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Abstract 

 The interactions of nitric oxide (NO), nitrite and organic nitroso compounds with 

heme proteins are biologically relevant.  The formation of adducts between these NO-

containing species and myoglobin (Mb) has served as a prototypical system for the 

interactions of nitroso compounds with heme proteins.  We have prepared nitrosyl horse 

heart myoglobin  using the two common synthetic routes, and we have determined that 

there are reproducible differences in the geometry of the FeNO moieties that depend on 

the synthetic method used.  The 1.30 Å resolution structure of the complex formed from 

the reaction of reduced myoglobin with NO gas revealed an FeNO angle of 120˚ and an 

Fe-NO bond length of 2.13 Å.  The 1.30 Å resolution structure of nitrosyl hh Mb formed 

using nitrite and sodium dithionite revealed an FeNO angle of 144˚ and an Fe-NO bond 

length of 1.87 Å.  These differences are reproducible and suggest a role of the distal 

pocket in stabilizing conformational minima. 

 Recently, it has been shown that hemoglobin (Hb) and myoglobin catalyze the 

reduction of nitrite to NO under hypoxic conditions.  Prior to our work, there was no 

reported crystal structure of a Hb-nitrite or Mb-nitrite complex.  Therefore, obtaining the 

structure of the myoglobin nitrite adduct was an important goal in our research.  In this 

thesis, we report  the 1.20 Å resolution structure of hh Mb(ONO) complex.  The nitrite 

ligand binds to the heme iron through its oxygen forming an Fe-O-N-O linkage, with an 

Fe-O bond length of 1.94 Å and an O-N-O angle of 113˚.  This complex was formed both 

by soaking a preformed metMb crystal with nitrite, as well as performing the Mb(ONO) 

adduct and crystallizing the complex.  The only appreciable difference between the two 



 xiv 

structures is the lower occupancy of the nitrite ligand and partial occupancy of a water 

molecule in the latter cocrystallization method.    

 Nitrosoalkane and nitrosoarenes are biologically significant compounds that are 

formed both by the oxidation of amine containing compounds (RNH2) or the reduction of 

nitro compounds (RNO2).  The resulting RNO compounds are known to bind to heme 

iron.  We determined the 1.70 Å resolution crystal structure of the Mb nitrosoethane 

complex (Mb(EtNO)), and the 1.60 Å resolution crystal structure of the related Mb 

nitrosomethane complex (Mb(MeNO)).  To the best of our knowledge, these are the only 

two heme-nitrosoalkane structures to be reported. Both crystal structures reveal the N-

binding mode (bound through nitrogen) of the nitrosoalkane to the heme iron, with the 

hydrophobic portion of the ligand oriented toward the interior of the protein and the NO 

moiety oriented toward the solvent and in hydrogen bonding distance to the distal 

histidine 64 residue.  The 2.00 Å resolution structure of the myoglobin complex of a 

representative nitrosoarene, nitrosobenzene, was also determined.  This is the second 

heme-PhNO crystal structure to be reported; the first was the leghemoglobin 

nitrosobenzene complex.  The orientation of the PhNO in the heme pocket of the legHb 

structure reveals that the phenyl ring is oriented toward the exterior of the protein and the 

NO group toward the interior of the protein, opposite to the orientation that was 

determined here for Mb(PhNO).  In the Mb(PhNO) complex, the phenyl ring is oriented 

toward the interior of the protein in a similar fashion to the nitrosoalkane complexes, 

which allows the NO to be oriented toward the exterior of the protein and allows 

hydrogen bonding between the O of PhNO and histidine 64 to help stabilize the complex. 
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1. Introduction 

 The interactions of heme proteins with nitric oxide (NO), nitrite (NO2
-) and C-

nitroso compounds (RNO) have been studied for well over 100 years, and some of the 

earliest work dealt with nitrobenzene metabolites and their interactions with hemoglobin1.  

Throughout the 20th century these interactions were studied in greater detail as the 

biological importance of these molecules was discovered.   

 In this dissertation, I will examine the interactions of NO as well as several 

different nitric oxide containing molecules (NOX, X being oxygen or an R-group), 

namely nitrite and C-nitroso compounds, and their interaction with biological heme 

systems.  Through these interactions we hope to add to the discussion on the biological 

chemistry of these adducts. 
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1.1 Nitric Oxide 

 Nitric oxide is a simple diatomic molecule with a bond order of 2.5 and is a gas at 

standard temperature and pressure.  It can be identified using infrared spectroscopy by an 

absorbtion band at 1875 cm-1 2.  In the last 20 years NO has returned to the forefront of 

research because of the many and varied biological functions of this simple diatomic 

molecule. 

 While it has been shown recently that NO is produced in vivo, NO can be made 

by various methods both environmentally and synthetically.  One of the most common 

natural sources is the reaction of molecular nitrogen and oxygen at high temperatures 

caused by lightning3, 4.  It is also a product of combustion in the presence of N2, as occurs 

in internal combustion engines.  As such, the increased number of cars on the road has 

drastically increased the NO levels in the lower atmosphere5.  The NO released from car 

exhaust reacts with O2 to form NO2 (smog)5.  Catalytic converters on cars are used in part 

to reduce the levels of NO that is released into the atmosphere5, 6.  On a laboratory scale, 

NO can be made by the reaction of nitric acid with copper7. 

 

8HNO3 + 3Cu → 3Cu(NO3)2 + 4H2O + 2NO 

 

However, most commercially available NO is produced by the catalytic oxidation of 

ammonia over Pt at 800˚C 5. 

 Once produced, NO can react with both metals and non-metals.  One simple 

reaction was described above, the reaction with O2 to produce NO2.  It has also been 

shown to react with various organic compounds to form so called X-NO compounds.  
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Usually the link for this type of compound is made through the nitrogen, but the less 

common isonitrosyl linkages have been observed.   

 

X N

O

X O

N

Nitrosyl linkage Isonitrosyl linkage 

 

One example of this is the reaction that was proposed between a cysteine on the 

β−subunit of hemoglobin and NO to form S-nitrosocysteine8.  Other reactions have been 

observed that lead to N-linked, O-linked and C-linked nitroso compounds. 

 The other important type of reaction occurs between NO and metal centers.  NO 

has been show to be a good ligand to both free metals and chelated metals as seen in 

porphyrin system.  The affinity of NO for some metalloporphyrins has been shown to be 

ten orders of magnitude greater than the related CO affinity2.   Whereas, there are only 

two major binding modes for nitric oxide with organic molecules, metal interactions offer 

many different modes of binding. 

 

M

N

O

M

O

N

M

N O

 

 

There are three basic modes of binding that are available to the NO when binding to 

monometallic centers.  The first available binding mode involves binding through the 

η1-N η1-O η2-NO 
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nitrogen, η1-N.  This η1-N binding mode has subgroups available, the MNO geometry 

can be either linear or bent. 

 

M

N

O

M

N

O

Bent Linear  

 

The geometry of this adduct depends greatly on the oxidation state of the metal, as well 

as the number of electrons available from the ligand.  The second available binding mode 

involves binding through the oxygen, η1-O.  Similarly to the η1-N binding mode, this 

mode also can be divided into linear and bent modes.  Finally, we have the η2-NO or 

side-on binding.  This occurs when both the nitrogen and the oxygen are bound to the 

same metal center. 

 In porphyrin model complexes, the most significant model complexes relevant to 

this work, the main type of binding that has been observed is η1-N.  However, using flash 

photolysis metastable η1-O binding has been observed 2. 
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1.2 Nitrite 

 The nitrite anion (NO2
-) is a simple oxyanion of nitrogen with a pKa in aqueous 

solution of 3.2 at 20 °C 9.  Nitrite is a common anion throughout the ecosystem.  It is 

present in the ocean between 0.000005 to 0.00002 ppm throughout the surface levels and 

at greater concentrations in deeper water 10, 11.  Nitrite is also an important molecule for 

plant growth and is abundant in soil 12.  Nitrite is one of the major players in the global 

nitrogen cycle.   The denitrification pathway is shown below. 

 

 

 

 

 Beyond the naturally occurring nitrite in the environment, nitrite is also used in 

the meat packing industry, as an additive to meat.  It is added for both its antimicrobial 

activity and its ability to impart the color of fresh meat.  The color derives from the 

heme-NO pigment that has a similar visible spectrum to Mb-O2 13-15.  

 Nitrite is formed as stated above as a normal part of the nitrogen cycle by 

bacteria, but it can also be formed by the reaction of NO with O2.  Historically, nitrite has 

been detected using the Griess reagent 16.  Johann Peter Griess developed a method to 

detect NO2
- in 1858 and it has been used commonly to detect nitrite ever since.  The 

Griess reagent is used to detect free nitrite in solution; however, in this study I am 

interested in metal-nitrite complexes, which are commonly detected using spectroscopy. 

NO3
- NO2 NO2

- NO N2O N2 NH4
+ 
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 Nitrite, like NO can interact with both non-metals and metals in several different 

ways.  One common reaction between nitrite and non-metals is the reaction between 

nitrous acid (in equilibrium with nitrite in solution) with C-H bonds adjacent to electron 

withdrawing groups which results in the C-nitrosation of organic molecules by replacing 

the –H with –NO 17-19.     

 The interaction of nitrite with metals can occur in multiple ways.  Nitrite can bind 

to monometallic centers and multimetalic centers by bridging the metals.  Similarly to 

NO, nitrite can bind metals through its nitrogen, η1-N, through its oxygen, η1-O.  

Additionally, it can bind through both oxygens, η2-O or in a variety of bridging 

complexes20. 

M N

O

O

M

O

N

O

M

O

M

N

O

M O

N

O

M

N

O

O

M

M O

N

O M M N

O

O

M

M N

O

O

M
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N
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1 2 3
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Figure 1.1  Schematic representation of possible binding modes of nitrite to metals.  1 Nitro; 2 
Monodentate nitrito (trans); 3 Monodentate nitrito (cis); 4 Chelation; 5 Nitrito bridging µ(N,O) free O away 
from metal; 6 Nitrito bridging µ(N,O) free O adjacent to a metal; 7 Nitrito bridging µ(O); 8 Nitrito bridging 
(not yet observed); 9 Three coordinate nitrite (not yet observed).  Figure from Hitchman review 20. 
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1.3 C-Nitroso Compounds 

 As previously mentioned, the reaction of NO with some organic compounds gives 

rise to so called X-NO species that display interesting reactions.  There are four major 

types of organic nitroso compounds, N-nitroso, O-nitroso, S-nitroso, and C-nitroso.  Each 

of these has different reactivities in biological and non-biological systems. 

 Many N-nitrosamines are carcinogenic, and are produced in the stomach and gut 

by the reaction of some amines with nitrite or NO 21-25.  They are also formed during the 

smoking process during the production of tobacco products (production, not 

consumption).  S-nitroso compounds are often used as NO donors 17, and it has been 

proposed that S-nitroso-cysteine is a storage device for NO in vivo 8.  O-nitroso 

compounds are generally synthesized by nitrosating the precursor alcohol, and are 

commonly used as NO donors in organometallic chemistry 17. 

 In this thesis, the main focus of these X-NO compounds will be on the C-linked 

nitroso compounds.  The biological significance of these RNO compounds stems from 

their ability to bind and inhibit the function of heme proteins.  This inhibition is due to 

the binding of RNO compound to the heme metal26. 

 The mode of RNO binding to the heme proteins is unclear, but the binding of 

RNO compounds to inorganic model systems has been reviewed recently 17.  In model 

complexes, the RNO ligand has the ability to bind through the nitrogen, η1-N; the 

oxygen, η1-O; as a dimer through the oxygens, η1-O; side on through the nitrogen and the 

oxygen, η2-NO; or through some other functional group in the R-group 17.  All of the 

above types of binding are to monometallic centers, which is most significant to this 
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work and shown below, but RNO ligands can bind to two or more metallic centers in 

multiple bridging modes (not shown) 17. 

O

N

R

M

O

M

N R
N N

O O

M

R R

M

O N

R

 

 

 

 These C-nitroso compounds can be synthesized through multiple synthetic routes.  

The two most important to this work are: (i) the oxidation of amines or hydroxylamines,27 

and (ii) the direct reduction of nitro compounds to the nitroso compound 28-30.  Both of the 

above methods were employed in this research and will be discussed in Chapter 4.  As 

described in the previous section on nitrite, nitrous acid or other nitrosating agents can 

react with C-H bonds adjacent to electron withdrawing groups, which results in the C-

nitrosation of organic molecules by replacing the –H with –NO 18, 19.  The reaction of 

organometallic reagents with nitrosating agents, as well as the addition of nitrosating 

agents across double bonds, and reaction of NO with carbon radicals are also used to 

synthesize RNO compounds 31-33. 

 C-nitroso compounds exist as both monomers and dimers in solution.  While the 

dimer is colorless, it can be detected by UV/Vis spectroscopy.  Both the cis- and the 

trans- dimer absorb in the 260-290 nm range 17, 27, 32, 34.  The monomers for both alkyl and 

aryl nitroso compounds absorb in the visible region having either a slightly blue or green 

tint respectively 17, 27, 32, 34. 

η1-N η1-O η2-N,O η1-O Dimer 
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 If there is an available hydrogen on the alpha carbon, the monomer is not stable in 

solution and can tautaumerize to the associated oxime 35, which will not bind to a metal 

center.  For this reason, in this study we used the associated nitro compound and reduced 

it to the nitroso compound to form the nitrosoalkane complexes and used the 

hydroxylamine to form the nitrosoarene complex. 
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Figure 1.2  Two synthetic routes to make RNO compounds.  (1) amine can be oxidized to (2) 
hydroxylamine which can be oxidized to form the (4) nitroso compound.  (3) the nitro compound can also 
be reduced to the (4) nitroso compound.  If a hydrogen is available on the carbon through which the NO is 
linked the (4) nitroso compound can tautaumerize to the (5) oxime. Figure adapted from reference 35. 
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1.4 Heme and Heme Models 

 One of the commonalities between all of the above mentioned small molecules is 

that they bind to metals, and more specifically heme or heme model complexes.  Heme is 

an important biological cofactor and is more appropriately named iron protoporphyrin IX 

(PPIX). 

 

Fe

N

N

N

N

O

O

O

O

Iron Protoporphyrin IX

 

 

Heme is a hydrophilic, asymmetric porphyrin and is fairly difficult to work with by itself 

in solution.  Therefore, inorganic chemists have devised ways to try to model the activity 

and functionality of heme with compounds that are easier to work with.  These synthetic 

porphyrins are usually symmetrical and much more hydrophobic than PPIX. The most 

common synthetic porphyrins used are the tetra-meso-substituted 5,10,15,20-

tetraphenylporphyrin (TPP) and 5,10,15,20-tetra-p-tolylporphyrin (TTP) and the octa-β-

substituted 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) are shown below.  

Protoporphyrin IX dimethylester (PPDME) is also shown because of its similarity to 

protoporphyrin IX. 
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All of these compounds are much easier to synthesize and work with than are biological 

porphyrins.  For the most part, they are reasonable biological porphyrin mimics, with the 

obvious limitations that they do not allow for interaction with the heme pocket, which is 

nonexistent and the complexes are studied for the most part in non-aqueous 

environments.  In order to study the effects of the heme pocket two proteins were used.   
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1.5 Myoglobin and Cytochrome P450 BM-3 

 Horse heart myoglobin and Cytochrome P450 BM-3 were chosen because they 

are both good models for other proteins that are more difficult to work with.  First, 

Myoglobin was chosen because it is a simple heme protein that has a molecular weight of 

16,951 Da.  This protein is small, stable and crystallizes readily.  It is made up of 8 α-

helices connected with short loops or turn regions.  Heme b is incorporated into the fold 

and the heme iron is ligated by a histidine residue.  Myoglobin has been used for decades 

as the prototypical histidine ligated heme protein and for that reason we chose it as the 

protein on which to perform our crystallography.  We obtained the horse heart myoglobin 

from Sigma and it was used with little or no additional purification.  The crystallization 

was performed using a method that was slightly modified for the method used in Ilme 

Schlichting’s laboratory36. 

 

Figure 1.3  Typical horse heart myoglobin fold showing both the surface in shaded blue and the protein 
backbone with 8 α-helices in ribbon format colored in rainbow form from blue at the N-terminus to red at 
the C-terminus.  The heme is shown with histidine 90 (below heme) ligating the heme and an NO molecule 
bound to the distal face of the heme, with His64 shown hydrogen bonding to the NO ligand. From 1NPF37. 
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 The heme domain of cytochrome P450BM-3 was chosen because of its sequence 

similarity to mammalian P450s, and that it is a soluble protein, unlike most mammalian 

P450s.  It is classified as a Type II P450, the class that all mammalian P450s fall into; 

additionally it is the only P450 that contains all of the catalytic components on a single 

polypeptide chain.  The figure below shows schematically the similarities between 

P450BM-3 and mammalian P450s, and the differences it has compared to other bacterial 

P450s. 

 

 

Figure 1.4  Schematic representation of the two major classes of P450s.  Class I envelops bacterial P450s 
and Class II is constituted of mammalian P450s with the notable addition of P450BM-3 from the bacterium 
Bacillus megaterium.   
 

 

The DNA for the heme domain was cloned into a pET21 expression vector, which we 

obtained from the Lab of Dr. Thomas Poulos.  The protein was then expressed as in the 

paper which describes the initial characterization38. 
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1.6 Research Focus  

 The aim of this research is to add structural information to the debate on the 

binding of NO and NO-containing ligands to heme proteins.  X-ray crystallography and 

UV/Vis spectroscopy are the primary tools that were utilized in the performance of the 

research reported in this dissertation. 

 The geometries associated with nitrosyl heme interactions in biological systems 

are as varied as the proteins involved.  In 6-coordinate, Fe(II) model complexes, with a 

reasonable histidine mimic as the sixth ligand, the metal nitrosyl geometry falls into a 

fairly tight range (137-140° (avg. ~138.5 °)), and the Fe-NO bond lengths range from 

1.744(2)-1.758(1) Å (avg. ~1.753 Å) 39, 40.   In heme protein nitrosyl complexes that range 

expands dramatically (the ∠FeNO ranges from 112 – 160˚ and the Fe-N(O) bond length 

ranges from 1.5 Å to 2.2 Å).  This expansion in the range is most likely due to the fact 

that the protein itself plays a major role in the binding of the ligand to the metal.  The 

work discussed here adds to the discussion on the variety of FeNO geometries observed 

in biological nitrosyl complexes by showing that the method of formation of a horse heart 

myoglobin nitrosyl complex affects the final geometry of the complex.    

 Additionally, this dissertation will focus on the interaction of nitrite with heme 

proteins; specifically, we will focus on the mode of binding of nitrite to myoglobin.  In all 

known cases the nitrite moiety binds to the heme iron with a nitro type binding.  This has 

led to most of the current thinking on how enzymes that bind nitrite are able to convert it 

to NO.  This work looks to add to this field by demonstrating an alternative binding mode 

for the nitrite ligand. 
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 The final portion of this dissertation will focus on the interaction of RNO 

compounds with heme proteins.  With the above techniques, I aimed to definitively 

answer questions on the mode of binding of nitrosoalkane and nitrosoarene ligands to 

myoglobin, as well as the effects that the protein sidechains in the heme pocket have on 

the geometry of the ligand and overall ability of the ligand to bind.  This work is the 

logical extension of work begun over 100 years ago with the discovery of nitrobenzene 

poisoning1, 41-50. However, the interaction responsible for nitrobenzene poisoning was 

identified only 30 years ago by Mansuy and Chottard and has continued to be studied 

ever since 35, 49, 51-58.  These are the first reported crystal structures of heme nitrosoalkane 

complexes and an alternative PhNO conformation is shown to the leghemoglobin 

nitrosobenzene structure that was previously reported. 
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2 Nitrosyl Horse Heart Myoglobin  

2.1 Introduction 

  Nitric oxide is biosynthesized from L-arginine by the heme-containing 

enzyme NO synthase.  This enzyme catalyzes the oxidation of L-arginine to citrulline and 

NO in two general steps utilizing NADPH and O2 as additional substrates (Figure 2.1) 1. 

The first step involves the conversion of L-arginine to Nω-hydroxy-L-arginine, and the 

second step completes the oxidation to give citrulline and NO as final products.   

The identity of NO as the final gaseous product is generally accepted, however, some 

intriguing results have been presented in the literature that suggest that HNO (nitroxyl) is 

the initial product of this conversion 1, 2.  

The interactions of NO with the metal centers in heme-containing biomolecules 

are biologically important 3, 4.  A primary role for NO in vivo is as a signaling molecule.  

H3N COO
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H2N O

O2 H2O

NADPH

O2 H2O
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+      NO

Arginine N-hydroxy-L-arginine Citrulline  
 
 
Figure 2.1 Biosynthesis of NO.  Conversion of arginine to citrulline and NO carried 
out by nitric oxide synthase. 
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The heme-containing receptor, soluble guanylyl cyclase (sGC), contains histidine as a 

heme ligand, and the heme iron binds NO in a process that has been correlated with sGC 

activation and subsequent vasodilation 5-7. NO is known to bind to other heme-containing 

biomolecules such as myoglobin (Mb), hemoglobin (Hb), cytochrome P450 (P450), and 

NO synthase (NOS), and the binding and activation of NO by metalloporphyrins and 

heme was reviewed in 2000 3.  In the past ten years, NO has been implicated in a number 

of biological processes including apoptosis, leukemogenesis, asthma, G-protein signaling, 

abnormal T cell signal transduction, kidney function, diabetes, erectile dysfunction, 

chronic fatigue syndrome, and Parkinson’s disease 8-17. 

 A primary mode of action of NO in vivo is its interaction with heme iron.  The 

myoglobin nitric oxide complex has served as a prototype for the investigations of distal 

pocket effects on the FeNO conformations in solution.  In this thesis, new findings 

concerning the binding of NO with myoglobin will be presented and discussed. 
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2.1.1 Nitric Oxide and Metals 

 Traditionally, metal-NO complexes that show a linear geometry have been 

described as containing an NO+ moiety bound to the metal.  In a similar manner, the 

bound NO in a bent metal-NO compound has been described as an NO- ligand.  The 

simple reason for these descriptions is that the linear NO is bound similarly to CO, and 

NO+  is isoelectronic with CO. NO- binds in a bent conformation much like O2.  This 

formalism is an oversimplification because it does not take into account the oxidation 

state of the metal 3. 

 The oxidation state of the metal plays a key role in determining the geometry of 

the FeNO moiety.  These metal-NO complexes have been described as either “ferric” or 

“ferrous” complexes, however, like the NO+ and NO- description above, describing only 

the metal oxidation state also may be an oversimplification.   The oxidation state of a 

metal is commonly known prior to a reaction with NO, but the definite oxidation state of 

a product complex is usually ambiguous.  For example, iron porphyrin NO complexes are 

often described as (por)Fe(II)(NO) and as ferrous, low-spin, d6 complexes.  However, 

these formulations cannot be correct because these complexes are paramagnetic, they 

have an unpaired electron. 

 The idea of describing the complexes solely by their oxidation state or as 

NO+/NO- species are both overly simplistic, so Enemark and Feltham developed the so-

called Enemark-Feltham notation18.  This is a formalism that is used to describe metal-

NO complexes.  The notation is as follows: {M(NO)x}n where x is the number of NO 

molecules bound to the metal, and n is the total number of d electrons of the metal and 

the π* orbital of the NO. 
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Fe(III) NO {Fe(NO)}6
+ =

5 e- 1 e- 6 e-  

 

One added benefit to this notation is it simplifies the prediction of FeNO geometries in 

octahedral complexes.  If n ≤ 6 the M-NO geometry should be linear and if n > 6 the M-

NO geometry will be bent.  Most biochemists do not subscribe to this notation, so in this 

thesis the ferrous/ferric (Fe(II)/Fe(III)) notation will be primarily used, but will describe 

the oxidation state of the metal prior to the reaction, not the oxidation state of the 

complex.  In this thesis, MbNO is taken to mean {Fe(NO)}7 unless stated otherwise. 
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2.1.2 Nitric Oxide Complexes 

2.1.2.1 Spectroscopy 

 The most widely used methods to study the interactions of nitric oxide with 

porphyrin model systems are spectroscopic methods.  All of the major spectroscopic 

techniques have been used to study nitrosyl metal porphyrin complexes and a review was 

written on the topic in 1996 19.   

2.1.2.2 X-ray Crystal Structures 

 Synthetic metalloporphyrins are frequently used as models for the heme cofactor, 

and such model complexes containing NO have been studied over the past few decades.  

Studies on the NO adducts of Mo, Mn, Fe, Ru, Os, Rh and Co porphyrins synthesized 

prior to 2000 are reviewed by Cheng and Richter-Addo in The Porphyrin Handbook 3.  

Another review in 2002 includes several new (por)M(NO) structures 20. 

 In this work, we will focus on six-coordinate Fe(II) porphyrins containing a 

reasonable histidine mimic for the sixth ligand.  This limits the axial ligands to 

piperidines, pyridines, and imidazoles.  A reasonable review that contains many of the 5-

coordinate species ((por)Fe(NO)) was published by Wyllie in 2002 20.  Selected structural 

data for synthetic five-coordinate and six-coordinate Fe(II) nitrosyl porphyrins are 

presented in Table 2.1. 
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Table 2.1  Selected X-ray Structural Data for Synthetic Ferrous Nitrosyl Heme Complexes 
Complex  coord.no. Fe-N(O) (Å) N-O (Å) ∠FeNO (°) Fe-L (Å) ref 
(TPP)Fe(NO)  5 1.717(7) 1.122(12) 149.2(6)  21 
(TPPBr4)Fe(NO) 

 
 5 1.734(8) 

1.726(9) 
1.691(11) 

1.119(11) 
1.144(12) 
1.145(16) 

147.9(8) 
146.9(9) 
145(1) 
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(OEP)Fe(NO) 
 monoclinic 

triclinic 

  
5 
5 

 
1.722(2) 
1.7307(7) 

 
1.167(3) 
1.1677(11) 

 
144.4(2) 
142.74(8) 
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(T(2,6-Cl2)PP)Fe(NO)  5 1.703(8)  138.8(9)  23 
(T(β-Br8)PP)Fe(NO)  5 1.75(6) 1.42(7) 146.4(24)  23 
(TTP)Fe(NO)  5   149.2(6)  23 
(TpivPP)Fe(NO)  5 1.65(5) 

1.74(6) 
1.17(5) 
1.20(7) 

149(4) 
137(4) 
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[(TpivPP)Fe(NO)]. 
[K(NO2)(18C6)] 

 5 1.716(15) 1.197(9) 143.8(17)  20, 25 

(OETAP)Fe(NO)  5 1.721(4) 1.155(5) 143.7(4)  26 
(oxoOEC)Fe(NO)  5 1.7320(13) 1.1696(19) 143.11(15)  22 
(TPP)Fe(NO)(1-MeIm)  6 1.743(4) 1.121(8) 142.1(6) 2.180(4) 27, 28 
(TPP)Fe(NO)(1-MeIm)  6 1.750 1.181 137.72 2.173 29 
(TPP)Fe(NO)(4-MePip)  6 1.740(7) 1.112(9) 143.7(6) 2.463(7) 30 
(TPP)Fe(NO)(4-MePip) 
.CHCl3 

 6 1.721(10) 1.141(13) 138.5(11) 2.328(10) 30 

(oxoOEP)(Fe(NO)(Py)  6 1.740 1.190 138.33 2.310 31 
(TPP)Fe(NO)(4-dMAP)  6 1.758 1.170 139.79 2.278 29 
(TpivPP)Fe(NO)(Py)  6 1.740 1.194 133.37 2.261 29 
TPP = 5,10,15,20-tetraphenylporphinato; OEP = octaethylporphyrinato; TTP = meso-tetra-p-
tolylporphyrin; TpivPP = picket fence porphyrin; OETAP = octaethyltetraazaporphyrinato; oxoOEP = 2-
oxo-3,3′,7,8,12,13,17,18-octaethylporphyrin; 1-MeIm = 1-methylimidazole; 4-MePip = 4-methylpiperdine; 
Py = pyridine; 4-dMAP = 4-Dimethylaminopyridine�������� 
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 The distances and geometries reported for these complexes fall into a reasonably 

tight range; furthermore, the nature of the porphyrin does not appear to cause significant 

changes in the FeNO geometry.  The presence of the trans ligand (to NO) causes the 

largest effect on the metric data 20,29.  For example, in six-coordinate 

(porphyrin)Fe(NO)(N-base) compounds, the Fe-N-O bond angles range from 137-140° 

(avg. ~138.5 °), and the Fe-NO bond lengths range from 1.744(2)-1.758(1) Å (avg. 

~1.753 Å) 29, 31.  The related canonical values for five-coordinate (porphyrin)Fe(NO) 

compounds also shown in Table 1.1 are 143.4° (avg.) for the ∠FeNO and 1.728 Å (avg.) 

for the Fe-N bond length 29. 

 

2.1.3 Biological Nitric Oxide Complexes 

2.1.3.1 Spectroscopy 

As stated in the introduction, the importance of biological NO complexes was not 

seen until fairly recently, however, there has been an explosion of research in this field in 

the past 20 years.  Because some of the proteins of interest could not be crystallized, 

myoglobin has been used as the prototypical system employed for the study of Fe-NO 

bond formation and reactivity in histidine-liganded heme centers3, 32-34.  This is due, in 

part, to the fact that some myoglobins such as horse heart Mb (hh Mb) and recombinant 

sperm whale Mb (sw Mb) are commercially available and are readily purified.  In 

addition to the study of its formation in meat curing processes 32, 35, MbNO has been 

studied with regard to the kinetics of NO binding to the ferrous (kon/koff = 1.4 x 1011 M-1) 
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and ferric heme (kon/koff = 1.4 x 104 M-1) 36, photodissociation and geminate 

recombination of NO 37-39a, and NO dioxygenase and scavenging potential 40.  

Valuable insights into the FeNO angle in MbNO have been provided by 

spectroscopy.  In the case of MbNO, Hori and Yonetani 41 demonstrated a temperature-

dependence of the Fe-N-O bond angle by single-crystal EPR spectroscopy demonstrating 

that the conformation of the FeNO moiety was altered upon freezing.  This study 

complemented earlier single crystal EPR studies that revealed FeNO bond angles of 108-

110° for MbNO at 77 K 42, and 119° for horse HbNO at 77 K 43.  The effect of 

temperature on the EPR spectra of nitrosyl hemes was examined in a computational study 

by Waleh et al., who suggested that changes in ligand geometry in MbNO could explain 

the EPR spectral results 44.  Rich et al. 45 have reported MS XAFS data for a frozen 

solution of MbIINO, and they determined an Fe-N-O angle of 150° and an Fe-NO bond 

length of 1.75 Å.  These values are similar to those observed in synthetic iron(II) nitrosyl 

porphyrins 20, 29.  

2.1.3.2 X-ray Crystal Structures 

Selected structural data for nitrosyl heme proteins are presented in Table 2.2.  A 

much wider range of Fe-N-O bond angles is evident from these protein X-ray structures, 

ranging from 112 to 160° than is seen in the corresponding model complexes that were 

discussed above.  A range of 1.5-2.1 Å for the associated Fe-N(O) distances is also 

observed in the crystal structures, and again much larger than the reported values in 

model complexes.  While some of the reported crystal structures of nitrosyl heme 

proteins were not obtained at high resolution, even with those that were high resolution, 

there is a significant range of FeNO conformations that suggest a role of heme pocket 
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residues in influencing FeNO geometry through a combination of factors including steric 

and electrostatic effects.  This has been illustrated very well for MbNO 33, 46, 47, and related 

studies are ongoing for heme proteins in general, as distal and proximal effects are likely 

determinants of ligand discrimination and selectivity in heme-based sensor proteins. 
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Table 2.2  X-ray crystal structural data for nitrosylated His-liganded heme proteins.a,b 
Nitrosylated protein res (Å)c pdb d O.S. e Fe-N(O) (Å) N-O (Å) ∠FeNO (°) Fe-(Lax) (Å) ref 

sw Mb 1.7 1HJT II 1.89 1.15 112 2.18 48 
L29F/D122N  sw Mb 1.9 f 1JDO II 1.86 f 1.14 f 127 f 2.31 f 48 
hh Mb (MS XAFS)h   II 

III 
1.75 
1.68(2) 

1.12(2) 
1.13(2) 

150(2) 
180(4) 

2.05 
2.04 

45 
45 

NP1 from Rhodnius prolixus 2.3 4NP1 II 

III 

2.06 f 
2.02 f 

1.34 f 
1.32 f 

119.5 f 
145 f 

2.10 f  
2.0 f 

49 

NP2 1.45 1T68  1.93 f 1.38 f 134 f 2.10 f 50 

NP4 from Rhodnium proxilus         
WT (pH 7.4) 1.08 1X8Q II 1.74(2) 1.20(2) 143.8(1.6) 2.06(1) 51 
WT (pH 5.6) 1.01 1X8O III 1.69(1) 1.09(1) 159.1(1.1) 1.994(7) 51 

D129A/L130A mutant 1.0 1SXX III 1.60(2) 1.35 f 155(2) 2.05 f 52 
T121V mutant 1.0 1SY1 III 1.62(2) 1.29 f 158(2) 2.03 f 52 
D30N mutant 1.0 1SY3 II 1.78(2) 1.38 f 132(2) 2.06 f 52 
D30A mutant 1.05 1SXW II 1.71(3) 1.35 f 139(2) 2.09 f 52 

HO from N. meningitides  1.75 1P3U II 1.58 f 1.17 f 147 f 2.13 f 53 
HO-1 from rat 1.7 1JO2 II 2.10 f 1.14 f 125 f 2.17 f 54 
Human HO-1                        WT 1.55 1OZW II 1.64 f 1.14 f 138 f 2.12 f 55 

D140A mutant 2.59 1OZL II 1.49 f 1.16 f 148 f 2.12 f 55 
Verdoheme 2.10 1TWR  1.83 f 

1.98 f 
1.15 f 
1.16 f 

150.9 f 
150.4 f 

2.54 f 
2.37 

56 

lupin legHb 1.8 1GDL II 1.97 f 1.35 f 145 f 2.19 f 57 
soybean legHb     (MS XAFS) g   II 

III 
1.77 
1.68 

1.12 
1.12 

147 
173 

1.98  
1.89 

58 
58 

FixL from B. japonicum  2.5 1DP8 II 1.76 f 1.14 f 154 f 2.10 f 59 
cyt c'  from Alcaligenes 
xylosoxidans 

1.35 1E85 II 

 
2.03 f 
1.92 f 

1.16 f 
 

125 f 
132 f 

5-Coord. 60 

cyt cd1 NiR from P. pantotropha 1.8 1AOM II 2.0 1.37 f 128 f 1.98 f 61 
cyt cd1 NiR from P. aeruginosa  2.65 1NNO II 1.8 1.15 140 f 1.98 f 62 
cyt c peroxidase from yeast 1.85   1.8  125, 135 2.04  63 
cyt c from Rhodobacter 
sphaeroides  

2.20 1DW2 II 

II 
1.75 f 
1.82 f 

1.42 f 
1.37 f 

113 f 
112 f 

2.23 f  
2.16 f 

64 

horse Hb  2.8   1.74 1.11 ~145 (His) 65 

Hb  (βcysSNOH)            α heme 
β heme 

1.8 1BUW II 
II 

1.75 
1.74 

1.13 
1.11 

131 
123 

2.28  
2.28 

66 
66 

T-state human Hb           α heme 
β heme 

2.15 1RPS II 
II 

1.72 
1.75 

1.13 
1.15 

138 
128  

5-coord. 
2.25 

67 
67 

T-state human Hb     (βcysSOH)   
α heme 
β heme 

2.11 1RQ4   
1.72 
1.76 

 
1.15 
1.17 

 
138 
138 

 
5-coord. 
2.19 

 
67 
67 

T-state human Hb βW37E 
α heme 
β heme 

2.11 1RQA   
1.71 
1.76 

 
1.16 
1.18 

 
135 
126 

 
2.24 
2.19 

 
67 
67 

a  all nitrosylated sites are hexacoordinate of the form (por)Fe(NO)(His), except those of (i) cyt c’, and (ii) the α-hemes of T-state 
Hb, which are pentacoordinate. These are indicated in the Fe-(Lax) column by the term “5-coord”. 
b  abbreviations:   sw Mb = recombinant sperm whale myoglobin; hh Mb = horse heart myoglobin; NP = nitrophorin; NP1 = 
nitrophorin-1; NP2 = nitrophorin-2; NP4 = nitrophorin-4; HO = heme oxygenase; legHb = leghemoglobin; Hb = hemoglobin.  
c   resolution.  d   pdb access code.  e   formal oxidation state of iron if known.  f   metric data were obtained from the Protein Data 
Bank.  g data obtained from multiple-scattering X-ray absorption fine structure spectroscopic analyses.  
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 The variety that is seen in the geometries of crystal structures that are reported in 

the above table lead to a simple question, Is the heme pocket and its residues or the metal 

itself the major determinant of FeNO geometry, or is there another major factor that has 

not been studied? The other important question raised is, Are there other factors that help 

to determine the FeNO geometry? We contributed to this on-going debate by determining 

the high-resolution X-ray crystal structures of hh MbNO prepared by two common 

routes: (i) reaction of metMb with nitrite/dithionite, and (ii) reaction of reduced Mb with 

NO gas. 
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2.2 Materials and Methods 

2.2.1 Crystal Growth and Complex Formation 

2.2.1.1 Sodium Nitrite/Dithionite Method 

 Ferric aqua-metMb crystals were grown according to the method of Schlichting et 

al. 68 The crystals were grown anaerobically in a glove box under a nitrogen atmosphere 

at room temperature (21˚C) using the hanging drop vapor diffusion method. The droplets 

were prepared by mixing 5 µL of the 30 mg/mL protein solution in 100 mM Tris-HCl at 

pH 7.4 with 5 µL of 3.4-4.0 M ammonium sulfate, 100 mM Tris-HCl at pH 7.4.  The 

droplets were suspended over reservoirs containing 1 mL of 3.1–3.3 M ammonium 

sulfate, 100 mM Tris-HCl at pH 7.4. The crystals grew in clusters of plates and reached a 

suitable size (0.5 x 0.2 x 0.05 mm) in 5 days.  

 The droplet containing the crystal cluster was transferred to 0.5 mL of artificial 

mother liquor containing 7.5% glycerol (v/v) as a cryoprotectant.  Sodium nitrite crystals 

(~5 mg) and sodium dithionite (~10 mg) were added to this solution.  During the ensuing 

15 min period, the color of the crystal clusters changed from orange-brown to red.  Single 

plates were then harvested anaerobically and flash-frozen in liquid nitrogen. 

 Later crystals were grown under an aerobic atmosphere after we determined that 

an anaerobic atmosphere was not necessary.  Crystal growth was improved by placing the 

crystal trays in Styrofoam boxes to avoid large fluctuations in the temperature of the 

plates.  Crystals reached approximately the same size as crystals described earlier in 5 

days.  The MbNO crystal for which data were collected at Brookhaven National 

Laboratory, National Synchrotron Light Source was produced as follows.  Ferric aqua-
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metMb crystals were grown as described above. 

The cover slip containing the drop was placed 

under a layer of mineral oil (Figure 2.2) and 20 µL 

of a degassed solution of artificial mother liquor 

with 15% glycerol (added as cryoprotectant) was 

added to the 10 µL drop containing the crystal and was carefully mixed.  A portion of the 

droplet (20 µL) was then removed and 20 µL of degassed solution was added. The 

addition-removal cycle was repeated 5 more times in order to significantly reduce the 

amount of oxygen in the droplet containing the crystal. Degassed artificial mother liquor 

(10 µL) with 15% glycerol (cryosolution) and 250 mM sodium nitrite was added to the 

drop and allowed to soak for 10 minutes, during which time there was no visible color 

changes in the crystal.  Degassed cryosolution (20 µL) containing 500 mM freshly 

dissolved sodium dithionite was added to the drop in order to reduce both the nitrite to 

nitric oxide and the heme iron from Ferric to Ferrous.  The color of the crystals slowly 

changed over a 10 minutes period from brown (λmax = 409 nm) to bright red (λmax = 420 

nm) and leaflets were  harvested under the oil and flash frozen in liquid nitrogen. 

2.2.1.2 NO Gas Method 

 MetMyoglobin crystals were grown by the same method as described in previous 

sections. The cover slip containing the drop was placed under a layer of mineral oil 

(Figure 2.2) and then the crystals were transferred to a degassed solution of artificial 

mother liquor containing 15% glycerol and 500 mM sodium dithionite to reduce the 

heme iron to the ferrous state.  After the crystals changed colors from brown (λmax = 409 

nm) to deep red (λmax = 435 nm) the artificial mother liquor was exchanged with 

 
 
Figure 2.2  Coverslip submerged 
face up under mineral oil in a 
small Petri Dish. 
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degassed cryosolution saturated with NO gas. The crystal was allowed to soak in the 

solution for 2–5 minutes, until a color change was seen shifting to a brighter red (λmax = 

420 nm). The crystal was then harvested and flash frozen in liquid nitrogen.  

 

2.2.2 Data Collection and Processing 

 Data collection was carried out both at our home source and on two different 

beam lines at National Synchrotron Light Source (NSLS) at Brookhaven National 

Laboratory (BNL). The diffraction data were then processed using the stand alone 

version of d*TREK 69 or d*TREK as implemented in the Crystal Clear suite available 

from Molecular Structure Corporation 70. 

2.2.2.1 Home Source Data Collection 

 X-ray data were collected at 100 K using CuKα radiation produced from a 

RigakuMSC RU-H3R X-ray generator operated at 50 kV/100 mA and a Rigaku R-AXIS 

IV++ image plate detector.   

 For the MbNO crystal formed from sodium nitrite reported in Copeland et al.71, 

the crystal-to-detector distance was set at 70 mm and 180 frames of data were collected 

using a 1.0˚ oscillation and a 300 second exposure to a resolution of 1.9 Å.  

 For all other crystals for which data were collected on our home source the crystal 

to detector distance was set to 70 mm, and 180 - 250 images were collected with a 1.0˚ 

oscillation.  The exposure time was determined for each crystal based on individual 

crystal diffraction quality, but was usually between 4 and 6 minutes per image.  
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2.2.2.2 Synchrotron Data Collection  

 High quality crystals were shipped to the National Synchrotron Light Source 

(NSLS) at Brookhaven National Laboratory (BNL) via the Mail-in Data Collection 

Program operated by the Protein Crystallography Research Resource (BNL-PXRR; 

www.px.nsls.bnl.gov/fedex.html) for high resolution X-ray data collection.  X-ray data 

were collected at 100 K on beamlines X-12B (using an ADSC Quantum4 CCD detector) 

or X-29 (using an ADSC Quantum-315 CCD detector).  For the MbNO crystal obtained 

from the nitrite/dithionite soak method, 1° oscillation images were collected over a range 

of 360° with an exposure time of 10 sec per image and a crystal-to-detector distance of 

150 mm.  For the MbNO crystal obtained from the dithionite/NO method, 1° oscillation 

images were collected over a range of 180° with an exposure time of 10 sec per image 

and a crystal-to-detector distance of 150 mm. 
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2.2.3 Structural Refinement 

2.2.3.1 Synchrotron MbNO from Nitrite 

The CCP4 suite 72 was used to solve and refine this structure.  The search model 

chosen was the 1.9 Å resolution structure of hh MbNO (PDB access code 1NPF) 71 with 

the NO and solvent molecules removed from the structure.  After the rotation and 

translation search carried out using MOLREP,73 the initial model had an R-factor of 

33.9%.  Restrained refinement was carried out for 20 cycles in Refmac5 prior to the 

addition of any solvent, which lowered the R-factor to 24.9%.  At this point, the NO 

ligand and sulfate ions were added to the model based on density seen in an Fo-Fc 

electron density map, and the structure was checked for sidechains exhibiting low 

occupancy or multiple conformations.  Lysine 47 was modeled in with low occupancy; 

however, no sidechains were seen with clear alternate positions in an Fo-Fc difference 

electron density map.  After cycling with ARP_waters (as implemented in Refmac5) and 

10 additional cycles of restrained refinement, 142 water molecules were added and the R-

factor dropped to 21.5%.  100 more cycles of restrained refinement using data between 

10 Å and 1.30 Å, and model manipulation with Xfit, resulted in an R-factor of 20.1%.  

Poor electron density was observed at the C-terminal of the protein for residues Gln 152 

and Gly153; residue 153 was omitted from the structure.  Up to this refinement stage, all 

refinement was performed with isotropic B-factor refinement.  Now, anisotropic B-

factors were refined and the final R-factor decreased to 17.7% with an Rfree of 22.0% 

calculated with 5% of the data.  Coordinates have been deposited in the Protein Data 

Bank with the access code 2FRJ. 
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2.2.3.2 Synchrotron MbNO from NO(g) and Dithionite 

 Again, the search model chosen was the 1.9 Å resolution structure of hh MbNO 

(PDB access code 1NPF) 71 with the NO and solvent molecules removed from the 

structure.  After molecular replacement the initial R-factor was 34.2%.  After 30 cycles of 

restrained refinement with Refmac5 the R-factor dropped to 24.1% prior to the addition 

of ligand or solvent molecules.  Nitric oxide and sulfate molecules were modeled into 

density based on an Fo-Fc difference electron density map.  At this point the structure was 

checked for sidechains that had low occupancy or multiple positions and Lysine 47 was 

again modeled in with low occupancy, however no sidechains in multiple positions were 

clearly observed.  Multiple cycles of ARP_waters, as implemented in Refmac5, were 

used to add a total of 147 water molecules to the structure and the R-factor dropped to 

18.74%.  At this point multiple cycles of refinement with Refmac5 followed by model 

adjustment with Xfit were performed to complete the major refinement of the structure.  

As stated in the previous structure poor electron density was seen for the two C-terminal 

residues and Gly153 was again omitted from the structure.   The structure was refined 

initially using isotropic B-factors.  Once all of the major structural refinement was 

complete, anisotropic B-factors were refined using data between 10 Å and 1.30 Å to 

complete refinement and lower the R-factor to a final value of 16.8% with an Rfree of 

20.5% calculated with 5% of the data.  Coordinates have been deposited at the Protein 

Data Bank with the access code 2FRK. 
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2.3 Results 

 The data processing and refinement statistics for the two high resolution MbNO 

structures discussed in this chapter are shown in Table 2.3. 

Table 2.3  X-ray Data Collection, Processing and Refinement Statistics 
  MbNO  MbNO 
Method of prepn.  nitrite/dithionite  dithionite/NO(g) 
Data Collectiona     
Space Group  P21  P21 
Source  BNL, X-29  BNL, X-29 
λ (Å)  1.0  0.9611 
Cell Dimensions     
a, b, c (Å)  35.49,28.79,63.25  35.49,28.58,63.28 
β (˚)  105.97  105.59 
Resolution(Å)  1.30  1.30 
Mean I/σ(I)  17.8 (1.5)  9.9 (2.2) 
No. Reflections     
Observed  129648 (12087)  105934 (10253) 
Unique  35401 (2670)  30078 (3012) 
Completeness (%)  91.4 (70.1)  98.7 (98.1) 
Rmerge (%)b  5.2 (44.2)  5.5 (42.5) 
     
Refinement Statisticsa     
Resolution Range (Å)  9.78-1.30  9.89-1.30 
R-factor (%)c  17.7 (35.9)  16.8 (26.8) 
Rfree (%)d  22.0 (40.6)  20.5 (32.5) 
r.m.s.d. bond distances (Å)  0.009  0.008 
r.m.s.d. angles (˚)  1.189  1.138 
B factor (Å2)     
Mean  20.71  20.35 
r.m.s.d. mainchain  0.912  0.935 
r.m.s.d. sidechain  3.348  3.720 
Ramachandran Plot e      
% Residues in      
Most Favored  93.2  92.5 
Allowed  6.8  7.5 
a Values in parentheses correspond to the highest resolution shells for MbNO(BNL) (nitrite/dithionite) and MbNO (BNL) 
(dithionite/NO(g)) (1.333-1.30 Å). 
b Rmerge = Σ|I - <I>|/Σ(I) where I is the individual intensity observation and <I> is the mean of all measurements of I. 
c R-factor = Σ||Fo| - |Fc||/Σ|Fo| where Fo and Fc are the observed and calculated structure factors, respectively. 
d Rfree is calculated using randomly selected reflections comprising 5% of the data not used throughout refinement. 
e As calculated using PROCHECK. 74  
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2.3.1 MbNO from Sodium Nitrite and Dithionite 

Reaction of metMb with nitrite and dithionite results in MbNO formation as 

demonstrated previously.  X-ray diffraction data was obtained for this hh MbNO complex 

at 1.30 Å resolution.  The heme environment is shown in Figure 2.3.  The Fe-N bond 

length is 1.87 Å, and the Fe-N-O angle is 144°.  The NO ligand, oriented away from the 

distal His64 residue, is stabilized by electrostatic interactions with the Nε-atom of His64; 

the nitrosyl N-atom is located at a distance of 3.05 Å from the Nε-atom, whereas the 

nitrosyl O-atom is located 3.35 Å away.   No other significant interactions are apparent 

between the NO ligand and other distal amino acid residues; the closest contacts 

(ignoring hydrogen atoms) are with the Cγ2 of Val68, at a distance of 3.25 Å (nitrosyl O-

atom) and 3.40 Å (nitrosyl N-atom).  All other contacts are ≥3.6 Å from the NO ligand. 

 The Fe-N(His93) distance is 2.08 Å, and the (His93)N-Fe-N(O) axial bond angle 

is 170°.  The imidazole plane of the proximal His93 ligand essentially eclipses a diagonal 

(por)N-Fe-N(por) bond, displaying only a 10° deviation with this diagonal.  The angle 

between the plane of the imidazole and the FeNO plane is 42°, and the nitrosyl N-atom is 

titled 9° from the normal to the heme 4N-plane. 
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Figure 2.3  Final model and Fo-Fc omit electron density map contoured at 3σ showing 
a side view of the heme environment in hh MbNO. Carbon, oxygen, nitrogen and iron 
atoms are colored grey, red, blue, and brown, respectively. 
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2.3.2 MbNO from NO(g)  

 Crystals of hh MbNO were also obtained by exposure of reduced myoglobin to 

NO gas.  Diffraction data for this MbNO crystal were collected to 1.1 Å, but the crystal 

suffered radiation decay, and the structure was solved to 1.30 Å resolution.  The bulk 

features of the FeNO group are similar to that described for the MbNO structure of the 

complex obtained from the nitrite/dithionite method and the heme environment is shown 

in Figure 2.4.  Notable differences lay in the FeNO conformation.  Thus, the Fe-N(O) 

distance is 2.13 Å, and the Fe-N-O angle is 120°.  The nitrosyl N-atom is located 2.72 Å 

away from the Nε-atom of His 64, indicating a stronger hydrogen bonding interaction 

with this residue than that observed in the MbNO crystal structure described in the 

previous section (i.e., MbNO from nitrite/dithionite).  The distance between the nitrosyl 

O-atom and the Nε atom of His64 is 3.33 Å.  As the MbNO structure described in the 

previous section, the nitrosyl N-atom is also tilted 9° off-axis from the normal to the 

heme 4-N plane of this derivative.  Importantly, the Fe atom is displaced 0.13 Å below 

the mean porphyrin 4N-plane towards the proximal His93 residue.  The (His93)N-Fe-

N(O) axial angle is 175°, and the angle between the proximal imidazole plane and the 

FeNO plane is 43°. 
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Figure 2.4   (a) Final model and Fo-Fc omit electron density map contoured at 3σ 
showing a side view of the heme environment in hh MbNO.  The hydrogen bond 
between Nε of the distal His64 residue and the N atom of the nitrosyl ligand is 2.72 
Å.  The Fe-N(O) bond length in this complex is 2.13Å, slightly longer than in the 
complexes made from the nitrite/dithionite method.  Carbon, oxygen, nitrogen and 
iron atoms are colored grey, red, blue, and brown, respectively.  (b) Top view of the 
heme in the hh MbNO, with the NO ligand on the side of the porphyrin ring facing 
the viewer.  The coloring scheme is same as in (a) with the exception of the proximal 
His93 ligand which is drawn in yellow for clarity. 
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2.3.3 Reproducibility of FeNO Conformations 

 The issue of reproducibility regarding the observation of the two FeNO bond 

conformations described above was examined and multiple data sets collected on these 

samples gave confirmatory results regarding our observed clustering of the FeNO angles 

at ~143° and at ~118°.   For example, five separate determinations of the structure of 

MbNO from nitrite/dithionite, from separate preparations, in the 1.9-2.6 Å resolution 

range (with three at 1.9 Å resolution) yielded FeNO angles in the 139-147° range (avg. 

143°).  In contrast, the related five independent structural determinations of MbNO from 

NO gas, in the 1.7-2.35 Å resolution range (with three at 1.7 Å) yielded FeNO bond 

angles in the 117-121° range (avg. 118°).  

 We next explored the possibility that temperature differences during sample 

preparation were responsible for the observed difference in the FeNO angles produced by 

the two synthetic routes.  Specifically, dissolution of solid nitrite in water is endothermic, 

resulting in a lowering of the temperature of the droplet containing the crystals during the 

crystal soak with solid nitrite.  Three methods of MbNO formation from nitrite were thus 

carried out, as were two methods of formation of MbNO from the use of NO gas: (i)  

addition of solid nitrite to the soak solution at room temperature (~21 °C) followed by 

dithionite addition, (ii) addition of pre-dissolved nitrite (in buffer; equilibrated at room 

temperature) to the soak solution at room temperature followed by dithionite addition, 

(iii)  addition of pre-dissolved nitrite (in buffer; equilibrated at 4 °C) to the soak solution 

equilibrated at 4 °C followed by dithionite addition at 4 °C, (iv) addition of NO-saturated 

buffer to the soak solution containing reduced Mb at room temperature, and (v) addition 

of NO-saturated buffer (equilibrated at 4 °C) to the soak solution containing reduced Mb 
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equilibrated at 4 °C.  In-house X-ray data were collected on the MbNO crystals from 

duplicate preparations for each of the five methods above (data not shown).  All the 

nitrite-derived MbNO structures exhibited FeNO angles in the 144-147° range, whereas 

those derived from NO exhibited FeNO angles in the 118-120° range.   
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2.4 Discussion 

FeNO Conformations in Nitrosylated Heme Proteins 

 The nature of the interaction between NO and heme proteins has intrigued 

structural chemists and biochemists for many decades.  Prior to the ready availability of 

appropriate cryocrystallography instrumentation for the determination of high-resolution 

protein crystal structures, the related crystal structures of bioinorganic heme model 

compounds played a key role in providing information on binding modes and associated 

geometrical parameters for small molecule ligands when bound to heme.   

As stated in the introduction, (porphyrin)Fe(NO)(N-base) compounds have a very 

tight range of FeNO geometries 20, 29.  In these complexes the Fe-N-O bond angles range 

from 137-140° (avg. ~138.5 °), and the Fe-NO bond lengths range from 1.744(2)-

1.758(1) Å (avg. ~1.753 Å) 29, 31.  The situation is less clear, however, for nitrosyl heme 

proteins that have been structurally characterized by X-ray crystallography.  Selected 

structural data for nitrosyl heme proteins are presented in Table 2.2.   

 A much wider range of Fe-N-O bond angles is evident from these protein X-ray 

structures, ranging from 112 to 160°.   A range of 1.5-2.1 Å for the associated Fe-N(O) 

distances is also evident.  This suggests a role of distal residues in influencing FeNO 

geometry through a combination of factors including steric and electrostatic effects.  

Studies are ongoing for heme proteins in general, as distal and proximal effects are likely 

determinants of ligand discrimination and selectivity in heme-based sensor proteins.  The 

method of preparation of each of the complexes in Table 2.2 was also examined to 

determine if there was a correlation between the method of formation of the complexes 

with the FeNO geometry.  There were 12 complexes synthesized using nitrite and 29 
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complexes synthesized using NO gas and the average FeNO angles were 138.5˚ and 

137.5˚ respectively.  There is clearly no trend observed when comparing different 

proteins, but because of the differences in the heme sites of these proteins one should not 

have been expected.  Brucker and coworkers showed that even with minor changes to the 

heme pocket there was a modest change in the FeNO geometry from 112˚ in wild type 

nitrosyl sperm whale myoglobin to 127˚ in the L29F/D122N  sw MbNO mutant48. 

 In the case of MbNO, Hori and Yonetani 41 demonstrated a temperature-

dependence of the Fe-N-O bond angle by single-crystal EPR spectroscopy.  They showed 

that for sw MbNO, the Fe-N-O angle was 153±5° at 293 K, but was 109±5 at 77 K, 

demonstrating that the conformation of the FeNO moiety was altered upon freezing.  The 

nitrogen atom in both of the complexes showed severe deflection from the heme normal, 

~20˚ off of the heme normal in the structure at 293 K and an even larger 30˚ in the 77 K 

structure.  This study complemented earlier single crystal EPR studies that revealed 

FeNO bond angles of 108-110° for MbNO at 77 K, 42 and 119° for horse HbNO at 77 K43.  

In the Brucker et al. 48 structure of a nitrosyl sperm whale myoglobin at 1.7 Å the  
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Figure 2.5  Representations of the two conformations of the Fe-NO moiety as 
calculated using single-crystal EPR spectroscopy at two different temperatures which 
showed that temperature can play a large role in the conformation of the nitrosyl 
moiety.  
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reported Fe-N-O bond angle of 112° was far more acute that the Fe-N-O bond angles 

observed in nitrosyl heme model compounds.  The authors indicate that subtle distal 

pocket effects may cause the acute angle.  Their crystal of sw MbNO was prepared by 

NO-induced reduction (reductive nitrosylation) of a pre-formed ferric Mb crystal.  We 

subsequently reported the 1.9 Å resolution crystal structure of hh MbNO, generated by 

the addition of nitrite and dithionite, and determined an Fe-N-O bond angle of 147° for 

this compound 71.  Because the MbNO complex is an {Fe(NO)}7 complex, the angle of 

147˚ fits quite nicely with the expected values of ~145˚ that {M(NO)]7 species are 

predicted to have3. When comparing only the nitrosyl myoglobin complexes, there is a 

wide range observed in the FeNO geometry.  For ease of comparison, the metric data for 

the 5 published MbNO structures are shown in Table 2.4.  Interestingly, Rich et al.45 have 

reported MS XAFS data for a frozen solution of MbIINO, and they determined an Fe-N-

O angle of 150° and an Fe-NO bond length of 1.75 Å.  These values are similar to those 

observed in synthetic iron(II) nitrosyl, {Fe(NO)}7, porphyrins20, 29.  Oldfield and 

coworkers 75 have reported that geometry optimization of the heme environment of sw 

MbNO (using the data from the X-ray structure as the initial model) results in the 

generation of a "normal" heme-NO geometry (Fe-N-O = 138.1°; Fe-N(O) = 1.781 Å) that 

is similar to structural data from model heme-NO compounds.  
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These studies raise an important question:  What is the geometry of the FeNO 

group in MbNO?  Or perhaps a more appropriate question is:  What are the possible 

geometries of the FeNO group in MbNO?  We sought to contribute to this on-going 

debate by determining the high-resolution X-ray crystal structures of hh MbNO prepared 

by two common routes: (i) reaction of metMb with nitrite/dithionite, and (ii) reaction of 

reduced Mb with NO gas. 

The structure with the FeNO bond angle at 144° also shows an Fe-NO distance of 

1.87 Å; the bond angle is similar to that seen for synthetic ferrous nitrosyl porphyrins, 

however, the Fe-NO bond length is ~0.1 Å longer than that observed in the model 

compounds.  In contrast, the structure with the FeNO bond angle of 120° shows an Fe-

NO distance of 2.13 Å; the bond angle is more acute that that seen for the nitrosyl heme 

models, and the Fe-NO distance is long.  Interestingly, in the 144° structure, the Fe was 

calculated to be in the plane of the porphyrin ring (with less than 0.02 Å deviation from 

Table 2.4  Metric Data of Published MbNO Structures 
 sw sw hh hh hh 
Molecular Description wt L29F/D122N wt wt wt 
PDB ID 1HJT 1JDO 1NPF 2FRJ 2FRK 
Method of Formation NO gas NO gas NO2/Dithionite NO2/Dithionite  NO/Dithionite 
Temperature RT RT 100 K 100 K 100 K 
Space Group P21 P6 P21 P21 P21 
Resolution (Å) 1.7 1.9 1.9 1.3 1.3 
 
Fe-N (Å) 1.89 1.86 2.03 1.88 2.13 
∠Fe-N-O (˚) 112 127 147 144 120 
Fe-N(por) (Å) 2.03-2.13 1.95-1.99 1.98-2.02 2.03-2.05 2.04-2.08 
Fe-N(His) (Å) 2.11 2.31 2.11 2.08 2.15 
H64(N)-N(O) (Å) 2.78 3.23 2.98 3.05 2.72 
H64(N)-O(N) (Å) 3.38 2.98 3.18 3.34 3.33 
Fe out of plane (Å) +0.04 +0.09 -0.06 +0.02 -0.13 
∠N(por)-Fe-N-O (˚) 25.1 -10.9 14.7 36.9 35.9 
abbreviations:   sw Mb = recombinant sperm whale myoglobin, Phyester catadon; hh Mb = horse 
heart myoglobin, Equus cabalus; wt = wild type  
Metric data were obtained from PDB files 
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the 4-N plane), whereas in the 120° structure, the Fe atom was calculated to be 0.12 Å 

below the 4-N porphyrin plane, away from the NO ligand.  This latter feature suggests or 

reinforces the notion of a weaker bond between the NO ligand and the Fe center in this 

structure.  Consistent with this view is the occurrence of a slightly longer Fe-NO bond 

and more acute Fe-N-O angle.  Indeed, the N-atom of the nitrosyl group is thus situated 

closer to the distal His64 ligand suggesting a stronger hydrogen bonding interaction 

between the NO and His64 residue.  We can also see, in Figure 2.6 that there is ~9˚ off 

axis tilt in both of the complexes, however the tilt in the two structures are in the opposite 

direction.  This is very similar to what Hori and Yonetani saw with their temperature 

dependent EPR structures 41. 

Our current thinking, therefore, is that the pre-formed distal pocket in the 

precursor aqua-metMb crystals of hh Mb imposes some constraints in the geometry of 

the heme distal pocket during and after formation of the MbNO derivative.  Nitrosylation 

of the aqua-metMb crystals by the two methods employed here involve different 

intermediates along the reaction pathways, and the observed MbNO product geometries 

probably reflect distal pocket stabilizations of local minima on the ground state potential 

energy surface.  In this scenario, the distal His64 residue must play an important role.  

Such a possibility is reinforced by the MS XAFS work on frozen solutions of hh MbNO 

that reveal more "normal" FeNO geometries reflective of perhaps the global minimum 

structure 45.  The geometry optimization work by Oldfield and coworkers 75 appears to 

support this hypothesis. 
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 It is important to note that the two native MbNO complexes (both hh and sw) that 

display the most acute FeNO angles were generated in a way that is consistent with the 

final step in the mechanism for reductive nitrosylation39a.  In the case of sw MbNO, NO 

itself was the reducing agent48, and in the formation of hh MbNO, sodium dithionite was 

the reductant.  The mechanism for reductive nitrosylation proceeds as follows.  Initially, 

an NO molecule binds to the Fe(III) center and transfers an electron to the metal.  The 

electrophilic NO+ species then undergoes a nucleophilic attack by a hydroxide ion.  The 

rate constant (kOH) for this, the rate limiting step in the reaction, is (3.2 ± 0.2) × 102 M-1 s-1 

 
 
 
Figure 2.6   Overlay of the atomic coordinates of 2FRJ (1.3Å structure of MbNO 
formed using the nitrite/dithionite method) shown in blue and 2FRK (1.3Å structure 
of MbNO formed using the NO/dithionite method) shown in red. 

Fe-N(O)     1.87Å 
∠Fe-N-O   144˚ 

Fe-N(O)     2.13Å 
∠Fe-N-O   120˚ 
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in solution at pH > 7.2 39b.  This forms nitrous acid (HNO2), which dissociates from the 

reduced metal.  After the dissociation of the HNO2 species, the active site is free for 

another NO molecule to bind to the five coordinate Fe(II) species. However, in this 

mechanism for reductive nitrosylation, the identity of the reductant is not significant to 

the binding of the NO ligand in the final step. 
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In both, sw and hh MbNO prepared from NO gas, the FeNO geometry is similar, 112˚ for 

the sw MbNO and 120˚ for the hh MbNO, because the NO ligand encounters a five-

coordinate Fe(II) species.   

 The same cannot be said for the mechanism for the formation of the MbNO 

species using nitrite to generate the NO ligand.  As will be seen in the following chapter 

the nitrite moiety itself can bind to the heme iron.  Therefore, it is not clear which species 

the NO ligand encounters as it approaches the heme iron, or if in fact it is an NO species 

that approaches the heme site.  If the nitrite binds to the heme iron and is converted to 

NO while still on the metal, it is reasonable to expect that there could be a different FeNO 
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geometry than what was just described above.  Furthermore, the FeNO geometry 

observed in the final structure of the hh MbNO complex formed from nitrite and 

dithionite suggests that there is some difference in the mechanism, but more studies are 

needed to determine what the mechanism of formation actually is. 

 It is also interesting to note that all the heme NO structures reported to date have 

been obtained from nitrosylation of preformed crystals of the protein.  Put another way, 

the "NO" equivalent is added to a preformed distal pocket in the crystal, usually by the 

replacement of an iron-bound water ligand, although this is not always the case.  It is thus 

tempting to speculate that the wide range of FeNO geometries observed in the crystal 

structures of heme-NO proteins to date may be reflective of the distal pocket 

stabilizations of various local minima in these nitrosylated derivatives, something that is 

not available to the synthetic iron nitrosyl porphyrins.  In other words, the observed 

FeNO geometries in crystals of heme-NO compounds prepared from nitrosylation of 

precursor crystals may not necessarily represent the global minimum conformations of 

the FeNO moiety. 
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2.5 Conclusions 

 We have determined the crystal structure of ferrous hh MbNO at high resolution, 

and we have shown that the FeNO bond angle clusters around two values depending on 

the mode of preparation of the complex, ~120˚ for complexes made with NO(g)/dithionite 

and ~144˚ for those made with nitrite/dithionite.  To date, all heme-NO crystal structures 

reported in the literature have been on compounds that have been derived from 

nitrosylation of precursor crystals.  Several previous studies have demonstrated that the 

FeNO geometry in MbNO may depend on temperature of the crystal or on distal pocket 

effects.  We have now shown that the method of preparation of MbNO from aqua-metMb 

crystals is a determining factor in the observed FeNO geometry.  Nitrosylation of pre-

formed Mb crystals may therefore impose limitations on the attainment of global FeNO 

conformation minima, and may enable variable FeNO conformations that are stabilized 

by subtle electrostatic and steric effects imposed by the pre-formed distal pockets. 

 At this time it is difficult to say that the differences in FeNO geometry have direct 

biological significance, however this work is an important starting point that determined 

that there is a difference.  One possible future area of research may be to try to determine 

if NO derived from nitrite and NO gas are discriminated between in vivo.  If this is the 

case the binding modes seen here may play an important role in that discrimination, only 

time will tell.   
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3 Crystal Structures of Horse Heart Myoglobin 

Complexed with Nitrite  

3.1 Introduction 

3.1.1 Nitrite and Biological Systems  

The nitrite anion (NO2
-) is a simple oxyanion of nitrogen with a pKa of 3.2 at 20 

°C1.  The nitrite anion has long been considered, in mammalian systems, a "dead end" 

species that results from oxidation of nitric oxide produced by the nitric oxide synthase 

(NOS) enzymes.  As a consequence, its role in human physiology has been neglected 

until very recently2, 3.  Nitrite is a key species in the global nitrogen cycle.  In 

dissimilatory denitrification (eq 1)4, 5, nitrate is converted to nitrite by the nitrate 

reductase (NaR) enzymes.  Nitrite is then converted to nitric oxide by nitrite reductase 

(NiR) enzymes.   Follow-up conversions by nitric oxide reductases (NOR) and nitrous 

oxide reductases (N2OR) result in the generation of dinitrogen. 

 

NO3
-  

NaR
  NO2

-  
NiR

  NO  
NOR

  N2O  
N2OR    N2        (1) 

Two types of dissimilatory NiR enzymes are known, and they both carry out the one-

electron reduction of nitrite to NO (eq 2). 

 

NO2
-  +  2H+  + 1e-    NO  +  H2O     (2) 
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  One is the periplasmic heme-containing cytochrome cd1 NiR which is present in about 

two-thirds of denitrifying bacteria4, 6.  The crystal structure of product obtained when 

nitrite was added to the reduced cytochrome cd1 NiR from Paraccocus pantotrophus 

reveals N-binding of the nitrite ligand to the metal center (structure I).   

 

Fe

N
OO

Cu

N
OO

(I) (II)  

 

A second class of dissimilatory NiR enzymes contain copper in the active site7.  Recent 

high-resolution crystal structures of the nitrite adducts of the copper-containing NiR8 

from Alcaligenes xylosoxidans  (the His313Gly mutant)9 and the soil bacterium 

Achromobacter cycloclastes10 reveal an asymmetric O,O’-bidentate binding of the nitrite 

ligand (structure II).   

In addition, nitrite can be reduced by the assimilatory (pentaheme) cytochrome c 

NiR (ccNiR) directly to ammonia without the detection of intermediates11.   The active 

site heme contains lysine as a proximal ligand to iron, and the crystal structure of the 

nitrite-bound complex from Wolinella succinogenes reveals an N-binding of this group to 

iron (i.e., structure I)12.  In fact, there are only three published structures of protein nitrite 

complexes, and selected metric data are shown below in Table 3.1 and the heme sites are 

shown in Figure 3.1. 
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Table 3.1  Biological Heme Nitrite Complexes 
Complex M-N O1-N(avg) ∠O1-N-O2 ∠Fe-N-O1 ∠Np-M-N-O Ref 
Sulfite reductasea 2.024 1.245 118.25 110.73 66.51 13 
Cytochrome cd1 nitrite reductasea 2.00 1.215 120.5 118.72 42.68 14 
Cytochrome c nitrite reductaseb 1.88 1.66 98.66 116.97 43.12 12 
a Metric data obtained from the PDB files 3GEO = Sulfite reductase and 1AOQ = Cytochrome cd1 nitrite 
reductase. 
b PDB file not in protein data bank, obtained from author. 
 

 

 
 
 
 

 
 
Figure 3.1 Side views of the heme sites of the three previously known biological heme nitrite 
complexes.  (Left) Sulfite reductase from Escherichia coli.  (Center) Cytochrome cd1 Nitrite Reductase 
from Paraccocus pantotrophus. (Right)  Cytochrome c Nitrite Reductse from Wolinella succinogenes.  
All three complexes show an N-binding mode as well as hydrogen-bonds shown in green to other heme 
pocket sidechains. 
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 Recently, in September 2005, a two-day symposium at the US National Institutes 

of Health was held to highlight the increased recognition of nitrite as a bioactive small 

molecule that plays important roles in physiology and therapeutics2.  The results of 

several studies support these proposed roles.  For example, it has been known for some 

time that deoxyHb will reduce nitrite to NO15.   

 

NO2
-  +  deoxyHb(FeII)  +  H+     NO  +  metHb(FeIII)  +  OH-     (3) 

 

Myoglobin and xanthine oxidoreductase are also known to reduce nitrite to NO2.  

The NiR activity exhibited by deoxyHb has now been shown to be physiologically 

relevant under hypoxic conditions, generating an O2-independent pool of NO (NOS 

enzymes require O2) 16-18.  A related role for the NiR activity of deoxyMb (in the 

myocardium and skeletal muscles) and mitochondrial cytochrome oxidase and 

microsomal cytochrome P450 in tissues has been proposed 19.  Indeed, recent studies 

suggest a key role for myoglobin in the conversion of nitrite to NO in tissue, where 

endogenous nitrite levels can reach concentrations of 20 µM (c.f. 121 nM in plasma and 

288 nM in erythrocytes20), and that this NiR activity may minimize ischemia-reperfusion 

injury during exercise17, 21.  In addition, nitrite has been recognized as a biological 

signaling molecule that influences cGMP production, cytochrome P450 activities, and 

heat shock protein 70 and heme oxygenase-1 expression in various tissues22. 

Nitrite has long been utilized as an additive in meat products due to its 

antimicrobial and antioxidative activity23, 24.  Addition of nitrite to meats during the curing 

process also restores the pink color due to the formation of the heme-NO pigment25.  The 
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kinetics of reversible binding of nitrite to metMb has been studied by van Eldik and 

coworkers; at pH 7.4 and 20 °C, kon = 156±3 M-1s-1, with Keq (kon/koff) of 60 M-1 which 

is two orders of magnitude smaller than that for NO binding to metMb26.  Ford and 

coworkers have shown that nitrite catalyzes the reductive nitrosylation of synthetic iron 

porphyrins and metMb to produce the FeNO derivatives; it was suggested that the 

proposed ferric-nitrite species may be inhibitory in these reactions27.  The electrocatalytic 

reduction of nitrite to NO by myoglobin28 and synthetic iron porphyrins29 has been 

demonstrated. 

As mentioned above, nitrite reductase activity has been ascribed to Hb and Mb.  

Despite the importance of the heme-nitrite interaction in these proteins, however, no 

structural information exists to date on how nitrite interacts with their heme centers.  We 

were thus interested in determining the structures of the nitrite derivative of a 

representative globin, namely myoglobin.   
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3.1.2 Nitrite and Synthetic Metalloporphyrins as Heme Models  

 The binding of nitrite to heme model systems has been studied with 

metalloporphyrins containing several different metals.  Those systems can be subdivided 

into two major groups.  The first group contains Fe and Co porphyrin model systems.  All 

of the nitrite complexes with these two metals (with one exception discussed below) 

show nitro binding, binding through the nitrogen atom of the nitrite molecule 30-42. 

 The second group of crystal structures of nitrite complexes shows nitrito binding, 

binding through an oxygen atom of the nitrite molecule, and has been observed with Ru43-

45, Mn46, 47, Cr48, and Os49 porphyrins. The two tables below lists all of the above 

mentioned complexes.  Table 3.2 lists the nitro complexes and Table 3.3 lists the nitrito 

complexes.  However, because the biological system, myoglobin, that was used in the 

study reported here contains a six coordinate Fe porphyrin, heme, with a histidine in the 

position trans to the nitrite ligand, iron porphyrin complexes that contain a reasonable 

histidine mimic for a sixth ligand are shown in bold in Table 3.2.    
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Table 3.2  Porphyrinate Nitro Complexes 
Complex M-N O1-N(avg) ∠O1-N-O2 ∠Fe-N-Oa ∠Np-M-N-O Ref 
Nitro Complexes       
Iron(III)       
[Fe(TpivPP)(NO2)2]- 2.001(6) 1.233 117.80 120.24 39.43 34 
 1.970(5) 1.239 119.51 121.09 55.29 34 
[Fe(TpivPP)(NO2)(Py)] 1.960(5) 1.233 119.87 120.06 37.29 35 
[Fe(TpivPP)(NO2)(Py)] 1.947 1.233 120.38 119.80 38.47 36 
[Fe(TpivPP)(NO2)(Py)] 1.970 1.213 123.40 118.28 37.86 36 
[Fe(TpivPP)(NO2)(Py)] 1.920 1.222 117.51 121.24 52.87 36 
[Fe(TpivPP)(NO2)(HIm)] 1.949(10) 1.191 116.16 121.91 37.47 35 
[Fe(TpivPP)(NO2) 
(SC6HF4)]- 

1.990(7) 1.223 118.74 119.36 50.88 38 

[Fe(TpivPP)(NO)(NO2)] 2.002(2) 1.270 120.87 119.56 41.01 42 
[Fe(TpivPP)(NO)(NO2)] 1.998(2) 1.223 121.39 118.59 45.73 42 
[Fe(TpivPP)(NO)(NO2)] 1.852 1.195 113.6 123.18 46.16 42 
[Fe(TpivPP)(NO)(NO2)] 1.91 1.246 120.87 119.56 46.50 42 
[Fe(TpivPP)(NO)(NO2)] 1.846 1.270 115.8 122.09 49.19 42 
[Fe(TpivPP)(CO)NO2)] 2.06 1.249 117.86 120.83 43.95 50 
Iron(II)       
[Fe(TpivPP)(NO2)]- 1.849(4) 1.243 119.5 119.72 50.28 37 
[Fe(TpivPP)(NO2)(Py)]- 1.951(5) 1.257 116.60 121.46 42.92 40 
[Fe(TpivPP)(NO2)(PMS)]- 1.937(3) 1.242 118.40 120.53 44.26 40 
[Fe(TpivPP)(NO)(NO2)]- ⊥  2.086(8) 1.245 117.80 120.53 44.36 39 
[Fe(TpivPP)(NO)(NO2)]-   2.060(7) 1.243 113.09 122.86 45.02 39 
Cobalt (III)       
[Co(TPP)(NO2)(3,5-Lut)] 1.948(4) 1.156(4) 115.16 122.41 1.39 31 
[Co(TPP)(NO2)(Pip)] 1.897(11)     32 
[Co(TpivPP)(NO2) 
(1-MeIm)] 

1.898(4) 1.223(3) 119.90 120.05 38.16 30 

[Co(TpivPP)(NO2) 
(1,2MeIm)] 

1.917(4) 1.227(3) 120.42 119.78 35.57 30 

[Co(Tpp)(NO2)(Py)] 1.920(4) 1.200 118.98 116.72 48.73 33 
[Co(TPP)(NO2)(Py)]  1.219    33 
[Co(TPP)(NO2)(Cl2Py)] 1.912(3) 1.217 119.64 119.64 40.51 33 
[Co(TPP)(NO2)] 2.000 1.211 123.95 117.05 37.55 51 
[Co(TPP)(NO2)] 1.88 1.215 123.35 117.75 59.19 52 
[Co(TPP)(NO2)(H2O)] 1.863 1.235 120.15 119.92 43.42 52 
[Co(TPP)(NO2)2] 1.948 1.200 126.40 115.41 38.53 52 
[Co(TPP)(NO2)(H2O)] 1.963 1.234 115.83 120.89 32.57 53 
a Measurement is of the most acute angle 
⊥ and  describe perpindicular vs parallel orientations of ligands seen in two structures 
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Table 3.3     Porphyrinate Nitrito Complexes 
Complex M-O O1-N ∠O1-N-O2 ∠Fe-O-N ∠Np-M-O-N Ref 

Nitrito Complexes       
Ruthenium(III)       
[Ru(TPP)(NO)(ONO)]b 2.00(2) 109(5) 0.94(5) 1.33(4) 40.56 43 
[Ru(pTol)(NO)(ONO)]b 1.90(2) 108.0(30) 1.16(2) 1.23(2) 45.28 44 
[Ru(OEP)(NO)(ONO)] 1.984(6) 117.3(9) 1.214 1.188(9) 33.06 45 
[Ru(TPP)(NO)(ONO)]b 1.988(6) 110.9(20) 1.15(2) 1.13(3) 34.62 45 
Manganese(III)       
[Mn(TPP)(ONO)] 2.059(4) 114.8(5) 1.301(7) 1.202(8) 30.45 46 
[Mn(Phth)(NO)(ONO)]C 1.952 108.1 1.166 1.189 46.17 47 
Osmium(III)       
[Os(pTol)(NO)(ONO)] 2.000 113.8 1.295 1.188 33.17 49 
[Os(Mes)(NO)(ONO)] 1.996 113.27 1.258 1.154 55.60 49 
Chromium(III)       
[Cr(Phth)(ONO)2] 1.990 113.74 1.305 1.206 48.01 54 
b Nitrite moiety is highly disordered 
c  Phth = Phthalocyaninate 
 
 

 

 All Fe(por) model systems show N-binding of the nitrite ligand to the metal, with 

the exception of the structure of [(TpivPP)Fe(NO2)(NO)]- that shows the nitrite ligand 

disordered between the two binding modes39.  The disordered component that shows 

nitrito binding sits at about 30˚ off of a diagonal N-Fe-N axis of the porphyrin and has a 

Fe-O bond length of 2.08 Å.  The importance of this nitrito form was apparently not 

recognized and the occupancy of this “unusual linkage isomerism” was refined to 60% 

and then not commented on further.  The nitro nitrogen and the nitrito oxygen (of the 

disordered component) were modeled into the same position and even though the nitrito 

complex was the major component in the complex the scattering factors for the nitro 

nitrogen were used to complete the structure.  The ligand trans to the nitrite in this 

complex is NO, which was also disordered.  As stated above, all of the other iron 

porphyrin nitrite complexes contain an N-bound NO2 Ligand. 
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3.2 Materials and Methods 

3.2.1 Crystallization and Complex Formation 

 Two methods were used to prepare the O-bound nitrite complexes.  The first 

method was to soak preformed metmyoglobin crystals in artificial mother liquor 

containing nitrite.  The second method used to generate the complex was to preform the 

Mb(ONO) complex and then crystallize it.  Both methods are described in detail below. 

 

3.2.1.1 Nitrite Soaked metMb Crystals  

 Crystals of aqua-metMb grown as previously described55 were transferred 

into artificial mother liquor consisting of ~10 µL of 100 mM Tris-HCl, pH 7.4, 3.10-3.30 

M ammonium sulfate containing 15% glycerol as cryoprotectant and then the coverslip 

was submerged in mineral oil under an atmosphere of nitrogen.  A solution of sodium 

nitrite (10 µL, 250 mM) in artificial mother liquor was added to the droplet and allowed 

to soak into the crystals for ~10 min.  The crystals were harvested with cryoloops and 

flash frozen in liquid nitrogen. 

 

3.2.1.2 Cocrystallization of Mb Nitrite Complex 

 Solid sodium nitrite (~ 9 mg) was added to 1 mL of a 30 mg/mL metMb solution 

(100 mM, Tris-HCl, pH 7.4; [nitrite] = 130 mM) and incubated on ice for ten minutes.  

The protein solution was then centrifuged for 1 min (at 10,000 x g).  Crystal trays were 

then set up as previously described for Mb(EtNO)55.  Suitable crystals formed in three 
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days, and they were harvested with cryoloops and passed through the cryosolution 

consisting of artificial mother liquor containing 15% glycerol and flash frozen in liquid 

nitrogen. 

 

3.2.2 Data Collection, Processing and Refinement 

 The frozen crystals were initially screened for diffraction quality at our home 

source.  X-ray data sets were collected at 100 K on a RigakuMSC RU-H3R X-ray 

generator operated at 50 kV/100 mA to produce Cu Kα radiation (λ = 1.5418 Å).  

Diffracted X-rays were detected using an R-AXIS 4++ dual image plate detector system.   

For the cocrystallized Mb(ONO) crystal data collected in-house, 1° oscillation images 

were collected over a range of 216° with the crystal-to-detector distance of 70 mm and an 

exposure time of 300 sec.   

 The data for the Mb(ONO) formed by soak was collected at the National 

Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) via the 

Mail-in Data Collection Program operated by the Protein Crystallography Research 

Resource (BNL-PXRR; www.px.nsls.bnl.gov/fedex.html). X-ray data were collected at 

100 K on beamline X-12B (using an ADSC Quantum4 CCD detector), 1° oscillation 

images were collected over a range of 180° with an exposure time of 120 sec per image 

and a crystal-to-detector distance of 100 mm. 

 All data sets collected at our home source were processed using the stand-alone 

d*TREK program (Macintosh v.2D)56 from Molecular Structure Corporation.  The 

synchrotron-derived data set was initially processed at BNL using Denzo and Scalepack 

as contained in the HKL2000 suite57, and then reprocessed with d*TREK. 
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3.2.2.1 Nitrite Soaked Metmyoglobin Crystals 

 After molecular replacement using the 1.9 Å structure of hhMbNO (1NPF)55 with 

the NO and solvent molecules removed as the search model, the R-factor was 27.7%.  

After 10 cycles of restrained refinement, nitrite and sulfate molecules were modeled into 

the structure based on Fo-Fc difference electron density maps.  After 30 cycles of 

refinement the R-factor dropped to 24.9%, and the model was checked for residues with 

low occupancy or multiple conformations.  Several cycles of model manipulation with 

Xfit58 and refinement were carried out to refine the multiple positions/conformations of 

several sidechains (Lys47, Lys50, Lys 77, Gln91) where electron density was clearly 

observed for these multiple conformations.  In addition, several sidechains (of Glu21, 

Glu27, Asp44, Glu54, Glu59, Lys78, His81, Glu83, Glu85, Glu148) were modeled with 

low occupancy due to disorder of the sidechains.  Solvent molecules were then added to 

the structure with ARP_waters as implemented in Refmac5.  After the addition of 187 

water molecules, the R-factor was lowered to 19.5%.  The C-terminal residue Gly153 

was poorly defined and was omitted from the structure.  After an additional 100 cycles of 

refinement with B-factors refined anisotropically, the final R-factor is 17.0% with an 

Rfree of 21.1% calculated with 5% of the data.  Coordinates have been deposited at the 

Protein Data Bank with the access code 2FRF. 

 

3.2.2.2 Cocrystallized of Mb Nitrite Complex 

 The initial R-factor was 31.4% after molecular replacement using the 1.9 Å 

structure of hhMbNO (1NPF) with the NO and solvent molecules removed as the search 
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model, with MOLREP as implemented in the CCP4 suite.  Nitrite and sulfate molecules 

were modeled into well-defined electron density after 10 cycles of restrained refinement 

with Refmac5 based on an Fo-Fc difference electron density map, and 40 additional 

cycles of refinement reduced the R-factor to 23.3%.  Water molecules were added to the 

structure using ARP/warp as implemented in the CCP4 suite.  196 water molecules were 

added to the structure and the R-factor dropped to 19.2%.  Additional cycles of model 

adjustment with Xfit and refinement yielded no major drops in R-factor or Rfree.  The Fo-

Fc electron density map, with the nitrite ligand modeled in at full occupancy, showed 

slight negative density around the N and O2 atoms of the ligand.  The ligand was then 

modeled in at a final lower occupancy of 65%, to remove the occurrence of the negative 

density.  However, positive density was observed around the O1 atom of the ligand.  A 

water molecule was modeled into the density as an alternate ligand at an occupancy of 

35% at which point no more positive or negative density was seen in the vicinity of the 

ligand.  The electron density of the C-terminus residue (Gly 153) was poorly defined, and 

this residue was omitted from the structure.  For the final cycles of refinement were 

carried out using anisotropic refinement of B-factors, and the R-factor dropped to 14.6% 

with an Rfree of 20.6% as calculated with 5% of the data.  Coordinates have been 

deposited at the Protein Data Bank with the access code 2FRI. 
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3.3 Results 

3.3.1 Spectroscopic Results Showing the Formation of the Nitrite 

Complex 

The only report in the literature of spectroscopic data for a Mb(ONO) complex 

was reported by Sono and Dawson in 198259.  In that study there is a shift in the Soret 

band from 409 nm to 412 nm upon the addition of saturating nitrite.  This experiment was 

performed at 4˚ C in 100 mM potassium phosphate buffer pH 7.0 with sperm whale 

myoglobin.  When UV/Vis spectra were taken of our horse heart myoglobin in 100 mM 

Tris-HCl at pH 7.4 no clear shift in the UV/Vis spectra was observed to show the 

difference between the aqua-metmyoglobin complex and the O-bound nitrite myoglobin.  

Both have peaks at 409 nm when measured with an HP 8453 spectrophotometer with the 

above conditions.  

3.3.2 Crystallographic Results 

 The data collection, data processing and refinement statistics for the two 

structures discussed in this chapter are presented in Table 3.4. 
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Table 3.4  X-ray Data Collection, Processing and Refinement Statistics 
 Mb(ONO) Mb(ONO) 
Method of prepn. Nitrite soak cocrystallization 
Data Collectiona   

Space Group P21 P21 
Source BNL, X-12B Home source 
λ (Å) 0.90 1.5418 
Cell Dimensions   

a, b, c (Å) 35.24,28.61,62.94 35.22,28.59,62.84 
β (˚) 105.75 106.03 

Resolution(Å) 1.20 1.60 
Mean I/σ(I) 7.8 (3.0) 15.7 (3.6) 
No. Reflections   

Observed 153540 (17881) 85985 (7421) 
Unique 45327 (4948) 21705 (2179) 

Completeness (%) 98.3 (99.8) 98.5 (95.8) 
Rmerge (%)b 7.3 (31.8) 4.7 (24.7) 

   
Refinement Statisticsa   

Resolution Range (Å) 9.94-1.20 19.96-1.60 
R-factor (%)c 17.0 (30.0) 14.6 (25.4) 
Rfree (%)d 21.1 (39.1) 20.6 (38.6) 
r.m.s.d. bond distances (Å) 0.007 0.010 
r.m.s.d. angles (˚) 1.076 1.135 
B factor (Å2)   

Mean 16.68 16.34 
r.m.s.d. mainchain 0.839 0.523 
r.m.s.d. sidechain 2.472 1.829 

Ramachandran Plot e    
% Residues in    

Most Favored 91.7 94.0 
Allowed 8.3 6.0 

a Values in parentheses correspond to the highest resolution shells for Mb(ONO) (BNL) (nitrite soak) 
(1.231-1.20 Å), Mb(ONO) (Home) (nitrite cocrystalized) (1.641-1.60 Å). 
b Rmerge = Σ|I - <I>|/Σ(I) where I is the individual intensity observation and <I> is the mean of all 
measurements of I. 
c R-factor = Σ||Fo| - |Fc||/Σ|Fo| where Fo and Fc are the observed and calculated structure factors, 
respectively. 
d Rfree is calculated using randomly selected reflections comprising 5% of the data not used throughout 
refinement. 
e As calculated using PROCHECK60.  
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3.3.2.1 Nitrite Soaked Metmyoglobin Crystals 

Multiple data sets were collected on crystals using our in-house diffractometer 

and one high-resolution data set was collected at NSLS/BNL.  Native metmyoglobin 

crystals were grown, and nitrite was soaked into the crystal to form the complex.  

Because all of the data sets show the same result, the high-resolution data set collected at 

NSLS/BNL is discussed below. 

Similarly to other myoglobin/ligand structures, the protein backbone of the 

Mb(ONO) structure has a typical myoglobin fold and therefore will not be discussed any 

further.  The most chemically interesting feature of this structure is the heme nitrite 

moiety.  To the best of our knowledge, this is the first crystal structure that displays O-

bound nitrite complexed to a heme iron in any protein. The position of the nitrite ligand 

was modeled into clearly defined electron density in the initial Fo-Fc difference electron 

density map, and the ONO ligand did not move significantly during the remainder of the 

refinement.  The primary interaction of the nitrite ligand with this heme protein is 

through O-binding to the iron center, with an Fe-O1 distance of 1.94 Å.  The O1-N and 

N-O2 distances are 1.32 and 1.31 Å, respectively.  The angle made by the Fe-O1-N 

moiety is 116°, and the O1-N-O2 angle is 113°.  The (His93)N-Fe bond length is 2.07 Å.  

The top view of the heme site is shown in Figure 3.2 (bottom).  The iron-nitrite torsion 

angle, as defined by the Fe-O1-N-O2 group, is 11°.  The proximal imidazole plane lies 

almost directly along a (por)N-Fe-N(por) bond, with a deviation of only 4.5°, and the 

nitrite ligand plane is oriented ~77° to the proximal imidazole (of His64) plane. 

 The nitrite ligand is oriented away from the distal His64 residue.  The distance 

between the nitrite O1 atom (bound to Fe) and the Nε-atom of His64 is 2.83 Å, whereas 
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the related distance between the nitrite O2 atom (not bound to Fe) and the Nε-atom is 

3.20 Å.  Thus, the nitrite ligand is likely stabilized in the distal pocket by hydrogen 

bonding between the O1 atom and the distal His64 residue.  No other close contacts 

between the nitrite and the distal residues are observed.  Thus, the next closest contacts of 

the nitrite ligand with the distal residues (other than with His64, and ignoring hydrogen 

atoms) are between the Cγ2 atom from Val68 and the nitrite O2 atom (3.12 Å), the nitrite 

N atom (3.24 Å) and the nitrite O1 atom (3.25 Å).  All other distal residues are located 

≥3.5 Å away from the nitrite ligand. 

 The iron atom in Mb(ONO) is located essentially in the mean plane of the 

four porphyrin N-atoms (i.e., the 4N-plane).  The axial (His93)-Fe-O1 angle is 179°, 

exhibiting near perfect linearity, and the O1 atom of the nitrite is tilted 3° from the 

normal to the heme 4N-plane. 
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Figure 3.2 (top) Stereoview of the final model of the heme site in horse heart myoglobin.  Density is 
form the Fo-Fc omit electron density map and is contoured at 3σ.  Carbon, nitrogen, oxygen, and iron 
atoms are colored grey, blue, red, and orange respectively. (bottom) Stereoview from distal side of 
heme showing the orientation of the nitrite.  His93, on the proximal side of the heme is shown in 
yellow for clarity.  
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3.3.2.2 Cocrystallized Mb Nitrite Complex 

The Mb(ONO) complex made by forming the complex in solution and then 

crystallizing it has essentially the same structure. We considered the possibility that 

soaking the nitrite ligand into the distal cavity of pre-formed metMb crystals influenced 

the preference for the O-binding mode.  Consequently, we prepared a solution of ferric 

Mb(ONO) and were able to obtain suitable crystals of the compound prepared by this 

method.  The structure reveals the O-binding mode of the nitrite ligand as described 

above.  The occupancy of the ONO ligand, however, was only ~65%, with the remaining 

~35% being an aqua ligand; the Fe-O(aqua) distance is 2.25 Å.  Figure 3.3 shows the 

ONO and aqua ligands in the heme active site.  We conclude that, in our hands and under 

the experimental conditions used here, soaking a pre-formed metMb crystal with nitrite 

does not bias the ONO ligand towards the O-binding mode. 
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Figure 3.3  (top) Stereoview of the heme environment from the Mb(ONO) structure that was 
prepared by cocrystallization shown from the propionate side of the porphyrin.  Electron density is 
contoured at 3σ and is the initial Fo-Fc electron density map after molecular replacement.  A bulge in 
the electron density can clearly be seen and was modeled as a low occupancy water.  The model is 
the final refined model and all of the colors are consistent with those in figure 1.  (bottom) 
Stereoview showing the negative electron density that appears when nitrite is modeled at full 
occupancy.  This led to modeling the nitrite at reduced occupancy and the addition of a water 
molecule in the alternate position sown in the top figure. 
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3.3.2.3 Attempts at Obtaining an N-bound form of Mb(NO2)  

We considered the possibility that N-binding might be favored for the reduced 

(i.e, ferrous) form of Mb.  Two methods to obtain a ferrous Mb(NO2) derivative were 

attempted: (i) addition of dithionite to the ferric Mb(ONO) complex, and (ii) addition of 

nitrite to ferrous Mb. 

We exposed ferric Mb(ONO) crystals to dithionite for 15 sec, and subjected a 

suitable crystal to crystallographic analysis.  The O-bound nitrite form was retained in the 

structure, but the occupancy of the ligand was reduced to ~85%.  In separate experiments, 

exposure of the ferric Mb(ONO) crystals to dithionite for 35 and 45 seconds resulted in 

structures with O-bound nitrite occupancies of ~60% and ~30%, respectively.  No 

secondary ligand was observed/present bound to the iron center.   Addition of excess 

dithionite to the ferric Mb(ONO) crystals in the presence of excess nitrite produced the 

ferrous MbNO derivative with full occupancy of the NO ligand. 

 

Table 3.5  Effect of Dithionite Soak Time on the Occupancy of Nitrite Ligand 
Soak time (s) 15a 30a 35a 40a 45a 60a 60b  
        
Occupancy of NO2

- (%) 80-90 60-65 ~ 60 ~ 40 ~ 30 < 20 100 (NO) 
a Crystal soaked first in droplet containing 500 mM sodium nitrite, then transferred to drop containing 500 
mM dithionite. 
b Crystal soaked first in droplet containing 500 mM sodium nitrite, then 500 mM dithionite was added to 
drop.  NO gas was produced and bound to Mb. 

 

We also added nitrite to crystals of reduced Mb in an attempt to obtain a ferrous 

Mb(NO2/ONO) structure.  The crystal structure of the product was identical to that of the 

ferric Mb(ONO) described above, displaying an O-binding mode of the nitrite ligand.  

Nitrite is known to oxidize reduced Mb, hence it is conceivable that we generated the 
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ferric nitrite complex.  In summary, we have not been successful to date at generating the 

N-bound nitrite form. 
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3.4 Discussion 

Comparison with Model and Protein Structures 

Several binding modes of nitrite to metals are known61 and are shown 

schematically in Figure 1.1.  However, the structures reported for heme protein nitrite 

compounds have been limited to the N-binding mode (structure 1 in Figure 1.1).  The 

three structures are those of the nitrite adducts of cyt cd1 NiR from P. pantotrophus14, SiR 

from E. coli 13, and cyt c NiR from W. succinogenes12.  It is interesting to note that in all 

synthetic iron porphyrin nitrite compounds whose X-ray structures have been reported, 

the nitrite anion has been shown to bind to both ferric and ferrous centers via the N-

binding mode41, 62.  The only exception is for a 

disordered component of nitrite in a crystal form of 

[(TpivPP)Fe(NO2)(NO)]- (TpivPP = picket fence 

porphyrin) where both N-binding and O-binding were 

observed in the same crystal due to disorder of the 

nitrite group39. O-binding of nitrite has been observed 

to result from photoirradiation of the ground-state 

nitrosyl-nitro compound (TPP)Fe(NO)(NO2) (TPP = 

tetraphenylporphyrin) to give its metastable nitrosyl-

nitrito linkage isomer (TPP)Fe(NO)(ONO)63, 64.    

 Such nitrito binding has been observed in the crystal structures of other 

metalloporphyrin nitrite complexes of Mn46, Ru43-45, and Os49.  
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Figure 3.4 Scheme for linkage 
isomerism of (TPP)Fe(NO)(ONO) 
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To date, only the nitrite N-binding mode has been observed for heme protein 

systems or for synthetic iron (ferrous or ferric) porphyrins containing nitrite ligands.  

Thus, the nitrite O-binding mode determined for ferric hh Mb(ONO) reported here 

represents the first such example for a structurally characterized heme protein.   

It is important to recognize that the previously reported N-binding modes in nitrite 

heme proteins have laid a foundation for understanding the mechanism of NiR activity 

for the classical NiR enzymes6, 11.  For example, the crystal structure of the cyt cd1 NiR 

enzyme complexed with nitrite reveals a conformation of the N-bound nitrite that places 

one of the nitrite O-atoms within hydrogen-bonding distance of two distal His residues 

that could play the role of proton donors14; presumably setting the stage for conversion of 

the bound NO2 ligand to NO (structure III).   
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Similarly, the crystal structure of the ferric cytochrome c NiR enzyme complexed 

with nitrite reveals hydrogen bonding interactions between the N-bound nitrite O-atoms 

with distal residues12. 

Silaghi-Dumitrescu65 has recently determined, using density functional theoretical 

calculations, that the N-bound nitrite isomer in cytochrome cd1 NiR is favored over the 

O-bound isomer by 4.5 kcal/mol in the ferric form (6 kcal/mol in the ferrous form).  
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However, the author proposed that the O-bound nitrite isomer in this enzyme is 

energetically feasible, and that NO release can be facile in such O-bound ferrous nitrite 

compounds.  For example, optimization of the geometry of the O-bound ferrous form 

(structure IV) resulted in convergence of the structure to a form that involved cleavage of 

the O-NO bond to result in an even more facile release of NO (structure V) 65. 
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Thus, the author suggests that O-bound nitrite complexes are perhaps as catalytically 

competent as their N-bound analogues.   

Interestingly, brief speculation of such an O-binding mode of nitrite to ferric 

heme proteins was presented more than two decades ago by Garber and Hollocher66, who 

suggested that O-binding of nitrite (or HONO after protonation) might account for 

subsequent nitrosyl transfer reactions observed with dissimilaratory nitrite reductases.  

More recently, Herold and Rehmann have shown using a stopped-flow UV/Vis 

spectrophotometer with rapid scanning monochrometer that a Mb-nitrite species, 

formulated as ferric Mb(ONO), is generated as an intermediate during the reaction of the 

ferryl compound MbFeIV=O with NO67.  A similar ferric Hb(ONO) intermediate is 

formed in the corresponding reaction involving ferryl hemoglobin68. 

It is thus reasonable to assume that a 1-electron reduction and subsequent 

protonation of the O-bound nitrite in a heme protein will generate coordinated nitrous 
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acid, which could then release NO.  Indeed, such a binding mode for HONO has 

structural precedence as shown by our previously demonstrated interaction mode of alkyl 

nitrites (RO-N=O; R = alkyl) and alkyl/arylthionitrites (RS-N=O) with synthetic 

metalloporphyrins of Fe , Ru, and Os69-71.   
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Figure 3.5  Reaction of [Ru(TTP)(CO)] with isoamyl nitrite to yield [Ru(TTP)(NO)(O-isoamyl)] from Yi 
and Richter-Addo72. 

 

 In these reactions, we have determined experimentally that O-binding of the 

RONO group to group 8 metalloporphyrins (structure VI; M = Fe, Ru, Os) results in 

hemolytic cleavage of the RO-NO bond to release NO (analogous reactivity was 

observed with RSNO). 
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 The bound nitrite in hh Mb(ONO) (Figure 3.2) is stabilized by hydrogen-bonding 

between the iron-bound O-atom and the distal His64 residue.  It thus is tempting to 

speculate that reduction of the ferric heme to the ferrous state and subsequent protonation 

of the O1 atom of the nitrite ligand will result in efficient O-NO bond cleavage to release 

NO.  Whether this O-binding mode of nitrite observed in the crystal structure of ferric 

Mb(ONO) is the precursor to catalytic nitrite reduction under hypoxic conditions (after 

proton-coupled electron transfer) remains to be firmly established.  However, we note 

that anaerobic dithionite reduction of this complex does lead to NO production.  
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3.5 Conclusion 

 Nitrite is now recognized as an oxyanion of nitrogen that has important 

physiological roles in addition to its role in denitrification.  Here we report the first 

structural study of the nitrite adduct of myoglobin.  The high-resolution crystal structure 

reveals that the nitrite ligand is bound to the ferric heme center via the O-binding mode.  

This is the first non-disordered determination of such a binding mode in synthetic 

metalloporphyrins or heme proteins.  The three heme protein nitrite crystal structures 

reported to date show the N-binding mode of nitrite to the heme centers.  The observation 

of an O-binding mode of nitrite to a heme protein provides support for this binding mode 

as a viable intermediate in nitrite reductase activity by heme proteins.   

 In our lab, two studies are being performed to determine if the metal or the 

sidechains in the heme pocket are responsible.  First, one member of our lab, Zaki 

Zahran, is using myoglobin with metal substituted porphyrins to try to force N-bound and 

O-bound conformations.  Concurrently, another member of our lab, Lilian Chooback, is 

working on heme site mutation to attempt to stabilize the N-bound nitrite with additional 

hydrogen bonding.  The outcome of these combined experiments should shed some light 

on why nitrite binds through the oxygen in myoglobin.  
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4 Nitrosoalkane and Nitrosoarene Complexes of 

Horse Heart Myoglobin, and Extensions to the 

Nitrosoalkane Adducts of Cytochrome P450  

4.1 Introduction 

4.1.1 C-nitroso Compounds and Heme proteins 

 Nitrosoalkanes and nitrosoarenes (R-N=O; R = alkyl or aryl group) are 

biologically important compounds that are generated in physiological media by oxidative 

metabolism of the precursor amines RNH2 (or hydroxylamines RNHOH) or by reduction 

of the organic nitro RNO2 compounds, and these resulting RNO compounds are known to 

interact with several heme-containing biomolecules by binding to the heme iron 4-16.   
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In the case of 1˚ and 2˚ nitroso compounds (4), irreversible isomerization to the oxime (5) 

occurs.  The rate of this conversion is dependent on the availability of hydrogen on the 

alpha carbon.  Once the nitroso compound is converted to the oxime it is no longer able 

to bind the heme iron.  Therefore, one would assume that the binding of nitrosoarenes to 

heme proteins would be more efficient than that of nitrosoalkanes.  However, Mansuy 
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and coworkers 17 showed that nitrosoarenes, because of the electron poorer NO species, 

are easier to reduce to the phenylhydroxylamine and then the amine complex than are 

similar nitrosoalkane complexes.  Therefore, in a reducing environment the 

nitrosoalkanes appear more stable than do nitrosoarenes because of the relative difficulty 

to reduce them to the amine complex. 
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 In cases where the heme proteins contain exposed cysteine residues (e.g., 

hemoglobin), interactions of RNO compounds with the cysteine residues are possible 

generating sulfinamines 18, 19.  RNO binding to histidine-liganded hemes are biologically 

relevant.  For example, Hb(RNO) formation was shown to be associated with 

nitrobenzene poisoning more than a century ago 20, 21.  In our lab, we previously 

demonstrated, by single-crystal X-ray crystallography, that in heme model complexes 

containing RNO ligands, the ligands can bind to the iron center either through the N or O 

atoms 22.  Other reports have been published that show N-binding of RNO ligands to the 

iron center in heme model complexes 23, 24.  Surprisingly, however, there is very little 

information to date on the structural consequences of RNO binding to the iron center in 

heme proteins.  Thus, despite the importance of RNO binding to heme proteins (e.g., in 
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the inhibition of heme protein function) 16, ours are the only reports to date of the single-

crystal X-ray structural characterization of heme-nitrosoalkane adducts. There is only one 

structural example of a related heme-nitrosoarene complex, namely that of the 

nitrosobenzene adduct of leghemoglobin from Lupinus luteus 25 which is shown in Figure 

4.1. 

 

There has, however, been a long history of spectroscopic studies that have been 

carried out on the interactions of nitrosoalkanes and nitrosoarenes with heme proteins.  

Some of the first studies on C-nitroso compounds and heme proteins were undertaken to 

study nitrosobenzene poisoning 21.  Murayama used UV/Vis spectroscopy to study the 

interaction of nitrosobenzene and hemoglobin 26 concluding that nitrosobenzene does 

bind human hemoglobin, and that the addition of bulkier groups caused steric clashes that 

raised the energy barrier of forming the complex.  Soon after, Gibson published studies 

 
Figure 4.1 The heme site of the Leg Hb (nitrosobenzene) complex3.  Exterior of protein shown to 
the right side of the figure, hydrophobic core of the protein is shown on the left.  There is no possibility 
of hydrogen bonding between the ligand and the heme pocket with side chain or backbone atoms.  The 
only interaction between the ligand and the protein is through the metal. 
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looking at the “rates of combination” of several nitrosoarenes with hemoglobin and 

myoglobin 27 and determined rate constants for the formation of several substituted 

nitrosobenzenes.   

In the early 1970s, several studies examined the interactions of amine containing 

drugs, specifically amphetamines, with rat and rabbit liver microsomal cytochromes and 

a distinctive peak in the UV/Vis spectrum was observed 28, 29 but not identified until 1975 

when Mansuy and coworkers identified the species as a bound nitrosoalkane 2.  The 

species was determined because it could be made by two distinct routes;  (i) the oxidation 

of amphetamines, and (ii) the reduction of the nitro species to the nitroso species 2.  

Shortly after, these studies were extended from interactions only with cytochromes to the 

interactions of nitrosoalkanes with hemoglobin and myoglobin 15.   

RNO compounds are now known to bind the heme iron in several proteins 

including prostaglandin synthase where the R group was one of several options (methyl, 

ethyl, isopropyl and phenyl)12, soluable guanylate cyclase (R = methyl)30, 

microperoxidase (R = methane, ethane, propane, benzene, hexane, cyclohexane, tert-

butane)6, 31, P450 (R = phenyl)17, 32, hemoglobin and myoglobin (R = methyl, ethyl, 

isopropyl, tert-butyl, pentane, and cyclopentane)15, and nitric oxide synthase (R = methyl, 

ethyl, isopropyl, tert-butyl, hexyl, cyclohexyl, phenyl, and various substituted phenyl 

groups)13.  The binding of all of these various RNO compounds to these varied proteins 

was determined by UV/Vis spectroscopy.  However, with the exception of the 

leghemoglobin/nitrosobenzene complex there is a complete lack of structural information 

available in this research field.   
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The most important research discussed in this chapter are the 3-dimensional 

crystal structures of the horse heart myoglobin/nitrosoethane complex, horse heart 

myoglobin/nitrosomethane complex and horse heart myoglobin/nitrosobenzene complex, 

which are the first two nitrosoalkane/heme protein complexes reported in the literature 

and the hh Mb(PhNO) structure displays an alternative binding mode to that observed in 

the leg Hb(PhNO) complex. 

 

4.1.2 C-nitroso Compounds and Synthetic Metalloporphyrins as 

Heme Models  

 Nitrosoalkane and nitrosoarene binding have both been studied extensively in 

heme model systems with Fe, Mn, Ru, Os, and Co 16.    While many of the metal 

complexes are interesting in their own right, only complexes with iron porphyrins will be 

discussed here. The two major groups of model porphyrins that exist are symmetrical and 

asymmetrical porphyrins, and both of these types of porphyrins have been employed to 

study these complexes 22, 24, 33, 34.   

 The symmetrical porphyrins can, as above with the porphyrins, be divided into 

two groups, the tetra-substituted and the octa-substituted. The two tetra-substituted 

porphyrins that have been used in the study of RNO binding have been 5,10,15,20-

tetraphenylporphyrin (TPP) and 5,10,15,20-tetra-p-tolylporphyrin (TTP) 24, 33.  The ferric 

and ferrous derivitives have been used to study bound nitrosoalkanes and nitrosoarenes.  

 The first binding studies that were carried out with nitrosoalkanes and FeTPP 

were performed by Mansuy and coworkers in 1983 23.  These showed that TPP was a 
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reasonably good model for biological heme systems and was the first structural evidence 

that showed RNO binding to a heme or heme model system.   One of the more important 

finding made using the FeTPP system was that the oxidation state of the metal determines 

the mode of binding of the ligand 22.  Our group showed in 1996 that nitrosoarenes would 

bind through the nitrogen of the NO moiety to ferrous porphyrins and through the oxygen 

with ferric porphyrins22. 

 

[(TPP)Fe(Et2NC6H4NO)2]SbF6

 

Figure 4.2  Examples of two iron porphyrin RNO complexes.  (left) (OEP)Fe(II)(i-PrNO)(1-
MeIm) showing the N-bound mode of binding of the RNO with an Fe(II) porphyrin33.  (right) 
[(TPP)Fe(Et2NC6H4NO)2]SbF6 showing the O-bound mode of binding for that RNO compound 
with and Fe(III) center22. 
 
 
 

 Fe(II) porphyrin RNO complexes are usually formed in model systems by 

reacting the hydroxylamine species of interest with the oxidized iron porphyrin.  The 

reduction of the metal from Fe(III) to Fe(II) and the oxidation of the hydroxylamine to 

the nitroso compound results in the generation of the final product Fe(II) RNO complex.  
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However, Mansuy and coworkers determined that in proteins, the PhNO ligand alone was 

enough to reduce the Fe and bind to the heme and that the phenylhydroxylamine was not 

necessary, but its presence did speed up the reaction 17.  

 Fe(III) porphyrin RNO complexes have only been made with para-substituted 

nitrosoarenes that are fairly stable in solution, and are usually made by adding the nitroso 

compound of interest directly to the Fe(III) porphyrin 22.  This method could shed some 

light on the above method of having the RNO itself reduce the metal and form the Fe(II) 

complex.  One could postulate that the O-bound Fe(III) complex is initially formed and is 

slowly converted to the N-bound Fe(II) complex. 
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4.2 Materials and Methods 

4.2.1 P450BM-3 hd Expression 

 The expression vector for the heme domain of cytochrome P450BM-3 (P450BM-

3hd), from Bacillus megaterium, was given to us by Dr. Thomas Poulos at the University 

of California, Irvine.  The plasmid pT7BMHD has the DNA encoding P450BM-3hd 

inserted into a pET21 vector.  This vector uses the strong T7 promoter to obtain high 

expression levels of the protein in E. coli.  The protein was expressed in a BL21-DE3 

strain of E. coli and approximately 50 mg of P450BM-3hd was obtained from a 2 L 

preparation. 

 The purification of the protein was performed using a Q-sepharose (Amersham 

Pharmacia) column followed by an sephacryl S-200 (Amersham Pharmacia)  column run 

as described in the Li and Poulos paper, which describes the initial characterization35.   

4.2.2 UV/Vis Spectroscopic Techniques 

 Experiments were carried out on a Hewlett Packard 8453 spectrophotometer 

equipped with a diode array detector.  Samples were contained in screw top quartz 

cuvettes so data could be collected both aerobically and under anaerobic conditions if the 

need arose.   
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4.2.3 Crystallization Techniques 

4.2.3.1 Horse Heart Myoglobin Nitrosoalkane Complexes 

In the case of the nitrosoalkane structures, cocrystallization was used instead of 

soaking the ligand into the preformed crystals.  A 30 mg/mL solution of horse heart 

myoglobin was prepared in 100 mM Tris-HCl at pH 7.4.  An excess of nitroethane or 

nitromethane (10 µL) and sodium dithionite (50 mg) were added to the solution, and an 

immediate color change of the solution from brown to reddish-purple occurred, indicative 

of the formation of the desired Mb(EtNO) or Mb(MeNO) product (λmax 425 nm) 15.  The 

solution was then applied to a desalting column (Sephadex G25, 10 mL) to remove the 

excess dithionite, and the flow-through sample was reconcentrated in an aerobic 

atmosphere to 30 mg/mL using a Centricon YM-10 membrane.   

Crystals were obtained by the hanging drop vapor diffusion method at room 

temperature (21˚C).  The droplets were 10 µL each in volume, and were prepared by 

mixing 5 µL of the 30 mg/mL protein solution in 100 mM Tris-HCl at pH 7.4 with 5 µL 

of 3.4-4.0 M ammonium sulfate in 100 mM Tris-HCl at pH 7.4.  The droplets were 

suspended over reservoirs containing 1 mL of 3.1–3.3 M ammonium sulfate (100 mM 

Tris-HCl at pH 7.4).  Crystals of suitable size (1.0 x 0.4 x 0.05 mm) grew in 5 days and 

were harvested as soon as they were of suitable size due to the instability of the 

nitrosoalkane complexes in the crystallization buffer, which will be discussed later.  

These were harvested and passed through a solution of the artificial mother liquor 
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containing 7.5-15% glycerol (v/v) as a cryoprotectant.  The crystals were then flash 

frozen in liquid nitrogen. 

4.2.3.2 Horse Heart Myoglobin Nitrosobenzene Complex 

 MetMyoglobin crystals were grown using the same method as described 

previously36.  The droplets were prepared by mixing 5 µL of the 30 mg/mL protein 

solution in 100 mM Tris-HCl at pH 7.4 with 5 µL of 3.4-4.0 M ammonium sulfate (100 

mM Tris-HCl at pH 7.4).  The droplets were suspended over reservoirs containing 1 mL 

of 3.1–3.3 M ammonium sulfate (100 mM Tris-HCl at pH 7.4).   

 Crystals grew to a suitable size (0.5 x 0.2 x 0.05 mm) in 3-5 days and were 

transferred to a solution of artificial mother liquor, 15% glycerol and 300 mM 

phenylhydroxylamine.  The phenylhydroxylamine was synthesized from nitrobenzene 

according to Kamm’s method.37 

4.2.4 Data Collection, Processing and Refinement 

 All X-ray data sets were collected on our in-house diffractometer at 100 K on a 

RigakuMSC RU-H3R X-ray generator operated at 50 kV/100 mA to produce CuKα 

radiation (λ = 1.5418 Å).  Diffracted X-rays were detected using an R-AXIS 4++ dual 

image plate detector system.  For the hh Mb(EtNO) crystal, the crystal-to-detector 

distance was set at 100 mm and 148 frames were collected using a 1.0˚ oscillation to a 

resolution of 1.7 Å.  For the hh Mb(MeNO) crystal data, 1° oscillation images were 

collected over a range of 180° with the crystal-to-detector distance of 150 mm and an 

exposure time of 300 sec.  For the hh Mb(PhNO) crystal data, 1° oscillation images were 
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collected over a range of 210° with the crystal-to-detector distance of 70 mm and an 

exposure time of 300 sec. 

 Data sets were processed using the stand-alone d*TREK program (Macintosh 

v.2D) 38 or with the d*TREK program as implemented in the Crystal Clear suite 39, both 

available from Molecular Structure Corporation. 

4.2.4.1 Horse Heart Myoglobin Nitrosoethane Complex 

 After the rotation and translation search, (using the 1.45 Å resolution structure of 

ferrous MbCO, PDB access code 1DWR40 with CO and solvent molecules removed) the 

initial model had a R-factor of 30.70%.  Rigid body refinement lowered the R-factor to 

28.91%.   Well-defined electron density for the nitrosoethane ligand was apparent in the 

initial Fo-Fc electron density map.  The nitrosoethane ligand was then modeled into this 

density, and its position and geometric parameters were unrestrained throughout 

refinement.  Further rounds of refinement and model adjustment were performed until the 

R-factor stabilized (at ~26%). An Fo-Fc electron density map showed negative density in 

the vicinity of the nitrosoethane ligand indicating partial occupancy of the ligand.  

Consequently, unrestrained individual occupancy refinement was performed.  All atoms 

of the nitrosoethane ligand refined to occupancies of ~0.6.   The ligand occupancy was 

consistent with our UV-vis spectroscopic data (see later) which suggested a ~40% 

conversion of the ferrous Mb(EtNO) complex to aqua-metMb under the crystallization 

conditions.  This led to the modeling of a water molecule as an alternate sixth ligand to 

iron (for the aqua-metMb contribution) with an occupancy of 0.4.  Water molecules and 

two sulfate anions were added to the structure using an Fo-Fc electron density map.  

Further cycles of conjugate gradient energy minimization and model adjustment were 
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subsequently performed.  As with the hh MbNO structure, poor electron density was 

observed for the two C-terminal residues Gln152 and Gly153.  

 The final crystallographic R-factor (Rfree calculated using 10% of randomly 

selected reflections) was 19.8% (Rfree = 22.7%).  Coordinates for this structure have been 

deposited at the Protein Data Bank 41 with access code 1NPG. 

4.2.4.2 Horse Heart Myoglobin Nitrosomethane Complex  

 After the rotation and translation search, (using the 1.90 Å resolution structure of 

ferrous MbNO, PDB access code 1NPF36 with NO and solvent molecules removed) the 

initial model had a R-factor of 27.86%.  Ten cycles of restrained refinement lowered the 

R-factor to 21.03%.   Well-defined electron density for the nitrosomethane ligand was 

apparent in the initial Fo-Fc electron density map and the nitrosomethane ligand was then 

modeled into this density.  An Fo-Fc electron density map showed negative density in the 

vicinity of the nitrosomethane ligand indicating partial occupancy of the ligand and the 

final occupancy of the nitrosomethane ligand was determined to be 80%.  The ligand 

occupancy was consistent with our UV-vis spectroscopic data which suggested a ~10-

20% conversion of the ferrous Mb(MeNO) complex to aqua-metMb under the 

crystallization conditions. Water molecules and two sulfate anions were added to the 

structure using an Fo-Fc electron density map.  Further cycles of refinement and model 

adjustment were subsequently performed.  As with most hh Mb structures, poor electron 

density was observed for the two C-terminal residues therefore Gly153 was omitted from 

the model.42-46 
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 The final crystallographic R-factor (Rfree calculated using 10% of randomly 

selected reflections) was 16.2% (Rfree = 22.9%). Coordinates for this structure will be 

deposited in the Protein Data Bank 41. 

4.2.4.3 Horse Heart Myoglobin Nitrosobenzene Complex  

After the rotation and translation search, (using the 1.90 Å resolution structure of 

ferrous MbNO, PDB access code 1NPF36 with NO and solvent molecules removed) the 

initial model had an R-factor of 41.0%.  Restrained refinement was carried out for 10 

cycles in Refmac5 prior to the addition of any solvent, which lowered the R-factor to 

23.1%.  At this point nitrosobenzene as well as two sulfate ions were added to the model 

based on an Fo-Fc electron density map. After cycling with ARP/wARP and 10 additional 

cycles of restrained refinement, 98 water molecules were added and the R-factor dropped 

to 18.4%.  100 more cycles of restrained refinement using data between 20 Å and 2.0 Å 

led to an R-factor of 18.2%.  As with previous horse heart myoglobin structures poor 

electron density was seen at the C-terminal of the protein for residues Gln152 and Gly153 

and residue 153 was omitted from the structure 42-46. 

 The final crystallographic R-factors (Rfree calculated using 5% of randomly 

selected reflections) 18.1% (Rfree = 26.5%) for the hh Mb(PhNO) structure.  Coordinates 

will be deposited in the Protein Data Bank 41. 
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4.3 Results 

4.3.1 UV/Vis Spectroscopic Studies of the Bindiong of Simple 

Nitrosoalkanes to the Heme Domain of Cytochrome P450BM-3 

The heme domain of cytochrome P450BM-3 from Bacillus megaterium was 

complexed with a series of simple nitrosoalkanes in an attempt to find a suitable complex 

for crystallographic work.  The results show that the R-group on the nitrosoalkane can 

greatly influence the extent of binding of the RNO compounds to the heme domain of 

P450 BM-3. 

The differences in the extent of formation of these complexes as seen in Figure 

4.3 is what initially interested us in these ligands.  There were dramatic differences 

observed with the only variation between the experiments being the identity of the ligand.  

The next step taken was to monitor the extent of formation over time to see if all of the 

complexes would eventually proceed to 100% complex formation. 

All of the complexes were made the same way, by adding a given amount of the 

corresponding nitro compound to the protein solution and then adding enough reducing 

agent to reduce both the protein and the ligand.  The method used to study these 

complexes was originally used by Mansuy and coworkers to determine the interaction of 

these RNO compounds with rat liver microsomal P4502.  Our results are very similar to 

those that were seen by Mansuy.   

Our reaction mixture consists of 5 µM P450BM-3hd, 10 mM nitroalkane (any of 

the nitroalkanes), and 20 mM sodium dithionite in a total of 1 mL of solution.  For the 

time courses, time was started as soon as the sodium dithionite was added to the mixture 
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and spectra were taken at time points (15s, 30s, 1, 2, 3, 4, 5, 10, 15, 20, 30, 45, and 60m) 

for up to 1 hour.  The experiment was repeated at least three times for each nitroalkanes 

used.   

 We determined that the best way to monitor this reaction was to monitor the 

change in the 419 nm and to divide that by the original absorbance at 419 nm and to 

express that number as the extent of complex formation.  The appearance of the new peak 

at 453 nm was also monitored, and similar extent of formation values were obtained 

when it was divided by the original absorbance at 419 nm.  While the extinction 

coefficient for the P450(nitrosoalkane) complexes are not known, it can be assumed the 

they will not be the same as the extinction coefficient for the unbound protein and 

therefore, the absorbance values would not directly relate to each other, and simply 

monitoring the 419 nm peak was the most accurate and the only way to relate the values 

to each other. 
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Figure 4.3  Overlay of five spectra showing the different changes in absorbance based on the identity of 
the R-group on the nitrosoalkane ligand.  The x-axis is in units of wavelength and the y-axis is 
absorbance units.  The highest peak at 419 nm corresponds to the nonbound form of P450BM-3hd.  The 
addition of ligand causes a disappearance of the 419 nm peak and the appearance of a new peak at 453 
nm.  The identities of the different lines are shown in the legend at the bottom of the graph.   

419 nm 

453 nm 

      Initial        EtNO        MeNO        2-nitrosopropane         1-nitrosopropane 
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Table 4.1  Extent of Formation as a Function of Time Expressed a Percentage 
Time(min) 0.16 0.5 1 2 5 10 20 30 45 60 
Nitrosomethane 10 12 14 16 19 20 20 19 17 16 
Nitrosoethane 10 14 17 21 26 30 33 34 35 36 
1-nitrosopropane 10 11 12 13 15 17 18 19 19 19 
2-nitrosopropane 10 19 24 31 41 49 54 57 59 60 
Calculations Based on Δ419/419(original) X 100 
Highest values shown in bold 
  

 Table 4.1 shows that the R-group on the nitrosoalkane does make a significant 

difference in its binding to the heme domain of cytochrome P450BM-3.  Varying only 

the R-group we see a range of extents of formation from 19% all the way to 60% in a 1 

hour time course.   

 This shows that the heme pocket of cytochrome P450 BM-3 can influence the 

binding of these ligands, and that simple changes in the R-group can drastically influence 

the binding.  We can be certain that the 453 nm peak is due to the P450-RNO complex 

because Cho and coworkers32 formed the P450(nitrosobenzene) complex, which 

displayed the characteristic 453 nm peak and then added CO to the solution and saw no 

change in the spectrum, indicating that the heme site was blocked.  It can also be inferred 

from the data obtained here that there will not be a complete conversion from the 

unbound form to the bound form.  In this experiment, a 2000 fold excess of ligand was 

used to try to achieve 100% conversion, and with that huge excess only a 60% conversion 

was seen in one of the ligands.  The most likely conclusion that can be drawn from this 

data is that a much higher excess of ligand is needed to achieve 100% conversion to 

product.  However, this can be somewhat dismissed because this experiment was 

performed with larger excesses of ligand and dithionite and no increase in complex 

formation was seen, however, too large of an excess caused precipitation of the protein.    
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4.3.2 UV/Vis Spectroscopy Showing The Instability of Complexes in 

the Presence of Ammonium Sulfate 

 Both of the complexes that are discussed in this chapter, the myoglobin 

nitrosoethane complex and the myoglobin nitrosomethane complex, are unstable in the 

crystallization solution.  Although both complexes are stable in aqueous buffer in the 

presence of oxygen for several weeks (showing no signs of decomposition as judged by 

UV/Visible spectroscopy), the complex slowly converts to the aqua-metmyoglobin in the 

presence of ammonium sulfate. 

4.3.2.1 Myoglobin Nitrosoethane Complex 

 As seen in Figure 4.4, the horse heart myoglobin nitrosoethane complex was 

converted completely to the aqua-metmyoglobin form over the course of 15 days. 

 The importance of this is, for the crystallographic experiment, the myoglobin 

nitrosoethane complex was pre-formed and then cocrystallized and thus the instability of 

the myoglobin nitrosoethane complex in the crystallization solution becomes important.  

 The crystals only grew to a suitable size for data collection after five days at 

which time they were immediately harvested and frozen in liquid nitrogen for data 

collection.  From this spectroscopic data we can calculate that only 58% (as seen in Table 

4.2) of the original complex remains after 5 days, which corresponds well to the data that 

was obtained crystallographically.   
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Figure 4.4 Time course of UV/Vis spectra showing the conversion of Mb(EtNO) back to 
Mb(H2O) over the course of 15 days in the presence of ammonium sulfate.  Darkest line with peak at 425 
nm is the initial spectrum.  As time course proceeds the 425 nm peak disappears and the 409 nm peak is 
formed.  Time course proceeds from darkest line to the lightest line. 
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The group of overlaid UV/Vis spectra clearly show the disappearance of the 425 nm peak 

that corresponds to the bound myoglobin/nitrosoethane complex and over time the 

reappearance of the 409 nm peak representative of the aqua-metmyoglobin.  This 

degradation of the 425 nm peak is not observed in the absence of the ammonium sulfate. 

In fact, the complex is stable in air for several months when NOT in the crystallization 

buffer (data not shown).   

 

Table 4.2  Degradation of Mb(EtNO) Complex 

% of Initial Complex Remaining 
Time (days) 425 nm 425 nm corrected1 % Complex Remaining 

0 0.7630 0.3604 100 
1 0.7463 0.3436 95 
2 0.7154 0.3128 87 
3 0.6728 0.2701 75 
4 0.6349 0.2323 64 
5 0.6101 0.2074 58 
8 0.5409 0.1383 38 
10 0.5090 0.1064 30 
12 0.4522 0.0495 14 
14 0.4223 0.0197 5 
15 0.4027 0.0000 0 
1 Corrected value has contribution of 409nm peaks 
  shoulder subtracted out.  
After day 15 no changes were seen in the spectra 
  therefore this data was set to zero, implying all of the 
  absorbance came from the shoulder of the 409nm 
  peak. 
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4.3.2.2 Myoglobin Nitrosomethane Complex 

 UV/Vis spectroscopy was also used to study the horse heart myoglobin 

nitrosomethane complex.  There is similar but reduced instability of the nitrosomethane 

complex in the presence of ammonium sulfate as was observed with the nitrosoethane 

complex.  Where the nitrosoethane complex degraded by approximately 40% over the 

course of the 5 days required for crystal growth, the nitrosomethane complex only lost 

10-20% of the complex in the same amount of time under the same conditions.  Although 

the difference between these two compounds is minor (-CH2-) there is a significant 

difference in the stability of these complexes that cannot be easily explained with only 

the spectroscopic data.  The crystal structures of these two compounds however do shed 

light on the difference in stability and will be discussed in detail in the next section of this 

chapter. 

 

Table 4.3  Degradation of Mb(MeNO) Complex 
% of Initial Complex Remaining 

Time (days) 425 nm 425 nm corrected1 % Complex Remaining 

0 0.1507 0.0712 100 
3 0.1429 0.0634 89 
6 0.1378 0.0582 82 
1 Corrected value has contribution of 409nm 
  peaks shoulder subtracted out. 
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4.3.3 Myoglobin Nitrosobenzene Complex 

 The stability of the myoglobin nitrosobenzene complex in the crystallization 

buffer was not examined because this complex was formed using a soaking method 

instead of the cocrystallization method.  Full occupancy of the ligand was observed in the 

crystal structure and it was therefore unnecessary to determine using UV/Vis 

spectroscopy if the crystallization solution was causing instability in the complex.   
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4.3.4 Crystallographic Results 

4.3.4.1 Crystallization and Structure Solution of Nitrosoalkane 

Complexes of Myoglobin 

 Both Mb/nitrosoethane (Mb(EtNO)) and Mb/nitrosomethane (Mb(MeNO)) were 

crystallized as stated in the Methods section of this work.  The reservoir contained 3.00-

3.20 M ammonium sulfate in 100 mM Tris-HCl pH 7.4 and the drop contained 5 µL of  

Mb(EtNO)  or Mb(MeNO) at 30 mg/mL (in 100 mM Tris-HCl pH 7.4) and 5 µL of 3.48 

– 3.60 M ammonium sulfate in 100 mM Tris-HCl pH 7.4.  As this final condition was 

worked out, the crystal morphology slowly improved from needles to thin plates to 

finally plates that were thick enough to work with without damaging them as seen below 

in Figure 4.5. 

   

 

 
 
 
Figure 4.5.  Left to right shows the improvement of crystal quality as the crystallization conditions 
got closer to ideal.  The crystals on the right had several leaflets that were used to collect data for 
myoglobin/nitrosoethane complexes. 
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Table 4.4  X-ray Data Collection and Refinement Statistics 
    Mb(EtNO) Mb(MeNO) Mb(PhNO)  
Method of prepn. cocrystallized cocrystallized  Phenylhydroxylamine 
    soak 
Data Collectiona 
 Space Group P21 P21 P21 
 Source In-House In-House In-House 
 λ (Å)  1.5418 1.5418 1.5418 
 Cell Dimensions 
  a, b, c (Å) 35.16, 28.71, 63.03 35.34, 28.74, 63.47 35.25, 28.85, 65.98  
  β (˚) 106.2 106.0 105.63  
 Resolution(Å) 1.70 1.90 2.0 
 Mean I/σ(I) 24.4 (5.1)  16.3 (4.0) 12.5 (4.2) 
 No. Reflections 

Observed 39336 (3655)  33510 (1904) 42160 (3872) 
Unique 13504 (1323)  9925 (974) 8797 (896) 

 Completeness (%) 99.4 (98.2)  94.5 (66.6) 97.5 (97.5) 
 Rmerge (%)b 3.8 (20.1)  7.2 (26.4) 7.9 (31.4) 
  
Refinement Statisticsa 
 Resolution Range (Å) 40-1.70  20-1.90 25-2.0 
 R-factor (%)c 19.8 (41.8)  16.2 (23.8) 18.1 (24.1) 
 Rfree (%)d 22.7 (41.2)  22.9 (24.4) 26.5 (44.4) 
 r.m.s.d. bond distances (Å) 0.005  0.018 0.024 
 r.m.s.d. angles (˚) 1.414  1.504 1.950 
 B factor (Å2) 
  Mean 15.76  18.18 26.20 
  r.m.s.d. mainchain 1.03  0.60 0.80 
  r.m.s.d. sidechain 1.95  2.01 2.13 
 Ramachandran Plot e 
  % Residues in 
   Most Favored 93.2 92.5  92.5 
   Allowed 6.8  7.5 7.5 
 
 
a Values in parentheses correspond to the highest resolution shells for Mb(EtNO) (1.76-1.70 Å), 
Mb(MeNO) (1.97-1.90 Å) and Mb(PhNO) (2.09-2.00 Å).. 
b Rmerge = Σ|I - <I>|/Σ(I) where I is the individual intensity observation and <I> is the mean of all 
measurements of I. 
c R-factor = Σ||Fo| - |Fc||/Σ|Fo| where Fo and Fc are the observed and calculated structure factors, respectively. 
d Rfree is calculated using randomly selected reflections comprising 10% Mb(EtNO) and Mb(MeNO) and 
5% Mb(PhNO)) of the data not used throughout refinement. 
e As calculated using PROCHECK. 
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4.3.4.1.1 Horse Heart Myoglobin Nitrosoethane Complex 

 X-ray crystal structural analysis of hh Mb(EtNO) revealed that the protein 

retained its normal Mb fold, as observed in the previous structure of hh MbNO. Initial 

electron density maps clearly indicated the presence of the nitrosoethane ligand, which 

refined to a final occupancy of 60%.   Although the hh Mb(EtNO) complex is stable in 

aqueous buffer in air for several weeks (showing no signs of decomposition as judged by 

UV-vis spectroscopy), it slowly converts to aqua-metMb under our crystallization 

conditions in the presence of ammonium sulfate as was seen in the spectroscopic data 

presented above.  Suitable-sized crystals took ~5 days to form, during which a ~40% 

conversion to aqua-metMb occurred.  This partial occupancy of the EtNO ligand in the 

hh Mb(EtNO) crystal structure is consistent with the spectroscopic data that was 

presented above. 

 The EtNO ligand is N-bound to the ferrous center with an Fe-N(EtNO) distance 

of 2.14 Å.  The Fe-N(His93) distance is 2.14 Å, and the Fe-N(porphyrin) distances fall in 

the 1.98-2.00 Å range.  The axial (His93)N-Fe-N(EtNO) angle is 166°, and the Fe atom is 

positioned in the mean porphyrin plane.  The N-O distance is 1.26 Å, and the Fe-N-O and 

C-N-O angles are 117° and 119°, respectively.  Unlike the case for hh MbNO, however, 

the NO moiety in Mb(EtNO) is oriented towards the distal His64 residue with a 2.74 Å 

distance between the nitrosoethane O atom and the Nε atom of His64, suggestive of a  
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hydrogen-bonding interaction between these groups.  The ethyl group of the EtNO ligand 

is oriented in the direction in-between the hydrophobic residues Phe43 and Ileu107.   

 The closest non-bonding interactions of the ethyl group of EtNO with the distal 

residues of the protein are between the C2 atom of EtNO and Leu29 (3.2 Å) and that 

between the C1 atom of EtNO and Val68 (3.5 Å).  There is a considerable off axis tilt of 

the nitrosoethane ligand to the 4-N heme normal.  The angle from the heme normal 

through the Fe to the N of EtNO is 18˚, and the CNO plane of the ligand is tilted a further 

3˚ off of the heme normal to 21˚.  This unusual tilt will be discussed in detail later in this 

chapter.  
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Figure 4.6  (Top) Final model and Fo-Fc omit electron density map contoured at 3σ showing 
a side view of the heme environment in hh Mb(EtNO).  The dashed yellow line represents a 
2.73 Å distance between the Nε atom of the distal His64 residue and the O atom of the 
nitrosyl ligand.  (Bottom) Top view of the heme environment in hh Mb(EtNO).  The EtNO 
ligand is on the side of the porphyrin ring facing the viewer. 
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4.3.4.1.2 Horse Heart Myoglobin Nitrosomethane Complex  

 Suitable-sized crystals took ~5 days to form, during which a ~15-20% conversion 

to aqua-metMb occurred.  This observation is consistent with the partial occupancy of the 

MeNO ligand determined from the spectroscopic data.  The MeNO ligand is N-bound to 

the ferrous center with an Fe-N(MeNO) distance of 1.96 Å.  The Fe-N(His93) distance is 

2.18 Å, and the Fe-N(porphyrin) distances fall in the 2.02-2.1 Å range.  The axial 

(His93)N-Fe-N(MeNO) angle is 170˚, and the Fe atom is positioned in the mean 

porphyrin plane.  The N-O distance is 1.22 Å, and the Fe-N-O and C-N-O angles are 

116° and 121˚, respectively.  Similarly to the hh Mb(EtNO), the NO moiety in 

Mb(MeNO) is oriented towards the distal His64 residue with a 2.41 Å distance between 

the nitrosoethane O atom and the Nε atom of His64, suggestive of a hydrogen-bonding 

interaction between these groups.  The methyl group of the MeNO ligand is oriented in 

the direction in-between the hydrophobic residues Phe43 and Ileu107.  The closest non-

bonding interactions of the methyl group of MeNO with the distal residues of the protein 

are between the C atom of MeNO and Leu29 (3.6 Å) and that between the C atom of 

MeNO and Val68 (3.5 Å). 
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Figure 4.7 (Top) Fo-Fc omit electron density map contoured at 3σ showing a side 
view of the heme environment in hh Mb(MeNO).  The dashed yellow line represents a 
2.41 Å distance between the Nε atom of the distal His64 residue and the O atom of the 
nitrosomethane ligand. (Bottom) Top view of the heme environment in hh 
Mb(MeNO).  The MeNO ligand is on the side of the porphyrin ring facing the viewer.  
Histidine 93 is colored yellow for clarity. 
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4.3.4.2 Crystallization and Structure Solution of a Nitrosobenzene 

Complex of Myoglobin 

 The Mb(PhNO) complex was crystallized as stated in the Methods section of this 

work; the reservoir contained 3.00-3.20 M ammonium sulfate in 100 mM Tris-HCl pH 

7.4 and the drop contained 5 µL of  metMb at 30 mg/mL in 100 mM Tris-HCl pH 7.4 and 

5 µL of 3.48 – 3.60 M ammonium sulfate in 100 mM Tris-HCl pH 7.4.  The complex was 

formed by soaking metMb crystals in artificial mother liquor with added 

phenylhydroxylamine (138 mM).  The substrate reduced the ferric iron to ferrous, and 

itself was oxidized to nitrosobenzene.  

 X-ray crystal structural analysis of hh Mb(PhNO) revealed that the protein 

retained its normal Mb fold, with the exception of the distal histidine which is in a 

different position from that observed in metMb. Initial electron density maps clearly 

indicated the presence of the nitrosobenzene ligand which refined to full occupancy. 

 The PhNO ligand is N-bound to the ferrous center with an Fe-N(PhNO) distance 

of 2.20 Å.  The Fe-N(His93) distance is 2.30 Å, and the Fe-N(porphyrin) distances fall in 

the 2.02-2.13 Å range.  The axial (His93)N-Fe-N(PhNO) angle is 158°, and the Fe atom 

is positioned in the mean porphyrin plane.  The N-O distance is 1.20 Å, and the Fe-N-O 

and C-N-O angles are 127° and 119°, respectively.  Similar to the Mb(EtNO), the NO 

moiety in Mb(PhNO) is oriented towards the distal His64 residue with a 2.91 Å distance 

between the nitrosoethane O atom and the Nε atom of His64, suggestive of a hydrogen-

bonding interaction between these groups.  The phenyl group of the PhNO ligand is 

oriented in the direction in-between the hydrophobic residues Phe43, Val68 and Ileu107.   
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 The closest non-bonding interactions of the phenyl group of PhNO with the distal 

residues of the protein are between the C5 and C6 atom of PhNO and Phe 43 (2.71 and 

2.87 Å respectively) and that between the C2 atom of PhNO and Val68 (3.30 Å).  There 

is a considerable off axis tilt of the nitrosobenzene ligand to the 4-N heme normal.  The 

angle from the heme normal through the Fe to the N of PhNO is 18˚, and the CNO plane 

of the ligand is tilted a further 3˚ off of the heme normal to 21˚.   
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Figure 4.8  (Top) Side view of the structure of hh Mb(PhNO) formed by soaking phenyl 
hydroxylamine into preformed metMb crystals.  Electron density was calculated as an Fo-
Fc omit electron density map and is contoured at 3σ.  (Bottom)  View from above the 
PhNO ligand showing the orientation in the heme pocket with respect to His93 (shown in 
yellow) 
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4.4 Discussion 

4.4.1  Binding of Nitrosoalkanes to the Heme Domain of Cytochrome 

P450BM-3 

 This time course revealed that it was not “only a matter of time” until the 

complexes were 100% formed and in fact it does not appear that any of the complexes 

will completely form under the conditions used in these experiments. For the 

nitrosomethane complex, a maximum of 20% formation was observed at 10 minutes and 

began to decay thereafter.  For the nitrosoethane complex, a maximum of 35% 

conversion was observed at 1 hour.  The 1-nitrosopropane complex formation was the 

poorest with only 19% conversion after 1 hour.  Finally, the highest extent of formation 

at 60% was observed with 2-nitrosopropane at 1 hour.  The data is presented in Figure 

4.9(B).  The data also shows that some of the complexes form more quickly under these 

condition than others, however, these values do not show rates of formation.  What this 

data tells us is that cytochrome P450 BM-3 is a suitable model for other microsomal 

P450s and their interactions with these ligands because of its similar behavior toward 

them.  Mansuy and coworkers 2 showed very similar results to the ones presented above 

when studying rat liver microsomal P450s as seen in Figure 4.9.  
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  When one looks closely at the work done by Mansuy 2 and compare it with the 

work that was done here, we see similar patterns in the binding, however there are some 

differences.  The main difference is in the extent of binding of the ligands to the two 

proteins.  In the rat liver microsomal P450, the ligand with the highest extent of 

formation is nitrosoethane followed by the 2-nitropropane, nitromethane, amphetamine 

nitro derivative and finally the cyclohexyl nitro compound.  While with P450BM-3, the 

ligand with the highest extent of formation was 2-nitrosopropane, followed by the 

nitroethane, nitromethane and then the lowest was 1-nitropropane.  These slight 

differences in the way these ligands bind are most likely due to the active site 

configuration.  While there is no crystal structure of rat liver microsomal P450 available, 

there are published crystal structures of P450BM-31 and we can therefore model one of 

the RNO compounds into the heme site of a ligand bound form of P450BM-3 1 to predict 

a possible conformation of the complex, as seen below in Figure 4.10. 

 

 
Figure 4.10  Theoretical model of active site of the heme domain cytochrome P450BM-3 1 complexed 
with nitrosoethane.  There is possible hydrogen bonding with a threonine sidechain as well as 
hydrophobic interactions with a phenylalanine sidechain. 
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4.4.2 Comparison of Nitrosoalkanes and Nitrosoarenes Myoglobin 

Complexes to Porphyrin Model Complexes 

 As stated in the introduction, the majority of the structural information available 

for the interactions of nitrosoalkanes and nitrosoarenes with porphyrins is based on the 

small molecule crystal structures available.  The most obvious concern about this is the 

fact that in the model systems the ligand has little or no interaction with anything outside 

of the metal.  Both of the myoglobin nitrosoalkane complexes 36 and the myoglobin 

nitrosobenzene complex discussed here, as well as the only other published protein 

structure, the leghemoglobin nitrosobenzene complex 3, show that there is at least some 

minimal interaction of the ligand with the heme pocket.  However, this discussion will 

begin by examining the porphyrin complexes that have been used to model this 

interaction.    

 Mansuy and coworkers reported the crystal structure of (TPP)Fe(i-PrNO)(i-

PrNH2) in 1983 23. Recent studies in our lab have employed similar synthetic techniques 

to synthesize the (OEP)Fe(cyclo-C6H11NO)(1-MeIm) complex to further this area of 

research.  Our group and others have also published structural reports on nitrosoarene 

complexes with symmetrical iron porphyrins 22, 24, 33.  Our group has previously shown 

that the mode of binding is determined by the oxidation state of the metal. That study 

showed that RNO compounds preferred an η1-N binding mode with ferrous centers and 

an η1-O binding mode to ferric centers 22.  

 Two structures completed in our lab recently that are of particular interest to this 

work are the (OEP)Fe(cyclo-C6H11NO)(1-MeIm) complex and the (PPDME)Fe(i-

PrNO)(1-MeIm) complex.  We also observe that in the (OEP)Fe(cyclo-C6H11NO)(1-
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MeIm) complex cyclo-C6H11NO ligand is in a staggered conformation with respect to the 

porphyrin N-Fe-N with a torsion angle of 44.3˚ which is consistent with previously 

published (por)Fe(RNO) complexes 22, 24, 33.  We also observed that the orientation of the 

1-MeIm (0.85˚ torsion angle to the porphyrin) is consistent with previously reported 

structures.  In general, with octa-substituted porphyrins the 1-MeIm ligand is close to if 

not eclipsing the N-Fe-N plane of the porphyrin, and in tetra-substituted porphyrins the 1-

MeIm is staggered with a torsion angle of approximately 45˚ 24, 33.   

 This structure presents very little porphyrin distortion and the Fe was only slightly 

out of plane towards the cyclo-C6H11NO ligand.  This finding is consistent with Oldfield’s 

claim that bulky groups on both sides of the porphyrin would yield no net distortion 24, 

however it is inconsistent with more recent work done in our lab with (por)Fe(i-PrNO)(1-

MeIm) that shows saddled porphyrins with TTP and OEP and a ruffled porphyrin when 

using TPP.33  Therefore other factors may come into play that can cause porphyrin 

distortions. 

 The other recent small molecule structure of interest is (PPDME)Fe(i-PrNO)(1-

MeIm).  This complex has striking similarities to the (OEP)Fe(cyclo-C6H11NO)(1-MeIm) 

complex described above, with the only major difference being that this porphyrin is 

asymmetric and polar, making it more similar to what is seen in biological heme systems.  

The NO group of i-PrNO is oriented toward the polar side of the porphyrin and the i-

PrNO group has again adopted a staggered conformation with respect to the heme 

(torsion angle of 46.2˚) very similar to all other RNO compounds.  The 1-MeIm ligand 

has again adopted a fairly eclipsed orientation with a torsion angle of 12.4˚.   There is no 

porphyrin distortion in this structure.  When this is compared to the saddled distortion of 
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the (OEP)Fe(i-PrNO)(1-MeIm) 33 our group previously published, it is evident that the 

identity of the porphyrin seems to have a larger impact than do the bound ligands, in this 

case at least. 

 Both model compounds presented above are fairly good models for Myoglobin 

RNO complexes.  In fact, there are many more similarities than differences in the 

structures.  The Mb(MeNO) and Mb(EtNO) have heme active sites that are strikingly 

similar to the (OEP)Fe(cyclo-C6H11NO)(1-MeIm) and (PPDME)Fe(i-PrNO)(1-MeIm) 

complexes presented above.  First, both the MeNO and the EtNO ligands are in similar 

orientations to the i-PrNO ligand in the model compound with a staggered conformation 

with respect to the heme (54.5˚ and 64.2˚ respectively), the NO group of MeNO is 

directed toward the polar side of the porphyrin (exterior of the protein) and the methyl 

group is oriented toward the nonpolar portion of the heme (which is in the heme pocket).  

The 1-MeIm ligand in the model compound is a good mimic for histidine and both of the 

orientation are along a N-Fe-N plane, although the histidine in hh Mb is ~90˚ away from 

the 1-MeIm on the other N-Fe-N plane.   

 When we compare the hh Mb(PhNO) structure and the leg Hb(PhNO) structure to 

that of Godbout and coworkers (OEP)Fe(PhNO)(1-MeIm) 24, we see that both of the 

protein structures are very similar to the small molecule structure.  In the small molecule 

structure as well as in both protein structures (hh Mb(PhNO) and leg Hb(PhNO)) we see 

that the nitrosobenzene ligand has a (por)N-Fe-N-O torsion angle of ~45˚.  In the legHb 

complex the N(por)-Fe-N-C torsion angle is 46˚ however the NO group is tilted off axis 

so the N(por)-Fe-N-O torsion angle is 24˚.  In the hh Mb complex the N(por)-Fe-N-C 

torsion angle is 16.9˚ because this group is tilted off axis and the NO group has a torsion 
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angle (N(por)-Fe-N-O) of 40˚.  It is interesting to note that in both of the protein 

structures the group of the ligand that deviates the most from the model compound is the 

side that is oriented toward the protein pocket, not the outside of the protein, implying 

that the protein pocket severely affects the orientation of the ligand and thus, the 

importance of the protein pocket in determining the ligand orientation. 

 

 
 
 
Figure 4.11 Side and top views of the two (OEP)Fe(RNO)(1-MeIm) model compounds discussed 
above. (A) Side view of (OEP)Fe(cyclo-C6H11NO)(1-MeIm) (B) Top View of (OEP)Fe(cyclo-
C6H11NO)(1-MeIm), showing the orientation of both the RNO and the proximal 1-MeIm.  (C) Side 
view of (PPDME)Fe(i-PrNO)(1-MeIm) and (D) top view of (PPDME)Fe(i-PrNO)(1-MeIm) again 
showing the orientation of both the RNO and the proximal 1-MeIm.  From both top views it can be seen 
that the 1-MeIm is sitting on the N-Fe-N plane, similarly to what is seen in hh Mb and the RNO ligand 
is bisecting and ∠N-Fe-N with a torsion angle of ~45˚.  The compounds were prepared by Christal Sohl 
and the structure solutions were performed by Masood Khan. 



 132 

4.4.3 Comparison of the Wild Type Horse Heart Myoglobin 

Nitrosoalkane and Nitrosoarene Complexes  

4.4.3.1 Mb(Nitrosoalkane) Adducts 

 To the best of our knowledge, the X-ray crystal structure of hh Mb(EtNO) (Figure 

4.6) is the first such determination to be reported for a nitrosoalkane complex of a heme 

protein.  Results from model heme-nitrosoalkane complexes predict an N-binding mode 

in ferrous porphyrins, in which the RNO ligand acts as a π-acid ligand 16. Selected 

structural data for ferrous nitrosoalkane and nitrosoarene hemes are collected in Table 

4.5. 
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Table 4.5  X-ray Structural Data for Nitrosoalkane and Nitrosoarene Ferrous Porphyrin 
and Heme Complexes 
 Fe-N(O) (Å) N-O (Å) ∠Fe-N-O (°) Fe-L(ax) (Å) ref 
nitrosoalkane      
(TPP)Fe(i-PrNO)(1-MeIm) 1.810(3) 1.245(4) 122.4(2) 2.046(3) 47 
(TPP)Fe(i-PrNO)(i-PrNH2)a 1.862(14) 

1.867(13) 
1.26(2) 
1.26(2) 

124(1) 
124(1) 

2.105(15) 
2.094(13) 

23 

hh Mb(EtNO) 2.14 1.23 123.08 2.14 36 
hh Mb(MeNO) 1.95 1.22 115.8 2.18 this work 
      
nitrosoarene      
(TPP)Fe(PhNO)(py) 1.819(3) 1.249(4) 123.9(3) 2.106(3) 24 
(TPP)Fe(PhNO)(1-MeIm)a 1.800(8)-

1.812(3) 
1.254(8)-
1.267(3) 

122.8(3)-
124.8(7) 

2.03(1) 24 

(TPP)Fe(ONC6H4NMe2-p)(py) 1.859(6) 1.252(6) 119.8(5) 2.095(5) 24 
(OEP)Fe(PhNO)(1-MeIm)a 1.809(4) 

1.802(4) 
1.269(5) 
1.258(4) 

122.8(3) 
123.8(3) 

2.092(4) 
2.094(4) 

24 

(TPP)Fe(PhNO)2 1.874(2) 
1.899(2) 

1.237(3) 
1.227(3) 

123.6(2) 
123.4(2) 

 22 

leg Hb(PhNO)b 2.10 1.26 120.6 2.17 25 
Hh Mb(PhNO) 2.20 1.20 127 2.30 this work 
a  Two independent molecules in the asymmetric unit. 
b  The structure was determined at 2.0 Å resolution.  Metrical data were obtained using 
coordinates from the Brookhaven Protein Data Bank 41. 
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 The structure of hh Mb(EtNO) reveals an N-bound nitrosoalkane ligand as shown 

in Figure 4.6.  In high-resolution X-ray crystal structures of model heme complexes 

containing nitrosoalkane or nitrosoarene ligands, the Fe-N(nitroso) distances are found to 

be generally shorter (1.8-1.9 Å) than the trans Fe-N(axial) bond lengths (2.0-2.1 Å).  

While this is not the case for hh Mb(EtNO), the Fe-N(nitroso) and the trans Fe-N(His) 

distances are both 2.14 Å, the distances in the hh Mb(MeNO) do fit within these bounds, 

with a Fe-N(nitroso) distance of 1.95 Å and a Fe-N(histidine) distance of 2.18 Å.  The 

axial distances in hh Mb(EtNO) are, however, similar to those determined in the structure 

of the nitrosobenzene complex leg Hb(PhNO) (2.10 and 2.17 Å, respectively) 3. 

The ethyl group of the EtNO and the methyl group of MeNO ligands are 

positioned on the side of the distal pocket away from the His64 toward the interior 

hydrophobic core of the protein.  The axial ligand orientation of the EtNO and MeNO 

groups does appear to be influenced by the distal His64 residue, whose presence causes 

the CNO plane to be tilted off of the heme normal by 21˚ in the case of EtNO and 10.5˚ 

in the case of MeNO (Figure 4.12) in a direction toward Phe 43, and the bound nitrogen 

is tilted 18˚ and 12˚ respectively, to the heme normal calculated from the heme 4-N-

plane. The result is a hydrogen-bonding distance of 2.74 Å between the nitroso O atom 

and the Nε atom of His64 in the EtNO complex and 2.41 Å in the MeNO complex.   
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Figure 4.12  Overlay of the heme sites in Mb(EtNO) (magenta) and Mb(MeNO) (cyan) shown from the 
propionate side of the heme.  This orientation shows the off-axis tilt that the ligands are forced into 
because of the hydrogen bonding of His 64.  
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 In contrast, the dominant hydrogen-bonding interaction between the nitrosyl 

group in hh MbNO and the distal His64 is via the nitrosyl N-atom, although the 

participation of nitrosyl O atoms in distal hydrogen-bond interactions has been observed 

in the NO adducts of cyt c' from A. xylosoxidans (with Arg124) 48, cyt cd1 nitrite 

reductase from P. aeruginosa (with His369) 49, and sulfite reductase heme protein (with 

Arg153 and Lys215) 50.  As stated before, the only other structure of a C-nitroso 

compound bound to a heme protein is that of nitrosobenzene bound to leghemoglobin and 

although the ligands are similar between the hh Mb(EtNO) and the 

leghemoglobin/nitrosobenzene (leg Hb(PhNO)) structures there is no hydrogen bonding 

between the PhNO and any of the heme pocket residues because of the orientation of the 

ligand 3.  In both the nitrosoethane and nitrosomethane structures, the R-group is oriented 

toward the interior of the protein, however in the leg Hb(PhNO) structure, the phenyl 

group is oriented toward the distal histidine and the oxygen from the NO directed toward 

the interior of the protein.  This forces the distal histidine to be oriented in a position 

away from the heme pocket, in the “flipped out” position.   The remainder of the heme 

pocket has no residues that are capable of hydrogen bonding to the ligand.  Even without 

the influence of hydrogen bonding the PhNO ligand does not sit perfectly linearly on top 

of the heme it is tilted of axis by 10˚ from the heme normal and the CNO plane is 13˚ of 

the heme normal, showing that the histidine is not the only residue in the heme pocket 

that affects the orientation of the RNO ligands.   
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Figure 4.13 Overlay of Mb(EtNO) (green), Mb(MeNO) (red), and leg Hb(PhNO) (blue) showing 
the similar orientation of the two nitrosoalkane structures and the opposite orientation of the 
nitrosobenzene in the leghemoglobin structure.  The R-group of the EtNO and MeNO structures are 
oriented to the left, the core of the molecule, allowing for hydrogen bonds between the ligands O atom 
and Nε of His64. In the nitrosobenzene structure the ligand is oriented to the right, toward the outside 
of the molecule causing the distal histidine to flip out of the pocket and thus prevents hydrogen 
bonding. 
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The axial (His93)N-Fe-N(Et/MeNO) angle of 166° and 170˚ respectively, both deviate 

from strict linearity.  However, off-axis tilts of axial ligands from the heme normal are 

frequently observed in natural and model heme complexes, and these off-axis tilts have 

been analyzed computationally, structurally, and spectroscopically by others 51-59. 
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4.4.3.2 Mb(PhNO) Complex 

Over the years there has been a great deal of interest in the binding of aromatic 

amine metabolites and nitro compounds to heme proteins.  The effects of nitrobenzene 

poisoning, known as “nitrobenzol” at the time, has been studied since 1878 21, 26.   The 

intermediate aromatic C-nitroso compounds are proposed to be involved in a variety of 

reactions in vivo 8, 60, 61.  The published literature on all of the interactions of nitrosoarenes 

and heme model systems and heme proteins are reviewed in a Chemical Reviews article 

published in 2002 by Lee et al. 16.  

 To date, with the exception of the legHb(PhNO) protein structure, all of the 

research looking at the interactions of nitrosoarenes and heme proteins has been by 

spectroscopy.  This leaves a large void with respect to the structural aspects of these 

complexes.   As was discussed in the previous section when comparing the leg 

Hb(PhNO) structure to that of the two Mb(nitrosoalkane) structures, the nitrosobenzene 

ligand in the leg Hb structure is oriented opposite to the nitrosoalkane ligands.   We 

believe that this orientation was favored because of the bulk of the phenyl ring.  Thus, the 

structure that was determined of the hhMb(PhNO) complex, described in this thesis was 

somewhat of a surprise.  We believe that because of the relatively smaller size of the 

heme pocket with hh Mb vs. leg Hb that the ligand would be in the same orientation.  As 

can be seen in Figure 4.15, which is the overlay of the two complexes, hh Mb(PhNO) in 

magenta and leg Hb(PhNO) in cyan, the orientation of the two ligands in the heme pocket 

are approximately 180˚ apart.  The major difference in these two orientations is that the 

ligand in the hh Mb(PhNO) structure has a potential hydrogen bond with the His64 

residue.  In both proteins the heme pocket itself is hydrophobic, thus there are no side 
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Figure 4.14 Side and top views of hh Mb(PhNO) formed with higher concentration of 
phenylhydroxylamine (PHA) showing additional PHA at the mouth of the heme pocket. 

chains in the pocket that are available for hydrogen bonding with the ligand in the 

orientation observed for the leg Hb structure.   

Something else that is evident in the hh Mb(PhNO) structure that was soaked with 

a higher concentration of phenylhydroxylamine is that there are two disordered 

phenylhydroxylamine molecules at the mouth of the heme pocket, although we cannot be 

fully certain that these are phenylhydroxylamine ligands and not PhNOs.  However 

nitrosobenzene is not very soluble in the monomeric form in water, so it is likely that  the 

additional ligands are phenylhydroxylamine.  
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One potential significance of this new structure is that in proteins that more resemble the 

hh Mb heme pocket than the leg Hb heme pocket the binding of nitrosobenzene could be 

stronger than was previously believed because of the addition of the hydrogen bond that 

is not available in leg Hb.   

 

 
 
 
 
 
Figure 4.15  Overlay of the two known heme protein nitrosobenzene structures.  Shown in cyan is the 
leg Hb(PhNO) complex and in magenta is the hh Mb(PhNO) complex.  The major difference between 
the two complexes is the orientation of the ligand in the heme pocket.  In the leg Hb(PhNO) structure 
the phenyl ring is oriented toward the distal histidine, eliminating the possibility of hydrogen bonds.  In 
the hh Mb(PhNO) the phenyl group is oriented toward the interior of the heme pocket allowing a 
hydrogen bond to the distal histidine.   
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4.5 Conclusions 

 RNO compounds are now recognized as important ligands to biological hemes 

because of their ability to bind heme and inhibit protein function 12, 14, 62.  Here we discuss 

the first structural studies reported of the interactions of any nitrosoalkane with a 

biological heme.  We have definitively shown that the interaction with the ferrous ion is 

through the nitrogen of the RNO ligand as is observed in model complexes.  We have 

also observed through both the crystal structures of the Mb(EtNO) complex and the 

Mb(MeNO) complex and the UV/Vis studies performed on the interactions of simple 

alkyl RNO compounds with cytochrome P450 BM-3hd that the R-group of the ligand 

does impact the binding and stability of the complexes. 

 Additionally, we have determined the crystal structure of horse heart myoglobin 

complexed with nitrosobenzene and compared it with the only other macromolecular 

crystal structure involving a heme/RNO interaction, specifically the leghemoglobin 

nitrosobenzene complex 3.  Our complex showed a binding mode that was oriented in the 

opposite direction to the previous legHb(PhNO) structure and thus had the ability to 

hydrogen bond to histidine 64.  The comparison of these three structures, hh Mb(MeNO), 

hh Mb(EtNO) and hh Mb(PhNO), have shown that the formation of RNO complexes 

through two different synthetic routes give similar structures. 
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