
IDENTIFICATION AND CHARACTERIZATION OF 

NATURAL COMPOUND INHIBITORS OF THE  

HSP90 CHAPERONE COMPLEX 

 

 

 

   By 

     JASON LEE DAVENPORT 

   Bachelor of Science in Biochemistry  
Oklahoma Christian University 

Oklahoma City, OK 
2006 

 
 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 
   the requirements for 

   the Degree of 
   DOCTOR OF PHILOSOPHY 

July, 2013  



ii 

 

   IDENTIFICATION AND CHARACTERIZATION OF 

NATURAL COMPOUND INHIBITORS OF THE  

HSP90 CHAPERONE COMPLEX 

 

 

   Dissertation Approved: 

 

   Dr. Robert Matts 

 

  Dissertation Adviser 

  Dr. Andrew Mort 

 

 

   Dr. Junpeng Deng 

 

 

Dr. Patricia Canaan 

 

 

   Dr. Jeff Hadwiger 

 



iii 

ACKNOWLEDGEMENTS 
 
 

  For all of my successes, both professionally and personally, I owe a great deal of credit 

to a great many people.  First, I need to thank Dr. Matts for taking me into his laboratory, 

and for guiding my growth and development as a student, and as a scientist.  His 

knowledge, experience, patience, and confidence in his students has allowed me to 

develop and independent, methodical, and overall mature and productive approach to 

science.  I also owe thanks to the current and past members of my advisory committee, 

Dr. Andrew Mort, Dr. Junpeng Deng, Dr. Patricia Canaan, Dr. Jeff Hadwiger, and Dr. 

Stacey Benson.  Their direction, advice, and patience have been much appreciated, and 

have given me a diverse and challenging system of support carrying out my research and 

writing. 

  I also would like to acknowledge my parents, for whom my education has always been a 

top priority.  It has been largely thanks to their support and encouragement that I have 

had the desire and ability to pursue this degree and the skills and opportunity that come 

with it.  Similarly, I have had a number of great friends and family members who have 

supported me in so many ways, and have made my educational journey not only better, 

but highly enjoyable.  Finally, I would like to give credit to the large number of teachers, 

mentors, friendly acquaintances, and people who have simply served as examples in my 

learning process leading up to this day. 

Acknowledgements reflect the views of the author and are not endorsed by committee members or 

Oklahoma State University.



iv 

 

Name: JASON DAVENPORT 
 
Date of Degree: MAY 2013 
  
Title of Study: IDENTIFICATION AND CHARACTERIZATION OF NATURAL 
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Major Field: BIOCHEMISTRY AND MOLECULAR BIOLOGY 
 
The 90 kDa Heat Shock Protein (Hsp90) has emerged as a major therapeutic target for a number 

of diseases, the most notable of which is cancer.  Accordingly, many groups are 
attempting to develop small molecules that modulate the activity of this chaperone and its 
associated co-chaperones.  At the same time, many of these same diseases have 
traditionally been treated using substances derived from local plant species.  Recognizing 
the intersection between these two medicinal strategies, our group has sought to find 
novel inhibitory compounds against the Hsp90 chaperone machine by employing high-
throughput screens of natural compound libraries.  In this work, we report the results of 
four such screens, showing that a number of potential Hsp90 inhibitors have already been 
used successfully in various medical traditions for the treatment of multiple diseases.  
Characterization of structure-activity relationships using a 1,4- nathoquinone scaffold that 
was common to several of our natural product hits, demonstrated that the luciferase 
renaturation assay that forms the basis of our screens is comparable to cell-based assays.  
Four compound hits, anthothecol, garcinol, rottlerin, and piperlongumine, were further 
characterized and demonstrated to inhibit the proliferation of human cancer cells, and the 
maturation of an Hsp90-dependent kinase.  Additionally, one of the compounds, 
gambogic acid, was shown to disrupt inter-molecular interactions of the Hsp90 chaperone 
complex, and to interact with Hsp90 itself.  These compounds and their derivatives 
represent potential novel therapeutics against cancer and other diseases in which Hsp90 
plays a role. 
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CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

  For thousands of years, traditional medicine has relied, to a large degree, on substances available in 

the natural world.  These have come mostly from various types of plants, but also from animals and 

other living things.  In the modern era, beginning two centuries ago with the purification of morphine 

from poppy seed pods, many maladies have been treated with chemicals derived from traditional 

natural sources.  Among these are psychotic conditions, microbial infections and their symptoms, 

heart conditions, and others have been treatable in this manner [1]. Many of the compounds from 

multiple ancient traditions are being studied, and their molecular targets being determined.  In 

addition to the basic investigation into the compounds’ activities, researchers are attempting to find 

compounds to be used against specific diseases, such as cancer [2]. 

  To this end, many groups have turned their attention to the 90 kDa Heat Shock Protein (Hsp90) as a 

therapeutic target.  The importance of this molecule is difficult to overstate.  It is a nearly universally 

conserved protein that serves as a major molecular hub in most organisms.  The chaperone plays a 

critical role in protein stability, signal transduction, protein localization, and others.  Hsp90’s 

significance in a medicinal context has been realized, as its central involvement in the underlying 

processes of cellular transformation has been observed [3]. 

  Hsp90 homologs are found in an enormous variety of organisms, including plants, animals, and 

many microbial life forms.  Except for archaea, the organisms of every kingdom contain at least one 
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Hsp90 gene [4].  HtpG is the homolog of Hsp90 found in E. coli, but it is not essential under non-

stress conditions.  Importantly, however, all studied eukaryotes require Hsp90 for viability [5] 

  In organisms from bacteria to humans, and including viral proteins, Hsp90 has been shown to 

interact with well over 300 proteins.  These interactions were determined for the cytosolic form alone. 

[6] The interactors of the mitochondrial and endosplasmic reticulum isoforms of Hsp90 have not been 

comprehensively examined, although they will certainly increase the number. 

  The significance of Hsp90’s interactors lies not only in their number, but in their functions.  The 

majority of proteins that are dependent upon Hsp90 (client proteins) for their activity are involved in 

either signal transduction or localization of proteins.  A large number of the chaperone’s interacting 

proteins are receptors, kinases, or transcription factors.[6]  Additionally, mitochondrial import 

receptors [7], assembly of the kinetochore complex [8], proteins involved in DNA packaging and 

modification, and other proteins are dependent on Hsp90 for their function, whether as clients, or 

simply as subunits of the same functional complex. 

 

  An additional, critical function that Hsp90 serves is the one for which it was named.  Hsp90 belongs 

to the family of proteins called heat shock proteins, because in response to elevated temperatures, 

their expression is increased.  In addition to heat, other stresses that result in the denaturing of 

proteins, such as heavy metals, reactive oxygen species, cold, and others, Hsp90 and the other heat 

shock proteins are up-regulated, and act by binding the exposed hydrophobic portions of unfolded 

proteins, and promoting their refolding, rather than aggregation [4, 9].  At least some cancer lines 

have been shown to constitutively express otherwise inducible heat shock proteins, as well as display
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 localization of these proteins to cellular and extracellular areas that they are not found in normal cells 

[10]. 

ATPase and chaperone cycle 

  Hsp90 has ATPase activity which drives its active chaperoning activity.  The process of folding or 

refolding of a substrate protein involves the switching between several conformations of Hsp90 and 

its co-chaperones, accompanied by the binding and hydrolysis of ATP and release of ADP.  This 

cycle and the specific combination of co-chaperones in the complex are intricately linked.  Different 

co-chaperones have various effects on the ATPase activity of Hsp90.  Some of them are known to 

increase the rate of ATP hydrolysis, while others are known to decrease it.  Still others do not, in 

themselves, have an observable effect on the ATPase, but influence other properties of the chaperone 

cycle. 

  Hsp90, in conjunction with its co-chaperones, exists as a clamp-shaped dimer (Figure 1.1).  The C-

terminal domains mediate dimerization that was thought to be constitutive.[11-12]  More recent 

evidence suggests that, while the C-termini are usually dimerized, the Hsp90 dimer does occasionally 

exist in a conformation where dimerization is mediated solely by the N-termini.  It should be noted 

that this dynamic behavior was observed in fluorescently labeled, purified Hsp90, and its 

physiological relevance has not yet been established [13].  The current model of its ATPase cycle is 

shown below (Figure 2).  Once the cycle is completed, it can begin again, presumably with either the 

same client molecule, or a different one.  Differences in co-chaperone composition of the Hsp90 

complex, and in the complex’s function within a cell, are observed when the complex is biased 

toward specific points in the cycle.  These changes hold significance for therapeutic intervention, 

which will be discussed later. 
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Figure 1.1. Full length crystal structure of yeast Hsp90 with non-hydrolyzable ATP analog 
bound to N-terminal ATP binding site. [14] 
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Figure 1.2. Current proposed model of the Hsp90 ATPase cycle.[15] 

Hsp90’s ‘default’ state, in humans, is an open form, with no nucleotide bound, and exists in an 
equilibrium of positions between steps 6 and 1.  Following binding of ATP (Step 1), a helical lid 
segment closes over the ATP, resulting in N-terminal dimerization (Step 2) [16-18], although this 
likely results from a shift in equilibrium of closed versus open Hsp90 molecules, rather than an all-or-
nothing phenomenon [19].  The closed position of the lid segment stabilizes this conformation (Step 
3) and promotes ATP hydrolysis (Step 4) [20].  There is some evidence that, after hydrolysis of the 
ATP (Step 4), the two monomers engage in a highly compact, ADP-bound conformation, although 
this conformation has only been observed transiently.[21]  After this, the clamp opens (Step 5), ADP 
is released (Step 6) 
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Co-chaperones 

  Hsp90 functions as part of a complex of proteins.  Aside from the client, these additional proteins 

have been termed co-chaperones.  In eukaryotes, over twenty co-chaperones have been identified.  

Some of these proteins have been shown to affect the rate of ATP hydrolysis by Hsp90.  Others are, 

more often than not, found when certain types of substrate proteins are involved.  The precise 

mechanisms, and to an extent, functions, of the co-chaperones in general have not yet been 

elucidated.  A few of the co-chaperones are reviewed here briefly. 

  Of the proteins counted among co-chaperones of Hsp90, Hsp70 may be the one that is the most 

important in its roles outside of the Hsp90 complex.  Hsp70 is essential for a large number of cellular 

functions where Hsp90 is not involved, or at least, is not involved directly.  Hsp70 chaperones many 

nascent peptides to maturity and in conjunction with Hsp90, prevents aggregation under stress 

conditions and promotes disaggregation, and serves to target proteins for degradation by both the 

lysosomal and proteasomal machineries. It also plays varying roles in the regulation of apoptosis, in 

addition to other roles [22]. 

  Hsp70 and the Heat Shock Cognate 70 (Hsc70) are often studied and discussed interchangeably.  In 

fact, much of the investigation into these proteins is done using antibodies that do not distinguish 

between the two.  Similar to Hsp90’s isoforms, Hsc70 is constitutively expressed, while Hsp70 is 

induced upon protein stress.  While the two proteins have differences in binding specificity and 

substrate affinity, for the purposes of their interactions with Hsp90, we will discuss them as a single 

protein.  Hsp70 consists of an N-terminal ATP binding domain and a C-terminal substrate binding 

domain.  Like Hsp90, the C-terminal domain contains an MEEVD motif, allowing it to interact with 

tetratricopeptide repeat (TPR) proteins. 

  Hop, or Hsp organizing protein, is primarily known to serve as an adaptor for the transfer of client 

proteins from Hsp70 to Hsp90.  After binding Hsp40 and the client protein, Hsp70 then binds to Hop, 
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which then facilitates the transfer of the client to Hsp90.  Hop’s ability to link Hsp70 and Hsp90 is 

mediated by the presence of multiple TPR domains.  These domains bind the conserved MEEVD 

motifs present in both the Hsp90 and Hsp70 proteins.  Hop is also known to inhibit the binding of 

ATP by Hsp90, effectively reducing the rate at which Hsp90 hydrolyzes ATP, pausing the ATPase 

cycle before transfer of the client from Hsp70 [23]. 

  The binding and transfer of a client protein by Hsp70 also requires the activity of Hsp40.  Hsp40 is 

part of a family of proteins referred to as J domain proteins.  They each contain a J domain, which 

consists of a four-helix motif, two of which are involved in a coiled-coil structure.  The domain 

contains an invariant His-Pro-Asp tripeptide in one of its loops.  These proteins are essential for most 

of Hsp70’s functions, conferring binding specificity for given processes [24], and stimulating Hsp70 

to hydrolyze ATP, converting the protein to its high affinity client-binding state. 

  P23, at 23 kDa is the smallest of the known Hsp90 co-chaperones.  The protein consists of an eight-

member, anti-parallel beta sandwich, with a highly conserved seven-residue segment in one of the 

loops, which has been shown to be involved in binding to Hsp90.  P23 binds to,[25] and stabilizes 

[26] the closed, or ‘late’, conformation of Hsp90.  This interaction is stabilized by the binding of ATP 

[18].    P23 is said to have passive chaperoning activity, in that it can bind to, and prevent the 

aggregation of, denatured proteins.  This is unlikely to reveal anything about the mechanism of its 

function within the Hsp90 complex, as nascent proteins chaperoned by Hsp90 are in a near-native 

state. 

  In the Hsp90 complex, Cdc37 is predominantly involved with the chaperoning of kinases, for which 

its presence is essential [27].  In this context, according to the most recently proposed model, a dimer 

of phosphorylated Cdc37 molecules bind to a client kinase monomer.  Upon dissociation of one of the 

Cdc37 monomers, the remaining Cdc37-kinase complex binds an Hsp90 dimer.  After interaction 

with Protein Phosphatase 5 (PP5), another Hsp90 co-chaperone, and subsequent dephosphorylation of 



8 

 

Cdc37, the complex dissociates, resulting in a mature kinase, or a reiteration of the cycle.  

Additionally, Cdc37 inhibits the ATPase activity of Hsp90, but does so without interfering with ATP 

binding [28-29]. However, Cdc37 has functions that are independent of Hsp90, or only partially 

dependent on it.  Cdc37 possesses passive chaperoning activity, which likely results at least partially 

from its ability to bind client proteins in the absence of Hsp90. 

  Another Hsp90 co-chaperone is the Activator of Hsp90 ATPase 1 (Aha1) which, as its name 

suggests, stimulates the ATPase activity of the chaperone.  Like Hsp90, Aha1 is up-regulated under 

stress conditions [30].  The exact role of Aha1 is not understood, although its importance to client 

activation has been demonstrated.  Increased expression of Aha1 results in increased activation of 

client proteins, while decreased expression results in decreased activation of client proteins and 

increased sensitivity to Hsp90 inhibition [31].   

  The co-chaperones discussed here are sufficient to chaperone many clients, including hormone 

receptors.  Kinases, however, generally require the action of Cdc37.  While the functions of none of 

the members of the complex are entirely understood, those of the other co-chaperones are understood 

even less so.  Among them are Protein Phosphatase 5 (PP5), which is known to regulate the activity 

of Hsp90 and Cdc37; Cyp40, FKBP52, Sgt1, and several others.  In some cases a specific function or 

set of functions of the co-chaperones is known.  In others, the co-chaperone just seems to direct 

specificity of interaction between Hsp90 and individual proteins or groups of proteins.  The various 

functions of the other co-chaperones continue to be pieced together. 

  Hsp90 exists as four known isoforms in mammals.  Hsp90β, which is constitutively expressed, is 

localized to the cytoplasm along with the inducible Hsp90α.  The 94 kDa Glucose-regulated Protein 

(Grp94) is localized to the endoplasmic reticulum, and the Tumor Necrosis Factor Receptor 

Associated Protein (TRAP-1) is the mitochondrial version. 

Hsp90 and cancer 
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  The role of Hsp90 in the development and progression of cancer is perhaps its most studied aspect.  

Specifically, a great deal of work has characterized the interaction between Hsp90 and the 

oncoproteins that it supports.  In 2000, Hanahan and Weinberg proposed six hallmarks by which 

cancer could be defined.  These were: resistance to cell death; sustained proliferative signaling; 

evasion of growth suppressors; activation of invasion and metastasis; enabling of replicative 

immortality; and induction of angiogenesis.  More recently, the same researchers have proposed an 

additional four characteristics of cancer cells.  Two of these are cellular hallmarks similar to the 

previous six:  deregulation of cellular energetics; and evasion of immune destruction.  Finally, two 

‘enabling characteristics’ have also been described:  genome instability and mutation; and tumor-

promoting inflammation [32].  All of these characteristics are represented by the group of proteins for 

which Hsp90 is known to be essential for stability and activity.  Additionally, the list of Hsp90 clients 

covers a large number of proteins that are not included in these functions [33]. 

  The expression of Hsp90 and other chaperones is generally increased in transformed cells, and this 

altered expression is necessary for their survival and growth.   Its isoforms are often altered in cancer 

cells.  The mitochondrial isoform TRAP-1 is highly expressed in the mitochondria of a number of 

tumor types, while expression is much lower in normal tissues [34]. 

  One consequence of continuous proliferation is shortened telomeres, which leads to cellular 

senescence.  Cancer cells overcome this problem by having an active telomerase.  Hsp90 and its co-

chaperone, p23, are required for proper assembly and function of the telomerase complex [35].  In 

yeast, the Hsp90 homolog, Hsp82, was shown in vitro to ‘switch’ a DNA-binding complex containing 

Cdc13 and telomerase from a capping function to an extending function [36]. 

  Cancer cells in metastatic tumors are often found to be hypoxic.  This state, rather than being a 

barrier to cancer cell proliferation, may actually be an advantage.  Hypoxia-inducible factor-1, which 

is up-regulated in response to a decreased oxygen level, is a transcription factor involved in the 



10 

 

expression of glucose transporters, glycolytic enzymes, and proteins required for angiogenesis.  HIF-

1α is an Hsp90-dependent protein.  It has been shown to interact with Hsp90, and treatment with an 

Hsp90 inhibitor disrupts activation of HIF-1, even under hypoxic conditions [37]. 

HRI 

  The heme-regulated inhibitor (HRI) of eIF2α is one of the many kinases that are dependent on 

Hsp90 for its stability and function.  The kinase phosphorylates the alpha subunit of eukaryotic 

translation initiation factor 2.  This results in suppression of translation, specifically of globins in 

reticulocytes, and other cell types, and is of importance during conditions of stress that can negatively 

impact protein homeostasis [38].  Accordingly, in the presence of denatured protein, HRI 

phosphorylates eIF2α [39].  Additionally, inhibition of the proteasome also results in phosphorylation 

of eIF2α, exclusively by HRI [40]. 

  The study of HRI has provided insight into the nature of the relationship between Hsp90 and some 

of its kinase clients, such as the interaction with Hsp90, not just for folding and activation, but as a 

sort of holding function until the kinase is needed.  HRI interacts with Hsp90 during translation in 

rabbit reticulocyte lysate.  During heme-deficiency, HRI undergoes auto-phosphorylation, as part of 

its maturation, and activates, and is released from the Hsp90 complex.  Without maturation, HRI 

remains bound to Hsp90.  Treatment of the lysate with the Hsp90 inhibitor geldanamycin blocks the 

activation of HRI, and the phosphorylation of HRI’s substrate, eIF2α, and results in the dissociation 

of HRI from Hsp90 [41]. 

  We’ve discussed here a few specific examples of the function of Hsp90 clients in the survival and 

growth of cancer cells.  However, there are many more proteins involved in the process.  Other 

examples of Hsp90 clients involved in cancer are Akt [42], which antagonizes apoptosis , matrix 

metalloproteinase 2 (MMP2) [43], which is involved in tissue invasion and metastasis, the MAP 

kinase Raf [44], which is involved in growth, proliferation, and apoptosis resistance.       
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    An example of the ‘buffering’ activity possessed by Hsp90 that is critical to the growth and 

survival of transformed cells is mutant p53.  As already discussed, many of the proteins chaperoned 

by Hsp90 are those involved in proliferative and pro-survival signal transduction.  P53, by contrast, 

has a generally antagonistic role regarding these pathways.  Mutant forms of the p53 tumor 

suppressor protein are found in the majority of cancers.  While normal p53 plays an important role in 

the prevention of tumor growth by inducing cell cycle arrest and apoptosis in the presence of DNA 

damage, the mutant form does not have such activity.  The mutant form requires extended interaction 

with Hsp90, compared to the wildtype [45].  Additionally, the mutant form localizes with Hsp90 in 

the cytoplasm, rather than the nucleus [46].  Given that p53 acts as a tetramer, even a modest buildup 

of the mutant protein could impair its normal regulatory activity.  P53 is an example of Hsp90 

supporting the dysfunction of a molecule normally involved in the dampening of cell growth, rather 

than its acceleration, as is the case with many other Hsp90 clients.  This further underscores the 

importance of Hsp90 to the survival and growth of cancer cells. 

 There are many more proteins involved in cancer and other diseases that depend on Hsp90 for their 

activity and stability.  An updated list of Hsp90’s interactors is maintained by the laboratory of Didier 

Picard and can be found here:  http://www.picard.ch/downloads/Hsp90interactors.pdf. 

Inhibitors 

  Since the discovery of the classical Hsp90 inhibitor, geldanamycin (Figure 1.3), many additional 

inhibitors have been synthesized or discovered.  Several of these are derivatives of geldanamycin, 

such as 17-AAG, 17-DMAG, and Retaspimycin, among others.  Other inhibitors, like geldanamycin, 

were originally identified as antibiotics, but were discovered to have anti-cancer properties, such as 

radicicol [47-48] and herbimycin, which is part of the geldanamycin family of compounds [49].  

While these compounds bind to the N-terminal ATP binding site of Hsp90, another group of 

inhibitors, like novobiocin (Figure 1.3) and its analogs, bind to the C-terminus. 
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Geldanamycin      Novobiocin 

Figure 1.3. Strucures of the classical Hsp90 inhibitors geldanamycin and novobiocin. 
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  As mentioned previously, most Hsp90 inhibitors bind the N-terminal ATP-binding site.  While 

ATP-binding sites are found in a very large number of proteins, Hsp90 inhibitors are fairly specific, 

and bind mostly to Hsp90 and a small number of other proteins, including histidine kinases [50], the 

PhoQ sensor kinase [51], and Type II DNA Topoisomerase [52].  These proteins, and Hsp90 itself, 

belong to a superfamily known as the GHKL proteins.  These proteins contain an unusual ATP-

binding motif called the Bergerat fold.  Whereas ATP-binding domains usually consist of four 

parallel beta sheets packed between two pairs of alpha helices, the Bergerat fold consists of an a layer 

of anti-parallel beta sheets facing a layer of three alpha helices [53].  ATP bound to Hsc70 assumes an 

open, linear conformation.  In contrast, ATP bound Hsp90 is in a distinctly more contorted, compact 

form (Figure 1.4). 

Cancer cells 

  The cytotoxic and anti-proliferative effects of Hsp90 inhibitors on cultured cancer cell lines provide 

some of the strongest rationale for investigating their potential as therapeutic agents.  Hsp90 

inhibitors have demonstrated a strong ability to slow or stop proliferation and to induce apoptosis in a 

number of cancer cell lines.  Among these are leukemia and KB cells [54],  lymphoblastic leukemia 

cell lines containing the Philadelphia chromosomal rearrangement [55], breast, colon, endometrial, 

and ovarian cancer [56], spinal neuroblastoma [57],  bile duct cancer [58], and others. 

  Hsp90 inhibitors have also demonstrated effectiveness against cancer cells that have developed 

resistance to other cancer treatments, such as radiation therapy [59], proteasome inhibitors [60], and 

other anti-cancer pharmaceuticals, such as the mitotic inhibitor paclitaxel [61] and the 

tyrosine kinase inhibitor imatinib [62]. 
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Figure 1.4. The conformation of ATP while bound to Hsc70 and the non-hydrolyzable ATP 
analog AMP-PNP while bound to Hsp90. [63] 
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  Additionally, Hsp90 inhibitors often display a synergistic activity with other forms of treatment, 

greatly lowering the concentrations of both compounds necessary for anti-proliferative or cytotoxic 

activity [64]. 

  In this study, we have used three cells lines to study the effects of putative Hsp90 inhibitors.  These 

cell lines are MCF-7, HeLa, and SkBr3.  MCF-7, a breast cancer cell line, was chosen because these 

cells overexpress the Hsp90-dependent estrogen receptor and androgen receptor.  They do not, 

however, express the Hsp90-dependent ErbB2 protein.  SkBr3 cells, another breast cancer cell line, 

overexpresses ErbB2, allowing a comparison between the effects of putative Hsp90 inhibitors on 

different Hsp90 client proteins, as well as between two cells types from the same tissue.  HeLa cells 

are cervical cancer cells that are known to be resilient against multiple types of stress, and are good 

potential indicators of an Hsp90 inhibitor’s effectiveness. 

  In vivo studies have been carried out to determine the efficacy of Hsp90 inhibitors against tumor 

growth.  In a mouse model of prostate cancer, the mitochondrial Hsp90 isoform inhibitor gamitrinib 

blocked the development of prostate tumors, and prevented metastatsis [65]. 

  Inhibitors of Hsp90 have several effects on the Hsp90 dimer itself, as well as its association with its 

co-chaperones and client proteins.  Inhibitors of Hsp90 bind to different regions of the protein, 

although the majority of compounds with appreciable affinity seem to bind the N-terminal ATP site.  

Others bind to a putative C-terminal ATP-binding site.  Different inhibitors also have different effects 

on the chaperone.  Given the difficulties of crystallography, inhibitor discovery has outpaced the 

production of crystal structures of Hsp90 with bound inhibitors.  However, other methods have 

allowed the elucidation of these effects.  All studied inhibitors lock, or strongly bias, the protein into 

one specific part of its ATPase cycle.  The conformational biases introduced by the inhibitors alter the 

proteolytic sensitivity of Hsp90, producing distinct cleavage patterns.  Additionally, the repertoire of 

co-chaperones is conformation dependent.   Some inhibitors, such as the well-established 
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geldanamycin and its derivatives, favor the more ‘open’ conformation, which is normally found when 

Hsp90 has no nucleotide bound.  When treated with trypsin, geldanamycin-bound Hsp90 produces a 

gel pattern that is little, if any, changed from that of untreated Hsp90.  This conformation, which is 

thought of as the intermediate portion of the ATP cycle, also features bound Hsp70 and the Hsp70-

Hsp90 organizing protein (HOP).  The molybdate ion has been used in Hsp90 studies to examine the 

late phase of the ATP cycle.  When lysate or recombinant protein is treated with sodium molybdate, 

the interactions of the co-chaperones p23 and Cdc37, as well as FKBP52, with Hsp90 are stabilized.  

Proteolytic digestion results suggest that a portion of the C-terminus becomes structured as a result of 

the binding of molybdate.  Novobiocin, another well-studied inhibitor, binds the C-terminus of 

Hsp90.  The binding of this compound favors a conformation of Hsp90 that results in dissociation of 

the chaperone from nascent client protein.  Additionally, this dissociation seems to take place at a 

point in the ATP cycle at which the ‘late’ complex has formed.  This results in a complex consisting 

of the client and the co-chaperones p23 and PP5, but not the co-chaperone Cdc37 or Hsp90 itself [66]. 

Degradation 

    Treatment of cells, and in some cases, cell-free systems, with an inhibitor of Hsp90, results in the 

degradation of Hsp90-dependent client proteins, such as EGFR and ErbB2 (Figure 5).  Without the 

support of the Hsp90 chaperone complex, client proteins become unstable and are poly-ubiquitinated 

and degraded by the proteasome.  The ubiquitination of the client protein is mediated by the E3 

ligase, C-terminus of Hsp70 Interacting Protein (CHIP).  This protein, as the name states, interacts 

with Hsp70 through a TPR domain, and, along with Hsp40, facilitates the degradation of proteins that 

are not successfully folded by the Hsp90 machinery, and CHIP’s interaction with the client is 

increased upon Hsp90 inhibition. [67]  While the exact mechanism is not yet fully understood, it is 

clear that Hsp90 plays a part in the degradation of its own client proteins, as its presence is necessary 

for efficient ubiquitination of the unfolded protein [68]. 
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Figure 1.5. Treatment of two carcinoma cell lines with geldanamycin reduces the expression of the 
Hsp90 client proteins EGFR and ErbB2. [69] 
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  Whatever the mechanism, this depletion of Hsp90-dependent proteins, specifically the signal 

transduction molecules that are essential for the survival and growth of cancer, is one of the properties 

that makes the chaperone a high-profile target for therapeutic intervention.  With the destruction of 

these molecules, cancer cells are often unable to survive and proliferate, and populations of cancer 

cells have even been observed to revert to normal upon treatment with an Hsp90 inhibitor. 

  Given the importance of Hsp90 in cancer and other diseases, the search for small molecules that can 

modulate its activity is now an area of intense focus.  In this study, we report some of the progress 

made by our group in this effort. 
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CHAPTER II 
 

 

HIGH-THROUGHPUT SCREEN FOR INHIBITORS OF HSP90  

AND FURTHER STUDY OF SELECTED HITS 

Introduction  

  Since its emergence as a major molecular target for cancer therapeutics, Hsp90 has been the 

focus of a great deal of research.  Basic research has seen the expansion of the group of proteins 

termed ‘clients’, which rely on Hsp90, not only for their activity and function, but for their 

stability.  It has long been established that disruption of Hsp90 function results in reduced 

stability and degradation of these client proteins.  It has also been firmly established that the 

majority of the proteins dependent on Hsp90 for their function are involved in signal 

transduction.  Additionally, these proteins reside in diverse pathways with wide-ranging 

functions.  Accordingly, inhibition of Hsp90 has equally wide-ranging effects.  These effects have 

been observed most starkly in cancer cells, which depend more than normal cells on Hsp90-

dependent signal transduction capabilities. 

  Owing to its importance to the viability of cancer cells, a great deal of effort has been dedicated 

to the discovery and characterization of inhibitors of Hsp90 and its chaperone complex.  These 

studies have taken many forms, relied on many techniques, and have screened large numbers of 

compounds for their ability to modulate Hsp90 function. 
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One such study was undertaken by our lab.  Our efforts to identify compounds that inhibit Hsp90 

have focused on compounds found in nature.  The well-studied inhibitors of Hsp90, 

geldanamycin, radicicol, and novobiocin, were all isolated from bacteria and fungi.  In order to 

identify additional inhibitors, we have screened libraries consisting of compounds from various 

natural sources, such as trees, sea sponge, and others. 

  Our screen, and eventual characterization of hits, has made use of rabbit reticulocyte lysate.  

Reticulocyte lysates, the lysates of immature red blood cells, have been used for decades for in 

vitro translation studies, and are replete with Hsp90 and other molecular chaperones.  As such, 

they are useful for studying the functions and interactions of these proteins. 

  In order to use the reticulocyte system to screen for inhibitors of the Hsp90 complex, we make 

use of the fact that Hsp90 is involved, not only in the folding and activation of nascent proteins 

belonging to its specific client set, but also, unfolded proteins in general.  For our study, we used 

thermally denatured firefly luciferase.  Incubation with chaperone-replete rabbit reticulocyte 

lysate will restore the activity of thermally denatured firefly luciferase.  Additionally, while 

incubation at 37° C will result in a loss of luciferase activity, incubation at 37° C with 

reticulocyte lysate causes no change in activity.  These observations indicate both active and 

passive chaperoning capabilities of rabbit reticulocyte lysate, with respect to luciferase.  

Immunoprecipitation of denatured luciferase from reticulocyte lysate, as well as treatment with 

Hsp90 inhibitors, indicate that Hsp90 and its co-chaperones are involved and essential for the 

refolding of thermally denatured luciferase in the lysate [70].  We make use of this fact for the 

screening of potential Hsp90 inhibitors.  Thermally denatured luciferase is introduced into the 

reticulocyte lysate.  After a one to three hour incubation at room temperature, a substantial 

increase in luciferase activity occurs, as observed by the addition of an assay buffer containing 

the natural substrate of luciferase, luciferin.  However, when an Hsp90 inhibitor, such as 
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geldanamycin, is added to the lysate, little if any change in luciferase activity is observed.  In this 

way, we can screen large numbers of compounds for potential activity against Hsp90 or its  

co-chaperones.  Here we describe our system for the high-throughput screening of commercially 

available compounds for their ability to inhibit the Hsp90-dependent refolding of firefly 

luciferase, and the characterization of a select group of the resulting hits. 

Materials and Methods 

  Rabbit reticulocyte lysate 

  Rabbit reticulocyte lysates were purchased from Green Hectares.  The purchased lysate was 

prepared by lysing one volume of packed reticulocytes in two volumes of deionized water, 

followed by centrifugation for twenty minutes at 15,000 X g. 

  Denatured Luciferase 

  Recombinant luciferase from Promega was diluted to 0.5 mg/mL in buffer consisting of 25 mM 

Tricine-HCl (pH 7.8), 8 mM MgSO4, 0.1 mM EDTA, and 10 mg/mL acetylated BSA.  Next, the 

solution was adjusted to include 10% glycerol and 1% Triton X-100.  Finally, the luciferase 

solution was heated to ~41°.  Once the activity of the luciferase reached ~1% of its initial value, 

the mixture was placed on ice, or flash frozen in liquid nitrogen and placed at -80° for storage. 

  To prepare the denatured luciferase for use in re-folding assays, 125 uL of the 0.5 mg/mL 

mixture was added into a 10 mL mixture containing 80 mM Tris HCl, pH 7.7, 8 mM Mg(OAc)2, 

300 mM KCl, 12 mM ATP, and 20 mM creatine phosphate, and 0.8 mg/mL creatine 

phosphokinase. 

  Assay Buffer 
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  The assay buffer, which contains the luciferase substrate luciferin, consisted of 75 mM  Tricine-

HCl, pH 7.8, 24 mM MgSO4, 300 uM EDTA, 2 mM DTT, 313 uM D-luciferin, 640 uM 

coenzyme A, 660 uM ATP, 150 mM KCl, 10% (v/v) Triton X-100, 20% (v/v) glycerol, and 3.5% 

DMSO. 

  Compounds 

  The compound libraries screened were from the following companies, and contained the 

respective number of compounds:  TimTec – 240; Analyticon – 2728; Biofocus – 272;  

BioMol – 579. 

  Compounds were reconstituted in 100% DMSO.  Stocks, at a concentration of 1 mg/mL, were 

diluted 30-fold into nano-pure water for the assays.  The assay was performed in 96-well 

microplates.  To each well was added 30 uL of the water/DMSO compound solution, 15 uL of the 

reticulocyte lysate preparation, and 15 uL of the luciferase reagent.  The plates were agitated and 

then allowed to incubate at 25° C for one to three hours.  After the incubation, 60 uL of assay 

buffer containing luciferin was added to each well.  The plates were then placed on a Lumac 

microplate luminometer, and luminescence was measured in relative light units, with an 

integration time of 10 seconds.  Compounds that inhibited luciferase refolding by approximately 

fifty percent were then titrated into a refolding reaction containing native luciferase, to control for 

direct inhibition of luciferase. 

Results 

  A number of compounds were found to substantially inhibit the renaturation of luciferase in our 

lysate system.  After control screening with native luciferase to eliminate false positives that were 

likely luciferase inhibitors, a number of compounds were selected for further study. 
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  The compounds listed below in Tables 2.1 – 2.9 have been compiled because they have been 

determined to inhibit the Hsp90-dependent refolding of luciferase, without inhibiting luciferase 

itself.  The compounds have been sorted largely by structural classification, although some do not 

fit well into any grouping with others.   

  Because of Hsp90’s central role in signal transduction and protein shuttling, its inhibition has 

widespread and sometimes varied effects within a cell.  Depending on the conditions, the 

physiological manifestations of this inhibition can also vary.  For example, Hsp90 is highly 

involved in the inflammatory response, as several mediating proteins, such as IκB Kinase (IKK) 

[71] and nitric oxide synthase [72], are dependent on Hsp90 for their function.  Accordingly, 

Hsp90 inhibitors result in the down-regulation of these proteins and display anti-inflammatory 

activity, which makes them prominent in traditional medicine.  In the case of cancer cells, 

accelerated growth and cell division is maintained by Hsp90-dependent clients.  Thus, treatment 

with Hsp90 inhibitors results in the slowing of cell growth, and potentially, death.  Similarly, the 

effects of Hsp90’s inhibition can be seen in other medically relevant ways, including activity 

against viruses, bacteria, fungi, and parasites, specifically the causative agent of malaria, 

Plasmodium falciparum. 

  The significance of this to our screen, in addition to being the primary reasons for our study, is 

that novel compounds not known to have any activity against Hsp90 or its co-chaperones can be 

implicated in this role by their being reported to have multiple, seeming unrelated, medically 

relevant biological activities.  As will be shown below, some of the compounds identified in our 

screen have been specifically shown to inhibit the activities of proteins known to be dependent on 

Hsp90 for their function.  These proteins include Akt, STAT-3, Her2 (ErbB2), Insulin-like 

Growth Factor Receptor (IGFR), Endothelial Growth Factor Receptor (EGFR), and others.  

Compounds reported to block the actions of these proteins, or their downstream signaling 

partners, such as NF-kB, are of special interest to our study.  Also, Hsp90 is known to be required 
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for the activity of viral polymerases [73-74], so anti-viral activity is another mark of an Hsp90 

inhibitor.  Additionally, even though they haven’t been identified as Hsp90 inhibitors, most of the 

compounds in our screen belong to compound families that contain known, or likely, Hsp90 

inhibitors.  Below, we give examples of the biological activities that make each class of 

compounds, or specific compounds, good candidates as Hsp90 inhibitors.  References supporting 

the compounds’ potential as Hsp90 inhibitors are included in the tables. 

Sesquiterpene lactones 

  Some of the compound hits in our screen belong to the family of compounds known as 

sesquiterpene lactones.  These compounds are characterized by a fifteen-carbon skeleton formed 

from the joining of three isoprene units.  The other defining feature of the molecules is a lactone 

group.  These compounds are found in many types of plants, and have long been used for various 

purposes in traditional medicine.  Given their effectiveness in the treatment of a wide variety of 

ailments, and their observed action on multiple cellular functions and molecular targets, these 

compounds are promising candidates as Hsp90 inhibitors. 

  Sesquiterpene lactones have been grouped into seven general classes according to their 

structures.  They are germacranolides, eudesmanolides, eremophilanolides, guaianolides, 

pseudoguaianolides, hypocretenolides, and iso-seco-tanapartholides.  Compounds with reported 

biological activity come from all of the groups, although germacranolides, guaianolides, and 

pseudoguaianolides appear to be the most prominent [75].   

  Two sesquiterpene lactones, isodeoxyelephantopin, and its nearly identical analog, 

deoxyelephantopin, were shown to inhibit the proliferation of mouse fibroblast tumor cells.  The 

two compounds also inhibited DNA replication in both proliferating lymphocytes and tumor 

ascites [76].  Another pair of compounds fitting into this family, costunolide and eremanthin, 

were extracted from the ornamental plant Costus speciosus, and displayed anti-fungal activity 
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similar to the standard anti-fungal, fluconazole, against two species of Trichophyton, and 

somewhat weaker activity against several other fungi [77]. 

  As nitric oxide is a mediator of inflammation, a compound’s effect on nitric oxide production is 

an indicator of its anti-inflammatory potential.  This is especially relevant to our study, because 

nitric oxide synthase is a known Hsp90 client.  A eudesmanolide (Figure 2.1) isolated from 

Taraxacum mongolicum, and assayed for its ability to inhibit nitric oxide production in RAW 

264.7 mouse macrophages, displayed an IC50 of ~60 uM [78].  

  Hit #6, parthenolide, is from a different class of sesquiterpene lactones, but has a nearly identical 

structure.  Additionally, it contains a methene group at the same location as the previously 

mentioned compound, a functional group that is the sole distinguishing feature from another, less 

active compound in the same study.  Hit #4, MEGxm0_000041, contains a very similar moiety as 

its core, but also contains an esterified, un-saturated 8-carbon fatty acid molecule.  Two 

compounds from the plant Eupatorium lindleyanum, eupalinolide A and eupalinolide B, are of the 

germacranolide sub-class.  They induced the expression of several heat shock proteins, including 

Hsp70 and Hsp90, in mouse squamous cell carcinoma and melanoma cells.  The compounds were 

also shown to activate HSF1 [79], a potential indicator of an Hsp90 inhibitor.  Hit #2, also 

belongs to this class of compounds, and has some similarity in its attached moieties. 
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Figure 2.1. Structure of a Eudesmanolide from Taraxacum mongolicum 
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Table 2.1. Sesquiterpene lactone compounds 

# Name, or location within 
assay. 

Structure Properties 

1 17-C3 
Guaianolide 

 

IC50 ~ 60 uM 

2 29-F9 Germacranolide 

 

IC50 ~ 40 uM 
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3 17-F4 
Guaianolide 

 

IC50 ~ 40uM 

4 Eudesmanolide 

 

Anti- L5178Y lymphoblastic 
tumor, PC12 neuroendocrine 
tumor, HeLa cervical cancer 
[80] 
IC50 ~ 60 uM 

5 Germacranolide 

 

Anti-malarial [81] 

6 Parthenolide 
Germacranolide 

 

IC50 > 100 uM 
Activity discussed below. 
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7 17-C4 

 

IC50 ~ 30 uM 

8 16-H2 

 

IC50 ~ 10 uM 

9 Helenalin Induction of ROS and 
suppression of  
NF-kB; suppression of Bcl-2-
mediated resistance to 
apoptosis [82].  Anti-leukemic 
[83].  Inhibition of human 
telomerase [84].  Induction of 
autophagy and cell cycle arrest 
[85]. 
IC50 ~ 80 uM 
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  Compound 6, parthenolide, has been identified as an anti-tumor and anti-inflammatory agent, 

and is currently in clinical trials for acute myeloid leukemia, acute lymphoblastic leukemia, and 

other types of blood and lymph node cancers [75]. 

  Parthenolide’s anti-cancer and anti-inflammatory activities have been attributed to multiple 

mechanisms.  It was shown to inhibit the activation of NFkB by IkB, even when the kinase was 

constitutively active [86].  It was also able to sensitize TRAIL-resistant cancer cells by inhibiting 

STAT3 activation [87].   

Polyphenols 

 Polyphenols are defined as those compounds that contain phenolic moieties.  Often, these 

substituents are poly-hydroxylated.  The family of compounds is large, and contains multiple 

subtypes.  Many of the hits from our screen fall into this classification, and fall across multiple 

subclasses. 

  Polyphenols are often described as anti-oxidants, and are observed to protect against ROS in 

vitro.  The actual mechanisms behind these activities, however, have not been determined. 
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Table 2.2. Polyphenols and related compounds 

 

# Name or location 
within assay 

Structure Properties  

10 F2 
2’3’-
dihydrosorbicillin 

 

IC50 > 100 uM  

11 Tellimagrandin II 
151590 
Polyphenol 

 

Anti-HIV  
Suppressed 
tumor growth 
and increased 
lifespan in 
mouse sarcoma 
180 [88]. 
IC50 ~ 70 uM 

 

12 Theaflavin 

 

Anti-influenza 
and anti-
inflammatory 
[89].  Anti-
proliferative 
against leukemia 
cells via down-
regulation of 
Akt; implicated 
as inhibitor of 
Hsp90 [90]. 
Inhibits NFkB 
and MAPK 
signaling [91]. 
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Flavonoids 

  Flavonoids are a large and diverse group of compounds within the class of polyphenolics.  

Flavonoids likely comprise around half of all identified polyphenolic compounds.  Aside from 

their aromaticity, the molecules have no single unifying characteristic, except that they all contain 

two or more six-membered rings, as well as at least one oxygen atom, as an ether or a ketone.  

Many of the compounds contain additional keto- and –hydroxyl groups.  This family of 

compounds exists in abundance in a number of substances used in traditional medicine.  These 

substances have been attributed activities against allergy, inflammation, infection, tumors, 

diarrhea, and others.  They’ve also been credited with wound healing and other beneficial 

properties.  As ubiquitous as flavonoids are in plants, they are found in many foods.  Examples 

are quercitin, EGCG, resveratrol, and others. 

  Several of the compound hits in our screen belong to the flavanoid family.  Some of the 

compounds contain the typical bicyclic core with a benzene ring fused to a pyran or pyrone 

group, with a phenyl group attached in the flavan, isoflavan, or neoflavan configuration.  These 

then contain additional phenyl or aliphatic groups of varying saturation and oxygen attachment.  

Additionally, some of the compounds fall into the subgroup of flavanoids known as chalcones.  

These compounds are metabolic precursors to the previously described flavonoids.  The 

chalcones are characterized by two benzenes bridged by a 2-propen-1-one group. 

  Flavonoids are found throughout the plant kingdom.  They have been used in various forms for 

treatment of multiple conditions for centuries.   Many flavonoids have proven anti-microbial 

activity.  Argentine folk medicine has made use of a plant containing the glycosylated flavonol, 

quercetagetin-7-arabinosyl-galactoside, for treatment of infectious diseases [92].  In another 

study, epigallocatechin gallate (EGCG), a type of flavonoid found abundantly in green tea, 

demonstrated strong anti-bacterial activity, resulting from damage to the lipid bilayer [93]. 
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However, EGCG has also been demonstrated to bind to Hsp90 and to down-regulate the 

expression and activation of its clients [94]. 

  In several studies over the course of twenty years, apigenin, a simple flavone, was assayed for 

its anti-bacterial activity, and was found to be active against over fifteen types of pathogenic 

bacteria, including S. aureus, MRSA, E. coli, P. aeruginosa, and K. pneumonia [95].   

  In addition to anti-microbial activity, these types of compounds demonstrate anti-cancer 

activities of varied sorts.  Apigenin (Figure 2) has demonstrated strong in vitro anti-tumor and 

anti-angiogenic activity against human lung, prostate, and ovarian cancer cells.  In each of these, 

the expression of VEGF and the Hsp90-dependent HIF-1alpha were suppressed [96-97]. 

  Among our hits, four compounds, # 9, 10, 12, and 13, contain the same flavone core that 

apigenin has.  Another two contain a flavonone core that is nearly identical, except for saturation 

in place of the C-2 double bond in flavones. 
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Figure 2.2. Structure of apigenin 
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Table 2.3. Flavonoid compounds 

# Name or 
location within 

assay 

Structure Properties 

13 (2S)-5,7-
dihydroxy-8-(3-
methylbut-2-
enyl)-2-
phenylchroman-
4-one 
Flavanone 

 

IC50 > 75 uM 
 
 

14 MolPort-005-
945-561 
45360115 
Flavonone 
 

 

None reported 
IC50 ~ 70 uM 

15 2'-hydroxy-b-
naphthoflavone 
Flavone 

 

IC50 ~ 350 uM 
Some inhibition of 
luciferase 
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16 7,8-dihydroxy-
2-(2-
hydroxyphenyl)
chromen-4-one 
Flavone 
 

 

IC50 ~ 10 uM 
Some inhibition of 
luciferase 
 

17 
 

Biochanin A 
5,7-dihydroxy-
3-(4-
methoxyphenyl)
chromen-4-one 
Isoflavone 

 

Anti-inflammatory.  
Inhibits iNOS, p38 
MAPK, and NFkB 
activation.  Anti-
proliferative and cyto-
toxic activity against 
RAW 264.7 
macrophages and HT-
29 colon carcinoma 
cells.  Less active 
against RAW 264.7. 
[98] 
IC50 > 90 uM 
 

18 
 

2',3',6-
Trimethoxyflavo
ne, 97% 
2-(2,3-
dimethoxypheny
l)-6-
methoxychrome
n-4-one 
 

 

IC50 > 90 uM 
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19 
 

3',4'-Dimethoxy-
3-hydroxy-6-
methylflavone 
2-(3,4-
dimethoxypheny
l)-3-hydroxy-6-
methylchromen-
4-one 
 
 
 
 

 

IC50 ~ 30 – 80 uM 

20 Luteolin 

 

Induction of unfolded 
protein response and 
apoptosis in 
neuroblastoma [99].  
Inhibits LPS-activated, 
Akt-mediated 
activation of NFkB in 
macrophages, blocking 
production of TNFa 
[100].  Anti-tumor 
activity through EGFR 
pathway suppression in 
breast cancer cells 
[101]. 
Shown to inhibit Hsp90 
[102]. 
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MANGOSTIN 
1,7-bis(3-methylbut-
2-enyl)-3,6,8-
trihydroxy-2-
methoxyxanthen-9-
one 

 

Xanthanoid - 
Similar to 
gambogic acid 
Induces cell cycle 
arrest and apoptosis 
in colon [103] and 
prostate cancer 
cells [104].  Blocks 
activation of MAP 
and Akt pathways 
[105]. 
IC50 ~ 60 uM 
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22 
 

(+)-α-Tocopherol 
acid succinate 

 

IC50 ~ 50 uM  

23 CHEMBL109330 

 

Possible anti-
oxidant activity 
[106] 
 

 

24 MolPort-001-742-
269 
38356110 

 

None reported 
IC50 ~ 65 uM 

 

 

 

Chalcones 

    Chalcones are a structurally distinct subclass of flavonoids to which several of our hits belong.  

Chalcones have many of the same biochemical characteristics as the other flavonoids.  As with 
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flavonoids generally, chalcones have anti-fungal[107], anti-inflammatory[108], anti-tumorogenic 

[109], anti-HIV, and anti-plasmodial activities [110], among others.  Significantly, a number of 

proteins were identified as targets for a group of chalcones.  Several of these proteins are known 

to be dependent on Hsp90.  Included among them were Akt, NF-kB, mTOR, STAT3, HIF-1α, 

iNOS, and others([111]).  Also, although it comprises only a fraction of its mass, a chalcone unit 

is present in the putative Hsp90 inhibitor, rottlerin. 
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Table 2.4. Chalcone compounds 

# Name or location 
within assay 

Structure Properties 

25 Phloretin [60-82-2] 

 

Induction of apoptosis in breast 
cancer cells via p53 induction and 
Bcl-xl degradation [112] 
IC50 ~ 35 – 90 uM 

26 Curcumin [458-37-7] 
(1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,6-
heptadiene-3,5-dione) 
Similar to chalcone 
 

 

Multiple effects.  Anti-oxidant, 
anti-inflammatory, suppression of 
NF-kB activation, anti-proliferative 
to several cancers [113].  Reported 
Hsp90 inhibitor [114]. 
IC50 ~ 70 uM 
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27 2',4-
Dihydroxychalcone 
(2E)-1-(2-
hydroxyphenyl)-3-(4-
hydroxyphenyl)prop-2-
en-1-one 
Chalcone 
 

 

IC50 ~ 120 uM 

28 Rotterlin 
Contains chalcone 
moiety. 
 

 

Likely Hsp90 inhibitor. 
See Chapter V 
IC50 ~ 20 – 50 uM 

29 18-E6 
Contains chalcone 
moiety 
Similar to Rottlerin 
and catechin. 
 

 

IC50 ~ 60 uM 

30 AC1L4WK5 
193568 

 

IC50 ~ 50 uM 
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31 2',4'-dihydroxy-6'-
methoxy-3',5'-
dimethylchalcone 
10424762 

 

Anti-bacterial; anti-fungal 
[115-116] 
IC50 ~ 70 uM 

32 AC1MR5D9 
3512639 
Polyphenol 
Flavan-3-ol 
 

 

None reported 
Related compound – Catechin (CID 
9064) – Tumor Hsp90 inhibition, et 
al… 
Emory University Molecular 
Libraries Screening Center – HTS 
for Tumor Hsp90 Inhibitors – 
PubChem ID 
IC50 ~ 60 uM 

33 Nordihydroguaiaretic 
acid 

 

Phase II study for effect on prostate 
cancer.  Increased doubling time of 
PSA.  Thought to inhibit IGF1R 
and HER2.  Effectiveness less than 
pre-determined threshold, probably 
largely because of liver metabolism 
resulting in decreased 
bioavailability [117]. 
IC50 ~ 35 – 80 uM 

34 CID  16070714 
Similar to catechin 

 

IC50 ~ 50 uM 

CH
3

CH
3

OH

OH

OH

OH
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35 Gossypol 

 

Anti-oxidant; broad anti-cancer 
activity.  Contraceptive activity.  
Anti-viral.  Anti-protozoan.  Anti-
microbial[118] 
IC50 ~ 50 uM 

 

Alkaloids 

  Alkaloids are broadly defined as containing basic nitrogen atoms in their ring structures.  As this 

definition includes a large number of possible compounds, the family is more practically broken 

down into smaller divisions.  Regardless, the compounds within the family that have 

demonstrated biological activities are themselves diverse, with no single structure or group of 

structures being a requisite for these activities.  For the classification purposes of our screen, we 

will regard alkaloids as compounds that contain cyclic nitrogen atoms.  However, alkaloid 

compounds containing another relevant group, such as a quinone, will be placed in that group.  

Like the other compound groups represented in our screen, alkaloids have demonstrated a wide 

range of medically relevant bioactivities.  Included are anti-tumor, anti-hypertensive, anti-

depressant, anti-microbial, anti-inflammatory, and other activities [119].  A well-known example 

of a medicinal alkaloid is quinine (Figure 2.3), isolated from the tropical medicinal plant 

Cinchona succirubra, which has been used to treat malaria for hundreds of years [81]. 
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Figure 2.3. Structure of quinine 
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Table 2.5. Alkaloid compounds 

# Name or location 
within assay 

Structure Properties 

36 Peganine 
72610 

 

Immuno-modulation. 
Anti- mycobacterial; 
leishmania 
Prostaglandin potentiation 
[120-124] 
IC50 ~ 130 uM 

37 MEGxm0_000173 
21127802 

 

None reported 
Closely related compound, 
Gliotoxin (CID 6223) cited for 
multiple activities. 
Inhibitor of NF-κB, farnesyl 
transferase; anti-
mycobacterial; anti-Hepatitis 
C; induction of apoptosis and 
necrosis [125-130] 
IC50 ~ 15 uM 

38 19-A7 

 

IC50 ~ 60 uM 
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39 
 

(2S,3S,14S,13R)-3-
[(4-
methylphenyl)carbony
l]-17,19-dioxa-4-
azapentacyclo[14.2. 
1.0<2,14>.0<4,13>.0<
5,10>]nonadeca-
5(10),6,8,11-tetraen-
15-one 

 

IC50 ~ 45 uM 

40 (+)-Cinchonine 
((5R)-5-
vinylquinuclidin-2-
yl)(1S)-4-
quinolylmethan-1-ol 
 

 

IC50 ~ 30 uM 

41 
 

(3aS,2R,3R,9aR)-2-
(hydroxymethyl)-6-
imino-9-hydro-
2H,3H-oxolano[2,3-
d]pyrimidi no[2,1-
b]1,3-oxazolidin-3-ol, 
chloride 

 

IC50 ~ 50 uM 

C
3

H
O

O

O
O

N

H

H

H

H

C2H

N

H

H

H

OH

N

N

N O

O

NH

OH

ClH

OH

H

H



47 

 

42 
 

(-)-Eseroline, 
Fumarate salt 
(3aS,8aR)-1,8,3a-
trimethylpyrrolidino[2
,3-b]indolin-5-ol 
 

 

IC50 ~ 50 – 90 uM 

43 metacycloprodigiosin,
  Streptorubin 

 

Cyto-toxic activity against 
human lung, liver and blood 
cancer cells, and mouse 
lymphoma cells [131]. 
IC50 ~ 10 uM 

46 Fredericamycin 

 

IC50 ~ 3 uM 
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48 Sanguinarine 

 

Induces cell cycle arrest and 
apoptosis in human cervical 
cancer cells [132]. 
IC50 ~ 70 uM 

49 Tryptanthrin 

 

Induced apoptosis in human 
leukemia cells [133].  
Inhibition of prostaglandin E2 
and nitric oxide in mouse 
macrophages [134]. 
IC50 ~ 15 uM 

50 Roseophilin 

 

Stereoisomer 1 or 2 
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Aporphines 

  Aporphines comprise a subset of alkaloid compounds characterized by an aromatic, tetracyclic 

skeleton, containing three benzene moieties, and a fourth cycle containing the alkaloid nitrogen.  

Many derivatives exist, several of which appeared in our screen.  Most of the compounds in this 

family, that are in our screen, are highly similar, with some being very nearly identical, differing 

only by the presence or location of a hydroxyl, methoxy, or keto group.  Some, however, differ a 

little more, perhaps containing an additional ring, or existing as a covalent dimer of two normal 

aporphine molecules. 

  While there is little known about most of the aporphine compounds in our screen, some appear 

to have no previous designation, there are other highly similar compounds that have previously 

been isolated and studied.  One such compound, glaucine, shows a host of activities in vitro, 

including relaxation of bronchia and inhibition of its contraction, reduction in superoxide 

generation in stimulated polymorphonuclear leukocytes and eosinophils, reduction of elastase 

release, leukotriene production, and intracellular Ca2+ in PMN’s, platelet aggregation, and 

eosinophil peroxidase release.  These effects of the compound make it a likely bronchiodilator 

and anti-inflammatory. [135] 

  Aporphines have also demonstrated in vitro anti-viral activity.  A number of the compounds 

inhibit polio-virus infection of cultured mammalian cells by 50% at a range of low micromolar 

concentrations. [136-137]  Additionally, the aporphines dicentrine, glaucine, corydine, and 

apomorphine, which are analogs of the aporphines in our study, demonstrated anti-proliferative 

activity against mouse leukemia, melanoma, bladder cancer, and colon cancer cells [138]. 

  As discussed earlier, Hsp90 contains a distinct ATP-binding domain, the specificity of which is 

being exploited in the search for inhibitors.  This domain, called the Bergerat fold, is shared by a 

few other protein families, including the gyrase type of topoisomerase II.  Some aporphines are 
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inhibitors of topoisomerase II, increasing the likelihood that highly similar compounds from our 

screen are inhibitors of Hsp90.  One such inhibitor is liriodenine (Figure 4).  This compound has 

shown activity against human cancer cells [139], gram-positive bacteria, yeast, and fungi [140-

141].  Additionally, liriodenine inhibits the activity of topoisomerase II in vitro.[142] 
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Figure 2.4. Structure of liriodenine 

 

 

 

 

 

 

 



52 

 

Table 2.6. Aporphine compounds 

# Name Structure Properties 
51  

 

IC50 ~ 80 uM 

52 Thaliporphine, 
thalicmidine 

 

IC50 ~ 9 uM 

53 Isoboldine 

 

IC50 ~ 30 – 80 uM 
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54 Bracteoline 

 

IC50 ~ 80 uM 

55 7-Oxoglaucine 

 

IC50 ~ 80 uM 

56  

 

IC50 ~ 100 – 400 nM 
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57  

 

IC50 ~ 8 – 20 uM 

58 Product of 
chemical 
transformation of 
Dehydroglaucine 

 

IC50 ~ 1 – 3 uM 

59 
 

Dehydroglaucine 

 

IC50 ~ 900 nM 
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60 Thaliporphine, 
thalicmidine 

 

 

61 Product of 
chemical 
transformation of 
Dehydroglaucine 

 

IC50 ~ 7 – 20 uM 

62  

 

Similar to groups of anti-
malarial [81] and anti-
inflammatory compounds 
[119].  Compounds share 3-
ring structure. 
IC50 > 30 uM 
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Cyclic peptides 

  The laboratory of Shelli McAlpine has investigated the anti-cancer and Hsp90-inhibiting 

activities of a number of naturally sourced macro-cyclic peptides.  These molecules and their 

derivatives have demonstrated relatively potent activity against a number of cancers [143].  The 

rationale behind the pursuit of these particular molecules is that similar compounds have been 

identified as antibiotics and anti-fungals, as well as having anti-cancer activity.  The polypeptide 

nature of these compounds may confer on them the ability to mimic hydrophobic portions of 

client proteins.  The three compounds in our screen all contain moieties that could mimic 

hydrophobic amino acids. 
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Table 2.7. Cyclic peptide compounds 

# Name or location within 
assay 

Structure Properties 

44 P12 

 

IC50 ~ 10 uM 

45 Cyclopeptide L-156373 

 

IC50 ~ 10 uM 

47 Antibiotic A83586C 
M14 

 

Anti-proliferative 
activity against 
human colon, lung, 
breast, and bone 
cancer cells [144]. 
IC50 ~ 10 uM 
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Quinones 

  Quinones represent an extremely large and diverse family of compounds.  Essentially, the only 

thing that differentiates a quinone from any other class of compounds is the presence of two keto- 

groups on an aromatic ring.  As such, an enormous array of combinations of functional and 

structural groups that incorporate this characteristic is possible.  For the purposes of our screen, 

we have grouped the quinones together, not because of any great similarity in their structure, but 

the potential commonality of their chemical properties; specifically, that they are usually redox-

active, making them promising compounds with which to treat cancer.  The production of 

reactive oxygen species resulting from exposure to quinone-containing compounds is a process 

that is potentially destructive to any cell.  Cancer cells, however, are often less resilient to 

chemical insults like these.  It should also be noted that some Hsp90 inhibitors contain quinone 

moieties.  It has not been established if the redox potential of these compounds contributes to the 

anti-cancer efficacy of these compounds by increasing their ability to inhibit Hsp90, increasing 

the stress on the cells in addition to that caused by Hsp90 inhibition, or some combination of the 

two.  It should be noted, however, that reduction of 17-DMAG and 17-AAG to their 

hydroquinone forms increased their cytotoxicity to cancer cells [145] 

  Some well-established Hsp90 inhibitors, such as geldanamycin (Figure 5) and its derivatives, 

contain quinone moieties.  Consequently, we have observed reticulocyte lysate treated with these 

inhibitors to have a distinct dark red color, attributable to met-hemoglobin formation resulting 

from the oxidative activity from these compounds.  Similarly, geldanamycin has been shown to 

generate reactive oxygen species in vitro and in cell culture [146].  Structural studies 

demonstrating direct binding of these compounds to the ATP-binding site in the N-terminus of 

Hsp90 implies that the redox activity of these compounds is not highly relevant to their biological 

activity, although this has not been clearly determined.  Accordingly, the antibiotic, rifamycin, 
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which contains a reduced quinone moiety within an overall similar anthroquinone ansamycin 

molecule, potentially has the same type of activity as geldanamycin. 

  Within our screen, eight hits were quinones.  They are characterized by two basic core 

structures, with varying additions in the form of cyclic structures and functional groups. 
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Figure 2.5. Structure of geldanamycin 
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Table 2.8. Quinone compounds 

 

 

# Name or 
location within 
assay 

Structure Properties 

63 Β-Lapachone 
3885 

 

Anti- HL-60 leukemia; U87 
glioblastoma [147-153] 
IC50 ~ 20 uM 

64 Streptonigrin 
5351165 

 

Disruption of NF-κB activation.  
Anti-bacterial, anti-fungal, anti-
viral, anti-glioma [154-159] 
IC50 ~15 uM 

65 Dihydrotanshino
ne 
11425923 

 

Inhibition of Hypoxia-Inducible 
Factor 1 activation; Vitamin D 
receptor 
Anti- AGS gastric cancer cells; 
hepatocellular carcinomas [160-
162] 
IC50 ~ 80 uM 
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66 2- A5 

 

IC50 ~ 10 uM 

67 30-D10 

 

IC50 ~ 2 uM 

68 Plumbagin 

 

Plumbagin has been widely studied 
for its anti-cancer activity.  It’s been 
shown to be effective against a 
variety of cancers, including 
pancreatic, ovarian, skin, lung, 
blood, and others.  It also has anti-
inflammatory activity [163].  
Additionally, molecules reported to 
be targets of plumbagin are the 
endothelial growth factor receptor 
(EGFR), STAT-3 [164],  and AKT, 
among others [163]. 
IC50  < 55 nM 
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 69 
 

7-[8-formyl-6,7-
dihydroxy-3-
methyl-5-
(methylethyl)-
1,4-dioxo(2-
naphthyl)]-2,3- 
dihydroxy-6-
methyl-4-
(methylethyl)-
5,8-
dioxonaphthalene
carbaldehyde 

 

IC50 ~ 6 uM 

70 1,2,4-
trihydroxyanthrac
ene-9,10-dione 

 

IC50 ~ 40 – 100 uM 

71 3-formyl 
Rifamycin SV 

 

IC50 ~ 15 – 35 uM 
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72 Tetrangulol 
G2 

 

IC50 ~ 20 uM 

73 Dihydrodaunomy
cinone 
Leukaemomycin
one-D 
B-112 
B4 

 

IC50 > 60 uM 

74 Herbimycin 

 

Established inhibitor of Hsp90 
[165].  Possesses antibiotic and 
antitumor activities [166-167].  
Belongs to benzoquinone 
ansamycin family, of which 
geldanamycin is a member. 
IC50 ~ 40 uM 
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75 Shikonin 

 

Anti-inflammatory, anti-tumor, 
wide-ranging activities reported 
[168] 
IC50 ~ 75 uM 

 

 

 

Other Compounds 

  The compounds in this section do not fit well into any of the previously described families.  

Some of them are known biochemicals, such as Vitamin D2 and L-adrenaline, which haven’t 

been implicated as Hsp90 inhibitors, although Vitamin D2 has demonstrated anti-cancer activity 

[169].  Others are more exotic and little, if anything is known about them. 

 

 

 

 

 

 

 



66 

 

Table 2.9. Other compounds 

# Name or location 
within assay 

Structure Properties 

76 2-((2R,6R,10R,11R)-
2,6,11-trimethyl-15-
oxatetracyclo[8.7.0.0<2
,7>.0<12,16>]hep 
tadeca-12(16),13-dien-
6-yl)acetic acid 

 

IC50 > 75 uM 
 

77 (+)-
Dehydroabietylamine 
or Leelamine 
[(4aS,1R,10aR)-1,4a-
dimethyl-7-
(methylethyl)-
1,2,3,4,9,10,10a,4a-
octahydrophen 
anthryl]methylamine 

 

IC50 ~ 30 – 75 uM 

78 
 

Vitamin D2 
Hormone 
 

 

IC50 ~ 60 uM 
Demonstrated modulatory effects on 
cancer and autoimmune disorders 
[170] 
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79 3-{2-[7-(1,5-
dimethylhexyl)-6-
methylbicyclo[4.3.0]no
n-2-ylidene] 
Hormone 

 

IC50 ~ 60 uM 

80 L-Adrenaline, 98+% 
Hormone 
 

 

IC50 ~ 55 uM 

81 Rolitetracycline 

 

IC50 ~ 20 uM 
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82 MolPort-005-945-572 
13455459 

 

None reported 
Closely related compound,  
CHEMBL560620 (CID 12821893) – 
Anti- A549, HCT8, Bel7402, and 
PC3M cancer lines [80] 
IC50 ~ 50 uM 

83 
 

45360154 No structure No reports 
IC50 ~ 50 uM 

84 MolPort-005-944-833 
45359640 

 

None reported 
Closely related compound, 
MEGxp0_001860 (CID 15699875) – 
Anti- BJeLR transformed fibroblasts 
Inhibitor of STK33, MITF 
ROS induction in cancer cells 
Broad institute 
Screen - Run ID’s 
2007-01-W01-02-03; 
2013-01-A01-03-01; 
2021-01-A01-05-04; 
2044-
01_Activator_SinglePoint_HTS_Activ
ity 
IC50 ~ 50 uM 

85 CID 53984538 

 

IC50 ~ 10 uM 



69 

 

86 17-A4 

 

IC50 ~ 40 uM 

87 18-G11 

 

IC50 ~ 30 uM 

88 28-D6 

 

IC50 ~ 5 uM 
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89 28-E3 

 

IC50 ~ 15 uM 

90 H15 
Striatal-B 

 

Inhibition of cell growth of multiple 
cancer lines including non-small cell 
lung, melanoma, colon, leukemia, and 
others. – National Cancer Institute Cell 
Line Growth Inhibition Assay 
IC50 ~ 2 uM 

91 G13 
Striatal C 

 

Only information for Striatal B.  
Similar activity is likely. 
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92 G15 
Striatal A 

93 Gambogic Acid 

94 Manumycin A 

 

Further Characterization of Putative Inhibitors

  Based on results from our high

that display broad biological activities, we have identified four compounds as potential Hsp90 

inhibitors: anthothecol, garcinol, rottlerin, and piperlongumine.  

  Anthothecol (Figure 6) is a limonoid compound isolated from the tree 

possesses low micromolar activity against the growth of 

[176], which is a hallmark of Hsp90 inhibitors.  The compound’s structure is also very similar to 
71 

 

Only information for Striatal B.  
Similar activity is likely.

 

Demonstrated to inhibit Hsp90 
172]. 
IC50 ~ 2 uM

 

Known as a farnesyl transferase 
inhibitor, but has been shown to induce 
ROS [173
regulate Akt and MEK 
and Telomerase
autophagy in pancreatic cancer cells 
[175] and apoptosis in multiple lines 
[173-174]
 

Characterization of Putative Inhibitors 

Based on results from our high-throughput screen and a search of the literature for compounds 

that display broad biological activities, we have identified four compounds as potential Hsp90 

garcinol, rottlerin, and piperlongumine.   

Anthothecol (Figure 6) is a limonoid compound isolated from the tree Khaya anthotheca

possesses low micromolar activity against the growth of Plasmodium falciparum

, which is a hallmark of Hsp90 inhibitors.  The compound’s structure is also very similar to 
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H

Only information for Striatal B.  
Similar activity is likely. 

Demonstrated to inhibit Hsp90 [171-

~ 2 uM 

Known as a farnesyl transferase 
inhibitor, but has been shown to induce 

[173-174] production, down-
te Akt and MEK [174], STAT3, 

Telomerase[173], and induces 
autophagy in pancreatic cancer cells 

and apoptosis in multiple lines 
174]. 

throughput screen and a search of the literature for compounds 

that display broad biological activities, we have identified four compounds as potential Hsp90 

Khaya anthotheca, and 

Plasmodium falciparum in erythrocytes 

, which is a hallmark of Hsp90 inhibitors.  The compound’s structure is also very similar to 
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that of the Hsp90 inhibitor gedunin [177].  Anthothecol was identified as a potential Hsp90 

inhibitor in a high throughput screen of a Microsource natural product library (Matts, R.L., 

unpublished data). 

  Garcinol (Figure 2.6) was chosen for further study, because it has demonstrated the ability to 

induce apoptosis in a number of cancers, including breast, colon, kidney, prostate, leukemia 

[178], pancreatic[179], and others.  Additionally, garcinol can inhibit angiogenesis through down-

regulation of Prostaglandin E2, VEGF, and IL-8 [179].  Garcinol has anti-oxidant and anti-

inflammatory properties, as it inhibits the production of ROS and nitric oxide [180]. 

  Piperlongumine (Figure 2.6) has been shown to suppress Platelet-derived Growth Factor 

(PDGF) signaling [181].  Piperlongumine also inhibits the proliferation of prostate cancer cells 

and causes depletion of the androgen receptor, a well-known Hsp90 client protein [182]. 
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Anthothecol     Garcinol 

 

Piperlongumine     Rottlerin 

 

Figure 2.6. Structures of anthothecol, garcinol, rottlerin, and piperlongumine 
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  Of the four compounds chosen for additional study, rottlerin (Figure 2.6) is easily the best 

known.  It has been used in traditional medicine, and has demonstrated many physiologically 

significant biological activities.  Rottlerin is isolated from the tropical tree Mallotus 

Philippinensis.  Rottlerin displays cytotoxicity against a number of cancer types, including lung, 

breast, lymphocytic leukemia, and multiple myelomas.  This activity has largely been attributed 

to inhibition of PKCδ [183], although the drug has been demonstrated to act independently of this 

protein [184].  An array of human malignant tumor cells was treated with rottlerin, and all lines 

were found to undergo apoptosis mediated by Death Receptor 5 (DR5) [185].  Rottlerin has also 

been reported to inhibit the kinases PRAK, MAPKAP-2, Akt, and CaMK [186].  

  In our study, we provide evidence that further implicates these compounds as inhibitors of the 

Hsp90 complex.  We show that, in addition to inhibiting the proliferation of cancer cells, the 

compounds also inhibit the Hsp90-dependent folding of thermally denatured luciferase in a dose-

dependent manner, and block the Hsp90-dependent maturation of the HRI kinase. 

Inhibition of Hsp90-mediated refolding of denatured luciferase 

Anthothecol, garcinol, rottlerin, and piperlongumine all display the ability to inhibit the refolding 

of luciferase at micromolar concentrations in reticulocyte lysate (Figure 2.7), implicating them as 

inhibitors of Hsp90.  Anthothecol and rottlerin were identified as potential Hsp90 inhibitors by 

their ability to inhibit refolding of thermally denatured luciferase in screens of natural compound 

libraries. 
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Figure 2.7. Effect of anthothecol, garcinol, rottlerin, and piperlongumine on the refolding of 
denatured luciferase in reticulocyte lysate. 
Each compound was titrated into wells containing denatured luciferase and reticulocyte lysate.  
After a two hours incubation period, assay buffer containing luciferin was added, and relative 
luminescence was measured.  The Y-axis is relative luminescence, and the X-axis is the 
concentration of drug in nM. 
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Figure 2.7. Continued 
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Inhibition of HRI maturation 

  The heme-regulated inhibitor of eIF2α is an Hsp90 client kinase which, upon folding by Hsp90, 

will activate, or mature, by autophosphorylation when heme is deficient.  This activation is 

dependent on functional Hsp90, and can be detected as a slight band shift when separated on a gel 

(Figure 2.8).  Similar to the known Hsp90 inhibitor, geldanamycin, GA, anthothecol, garcinol, 

rottlerin, and piperlongumine inhibited the maturation of HRI, as seen by the absence of the low 

mobility form of HRI. 
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Figure 2.8. Effect of compounds on HRI’s Hsp90-dependent maturation 
HRI was translated in the presence of 35S-labeled methionine and transferred to heme-deficient 
lysate for maturation.  Translated protein was separated by SDS PAGE, transferred to PVDF 
membrane, and visualized by X-ray film exposure.  The phosphorylated active form of the kinase 
is indicated with an asterisk.  Lanes were treated as follows:  heme, no heme, 20 uM 
geldanamycin (GA), 20 mM sodium molybdate, 20 mM novobiocin, and 100 uM each of 
anthothecol, garcinol, rottlerin, and piperlongumine. 
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Compounds Inhibit Proliferation of Human Cancer Cells 

  We tested the anti-proliferative activity of the four compounds on two human breast cancer cell 

lines (Figure 2.9).  We used an MTS assay, in which living cells reduce the reagent to a 

chromophore detectable at a specific wavelength.  Possibly resulting from their specific 

absorption wavelengths, wells treated with anthothecol and garcinol did not yield usable data, 

although previous unpublished observations indicate that an concentration range of 2 – 5 uM of 

these drugs results in the detachment of approximately half of these cells from their growing 

surface in cell culture.  MCF-7 and SkBr3 both exhibited a dose-dependent decrease in cell 

viability after treatment with rottlerin and piperlongumine.  For MCF-7 cells, both drugs cause a 

50% reduction in growth at the 5 – 10 uM range (Figure 2.9, A and B).  For SkBr3 cells, there 

was a decrease in signal intensity even in the vehicle control, possibly resulting from chemical 

changes in the medium.  This complicates our ability to determine an IC50 for proliferation, 

however, there is still a dose-dependent downward trend (Figure 2.9, C and D). 
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Figure 2.9. Effects of rottlerin and piperlongumine on the proliferation of MCF-7 and SkBr3 
human breast cancer cells. 
MCF-7 and SkBr3 cell lines were treated in culture with rottlerin (B and C) and piperlongumine 
(A and D), and DMSO as a control.  Proliferation was assessed at 24 hr using an MTS assay.  
Proliferation is defined as the colorimetric intensity difference between wells treated with DMSO 
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and wells treated with the compounds.  The Y-axis is the relative colorimetric intensity; The X-
axis is the concentration of drugs in nM. 
Figure 2.9. - Continued 
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Conclusion 

  The compounds identified in our screen are diverse.  The compounds with perhaps the greatest 

potential as Hsp90 inhibitors are those that have already been identified as having specific 

activities, but against multiple targets.  Often, reports by separate laboratories will demonstrate 

activity of a compound against a certain kinase or pathway, while showing that related proteins or 

pathways are unaffected.  When multiple targets with such effects are demonstrated, it is a strong 

indicator that the compound in question may be an Hsp90 inhibitor.  Hsp90 is essential for the 

function of kinases, receptors, and other proteins from varied and wide-ranging pathways in the 

cell, but often plays no part in the function of closely related proteins.  This scattered, yet 

specific, involvement of Hsp90 often precludes the detection of Hsp90’s importance by groups 

studying a narrow portion of the proteomic landscape.  Accompanying the effects of these 

compounds are usually anti-proliferative cyto-toxic activities against cancer cells.  Compounds 

that demonstrate these somewhat pleiotropic effects are among the first to be considered for 

additional study. 

  Another tell-tale sign of an Hsp90 inhibitor among screen hits is anti-microbial activity.  The 

earliest Hsp90 inhibitors, such as radicicol, geldanamycin, and novobiocin, were identified as 

antibiotics before their activity against Hsp90 was elucidated. 

  Some compounds closely resemble compounds that are known intercalating agents.  While these 

compounds could theoretically have some value as anti-cancer and anti-microbial drugs, we 

generally choose to bypass them, given the potential off-target toxicity.   

  Another characteristic of compounds that potentially limit their usefulness is that some of them 

are redox active.  While this fact may or may not affect their activity as Hsp90 inhibitors, the 

compound can potentially induce an oxidative stress on the cell, which is a potential problem in 

itself.  The results presented here implicate the compounds anthothecol, garcinol, rottlerin, and 
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piperlongumine as inhibitors of the Hsp90 chaperone complex.  Further study of the compounds 

will be necessary to confirm their status as inhibitors.  This will include assessment of their 

ability to reduce expression of Hsp90-dependent client proteins in cancer cells, and for 

anthothecol and garcinol, measurement of their anti-proliferative activity.  Additionally, physical 

interaction between the compounds and Hsp90 will need to be determined.  Furthermore, we will 

determine whether or not the compounds bind Hsp90, and we will try to determine the 

mechanism of binding; specifically, if they bind to the N-terminus or the C-terminus, and where 

in each domain such binding occurs.
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CHAPTER III 
 

 

COMPARISON OF CELL-BASED AND LUCIFERASE-BASED ASSAYS OF THE 

ACTIVITIES OF HSP90 INHIBITORS THAT CONTAIN 

 THE 1,4-NAPHTHOQUINONE SCAFFOLD 

 

Introduction 

  While some inhibitors of the Hsp90 complex are currently in clinical trials, the search for new 

molecules in this class continues.  In collaboration with the laboratory of Dr. Brian Blagg at the 

University of Kansas, our laboratory carried out a high throughput screen of small molecules for 

their ability to inhibit the Hsp90-dependent refolding of thermally denatured firefly luciferase.  

Among the hits from this screen were three compounds (HTS1, HTS2, HTS3) bearing similar 

core structures.  Each compound contained a bicyclic quinone moiety.  Two of the compounds 

are naphthoquinones, while the other contains a furazan ring in place of the fused benzene.  These 

compounds induced the degradation of the Hsp90 client protein Her2, as determined by ELISA, 

at concentrations from 1 to 3 uM.  Finally, the compounds demonstrated anti-proliferative activity 

against MCF-7 and SkBr3 human breast cancer lines in the nM to low uM range (Table 3.1). 

  In addition to the cell-based assays performed by Dr. Blagg’s group on the derivative 

compounds, we performed a titrated luciferase refolding assay on them.  We wanted to determine 

how well the compounds’ potency correlated between the two types of assay.  This holds 

significance for the compounds as potential therapeutic agents, as solubility problems not 
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detected in cell-based assays, yet apparent in luciferase refolding assays, can negatively affect the 

bio-availability of a potential drug.  Additionally, while living cells may have ways to metabolize 

or remove certain compounds, masking their molecular activity within the cell, the luciferase 

assay is more likely to provide evidence of their interaction with Hsp90.  Here we describe the 

synthesis and cell-based activity of a set of putative Hsp90 inhibitors, and compare them to their 

observed activity against the Hsp90-dependent refolding of firefly luciferase. 
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Table 3.1. Hits from KU high-throughput screen. 

Compound Luciferase Assay 
IC50 (uM) 

Her2 ELISA  
IC50 (uM) 

Anti-proliferation IC50 (uM) 
MCF-7 SkBr3 

HTS1 0.25 3.3 ± 1 0.21 ± .02 0.82 ± .02 
HTS2 0.38 1.2 ± 0.2 19 ± 4 2.9 ± 0.5 
HTS3 0.02 1.2 ± 0.3 0.83 ± .13 0.83 ± 0.23 
 

 

   

HTS 1    HTS 2    HTS 3 
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Materials and Methods 

Screen for Hsp90 inhibitory activity 

  The ability of the synthesized compounds to inhibit the Hsp90-dependent folding of denatured 

luciferase was assayed as described in Chapter 2. 

Synthesis of 1,4 Naphthoquinone derivatives to determine structure-activity relationships 

  Because of their potent inhibition of Hsp90-dependent luciferase refolding, and their activity 

against cell proliferation and expression of an Hsp90 client protein, the core structure of these 

compounds was chosen as a scaffold on which to build potential inhibitors of Hsp90, and to 

explore the structural characteristics that confer optimal inhibitory activity against the chaperone. 

  The scaffold used for all of the compounds in the study was 2-amino-3-chloro-1,4-

naphthoquinone (1).  From this beginning structure, three families of compounds were created, as 

well as an additional pair of compounds. 

 

1 

  To synthesize the first two compound families, the amino group at the 2-position was replaced 

with an acetamide group for the first family (3), or a benzamide group for the second family (4).  

For both families, the chlorine at the 3-position was then replaced with an assortment of 

substituted aryl groups (R). 
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3       4 

Scaffolds for compound groups 3 and 4. 

 

Aryl groups included in compound groups 3 and 4. 

  For comparison of the contributions of each of the added aryl groups, compared to the core 

structure, compounds (5) and (6) were created.  These two molecules were identical to the (3) and 

(4) core structures, respectively, except that they retained the 3-position chlorine. 
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Compound 5      Compound 6 

  One of the compounds from this family (2d) was then used as the scaffold for the third family of 

compounds.  This third family incorporates the aryl groups a-i shown below.  (13).  In place of 

the 2-position amino group, a variety of aryl groups (R) attached through an amide link were 

added, as well as one cyclohexane addition. 

 

Compound 2d 

 

 

13 

Scaffold for compound group 13. 
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Aryl groups used in compound group 13 

To create the final two compounds, a biaryl group that was shown to confer greater potency to a 

novobiocin derivative than novobiocin itself [187] was attached to compounds 1 and 2d, to form 

compounds 11 and 12. 

 

 

Biaryl moiety used in compounds 11 and 12. 
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Compound 11     Compound 12 

 

Results and Discussion  

 Generally, the compounds’ ability to inhibit the refolding of denatured luciferase correlated fairly 

well with their anti-proliferative and Her2 degradation-inducing activities (Table 3.2).  There 

were, however, exceptions.  Compound 4b, a benzamide with a methoxy-phenyl group at the 3-

position, had low uM IC50 (1.9 – 3.0) activity in all three cell-based assays.  Its IC50 for the 

refolding of luciferase, however, was more than 10-fold higher, 39 uM.  Compound 13f, a 

benzamide that contains two methoxy phenyl groups, demonstrated a similar, although slightly 

smaller disparity.  This compound also had a low uM IC50 (1.5 – 6.4) in the cell-based assays, but 

had an IC50 of 24 uM in the luciferase assay.  Although there are many possible explanations for 

these results, the simplest is solubility.  Some of the compounds being tested precipitate in the 

aqueous solution of the reticulocyte lysate, whereas in the cell-based assays, the cell membranes 

offer a different solvent environment in which the solubilities of the compounds, or at least their 

uptake and delivery to the target molecules, could be greater.   
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Other possibilities for the difference in performance of one compound between different assays 

still warrant consideration.   

  The Hsp90 protein complex that does the refolding work in reticulocyte lysate does not contain 

cdc37.  This co-chaperone is often, though not always, involved in chaperoning kinases.  

Inhibition of cdc37, or disruption of its interaction with Hsp90, is one mechanism by which an 

inhibitor could act, which would result in less inhibition of luciferase refolding, if any at all.  If 

cdc37 is in fact the selective factor, then this represents a way to screen for inhibitors that are 

more specific to cdc37, which might have their own medicinal applications for other ailments in 

which kinase clients of Hsp90 play a particularly important role. 

  Additionally, the reticulocyte lysate is quasi-physiological, as opposed to the cells used in the 

other assays.  Structures, pathways, and other systems that are intact in a living cell, but not in the 

lysate, could be more or less dependent on the Hsp90 complex’s function than pure denatured 

luficerase.  Similarly, cellular metabolism could cause a chemical change in the compounds that 

does not take place in the lysate. 
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Table 3.2.  Activities of synthesized compounds 

Compound Her2 ELISA 
IC50 

(uM) 

Anti-proliferation IC50 (uM) Luciferase 
Renaturation IC50 

(uM) MCF-7 SkBr3 

HTS1 3.3 ± 1 .21 ± .02 0.82 ± .02 0.25 
3b 2.5 ± 1.4 2.2 ± 0.7 1.7 ± 0.3 1.6 ± 0.5 
3g 5.3 ± 2.0 1.4 ± 0.2 1.8 ± 0.4 0.2 ± .03 
4b 3.0 ± 1.4 2.2 ± 0.1 1.9 ± 0.7 39 ± 16 
4g 1.8 ± 0.5 2.6 ± 0.1 8.5 ± 0.6 1.4 ± 0.3 
5 6.6 ± 0.9 1.7 ± 0.1 0.6 ± 0.003 5.0 ± 1.5 
11 >100 >100 >100 86 ± 22 
12 1.7 ± .04 3.0 ± 0.4 1.7 ± 0.5 1.6 ± 0.4 
13e 44.2 ± 4.0 1.8 ± 0.1 6.4 ± 0.2 2.5 ± 1.6 
13f 2.4 ± .08 1.5 ± 0.3 6.4 ± 0.1 24.0 ± 15 
13i 2.5 ± 1.2 1.9 ± 0.6 4.8 ± 1.3 1.4 ± 0.3 
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  Compounds 11 and 12 differ only by the presence of a para-methoxy phenyl group on 11 in 

place of the chlorine on 12.  This structural difference resulted in a large disparity in the activities 

of the two compounds.  Compound 12 was one of the more potent inhibitors, with an IC50 value 

across all four assays ranging from about 1.5 to 3 uM.  Compound 11, however, had IC50’s above 

100 uM in the cell-based assays, and 86 uM for luciferase renaturation.  An ortho-methoxy 

phenyl group is also present in compounds 3b and 4b, both of which have lower activities in the 

luciferase assay than their analogs, 3g and 4g, which contain a para-chloro phenyl group.  This 

pattern could implicate this region of the molecule as one which, when bound to its target, is 

somewhat near an area of the protein that is sensitive to large aliphatic groups, but more 

accommodating to smaller or more negatively charged ones. 

  As mentioned previously, compound 13f had a higher IC50 than some of its closely related 

compounds, at least when used in the luciferase assay.  For this group of compounds, the phenyl 

group attachment is at the 2 position versus the 3 position.  Judging from the lower, and varied, 

activities of the compounds with this family with larger group, or aliphatic groups, it would 

appear that this region of the molecule interacts with a portion of its target that is somewhat 

specific for particular sizes and charges in the structure.  For instance, 13e and 13f differ only by 

the position of the methoxy group on the phenyl ring (meta and para, respectively).  This 

difference in position, however, appears to confer a nearly twenty-fold decrease in the IC50 of 13f. 

  The purpose of this study was to create new inhibitors of the Hsp90 chaperone complex, as well 

as to probe the structures for characteristics leading to increased affinity for the protein.  Most of 

the synthesized derivatives of the original screen hits had activities in the low uM range as 

determined by cell-based assays and luciferase renaturation assay.  Exceptions to this were 

generally molecules with large, bicyclic additions, specifically those that increased the width of 

the molecule, likely reflecting steric clashing against the perimeter of the binding site.  Also, the 

increase in the bulk of a molecule likely has a negative effect on its solubility.  Additionally, 



95 

 

some of the better performers also contained a chloride addition, probably reflecting a better fit 

for smaller and/or more negatively charged moieties.  Future work will likely involve the fine-

tuning and modeling of these structural features and their interactions with the Hsp90 molecule. 
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CHAPTER IV 
 

 

GAMBOGIC ACID, A NATURAL PRODUCT INHIBITOR OF HSP90 

  A high-throughput screening of natural product libraries identified gambogic acid, a component 

of the exudates of several Garcinia species, as a potential Hsp90 inhibitor, in addition to the 

known Hsp90 inhibitor celastrol.  Subsequent testing established that gambogic acid inhibited cell 

proliferation, brought about the degradation of Hsp90 client proteins in cultured cells, and 

induced the expression of Hsp70 and Hsp90, which are hallmarks of Hsp90 inhibition.  Gambogic 

acid also disrupted the interaction of Hsp90, Hsp70 and Cdc37 with and blocked the maturation 

of an Hsp90-dependent client (the heme-regulated eIF2 kinase) in vitro.  Surface plasmon 

resonance spectroscopy indicated that gambogic acid bound to the N-terminal domain of Hsp90 

with a low micromolar Kd, in a manner that was not competitive with the Hsp90 inhibitor 

geldanamycin. Molecular docking experiments support the posit that gambogic acid binds Hsp90 

a site distinct from Hsp90’s ATP binding pocket. The data firmly established gambogic acid as a 

novel Hsp90 inhibitor and provides evidence of a new site that can be targeted for the 

development of improved Hsp90 inhibitors. 
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Introduction 

  The 90-kDa heat shock protein (Hsp90) is the core component of an oligomeric chaperone 

machine whose function is required for the viability of all eukaryotic cells. Hsp90 functions with 

a cohort of co-chaperones to facilitate the folding, activation and stabilization of numerous client 

proteins, many of which function in regulating signal transduction pathways [14, 188-189].  

Among the plethora of Hsp90-dependent clients are proteins that function in pathways that 

represent all six hallmarks of cancer [190-196]. Thus, inhibition of Hsp90 function 

simultaneously incapacitates multiple client proteins, providing a combinatorial attack on cellular 

oncogenic processes. Consequently, Hsp90 has emerged as an exciting new target for the 

development of anti-tumor agents. 

  Natural product inhibitors of Hsp90 have been discovered that target binding sites in Hsp90’s N- 

and C-terminal domains. Geldanamycin and radicicol, which are produced by the soil 

actinomycetes species Streptomyces hygroscopicus and the mycoparasitic fungus Humicola 

fuscoatra, respectively, bind to the ATP binding pocket in Hsp90’s N-terminal domain [14, 188-

189], while novobiocin, which is produced by Streptomyces spheroids, inhibits Hsp90 function 

by binding to Hsp90’s C-terminal domain [66, 197-198]. Other natural products with well known 

anti-tumor and/ or chemopreventative properties, but poorly characterized mechanisms of action 

have been discovered to exhibit inhibitory activity toward Hsp90: epigallocatechin gallate 

(EGCG) [55, 94, 199-200], the well-know anti-oxidant found in green tea; gedunin, a 

tetranortriterpenoid isolated from the Indian neem tree [177, 201-202]; celastrol, a quinone 

methide triterpene, that is a pharmacologically active compound present in Thunder God Vine 

root extracts [201, 203]; and the rotenoid deguelin [204-205]. 

  Derivatives of geldanamycin and other compounds that target the ATP-binding pocket in 

Hsp90’s N-terminal domain have entered more than 20 clinical trials for the treatment of cancer 
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[195, 206-209]. Clinical complications have arisen in phase II trials of several Hsp90 inhibitors, 

with incidences of hepato-, cardio-, and ocular toxicity having significantly dampened enthusiasm 

for clinical use of Hsp90 inhibition [195].  Consequently, there is an ongoing search for Hsp90 

inhibitors with superior chemotherapeutic properties for the treatment of cancers. 

  To this end, we have screened natural product libraries for compounds that inhibit Hsp90-

dependent refolding of thermally denatured firefly luciferase. We presumed that natural products 

would represent a fertile territory for the identification of new Hsp90-inhibitors, as it is 

reasonable to expect that evolutionary pressures would give plants that produce secondary 

metabolites which inhibit Hsp90 a competitive advantage, because such compounds would inhibit 

the growth and development of insect pests and other pathogens.  Celastrol, a known Hsp90 

inhibitor [201, 203], and gambogic acid, a component of the exudates of several Garcinia species 

that has been used medicinally for centuries in southeast Asia, were identified as inhibitors of 

luciferase refolding in screens of natural product libraries from Microsource and Biomol. 

 

 

 

 

 



 

 

Figure 4.1.  Structures of the Hsp90 inhibitors geldanamycin, novobiocin, coumermycin 

A1, celastrol, and gambogic acid.
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Figure 4.1.  Structures of the Hsp90 inhibitors geldanamycin, novobiocin, coumermycin 

celastrol, and gambogic acid. 

 

Figure 4.1.  Structures of the Hsp90 inhibitors geldanamycin, novobiocin, coumermycin 
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  Gambogic acid, like Hsp90 inhibitors, has anti-tumor [210-214], anti-angiogenic [212, 215-

216], and anti-metastatic [217-218] activities (reviewed in [219-221]), but a poorly characterized 

mechanism of action.  In addition, like Hsp90 inhibitors [193, 222], gambogic acid has been 

observed to be selectively cytotoxic to cancer versus normal cells [214, 223]. While gambogic 

acid has been reported to induce apoptosis in cancer cells by binding to the transferrin receptor 

[224-225], the cytotoxic activity of gambogic acid has also been found to have a transferrin 

receptor-independent component [226].  Here we present the characterization of gambogic acid’s 

Hsp90 inhibitory activity, and compare its mechanism of action to other Hsp90 inhibitors. 

Materials and Methods 

Screen for inhibitors of Hsp90-dependent Luciferase Refolding 

  Natural product libraries from Microsource and Biomol were screened as previously described 

for inhibitors of Hsp90-dependent refolding of thermally denatured firefly luciferase [227].  

Positive hits were then screen against native luciferase to eliminate false-positive that were direct 

inhibitors of luciferase [70, 228]. Subsequently, celastrol (CalBiochem) and gambogic acid 

(Biomol) were titrated into reticulocyte lysate containing thermally denatured luciferase to 

determine the concentration of drug required to inhibit luciferase refolding by 50% (IC50) 

compared to the DMSO control as previously described [70, 228]. Reactions were carried out in 

triplicate at room temperature in 96-well microtiter plates, and experiments were repeated at least 

twice, with relative light unit (RLU) production measured using a LMaxII (Molecular Devices) 

microplate reader and a 10 sec integration time [70, 228].  
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Effect of gambogic acid on cell proliferation  

  MCF-7 and HeLa cells were grown in Gibco Modified Essential Medium, supplemented with 

non-essential amino acids, 2 mM glutamine, and 10% fetal bovine serum. SkBr3 cells were 

maintained in McCoy’s 5A media (Iwakata & Grace modification, Cellgro) with L-glutamine 

supplemented with streptomycin (500 µg/ml), penicillin (100 units/ml), and 10% fetal bovine 

serum. Cells were grown to confluence in a humidified atmosphere (37 °C, 5% CO2). Cells were 

seeded at 2000 cells per well in a clear 96-well plate, media volume was brought to 100 l, and 

the cells were allowed to attach overnight.  The next day, varying concentrations of compound or 

1% DMSO vehicle control were added to the wells.  Cells were then incubated at 37 oC for 72 

hours.  Cell viability was determined using the Promega Cell Titer 96 Aqueous One Solution Cell 

Proliferation Assay, which makes use of a soluble tetrazolium compound that is converted into a 

chromophore by living cells.  After incubation with compounds, 20 L of the assay substrate 

solution were added to the wells, and the plate was incubated at 37 oC  for an additional hour. 

Absorbance at 490 nm was then read on a Molecular Devices Versamax plate reader, and values 

were expressed as percent of cells incubated in DMSO alone. 

Effect of Gambogic acid on the interaction of Hsp90 and its co-chaperones with the heme-

regulated eIF2α kinase (HRI) 

  His-tagged kinase-dead HRI/K199R was synthesized by coupled transcription-translation (TnT) 

in reticulocyte lysate in the presence of [35S]methionine [66, 229-230].  After 20 min of synthesis, 

compounds or an equivalent volume of DMSO or water were added at the concentrations 

indicated in the figure legend and synthesis was continued for an additional 10 min. 

Subsequently, aliquots were taken for immunoadsorption of His-tagged HRI with anti-His-tag 

antibodies bound to anti-mouse-IgG agarose resin [66, 229-230]. Agarose resins containing 

bound anti-His-tag antibody were washed four times with 10 mM PIPES (pH = 7.2) plus 100 mM 
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NaCl and analyzed by SDS-PAGE and Western blotting for co-adsorbed Hsp90, Hsp70 and 

Cdc37 as previously described [66, 229-230]. Lysate lacking plasmid encoding His-tagged HRI 

was used as the control for non-specific binding. 

Effect of Gambogic acid on Hsp90-dependent HRI maturation/ activation 

  [35S]-labeled his-tagged wild type HRI or K199R mutant was generated by TnT in reticulocyte 

lysate as described above. After 30 min, samples were diluted into 7 volumes of hemin-

supplemented or heme-deficient lysate containing DMSO, water or drugs at the same 

concentration present in the TnT lysate and incubated for an additional 45 min [66, 229-230].  

The His-tagged HRI was adsorbed from samples by the addition of NTA-Ni resin on ice for 1 h. 

Resins were washed, eluted by boiling in SDS-sample buffer, and samples were analyzed by 

SDS-PAGE, and autoradiography after electrotransfer to PVDF membrane to detect a shift in 

HRI’s electrophoretic mobility that is dependent upon its Hsp90-dependent maturtion/activation 

[66, 229-230]. 

Gambogic acid-induced depletion of Hsp90-dependent proteins from cultured MCF7 and  

SKBr3 breast cancer and HeLa cells 

  MCF-7, SkBr3 and Hela cells were grown to confluence as described above, seeded in culture 

dishes (1x106/dish; brand) and allowed to attach overnight. Gambogic acid was added at the 

concentrations indicated in the figure and the cells were incubated for an additional 36 h. Cells 

were harvested and analyzed for Hsp90 client protein degradation (Her2, Raf-1, and Akt) and 

heat shock protein induction (Hsp90 and Hsp70) as described previously [231]. For comparison, 

cell were incubated with DMSO (1%) or geldanamycin 500 nM), and extracts were Western 

blotted for actin as a loading control. 

 



103 

 

Surface plasmon resonance spectroscopy of gambogic acid binding to Hsp90 

  Insect Sf9 cells overexpressing human Hsp90α were cultured and harvested by the 

Baculovirus/Monoclonal Antibody Core facility at Baylor College of Medicine. Hsp90 was 

extracted and purified (>98% pure) as described previously [17, 232], but without the initial 

DEAE-cellulose chromatography step.  Bacterial E. coli DE-3 Star cells carrying plasmids for the 

expression of either the N-terminal (Hsp90NT: amino acids 1-241 with a C-terminal -GELRSGC 

tail) or C-terminal (Hsp90CT: amino acids 531-732) domains of Hsp90 were cultured in LB 

media and induced with IPTG.  Recombinant Hsp90NT and Hsp90CT were purified using 

NiNTA column.  Following elution of from the NiNTA column the N-terminal His-tag was 

cleaved using TEV protease (Invitrogen), followed by size-exclusion chromatography on 

Superdex 200. The Hsp90 containing fractions were pooled, concentrated and dialyzed against 10 

mM Hepes (pH 7.5) containing150 mM NaCl and 10% glycerol, stored at -80°C until use.  Prior 

to the use of the Hsp90NT or Hsp90CT were reacted according to the manufactures 

recommended protocol with the EZ-Link® Maleimide-PEG2-Biotin (Thermo Scientific) then 

buffer exchanged into fresh 10 mM Hepes (pH 7.5) containing150 mM NaCl to eliminated free 

biotin entities.   

  The surface of a SSO1 CO2H SPR sensor chip mounted in a SensiQ SPR instrument (ICX 

Nomadics) was activated by treatment with N-3-dimethylaminopropyl-N’-ethylcarbodiimide 

hydrochloride and N-hydroxysuccinimide for preferential cross-linking of full length Hsp90’s N-

terminus to the surface.  For immobilization of Hsp90, 250 µl of Hsp90 (6.2 mg/ml) in 10 mM 

Hepes buffer (pH 7.4) containing 150 mM NaCl was injected at a flowrate of 10 µl/min, resulting 

in 2000 response units of protein captured on the experimental surface of the chip. Then, 1 M 

ethanolamine (pH 8) was used to quench the remaining activated groups, and the surface washed 

with buffer containing 10 mM PIPES pH 7.4, 300 mM NaCl, and 2% DMSO. The surface of a 

SSO3 BioCap SPR sensor chip was mounted in a SensiQ SPR instrument (ICX Nomadics) and 
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either the biotinylated Hsp90NT (7.0 mg/ml) or Hsp90CT (6.8 mg/ml) was discrete injected over 

the experimental channel at a flow rate of 10 µl/min, resulting in an capture of Hsp90NT at 1400 

response units and Hsp90CT at 1250 response units of protein on the experimental surface of the 

chip. The chips were then washed with assay buffer prior to experimental analysis.  

  Gambogic acid was diluted in assay buffer containing 10 mM PIPES pH 7.4, 300 mM NaCl, and 

2% DMSO and injected over the surface of each derivatized chip at a flow rate of 15 µl/min at 

25°C at the indicated concentrations.  Additionally, for competition studies gambogic acid was 

diluted in assay buffer containing 20 µM geldanamycin.  All measurements were done in 

triplicate. SPR binding curves were analyzed using QDAT software (ICX Nomadics) to calculate 

the ka, kd and KD. 

 

Docking studies of geldanamycin and gambogic acid with the N-terminal domain of Hsp90   

  In silico docking of geldanamycin and gambogic acid with the 3D coordinates of the X-ray 

crystal structures of the N-terminal domain of HSP90 with bound geldanamycin and in the open 

conformation, PDB IDs 1YET and 1YES respectively, was accomplished using the Autodock 

program [233] downloaded from the Molecular Graphic Laboratory of the Scripps Research 

Institute. The AutoDock program was chosen because it uses a genetic algorithm to generate the 

poses of the ligand inside a known or predicted binding site utilizing the Lamarckian version of 

genetic algorithm where the changes in conformations adopted by molecules after in situ 

optimization are used as subsequent poses for the offspring.   

  In our docking experiments, all waters were removed form the 3D X-ray coordinate while 

Gasteiger charges were placed on the X-ray structures of the N-terminal domain of HSP90 along 

with geldanamycin and gambogic acid using tools from the Autodock suite. A grid box centered 

on the N-terminal HSP90 domain with definitions of 126x126x126 points and 0.4 Å spacing was 
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chosen for ligand docking experiments. The docking parameters consisted of setting the 

population size to 300, the number of generations set to 27,000, the number of evaluation set to 

20,000,000 while the number of docking runs was set to 50 with a cutoff of 1 Å for the root mean 

square tolerance for the grouping of each docking run. 

  While the binding mode of geldanamycin with Hsp90 has been determined through x-ray 

crystallography [234], the binding mode of gambogic acid with Hsp90 has yet to be determined 

through either NMR or x-ray crystallography. The docking of geldanamycin to the apo X-ray 

structure of Hsp90NT, PDB ID 1YET, was used as a control to test and validate our docking 

parameters.  As expected, Geldanamycin docked to the binding site identified in the crystal 

structure with an average binding energy of -9.65 kcal/mol and a 1 Å average root mean square 

deviation from the reference structure, Figure 4.6. 

 

Results and Discussion 

Identification of gambogic acid as a putative Hsp90 inhibitor from a high-thoughput screen 

of natural product libraries 

  Screening of natural product libraries purchased from Microsource and Biomol for compounds 

that inhibited Hsp90-dependent refolding of luciferase identified gambogic acid as a potential 

Hsp90-inhibitor, along with the known Hsp90 inhibitor, celastrol, among other compounds. 

Neither celastrol or gambogic acid had any direct effect on the activity of native luciferase. Upon 

titration of various concentrations of the drugs into the refolding assay (Fig. 4.2A), celastrol and 

gambogic acid were found to inhibit luciferase refolding by 50% (IC50) at a concentration of 20 

and 2 uM, respectively. 
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Effect of gambogic acid on cancer cell proliferation 

  Gambogic acid has been demonstrated in numerous studies to inhibit the proliferation of a 

variety of cancer cell lines [211-213, 225, 235-243] (reviewed in [219-221]). To determine 

whether gambogic acid’s anti-proliferative activity could be correlated with its Hsp90-inhibitory 

activity, we examined the effect of varying concentrations of gambogic acid on the growth/ 

viability of HeLa cells, and MCF7 and SK-Br3 breast cancer cell lines. Gambogic acid inhibited 

the proliferation of HeLa, MCF7 and SK-Br3 cells in a concentration dependent manner (Fig. 

4.2B). Growth of the HeLa, MCF7 and SK-Br3 cells were inhibited by 50% by treatment with 

1.5, 2.0 and 0.8 M gambogic acid, respectively. The highest concentrations of gambogic acid 

were cytotoxic as evidenced by detachment a significant number of cells from the surface of the 

culture flasks. Thus, gambogic acid’s IC50 for inhibition of cell proliferation correlated well with 

its IC50 for the inhibition of luciferase refolding.  
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Figure 4.2.  Effect of gambogic acid and celastrol on Hsp90-dependent luciferase refolding in 
reticulocyte lysate (A), and effect of gambogic acid on cell proliferation of HeLa cells, and MCF7 
and SkBr3 breast cancer cells. Experiments were carried out as described under “Experimental 
Procedures”.  Data for SkBr3 and HeLa cells generated by Laura Peterson. 
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Gambogic acid-induced depletion of Hsp90-dependent proteins  

  Treatment of cultured cells with known Hsp90 inhibitors deplete the cells of Hsp90-dependent 

proteins in a time and concentration dependent manner. To further characterize gambogic acid as 

a potential Hsp90 inhibitor, MCF7 and Sk-Br3 cells were treated with varying concentration of 

gambogic acid for 36 hr, and equivalent amounts of protein from cell extracts were Western 

blotted for Hsp70 and Hsp90, and the Hsp90-dependent proteins Her2, Akt, and Raf-1, using 

actin as a loading control and geldanamycin as a positive control for Hsp90-inhibition. Gambogic 

acid was observed to deplete MCF7 and Sk-Br3 cells of Her2, Akt and Raf-1 in a concentration 

dependent fashion (Fig. 4.3), that correlated well with the IC50 value for gambogic acid-induced 

inhibition of the proliferation of these cell lines.  In addition, gambogic acid induced Hsp90 and 

Hsp70 expression, another hallmark of Hsp90-inhibition.  Gambogic acid had a similar effect on 

the levels of Her2, Raf-1 and Akt in HeLa cells (not shown).  These results further support the 

hypothesis that the anti-proliferative effect of gambogic acid on cancer cell growth is mediated, at 

least in part, by its ability to inhibit Hsp90. 
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Figure 4.3. Gambogic acid-induced degradation of Hsp90 client proteins. Gambogic acid was 
incubated with (A) MCF7 and (B) SkBr3 breast cancer cells at concentrations, (µM) indicated in 
the figure. was evaluated for its ability to downregulate several client proteins as described in the 
methods section. Geldanamycin (500 nM) and DMSO were used as positive and negative 
controls, resepctively.  Cell extracts were prepared and equivalent amounts of protein were 
Western blotted for the indicated proteins as described under “Experimental Procedures”.  Data 
generated by Laura Peterson. 
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Effect of gambogic acid on the association of Hsp90 chaperone components with HRI and 

HRI’s Hsp90-dependent maturation 

  HRI is a heme-regulated eIF2α kinase that requires Hsp90, Hsp70 and Cdc37 for its maturation 

and activation under heme-deficient conditions [41, 229, 244]. To further characterize the 

mechanism of action of gambogic acid we compared the effects of gambogic acid on the binding 

of Hsp90 chaperone components to HRI, to the effects of geldanamycin and celastrol, which bind 

to Hsp90’s N-terminal domain, and novobiocin and coumermycin A1, which inhibit Hsp90 by 

binding to its C-terminal domain.  The non-activatable K199R mutant of HRI was used in these 

experiments as it is unable to mature and interacts constitutively with Hsp90. In these 

experiments, the immunadsorbed samples were washed with low ionic strength buffer, as it 

distinguishes between the mechanism of action of geladanmycin and celastrol, which bind to 

different sites in Hsp90’s N-terminal domain.  As shown in Figure 4.4A (lane 3), geldanamycin 

causes the accumulation of Hsp90 in complexes with client proteins containing intermediate 

components of the Hsp90 reaction cycle, reproducibly increasing the amount of Hsp70 co-

adsorbed with HRI/K199R compared to the DMSO control. When immunoadsorptions from 

geldanamycin treated lysate are washed with low ionic strength buffers, Hsp90 remains bound to 

kinase clients (here HRI/K199R), but the binding of Cdc37 is disrupted [245]. In the presence of 

molybdate, which stabilizes “late” Hsp90 complexes, the binding of Hsp90 and Cdc37 to 

HRI/K199R was enhanced, and the binding of Hsp70 was unaffected (lane 4).  In contrast, under 

similar condition celastrol disrupts the binding of Hsp90, Hsp70 and Cdc37 to HRI (Fig. 4.4A, 

lane 5).  As previously reported, novobiocin also disrupted the interaction of Hsp90, Hsp70 and 

Cdc37 with HRI/K199R, as did the bivalent novobiocin related compound coumermycin A1 (Fig. 

4.4A, lanes 6 & 7).  Gambogic acid similarly blocked the binding of Hsp90, Hsp70 and Cdc37 

(lane 8) to HRI/K199R indicating that it affected the interaction of Hsp90 chaperone components 

in a manner distinct from geldanamycin. 
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  Subsequently, we examined the effects of gambogic acid on HRI activation upon incubation in 

heme-deficient lysate.  Hsp90-dependent maturation and activation of HRI is accompanied by a 

change in its electrophoretic mobility to a more slowly migrating species (Fig. 4.4B). After 40 

min of incubation of HRI in heme-deficient lysate, approximately half of the [35S]HRI had a 

slower electrophoretic mobility upon SDS-PAGE analysis compared to HRI incubated in heme-

replete lysate (lane 2 vs 1).  Gambogic acid inhibited the maturation/ activation of HRI in heme-

deficient lysate to an extent similar to the known Hsp90 inhibitors geldanamycin, celastrol, and 

molybdate. The C-terminal Hsp90 inhibitors novobiocin and coumermycin A1 also inhibited the 

maruration/ activation of HRI, but it was also apparent that these compounds reduced the quantity 

of [35S]HRI that was present in the samples.  

  To determine whether the decreased recovery of [35S]HRI was due to less [35S]HRI being 

present, aliquots were taken from the samples prior to the beginning of the maturational 

incubation. Autoradiography of aliquots taken from samples prior to their further incubation for 

45 min indicated that an equivalent amount of [35S]HRI was present in each sample (Fig. 4.4C, 0 

min: upper panel).  Incubation of [35S]HRI in the presence of novobiocin or coumermycin A1 

resulted in a greater than 90% loss of the [35S]HRI (Fig. 4.4C, lanes 6 & 7). However, 

significantly less [35S]HRI was lost upon incubation of samples in the presence of geldanamycin, 

celastrol, or gambogic acid compared to the DMSO control.  A similar effect of novobiocin and 

coumermycin A1 has been observed on stability of Akt generated by TnT in reticulocyte lysate 

(not shown).  Thus, the absence of an effect of gambogic acid on HRI stability distinguishes its 

mechanism of action from that of C-terminal inhibitors.  In addition, the effect of Hsp90 

inhibition on the stability of nascent kinases in reticulocyte lysate appears to be a property that 

further distinguishes inhibitors of Hsp90 that bind to its C-terminal domain from inhibitors the 

bind to its N-terminal domain.
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Figure 4.4.  Effect of Hsp90 inhibitors on the interaction of Hsp90 and its co-chaperones with 
HRI (A), on HRI’s Hsp90-dependent maturation (B), and on HRI stability (C). A. [35S]His-tagged 
HRI/K199R was synthesized by TnT in reticulocyte lysate as described under “Materials and 
Methods”.  After 10 min, DMSO (4% v/v, lanes 1 & 2), geldanamycin (80 uM, lane 3), sodium 
molybdate (20 mM, lane 4), celastrol (100 uM, lane 5), novobiocin (4.0 mM, lane 6), 
coumermycin A1 (400 uM, lane 7), or gambogic acid (50 uM, lane 8) were added followed by an 
additional 40 min of incubation. [35S]His-tagged HRI/K199R was then immunoadsorbed with 
anti-His antibodies and samples were analyzed for co-adsorbing Hsp90, Hsp70, and Cdc37 by 
SDS-PAGE and Western blotting. Lane 1: TnT lysate containing no plasmid as the control for 
non-specific binding.  Top panel: autoradiogram of immunoadsorbed [35S]HRI/K199R. B. 
[35S]His-tagged HRI was synthesized in reticulocyte lysate as described under “Materials and 
Methods”.  After 20 min, DMSO (4% v/v, lanes 1, 2 & 3), geldanamycin (80 uM, lane 4), sodium 
molybdate (20 mM, lane 5), celastrol (100 uM, lane 6), novobiocin (4.0 mM, lane 7), 
coumermycin A1 (400 uM, lane 8), or gambogic acid (50 uM, lane 9) were added followed by an 
additional 10 of incubation. An aliquot of the TnT lysate was then transferred to hemin 
supplemented (20 uM, lane 2) or heme-deficient (lanes 1 & 3-12) lysate containing and 
equivalent concentration of each addition, followed by an additional 45 min of incubation. The 
samples were then analyzed for HRI maturation by SDS-PAGE and autoradiography as described 
under “ Materials and Methods”. Lane 1: TnT lysate containing no plasmid. [35S]HRI*: mature, 
active HRI. C. [35S]His-tagged HRI was synthesized in reticulocyte lysate and treated with 
DMSO or Hsp90-inhibitors as described above.  Aliquots of each reaction were taken prior to 
(upper panel, 0 min) and 45 min after (lower panel, 45 min) dilution into and incubation in heme-
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supplemented (lane1) or heme-deficient (lanes 2-8). 

Surface plasmon renonance (SPR) analysis of the binding of gambogic acid to Hsp90’s N-

terminal domain 

  To determine whether gambogic acid was indeed interacting with Hsp90’s N-terminal domain, 

we cloned the N-terminal domain of Hsp90α (Hsp90NT; amino acids 1-241) with a 7 amino acid 

extension at its C-terminus containing a C-terminal Cys residue. Recombinant Hsp90NT was 

biotinylated and immobilized onto a neutravidin sensor chip for analysis of gambogic acid 

binding by surface plasmon resonance spectroscopy (SPR).  Full length Hsp90 and the C-terminal 

domain of Hsp90 (Hsp90CT, amino acids 531-732) were immobilized on sensor chips which 

were used as positive and negative controls, respectively. Gambogic acid was observed to bind 

specifically to full length Hsp90 (Fig. 5A) and Hsp90NT (Fig. 5B), but not to Hsp90CT (not 

shown). Kinetic analysis of the binding and dissociation kinetics indicated that gambogic acid 

bound to both Hsp90 and Hsp90NT with similar association constants (ka), dissociation constants 

(kd) and calculated Kd (9.8 versus 7.6 uM, respectively: Table 1). Gambogic acid was also 

observed to bind Hsp90NT in the presence of 20 uM geldanamycin in the analyte buffer, with the 

geldanmycin having no significant effect on the measured ka and kd or the calculated Kd (Table 

1). Thus, the data indicate, that gambogic acid binds to the N-terminal domain of Hsp90, and like 

celastrol [201], it binds to a site distinct from the ATP binding pocket.  In addition, the Kd for 

gambogic acid binding to Hsp90 correlated well with the IC50s for gambogic acid-induced 

inhibition of other Hsp90-dependent processes, further supporting Hsp90 as one of gambogic 

acid’s physiological targets. 
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Table 4.1. Constants for the binding of Gambogic Acid to Hsp90 

Protein  ka (M
-1 S-1) kd (S

-1) KD (µM)   

Full length Hsp90  1.16(8)e3 0.0113(4) 9.8(2)   

Hsp90NT 1.47(6)e3 0.01122(7) 7.6(3)   

Hsp90NT (+20 
M GA) 1.62(8)e3 0.0114(7) 7.0(4)   

Hsp90CT                            No Binding    

   

 

 

 

 

 

 

 

 



 

Figure 4.5.  SPR analysis of the interaction of gambogic acid with (A) full length Hsp90 and (B) 
the N-terminal domain of Hsp90.
SPR chip containing bound full length Hsp90.  B. Injection of 0.5, 5, 15 and 25 
acid over a SPR chip containing bound Hsp90NT. Black line: sensorgram of binding and 
dissociation; dotted gray line: curve fit.  Data generated by Jacob Manjarrez.
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SPR analysis of the interaction of gambogic acid with (A) full length Hsp90 and (B) 
terminal domain of Hsp90.  A. Injection of 1.0, 10, 25 and 50 uM gambogic acid over a 

SPR chip containing bound full length Hsp90.  B. Injection of 0.5, 5, 15 and 25 
acid over a SPR chip containing bound Hsp90NT. Black line: sensorgram of binding and 

ed gray line: curve fit.  Data generated by Jacob Manjarrez. 

 

SPR analysis of the interaction of gambogic acid with (A) full length Hsp90 and (B) 
M gambogic acid over a 

SPR chip containing bound full length Hsp90.  B. Injection of 0.5, 5, 15 and 25 uM gambogic 
acid over a SPR chip containing bound Hsp90NT. Black line: sensorgram of binding and 
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Virtual docking of gambogic acid to Hsp90NT 

  We approached the problem of identifying where gambogic acid putatively binds to the HSP90 

N-terminal domain by using the “blind” docking method [246] in which the entire HSP90 N-

terminal domain not just the geldanamycin binding site was used to search for the lowest possible 

binding energy for gambogic acid.  The apo- and geldanamycin-bound Hsp90NT crystal 

structure, PDB ID 1YET, along with the open or unbound crystal structure of the Hsp90NT, PDB 

ID 1YES, were used for docking of gambogic acid to determine if it would compete for the 

geldanamycin binding site or bind elsewhere. These two structures share a 0.25Å RMSD of the 

Cα backbone spanning the entire 221 residues of the crystal structures with the majority of 

conformational changes occurring in residues 105-112 [234].  In all three docking experiments, 

Gambogic acid preferentially bound to the hydrophobic cleft created by α-helix 9 (H9) and β-

sheet strand 8 (S8), residues 200-222.  The calculated average binding affinities for Gambogic 

acid for this region were -9.44, -9.50 and -9.37 kcal/mol for the apo, geldanamycin-bound and 

open structures, respectively.  Docking results predict aliphatic hydrophobic interactions would 

occur between the gambogic acid substituent arms and the aliphatic side chains of H9, while the 

xanthenone moiety would lie on the Cα backbone of S8 making potential pi interaction with the 

carbonyl and amide bonds.  Additionally, a salt bridge is formed between K208 and a gambogic 

acid carboxyl group, and K284 forms a hydrogen bond with another gambogic acid carboxyl 

group.  These interactions stabilize the binding of gambogic acid to Hsp90 (Fig. 4.6).  The 

regions of H9 and S8 undergo minor conformational changes with a 0.15Å RMSD of the Cα 

residues between residues 200-222. 

  Our docking results are consistent with gambogic acid being a non-competitive inhibitor of the 

Hsp90 N-terminal domain.  The region of H9 and S8 of the HSP90 N-terminal domain undergoes 

little change between the geldanamycin-bound structure and the open conformation structure with 

a 0.15Å RMSD of the Cα backbone of residues 200-222. 
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Figure 4.6.  Models of gambogic acid docked to geldanamycin-bound Hsp90NT. A. Ribbon 
diagram of Hsp90NT with the carbons of 1 and geldanamycin shown in yellow and green, 
respectively. B. Electrostatic surface potential of Hsp90NT shown in the same orientation as in A.  
C. Close-up showing the salt bridge and H-bond formed between K208 and K204 with gambogic 
acid. 
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  In this study we present data characterizing the effects of two inhibitors of the Hsp90 chaperone 

complex on the complex itself, as well as on cancer cells.  Gambogic acid has demonstrated 

biological activities relevant to the treatment of cancer and other diseases.  These activities were 

mediated by its effect on known Hsp90 client proteins, including, but not limited to, induction of 

cell cycle arrest and inhibition of migration in vascular smooth muscle cells by blocking the 

activity of the platelet derived growth factor receptor and the G protein rac1 [247],  suppression 

of STAT3 activation and induction of apoptosis in multiple myeloma cells [248], inhibition of 

TNFα-induced prostate cancer cell invasion via blockade of the Akt pathway [249], and induction 

of mutant p53 degradation in breast cancer cells [250].  Despite the large number of reports on 

gambogic acid’s activities, it has only recently been identified as an inhibitor of Hsp90.  We have 

demonstrated its cytotoxicity to cancer cells, its ability to inhibit the Hsp90-mediated refolding of 

thermally denatured luciferase, its direct binding to Hsp90, and its effects on the interaction of 

Hsp90 with its co-chaperones and a nascent client protein.  In the study of gambogic acid’s 

effects on the Hsp90 complex in the chaperoning of HRI, we also examined the activity of 

another relatively new Hsp90 inhibitor, celastrol.  This compound, which has been studied in an 

Hsp90 context more thoroughly, had similar effects on the chaperone-co-chaperone-kinase 

complex to those of gambogic acid.  Both compounds abrogated the interaction of HRI with 

Hsp90, as well as the co-chaperones Hsp70 and Cdc37.  In this way, the compounds act in a 

manner similar to that of the C-terminal inhibitors novobiocin and coumermycin A1.  Unlike 

these compounds, however, celastrol and gambogic acid did not cause the degradation of the 

client protein after a 45 minute incubation.  It might be the case that celastrol and gambogic acid 

have identical binding mechanism, causing the same changes in the Hsp90 complex.  However, 

additional biophysical studies with celastrol will be needed to make a determination. 



119 

 

CHAPTER V 
 

 

CONCLUSION AND FUTURE DIRECTIONS 

Summary 

  In this work, we have demonstrated two over-arching concepts.  First, we have shown that 

natural products are rich sources of bioactive compounds, many of which are likely inhibitors of 

the Hsp90 chaperone complex.  Second, we have demonstrated the utility of a luciferase-based 

assay for high-throughput screening to identify such compounds, and for approximating their 

affinity for the Hsp90 complex. 

  Our high-throughput screen consisted of four natural compound libraries from commercially 

available sources.  The total number of compounds screened was approximately 3800.  The 

number of hits, defined as those compounds that inhibited luciferase refolding by 50%, was 95.  

This represents a 2.5% hit rate for the compounds.  Other high-throughput screens are being 

carried out in the search for Hsp90 inhibitors.  Not only are the methods used varied, but the 

libraries, as well.  Some of the screens make use of chemical libraries that contain many synthetic 

compounds.  In one study, 21,000 molecules targeted as ATP analogs were screened for their 

ability to bind Hsp82, the yeast homolog of Hsp90.  This screen yielded two hits, a <.01% rate. 

[251].  Another screen, which was somewhat more successful in identifying potential Hsp90 

inhibitors, used a collection of compounds that consisted of natural compounds, various drugs 

already in use, and known pharmacologically active compounds.  This screen produced 46 
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compounds out of 4000 screened, a >1% rate.  Additionally, they were able to determine 

specificity for binding of the Plasmodium falciparum Hsp90, versus human Hsp90, which 

narrowed the hits to three [252].  Our lab has previously carried out a high-throughput screen of 

20,000 compound chemical library at the University of Kansas High Throughput Screening 

Laboratory, using the luciferase refolding assay to identify hits as we have in this study.  A hit 

rate of 0.6 % (120 compounds) was observed.  

  In our own high-throughput screen, there were a number of compounds that have no designation 

other than a catalog number.  These compounds have not been characterized or studied in any 

way, other than the elucidation of their structure.  This strengthens the case for further 

investigation into compounds from natural sources, as they could represent a large, untapped 

reservoir of potential therapeutics.  There are numerous plants in traditional medicinal use all 

over the world whose extracts have been shown to have medicinal value, and whose chemical 

compositions have not been determined.  More relevant to our study, many of these specifically 

have anti-cancer activity.  A few examples: Lindera obtusiloba from China and Korea, inhibits 

proliferation and induces apoptosis in hepatocellular carcinoma [253].  Trametes robiniophila 

from China inhibits the proliferation of umbilical vein endothelial cells and mammary tumor cells 

[254].  Equisetum hyemale, found everywhere but Australia and New Zealand, was cytotoxic to 

mouse leukemia cells [255].  Ethanol extract of Hedyotis diffusa from China induced cell cycle 

arrest in human colon carcinoma cells [256].  A traditional Chinese formula containing glossy 

privet fruit and the herbs Carapax trionycis and Polygonum cuspidatum was shown to induce 

apoptosis in human hepatocarcinoma cells [257].  A study of Mayan botanical literature found ten 

species that displayed some cytotoxic activity to at least one human cancer cell line each.  The 

most potent extract was the root bark from Aeschynomene fascicularis.  Others included Bonellia 

macrocarpa, Casearia corymbosa, and Alvaradoa amorphoides [258].  The flavonoid-containing 

fraction from Saraca asoca, used in traditional Indian medicine, applied topically, was effective 
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in reducing chemically induced tumor formation [259].  Certain extracts of the seeds of Glinus 

lotoides, used in Asia and Africa, showed apoptotic cytotoxicity against multiple human 

carcinoma cell lines [260]. 

  These examples are only a small fraction of the plants and other natural sources from which 

medical traditions throughout the world derive therapeutics.  Many of these have only been 

characterized by simple solvent extractions.  Some have not been fractionated at all.   

  Taken together, the results of our screen, the results of other screens using different types of 

compound libraries, and the ongoing work being done with natural products all support our 

hypothesis that natural compound sources are more likely to yield Hsp90 inhibitors than typical 

chemical sources, and point to these natural sources as viable targets for the continued pursuit of 

improved inhibitors of Hsp90 that are likely to yield large numbers of candidate compounds. 

This template is best used for directly typing in your content. However, you can paste text into 

the document, but use caution as pasting can produce varying results. 
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