Comparison of the accuracy (sensitivity and specificity) of Support Vector Machine classification 

at different training levels summarizes the sensitivity and specificity of the classification with 

different percentages of training data. It is noted that the average sensitivity and specificity for all 

classification cases are above 75% with standard deviation < 6% even with 10% of the data for 

training. With 90% of the data used for training, the sensitivity and specificity increased 

remarkably, to 92.56% and 86.92%, respectively. The high classification accuracies possible from 

the SVM model allow the use of the feature values predicted from the DPMG model to forecast 

the onset of an impending apneic event. Figure 7-5 shows the data from two features, PSD and 

LVM, and the corresponding apnea state with a 1-min resolution. The transitions of the state 

vectors in the state space reconstructed from these two features have been used to derive the 

distribution of time to apnea onset  . 
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Figure 7-5 Two significant features for the state classification of sleep apnea and corresponding 

apnea-nonapnea annotations. 

7.4.2 Multivariate time series reconstruction 

Multivariate time series reconstruction of the state space was utilized to characterize the 

dynamic of the underlying system. Although embedding theorem [73] shows that a scalar time 

series is sufficient to reconstruct the system dynamics if enough information criteria are used, the 

situation might be different in reality. For example the measurement of the   coordinator of the 

Lorenz system cannot be used to reconstruct the state space because it doesn’t resolve the     

symmetry. Hence, the use of two time series provides substantial advantages in practical 

problems, especially in noise-driven systems. 

Embedding of the state space vector of the coupled dynamic system from multivariate data is 

defined as: 

                                                     

                                   

where    is the embedding time delay,    is the subspace dimension of   , and M=    is all of 

the embedding dimensions. The delay time,    , is selected using the mutual information criteria 

[74]. Figure 7-6 illustrates the first three iterations to determine the  multivariate embedding 
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dimensions using the false nearest neighbors method [75]. The method is summarized in four 

steps: 

(1) Start with     (i.e. (0,1) and (1,0)) 

(2) Check FNN of one dimension increment (i.e., (  +1,   ), (  ,   +1)) 

(3) Terminate  when the maximum norm of the FNN value drops below the threshold (i.e., 

       ) 

(4) If more than one dimension vector fulfills the criterion, select the one with the smallest 

cumulative FNN. 

 

Figure 7-6 First three iterations for the determination of multivariate embedding 
dimensions 

7.4.3 Performance of prognostics approach 

A case study to estimate the distribution and expected values of time to sleep apnea onset is used 

to validate the prognostic method. The data set for the case study consists of multiple night 

recordings of 3 patients from the ECG-Apnea Database (Physionet.org). The performance of the 

prognostic method towards individual variances was investigated using the data from each 

patient. We used 90% of the data for training and 10% for testing. In the present case, the RUL 

distribution at    is updated as   
                              

      
      
    with 

     7 since all the apneic states are reached after transit through fewer than 8 clusters (as 

shown in Figure 7-7).  
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Figure 7-7 Distribution of the number of cluster transitions a non-apnea node travel to reach an 
apnea state 

The probabilities in Eqs. (7-2 and 7-3) are estimated empirically from the state space 

network. The probability              that a failure onset is reached with the starting 

normal state in cluster   and the ending abnormal state in cluster   with the cluster sequence 

length of 2 is estimated as: 

              
                                                               

                                                                                    
 ,     

and the probability                            that a failure onset is reached with the 

starting normal state in cluster   and the ending abnormal state in cluster      with the cluster 

sequence length of   is estimated as: 

                              

                                                                                   
                                                                                    

   

Finally,                           is estimated from the probability that a first abnormal 

node is reached in   steps with the cluster sequence of        and     .  
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Figure 7-8 shows the observations (solid blue line)  of the time to apnea onset, determined by 

using the sleep apnea annotations provided by experts, the expected values (red dash line) from 

the distribution of time to failure, and the 95% confidence interval (purple) of the prediction 

values. The R
2
 and the percentages of observations within the 95% confidence interval of the 

prediction are: (0.79, 85%), (0.75, 87%), and (0.7, 90%) for the 1
st
, 2

nd
 , and 3

rd
 patient, 

respectively. The R
2   0.7 in these three cases suggests that the prognostic model can be used to 

predict the time to sleep apnea onset.  Although the reported R
2
 value of patient 3 is low, 90% of  

the observation values lie within the 95% confidence interval of the prediction. 

 

Figure 7-8 Run plot showing the predictions of the expected time to sleep apnea onset in three 

patients 

Estimated time to apnea onset and the prediction errors are shows in:  Figure 7-9 (a) 1-5 min-

ahead prediction with a prediction horizon increment of 1 min, and Figure 7-9 (b) 1-40 min-ahead 

prediction with a prediction horizon increment of 4 min. The results are retained using randomly 

selected data from the testing data set. The red line in the middle box represents the median, the 

blue box shows the lower quartile and the upper quartile of data distributions, and the black 

dashed line represents the most extreme values. It is noted that the observation values are within 

the upper and lower quartiles of the predicted time to apnea onset in Figure 7-9 (a) and that the 

expected predicted values with the variance covers the expected observation values in Figure 7-9 

(b). These results suggest that the predicted values can capture the observations with different 
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prediction horizons. It is also noted from Figure 7-9 (a) that the prediction errors decrease with 

the decrease in prediction horizons. We also see this trend in Figure 7-9 (b) in terms of absolute 

residuals, when the prediction horizon decreases to a 1-5 min-ahead prediction.  

 

Figure 7-9 Prediction performance of the OSA prognostics 

The prognostic performance is further investigated by analyzing the distribution of the 

estimated risk indicators (see Figure 7-10). The estimated risk indicator is a prognostic quantifier 

that suggests the likelihood that the failure will happen within a specific time. Figure 7-10 shows 

the distribution of the risk indicators at 1-5 mins preceding sleep apnea onset. For example, the 

risk indicator at 3-min to apnea equals the probability of the distribution of time to failure and is 

evaluated at    . The average estimates of risk indicators at 1 to 5 min to apnea onset are 

85.8 5.7%, 80.2 10.1%, 75.5 10.8%, 64.9 9.4%, and 60.6 11.1%, respectively. It is noted 

that the risk indicator is comparably high (over 85% and 5.7 % standard deviation). Furthermore, 

it is also observed that the estimated risk indicators at 1-3 min till apnea onset are all higher than 

75%. Such high prognosis performance can provide reliable supportive information for 

preventive treatment before the actual apnea happens.  
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Figure 7-10 Estimated of          for 1-5 min apnea ahead 

7.5 Conclusions  

We have developed a prognostic method to estimate the distribution of RUL by considering 

the evolution of normal state vectors to an abnormal state in the state space of the underlying 

measured signal dynamics. A representation of the state vector transitions as the state space 

network that is able to optimally separate the state vectors in regions with different dynamic 

characteristics and visually track the dynamic transitions of the abnormal states in the state space 
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is presented to facilitate the implementation of the prognosis method. A case study to predict the 

time to sleep apnea onset has been investigated to validate the prognostic model. The average 

prediction accuracies (R
2
) of the proposed prognostic method are 70-80%. It was also evident that 

the predicted values can forecast the observations with prediction horizons ranging from 1-40 min 

ahead. The risk indicators derived from the RUL distribution are 85.8 5.7%, 80.2 10.1%, and 

75.5 10.8% at 1 to 3 min to apnea onset, respectively. Such early predictions with reliable risk 

indicators can be used to support preventive treatment and mitigate the consequences of acute 

disorders. 

Future work focuses on validating the approach with life-threatening acute cardiovascular 

disorders such as myocardial infarction and ventricular and atrial fibrillations. Early prediction 

and reliable risk estimators from the proposed method will facilitate the application of this 

method to real-time tracking of the patient’s health status in order to provide timely intervention 

and preventive treatment.  
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  CHAPTER 8 

8. CONCLUSIONS AND FUTURE WORK 

In summary, this research provides mathematical and computational schemes to address 

diagnostic and prognostic issues in realizing the proactive and personalized diagnosis and 

treatment of cardiovascular disorders. Specifically, attention has focused on four complementary 

aspects of the development of a comprehensive P4 system of healthcare for the treatment of 

cardiovascular disorders: (1) a quantitative model that can capture the underlying 

cardiorespiratory couplings and generate noninvasive surrogate hemodynamic signals, (2) high-

specificity diagnostic methods to identify and localize disorders, (3) real-time prediction methods 

that can drive advanced prognostic and preventive therapies, and (4) prognostic approaches that 

provide accurate risk indicators and survival assessments related to the disease’s progression. The 

research facilitates a shift in the healthcare paradigm from in-hospital to out-of-hospital (at-home) 

diagnostics, and personalized, proactive healthcare, especially for chronically ill and at-risk-

patients, who make up  > 40% of the US population and account for ~ 75% of current healthcare 

costs. The major conclusions and future work are as follows. 

8.1 Conclusions 

A quantitative data-driven model of the cardiovascular system was developed. ECG features 

were used to construct atrioventricular excitation inputs for a nonlinear deterministic lumped 

parameter model of cardiovascular system dynamics. The model is able to generate multiple 
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synchronized hemodynamic signals from cardiovascular systems in real time. The model 

provided an efficient tool for quantitatively assessing the underlying couplings between the 

mechanical and electrical components of heart dynamics and an ECG signal. The surrogate 

hemodynamic signals generated from the model outputs can lead to the development of 

responsive and cost-effective medical devices especially for point-of care diagnosis and 

personalized treatment. 

A stochastic representation of the complex cardiac excitation and propagation dynamics as a 

random walk on a network reconstructed from Vectorcardiogram (VCG) signals was investigated 

for the detection and localization of cardiovascular disorders. Quantifiers extracted from the 

random walk network were used to characterize the nonlinear spatiotemporal dynamics of cardiac 

vectors and the recurrent patterns of Vectorcardiograms (VCGs). Extensive tests with signals 

from the PTB database of the PhysioNet databank suggest that locations of MI can be determined 

accurately (sensitivity of ~88% and specificity of ~92%) from tracking certain consistently 

estimated invariants of this random walk representation. 

A novel feature extraction method and a prediction model were introduced to track and 

forecast the evolution of the coupled nonlinear and nonstationary cardiorespiratory dynamics 

underlying the measured physiological signals. Nonlinear and nonstationary characteristics of the 

features were captured by using power spectrum and recurrence quantification analysis. A 

Dirichlet process-based Gaussian process was utilized to forecast the complex dynamic evolution 

of the extracted signatures. A case study to predict the onset of sleep apnea episodes with the 

signals collected from the multisensory suite developed at COMMSENS Okstate Lab as well as 

PhysioNet's OSA database suggests that the average accuracy for predicting an OSA episode 1-

min ahead is 83% and 3-min ahead is 77%. 
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An advanced prognostic model to derive the remaining useful life distribution of 

cardiovascular disorders was investigated. The prognostic model used the stochastic evolution of 

a transition pathway from a normal state to an abnormal state vector in the clustered state space 

using the Dirichlet process to estimate the remaining useful time distribution and risk indicators. 

The implementation of the prognostic model was facilitated by introducing the transition state 

space network, which was able to visually represent the transition pathways and optimally 

separate the state vectors in clusters with different dynamic characteristics. A case study using the 

prognostic model to derive the remaining time to sleep apnea onset distribution was investigated 

and the estimated risk indicators were reported as 85.8 5.7%, 80.2 10.1%, 75.5 10.8% at 1 to 

3 min till apnea onset, respectively. Such early predictions with reliable risk indicators can be 

used to drive responsive preventive treatments before an actual apnea episode occurs. 

8.2 Future work 

Future research emerging from the current work will focus on the following: 

First, the prognostic approach will be further developed for real-time estimation of 

remaining useful time distributions toward life-threatening cardiovascular disorders such as 

myocardial infarction and ventricular fibrillation. The complex short-term transitions in the 

dynamics of these life-threatening acute disorders need to be fully addressed in order to achieve 

an efficient prognostic model. Furthermore, since a prediction type II error (false negative) in 

these types of diseases might cause serious consequences, the prognostic methods also need to 

provide a reliable risk indicator that physicians can use for timely interventions before deadly 

events happen. 

Second, the preventive noninvasive treatment of cardiorespiratory disorders such as sleep 

apnea will be investigated to take advantage of the prediction outcomes. Preventive noninvasive 



132 

 

treatments, from the engineering point of view, will provide adaptive control algorithms for the 

medical devices currently used for treating these disorders. Furthermore, we are also investigating 

new intervention treatment methods using the comparably high, accurate, and timely prediction 

results from the prognostic model to mitigate or invert the degradation process of acute or chronic 

disorders before they actually occur. 

Third, ongoing investigations are focused on the development of instrumentation that can 

advance the data collecting processes for real-time implementation of the prognostic model. The 

current monitoring system requires physical measurements of physiological signals from the 

sensors. Although advancements in wireless and information technology provide high-quality 

data, high spatiotemporal resolution and artifact-free signals are still the goals. 

Magnetoencephalography (MEG) and magnetocardiology (MCG) are new technologies that 

record magnetic fields for mapping the electrical activities with the physical functions of the brain 

and heart. Investigation of magnetic field instruments that can wirelessly capture spatiotemporal 

dynamics and functions of the heart and brain will facilitate the online implementation of the 

prognostic model. 

  



133 

 

 

 

9. APPENDIX 

These following Matlab toolboxes have been used for the implementations of the 

methodology: 

 Recurrence Quantification Analysis:  http://tocsy.pik-potsdam.de/CRPtoolbox/ 

 Gaussian Process: http://www.gaussianprocess.org/gpml/code/matlab/doc/ 

 Network analysis: http://strategic.mit.edu/downloads.php?page=matlab_networks 

The remainder of the appendix is organized as follows:  

A1. Simulink model 

A2. Atrioventricular activation function 

A3. VCG random walk network 

A4. CART classification 

A5. Dirichlet process based Gaussian process mixture (DPMG) prediction 

A6. Color coded state space network representation 

A7. Estimation of time to failure distribution 

 

http://tocsy.pik-potsdam.de/CRPtoolbox/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://strategic.mit.edu/downloads.php?page=matlab_networks
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A.1 Simulink model 

 

 

 

 

 

 

 

 

 

 

                  

     

 

 

 

Simulink implementation of cardiovascular model 

A.2 Atrioventricular activation function 

%% Initialize the parameters 

 
Elamax = 0.2500; 
Elamin = 0.1500; 
Elvd =0.1000; 
Elvs =2.5000; 
Eramax =0.2500; 
Eramin =0.1500; 

Pulmonary 
Circulation 

Heart 
Chambers, 

Valves 

Systemic 
Circulation 
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Ervd =0.1000; 
Ervs =1.1500; 
PatOutGain_opt =[]; 
PatOutOff_opt =[]; 
ResOutGain_opt =[]; 
ResOutOff_opt =[]; 
artOutGain_opt =[]; 
artOutOff_opt =[]; 
a=5.5; 
b=5.5; 

  
%% Load the database 

 
DataSource = 'L:\Research\CurrentModel\DataBase\GoodOneMinute.txt'; 
strfilename = importdata(DataSource); 
for k =1:1:length(strfilename) 
    names(k,:) = strfilename{k,1}; 
end 
NumOfRec = length(strfilename);       % Number of record to read 
Records = [1:35]; 
Records([4 9 10 11 12 14 18 19 20 23 26 32]) = []; 
countfea = 0; 
for index = [1 2 5 6 7 13 15 17 21 27 28 29 31 36:42] 
    countfea =countfea + 1; 
     index = 2 
    data = []; 
    dataResp = []; 
    IndexStr = char(strcat(strfilename(index))) 
    dataload = 

load(char(strcat('L:\Research\CurrentModel\DataBase\GoodOneMinute\',Ind

exStr,'m.mat'))); 

     
%%Header reading 

 
    heastr = 

char(strcat('L:\Research\CurrentModel\DataBase\GoodOneMinute\',IndexStr

,'.hea')); 
    f = fopen(heastr,'r'); 
    z = fgetl(f); 
    B = sscanf(z, '%*s %d %d %d',[1,3]); 
    nosig = B(1);  % number of signals 
    nosig = nosig ; % .dat files 
    Sfreq =B(2);   % sample rate of data 
    clear A; 
    for k=1:nosig 
        z = fgetl(f); 
        A= sscanf(z, '%*s %f %s',[1 2]); 
        %detect the format of the hearder with/without offset and unit 
        if strfind(char(A(2:end)),')/m') %with offset with unit 
            A = sscanf(z, '%*s %d %f %*c %f %*s',[1 3]); 
        elseif  strfind(char(A(2:end)),'/m') %without offset with unit 
            A = sscanf(z, '%*s %d %f',[1 2]); 
            A(3) = 0; 
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        else 
            A = sscanf(z, '%*s %d %f',[1 2]); %without offset without 

unit 
            A(3) = 0; 
        end 
        dformat(k)= A(1);           % format; here only 212 is allowed 
        gain(k)= A(2);              % number of integers per mV 
        base(k) = A(3);             % offset value 
        clear A; 
    end; 
    fclose(f); 
    data1 = dataload.val; 
    samp_freq = Sfreq ; 

     
%% Initialize every time run the simulink optimization 

 
    PatOutOff = 0; %initialize gain of Resp out for the optimization 

design 
    PatOutGain = 1; 
    ResOutGain = 1/6; 
    ResOutOff = -1; 
    artOutOff= 0; 
    artOutGain= 1; 

     
    Elamax = 0.2500; 
    Elamin = 0.1500; 
    Elvd =0.1000; 
    Elvs =2.5000; 
    Eramax =0.2500; 
    Eramin =0.1500; 
    Ervd =0.1000; 
    Ervs =1.1500; 

     
%% Detection of PQRST 

     
    D = data; 
    SampFreq =samp_freq; 
    windowSize = 5; 
    filsig = filter (ones(1,windowSize)/windowSize,1,D); 
    y = medfilt1(filsig,0.2*SampFreq); % 1st median filter 
    s1 = y; 
    y = medfilt1(s1,0.6*SampFreq); % 2nd median filter 
    NoWander= filsig - y; 
    D = transpose (NoWander); 
    D = cwt (D, 1:4, 'bior2.4'); 
    D = transpose (D); 
    Wave4 = D (:,4); 
    flagP = 0; 
    flagT = 0; 
    Ppeaks = []; 
    Qpeaks = []; 
    Rpeaks = []; 
    Speaks = []; 
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    Tpeaks = []; 
    PRSegment = []; 
    QRSegment = []; 
    RSSegment = []; 
    RTSegment = []; 
    PRSeg = []; 
    STSeg = []; 
    P =[]; 
    Q =[]; 
    R =[]; 
    S =[]; 
    T =[]; 
    Anno = []; 

     
    [Rpeaks,HeartRate,R_series,RR] = rpeak1(NoWander,samp_freq);  
    %Adaptive value 
    RRAvgTemp = mean(diff(Rpeaks)); 
    % RRAvg = mean(R_series) 
    PR = RRAvgTemp/3; 
    KQ = RRAvgTemp/25; 
    QR = RRAvgTemp/15; 
    RS = RRAvgTemp/4; 
    SJ = RRAvgTemp/25; 
    RT = RRAvgTemp/1.75; 
    ToT = RRAvgTemp/7; 

     

    WindowPR = fix(PR); 
    WindowQR = fix(QR); 
    WindowRS = fix(RS); 
    WindowRT = fix(RT); 
    WindowKQ = fix(KQ); 
    WindowSJ =  fix(SJ); 
    WindowToT = fix(RRAvgTemp/6); 
    WindowPPof = fix(RRAvgTemp/7); 

     
    for step =1:length(Rpeaks) 
        SeriesP = 0; 
        SeriesQ = 0; 
        SeriesS = 0; 
        SeriesT = 0; 
        flagP = 0;  %autofill the P if not detected 
        flagT = 0; 
        %Detect if the ECG start with R but not have P,Q,S,T 
        if (Rpeaks(step)-WindowPR)> 0 
            PRSegment = NoWander((Rpeaks(step)-WindowPR):Rpeaks(step)); 
        else 
            break; 
        end 
        if (Rpeaks(step)-WindowQR) > 0 
            QRSegment = Wave4((Rpeaks(step)-WindowQR):Rpeaks(step)); 
        else 
            break; 
        end 
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        if (Rpeaks(step)+WindowRS)< length(Wave4)  

%dectec if exceed length signal-> no S after last R peaks) 
            RSSegment = Wave4(Rpeaks(step):(Rpeaks(step)+WindowRS)); 
        else 
            break; 
        end 
        if (Rpeaks(step)+WindowRT)< length(NoWander)  

%dectec if exceed length signal-> no T after last R peaks) 
            RTSegment = NoWander(Rpeaks(step):(Rpeaks(step)+WindowRT)); 
        else 
            break; 
        end 
        %P Detection 

         
        for Pinterval = 2:WindowPR 
            if PRSegment(Pinterval)> PRSegment(Pinterval-1) && ... 
                    PRSegment(Pinterval)> PRSegment(Pinterval+1)&&... 
                    PRSegment(Pinterval)> SeriesP 
                SeriesP = PRSegment(Pinterval); 
                Ppoint = Pinterval-1; 
                flagP = 1; %detect P 
            end 
        end 
        if flagP == 1 
            Ppeaks(step) = Rpeaks(step) - WindowPR + Ppoint; 
        else 
            Ppeaks(step) = Rpeaks(step) - 0.2*SampFreq; 
        end 
        %P off 
        Pofpeaks(step) = Ppeaks(step) + WindowPPof; 
        %     Pof_series(step) = NoWander(Pofpeaks(step)); 
        %Q Detection 
        count =1; 
        for Qinterval = 2:WindowQR 
            if QRSegment(Qinterval)< QRSegment(Qinterval-1) && ... 
                    QRSegment(Qinterval)< QRSegment(Qinterval+1)&&... 
                    QRSegment(Qinterval)< 0 
                SeriesQ(count) = QRSegment(Qinterval); 
                Qpoint_temp(count) = Qinterval-1; 
                count = count +1; 
            end 
        end 
        [MinQVal,Qposi] = min(SeriesQ); 
        Qpoint = Qpoint_temp(Qposi); 
        Qpeaks(step) = Rpeaks(step) - WindowQR + Qpoint; 
        %K Detection 
        KQSegment = Wave4((Qpeaks(step)-WindowQR):Qpeaks(step)); 
        count = 1; 
        for Sinterval = 2:WindowRS 
            if RSSegment(Sinterval)< RSSegment(Sinterval-1) && ... 
                    RSSegment(Sinterval)< RSSegment(Sinterval+1)&&... 
                    RSSegment(Sinterval)< 0 
                SeriesS(count) = RSSegment(Sinterval); 
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                Spoint_temp(count) = Sinterval -1; 
                count = count +1; 
            end 
        end 
        [MinSVal,Sposi] = min(SeriesS); 
        Spoint = Spoint_temp(Sposi);   %To find the closest of minima S 

to R 
        Speaks(step) = Rpeaks(step) + Spoint; 
        %J Detection 
        SJSegment = Wave4(Speaks(step):(Speaks(step)+WindowSJ)); 
        for Tinterval = 2:WindowRT 
            if RTSegment(Tinterval)> RTSegment(Tinterval-1) && ... 
                    RTSegment(Tinterval)> RTSegment(Tinterval+1)&&... 
                    RTSegment(Tinterval)> SeriesT 
                SeriesT = RTSegment(Tinterval); 
                Tpoint = Tinterval-1; 
                flagT =1; 
            end 
        end 
        if flagT == 1 
            Tpeaks(step) = Rpeaks(step) + Tpoint; 
        else 
            Tpeaks(step) = Rpeaks(step) + 0.25*SampFreq; 
        end 
        %T onset Detection 
        Topeaks(step) = Tpeaks(step) - WindowToT; 
        %     To_series(step) = NoWander(Topeaks(step)); 
        % 
        %         Ppeaks(step) = Rpeaks(step) - WindowPR + Ppoint; 
        P_series(step) =  SeriesP; 
        %     Kpeaks(step) = Qpeaks(step) - WindowKQ + Kpoint; 
        %     K_series(step) =  NoWander(Kpeaks(step)); 
        Qpeaks(step) = Rpeaks(step) - WindowQR + Qpoint; 
        Q_series(step) =  NoWander(Qpeaks(step)); 
        Speaks(step) = Rpeaks(step) + Spoint +1; 
        S_series(step) =   NoWander(Speaks(step)); 
        %     Jpeaks(step) = Speaks(step) + Jpoint; 
        %     J_series(step) =  NoWander(Jpeaks(step)); 
        %         Tpeaks(step) = Rpeaks(step) + Tpoint; 
        T_series(step) =  SeriesT; 
    end 
    Rpeaks = Rpeaks(1:length(Ppeaks)); 

     
%% Create the activation signal 
    Activ = zeros(1,length(data)); %Inintial Activation value; 
    ActivVent = zeros(1,length(data)); %Inintial Activation value for 

Ventricles; 
    ActivAtr = zeros(1,length(data));  %%Inintial Activation value for 

Artria 

     
    for BeatOrder= 1:1:length(Rpeaks)     %position of the R peaks 
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        AtrAct = 

ECGActivation_Atrium(Ppeaks(BeatOrder),Rpeaks(BeatOrder)); 
        VentAct = 

ECG_Vent(Rpeaks(BeatOrder),Tpeaks(BeatOrder),Tpeaks(BeatOrder);  
        ActivVent(1,Rpeaks(BeatOrder):Tpeaks(BeatOrder))= VentAct; 
        ActivAtr(1,Ppeaks(BeatOrder):Rpeaks(BeatOrder)) = AtrAct; 
    end 

     
    time1= 1/samp_freq:1/samp_freq:length(data)/samp_freq; 
    ArtriActive = []; 
    VentriActive = []; 
    a=0; 
    b=5.5; 
    ArtriActive(:,1) = time1; 
    ArtriActive(:,2) = ActivAtr'; 
    Resp_Art(:,1) = time1; 
    Resp_Art(:,2) = dataResp'; 
    % ArtriActive(:,2) =  dataResp/10; 
    VentriActive(:,1) = time1; 
    VentriActive(:,2) = ActivVent; 
    Resp_Vent(:,1) = time1; 
    Resp_Vent(:,2) =  dataResp; 
    HeartParameters;    Samp_Time = 1/samp_freq ;%Initialize parameters 

for  
    ParameterLong =ParameterLong'; 
    PatOutGain= ParameterLong(1,countfea) ; 
    PatOutOff= ParameterLong(2,countfea) ; 
    ResOutGain= ParameterLong(3,countfea) ; 
    ResOutOff= ParameterLong(4,countfea) ; 
    artOutGain= ParameterLong(5,countfea) ; 
    artOutOff= ParameterLong(6,countfea) ; 
    a= ParameterLong(7,countfea) ; 
    b= ParameterLong(8,countfea) ; 
    Elvs= ParameterLong(9,countfea)  ; 
    Ervs= ParameterLong(10,countfea) ; 
    Elvd= ParameterLong(11,countfea) ; 
    Ervd= ParameterLong(12,countfea)  ; 
    DetaMaxAo= ParameterLong(13,countfea) ; 
    DetaMaxPo= ParameterLong(14,countfea) ; 
    Elamax= ParameterLong(15,countfea) ; 
    Eramax= ParameterLong(16,countfea)  ; 
    DetaMaxMi= ParameterLong(17,countfea)  ; 
    DetaMaxTi= ParameterLong(18,countfea); 
    Elamin= ParameterLong(19,countfea) ; 
    Eramin= ParameterLong(20,countfea) ; 
    sim('L:\Research\CurrentModel\CombinationWithECG.mdl',60); 
    CorrRes(countfea)=Corr_Resp(1,2); 
    CorPat(countfea)=Corr_Pat(1,2); 
    CorCVP(countfea)=Corr_CVP(1,2); 
    % Filter out the signal 
    [ ResModel ] = Fourier (Ppvn.signals.values(2000:end),Sfreq,0,1.7); 
    [ PatModel ] = Fourier (Pla.signals.values(2000:end),Sfreq,0,10); 
    [ PatModel1 ] = Fourier (Ppul.signals.values(2000:end),Sfreq,0,60); 
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    [ CVPModel ] = Fourier (Pra.signals.values(2000:end),Sfreq,0,10); 
    MeasRes = dataResp_1(5000:20000)'; 
    ModelRes = Ppvn.signals.values(5000:20000)*ResOutGain+ResOutOff; 
    [MaxVal,Indx] = max(xcorr(ModelRes,MeasRes)); 
    DelayRes = Indx -length(ModelRes); 
    if abs(DelayRes) >1000 
        DelayRes = 360; %Prevent too long delay 
    end 
    Rsq_Resp(countfea) = 1- sum((MeasRes-ModelRes).^2)/sum((MeasRes-

mean(MeasRes)).^2); 
    Rsq_Pat(countfea) =1- sum((MeasPat-ModelPat).^2)/sum((MeasPat-

mean(MeasPat)).^2); 
    Rsq_CVP(countfea) =1- sum((MeasCVP-ModelCVP).^2)/sum((MeasCVP-

mean(MeasCVP)).^2); 
    Corr_Resp1 = corrcoef(MeasRes,ModelRes); 
    Corr_Pat1 = corrcoef(MeasPat,ModelPat); 
    Corr_CVP1 = corrcoef(MeasCVP,ModelCVP); 
    CorrRes1(countfea)=Corr_Resp1(1,2); 
    CorPat1(countfea)=Corr_Pat1(1,2); 
    CorCVP1(countfea)=Corr_CVP1(1,2); 
    samp_freq =360;t1=1/samp_freq; 
    set(gca,'fontweight','bold','fontsize',30); 

     

A.3 VCG random walk network  

load('L:\Research\MI Localization\Matlab Octant 

Program\Group\CurrentMILocation_Index.mat') % get the MI location index 
load('L:\Research\MI Localization\Matlab Octant 

Program\Group\FormerMILocation_Index.mat')  % get the former MI index 
Infero2 =union(Infero,Infero1); 
Infero_Lateral2 = union(Infero_Lateral,Infero_Lateral1); 
Infero_Posterior2 = union(Infero_Posterior,Infero_Posterior1); 
Infero_Postero_Lateral2 = 

union(Infero_Postero_Lateral,Infero_Postero_Lateral1); 
Anterior2 = union(Anterior,Anterior1); 
Anterio_Septal2 = union(Anterio_Septal,Anterio_Septal1); 
Antero_Lateral2 = union(Antero_Lateral,Antero_Lateral1); 
Antero_Septo_Lateral2 = 

union(Antero_Septo_Lateral,Antero_Septo_Lateral1); 
Lateral2= union(Lateral,Lateral1); 
Posterior2= union(Posterior,Posterior1); 
Postero_Lateral2 = union(Postero_Lateral,Postero_Lateral1); 

  
%% All infarction without former MI 

  
Infero3 =intersect(Infero,MI_NoPosition1); 
Infero_Lateral3 = intersect(Infero_Lateral,MI_NoPosition1); 
Infero_Posterior3 = intersect(Infero_Posterior,MI_NoPosition1); 
Infero_Postero_Lateral3 = 

intersect(Infero_Postero_Lateral,MI_NoPosition1); 
Anterior3 = intersect(Anterior,MI_NoPosition1); 
Anterio_Septal3 = intersect(Anterio_Septal,MI_NoPosition1); 
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Antero_Lateral3 = intersect(Antero_Lateral,MI_NoPosition1); 
Antero_Septo_Lateral3 = intersect(Antero_Septo_Lateral,MI_NoPosition1); 
Lateral3= intersect(Lateral,MI_NoPosition1); 
Posterior3= intersect(Posterior,MI_NoPosition1); 
Postero_Lateral3 = intersect(Postero_Lateral,MI_NoPosition1); 
 A 

={Infero3,Infero_Lateral3,Infero_Posterior3,Infero_Postero_Lateral3,... 
    Anterior3,Anterio_Septal3,Antero_Lateral3,... 
    Lateral3,Posterior3,Postero_Lateral3,HC}; 
class_name = {'Infero','Infero Lateral','Infero Posterior','Infero 

Postero Lateral',... 
    'Anterior','Anterio Septal','Antero Lateral',... 
    'Lateral','Posterior','Postero Lateral','HC'}; 
quad_stat = {'Quad0Num' 'Quad0MaxN' 'Quad0AvgN' 'Quad0VarN' ... 
    'Quad1Num' 'Quad1MaxN' 'Quad1AvgN' 'Quad1VarN' ... 
    'Quad2Num' 'Quad2MaxN' 'Quad2AvgN' 'Quad2VarN' ... 
    'Quad3Num' 'Quad3MaxN' 'Quad3AvgN' 'Quad3VarN' ... 
    'Quad4Num' 'Quad4MaxN' 'Quad4AvgN' 'Quad4VarN' ... 
    'Quad5Num' 'Quad5MaxN' 'Quad5AvgN' 'Quad5VarN' ... 
    'Quad6Num' 'Quad6MaxN' 'Quad6AvgN' 'Quad6VarN' ... 
    'Quad7Num' 'Quad7MaxN' 'Quad7AvgN' 'Quad7VarN'}; 

  
%% Formulate the octant 

 
idxcount = 0; 
save_loc =1; 
db_idx = 1; 
for group = 1:1:length(A) 
%   for group =8:9  
    group 
    adjMat =[]; % Initial the adjacent matrix of each group 
    idxcount= 0;    %Start index for each group 
    for loop = A{group}'%run the loop for each MI class 
        %   for loop = 1 
        idxcount = idxcount+1 %count the number of the opened record 
        [ecg,IndexStr,H] = ptbopenfile(loop); 
        EcgChan = 2; % select ecg channel 2; 
        lengthData = 11000; % length of analized data; 
        fs = 1000; %sampling frequency 
        if strcmp(lower(H.Diagnosis),'healthy control')+ 
strcmp(lower(H.Diagnosis),'myocardial infarction')==0 
            continue; 
        end 
        for i=13:15 %filtering the VCG signal only 
            temp = fftfilter(ecg(:,i),2,40);%bandpass filter 
            fs = 1000; 
            temp = BaseLine2(temp,0.3*fs,0.6*fs,'mn'); 
            [baseline, corrected, coeffs] = parabolicfilter(temp); 
            EKG(:,i) = temp(500:end-500); 
        end 
        VCG = EKG(1:lengthData,13:15); 
        PeakIdx = nqrsdetect(VCG(:,1),fs); %Identify QRS using filter 

bank  
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        R_series1 = VCG(PeakIdx,1)' ; 
        rr_series = interp1([1 PeakIdx' lengthData],[R_series1(1) 

R_series1 R_series1(end)],1:1:lengthData,'nearest'); %formulate the 

trainpulse of the R amplitude 
        RR1 = diff(PeakIdx);                         %RR interval 
        avrRR= mean(RR1)/1000; 
        %% Create the octant 
        clear EKG; 
        clear ecg; 
        VQuad7 = [];    VQuad6 = []; 
        VQuad5 = [];    VQuad4 = []; 
        VQuad3 = [];    VQuad2 = []; 
        VQuad1 = [];    VQuad0 = []; 
        for i = 1:max(size(VCG)) 
            if VCG(i,1)<0 & VCG(i,2)<0 & VCG(i,3)<0%---000 
                VQuad0 = vertcat(VQuad0,VCG(i,:)); 
            end 
            if VCG(i,1)<0 & VCG(i,2)<0 & VCG(i,3)>0%--+001 
                VQuad1 = vertcat(VQuad1,VCG(i,:)); 
            end 
            if VCG(i,1)<0 & VCG(i,2)>0 & VCG(i,3)<0%-+-010 
                VQuad2 = vertcat(VQuad2,VCG(i,:)); 
            end 
            if VCG(i,1)<0 & VCG(i,2)>0 & VCG(i,3)>0%-++011 
                VQuad3 = vertcat(VQuad3,VCG(i,:)); 
            end 
            if VCG(i,1)>0 & VCG(i,2)<0 & VCG(i,3)<0%+--100 
                VQuad4 = vertcat(VQuad4,VCG(i,:)); 
            end 
            if VCG(i,1)>0 & VCG(i,2)<0 & VCG(i,3)>0%+-+101 
                VQuad5 = vertcat(VQuad5,VCG(i,:)); 
            end 
            if VCG(i,1)>0 & VCG(i,2)>0 & VCG(i,3)<0%++-110 
                VQuad6 = vertcat(VQuad6,VCG(i,:)); 
            end 
            if VCG(i,1)>0 & VCG(i,2)>0 & VCG(i,3)>0%+++111 
                VQuad7 = vertcat(VQuad7,VCG(i,:)); 
            end 

             
        end 

         

        %Length condition 
        if (isempty(VQuad0)),VQuad0=[0 0 0];end ; 
        if (isempty(VQuad1)),VQuad1=[0 0 0];end ; 
        if (isempty(VQuad2)),VQuad2=[0 0 0];end ; 
        if (isempty(VQuad3)),VQuad3=[0 0 0];end ; 
        if (isempty(VQuad4)),VQuad4=[0 0 0];end ; 
        if (isempty(VQuad5)),VQuad5=[0 0 0];end ; 
        if (isempty(VQuad6)),VQuad6=[0 0 0];end ; 
        if (isempty(VQuad7)),VQuad7=[0 0 0];end ; 
        %% Statistics Octant Feature Extraction   
        Quad7Num = size(VQuad7,1);Quad6Num = size(VQuad6,1); 
        Quad5Num = size(VQuad5,1);Quad4Num = size(VQuad4,1); 
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        Quad3Num = size(VQuad3,1);Quad2Num = size(VQuad2,1); 
        Quad1Num = size(VQuad1,1);Quad0Num = size(VQuad0,1); 

         
        Quad7Norm= sqrt(sum(VQuad7.^2,2));Quad6Norm= 

sqrt(sum(VQuad6.^2,2)); 
        Quad5Norm= sqrt(sum(VQuad5.^2,2));Quad4Norm= 

sqrt(sum(VQuad4.^2,2)); 
        Quad3Norm= sqrt(sum(VQuad3.^2,2));Quad2Norm= 

sqrt(sum(VQuad2.^2,2)); 
        Quad1Norm= sqrt(sum(VQuad1.^2,2));Quad0Norm= 

sqrt(sum(VQuad0.^2,2)); 

         

         
        Quad7MaxN = max(Quad7Norm);Quad7AvgN = 

mean(Quad7Norm);Quad7VarN = var(Quad7Norm); 
        Quad6MaxN = max(Quad6Norm);Quad6AvgN = 

mean(Quad6Norm);Quad6VarN = var(Quad6Norm); 
        Quad5MaxN = max(Quad5Norm);Quad5AvgN = 

mean(Quad5Norm);Quad5VarN = var(Quad5Norm); 
        Quad4MaxN = max(Quad4Norm);Quad4AvgN = 

mean(Quad4Norm);Quad4VarN = var(Quad4Norm); 
        Quad3MaxN = max(Quad3Norm);Quad3AvgN = 

mean(Quad3Norm);Quad3VarN = var(Quad3Norm); 
        Quad2MaxN = max(Quad2Norm);Quad2AvgN = 

mean(Quad2Norm);Quad2VarN = var(Quad2Norm); 
        Quad1MaxN = max(Quad1Norm);Quad1AvgN = 

mean(Quad1Norm);Quad1VarN = var(Quad1Norm); 
        Quad0MaxN = max(Quad0Norm);Quad0AvgN = 

mean(Quad0Norm);Quad0VarN = var(Quad0Norm); 

         
        quad_stat=[Quad0Num/5000 Quad0MaxN Quad0AvgN Quad0VarN ...  % 

Statistics octant feature matrix 
            Quad1Num/5000 Quad1MaxN Quad1AvgN Quad1VarN ... 
            Quad2Num/5000 Quad2MaxN Quad2AvgN Quad2VarN ... 
            Quad3Num/5000 Quad3MaxN Quad3AvgN Quad3VarN ... 
            Quad4Num/5000 Quad4MaxN Quad4AvgN Quad4VarN ... 
            Quad5Num/5000 Quad5MaxN Quad5AvgN Quad5VarN ... 
            Quad6Num/5000 Quad6MaxN Quad6AvgN Quad6VarN ... 
            Quad7Num/5000 Quad7MaxN Quad7AvgN Quad7VarN]; 

 
%% Polar Coordinate Octant Features 

 
           [MaxOct7,Ind7] = max(Quad7Norm);[MaxOct6,Ind6] = 

max(Quad6Norm); 
           [MaxOct5,Ind5] = max(Quad5Norm);[MaxOct4,Ind4] = 

max(Quad4Norm); 
           [MaxOct3,Ind3] = max(Quad3Norm);[MaxOct2,Ind2] = 

max(Quad2Norm); 
           [MaxOct1,Ind1] = max(Quad1Norm);[MaxOct0,Ind0] = 

max(Quad0Norm); 
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           [THETA7_MAX,PHI7_MAX,R7_MAX]= 

cart2sph(VQuad7(Ind7,1),VQuad7(Ind7,2),VQuad7(Ind7,3)); 
           [THETA6_MAX,PHI6_MAX,R6_MAX]= 

cart2sph(VQuad6(Ind6,1),VQuad6(Ind6,2),VQuad6(Ind6,3)); 
           [THETA5_MAX,PHI5_MAX,R5_MAX]= 

cart2sph(VQuad5(Ind5,1),VQuad5(Ind5,2),VQuad5(Ind5,3)); 
           [THETA4_MAX,PHI4_MAX,R4_MAX]= 

cart2sph(VQuad4(Ind4,1),VQuad4(Ind4,2),VQuad4(Ind4,3)); 
           [THETA3_MAX,PHI3_MAX,R3_MAX]= 

cart2sph(VQuad3(Ind3,1),VQuad3(Ind3,2),VQuad3(Ind3,3)); 
           [THETA2_MAX,PHI2_MAX,R2_MAX]= 

cart2sph(VQuad2(Ind2,1),VQuad2(Ind2,2),VQuad2(Ind2,3)); 
           [THETA1_MAX,PHI1_MAX,R1_MAX]= 

cart2sph(VQuad1(Ind1,1),VQuad1(Ind1,2),VQuad1(Ind1,3)); 
           [THETA0_MAX,PHI0_MAX,R0_MAX]= 

cart2sph(VQuad0(Ind0,1),VQuad0(Ind0,2),VQuad0(Ind0,3)); 
        pol_stat= [THETA0_MAX PHI0_MAX R0_MAX THETA1_MAX PHI1_MAX 

R1_MAX... 
            THETA2_MAX PHI2_MAX R2_MAX THETA3_MAX PHI3_MAX R3_MAX... 
            THETA4_MAX PHI4_MAX R4_MAX THETA5_MAX PHI5_MAX R5_MAX... 
            THETA6_MAX PHI6_MAX R6_MAX THETA7_MAX PHI7_MAX R7_MAX];% 

Polar 

  
%% Octant distribution 

 
        x=1:1:length(VCG(:,1)); 
        y=1:1:length(VCG(:,2)); 
        z=1:1:length(VCG(:,3)); 
        [theta,phi,radius]= cart2sph(VCG(:,1),VCG(:,2),VCG(:,3));    

%to sphere coordinator 
        radius_ext =radius*5; 
        deadzone = 0.05; 
        median_order = round(0.05*avrRR*fs); % window for median filter 
        if rem(median_order,2)==0 
            median_order = median_order +1;  %create an odd median 

window 
        end     
        c1=((VCG(:,1)<0) & (VCG(:,2)<0) & (VCG(:,3)<0) & (radius > 

deadzone*rr_series')); %Form the color coding 
        c2=((VCG(:,1)<0) & (VCG(:,2)<0) & (VCG(:,3)>0) & (radius > 

deadzone*rr_series')); 
        c3=((VCG(:,1)<0) & (VCG(:,2)>0) & (VCG(:,3)<0) & (radius > 

deadzone*rr_series')); 
        c4=((VCG(:,1)<0) & (VCG(:,2)>0) & (VCG(:,3)>0) & (radius > 

deadzone*rr_series')); 
        c5=((VCG(:,1)>0) & (VCG(:,2)<0) & (VCG(:,3)<0) & (radius > 

deadzone*rr_series')); 
        c6=((VCG(:,1)>0) & (VCG(:,2)<0) & (VCG(:,3)>0) & (radius > 

deadzone*rr_series')); 
        c7=((VCG(:,1)>0) & (VCG(:,2)>0) & (VCG(:,3)<0) & (radius > 

deadzone*rr_series')); 
        c8=((VCG(:,1)>0) & (VCG(:,2)>0) & (VCG(:,3)>0) & (radius > 

deadzone*rr_series')); 
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        c=1*c1+2*c2+3*c3+4*c4+5*c5+6*c6+7*c7+8*c8; 
        c = medfilt1(c,median_order); % octant transition noise 

  mindiffC= min(diff(c)); 
        maxdiffC= max(diff(c)); 
        meandiffC=mean(diff(c)); 
        meanC=mean(c); 
        oct_dist=[mindiffC maxdiffC meandiffC meanC]; %Octant 

distribution  
        %% Fomulate the transition series 
        nonzero_ind = find(diff(c)); 
        tran_ind = [ c(nonzero_ind);c(nonzero_ind(end)+1)]; 

         
%% Transition rate matrix formulation 

 
        c1dec=c1; 
        c2dec=2*c2; 
        c3dec=3*c3; 
        c4dec=4*c4; 
        c5dec=5*c5; 
        c6dec=6*c6; 
        c7dec=7*c7; 
        c8dec=8*c8; 
        c12=diff(c2dec)-diff(c1dec); %transition 1-2 => c12=3  
        c13=diff(c3dec)-diff(c1dec); %transition 1-3 => c13=4  
        c14=diff(c4dec)-diff(c1dec); 
        c15=diff(c5dec)-diff(c1dec); 
        c16=diff(c6dec)-diff(c1dec); 
        c17=diff(c7dec)-diff(c1dec); 
        c18=diff(c8dec)-diff(c1dec); 
        c23=diff(c3dec)-diff(c2dec); 
        c24=diff(c4dec)-diff(c2dec); 
        c25=diff(c5dec)-diff(c2dec); 
        c26=diff(c6dec)-diff(c2dec); 
        c27=diff(c7dec)-diff(c2dec); 
        c28=diff(c8dec)-diff(c2dec); 
        c34=diff(c4dec)-diff(c3dec); 
        c35=diff(c5dec)-diff(c3dec); 
        c36=diff(c6dec)-diff(c3dec); 
        c37=diff(c7dec)-diff(c3dec); 
        c38=diff(c8dec)-diff(c3dec); 
        c45=diff(c5dec)-diff(c4dec); 
        c46=diff(c6dec)-diff(c4dec); 
        c47=diff(c7dec)-diff(c4dec); 
        c48=diff(c8dec)-diff(c4dec); 

  c56=diff(c6dec)-diff(c5dec); 
        c57=diff(c7dec)-diff(c5dec); 
        c58=diff(c8dec)-diff(c5dec); 
        c67=diff(c7dec)-diff(c6dec); 
        c68=diff(c8dec)-diff(c6dec); 
        c78=diff(c8dec)-diff(c7dec); 
        %Changing rate 
        t_n1=sum([(c12==-3);(c13==-4);(c14==-5);(c15 ==-6);... 
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            (c16 ==-7);(c17==-8);(c18==-9)]); %number of transition to 

1 
        t_n2=sum([(c12==3);(c23==-5);(c24==-6);(c25 ==-7);... 
            (c26 ==-8);(c27==-9);(c28==-10)]); 
        t_n3=sum([(c13==4);(c23==5);(c34==-7);(c35 ==-8);... 
            (c36 ==-9);(c37==-10);(c38==-11)]); 
        t_n4=sum([(c14==5);(c24==6);(c34==7);(c45 ==-9);... 
            (c46 ==-10);(c47==-11);(c48==-12)]); 
        t_n5=sum([(c15==6);(c25==7);(c35==8);(c45 ==9);... 
            (c56 ==-11);(c57==-12);(c58==-13)]); 
        t_n6=sum([(c16==7);(c26==8);(c36==9);(c46 ==10);... 
            (c56 == 11);(c67==-13);(c68==-14)]); 
        t_n7=sum([(c17==8);(c27==9);(c37==10);(c47 ==11);... 
            (c57 == 12);(c67==13);(c78==-15)]); 
        t_n8=sum([(c18==9);(c28==10);(c38==11);(c48 ==12);... 
            (c58 == 13);(c68==14);(c78==15)]); 
        t_1n=sum([(c12==3);(c13==4);(c14==5);(c15==6);... 
            (c16==7);(c17==8);c(18==9)]);            %number of 

transitions from 1, if from 1-2->c12=3 
        t_2n=sum([(c12==-3);(c23==5);(c24==6);(c25==7);... 
            (c26==8);(c27==9);(c28==10)]); 
        t_3n=sum([(c13==-4);(c23==-5);(c34==7);(c35==8);... 
            (c36==6);(c37==10);(c38==11)]); 
        t_4n=sum([(c14==-5);(c24==-6);(c34==-7);(c45==9);... 
            (c46==10);(c47==11);(c48==12)]); 
        t_5n=sum([(c15==-6);(c25==-7);(c35==-8);(c45 ==-9);... 
            (c56 ==11);(c57==12);(c58==13)]); 
        t_6n=sum([(c16==-7);(c26==-8);(c36==-9);(c46 ==-10);... 
            (c56 == -11);(c67==13);(c68==14)]); 
        t_7n=sum([(c17==-8);(c27==-9);(c37==-10);(c47 ==-11);... 
            (c57 ==-12);(c67==-13);(c78==15)]); 
        t_8n=sum([(c18==-9);(c28==-10);(c38==-11);(c48 ==-12);... 
            (c58 ==-13);(c68==-14);(c78==-15)]); 
        tran_rate= [t_n1 t_n2 t_n3 t_n4 t_n5 t_n6 t_n7 t_n8... 
            t_1n t_2n t_3n t_4n t_5n t_6n t_7n t_8n]; 

         
 %% Adjacent matrix with 64 elements 

 
        %To 1 and from 1 
        a12=sum(diff(c2dec)-diff(c1dec)==3); %transition 1-2 => c12=3  
        a13=sum(diff(c3dec)-diff(c1dec)==4); %transition 1-3 => c13=4  

  a14=sum(diff(c4dec)-diff(c1dec)==5); 
        a15=sum(diff(c5dec)-diff(c1dec)==6); 
        a16=sum(diff(c6dec)-diff(c1dec)==7); 
        a17=sum(diff(c7dec)-diff(c1dec)==8); 
        a18=sum(diff(c8dec)-diff(c1dec)==9); 
        a21=sum(diff(c2dec)-diff(c1dec)==-3); %transition 1-2 => c12=3  
        a31=sum(diff(c3dec)-diff(c1dec)==-4); %transition 1-3 => c13=4  
        a41=sum(diff(c4dec)-diff(c1dec)==-5); 
        a51=sum(diff(c5dec)-diff(c1dec)==-6); 
        a61=sum(diff(c6dec)-diff(c1dec)==-7); 
        a71=sum(diff(c7dec)-diff(c1dec)==-8); 
        a81=sum(diff(c8dec)-diff(c1dec)==-9); 
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        %To 2 and from 2 
        a23=sum(diff(c3dec)-diff(c2dec)==5); 
        a24=sum(diff(c4dec)-diff(c2dec)==6); 
        a25=sum(diff(c5dec)-diff(c2dec)==7); 
        a26=sum(diff(c6dec)-diff(c2dec)==8); 
        a27=sum(diff(c7dec)-diff(c2dec)==9); 
        a28=sum(diff(c8dec)-diff(c2dec)==10); 

  a32=sum(diff(c3dec)-diff(c2dec)==-5); 
        a42=sum(diff(c4dec)-diff(c2dec)==-6); 
        a52=sum(diff(c5dec)-diff(c2dec)==-7); 
        a62=sum(diff(c6dec)-diff(c2dec)==-8); 
        a72=sum(diff(c7dec)-diff(c2dec)==-9); 
        a82=sum(diff(c8dec)-diff(c2dec)==-10); 
        %To 3 and from 3 
        a34=sum(diff(c4dec)-diff(c3dec)==7); 
        a35=sum(diff(c5dec)-diff(c3dec)==8); 
        a36=sum(diff(c6dec)-diff(c3dec)==9); 
        a37=sum(diff(c7dec)-diff(c3dec)==10); 
        a38=sum(diff(c8dec)-diff(c3dec)==11); 
        a43=sum(diff(c4dec)-diff(c3dec)==-7); 
        a53=sum(diff(c5dec)-diff(c3dec)==-8); 
        a63=sum(diff(c6dec)-diff(c3dec)==-9); 
        a73=sum(diff(c7dec)-diff(c3dec)==-10); 
        a83=sum(diff(c8dec)-diff(c3dec)==-11); 
        %To 4 and from 4 
        a45=sum(diff(c5dec)-diff(c4dec)==9); 
        a46=sum(diff(c6dec)-diff(c4dec)==10); 
        a47=sum(diff(c7dec)-diff(c4dec)==11); 
        a48=sum(diff(c8dec)-diff(c4dec)==12); 
        a54=sum(diff(c5dec)-diff(c4dec)==-9); 
        a64=sum(diff(c6dec)-diff(c4dec)==-10); 
        a74=sum(diff(c7dec)-diff(c4dec)==-11); 
        a84=sum(diff(c8dec)-diff(c4dec)==-12); 
        %To 5 and from 5 
        a56=sum(diff(c6dec)-diff(c5dec)==11); 
        a57=sum(diff(c7dec)-diff(c5dec)==12); 
        a58=sum(diff(c8dec)-diff(c5dec)==13); 
        a65=sum(diff(c6dec)-diff(c5dec)==-11); 
        a75=sum(diff(c7dec)-diff(c5dec)==-12); 
        a85=sum(diff(c8dec)-diff(c5dec)==-13); 
        %To 6 and from 6 
        a67=sum(diff(c7dec)-diff(c6dec)==13); 
        a68=sum(diff(c8dec)-diff(c6dec)==14); 
        a76=sum(diff(c7dec)-diff(c6dec)==-13); 
        a86=sum(diff(c8dec)-diff(c6dec)==-14); 
        %To 7 and from 7 
        a78=sum(diff(c8dec)-diff(c7dec)==15); 
        a87=sum(diff(c8dec)-diff(c7dec)==-15); 
        a11=0;a22=0;a33=0;a44=0;a55=0;a66=0;a77=0;a88=0; 
        adjMat=[a11 a12 a13 a14 a15 a16 a17 a18;...  %formulate the 

transition matrix in adjacency matrix 
            a21 a22 a23 a24 a25 a26 a27 a28;... 
            a31 a32 a33 a34 a35 a36 a37 a38;... 
            a41 a42 a43 a44 a45 a46 a47 a48;... 
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            a51 a52 a53 a54 a55 a56 a57 a58;... 
            a61 a62 a63 a64 a65 a66 a67 a68;... 
            a71 a72 a73 a74 a75 a76 a77 a78;... 
            a81 a82 a83 a84 a85 a86 a87 a88]; 
       tempMat = adjMat; 
        %Extract feature from the transition matrix 
        % Degree and Assortativity 
        [id,od,deg] = degrees_dir(tempMat); % node degree 
        [is,os,str] = strengths_dir(tempMat); % node strength 
        [J,J_od,J_id,J_bl] = jdegree(tempMat); % join degree 

J_od,J_id,J_bl number of vertices with od>id,id>od,id=od.                 
        r_ass = assortativity_bin(tempMat,1);  
        deg_assort =[id,od,deg,is,os,str,J_od,J_id,J_bl,r_ass];  
        % Density,Clustering, and Modularity 
        [kden,n_den,k_den] = density_dir(tempMat); % Densitivity 
        Cluster=clustering_coef_wd(tempMat); %Clustering coeff 
        Cluster=Cluster';% create a row vector * 
        transi=transitivity_wd(tempMat); 
        [ci_mod q_mod]=modularity_dir(tempMat); %(use  modularity in 

the old version )  
        den_clust_mod = [kden,n_den,k_den,Cluster,transi,q_mod]; 
        %Distances and Cycles 
        dis_weight=distance_wei(tempMat); %distant weight matrix ** 

just used to cal mean_dis_weight 
        [lambda_net,efficiency_net,ecc,radius_net,diameter_net] = 

charpath(dis_weight);% path characteristics 
        ecc =ecc'; 
        

dis_cyc=[lambda_net,efficiency_net,ecc,radius_net,diameter_net]; 
        %Centrality 
        node_bet=betweenness_wei(tempMat); 
        node_bet=node_bet'; 
        centr = node_bet; 
        %Sum up the network features 
        network_mea =[deg_assort,den_clust_mod,dis_cyc,centr]; 
       end 
end 

A.4 CART classification 

%%Classification model 

 
dbstop if error; %Stop at the error 
Path='ECG_Features_MILocalization.xlsx'; 
idx = xlsread(Path,'cart','B2:B363'); % with the network measure 

features 
[num1,diag1] = xlsread(Path,'cart','E2:E363'); 
% [num2,loc] = xlsread('VCGcart.xls','cart','G2:G363'); 
[num3,name] = xlsread(Path,'cart','F1:CC1'); 
B = xlsread(Path,'cart','F2:Y363'); 
n1 = 0; n2=0;n3=0;n4=0;n5=0;n6=0; 
for i = 1:length(diag1) 
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    if (strcmp(diag1(i),'Infero') ||strcmp(diag1(i),'Infero Lateral') 

||... 
            strcmp(diag1(i),'Infero Posterior')|| 

strcmp(diag1(i),'Infero Postero Lateral')) 
        n1 =n1+1; 
        Inf(n1,:)=B(i,:); 
    end 
  if (strcmp(diag1(i),'Anterior')||strcmp(diag1(i),'Anterio 

Septal')||strcmp(diag1(i),'Antero Lateral')) 
        n2=n2+1; 
        Ant(n2,:)=B(i,:); 
    end 

  
    if strcmp(diag1(i),'HC') 
        n3=n3+1; 
        HCtl(n3,:)=B(i,:); 
    end 
end 

  
%% Features selection 

 
%K-sample Anderson Darling test 
for i=1:1:min(size(B)) 
    i 
    ADTest = []; 
    ADData = [Inf(1:n1,i);Ant(1:n2,i);HCtl(1:n3,i)];% first column of 

data 
    ADGrp  = [1*ones(n1,1);2*ones(n2,1);3*ones(n3,1)];% second column 

of group sample 
    ADTest =[ADData ADGrp]; 
    if i ==64 
        ADPn(64) = ADPn(63); 
        ADP(64) = ADP(63); 
        ADhyp(64)=ADhyp(63); 
    else if i==134 
            ADPn(134) = ADPn(133); 
            ADP(134) = ADP(133); 
            ADhyp(134)=ADhyp(133); 
        else 
            [ADPn(i),ADP(i),ADhyp(i)] = AnDarksamtest(ADTest,0.01); 
        end 
    end 
end 
for i=1:1:min(size(B)) 
    KSData={Inf(1:n1,i);Ant(1:n2,i);HCtl(1:n3,i)}; 
    p=[];h=[];k=[]; 
    count=0; 
    for step1 =1:1:2 
        for step2 =step1+1:1:3 
            count = count+1; 
            [h(count),p(count),k(count)] = 

kstest2(KSData{step1,1},KSData{step2,1}); 
        end 
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    end 
    KS(i) = sum(p); 
    KS_R(i)= sum(h); 
    KSSTAT(i)=sum(k); 
end 
[b2,imp2] = sort(KS,'ascend');  %Selectetd by KS test 

 
Feature 

={'QI';'QII';'QIII';'QAVL';'QAVF';'QV1';'QV2';'QV3';'QV4';'QV5';... 
          

'RI';'RII';'RIII';'RAVL';'RAVF';'RV1';'RV2';'RV3';'RV4';'RV5'}; 
A=[ADP' ADPn' ADhyp' KS' KS_R' KSSTAT'];  
imp1=imp2(1:10); 
Feature1= Feature(imp2)'; 
Feature = Feature(imp1); 
Inf = Inf(:,imp1);               % Feature matrix of inferior group 
InfAnno(1:n1,1) = cellstr('Infero'); %Annotation of inferior group  
Ant = Ant(:,imp1); 
AntAnno(1:n2,:) = cellstr('Anterior');  
HCtl = HCtl(:,imp1); 
HCtlAnno(1:n3,:)= cellstr('HC');  
permtx = [10/9 1.25 1.5 2 3 4 5 10]; % 

(10%,20%,33.33%,50%,66.67%,75%,80%,90%) 
 permtx = 10; %90% for training 
C=zeros(3); 
for ipercent = 1:8 
    percent = permtx(ipercent); 
    for i = 1:20 
        iindex = randperm(n1); % K-fold cross validation 
        aindex = randperm(n2); 
        hcindex = randperm(n3);  
        %Training data 
        trn_i = Inf(iindex(floor(n1/percent)+1:n1),:); %training data 

percent =10/9-> 10% for training 
        trn_i_anno = InfAnno(iindex(floor(n1/percent)+1:n1),1);% 

training annotation group  
        trn_a = Ant(aindex(floor(n2/percent)+1:n2),:); 
        trn_a_anno = AntAnno(aindex(floor(n2/percent)+1:n2),:);  
        trn_hc =HCtl(hcindex(floor(n3/percent)+1:n3),:); 
        trn_hc_anno =HCtlAnno(hcindex(floor(n3/percent)+1:n3),:);  
        trn_data = [trn_i;trn_a;trn_hc]; % Formulate the training data 

set 
        trn_anno = [trn_i_anno;trn_a_anno;trn_hc_anno]; %Training 

annotation  
        %Testing data 
        test_i = Inf(iindex(1:floor(n1/percent)),:); %Testing data 

percent =10/9-> 90% for testing 
        test_i_anno = InfAnno(iindex(1:floor(n1/percent)),1);% training 

annotation group  
        test_a = Ant(aindex(1:floor(n2/percent)),:); 
        test_a_anno = AntAnno(aindex(1:floor(n2/percent)),:);  
        test_hc =HCtl(hcindex(1:floor(n3/percent)),:); 
        test_hc_anno = HCtlAnno(hcindex(1:floor(n3/percent)),:);  
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        test_data = [test_i;test_a;test_hc]; % Formulate the Testing 

data set 
        test_anno = [test_i_anno;test_a_anno;test_hc_anno]; %Testing 

annotation  
        whole_data=[Inf;Ant;HCtl]; 
        whole_anno=[InfAnno;AntAnno;HCtlAnno]; 
        numobs = size(test_anno,1); 
        tree = treefit(trn_data,trn_anno);  %Fit the tree 
        [c,s,n,best] = treetest(tree,'cross',trn_data,trn_anno); 
        tmin = treeprune(tree,'level',best); 
            treedisp(tmin,'names',Feature); 
        [dtnum,dtnode,dtclass] = treeval(tmin, test_data); % 

Classification with the testing data 
        bad = ~strcmp(dtclass,test_anno); 
        c1= length(test_i_anno);c2= length(test_a_anno);c3= 

length(test_hc_anno);  
        abad(i) = sum(bad(c1+1:c1+c2));  
        hcbad(i) = sum(bad(c1+c2+1:c1+c2+c3));  
        acc_i(i) = 100-100*ibad(i)/(c1);  
        acc_a(i) = 100-100*abad(i)/(c2);  
        acc_hc(i) = 100-100*hcbad(i)/(c3); 
        acc_total(i) = 100-100*sum(bad)/numobs; 
        C = C+confusionmat(test_anno,dtclass); 

         
        fprintf('.....Percent: %d ..rand: %d ..Inf: %d ..Ant:%d ..HC:%d 

..\n',... 
            ipercent,i,acc_i(i),acc_a(i),acc_hc(i)); 
    end 
    Cmean = C./i; 
    restat = [1-1/percent  mean(acc_i) std(acc_i)... 
         mean(acc_a) std(acc_a)... 
        mean(acc_hc) std(acc_hc) mean(acc_total) std(acc_total)]; 

     

A.5 Dirichlet process based Gaussian process mixture (DPMG) prediction 

HistPSD=(1:10); 
HistLVM=(1:10); 
ECGSignal=data; 
fs=100; 
PeakIdx = nqrsdetect(ECGSignal,fs); %Identify QRS using filter bank 

method 

   
%% Power spectrum density (PSD) feature from RR interval 

 
    RR = diff(PeakIdx)/fs;                         %RR interval 
    RR=[0;RR];     %Balance with PeakIDx 
    RR_Peak=[PeakIdx RR]; 
    ModifiedRR = clean_hrv4(RR_Peak); %default threshold is 20% 

difference ; 
    PeakIdx1= ModifiedRR(:,1);                        
    RR1= ModifiedRR(:,2); 
    RR_down = interp1(PeakIdx1,RR1,min(PeakIdx1):fs/2:max(PeakIdx1));  
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    FilterRR = Filter1(RR_down);                          %Get 0.02 to 

0.1 Hz 
    [S,F,T,P]= spectrogram(FilterRR,length(FilterRR),0,120,2);   

%Spectrogram 
    CurrPSD = RMS1(P);   %PSD of the current minute  

 
%% Longest vertical line (LVM) from RR interval using RQA 

 
Extract the longest vertical line property 
RR = spline(PeakIdx1,RR1,1:fs:PeakIdx1(end,1)); 
dim=7; 
Delay=5; 
[RRy] = PhaseSpace(RR,dim,Delay); 
Amplitude=[]; 
for step1 =1:1:max(size((RRy)))  
    Amplitude(step1)=norm(RRy(step1,:)); 
end 
Thresh = 0.1*(max(Amplitude)- min(Amplitude)); 
RQA =crqa(RR,7,5,Thresh,60*10,60*1,3,3,1); 
CurrVLM =RQA(8);% Max of Vertical Lenghth of the current minute  

 
%% Prediction of PSD feature 

 
ParameterEst(); 
HistPSD = (HistPSD-Par1)/(Par2-Par1); 
HistPSD = (HistPSD -Par3)/Par4; 
XnPSD =PhaseSpace(HistPSD,dd1,tau1);  
XnPSD=XnPSD(end,:)'; %Get the last row for the phase space information 

of the current point 

  
for k=1:1:length(pp1)  % k clusters from the training process 
    pp1(k)=mvnpdf(XnPSD,mu1{k},sigma1{k});    % Likelihood of the Xn 
    hp=exp((logtheta1{k})'); 
    [fstar S2] = gpra(logtheta1{k}, covfunc, X1{k}, y1{k}, XnPSD'); 
    S2 = S2 - exp(2*logtheta1{k}(dim1(k)));   % 95% confidence interval 
    fm1(k) = fstar; 
    fvar1(k) = S2; 
end     
pb1 = pp1/sum(pp1); 
PSD_pred = sum(pb1.*fm1); 

  
%% Prediction of LVM feature 

 
Data2LVM = Data2LVM'; 
datLVM = Data2LVM(4:end,1:end-1); 
datLVM0 = Data2LVM(4:end,1:end); 
dimenLVM = 5;  %dimension of one cluster  
dpm2 = dpm_gp(datLVM,dimenLVM,aa, s0, ss, numiter); 
pp2 = zeros(dpm2.KK,1); 
fm2 = zeros(dpm2.KK,1); 
fvar2 = zeros(dpm2.KK,1); 
% Training % 
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for j=1:dpm2.KK 
    [mu2{j},sigma2{j}] = map(dpm2.qq{j});  %% Estimated mean and 

variance using MAP estimation 
    j 
    %     cluster{j} = find(dpm.zz==j); 
    id = find(dpm2.zz==j); 
    X2{j} = datLVM(:,id)'; 
    y2{j} = datLVM0(dd1,id+1)';    % output of the prediction 
    covfunc = {'covSum',{'covConst','covSEard','covNoise'}}; 
    [n,D]=size(X2{j}); 
    dim2(j)=eval(feval(covfunc{:})); 
    logtheta02 =zeros(dim2(j),1); % initial value 
    logtheta02(1:dim2(j)-2)=log(1);    % the characteristic length must 

be large according to the large variance 
    logtheta02(1)=log(1); 
    logtheta02(dim2(j)-1)=log(1); 
    logtheta02(dim2(j))=log(0.01); 
    [logtheta12{j}, fvals2{j}, iter2{j}] = minimize(logtheta02, 'gpra', 

-100, covfunc, X2{j}, y2{j}); % optimize the hyperparameter 
end  
XnLVM =PhaseSpace(HistLVM,dd1,tau1);  
XnLVM=XnLVM(end,:)'; %Get the last row for the phase space information 

of the current point 

  
for k=1:1:length(pp2)  % k clusters from the training process 
    pp2(k)=mvnpdf(XnLVM,mu2{k},sigma2{k});    % Likelihood of the Xn 
%     disp('  exp(loghyper) ='); 
%     disp(exp(logtheta{k})'); 
    hp=exp((logtheta12{k})'); 
    [fstar2 S22] = gpra(logtheta12{k}, covfunc, X2{k}, y2{k}, XnLVM'); 
    S22 = S22 - exp(2*logtheta12{k}(dim2(k)));   % 95% confidence 

interval 
    fm2(k) = fstar2; 
    fvar2(k) = S22; 
end     
pb2 = pp2/sum(pp2); 
LVM_pred = sum(pb2.*fm2); 

  
%% Classification 

 
PredValues =[PSD_pred*Par4+Par3]; 
Data2PSD =Data2PSD'; 
Apnea = Data2PSD(Data2PSD(:,1)==1,3); 
NonApnea= Data2PSD(Data2PSD(:,1)==0,3); 
options = optimset('maxiter', 1000, 'largescale','off'); 
sigma = exp(-0.7533); 
constr = exp(-0.75); 
svmStruct = 

svmtrain([Apnea;NonApnea],[ones(size(Apnea,1),1);zeros(size(NonApnea,1)

,1)],'Kernel_Function','rbf',... 
    'rbf_sigma',sigma,'boxconstraint',constr); 
ApnStatus = svmclassify(svmStruct,PredValues); 
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ApnStatus = 

classify(PredValues,[Apnea;NonApnea],[ones(size(Apnea,1),1);zeros(size(

NonApnea,1),1)],'diagquadratic'); 

 
function ParameterEst() 
aa = 1; 
s0 = 1; 
ss = 0.5; 
numiter = 100; 
tau1 =2; %  time delay for both PSD and LVM 
dd1 = 5; % dimension of state space 
Par1 = 3.2302e-004; %Min value of PSD for normalization 
Par2 = 1.1949; % Max value of PSD for morlization 
load 'L:\Research\Sleep Apnea Prediction Garment\Predition 

Apnea\Changqing Code\DPGM\10ApnPatients.mat'; %Select the  
dbstop if error; 
for i= 1:1:length(Data) 
%     Temp = []; 
    TempPSD = Data{i}(:,3); 
    TempPSD = (TempPSD-mean(TempPSD))/std(TempPSD); %Normalize PSD 
    AvgPSD(i)= mean(TempPSD); 
    StdPSD(i)= std(TempPSD); 
    TempLVM= Data{i}(:,2); 
    TempLVM = (TempLVM-mean(TempLVM))/std(TempLVM); 
    NPSD=PhaseSpace(TempPSD,dd1,tau1); 
    LVM=PhaseSpace(TempLVM,dd1,tau1); 
    Data1PSD{i}=[Data{i}(1+2*(dd1-1):end,1:3) NPSD]; % Col1: Apnea 

Status, Col2: LVM, Col3: NPSD, Col4-8: Phase space information of PSD   
    Data1LVM{i}= [Data{i}(1+2*(dd1-1):end,1:3) LVM];  % Col1: Apnea 

Status, Col2: LVM, Col3: NPSD, Col4-8: Phase space information of LVM 
end 
Par3 = mean(AvgPSD); 
Par4 = mean(StdPSD); 
index =[1:1:length(Data)]; 
TestId = [];  % Testing data 
index(TestId)=[]; % Keep it for testing 
Data2PSD=[]; 
Data2LVM=[]; 
for i=index 
    Data2PSD = [Data2PSD;Data1PSD{i}]; %Whole data set 
    Data2LVM = [Data2LVM;Data1LVM{i}]; 
end     
Data2PSD = Data2PSD'; 
datPSD = Data2PSD(4:end,1:end-1); 
datPSD0 = Data2PSD(4:end,1:end); 
dimenPSD = 5;  %dimension of one cluster  
dpm1 = dpm_gp(datPSD,dimenPSD,aa, s0, ss, numiter); 
pp1 = zeros(dpm1.KK,1); 
fm1 = zeros(dpm1.KK,1); 
fvar1 = zeros(dpm1.KK,1); 
% Training % 
for j=1:dpm1.KK 
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    [mu1{j},sigma1{j}] = map(dpm1.qq{j});  %% Estimated mean and 

variance using MAP estimation 
    id = find(dpm1.zz==j); 
    X1{j} = datPSD(:,id)'; 
    y1{j} = datPSD0(dd1,id+1)';    % output of the prediction 
    covfunc = {'covSum',{'covConst','covSEard','covNoise'}}; 
    [n,D]=size(X1{j}); 
    dim1(j)=eval(feval(covfunc{:})); 
    logtheta0 =zeros(dim1(j),1); % initial value 
    logtheta0(1:dim1(j)-2)=log(1);    % the characteristic length must 

be large according to the large variance 
    logtheta0(1)=log(1); 
    logtheta0(dim1(j)-1)=log(1); 
    logtheta0(dim1(j))=log(0.01); 
    [logtheta1{j}, fvals1{j}, iter1{j}] = minimize(logtheta0, 'gpra', -

100, covfunc, X1{j}, y1{j}); % optimize the hyperparameter 
end  
save all; 
end 

 

 

function PredictDPMG(data)  
avg = mean(data); 
stdv = std(data); 
data = (data-avg)/stdv; 
dbstop if error; 
aa = 0.6; 
s0 = 1; 
ss = 0.5; 
numiter = 5; 
tau =2; %  time delay    
dd = 5; % dimension of state space 
SP = phasespaceh(data,dd,tau); 
dat0 = SP'; 
dat = dat0(:,1:500); 
Xn = dat0(:,501); 
f = dat0(5,502); 
dim = size(dat,1); 
dpm = dpm_gp(dat,dim,aa, s0, ss, numiter); 
pp = zeros(dpm.KK,1); 
% cluster = cell(dpm.KK,1); 
fm = zeros(dpm.KK,1); 
fvar = zeros(dpm.KK,1); 
for j=1:dpm.KK 
    [mu,sigma] = map(dpm.qq{j});  %% Estimated mean and variance using 

MAP estimation 
    pp(j)=mvnpdf(Xn,mu,sigma); 
    %     cluster{j} = find(dpm.zz==j); 
    id = find(dpm.zz==j); 
    X = dat(:,id)'; 
    y = dat0(dd,id+1)'; 
    covfunc = {'covSum',{'covConst','covSEard','covNoise'}}; 
    [n,D]=size(X); 
     dim=eval(feval(covfunc{:})); 
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    logtheta0 =zeros(dim,1); % initial value 
    logtheta0(1:dim-2)=log(1);    % the characteristic length must be 

large according to the large variance 
    logtheta0(1)=log(1); 
    logtheta0(dim-1)=log(1); 
    logtheta0(dim)=log(0.01); 
    [logtheta, fvals, iter] = minimize(logtheta0, 'gpra', -100, 

covfunc, X, y); % optimize the hyperparameter 
    disp('  exp(loghyper) =') 
    disp(exp(logtheta)') 
    hp=exp((logtheta)'); 
    [fstar S2] = gpra(logtheta, covfunc, X, y, Xn'); 
    S2 = S2 - exp(2*logtheta(dim));   % 95% confidence interval 
    fm(j) = fstar; 
    fvar(j) = S2;  
end  
pb = pp/sum(pp); 
f_pred = sum(pb.*fm); 
disp([f f_pred]) 
end  

A.6 Color coded state space network representation 

%% Prepare the data 

 
load L:\Research\Hoang-Prognosis\MatlabCodes\10ApnPatients.mat; %Sleep 

apnea annotation, NPSD, and LVM 
load('L:\Research\Hoang-Prognosis\MatlabCodes\TimeDelay.mat') %Time 

delay file, identified by using MI 
 for patientId=2 
    objId = patientId; 
    dirpath= strcat('L:\Research\Hoang-

Prognosis\MatlabCodes\DataGood_Feature1\','ID',num2str(objId),'\'); 
    data = Data{objId}(:,3); % Power spectrum density 
    Slp_ann = Data{objId}(:,1); 
    avg = mean(data); 
    stdv = std(data); 
    SleepAnno = Data{objId}(:,1); 
    data = (data-avg)/stdv; 
    LVM1 = Data{objId}(:,2); %Longest vertical length 
    avg1 = mean(LVM1); 
    stdv1 = std(LVM1); 
    LVM = (LVM1-avg1)/stdv; 

     
%% Multivariate state space resconstruction 

  
    TauPSD = TimeDelay(patientId,1); 
    TauLVM = TimeDelay(patientId,2); 

  
    % tunable parameters, aa, s0, ss 
     

    aa = 0.6; 
    s0 = 1; 
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    ss = 0.5; 
    numiter = 10; 
    radius = 0.1; %radius of the neighbors 5% around the new point 
    DimPSD = 10; 
    DimLVM = 10; 
    N= length(data); 
    minimumx = min(LVM1); 
    maximumx = max(LVM1); 
    intervalx = maximumx-minimumx; 
    LVM1=(LVM1-minimumx)/intervalx; 
    avg1 = mean(LVM1); 
    stdv1 = std(LVM1); 
    LVM = (LVM1-avg1)/stdv; 
    NX1 = N-TauPSD*(DimPSD-1); 
    NX2 = N-TauLVM*(DimLVM-1); 
    NX = min(NX1,NX2); 
    phase1 = PhaseSpace(data,DimPSD,TauPSD); 
    phase2 = PhaseSpace(LVM,DimLVM,TauLVM); 
    SP = [phase1(1:NX,:),phase2(1:NX,:)]; 
    d = Lyapunov_exp(SP,5,500); 
    diaPhase=[]; 
    dat0 = SP'; 
    train_point = 300; % number of minimum training points 
    test_point1 = train_point-1 + ceil((NX-train_point) * rand(NX-   

train_point,1));  % Select extra random testing point from 300th point 

    apn_point= test_point1(Slp_ann(test_point1)==1); 
    non_point= test_point1(Slp_ann(test_point1)==0); 
    test_point = non_point; % for non points (selelec either this one 

or the apnea points) 
    if (~isempty(test_point)) 
    t_pred_allr=[]; 
    t_std_pred_allr=[]; 
    ChangeInt1_allr=[]; 
    t_pred1_allr=[]; 
    t_std_pred1_allr=[]; 
    ChangeInt2_allr=[]; 
    t_pred=[]; 
    ChangeInt1=[]; 
    t_std_pred=[]; 
    FeatSet_Non=[]; 
test_data = randi(length(test_point),1,200); % esting set 
    end 
    for ii=1:1:1 
        objId 
        ii 
        test_idx = test_point(test_data(ii)); 
        dat = dat0(:,1:test_idx); 
        datSt = (Data{objId}(1:test_idx,1)==1); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
        Xn = dat0(:,test_idx+1); 
        XnSt = (Slp_ann(test_idx+1,1)==1);  % Apnea Status of the new 

point 
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        dim = size(dat,1); 
        dpm = dpm_gp(dat,dim,aa, s0, ss, numiter); 
        pp = zeros(dpm.KK,1); 
        dd = DimLVM+DimPSD; 
        % cluster = cell(dpm.KK,1); 
        fm = zeros(dpm.KK,1); 
        fvar = zeros(dpm.KK,1); 
        %%For the Prognosis part 
        t_est = []; 
        pp=[]; 
        t_std_est=[]; 
        test1=[]; 
        MaxDia =[]; 
        Max2Dia =[]; 
        Dis2mu =[]; 
        for j=1:dpm.KK %find the likelihood that Xn belongs to cluster 

j 
 [mu,sigma] = map(dpm.qq{j});  %% MAP estimation            

pp(j)=mvnpdf(Xn,mu,sigma); 
            D2mu(j) = (sum(abs(Xn-mu).^2,1)).^0.5; 
            ChangeAll= []; 
            idx{j} =find(dpm.zz==j); 
        end 
    end 
 sig_l = size(dat,2); 
adj =zeros(sig_l,sig_l); 
for iter1 = 1:1:sig_l-1 
    adj(iter1, iter1+1)=1; 
end 
all_grp = idx; % array of all group; 
grp_size = dpm.nn; 

  
%% Use the random coordinate 

 
for grp=1:1:length(grp_size) 
n(grp) =  grp_size(grp); % number of noded 
angl(grp) = 2*pi/n(grp); % rotation angle 
end 

  
angl_g = 2*pi/length(all_grp); 
ord = zeros(length(all_grp),1); 

  
for k=1:sig_l 
    for id=1:1:length(grp_size) 
     if ~isempty(intersect(k,all_grp{id})) 
         ord(id) = ord(id)+1; 
       x(k) = real(exp(angl(id)*(ord(id)-1)*i))+10*real(exp(angl_g*(id-

1)*i)); 
       y(k) = imag(exp(angl(id)*(ord(id)-1)*i))+10*imag(exp(angl_g*(id-

1)*i)); 
       continue; 
     end 
    end  
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end 
    od =1:1:sig_l; 
    apn_point= od(Slp_ann(1:sig_l)==1); 
    non_point= od(Slp_ann(1:sig_l)==0); 
    for tt=1:1:length(idx) 
        apn_cl{tt}= intersect(apn_point,idx{tt})  ; % find the index of 

the apnea point in the cluster tt 
        non_cl{tt}= intersect(non_point,idx{tt})  ; % find the index of 

the nonapnea point in the cluster tt 
    end    

     
figure,  
cmap = flipud(colormap('Jet')); 
for iter11=1:length(idx) 

  
for k=apn_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
  

plot(x(k),y(k),'Marker','o','MarkerFaceColor',cmap(icolor,:),'MarkerEdg

eColor',cmap(icolor,:),'MarkerSize',20) 
  text(x(k),y(k),strcat('v',num2str(k))); 
hold on; 
end 
for k=non_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
plot(x(k),y(k),'Marker','o','MarkerEdgeColor',cmap(icolor,:),'MarkerSiz

e',20); 
  text(x(k),y(k),strcat('v',num2str(k))); 

  
%   hold off; hold on; 
end 
end 
edges=find(adj>0); 
set(gcf,'Color',[1,1,1]) 

  
for e=1:length(edges) 
    [ii,jj]=ind2sub([sig_l,sig_l],edges(e)); 
    arrow([x(ii) y(ii)],[x(jj) y(jj)],1,'BaseAngle',60); 
hold on; 
end 
axis off; 

  
%% Use distance matrix coordinator 

 
Dist1 = pdist(SP,'euclidean'); %Distance in state space 
[Y11,e11] = cmdscale(Dist1);   % 
x=(Y11(:,1)); 
y=(Y11(:,2)); 
z=(Y11(:,3)); 
    od =1:1:sig_l; 
    apn_point= od(Slp_ann(1:sig_l)==1); 
    non_point= od(Slp_ann(1:sig_l)==0); 
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    for tt=1:1:length(idx) 
        apn_cl{tt}= intersect(apn_point,idx{tt})  ; % find the index of 

the apnea point in the cluster tt 
        non_cl{tt}= intersect(non_point,idx{tt})  ; % find the index of 

the nonapnea point in the cluster tt 
    end    

     
figure,  
cmap = flipud(colormap('Jet')); 
for iter11=1:length(idx) 
for k=apn_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
    

plot3(x(k),y(k),z(k),'Marker','o','MarkerEdgeColor',cmap(icolor,:),'Mar

kerFaceColor',cmap(icolor,:),'MarkerSize',15) 
  text(x(k)+0.1,y(k)+0.1,z(k)+0.1,strcat('v',num2str(k)),'FontSize',5); 
hold on; 
end 
for k=non_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
% % 
plot3(x(k),y(k),z(k),'Marker','o','MarkerFaceColor','w','MarkerSize',15

); 
  

text(x(k)+0.07,y(k)+0.07,z(k)+0.07,strcat('v',num2str(k)),'FontSize',5)

; 
hold on; 
end 
end 
edges=find(adj>0); 
set(gcf,'Color',[1,1,1]) 

  
for e=1:length(edges) 
    [ii,jj]=ind2sub([sig_l,sig_l],edges(e)); 
    arrow([x(ii) y(ii) z(ii)],[x(jj) y(jj) z(jj)],2.5,'BaseAngle',60); 
hold on; 
end  
grid on; 

  
%% Use Laplacian Matrix 

 
Dist1 = squareform(exp(-pdist(SP,'euclidean'))); %Distance in state 

space 
[deg,indeg,outdeg]=degrees(Dist1); 
LapMat = diag(deg)-Dist1; 
[V,D] = eig(LapMat)  % 
x=(V(:,2)); 
y=(V(:,3)); 
%Adjust for demostration 
x(110)=0.15; 
y(110)=-0.012; 

  
x(102)= 0.16; 
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y(102)=-0.012 

  
x(46)=-0.11; 
y(46)=-0.02; 

  
x(62)=-0.1; 
y(62)=0.08; 

  
y(70)=0.18; 

  
y(78)=0.19; 

  
x(94)=0.07; 
y(94) = 0.15; 

  
x(86) = 0.074; 
y(86) = 0.16; 

  

x(118) = 0.05; 
y(118) = -0.053; 
od =1:1:sig_l; 
    apn_point= od(Slp_ann(1:sig_l)==1); 
    non_point= od(Slp_ann(1:sig_l)==0); 
    for tt=1:1:length(idx) 
        apn_cl{tt}= intersect(apn_point,idx{tt})  ; % find the index of 

the apnea point in the cluster tt 
        non_cl{tt}= intersect(non_point,idx{tt})  ; % find the index of 

the nonapnea point in the cluster tt 
    end    
figure,  
cmap = flipud(colormap('Jet')); 
for iter11=1:length(idx) 
for k=non_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
  plot(x(k),y(k),'Marker','o','MarkerSize',15); 
  text(x(k)+0.007,y(k)+0.007,strcat('v',num2str(k)),'FontSize',5); 
hold on; 
end 
for k=apn_cl{iter11} 
icolor= ceil(64/length(idx)*iter11); 
plot(x(k),y(k),'Marker','o','MarkerEdgeColor',cmap(icolor,:),'MarkerFac

eColor',cmap(icolor,:),'MarkerSize',15) 
  text(x(k),y(k),strcat('v',num2str(k)),'FontSize',5); 
hold on; 
end  
end 
edges=find(adj>0); 
set(gcf,'Color',[1,1,1]) 

  
for e=1:length(edges) 
    [ii,jj]=ind2sub([sig_l,sig_l],edges(e)); 
    arrow([x(ii) y(ii)],[x(jj) y(jj)],3,'BaseAngle',60); 



163 

 

hold on; 
end 
axis off; 
end 

  
%% State Space trajectory only 

 

Dist1 = pdist(SP,'euclidean'); %Distance in state space 
[Y11,e11] = cmdscale(Dist1);   % 
x=(Y11(:,1)); 
y=(Y11(:,2)); 
z=(Y11(:,3)); 
od =1:1:sig_l; 
    apn_point= od(Slp_ann(1:sig_l)==1); 
    non_point= od(Slp_ann(1:sig_l)==0); 
    for tt=1:1:length(idx) 
        apn_cl{tt}= intersect(apn_point,idx{tt})  ; % find the index of 

the apnea point in the cluster tt 
        non_cl{tt}= intersect(non_point,idx{tt})  ; % find the index of 

the nonapnea point in the cluster tt 
    end    

     
figure,  
cmap = flipud(colormap('Jet')); 
for iter11=1:length(idx) 

  

for k=apn_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
    plot3(x(k),y(k),z(k),'Linewidth',4) 

  
hold on; 
end 
for k=non_cl{iter11} 
  icolor= ceil(64/length(idx)*iter11); 
% % 
plot3(x(k),y(k),z(k),'Linewidth',4); 

  
hold on; 
end 
end 
edges=find(adj>0); 
set(gcf,'Color',[1,1,1]) 

  
for e=1:length(edges) 
    [ii,jj]=ind2sub([sig_l,sig_l],edges(e)); 
    arrow([x(ii) y(ii) z(ii)],[x(jj) y(jj) z(jj)],0.1,'BaseAngle',60); 
hold on; 
end 

  
grid on; 
    Slp_ann(81:95)=1; 
    Slp_ann(98:102)=1; 
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    apn_point= test_point1(Slp_ann(test_point1)==1); 
    non_point= test_point1(Slp_ann(test_point1)==0); 

 

A.7 Estimation of time to failure distribution 

%% Prepare the data 

 
load L:\Research\Hoang-Prognosis\MatlabCodes\20ApnPatients.mat; %Sleep 

apnea annotation, NPSD, and LVM 
load('L:\Research\Hoang-Prognosis\MatlabCodes\TimeDelay.mat') %Time 

delay file, identified by using MI 
combIdx = 0; 
patientComb =[5,10,20]; % Index of the same patient 
for longpatientID = patientComb 
    combIdx = combIdx+1; 
    objId = longpatientID; 
    dirpath= strcat('L:\Research\Hoang-

Prognosis\MatlabCodes\DataGood_Feature1\','ID',num2str(objId),'\'); 
    data = Data{objId}(:,3); % Power spectrum density 
    Slp_ann{combIdx} = Data{objId}(:,1); 
    avg = mean(data); 
    stdv = std(data); 
    SleepAnno = Data{objId}(:,1); 
    data = (data-avg)/stdv; 
    LVM1 = Data{objId}(:,2); %Longest vertical length 
    avg1 = mean(LVM1); 
    stdv1 = std(LVM1); 
    LVM = (LVM1-avg1)/stdv; 

     
%% Multivariate state space reconstructions 

     
    TauPSD = TimeDelay(longpatientID,1); 
    TauLVM = TimeDelay(longpatientID,2); 
    %%% tunable parameters, aa, s0, ss 
    aa = 0.3; 
    s0 = 1; 
    ss = 0.5; 
    numiter = 5; 
    radius = 0.1; %radius of the neighbors 5% around the new point 
    DimPSD = 10; 
    DimLVM = 10; 
    N= length(data); 
    minimumx = min(LVM1); 
    maximumx = max(LVM1); 
    intervalx = maximumx-minimumx; 
    LVM1=(LVM1-minimumx)/intervalx; 
    avg1 = mean(LVM1); 
    stdv1 = std(LVM1); 
    LVM = (LVM1-avg1)/stdv; 

     
    NX1 = N-TauPSD*(DimPSD-1); 
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    NX2 = N-TauLVM*(DimLVM-1); 
    NX = min(NX1,NX2); 
    phase1 = PhaseSpace(data,DimPSD,TauPSD); 
    phase2 = PhaseSpace(LVM,DimLVM,TauLVM); 
    SP{combIdx} = [phase1(1:NX,:),phase2(1:NX,:)]; 
    train_point = min(NX1,NX2)-30; % number of minimum training points 
    test_point1= train_point-1 + ceil((NX-train_point) * rand(NX-

train_point,1));  % Select extra random testing point from 300th point 
    apn_point{combIdx}= test_point1(Slp_ann{combIdx}(test_point1)==1); 
    non_point{combIdx}= test_point1(Slp_ann{combIdx}(test_point1)==0); 
end 

  
%% For Non_apnea point 
 

test_point = non_point;  
for  combIdx=1:1:length(patientComb) 
    if (isempty(test_point{combIdx})) 
        continue; 
    end 
    t_pred_allr=[]; 
    t_std_pred_allr=[]; 
    ChangeInt1_allr=[]; 
    t_pred1_allr=[]; 
    t_std_pred1_allr=[]; 
    ChangeInt2_allr=[]; 
    t_pred=[]; 
    ChangeInt1=[]; 
    t_std_pred=[]; 
    FeatSet_Non=[]; 
    test_data = randi(length(test_point{combIdx}),1,20); % Testing set 
    for ii=1:1:length(test_data) 
        SPTemp = SP;        % Initialize state space 
        test_idx = test_point{combIdx}(test_data(ii)); 
        Xn = SPTemp{combIdx}(test_idx+1,:);   %remove points  
        SPTemp{combIdx}= SPTemp{combIdx}(1:test_idx,:); %remove points  
        dat0= [SPTemp{1};SPTemp{2};SPTemp{3}]; 
        dat = dat0'; 
        XnSt = (Slp_ann{combIdx}(test_idx+1,1)==1);  % Apnea Status  
        dim = size(dat,1); 
        dpm = dpm_gp(dat,dim,aa, s0, ss, numiter); 
        pp = zeros(dpm.KK,1); 
        dd = DimLVM+DimPSD; 
        fm = zeros(dpm.KK,1); 
        fvar = zeros(dpm.KK,1); 

 
%%For the Prognosis part 

 
        t_est = []; 
        pp=[]; 
        t_std_est=[]; 
        test1=[]; 
        MaxDia =[]; 
        Max2Dia =[]; 
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        Dis2mu =[]; 
        % Points in cluster 
         for j=1:dpm.KK  
            le1 =size(SPTemp{1},1); 
            le2 =size(SPTemp{2},1); 
            le3 =size(SPTemp{3},1); 
            idx1 =find(dpm.zz(1:le1)==j); Xn condition 
            idx2 =find(dpm.zz(le1+1:le1+le2)==j); 
            idx3 =find(dpm.zz(le1+le2+1:le1+le2+le3)==j); 
            idx1_long{j}= intersect(find(Slp_ann{1}()==0),idx1); 
            idx2_long{j}= intersect(find(Slp_ann{2}()==0),idx2); 
            idx3_long{j}= intersect(find(Slp_ann{3}()==0),idx3); 
  end 
        clust_tran= zeros(dpm.KK,dpm.KK); 
        clust_tran0 = zeros(dpm.KK,dpm.KK); 
        for i= 1:1:dpm.KK 
            for j=1:1:dpm.KK 
               for tt=1:1:length(idx1_long{i}) 
                   for uu=1:1:length(idx1_long{j}) 
                       if (idx1_long{i}(tt)-idx1_long{j}(uu)==-1) 
           clust_tran(i,j)= clust_tran(i,j)+1; % transition from i to j 
           clust_tran0(i,j)= clust_tran(i,j)+1; % transition from i to 

j 
                       end 
                       if i==j  
                           clust_tran0(i,j)= 0; % transition from i to 

i 
                       end     
                   end 
               end 
            end 
        end 
        clust_tran= clust_tran/sum(sum(clust_tran)); 
        clust_tran0= clust_tran0/sum(sum(clust_tran0)); 
        for j=1:dpm.KK %find the likelihood that Xn belongs to cluster 

j 
            [mu,sigma] = map(dpm.qq{j});  %% MAP estimation 
            pp(j)=mvnpdf(Xn,mu',sigma); 
            %     cluster{j} = find(dpm.zz==j); 
            D2mu(j) = (sum(abs(Xn'-mu).^2,1)).^0.5; 
            ChangeAll= []; 
            le1 =size(SPTemp{1},1); 
            le2 =size(SPTemp{2},1); 
            le3 =size(SPTemp{3},1); 
            idx1 =find(dpm.zz(1:le1)==j);% Xn condition 

             
            idx2 =find(dpm.zz(le1+1:le1+le2)==j); 
            idx3 =find(dpm.zz(le1+le2+1:le1+le2+le3)==j); 
            apn_cl1= intersect(find(Slp_ann{1}()==1),idx1); 
            apn_cl2= intersect(find(Slp_ann{2}()==1),idx2); 
            apn_cl3= intersect(find(Slp_ann{3}()==1),idx3); 
            non_cl1= intersect(find(Slp_ann{1}()==0),idx1); 
            non_cl2= intersect(find(Slp_ann{2}()==0),idx2); 
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            non_cl3= intersect(find(Slp_ann{3}()==0),idx3); 
            if length(non_cl1)== 0 ,non_cl1=[];end; % 1-by-0 error 
            if length(non_cl2)== 0 ,non_cl2=[];end; % 1-by-0 error 
            if length(non_cl3)== 0 ,non_cl3=[];end; % 1-by-0 error 
        ChangePoint1 =[]; 
        for loop1=1:1:length(non_cl1) 
            ChangePoint1(loop1) = 

StateChange(Slp_ann{1},non_cl1(loop1)); 
        end 

  
        ChangePoint2 =[]; 
        for loop2=1:1:length(non_cl2) 
            ChangePoint2(loop2) = 

StateChange(Slp_ann{2},non_cl2(loop2)); 
        end 
   ChangePoint3 =[]; 
        for loop3=1:1:length(non_cl3) 
            ChangePoint3(loop3) = 

StateChange(Slp_ann{3},non_cl3(loop3)); 
        end 
        TimeF{j} = [ChangePoint1,ChangePoint2,ChangePoint3]; 
        if (~isempty(TimeF{j})) 
            [n,xout]= hist(TimeF{j},ceil(sqrt(length(TimeF{j})))); 
        else 
            xpdf= 0; 
            ypdf= 0; 
        end 
        t_est(j) = xout*n'/sum(n); 
        end 
    pb = pp/sum(pp); 
    t_pred1{combIdx}(ii) = sum(pb.*t_est);  
    ChangeInt2{combIdx}(ii) = StateChange(Slp_ann{combIdx},test_idx); 
    end 
end 
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