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Kernel density estimation (KDE) is the most widely-used practical method 

for accurate nonparametric density estimation. Many works had been done on 

both the univariate and multivariate cases showing the efficacy, practicality and 

applicability of this method. Despite the fact that multivariate kernel density 

estimation is an important technique in multivariate data analysis and has a wide 

range of applications, its performance worsens exponentially with high 

dimensional data sets, this phenomenon is called “curse of dimensionality”, where 

there is exponential growth in combinatorial optimization as the dimension of the 

data set increases. Scott and Wand (1991) demonstrated a progressive 

deterioration of the multivariate kernel density estimation as the dimension p 

increases by showing that an increase in sample size is required to attain an 

equivalent amount of accuracy.  

This work proposes a new multivariate kernel density estimation approach 

which is based on the sample means. The method has the characteristic that it 

works for self-revolving densities or the ellipsoidally symmetric distributions. It 

also works for spherical distributions since they can be transformed to 

ellipsoidally symmetric distributions by undergoing an affine transformation. The 

univariate normal, multivariate normal and the Cauchy distributions, just to 

mention a few, are some of the distributions that possess this self-revolving or the 

ellipsoidally symmetric property. In addition, this work also proposes another new 

multivariate kernel density estimate which handles the curse of dimensionality 

better. 

We applied this new method to the probability density function, the 

distribution function and nonparametric multivariate regression. In all these cases, 

our multivariate kernel density estimation approach which is based on the sample 

means performs better than the regular multivariate kernel density estimation 

based on the sample data. We also observed that the proposed multivariate kernel 

density method breaks the “curse of dimensionality” and remedy the deficiency of 

high dimensional bandwidth selection. Besides, its performance is consistent in 

most of the bandwidth selection methodologies. The second proposed new 

multivariate density estimate does not completely breaks the curse of 

dimensionality but the effect of the curse on it is minimal as compared to the 

regular multivariate kernel density estimate. 



vi 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION AND LITERATURE REVIEW ..................................................1 

 

 1.1 Introduction ........................................................................................................1 

 1.2 Multivariate Kernel Density Estimation ............................................................2 

 1.3 Limitations .........................................................................................................3 

 1.4 Multivariate Density estimation Based on Sample Means ................................4 

  1.4.1 Ellipsoidal Symmetric Distributions .........................................................5 

  1.4.2 The Proposed Estimate .............................................................................6 

 

 

II. BASIC RESULTS .....................................................................................................8 

  

 2.1 Multivariate Density Estimation ........................................................................8 

  2.1.1 Expectation and Bias of the Estimate .......................................................9 

  2.1.2 An Important Special Case .....................................................................11 

  2.1.3 Variance and AMISE of Estimate...........................................................12 

 2.2 Curse of Dimensionality ........................................................................……..16 

 2.3 Bivariate Product Kernel Case……………………………………………….17 

 2.4 Multivariate Distribution Function Estimation Based on Sample Means……29 

 

 

III. ESTIMATION OF NONPARAMETRIC REGRESSION 

FUNCTION………………………………………………………………………36 

 

 3.1 Introduction ......................................................................................................36 

  3.1.1 Regression Estimation ............................................................................37 

 3.2 Properties of the Estimator...............................................................................41 

  3.2.1 Derivation of the Expectation of the Estimator ......................................41 

  3.2.2 Derivation of Variance and AMSE of the Estimator ...............................47 

 



vii 
 

Chapter          Page 

 

IV. BANDWIDTH SELECTION METHODOLOGIES .............................................63 

 

 4.1 Cross-Validation for Density Estimation Based on the Sample Means- 

            Univariate Case………………………………………………………………63 

  4.1.1 Least Squares (Unbiased) Cross-Validation (UCV)  ..........................…65 

  4.1.2 Biased Cross-Validation (BCV) Based in the Univariate Case ..............68 

 4.2 Cross-Validation of Multivariate Densities Based on the Sample Means…...72 

  4.2.1 Least Squares (Unbiased) Cross-Validation (UCV) ...........................…72 

  4.2.2 Biased Cross Validation (BCV)  .............................................................79 

  4.3 Plug-In Techniques…………………………………………………………..82 

  4.3.1 Plug-In Bandwidth Selection-Univariate Case .......................................82 

  4.3.2 Plug-In Bandwidth Matrix Selection for Bivariate Kernel Density 

                     Estimation………………………………………………………………96 

 

 

V. MULTIVARIATE KERNEL DENSITY ESTIMATION-NEW APPROACH ...105 

 

 5.1 Introduction ....................................................................................................105 

 5.2 Bivariate Case ................................................................................................105 

  5.2.1 Expectation and Bias of the Estimate  ..................................................106 

  5.2.2 Variance and AMISE of the Estimate  ..................................................108 

 5.3 Multivariate Product Kernel Case ..................................................................116 

  5.3.1 Expectation and Bias of the Estimate  ..................................................116 

  5.3.2 Variance and AMISE of the Estimate ...................................................118 

 5.4 Multivariate Case-General .............................................................................120 

  5.4.1 Expectation and Bias of the Estimate ...................................................121 

  5.4.2 Variance and AMISE of the Estimate ...................................................123 

  5.4.3 An Important Special Case ...................................................................125 

 

 

VI. CONCLUSIONS .................................................................................................129 

 

 

VII. FUTURE WORK ...............................................................................................132 

 

 

REFERENCES ..........................................................................................................134 

 

 



viii 
 

LIST OF TABLES 

 

 

Table           Page 

 

2.3.1 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density  

Estimate and the Multivariate Kernel Density Estimate Based on the  

Sample Mean With Dimension p=2……………………………………….…...27 

 

2.3.2 Mean Squared Error (MSE) of the Standard Multivariate Kernel Density  

Estimate and the Multivariate Kernel Density Estimate Based on the  

Sample Mean With Dimension p=3……………………………………………28 

 

2.3.3 Mean Squared Error (MSE) of the Standard Multivariate Kernel Density  

Estimate and the Multivariate Kernel Density Estimate Based on the  

Sample Mean With Dimension p=4…………………………….……...……....28 
 



ix 
 

 

 

LIST OF FIGURES 

 

Figure           Page 

 

2.3.1 The Bivariate Normal Density Distribution …………………………………......24 

 

2.3.2 Contour of the Bivariate Normal Density……………………………..…………24 

 

2.3.3 Regular Kernel Estimate of the Bivariate Normal Distribution……………….....25 

 

2.3.4 Contour of the Regular Kernel Estimate of the Bivariate Normal Density……...25 

 

2.3.5 The Kernel Based on the on the Sample Means Estimate of the Bivariate Normal 

Distribution……………………………………………………………………....26 

 

2.3.6  Contour of the Kernel Based on the Sample Means Estimate of the Bivariate 

 Normal Density………………………………....................................................................26 

 

4.1.1 Plots Comparing the Least Squares Cross Validation (LSCV) of the  

Univariate Standard Kernel Estimate Case and Univariate Kernel Estimate  

    Based on the Sample Mean………………………………………………………68 

  

4.1.2 Plots Comparing the Biased Cross Validation (BCV) of the Univariate  

Standard Kernel Estimate Case and Univariate Kernel Estimate Based on the 

Sample Mean…………………………………………………………………….71 

 

4.2.1 Plots of the Unbiased Cross-Validation of the Multivariate   Kernel Estimate  

            Based on the Sample Means With Different Sample Sizes……………………...77 

 

4.2.2 Plots of the Unbiased Cross-Validation of the Multivariate Standard Kernel  

            Estimate at Different Sample Sizes………………………………………………78 

 

4.2.3 Plots Comparing the Biased Cross Validation (BCV) of the Multivariate       

             Standard Kernel Estimate and the Multivariate Kernel Estimate Based on  

             the Sample Means………………………………………………………...…..…81 

 



x 
 

4.3.1 Plots Comparing the Performance of the Plug-In Technique in the Univariate  

            Case for Both Standard Kernel Estimate and the Kernel Estimate Based on  

            the Sample Means………………………………………………………………..95 

 

5.2.1 The Bivariate Normal Density Distribution …………………............................113 

5.2.2 Contour of the Bivariate Normal Density………………………………………113 

5.2.3 Regular Kernel Estimate of the Bivariate Normal Distribution………………...114 

5.2.4 Contour of the Regular Kernel Estimate of the Bivariate Normal Density…….114 

5.2.5 The New Kernel Estimate of the Bivariate Normal Distribution........................115 

 

5.2.6 Contour of the New Kernel Estimate of the Bivariate Normal Distribution…...115 

 



1 
 

CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Introduction and Historical Background 

In the past few decades, one nonparametric density estimation method known as kernel 

density estimation (KDE) had become a renowned method of density estimation in statistics, 

economics and other areas where this idea is applicable. KDE is now one of the most popular 

methods for estimating the underlying probability density function (PDF) based on a data set. It is 

also the most widely-used practical method for accurate nonparametric density estimation. Since 

1951, a lot of work had been done on both the univariate and multivariate cases showing the 

efficacy, practicality, and applicability of this method. 

Kernel density estimation was originated by Fix and Hodges (1951) and Rosenblatt 

(1956). Fix and Hodges (1951) were concerned with density estimation in connection with 

nonparametric discrimination. In his fundamental paper, Rosenblatt (1956) gave a full 

demonstration of the idea of nonparametric estimation of density function. Fix and Hodges (1951) 

and Rosenblatt (1956) both defined the kernel density estimator as: 
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n

i

i

h

Xx
K

nh
xf

1

1ˆ ,                                                  (1.1) 

where  
nXXX ,...,, 21

is a random sample from a  continuous density function xf , K  is a 

known second order symmetric PDF referred to as the kernel and h  is the bandwidth(a known 

sequence of constants) which depends on n  such that 0h  and nh as .n The choice 

of the bandwidth ,h  is well-known to be crucial and of great importance since it controls the 

smoothness of the estimator xf̂ . Choosing the bandwidth, ,h  involves a trade-off between the 

variance and the bias of the estimate. Epanechnikov (1969) demonstrated that the choice of the 

kernel K  is not very crucial in density estimation. What both originators proposed was a 

univariate kernel density estimator. A couple of error criteria were used to assess the performance 

of this estimator. Scott and Wand (1991) used the mean absolute error (MAE) and mean 

integrated absolute error (MIAE) to assess the performance of this estimator. Ahmad and 

Amezziane (2012), among others, used the mean square error (MSE) and mean integrated square 

error (MISE) to ascertain this assessment. 

 

1.2 Multivariate Kernel Density Estimation 

In recent times, there have been improvements which led to the extension of the 

univariate kernel density estimation to the multivariate case. Specifically, based on the extensive 

research carried out in the last three decades, multivariate kernel density estimation has reached a 

level of maturity comparable to their univariate counterparts. Multivariate kernel density is an 

important technique in multivariate data analysis and has a wide range of applications. 

Ahmad and Amezziane (2012) proposed the multivariate kernel density estimator of the 

PDF f x  as  
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1

1

ˆ ,
n

i

i

f n KHx x X              
pIRx                         (1.2) 

where ,H the bandwidth matrix, is a symmetric positive definite pp matrix that verifies the 

following usual two conditions: 

p
n

H 0 , where p0 is the null pp  matrix and
1 21

p

n

n H 0 , 

,K the kernel, is a multivariate density function that satisfy the two moment conditions 

p

pK dz z z 0

                                                      (1.3)

 

   
p

T

pK dzz z z I  

 and for every function g
,
 they defined: 

1/ 2 1/ 2 .Hg x H g H x  

Ahmad and Amezziane (2012) used the MSE and the MISE to measure the performance of the 

above estimator. They also provided a data-based method to evaluate the bandwidth matrix. 

 

1.3 Limitations 

Even though multivariate kernel density estimation is an important technique in 

multivariate data analysis and has a wide range of applications, its long standing worst-case 

theoretical results showing that its performance worsens exponentially with the dimension of the 

data have suppressed its applications to modern high-dimensional data sets for decades. This 
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phenomenon is what Bellman (1961) called the “curse of dimensionality”, where he describes the 

exponential growth in combinatorial optimization as the dimension increases.  

Scott and Wand (1991) also demonstrated a progressive deterioration of multivariate 

kernel density estimation as the dimension p  increases by showing that an increase in sample 

size is required to attain an equivalent amount of accuracy. Ahmad and Amezziane (2012) 

attempted to address the “curse of dimensionality” by using a weighted version of the MSE or 

MISE with weights depending on the sample size n. 

 

1.4 Mainstream: Multivariate Density Estimation Based on Sample Means 

In all the papers presented on both univariate and multivariate kernel density estimation, 

a sample from the underlying PDF is used to estimate it. Therefore, the estimator is always a 

function of the sample from its PDF. 

The work at hand develops a new method of kernel density estimation called “kernel 

density estimation based on the sample means.” This work is found as a new modification of the 

regular kernel density estimation in multivariate case that addresses the curse of dimensionality 

and it uses average rather than individual data units. 

This method has the characteristic that it works for self-revolving densities or the 

ellipsoidally symmetric distributions. Applying this method of kernel density estimation to the 

self-revolving densities or the ellipsoidally symmetric distributions, the curse of dimensionality is 

alleviated and a remedy is found for the deficiency of high dimension bandwidth selection. This 

is the main thrust of this work. 
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1.4.1 Ellipsoidally Symmetric Distributions 

If Z is a random vector whose distribution is spherical about the origin then a random 

vector  X  
which is representable as the image of Z  under affine transformation is said to have 

an ellipsoidally symmetric distribution. Affine transformation between two vector spaces consists 

of a transformation followed by a translation.  

Ellipsoidal distributions are characterized by the fact that there exists a linear 

transformation of the variables that results in a spherically symmetric distribution for the 

transformed variables. An ellipsoidal distribution is fully specified by (i) its center of symmetry, 

(ii) its inner product defined by the linear transformation to sphericity and (iii) the distribution on 

the radii of concentric hyperspheres on which there is uniform probability density. Such 

multivariate distributions play an important role in the theory of matching because the symmetry 

allows general results to be obtained. 

The model of ellipsoidal symmetry is a useful generalization of multivariate normality. 

The statistical model most frequently assumed in multivariate analysis is the normal distribution. 

A notable feature of the Σμ,N  
density is the property that its constant surfaces are ellipsoids 

centered at  μ
 
with orientation and shape determined by the matrix Σ  

. This ellipsoidal 

symmetry plays an important role in the geometrical interpretation of normal-model multivariate 

analysis. Even without normality, ellipsoidal symmetry of the data distribution can provide a 

rationale for the use of standard multivariate procedures (Dempster (1969)). 

Recent interest in robust statistical methods has led to more detailed consideration of 

statistical models which retain some of the features of the normal model while providing 

flexibility in data-fitting. In a p-dimensional multivariate setting, a corresponding generalization 

of the normal model is the model of the ellipsoidal symmetry: each observation has density of the 
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form  
1 1det ,h xA A μ  

where μ
 
is a 1p  

vector, A is a pp
 
nonsingular 

matrix, and h is a density on  
pR  

which is a spherically symmetric about the origin. 

A special case of the multivariate t distribution when the common denominator has 1 

degree of freedom is a multivariate Cauchy distribution. Ferguson (1967) has shown that this 

multivariate Cauchy is characterized by the fact that any linear function of  
mYY ,...,1  

has a 

(univariate) Cauchy distribution. The multivariate Cauchy and multivariate normal distributions 

belong to the class of spherical distributions. Therefore under an affine transformation, they 

become ellipsoidally symmetric distributions. 

Lemma 1.1: If f  is ellipsoidally symmetric distribution, then xx
X

nfnf p 2/
. 

 

1.4.2 The Proposed Estimate 

Let 1 2( , ,..., )pX X XX  be the means of random samples from a population with unknown 

density, f x assumed to be ellipsoidally symmetric, then we propose the following estimate of 

f x  based on the sample means:  

,
1ˆ 2/1

2/112/12/
H

Xx

H
xX

n

n
K

n
f

p
                                       (1.4) 

where H  is a positive-definite smoothing matrix and p  is the dimension of the X  and 
1K is the 

kernel which is assumed to be symmetric. Under the moment condition that 11
pR

dK uu , then 

our proposed estimator is a density as shown below: 



7 
 

xH
Xx

H
xx

X
d

n

n
K

n
df

p

2/1

2/112/12/

1ˆ . 

Let 
2/12/1

H

Xx

n

n
u , then uHXx

1/22/1nn  and therefore .
2/12/

uHx dnd p
 

So, 1
1ˆ

1

2/12/

12/12/
uuuHu

H
xx

X
dKdnK

n
df p

p
. 

 Since our model works for ellipsoidal symmetric distributions, the above estimator is a 

very good estimate which yields a trade-off between the bias and the variance to produce a good 

optimum bandwidth. 

Applications of estimate (1.4) are given in the case of estimating the distribution function 

as well as the regression function in Chapters 2 and 3 to follow. 
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CHAPTER II 
 

 

BASIC RESULTS 

 

 

2.1 Multivariate Kernel Density Estimation 

Let 1 2( , ,..., )pX X XX  be the means of random samples from a population with 

unknown density, f x
 
assumed to be ellipsoidally symmetric, then the estimate of f x  

based on the sample means is given by 

2/1

2/112/12/

1ˆ H
Xx

H
x

X
n

n
K

n
f

p
,                                         (2.1) 

where H  is positive-definite smoothing matrix and 
1K  is a symmetric kernel. 

 In this chapter, we develop some basic properties of the estimate (1.4). We concentrate 

on the mean square and the mean integrated square errors.
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2.1.1 Expectation and Bias of f̂
X

x  

,
1ˆ 2/1

2/112/12/
yy

yx

H
x XX dfH

n

n
K

n
fE

p
                         (2.2) 

where 1,..., pd dy dyy . 

 Since 
/ 2p

X
f n f ny y  we get that, 

.
1ˆ 2/2/1

2/112/12/
yyH

yx

H
xX dnfn

n

n
K

n
fE p

p
                                    (2.3) 

Let ,n y w  then
/ 2pd

n
d

w
1

y
. Hence 

/ 2

1
p

d d
n

y w  and then 

.
1ˆ 2/1

2/112/12/
wwH

yx

H
xX df

n

n
K

n
fE

p
                                    (2.4) 

Now, let 
2/1

2/1

n

Hwx
u , then wxuH

2/12/1n , which implies that 

uHxw
2/12/1n  and uHw dnd p 2/12/

. Thus 

uHuHxu
H

x
X

dnnfK
n

fE p

p

2/12/2/12/1

12/12/

1ˆ  

.2/12/1
1 uuHxu dnfK                                                         (2.5) 

Now applying the Taylor series expansion to second order, we have 
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.
2

1ˆ 2/122/12/12/1
1 uuHxHuuxHxu

T dfnfnfKxfE
TT

X
 

Hence 

.
2

1
                 

ˆ

1
2/122/1

1
2/12/1

1

uuuuHxH

uuuxHuux

T dKfn

dKfndKfxfE

T

T
X

                                       (2.6) 

Note that the multivariate kernel customary assumes the three moment’s conditions: 

(i) 11
pR

dK uu , a multivariate density 

(ii) 0uuu dK
pR

1 , the means of the marginal kernels are zero 

(iii) p

R

T dK
p

Iuuuu 1 , this means the marginal kernels are all pairwise uncorrelated  

and that each has a unit variance. 

Therefore, 

uuuuHxHxx
X

dKftr
n

ffE TT

1

2/122/1

2
ˆ .                           (2.7) 

Since the quadratic form in the equation (2.7) is a determinant matrix which is equal to its trace, 

by applying the moment conditions, the covariance matrix of 
1K  is 

dI  and the integral factor 

within the trace vanishes, so we have 

2/122/1

2
ˆ HxHxx

X
ftr

n
ffE

T
.                                                  (2.8) 
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The expectation of f̂
X

x  will equal f x  to the order .2/12/1
HH

T
ntrO . 

From equation (2.8), the bias of f̂
X

x  is given by 

2/122/1

2
ˆ HxHx

X
ftr

n
fBias

T

 

xHH ftr
n T 22/12/1

2
 ,                               (2.9) 

by applying a property of trace. The asymptotic integrated square bias (AISB) is obtained by 

squaring the right-hand side of (2.9) and integrating out x , that is  

.
4

1
2

22/12/12
xxHH dftrnAISB

T
                                             (2.10) 

 

2.1.2 An Important Special Case 

Now, let’s define a scalar 0h  and a p p  matrix Q  such that QH
2h , where

1Q . 

The idea behind choosing the matrix Q  to have a unit determinant is that the elliptical shape of 

the kernel is controlled by the matrix T
QQ  and the size of this kernel is governed by the scalar h, 

which is the bandwidth and which controls the amount of smoothness in the estimator for a given 

sample size n , where 
1/

1, 2( ,..., ) p

ph h h h  is the geometric mean of the smoothing parameters. 

Hence 

.
2

1ˆ 22/12/12
xQQxX ftrnhfBias

T
                                       (2.11) 



12 
 

 

Therefore, the asymptotic integrated squared bias (AISB) is given by 

xxQQ dftrhnAISB
T 2

22/12/142

4

1
 .                                  (2.12) 

 

2.1.3 Variance and AMISE of f̂
X

x  

Squaring equation (2.1) yields 

2/1

2/1

2

1

2 1ˆ H
Xx

H
x

X
n

n
K

n
f

p
.                                    (2.13) 

Again, assuming 
/ 2p

f n f n
X

y y , 

yyH
yx

H
x

X
dnfn

n

n
K

n
fE p

p

2/2/1

2/1

2

1

2 1ˆ . 

Let ,n y w  then 
/ 2pd

n
d

w

y
, 

/ 2p

d
d

n

w
y  

wwH
yx

H
x

X
df

n

n
K

n
fE

p

2/1

2/1

2

1

2 1ˆ .                                 (2.14) 

Let 
2/1

2/1

n

Hwx
u , then uHxw

2/12/1n , which implies 
1/ 2/ 2pd n dw H u . 

uHuHxu
H

x dnnfK
n

fE p

pX

2/12/2/12/12
1

2 1ˆ
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       uuHxu
H

dnfK
n p

2/12/12

12/12/

1
.                               (2.15) 

Applying Taylor series expansion to the second order and the moments conditions, 

2

11/ 2/ 2

1ˆ
p

E f f R K
n

X
x x

H
,                                                        (2.16) 

where .2

11 uu dKKR  

The variance term is dominated by the 2ˆE f
X

, therefore 

2/12/

1ˆ

H

x
x

X pn

KRf
fVar  .                                                      (2.17) 

From equation (2.17), the asymptotic integrated variance (AIV) is given by  

1

1/ 2/ 2
.

p

R K
AIV

n H
                                                 (2.18) 

Therefore, the asymptotic mean squared error (AMISE) is  

2/12/

1
2

22/12/12

4

1

H
xxHH

p

T

n

KR
dftrnAMISE  .              (2.19) 

In the above special case, where QH
2h , 1Q , we get that  

1

/ 2p p

R K
AIV

n h
, 

since Q  is a p p  matrix with unit determinant. 
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In this case, for a sufficiently smooth density function f x , the multivariate mean integrated 

square error (MISE) is asymptotically given by 

AMISE AIV AISB  

Therefore, 

xxQQ dftrhn
hn

KR
AMISE

T

pp

2
22/12/142

2/
1

4

1
.

                   

(2.20) 

As it was said in the introduction, the choice of the bandwidth h  is well-known to be crucial and 

of great importance since it controls the smoothness of the estimator xf̂ . Choosing the 

bandwidth h  involves a trade-off between the variance and the bias of the estimate as can be seen 

in the AMISE above. Therefore, an intermediate value of the bandwidth must be chosen to 

control both the bias and the variance simultaneously and allowing the bandwidth h  to slowly 

decrease as the sample size increases for a better performance of the estimate. In the multivariate 

standard case parameterized by QH h , where 1Q , the AMISE is given by  

xxQQ dftrh
nh

KR
AMISE T

p

224

4

1
, 

 where p is the dimension. Here, the bias is very small and the variance is large. The AMISE in 

our special case as seen in equation (2.20) to that of the special case of the standard form, we 

have a smaller variance and a bigger bias which is opposite of that of the standard case. 

In this special case, the optimum h can be obtained by differentiating equation (2.20) and 

equating it to zero as shown below: 

xxQQ dftrhn
n

KRph

h

AMISE T

p

p 2
22/12/132

2/

1

1

. 
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Equating this to zero yields 

xxQQ dftrhn
n

KRph T

p

p 2
22/12/132

2/

1

1

 

         xxQQ dftrhn
hn

KpR T

pp

2
22/12/132

12/

1 . 

Thus
 

.
2

22/12/12/4

14

xQQ ftrn

KpR
h

Tp

p
 

Hence 

.

)4/(1

2
22/12/1

12/1

p

T
opt

ftr

KpR
nh

xQQ

                                (2.21) 

Note that the order of the optimum bandwidth opth is independent of the dimension .p  Despite 

the tradeoff between the variance and the bias, we obtained an optimum bandwidth which is 

independent of the dimension and this optimum bandwidth decreases as sample size increases to 

allow for a better performance of the estimate. Besides for a fixed sample size, the order of the 

optimum bandwidth is fixed as the dimension increases and it is small enough to guarantee 

smoothness. 
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2.2 Curse of Dimensionality 

Equation (2.21) is the optimum bandwidth for the multivariate density distribution based 

on the sample means. This bandwidth preserves the character of the density under averaging. 

Scott (1992) offers the optimum bandwidth in the usual multivariate special case, where 

QH h  as:  

                       

)4/(1

22

4/1

p

T

p
opt

dfQtr

KpR
nh

xxQ

.                            (2.22) 

Here, the order of the optimum bandwidth 1opth  as p , which is the curse of 

dimensionality. This will give a very rough estimate for large p  since the optimum bandwidth is 

constant irrespective of the sample size n .The optimum bandwidth must depend on the sample 

size n  to avoid too much or too little smoothing. 

Since the estimator should be “more local” when more information is added and when the density 

is rougher, then smaller bandwidths are better for large .n So our optimum bandwidth based on 

sample means shown in (2.21) is a better bandwidth than the one proposed by Scott (1992) in the 

multivariate case and Jones, Marron and Sheather (1996) in the usual univariate case. 

 In practice, multivariate kernel density estimation is often restricted to two dimensions, 

2p . The reason is that higher dimensional space (with p  large or even of medium size) 

will be very sparsely populated by data points unless the sample size is very large. This 

phenomenon is called curse of dimensionality.  

The term “curse of dimensionality” was first applied by Bellman (1961) to describe the 

exponential growth in combinatorial optimization as the dimension increases. In statistics, it 



17 
 

reflects the sparsity of data in multiple dimensions and it is the number of bins that grows 

exponentially as the dimension increases. 

 Scott and Wand (1991) demonstrated a progressive deterioration of kernel density 

estimation as the dimension p  increases by showing that an increase in sample size is required 

to attain an equivalent amount of accuracy. Epanechnikov (1969) showed that the growth in 

sample size is at least exponential as the dimension increases algebraically. 

 The strategy advocated in this dissertation breaks the curse of dimensionality. For all, 

1p , 
2/1nOhopt , which leads to an optimum bandwidth which decreases as the sample size 

increases regardless of the dimensionality. Besides, this will give a bandwidth small enough for 

large dimensions which guarantee smoothness. 

 

2.3 Bivariate Product Kernel Case 

Let 
21, XXX  be the means of random samples from a population with unknown 

density, ,, 21 xxf assumed to be ellipsoidally symmetric, then the estimate of ,, 21 xxf  based 

on the sample means is given by 

               

2
2/1

22
1

1
2/1

11
1

21

21

1
,ˆ

hn

Xnx
K

hn

Xnx
K

hnh
xxfX

,                        (2.23) 

where 1h and 2h are the bandwidths or the smoothing parameters and 
1K  is the symmetric kernel 

and 1,ˆ
2121

* dxdxxxfn whenever 11 duuK . 
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Expectation and Bias of 21,
ˆ xxf

X
 

We can obtain the expectation and the bias of this new estimator as follows: 

2121

2

22
1

1

11
1

21

21 ,
1

,ˆ dydyyyf
hn

ynx
K

hn

ynx
K

hnh
xxfE

XX
. 

But 2121 ,, yynnfyyf
X

. 

Therefore we have 

2121

2

22
1

1

11
1

21

,
1

dydyyynnf
hn

ynx
K

hn

ynx
K

hnh
.                          (2.24) 

Let 11 ynw  which implies 
2/1

1

1 n
dy

dw
 and 

2/1

1
1

n

dw
dy . 

Similarly, let 22 ynw  which implies 
2/1

2

2 n
dy

dw
 and 

2/1

2
2

n

dw
dy . 

Substituting these into equation (2.24) we have  

2121

2

22
1

1

11
1

21

,
1

dwdwwwf
hn

wx
K

hn

wx
K

hnh
.                                       (2.25) 

Now, let 

1

11

hn

wx
u , then 111 hnuxw  and duhndw 11 . 

Similarly, let

2

22

hn

wx
v , then 222 hnvxw  and dvhndw 22 . 

Therefore, substituting these into equation (2.25), we have  

dudvhnvxhnuxfvKuKxxfE
X 22111121 , ,ˆ       . 

Now applying the Taylor series expansion to second order, we have 
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dudvxxfvnhxxfhnvuhxxfhnuvhxxfunh

xxfhnvxxfhnuxxfvKuK

],,,,1/2  

,,,[

2122

22

22121122112212111

22

1

212221112111
 

.,2/1,1/2 

,2/1,2/1 

],,[,

2122

22

21121211211

211221112111

22

111

21222111112111

dudvxxfvnhvKuKdudvxxfhnvuhvKuK

dudvxxfhnuvhvKuKdudvxxfunhvKuK

dudvxxfhnvxxfhnuvKuKdudvxxfvKuK

 

Now applying the moment conditions of kernel, that is ,1 duuuK  ,01 dvvvK

,2

1

2

KduuKu and ,2

1

2

KdvvKv  we have  

2,122

22

22,111

22

121 2/12/1, xxfσnhxxfσnhxxf KK .

 

Therefore  

2,122

2

22,111

2

1

2

2121 2/1,,ˆ xxfhxxfhσnxxfxxfE KX
.               (2.26) 

Therefore, the bias of 21,
ˆ xxf

X
 is 

.2/1,ˆ
2,122

2
22,111

2
1

2
21 xxfhxxfhσnxxfBias KX                                  (2.27) 

The asymptotic square bias (AISB) is given by 

                          

].                              

,,2[
4

1
,ˆ

212,1

2

22

4

2

2121222111

2

2

2

1212,1

2

11

4

1

42

21

dxdxxxfh

dxdxxxfxxfhhdxdxxxfhσnxxfAISB KX

 

Therefore, AISB of 21

* ,ˆ xxfn  is given by 
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)28.2(],,,2[
4

1
,ˆ

22

4

22121222111

2

2

2

111

4

1

42

21 fRhdxdxxxfxxfhhfRhnxxfAISB KX

 

where 2121

2

1111 , dxdxxxffR  and 2121

2

2222 , dxdxxxffR . 

 

Variance of 21,
ˆ xxf

X
 

Squaring equation (2.23) yields 

2

2/1

112

1

1

2/1

112

12

2

2

1

221

2 1
,ˆ

hn

Xnx
K

hn

Xnx
K

hhn
xxf

X
. 

Therefore, 

2121

2

2/1

212

1

1

2/1

112

12

2

2

1

221

2 ,
1

,ˆ dydyyyf
hn

ynx
K

hn

ynx
K

hhn
xxfE

XX
 . 

But 2121 ,, yynnfyyf
X

. 

Therefore we have 

2121

2

222

1

1

112

12

2

2

1

2
,

1
dydyyynnf

hn

ynx
K

hn

ynx
K

hhn
.               (2.29) 

Let 11 ynw  which implies 
2/1

1

1 n
dy

dw
 and 

2/1

1
1

n

dw
dy . 

Similarly, let 22 ynw  which implies 
2/1

2

2 n
dy

dw
 and 

2/1

2
2

n

dw
dy . 

Therefore, substituting these into equation (2.29), we have  
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2121

2

222

1

1

112

12

2

2

1

2
,

1
dwdwwwf

hn

wx
K

hn

wx
K

hhn
.                                        (2.30) 

Now, let 

1

11

hn

wx
u , then 111 hnuxw  and duhndw 11 . 

Similarly, let

2

22

hn

wx
v , then 222 hnvxw  and dvhndw 22 . 

Therefore, substituting these into equation (2.30), we have  

.,
1

 ,ˆ       2211
2
1

2
1

21
21

2 dudvhnvxhnuxfvKuK
hnh

xxfE X  

Now applying the Taylor series expansion to first order, we have 

dudvxxfvKuK
hnh

21

2

1

2

1

21

,
1

 

21

1

2

21,

hnh

KRxxf
, 

where 1

2

1 KRduuK   and .1
2
1 KRduuK  

Since the variance term is dominated by the 2ˆE f
X

, then the variance of 21

2 ,ˆ xxf
X

 is given by 

21

2

21
21

,
,ˆ

hnh

KRxxf
xxfVar

X
.                                                          (2.31) 

Therefore, the asymptotic integrated variance (AIV) is given by 

21

2

21

21

2

21
21

,
,ˆ

hnh

KR
dxdx

hnh

KRxxf
xxfAIV

X
.                                    (2.32) 
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Therefore, the asymptotic mean squared integrated error is given by 

.               

],,2[
4

1
             

21

2

22
4
22121222111

2
2

2
111

4
1

42

hnh

KR

fRhdxdxxxfxxfhhfRhσn

AIVAISBAMISE

K          (2.33) 

We can easily find a solution for the optimum bandwidth if hhi
 for all i . 

Therefore, equation (2.33) becomes 

.               

],,2[
4

1
             

2

2

22
4

2121222111
4

11
442

nh

KR

fRhdxdxxxfxxfhfRhσn

AIVAISBAMISE

K  

Differentiating with respect to h  and equating to zero, we have  

0
2

 ]4,,84[
4

1
3

2

22

3

2121222111

3

11

342

nh

KR
fRhdxdxxxfxxfhfRhn K

 

.
2

,,2
43

2

22

6

2121222111

6

11

6

Kn

KR
fRhdxdxxxfxxfhfRh

           

(2.34) 

From Scott (1992), the general bivariate normal data using a normal kernel gives 

1

2

5

1

2/52

11 1163 σσρπfR , 

1
5

21

2/52

22 1163 σσρπfR , 

and  

1
3

2

3

1

2/522

212211 11621
2

σσρπρdxdxff , 
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where ρ is the correlation coefficient. 

Substituting these into equation (2.34) we have 

.
4

2
1163      

1162121163

3

1
5

21

2/526

1
3

2

3

1

2/5226
1

2

5

1

2/526

n
h

hh

 

.
2

1

116

3

116

212

116

3
35

21

2/523

2

3

1

2/52

2

2

5

1

2/52

6

n
h

 Assuming the standard deviation σσi
 for all i , then we have  

3
102/52

4424
6

2

1

116

32123

nπσρπ

σσρσ
h

 

2/18

116
243

102/52
6

ρσnπ

σρπ
h

 

.
2/1

12
6/1

23

62/52

n
h

 
Therefore

 
.2,1,

2/1

12
6/1

2

62/52
2/1 i

ρ

σρ
nh i

i

                                               

(2.35)

 If the variables are independent, then 0ρ  and  

.2,1,2
6/162/1 iσnh ii

                                                                  

(2.36) 
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Figure 2.3.1 The Bivariate Normal Density 

 

 

Figure 2.3.2 Contour of the Bivariate Normal Density 
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Figure 2.3.3 The Regular Kernel Estimate of the Bivariate Normal Density 

 

Figure 2.3.4 Contour of the Regular Kernel Estimate of the Bivariate Normal Density 
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Figure 2.3.5 The Kernel Based on the Sample Means Estimate of the Bivariate Normal Density 

 

 

Figure 2.3.6 Contour of the Kernel Based on the Sample Means Estimate of the Bivariate Normal 

                     Density 
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 In the simulations below, we used the product kernel which is a special form of the 

multivariate kernel function. It is the recommended kernel used in practice.  In this respect, the 

individual multivariate product kernel does factor which means that the coordinates are 

independent but the resultant multivariate kernel density estimate does not factor. In addition, the 

same kernel is used in each dimension and the univariate standard normal distribution is used. 

 

 

 

Table 2.3.1 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density  

                   Estimate and the Multivariate Kernel Density Estimate Based on the Sample 

                   Mean With Dimension p=2     

          

Sample 

Size, n 

MSE for the Regular 

Multivariate Kernel 

MSE for the Multivariate 

Kernel Based on the 

Sample Means 

10 510245374.7  510102387.9  

30 510086887.5  510097760.9  

50 510094227.3  510088346.9  

100 510084108.2  510087421.9  

200 510391879.1  510086563.9  

300 510101187.1  510083921.9  

500 610079000.8  510076430.9  
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Table 2.3.2 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density  

                   Estimate and the Multivariate Kernel Density Estimate Based on the Sample 

                   Mean With Dimension p=3      

   

Sample 

Size, n 

MSE for the Regular 

Multivariate Kernel 

MSE for the Multivariate 

Kernel Based on the 

Sample Means 

10 610031122.5  510121352.1  

30 610205983.3  510121945.1  

50 610562826.2  510121509.1  

100 610871522.1  510121322.1  

200 610349858.1  510120902.1  

300 610109322.1  510121277.1  

500 710627890.8  510121335.1  

 

Table 2.3.3 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density  

                   Estimate and the Multivariate Kernel Density Estimate Based on the Sample 

                   Mean With Dimension p=4       

       

Sample 

Size, n 

MSE for the Regular 

Multivariate Kernel 

MSE for the Multivariate 

Kernel Based on the 

Sample Means 

10 710895623.5  910875326.1  

30 710205983.5  910875128.1  

50 710592657.4  910875112.1  

100 710882659.3  910875023.1  

200 710358612.2  910875011.1  

300 710112615.2  910874933.1  

500 810561248.9  910874929.1  
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Simulation results show that the standard or regular multivariate kernel density estimate 

performs better when the dimension p  is less than 4. When the dimension p  is 4 and above, the 

multivariate kernel density estimate based on the sample means outperforms the regular 

multivariate kernel density estimate. 

 

2.4 Multivariate Distribution Function Estimation Based on Sample Means 

 We propose the following estimate of the distribution function  :F x  

2/1

2/1
ˆ H

Xx
x

n

n
κF ,                                            (2.37) 

where uux dKκ

x

1
 is the kernel corresponding to distribution function and 

1K is the 

kernel for the density function. 

We can compute the expectation of this estimator as follows: 

yyH
Xx

x
X

df
n

n
κFE

2/1

2/1
ˆ .

 

Since 
/ 2p

f n f n
X

y y , 

yyH
Xx

x dnfn
n

n
κFE p 2/2/1

2/1
ˆ . 

Letting ,n y w
 
then 

/ 2pd
n

d

w

y
, 

/ 2p

d
d

n

w
y  , so we have 
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wwH
wx

x df
n

κFE
2/1

2/1
ˆ  

               wH
wx

dF
n

κ
2/1

2/1
 

wH
wx

H
wwH

wx
d

n
κ

n
FF

n
κ

p

2/1

2/12/12/

2/1

2/1

1
. 

Letting 
2/1

2/1

n

Hwx
u , then uHxw

2/12/1n , which implies 
1/ 2/ 2pd n dw H u so 

we get that 

uuHxux dnFκFE 2/12/1ˆ .
 

Now, applying the Taylor series expansion to the second order, we have 

uuxHuuxHux dHFnFnxFκFE
TTT 2/122/12/12/1

2

1ˆ  

 uuuuHxHuuuxuux dκFndκFHndκF TTT 2/122/12/12/1

2

1
             . 

Applying the moment conditions for kernel, we have 

.   
2/122/1

2
ˆE             HxHxx Ftr

n
FF

T
.                               (2.38) 

Therefore, the bias of the estimator is given by 

2/12/1

2
ˆ HxHx Ftr

n
FBias

T
 .                                       (2.39) 
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If AISB is the target then we must define a weight function xW  such that  

xHxH dWFtrnAISB
T

2
2/12/12

4

1
                                     (2.40) 

Next, 

2/1

2/1

22ˆ H
Xx

x
n

n
κF

  

.                                         (2.41) 

Hence, 

yyH
Xx

x
X

df
n

n
κFE

2/1

2/1

22ˆ . 

Since 
/ 2p

f n f n
X

y y , 

yyH
Xx

x dnfn
n

n
κFE p 2/2/1

2/1

22ˆ . 

Letting ,n y w
 
then

/ 2pd
n

d

w

y
, 

/ 2p

d
d

n

w
y  , so we have 

wwH
wx

x df
n

κFE
2/1

2/1

22ˆ  

               wH
wx

dF
n

κ
2/1

2/1

2
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.
2

            

       

2/12/

2/1

2/11
2/1

2/1

2/1

2/1

2

w
H

H
wx

H
wx

w

H
wx

w

d
nn

K
n

κF

n
κF

p

 

Letting

1/ 2

/ 2pn

x w H
u , then uHxw

2/12/1n , which implies
1/ 2/ 2pd n dw H u .

 

So we get  

uuHxuux dnFκκFE 2/12/12 2ˆ . 

Thus 

       .22ˆ 2/12/12
uuuuxuuxx dκκFHnκdκFFE T

                            (2.42) 

Since the variance term is dominated by the x
2F̂E , it follows that 

κSFnFFVar xHxx
2/12/12ˆ ,                                  (2.43) 

where  uuuu dκκκS T
. 

So, the asymptotic integrated variance is given by 

xxHxx dWFκSndWFAIV 2/12/12 .                               (2.44) 

Therefore, the AMISE is  

.22/1
4

1 2/12/1
2

2/12/12
xxHxHxH dWFκSndWftrnAMISE

T
  (2.45) 

Therefore in our special case where QH
2h , 1Q , 
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xQQx FtrhnFBias
T 2/12/122

2

1ˆ

                                
(2.46) 

and the asymptotic integrated squared bias (AISB) is given by  

xQxQ dWFtrhnAISB
T

2
2/12/142

4

1
.
                                  

(2.47) 

The asymptotic integrated variance (AIV) is also given by 

xxQxx dWFhnκSdWFAIV
2/12/12 .                                 (2.48) 

Therefore AMISE AIV AISB  leads to, 

.22/1
4

1 2/12/1
2

2/12/142
xxQxQxQ dWFhnκSdWFtrhnAMISE

T

    
 (2.49) 

The optimum h can be obtained by differentiating equation (2.49) with respect to h and equating 

it to zero as shown below: 

02
2/12/1

2
2/12/132

xxQxQxQ dWFnκSdWFtrhn
T

 

xxQxQxQ dWFnκSdWFtrhn
T 2/12/

2
2/12/132 2  

xQxQ

xxQ

dWFtrn

dWFκS
h

T
2

2/12/12/3

2/1

3
2

. 

Hence 
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3/1

2
2/12/1

2/1

2/1
2

xQxQ

xxQ

dWFtr

dWFκS
nh

T
opt .                   (2.50) 

This optimum bandwidth for the multivariate distribution function based on the sample means is 

also independent of the dimension p just like that of its corresponding distribution function. 

The optimal point-wise bandwidth for the estimation of multivariate distribution function 

proposed by Jin and Shao (1999) in the classical kernel case is  

L

M3/1* nhopt , 

where   
1

p

i i

i i

F x
M w u w uV dud

x
, where 

iiii uVu ,max  and  

2

FL x  . Note also that, here h is independent of the dimension p. 

On the other hand, the asymptotic optimal bandwidth for a p-dimensional kernel density estimator 

proposed by Scott (1992) is typically of order
1/ 4 p

n and the one in our case for the p-

dimensional multivariate kernel density estimator is of order 2/1n  , which does not depend on 

the dimension p and we realized the bandwidth in our case will yield a good estimator as the 

dimensions increases. Since a good density estimator might yield a good distribution estimator, it 

is natural to expect that the optimal bandwidth for the kernel distribution function does not to 

depend on the dimension p and this is what happened in both our case and the one proposed by 

Jin and Shao (1999). Jin and Shao (1999) established that the optimal bandwidth for a class of 

kernel estimator of a multivariate distribution function is of order 1/3n for all dimensions. 

 In this dissertation, the optimal bandwidth for the multivariate distribution function 

estimator based on sample means is of order 2/1n , which does not depend on the dimension p. 
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Therefore, the optimal bandwidth for the kernel density estimator based on the sample means 

(equation (2.19)) does not depend on the dimension p and so is the optimal bandwidth for the 

distribution function based on the sample means. 

Also we know those optimum bandwidths which decrease slowly as the sample size 

increases and the dimensionality increases allow for a better performance of the estimator, which 

means it guarantees better smoothness. So comparing the optimum bandwidth in our case to that 

of the one proposed by Shao (1999), the one in our case decrease slowly as sample size increases 

even though they both do not depend on the dimension p. 
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CHAPTER III 
 

 

ESTIMATION OF NONPARAMETRIC MULTIVARIATE REGRESSION FUNCTION 

BASED ON THE SAMPLE MEANS 

 

 

3.1 Introduction 

In nonparametric multivariate regression, there exists a smooth function R  which relates the 

response variable y and the predictors x . The nonparametric multivariate regression is of the 

form 

                    i iy R x          for      1 i n                                                        (3.1) 

where 
2~ ,i g R x x  and g  is assumed to be normal and

2 2
x , a constant. 
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3.1.1 Regression Estimation 

Based on the random sample means ),,...,,( 21 YXXX p
, let 

2h

1
0H

H
0

, where 
1

H  is the 

bandwidth matrix for the independent variable X  and 
2h  is the bandwidth for the response 

variable Y .Also, let 
Y

X
Z  and  K  is a   (p+1)-dimensional 

 
kernel such that 

2K K dyx z . Then, we can estimate zf̂  as follows: 

1/ 2

1/ 2 1/ 21 / 2

1ˆ ˆ( ) ( , )
p

n
f f y K

nn

z Z
z x H

H
.                            (3.2) 

Set the marginal p.d.f of X  as: 

1/ 2

1 1 11/ 2 1/ 2/ 2

1

1ˆ ( )
p

n
f K

nn

x X
x H

H
,                           (3.3) 

where 1 2 ,K K K y dyx . 

The nonparametric multivariate kernel regression estimator is given by 

ˆ ,
ˆˆ | |

ˆ ,

yf y dy
R E y yf y dy

f y dy

x
x X x x

x
.                          (3.4) 

Therefore, from equations (3.3) and (3.4) we have 

1

ˆ ,
ˆ

ˆ

yf y dy
R

f

x
x

x
.                                                  (3.5) 

Considering the numerator part of equation (3.4) and substituting equation (3.2) we have 
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1/ 2

1/ 2 1/ 21 / 2

1ˆ ,
p

n
yf y dy y K dy

nn

z Z
x H

H
 

 

                        

1/ 2 1/ 2

1/ 21 / 2

1
p

y K n n dy
n

H z Z
H

 

                        

1/ 2 1/ 2

1

1/ 21/ 21 / 2 1/ 2
21 2

1
p

nn
y K dy

h nn h y nY

0 x XH

0H

 

          
1/ 2 1/ 2

1 21/ 2 1/ 2 1/ 21 / 2 1/ 2

1 2

1
,

p

n y nY
yK h dy

n nn h

x X
H

H
.

 

            (3.6)

 

 

Let 
1/ 2 1/ 2 1/ 2

2 21/ 2

y nY
h y h n nY

n
 and  

1/ 2 / 2 1/ 2 / 2

2 2

p pdy
h n dy h n d

d
.                                       (3.7) 

Substituting these into equation (3.6), we have  

1/ 2 1/ 2 1/ 2 1/ 2 / 2

2 1 21/ 2 1/ 21 / 2 1/ 2

1 2

ˆ ,

1
, p

p

yf y dy

n
h n nY K h n d

nn h

x

x X
H

H

 

1/ 2 1/ 2 1/ 2

2 11/ 2 1/ 21/ 2

1

1
,

n
h n nY K d

nn

x X
H

H
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1/ 2
1/ 22

11/ 2 1/ 2

1

1/ 2

11/ 2 1/ 2

1

,

  ,

h n
K d

n

Y n
K d

n

x X
H

H

x X
H

H
 

        

1/ 2

2

1/ 2

1

1/ 2 1/ 2

1 11/ 2 1/ 2

1/ 2

2 11/ 2 1/ 2

1

  , ,

  

h

n n
K d K d d

n n

Y n
K

n

H

x X x X
H H

x X
H

H

 

1/ 2
1/ 2 1/ 22

2 1 2 11/ 2 1/ 2 1/ 2

1

1/ 2

2 11/ 2 1/ 2

1

                     

                         ,                           

h n n
K K d

n n

Y n
K

n

x X x X
H H

H

x X
H

H
                                             (3.8)  

by applying integration by parts in the fourth equation above. 

Since 
2,K d Kx x

 
 the right hand side of (3.8) equals 

1/ 2 1/ 2
1/ 2 1/ 22 2

2 1 2 11/ 2 1/ 21/ 2 1/ 2

1 1

1/ 2

2 11/ 2 1/ 2

1

 

h hn n
K K d

n n

Y n
K

n

x X x X
H H

H H

x X
H

H

 

1/ 2 1/ 2
1/ 2 1/ 22 2

2 1 2 11/ 2 1/ 21/ 2 1/ 2

1 1

1/ 2

2 11/ 2 1/ 2

1

   

h hn n
K K

n n

Y n
K

n

x X x X
H H

H H

x X
Η

H
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1/ 2

2 11/ 2 1/ 2

1

Y n
K

n

x X
H

H
.                                                                                          (3.9) 

Therefore, the nonparametric multivariate kernel regression estimator in equation (3.5) can be 

written as follows: 

1/ 2

2 11/ 2 1/ 2

1

1/ 2

1 11/ 2 1/ 2/ 2

1

ˆ

1
p

Y n
K

n
R

n
K

nn

x X
H

H
x

x X
H

H

.                               (3.10) 

Or more simply, the equivalent form: 

1/ 2

2 1 1/ 2

1/ 2

1 1 1/ 2

ˆ

n
YK

n
R

n
K

n

x X
H

x
x X

H

.                                      (3.11) 

                                                                             

 

We realize that the nonparametric multivariate kernel regression estimator based on the sample 

means is linear in the observation of the means Y  and is therefore a linear smoother, which is a 

property shared by many other nonparametric regression estimators. Besides, we also realize that 

this estimator is independent of the particular choice of the smoothing parameter
2h . 
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3.2 Properties of R̂ x  

Because the nonparametric multivariate kernel regression estimator based on the sample means is 

a ratio of two correlated random variables, finding its properties are quite involved. If the 

numerator and the denominator of the estimator in equation (3.10) each converge to a (positive) 

constant, then the asymptotic expectation of the ratio is the ratio of the asymptotic expectations of 

the numerator and the denominator to first order.  

 

3.2.1 Derivation of the Expectation 

The properties of the kernel estimator in the denominator were presented in Chapter 2 of this 

dissertation [see equation (2.8) and (2.16)]; the results are as follows: 

2/1

1

22/1

1
2

ˆ HxHxx
X

ftr
n

ffE
T

 

and 

1

1/ 2/ 2

1

ˆ
p

f R K
Var f

n
X

x
x

H
. 

Now, considering the expectation of the numerator in equation (3.10), 

1/ 2

2 11/ 2 1/ 2

1

1 n
E K Y

n

x X
H

H
.                                 (3.12) 

By letting nu X  and  v nY  , and applying the self-revolving property for regression, 

equation (3.12) becomes 
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1/ 2

2 1 ,1/ 2 1/ 2/ 2

1

1
,

yp
K v f v d dv

nn
X

x u
H u u

H
.                               (3.13) 

Let 
1/ 2

11/ 2n

x u
s H , then 

1/ 2 1/ 2 1/ 2 1/ 2

1 1n nx u H s u x H s . 

Therefore 
1/ 2 1/ 2/ 2 / 2

1 1

p pd
n d n d

d

u
H u H s

s
. 

Substituting these into equation (3.13), we have that it is equal to 

1/ 21/ 2 1/ 2 / 2

2 1 11/ 2/ 2

1

1
, p

p
K v f n v n d dv

n
s x H s H s

H
 

1/ 2 1/ 2

2 1 ,K v f n v d dvs x H s s .                                                                                 (3.14) 

But 
/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 1 1, \f n v f v n f nx H s x H s x H s .                                   (3.15) 

Substituting (3.15) into equation (3.14) , the integral over v  in equation (3.14) is equivalent to 

[ignoring  2K s ] 

1/ 2 1/ 2 1/ 2 1/ 2

1 1\f n v f v n dvx H s x H s                                                                      (3.16) 

1/ 2 1/ 2 1/ 2 1/ 2

1 1f n R nx H s x H s ,                                             (3.17) 

since the integral is the conditional mean and R  is the true regression function defined in 

equation (3.1 ). Therefore, equation (3.14) becomes 

1/ 2 1/ 2 1/ 2 1/ 2

2 1 1K f n R n ds x H s x H s s .                                  (3.18) 
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Now expanding 
1/ 2 1/ 2

1f nx H s  and 
1/ 2 1/ 2

1R nx H s  in the Taylor series to second order, 

we have 

1/ 21/ 2 1/ 2 1/ 2 1/ 2 2 1/ 2

1 1 1 1

1

2

T
T Tf n f n f n fx H s x s H x s H x H s  

and  

1/ 21/ 2 1/ 2 1/ 2 1/ 2 2 1/ 2

1 1 1 1

1

2

T
T TR n R n R n Rx H s x s H x s H x H s . 

Therefore, expression (3.18) becomes 

1/ 21/ 2 1/ 2 2 1/ 2

2 1 1 1

1/ 21/ 2 1/ 2 2 1/ 2

1 1 1

1

2

1

2

T
T T

T
T T

K f n f n f

R n R n R d

s x s H x s H x H s

x s H x s H x H s s

 

1/ 21/ 2

2 2 1

1/ 21/ 2 2

2 1 1

1/ 21/ 2

2 1

1/ 2 1/ 2

2 1 1

1/ 23/ 2 1/ 2 2 1/ 2

2 1 1 1

1/ 2 2 1/ 2

2 1 1

1
  

2

  

  

1
  

2

1
  

2

  

T

T
T

T

T
T T

T

T T

T
T

K f R d K f n R d

K n R f d

K n f R d

K n f R d

K n f R d

K n f R d

s x x s s x H x s s

s s H x H s x s

s H x s x s

s H x s H x s s

s s H x s H x H s s

s s H x H s x s

3/ 2 1/ 2 2 1/ 2 1/ 2 1/ 2

2 1 1 1

2 1/ 2 2 1/ 2 1/ 2 2 1/ 2

2 1 1 1 1

1

2

1
  .

4

T
T T

T T
p T T

K n f n R d

K n f R d

s s H x H ss H x s

s s H x H ss H x H s s

              (3.19) 

Assuming 
2K s a second order kernel, equation (3.19) becomes 
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1/ 21/ 2

2 2 1

1/ 21/ 2 2

2 1 1

1/ 21/ 2

2 1

1/ 2 1/ 2

2 1 1

1/ 2 2 1/ 2

2 1 1

      

1
        

2

        

        

1
                        

2

T

T
T

T

T
T T

T
T

K f R d K f n R d

K n R f d

K n f R d

K n f R d

K n f R d

s x x s s x H x s s

s s H x H s x s

s H x s x s

s H x s H x s s

s s H x H s x s                                (3.20)

 

1/ 21/ 2

2 1 2

1/ 21/ 2 2

1 1 2

1/ 21/ 2

1 2

1/ 2 1/ 2

1 1 2

1/ 2 2 1/ 2

1 1 2

        

1
          

2

          

          

1
          .     

2

T

T
T

T

T
T T

T
T

f R K d f n R K d

n R f K d

n f R K d

n f R K d

n f R K d

x x s s x H x s s s

H x H x s s s s

H x x s s s

H x H x s s s s

H x H x s s s s                                           (3.21)

 

Now, applying some of the kernel multivariate moment conditions, equation (3.21) becomes 

1/ 21/ 2 2

1 1 2

1/ 2 1/ 2

1 1 2

1/ 2 2 1/ 2

1 1 2

1

2

  

1
  

2

T
T

T
T T

T
T

f R n R f K d

n f R K d

n f R K d

x x H x H x s s s s

H x H x s s s s

H x H x s s s s

 

1
1/ 2 2

2
1 1 2

1/ 2 1/ 2

1 1 2

1/ 2 2 1/ 2

1 1 2

1
                    

2

                      

1
                      .                            (3

2

T
T

T
T T

T
T

f R tr n R f K d

tr n f R K d

tr n f R K d

x x H x H x s s s s

H x H x s s s s

H x H x s s s s .22)
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Again, by applying the moment conditions, the covariance matrix of 
2K is 

dI  and the integral 

factor within the trace vanishes, so equation (3.22) becomes 

1/ 21/ 2 2

1 1

1/ 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1
             

2

                

1
                .                                                                         (3.23)

2

T
p

T

T

f R tr n R f

tr n f R

tr n f R

x x H x H x

H x H x

H x H x

 

Therefore, the expectation of the nonparametric multivariate regression kernel estimator based on  

the sample means is the ratio of the expectations in equations (3.23) and (2.8), that is  

 

1/ 21/ 2 2

1 1

1/ 21/ 2

1 1

1/ 2 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1ˆ     
2

                                    

1
                                    

2

1
                

2

T

T

T

T

E R f R tr n R f

tr n f R

tr n f R

f tr n f

x x H x H x

H x H x

H x H x

x H x H .                                         (3.24)

 

 

Equation (3.24) can be written as  

1
1/ 2 2

2
1 1

1/ 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1ˆ
2

                                

1
                                

2

1
           1 .

2

T

T

T

T

E R f R tr n R

tr n f R f

tr n f R f

f tr n f
f

x x H x H

H x x H x

H x x H x

x H x H
x
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1/ 2 2 1/ 2

1 1

1/ 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1
               

2

                         

1
                         

2

1
                 1 .        

2

T

T

T

T

R tr n R

tr n f R f

tr n f R f

tr n f f

x H x H

H x x H x

H x x H x

H x H x                                 (3.25)

 

Now, using the approximation ctct 212 11  for small c  in the factor in the denominator 

and t , a scalar, equation (3.25) becomes 

1/ 21/ 2 2

1 1

1/ 2 1/ 2 1/ 2 2 1/ 2

1 1 1 1

1/ 2 2 1/ 2

1 1

1

2

1
  

2

1
  1

2

T

T T

T

R tr n R

tr n f R f tr n f R f

tr n f f

x H x H

H x x H x H x x H x

H x H x

 

 

1/ 21/ 2 2 1/ 2 1/ 2

1 1 1 1

1/ 2 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1/ 21/ 2 2 1/ 2 2 1/ 2

1 1 1 1

1/ 2 1/ 2 1/ 2 2 1/ 2

1 1 1 1

1

2

1
  

2

1 1
  

22

1 1
  

22

1
  

2

 

T T

T

T

T T

T T

R tr n R tr n f R x f

tr n f R f

R tr n f f

tr n R tr n f f

tr n f R f tr n f f

x H x H H x H x

H x x H x

x H x H x

H x H H x H x

H x x H x H x H x

1/ 2 2 1/ 2 1/ 2 2 1/ 2

1 1 1 1

1 1
 .          (3.26)

2 2

T T

tr n f R f tr n f fH x x H x H x H x

 

Keeping 

1

2
1H  to second order, equation (3.26) becomes 
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1/ 21/ 2 2 1/ 2 1/ 2

1 1 1 1

1/ 2 2 1/ 2

1 1

1/ 2 2 1/ 2

1 1

1

2

1
  

2

1 1
  .

22

T T

T

T

R tr n R tr n f R f

tr n f R f

R tr n f f

x H x H H x x H x

H x x H x

x H x H x

 

Simplifying equation (3.26) we have 

1/ 21/ 2 2 1/ 2 1/ 2

1 1 1 1

1
.

2

T T

R tr n R tr n f R fx H x H H x x H x         (3.27) 

Applying some properties of trace to equation (3.27), we have  

x

x
xxHHxx

f

f
RRtr

n
RRE

T
2

2
ˆ 22/1

1

2/1

1 .                            (3.28) 

If we have many data points, then the term 2
f

R
f

x
x

x
 in equation (3.28) will be small. 

 

3.2.2 Variance and AMSE of the Estimate 

The variance of the estimator R̂ x  can be computed using the approximation of the ratio of two 

random variables (Stuart and Ord, 1987), 

2

2 2

2 ,var var Cov U VEU U V
Var

V EV EU EVEU EV

U
.                            (3.29) 

From equation (3.10), and applying the above approximation, we can write  
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1/ 2

2 11/ 2 1/ 2

1

1/ 2

1 11/ 2 1/ 2/ 2

1

ˆ( ( )) .
1

p

y n
K

n
Var R Var

n
K

nn

x x
H

H
x

x x
H

H

                                                   (3.30) 

 

We already know the expectation of the numerator and we also know both the expectation and the 

variance of the denominator. Now, we need to find the variance of the numerator and the 

covariance between the numerator and the denominator. 

1/ 2

2 11/ 2 1/ 2

1

1 / 22 1/ 2 2

2 1 1/ 2

1

2

1/ 2

2 11/ 2 1/ 2

1

      var

1
       ,

                        

p

y n
K

n

n
K y n f n ny d dy

n

y n
E K

n

x x
H

H

x x
H x x

H

x x
H

H
                                          (3.31)

 

Now, considering the first term of equation (3.31), by letting nu x  and v ny  , 

 then the first term of  equation (3.31) becomes 

2 1/ 2 2

2 1 ,1/ 2

1

1
, .yp

K v f v d dv
n n

x

x u
H u u

H
                          (3.32) 

Let
1/ 2

11/ 2n

x u
s H , then  

1/ 2 1/ 2 1/ 2 1/ 2

1 1n nx u H s u x H s .                                       (3.33) 

Therefore 
1/ 2 1/ 2/ 2 / 2

1 1

p pd
n d n d

d

u
H u H s

s
. 

Substituting these into equation (3.32), we have 
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2 2 1/ 2 1/ 2

2 , 1/ 2

1

1
,yp

K v f n v d dv
n

x
s x H s s

H
.                                (3.34) 

But 
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 1 1, |f n H v f v n f nx s x H s x H s .                            (3.35) 

Substituting (3.35) into equation (3.34), the integral over v  in equation (3.34) is equivalent to 

[ignoring 
2

2K s ] 

1/ 2 1/ 2 2 1/ 2 1/ 2

1 11/ 2/ 2

1

1
|

p
f n v f v n dv

n
x H s x H s

H
.                           (3.36) 

Here, the integral is the conditional second moment, and R  is the true regression function 

defined in equation (3.1). Therefore, equation (3.36) becomes 

1/ 2 1/ 2 2 1/ 2 1/ 2

1 11/ 2/ 2

1

1
p

f n R n
n

x H s x H s
H

.                                     (3.37) 

Substituting this into equation (3.34) we have 

2
2 1/ 2 1/ 2 1/ 2 1/ 2 2 1/ 2 1/ 2

2 1 1 11/ 2/ 2

1

1
p

K f n R n n d
n

s x H s x H s x H s s
H

 

2 1/ 2 1/ 2 2 1/ 2 1/ 2

2 1 11/ 2/ 2

1

2
2 1/ 2 1/ 2 1/ 2 1/ 2

2 1 11/ 2/ 2

1

1

1
  

p

p

K f n n d
n

K f n R n d
n

s x H s x H s s
H

s x H s x H s s
H

 

                      

22

2 2

1/ 2 1/ 2/ 2 / 2

1 1

p p

R K f R K f R

n n

x x x x

H H
. 

Therefore equation (3.32) becomes 
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22 2

1/ 2/ 2

1

p

R K f
R

n

x
x

H
,                                                               (3.38) 

where  
2 2

x  for all x . 

Also, considering the second term of equation (3.31) 

 

2

1/ 2

2 11/ 2 1/ 2

1

1/ 22 1/ 2 2

1 1

2
1/ 22 1/ 2 2 1/ 2 2 1/ 2

1 1 1 1

1
  

2

1
   

2

T

T T

y n
E K

n

f R tr n R f

tr n f R tr n f R

x x
H

H

x x H x H x

H x H x H x H x

 

 

2

1 1

TO n tr H H .                                                                                                           (3.39) 

 

Therefore (3.31) can be written as  

 

221/ 2 2 2

2 1 1 11/ 2 1/ 21/ 2 / 2

1 1

var T

p

R K fy n
K R O n tr

n n

xx x
H x H H

H H
 

 

22 2

1/ 2/ 2

1

p

R K f
R

n

x
x

H
,                            (3.40) 

where 
2 2

x  for all x . Next, 
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1/ 2 1/ 2

2 1 1 1/ 2 1/ 21/ 2 1/ 2/ 2

1 1

1/ 2 1/ 2

2 1 1 11/ 2 1/ 21/ 2 1/ 2/ 2

1 1

2 11/ 2

1

1
cov ,

1
  

    

p p

p

y n n
K K

n nn

y n n
E K K

n nn

y
E K

x x x x
H H

H H

x x x x
H H

H H

H
H

1/ 2 1/ 2

1 11/ 21/ 2 1/ 2/ 2

1

1
.         (3.41)

p

n n
E K

n nn

x x x x
H

H

 

Now, considering the first term of equation (3.41), we have 

 

1/ 2 1/ 2

2 1 1 11/ 2 1/ 21/ 2 1/ 2/ 2

1 1

1
p

y n n
E K K

n nn

x x x x
H H

H H
              (3.42) 

 

1 / 21/ 2 1/ 2

2 1 1 11/ 2 1/ 21/ 2 1/ 2/ 2

1 1

1

  ,

p

p

y n n
K K n

n nn

f n ny d dy

x x x x
H H

H H

x x

 

1 / 21/ 2 1/ 2

2 1 1 1/ 2 1/ 2 1/ 2

1

,
p

p

y n n
K K n f n ny d dy

n n n

x x x x
H H x x

H
. 

 

Letting  
/ 2pd

n n
d

u
u x

x
 and 

/ 2pdv
v ny n

dy
 , then equation (3.42) becomes  

1/ 2 1/ 2

2 1 1 11/ 2 1/ 2

1

,
p

v
K K f v d dv

n n n

x u x u
H H u u

H
.                   (3.43) 

Now, let
1/ 2

11/ 2n

x u
s H , then 

1/ 2 1/ 2 1/ 2 1/ 2

1 1n nx u H s u x H s . 
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Therefore 
1/ 2 1/ 2/ 2 / 2p pd

n d n d
d

u
H u H s

s
 

Substituting these into equation (3.43), we have 

1/ 2/ 2 1/ 2 1/ 2

2 1 1 1

1

,p

p

v
K K n H f n H v d dv

n
s s x s s

H
 

1/ 2 1/ 2

2 1 11/ 2/ 2

1

1
,

p
K K vf n H v d dv

n
s s x s s

H
.                          (3.44) 

 

But 
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 1 1, |f n v f v n f nx H s x H s x H s . 

Substituting this into equation (3.44), the integral over v  in equation (3.44) is equivalent to 

[ignoring 2 1K Ks s ] 

1/ 2 1/ 2 1/ 2 1/ 2

1 11/ 2/ 2

1

1
|

p
f n v f v n dv

n
x H s x H s

H
 

=
1/ 2 1/ 2 1/ 2 1/ 2

1 11/ 2/ 2

1

1
p

f n R n
n

x H s x H s
H

, 

as the  integral is the conditional mean, and R  is the true regression function defined in 

equation (3.1 ). Therefore, equation (3.44) becomes 

1/ 2 1/ 2 1/ 2 1/ 2

2 1 1 11/ 2/ 2

1

1
, ,

p
K K f n v R n v d

n
s s x H s x H s s

H
 

1/ 2/ 2

1

p

R K f R

n

x x

H
 .                                                                                          (3.45) 

Also, considering the second term of equation (3.31) 
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1/ 2 1/ 2

2 1 1 11/ 2 1/ 21/ 2 1/ 2/ 2

1 1

1
p

y n n
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Now substituting equation (3.45) and (3.46) into equation (3.41), we have  
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1

p

R K f R

n

x x

H
.                                                                                                       (3.47) 

Substituting equations (2.8), (2.16), (3.23), (3.38) and (3.47) into equation (3.29), we have 

ˆVar R x I II ,

 
where
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Letting 
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and 

1/ 22 1/ 2 2

1 1

1

2

T
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we get that 
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1/ 2/ 2
21 2 2 2

4
2 .

p

R K f

n
R R

x

H
x B A x AB

B
                            (3.48) 

Now, considering the first term of equation (3.48), we have 

2
2 2 1/ 22 2 2 2 1/ 2 2
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1

2

T

R R f tr n fx B x x H x H
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Also, considering the second term of equation (3.48), we have 
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 (3.50)

                                                                                                           

Also, considering the third term of equation (3.48), we have 
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R f tr n R f

tr n f R tr n f R

x x x x H x H
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Now, substituting equations (3.49), (3.50) and (3.51) into equation (3.48) and carefully 

simplifying, we have 
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(3.52)
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Assuming K  is a second order kernel, equation (3.52) becomes
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          Now, using the approximation ctct 212 11  for small c , the equation above becomes
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     (3.53) 

Assuming K  is a second order kernel, we have that the right hand side of (3.53) is equal to 

1/ 22 2 2 1/ 2 2

1 11/ 2/ 2 2

1

1/ 22 1/ 2 2 2 2

1 1 1/ 2/ 2 2
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R K
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R K
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x H x H
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Hence

 

2

1/ 2/ 2

1

ˆ
p

R K
Var R

n f
x

H x
.                                                                                           (3.54) 

This variance includes the amount of data through f x  and it also includes the factor relating to the 

noise variance . 

The asymptotic mean square error (AMSE) of the estimator is  
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                          2 .     (3.55)
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R K
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tr n R R

f

x
H x

x
H H x x
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This is the AMSE of the multivariate regression estimator based on the sample mean. It 

minimizes the asymptotic variance as the dimension increases thereby minimizing the asymptotic 

mean square error. It has the form of the AMSE of the Nadaraya-Watson regression estimator for 

the classical kernel case when it is generalized from the univariate to the multivariate case. 

 Now, in our special case where 
1

2

1 QH h  and 11Q , the xRAMSE ˆ  is given by  

2

/ 2

2

2 4 1/ 2 1/ 2 2

1 1

ˆ

1
                        2 .       (3.56)
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x
x

x
Q Q x x
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Therefore, the optimum bandwidth h  for the regression function can be obtained by 

differentiating equation (3.56), equating it to zero and solving for h . 

So,  

1/ 4

2

1/ 2

2

1/ 2 1/ 2 2

1 1 2

p

opt

T

pR K
h n

f
f x tr R R

f

x
Q Q x x

x

.         (3.57) 

Therefore, in this multivariate regression setting just like the special case of the multivariate 

density estimation, the optimum bandwidth 
1/ 2

opth n  as .p This means that the 
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optimum bandwidth does not depend on the dimension as the dimension p and this 

optimum bandwidth decreases as sample size increases to allow for a better performance of the 

estimator. This breaks the “curse of dimensionality” and remedies the deficiency of high 

dimensional bandwidth selection as the optimum bandwidth is smaller enough for large 

dimension to guarantee smoothness. 
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CHAPTER IV 
 

 

BANDWIDTH SELECTION METHODOLOGIES BASED ON THE SAMPLE MEANS 

 

 

4.1 Cross-Validation for Density Estimation Based on the Sample Means-Univariate Case 

 

 It follows from the multivariate case with 1p that the estimate of density xf based 

on the sample means is given by 

hn

Xnx
K

nh
xf

1ˆ ,                                                  (4.1) 

where h is the window width, also called the smoothing parameter or the bandwidth, and K is the 

kernel function usually assumed to be symmetric. 

Now, the expectation of the density estimate can be obtained as  

duuKuxnfhduuuKxfnhduuKxfxfE 2''2'

2

1ˆ .
 

Applying the moment conditions for a univariate kernel, we have
 

2''2

2

1ˆ
KxnfhxfxfE .                                                (4.2) 
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Therefore, the bias and variance of xf̂  are given by
 

,
2

ˆ 22
''

Kσnh
xf

xfBias                                                    (4.3) 

 .ˆ
nh

KRxf
xfVar                                                       (4.4)

 

Therefore, the asymptotic integrated variance (AIV) is given by 

nh

KR
AIV .                                                           (4.5)

 

The asymptotic integrated squared bias (AISB) is given by  

dxxfnhAISB K

2''424

4

1
 

          ''424

4

1
fRnh K ,                                                     (4.6) 

where
 

dxxffR
2''''

.
 

Therefore, the asymptotic means integrated squared error (AMISE) is given by 

AISBAIVAMISE
 

''424

4

1
fRnh

nh

KR
AMISE K .                                (4.7) 

Thus the optimum bandwidth is obtained via calculus and is equal to  

5/1

4

2/1

fR

KR
nh

K

opt
.
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Recall that in the standard univariate case, we have  

''44

4

1
fRσh

nh

KR
AMISE K

 

and  

5/1

4

5/1

fRσ

KR
nh

K

opt .

 

Cross validation is one of the methods used to estimate how accurate a predictive model 

will perform in practice. Therefore, to ascertain practical data-based algorithms and to prove 

beyond theoretical results for optimal bandwidth specification, we perform cross validation. Here, 

we examined both unbiased (Least Squares) and biased cross-validation. 

 

4.1.1 Least Squares (Unbiased) Cross Validation (LSCV) 

 

 The motivation of the least squares cross-validation method of bandwidth selection 

comes from expanding the mean integrated square error (MISE) of hxf ,ˆ  and the minimization 

of it. 

dxxfhxfEhxfMISE
2

,ˆ,ˆ  

dxxfdxxfhxfEdxhxfEhxfMISE
22

,ˆ2,ˆ,ˆ .     (4.8) 

Since the  dxxf
2

 term does not depend on h , minimization of the hxfMISE ,ˆ  is the 

same as minimization of dxxfhxfMISE 2,ˆ . 

Therefore,  
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dxxfhxfdxhxfEdxxfhxfMISE ,ˆ2,ˆ,ˆ 22 .                 (4.9) 

The LSCV is obtained by finding the unbiased estimate of the right hand side of equation (4.9) 

since the second term is unknown due to the fact that it depends on xf  . Using the method of 

cross validation, it is suggested that we remove one sample mean and use the remaining 1n  

sample means to construct the estimate (leave-one-out). To determine the quality of the fit, the 

nth  sample mean is then evaluated. The afore-illustrated procedure is then repeated n times, one 

for each sample mean and the results averaged. 

Therefore, the unbiased estimator of the right hand side of equation (4.9) is obtained as follows; 

for simplicity, 1n  has been replaced by n ; 

dxxfhxfdxhxf ,ˆ2,ˆ 2

 

xdFhxfdxhxf n,ˆ2,ˆ 2

 

21 2II                                                                                                                                 (4.10)
 

where dxhxfI ,ˆ 2

1  
and .,ˆ

12 dxxdFhxfEI n
 

Now, considering ,1I
 
we have
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X

hn

x
u .

 

Therefore, 
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KR
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Also, 

n

i

ii
n

i

in
nh

XnX
K

nh

hxf
n

dxxdFhxfI

1
3

1

12

1
,ˆ1

,ˆ  .               (4.12) 

Therefore, substituting equations (4.11) and (4.12) into equation (4.10), we have
 

hLSCV  
n

i

ii

nh

XnX
K

nhnh

KR

1
3

2
 .                           (4.13) 

Thus, it seems reasonable to choose h  to minimize .hLSCV
 

 The aforementioned smoothing parameter obtained by the unbiased cross-validation 

based on the sample means was then compared to that based on the sample data proposed by 

Wand and Jones (1995); that is  

hXfndxhxfhLSCV ii ;ˆ2;ˆ 12
,                                 (4.14)

 

where j

n

ij

hi XxKnhxf
1

1;ˆ  is the density estimated on the sample with 
iX  

deleted, often called the “leave-one-out” density estimator.
 

  The plot below shows the results of the comparison. A symmetric kernel function (the standard 

normal kernel) was used for the comparison. 
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Figure 4.1.1 Plots Comparing the Least Squares Cross Validation (LSCV) of the  

                    Univariate Standard Kernel Estimate Case and Univariate Kernel Estimate  

                    Based on the Sample Mean      

 

 

 It was observed from the plot that the smoothing parameter obtained by the unbiased 

cross-validation based on sample means converges to the optimum bandwidth quicker than the 

one based on the sample data. Also it was detected that, even for very small LSCV values, the 

smoothing parameter based on the sample data is quite a bit of a far from the optimum bandwidth. 

4.1.2 Biased Cross Validation (BCV) in the Univariate Case 

 

Biased cross-validation (BCV) (Scott and Terrell, 1987) is based on the formula for the 

asymptotic mean integrated squared error (AMISE) instead of the MISE. Proceeding to our case,  
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 In the above asymptotic expansion for the MISE, the only unknown quantity is ''fR .
. This 

unknown quantity can be replaced by the estimator 
''~

fR  to get 

''424 ~
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1
fRnh

nh

KR
hBCV K  .                                    (4.15)

 

Now, to estimate ''fR ,
 we know that  

dxxfxfdxxffR ""2"''
.
 

Applying integration by parts, 

dxxfxfdxxfxfxfxffR ''''''''"'''
.
 

Applying integration by parts again,
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Therefore,  
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i
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But 
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xf

1ˆ , so 
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Substituting equation (4.17) into equation (4.16), we have 

 

hn

XnX
K

nhn
fR i

n
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Now, substituting equation (4.18) into equation (4.15), we have  

nh

XnX
Kσ

hn
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KR
hBCV i

n
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K
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)4(4
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3

4

1
 .                             (4.19)

 

The aforementioned smoothing parameter obtained by the biased cross- validation based 

on the sample mean was then compared to that based on the sample data proposed by Wand and 

Jones (1995), that is  

''2

2

41 ˆ
4

1
fRKμhKRnhhBCV ,                                   (4.20) 

where 
jiji hh XXKKnfR ''''2'' *ˆ .

 

The plot below shows the results of the comparison. A symmetric kernel function (the standard 

normal kernel) was used for the comparison. 
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Figure 4.1.2 Plots Comparing the Biased Cross Validation (BCV) of the Univariate  

                    Standard Kernel Estimate Case and Univariate Kernel Estimate Based on the      

                    Sample Mean 

 

 From the graph, it was observed that, even though the optimum bandwidth for the biased cross-

validation based on the sample data )01.0( opth  is a little smaller than that based on the sample 

mean )08.0( opth , they both approach their optimums at the same BCV value. 

It was observed from the plot that the density of the biased cross-validation based on the 

sample data increases monotonically as the smoothing parameter increases whilst that of the one 

based on the sample means increases gradually or steadily as the smoothing parameter increases. 
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4.2. CROSS-VALIDATION OF MULTIVARIATE DENSITIES BASED ON THE 

SAMPLE MEANS 

 

 Many studies of bandwidth selection or smoothing parameter selection for kernel density 

estimation have been centered on the univariate case. Not too much has been done on the 

multivariate due to the complexity of the situation. Here, we will do an explicit multivariate 

derivation of both least-squares (unbiased) and biased cross-validation based on the sample 

means using the product kernel estimator. 

 The multivariate product kernel estimator of xf  based on the sample means is given 

by 

i

ji
p

ip
p hn

Xnx
K

nhh
f

12/
1...

1ˆ x ,                               (4.21) 

where jX  denote the jth entry X , and X  is a pn data matrix of random vectors,

pxx ,...,1x  is a point in 
pR and K  is the univariate symmetric kernel with a different 

smoothing parameter for each dimension. 

 

4.2.1 Least Squares (Unbiased) Cross Validation (UCV)  

 

 The unbiased cross-validation is obtained by minimizing the integrated squared error 

(ISE). The ISE is given by  

xxhxh dffISE
2

,ˆ .                                         (4.22)
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Expanding equation (4.20), we have  

xxxxhxhxh dfdffdxfISE
22

,ˆ2,ˆ .
 

This implies, 

xxxhxhxh fRdfffRISE ,ˆ2,ˆ ,                              (4.23)
  

 

where xhxhx dffR
2

,ˆ,ˆ , xxx dffR
2

, and dxψψR
2

... xx  and 

it’s the roughness of . . 

The term xxx dffR
2

 is independent of h  and can therefore be ignored. 

Now, applying the cross-validation using the leave-one-out estimator, we have 
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i
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p
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where nj ,...,1 . 

 But xxhxx dfffE jj ,ˆˆ hence xjf̂  
estimates the second term of equation (4.23). 

Therefore, the UCV estimate is given by  

jjEffRUCV xh 2ˆ . 

Therefore, 

xxhxh dfffRUCV ,ˆ2ˆ .                                              (4.25) 
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We can therefore generalize the unbiased cross-validation to arbitrary dimensions with this 

approach. For a symmetric kernel, the standard normal kernel, fR ˆ  is obtained as in Sain and 

Scott (1994), but here, it is based on the sample means and derived as follows: 

xhxhx dffR
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,ˆ,ˆ
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                                                                      (4.26) 

Now, let

i

ii
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Xnx
u , then iii Xnuhnx , which implies duhndx ii . 

Substituting these into equation (4.24) we get  
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But for the standard normal kernel, 
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Also, the second term of equation (4.21) is obtained as follows: 



75 
 

n

j

i

p

i i

jii

p
p

p

i i

ii

p
p

j

dx
hn

Xnx
K

nhhhn

Xnx
K

nhhn

dff

1 1

,

2/
11

2/
1 1

1

1...

1
.

...

11

ˆ,ˆ xxhx

 

  

n

j

p

i

i

i

jii

i

ii

pp
p

i

i

dx
hn

Xnx
K

hn

Xnx
K

nnnh
1 1

,

2/2/

2

1

1

1
.

1

1
.

 

Now, let

i

ii

hn

Xnx
u , then iii Xnuhnx , which implies duhndx ii . 

Substituting these into the above equation, we get  
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Therefore, the above kernel convolution can be written as 
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Now, replacing 1n with n  for simplicity, the multivariate leased squared cross validation 

function based on the sample means is then  
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For a bivariate case, that is when 2p , we have  
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Another way of estimating xxhx dff ,ˆ is as shown below: 
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In that case, 

p

i i

jiij
n

j
p

i

p

i

p

l

i

p
p

p
hn

XnX
K

n
nh

n
hnπ

hhUCV
1

,

1

1

2/

1

2/

1
1

111

2

1
,...., .  (4.30)

 

For a bivariate case, that is when 2p , we have
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Figure 4.2.1 Plots of the Unbiased Cross-Validation of the Multivariate   Kernel Estimate  

                    Based on the Sample Means With Different Sample Sizes 
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Figure 4.2.2 Plots of the Unbiased Cross-Validation of the Multivariate Standard Kernel  

                    Estimate at Different Sample Sizes 
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Even though both plots have spike due to singularities, the effect is minimal in figure (4.2.1). 

Also, it can be observed that the performance of the bandwidth selection in the unbiased cross-

validation based on the sample means is better than the smoothing based on the sample data. The 

surfaces of the plots based on the sample data are rougher. The spikes diminish in the plots of 

unbiased cross-validation based on the sample means as sample size increases but still the same 

in the case of the sample data even though sample size increases. Besides, comparing the 

computational time for the unbiased cross-validation bandwidth selection based on the sample 

means and the sample data, the computational time was significantly reduced in the case of the 

sample means. 

 

4.2.2 Biased Cross Validation (BCV) 

 

 In the univariate biased cross-validation based on the sample means, we derived the  

hBCV based on the AMISE. The AMISE was obtained by  
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Here, we will first outline the general derivation of BCV function for the bivariate case, that’s 

when 2p . Now, considering the bivariate form of the AMISE for the product kernel defined in 

equation (4.21) above, 
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Substituting the estimates into equation (4.33) and simplifying, we have 
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This implies, 
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Figure 4.2.3 Plots Comparing the Biased Cross Validation (BCV) of the Multivariate       
                      Standard Kernel Estimate and the Multivariate Kernel Estimate Based on 

                      the Sample Means   
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From the above plots, the biased cross-validation based on the sample data have some spikes, 

which might be due to singularities but it not the case in the one based on the sample means. 

 

4.3 Plug-In Technique 

4.3.1 Plug-In Bandwidth Selection: Univariate Case 

 The main idea of the plug-in bandwidth selection is to replace the unknown quantities 

that appear in the formulae for the asymptotically optimal bandwidth 
AIMISEh  by their estimates. 

From equation (4.7) above, AMISE was given as  

''424

4

1
fRnh

nh

KR
AMISE K . 
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Therefore, the asymptotically optimal bandwidth can be obtained by differentiating the AMISE, 

equating it to zero and solving for the h. By so doing, the asymptotically optimal bandwidth 

1/5

1/ 2

4 ''
.AMISE

K

R K
h n

R f                                                          

(4.35)

 

The general integrated squared density derivative functional is defined as  

dxxffR ss 2
.

 

Using integration by parts, under sufficient smoothness assumption on f , it can be shown that  

dxxfxffR sss 21 .

                                         

(4.36)

 

It is therefore very important to estimates functionals of the form 

dxxfxf r

r

                                                      

(4.37)

 

for r even. The  
r
 notation is preferred to the usual  rfR   notation since it’s easier to extend 

it to the multivariate settings. From equation (4.37), we know that, 

.XfE r

r  

 From equation (4.1), the estimate of density xf based on the sample means was given by
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1ˆ . 

Therefore, 
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where g and L are a bandwidth and kernel that are possibly different from h and K respectively. 

Now, we know that, 
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Now, by Taylor series expansion and applying the moment conditions for a symmetric kernel 
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For large n and with the appropriate choice of g ( 21nog ), we have  
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Therefore, the bias of 
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If 
nXX ,...,1

be a set of identically and independently distributed random variables and applying 

the symmetric nature of 
rL  for r even, it follows that, the variance of 

r
ˆ is given by 
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Now, treating each component of both the variance and the covariance in turn, we first consider 
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For large ,n  we have the above last term equal to 
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for ,n sufficiently large. 
 

We also know from equation (4.40) that .11 o
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XnX
LE r

r

 

Substituting these into equation (4.42), we have  
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The asymptotic MSE is therefore obtained by substituting equations (4.41) and (4.42) into 

equation (4.39) as shown below:
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The value of g that minimizes the   ˆ gMSE r
 is obtained by differentiating gMSE r

ˆ

with respect to g equating it to zero and solving for g as follows:  
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Which implies that 
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For large ,n  we have  
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Therefore, replacing the unknown quantity that appear in the formulae for the asymptotic optimal 

bandwidth  ''fR  by the functional r , equation (4.35) becomes 
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Now, replacing  4  by the kernel estimator g4
ˆ  leads to what we called the direct plug-in 

rule: 
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But this is not automatic since  DPIĥ   depends on the choice of the pilot bandwidth .g The value 

of 

 

g  can be chosen by using the formulae for the AMSE-optimal bandwidth estimation of

g4
ˆ . Using the same second-order kernel,  
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But here too, the method for choosing g has the problems as DPIĥ  since it also depends on the 

unknown density functional, .6
 From equation (4.48), it is evident that the optimal bandwidth 

for estimating 
r
 depends on .2r

 

This problem can be overcome by estimating the 
r

 using the quick and simple estimate. 

stagel direct plug-in bandwidth selector )ˆ( ,lDPIh , the name given to a direct plug-in which 

involves l  successive kernel functional estimations, with the initial bandwidth chosen through a 

quick and simple method.
 
This approach uses the normal scale rule suggested by Sheather and 

Jones (1991) as a zero-stage direct plug-in bandwidth. 

 The normal scale bandwidth selector makes use of the AMISE optimal bandwidth for the 

normal density having the same scale as that estimated for the underlying density. From equation 

(4.35), the optimal bandwidth was given as  
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If the unknown distribution f  has a normal distribution with mean 0 and variance ,2  then the 

AMISE optimal bandwidth becomes (Wand and Jones, 1995, p.60) 
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To obtain the normal scale bandwidth selector, the standard deviation   in the above equation 

replace by its estimate ˆ  (Silverman 1986). Therefore, the normal scale bandwidth is given by  
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Usually, the sample standard deviation s is used as the estimator of or a more robust estimator 

of  such as the standardized inter-quartile range )ˆ( IQR  could be used. It’s been suggested that, 

to avoid or lessen the chance of over smoothing, the smaller of s and IQR
ˆ

 
is used (Silverman, 

1986, p.47). 

In general, if f is a normal density with variance 2 then, for r even (Wand and Jones, 1995, 

p.72),  
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This is an illustration of the two-stage plug-in bandwidth selector. Assuming KL  where K
 
 

is a second-order kernel: 

Step1: We estimate 
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by the normal scale rule, 
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Step2: Now we estimate 
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STEP4: The selected bandwidth is given by  
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Figure 4.3.1 Plots Comparing the Performance of the Plug-In Technique in the Univariate  

                    Case for Both Standard Kernel Estimate and the Kernel Estimate Based on  

                    the Sample Means 
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In general, both the plug-in technique base on the sample data and the sample means does a good 

job with the smoothing but the one based on the sample data loses tract of the smoothing at the 

extreme right of the histogram. The one based on the sample means smoothens evenly throughout 

the indices. 

 

4.3.2 Plug-In Bandwidth Matrix Selection for Bivariate Kernel Density Estimation 

Here, we consider bandwidth matrix selection for the bivariate kernel density estimator 

based on the sample means. A plug-in selector is developed for full bandwidth matrix. 

Bivariate kernel density estimation is very important because it serves as the mediator or 

the bridge between the univariate and the high-dimensional multivariate cases. 

The bivariate kernel density estimate based on the sample means is defined by  
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where 
T

xx 21,x  and 
T

XX 21,X , a random sample of means, K is the bivariate kernel 

density which is usually symmetric and H  is bandwidth matrix which is symmetric and positive 

definite. As we all know, the choice of the bivariate bandwidth matrix H is very crucial in 

determining the performance of our estimate x
X

f̂ . The bandwidth matrix H can be chosen 

from a class of diagonal (positive definite) matrices or a class of positive multiples of the identity 

matrix as investigated by Wand and Jones(1993), but here we chose a full (i.e. unconstrained) 

bandwidth matrix which allows for arbitrary orientation of the kernel function as investigated by 

Duong and Hazelton (2003). 

 In order to measure the performance of the our estimate above, we shall make use of the 

mean integrated squared error (MISE) criterion which we used in Chapter 2 in conformability 

with majority of the researchers in this field. The MISE of the estimate x
X

f̂  is given by  

xxxx
X

dffEfMISE

R

2

2

ˆˆ .                                     (4.57) 

Therefore, our optimal bandwidth matrix is supposed to be  

xX
H

fMISEargminH
H

MISE
ˆ ,                                         (4.58) 

where H is the space of all symmetric, positive definite 22 matrices and argmin is the 

argument of the minimum. But this optimal bandwidth does not have a closed form so the use of 

asymptotic analysis is employed. 
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From Chapter 2, the AMISE for our estimate in the multivariate settings (p-dimensional) was 

obtained to be  

xxHH
H

x
X

dftrn
n

KR
fAMISE

Tp

p

2
22/12/12

2/12/ 4

1ˆ . 

But in the bivariate case, p=2 and H is also assumed to be symmetric, therefore our AMISE 

becomes  

xxH
H

x
X

dftrn
n

KR
fAMISE 224

2/1
4

1ˆ ,                                  (4.59) 

where xx dKKR

R2

2
. 

To rewrite the AMISE into the form we need, we will need the following matrix results: 

1. If A is a symmetric matrix ,T
AA  then AAD vecvechd

, where 
dD  is a 

1
2

12 ddd  matrix of zeros and ones and is called the duplication matrix of order d , 

vech  is the vector half operator  and vec is the vector. 

For example, given a symmetric 22 matrix
2221

2111

aa

aa
A , and a duplication matrix of 

order 2, then the above relation can be illustrated as  

AAD vecvech

a

a

a

a

a

a

a

2

22

21

21

11

22

21

11

100

010

010

001
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2. If A is a square matrix, then  

AAAAD dgvechvec TT

d , 

where Adg is the same as A , but with all its off-diagonal entries equal to zero. 

3. BABA vecvectr TT . 

Therefore, the second term in equation (4.62) can be simplified by making use of the above 

matrix results. 

Consider 

xHDxxDH

xHxxHxxH

dvechfvecfvecvech

dvecfvecfvecvecdftr

d

TT

d

T

TT

2

222

                              
 

Therefore, 

HΨHxxH vechvechdftr T

4

22
,                                    (4.60) 

where 
4Ψ is a 331

2

1
1

2

1
dddd matrix given by  

xxDxDxDxDΨ dfdgfvechfdgfvech T

R

2222

4 22
2

, 

where xD f2  is the Hessian matrix of f . 

The above expansion holds if all the entries xD f2  are square integrable and all entries 

0H  and 0
2/11 Hn as n . 
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Therefore, substituting equation (4.60) into equation (4.59), we have  

HΨH
H

x
X

vechvechn
n

KR
fAMISE T

4

4

2/1
4

1ˆ .                          (4.61) 

Now, let 
21,rrr , where 

1r and 
2r are non-negative integers. Also let 21 rrr , then can 

write the thr partial derivative of f  as  

xx

r

r ff
r

x

r

x
2

2

1

1

,                                                     (4.62) 

assuming that this derivative exists. 

So the integrated density derivative functional 

 xxxx
rr

r dfffE

R2

                                                  (4.63) 

and  

xxxxxx
srsr dffdff

R

r

R 22

1                                        (4.64) 

if sr is even and zero otherwise. 

Making use of the equation (4.62), the 
4Ψ in our bivariate case becomes 

4,03,12,2

3,12,21,3

2,21,30,4

4

2

242

2

Ψ . 

Where the subscript 4 on the Ψ relates to the order of the derivative involved. 
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Therefore, the bandwidth matrix for the plug-in method is given by  

xX
H

fAMISEargminH
H

AMISE
ˆ .                         (4.65) 

But here too, just like the situation we faced in the univariate case, the AMISE is a functional of 

the unknown target density through
4Ψ . Therefore, we need to estimate the 

r
 functional which 

would allow us to get an estimated AMISE SEIAMˆ  that can be minimized numerically to give 

the plug-in bandwidth matrix Ĥ . 

From equation (4.63), we know that  

xxxx
rr

r dfffE

R2

 

which motivates the estimator 

n

Xnx
LnXfnψ i

n

i

n

i

i

1

2

1

1 ;ˆˆ
r

G

r

r GG

,

                             (4.66)

 

where G  is the pilot bandwidth matrix usual different from H and L is also a bivariate kernel 

density usually which is also symmetric but possibly different from K. 

In section 4.4.1, we derived the bias and the variance for the univariate plug-in method which can 

be extended to the bivariate bandwidth matrix settings. 

Therefore,  

GxxxGDG
r

r trodfftrLμψBias

R2

2

2
2

1
ˆ                                (4.67) 

and  
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12222

0
2 2

ˆ noψdffnLψψVar

R R

r

rr

Gr xxxxG .                  (4.68) 

If we consider the pilot bandwidth matrix G of the form Ig 2
G  (where I is a 22 identity 

matrix), then our bias and variance becomes 

i
ψLμggψBias err 22

2

2

1
ˆ ,                                                (4.69) 

 for large n, 
ie is the elementary vector( that is a vector of length 2 with 1 in the ith position and 

0 elsewhere, 

and  

2

222

0

12
1

2
ˆ

R

ψdffnLRψg
n

gψVar r

rrr
r

r xxx ,                 (4.70) 

provided the 
rL  is square integrable and 0g and 0

121 rr
gn as n . 

Therefore, the asymptotic mean square error (AMSE) of 
r
is 

2

22

2

0

12
1

2

1

2
ˆ

i
ψLμgLRψg

n
gψAMSE er

rr
r

r
              (4.71) 

since 
4Ψ is a positive-definite for any continuous  density f , when we assume the kernel L to be 

a multivariate normal distribution, then it can be shown that 4Ψ̂ is the
4Ψ  matrix corresponding to 

I
212.,ˆ gff , hence the estimate 4Ψ̂ will be positive definite. Therefore, a single or common 

g is needed for the estimation of all elements of 
4Ψ . As investigated by (Duong and Hazelton, 

2003), we estimate the bandwidth that minimizes the sum of the AMSE (SAMSE) for 
rψ , that is  
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4
0

,4 Ψ̂SAMSEargming
g

SAMSE
,                                            (4.72) 

where  

4:

44
ˆˆ

rr

rΨ gψAMSEgSAMSESAMSE .                                  (4.73) 

It is obvious from equations (4.69) and (4.71) that our estimate SAMSEg ,4  will depend on 

the functionals, 
i

ψ er 2 , for .4r But the functionals, 
i

ψ er 2 also depends on 
6Ψ . So we need the 

bandwidth SAMSEg ,4 , that is the minimize of 6Ψ̂SAMSE . Therefore, in general, we need SAMSE 

optimal bandwidth SAMSEjg ,  for ,...8,6,4rj , which is available in closed form as shown by 

(Duong and Hazelton, 2003). So from equation (4.69),  

 
jj

j
j

j

j i
ψLμgLRψg

n
gψAMSEgSAMSE

rr

er

rr

r

rr

r

:

2

2

2

2

4

:

0

12
1

: 2

1

2
ˆ .  (4.74) 

Now, letting 
j

LRA
rr

r

:

1
 and 

j
i

ψLμA
rr

er

:

2

2

2

22
, then 

.
4

1

2
2

4
10

12
1

AgAψg
n

gSAMSE j
j

j                                 (4.75) 

Now, differentiating the above with respect to g , we get  

2

3

10

22
1

12
2

AgAψgj
n

gSAMSE
g

j
j

j .                      (4.76) 

Setting equation (4.76) to zero and dividing through by 3g , we have  
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.012
2

210
52

1

AAψgj
n j

j

 

Therefore,  

10

1

252

12

2

Aψjn

A
g

j

j
; 

which implies that, 

.
2

12
52/1

2
1

10
,

j

jSAMSEj
An

Aψj
g                                    (4.77) 
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CHAPTER V 
 

 

MULTIVARIATE KERNEL DENSITY ESTIMATION – NEW APPROACH 

 

 

5.1 Introduction 

 

The estimate we obtained in the previous Chapters which completely break the 

curse of dimensionality and remedy the deficiency of high dimension bandwidth 

selection was based on the fact that it works well for self-revolving densities or the 

ellipsoidally symmetric distributions. We have obtained another solution in the form of 

an estimate that handles partially the curse of dimensionality. This new estimate is devoid 

of any restriction and works well for all densities unlike the one we previously obtained. 

As said earlier, it partially solves the problem of the curse of dimensionality which is 

better than the case of the classical or regular multivariate kernel density estimate. 

 

5.2 Bivariate Case 

 

Let nXX ,...,1 be random sample of independently distributed observations from 

a population with unknown bivariate density ,, 21 xxf then we propose the new 
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bivariate product kernel density estimator for the unknown density 21, xxf to be 

2

22

1 1

11

21

21

*

1

2
,ˆ

hi

Xx
K

hi

Xx
K

hhnn
xxf i

n

i

i
n

,                             (5.1) 

where K is the kernel which is assumed to be symmetric, 1,ˆ
2121

* dxdxxxfn

whenever 1duuK . Therefore 21

* ,ˆ xxfn is a density. 1h and 2h are the bandwidths 

or the smoothing parameters. 

5.2.1 Expectation and Bias of 21

* ,ˆ xxfn  

We can obtain the expectation and the bias of this new estimator as follows: 

2

22

1 1

11

21
21

*

1

2
,ˆ

hi

Xx
K

hi

Xx
KE

hhnn
xxfE i

n

i

i
n .

2121

1 2

22

1

11

21

,
1

2
                     dydyyyf

hi

yx
K

hi

yx
K

hhnn

n

i

.          (5.2) 

Let 

1

11

hi

yx
u , then 111 hiuxy  and duhidy 11 . 

Similarly, let

2

22

hi

yx
v , then 222 hivxy  and dvhidy 22 . 

Therefore, substituting these into equation (5.2), we have  

dvhiduhihivxhiuxfvKuK
hhnn

xxfE
n

i

n 212211

121

21

* ,
1

2
 ,ˆ       

 

dudvhivxhiuxfvKuKi
nn

n

i

2211

1

,
1

2
                           .                             
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Now applying the Taylor series expansion to second order, we have 

dudvxxfvihxxfhivuhxxfhiuvhxxfuih

xxfhivxxfhiuxxfvKuKi
nn

n

i

],,,,1/2  

,,,[
1

2

2122

22

22121122112212111

22

1

1

2122211121
 

.,2/1,1/2 

,2/1,2/1 

],,[,
1

2

2122

22

2212112

2112212111

22

1

1

2122211121

dudvxxfvihvKuKdudvxxfhivuhvKuK

dudvxxfhiuvhvKuKdudvxxfuihvKuK

dudvxxfhivxxfhiuvKuKdudvxxfvKuKi
nn

n

i

 

Now applying the moment conditions of kernel, that is ,duuuK  ,0dvvvK

,22

KσduuKu and ,22

KσdvvKv  we have  

2,122

22

2

2

2,111

22

1

2

21

1

2/12/1,
1

2
xxfσhixxfσhixxfi

nn
KK

n

i

 

n

i

K

n

i

K

n

i

ixxfσhixxfσhixxf
nn 1

3

2,122

22

2

1

3

2,111

22

1

1

21 2/12/1,
1

2
. 

Applying the power summation, we have  

4

1
2/1

4

1
2/1

2

1
,

1

2
22

2,122

22

2

22

2,111

22

121

nn
xxfσh

nn
xxfσh

nn
xxf

nn
KK

 

2,122

22

22,111

22

121
4

1

4

1
, xxfσh

nn
xxfσh

nn
xxf KK

. 

Therefore 
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.
4

1
,,ˆ

2,122

2

22,111

2

1

2

2121

* xxfhxxfhσ
nn

xxfxxfE Kn
.
                  

(5.3) 

Therefore, the bias of 21

* ,ˆ xxfn  is 

                 
* 2 2 2

1 2 1 11 1, 2 2 22 1, 2

1ˆ ,
4

n K

n n
Bias f x x h f x x h f x x .             (5.4) 

The asymptotic square bias (AISB) is given by 

                          

].                              

,,2[
16

1
,ˆ

212,1

2

22

4

2

2121222111

2

2

2

1212,1

2

11

4

1

4

22

21

*

dxdxxxfh

dxdxxxfxxfhhdxdxxxfhσ
nn

xxfAISB Kn

 

Therefore, AISB of 21

* ,ˆ xxfn  is given by 

                          

],,2[
16

1
,ˆ

22
4
22211

2
2

2
111

4
1

4
22

21
* fRhffShhfRhσ

nn
xxfAISB Kn

                    

(5.5) 

where 2121

2

1111 , dxdxxxffR , 2121

2

2222 , dxdxxxffR  and 

21212221112211 ,,, dxdxxxfxxfffS . 

5.2.2 Variance and AMISE of 21

* ,ˆ xxfn  

Squaring equation (5.1) yields 

.                   

1

4
,ˆ

2

222

1

112

2

22

1

11

2

22

1

11

2

2

2

1

2221

2*

hi

Xx
K

hi

Xx
K

hi

Xx
K

hi

Xx
K

hi

Xx
K

hi

Xx
K

hhnn
xxf

i

i

i

lj

lljj

n
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Therefore, 

             2

222

1 1

112

2

2

2

1

2221

2*

1

4
,ˆ

hi

Xx
K

hi

Xx
KE

hhnn
xxfE i

n

i

i
n

 

)6.5.(,
1

4
                                      2121

1 2

212

1

112

2
2

2
1

22
dydyyyf

hi

yx
K

hi

yx
K

hhnn

n

i

 

Let 

1

11

hi

yx
u , then 111 hiuxy  and duhidy 11 . 

Similarly, let

2

22

hi

yx
v , then 222 hivxy  and dvhidy 22 . 

Therefore, substituting these into equation (5.6), we have  

dvhiduhihivxhiuxfuKuK
hhnn

xxfE
n

i

n 212211

1

22

2

2

2

1

2221

2* ,
1

4
,ˆ                 

 

.,
1

4
                                       2211

1

22

21
22

dudvhivxhiuxfuKuKi
hhnn

n

i

. 

Now applying the Taylor series expansion to first order, we have 

dudvxxfvKuKi
hhnn

n

i

21

1

22

21

22
,

1

4
 

n

i

i
hhnn

KRxxf

121

22

2

21

1

,4
, 

where KRduuK 2
  and KRduuK 2

. 
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Applying the power summation, we have  

21

2

21

21

22

2

21

1

,2

2

1

1

,4

hhnn

KRxxfnn

hhnn

KRxxf
. 

Since the variance term is dominated by the 2ˆE f
X

, then the variance of 21

* ,ˆ xxfn  is 

given by 

21

2

21
21

*

1

,2
,ˆ

hhnn

KRxxf
xxfVar n .                                                            (5.7) 

Therefore, the asymptotic integrated variance (AIV) is given by 

21

2

21

21

2

21
21

*

1

2

1

,2
,ˆ

hhnn

KR
dxdx

hhnn

KRxxf
xxfAIV n .                                  (5.8) 

Therefore, the asymptotic mean squared integrated error is given by 

,
1

2
               

],,2[
16

1
             

21

2

22
4
22121222111

2
2

2
111

4
1

4
22

hhnn

KR

fRhdxdxxxfxxfhhfRhσ
nn

AIVAISBAMISE

K   (5.9) 

where 2121

2

1111 , dxdxxxffR  and 2121

2

2222 , dxdxxxffR .

 
We can easily find a solution for the optimum bandwidth if hhi

 for all i . 

Therefore, equation (5.9) becomes 

.
1

2
                

],,2[
16

1

2

2

22

4

2121222111

4

11

44

22

hnn

KR

fRhdxdxxxfxxfhfRhσ
nn

AMISE K
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Differentiating with respect to h  and equating to zero, we have  

.0
1

4
                

]4,,84[
16

1

3

2

22

3

2121222111

3

11

34

22

hnn

KR
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1

16
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433

2
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6

2121222111

6
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6

Kσnn

KR
fRhdxdxxxfxxfhfRh

           

(5.10) 

From Scott (1992), the general bivariate normal data using a normal kernel gives 

1

2

5

1

2/52

11 1163 σσρπfR , 

1
5

21

2/52

22 1163 σσρπfR , 

and  

1
3

2

3

1

2/522

212211 11621
2

σσρπρdxdxff , 

where ρ is the correlation coefficient. 

Substituting these into equation (5.10) we have 
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Assuming the standard deviation σσi
 for all i , then we have  

 

4 2 4 4

6

35/ 2 32 10

3 2 1 2 3 4

116 1
h

n n

 5/ 2
2 10
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33 4 2
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n n
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 .
2/1/11
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i

                                               

(5.11)

 If the variables are independent, then 0ρ  and  

.
/11

8
6/1

3

6
1

n

σ
nh i

i

                                                  

(5.12) 
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Figure 5.2.1 The Bivariate Normal Density Distribution 

 

Figure 5.2.2 Contour of the Bivariate Normal Density 
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Figure 5.2.3 Regular Kernel Estimate of the Bivariate Normal Distribution 

 

 

Figure 5.2.4 Contour of the Regular Kernel Estimate of the Bivariate Normal Density 
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Figure 5.2.5 The New Kernel Estimate of the Bivariate Normal Distribution 

 

 

Figure 5.2.6 Contour of the New Kernel Estimate of the Bivariate Normal Distribution 
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5.3 Multivariate Product Kernel Case 

 

Let nXX ,...,1 be random sample of independently distributed observations from 

a population with unknown density xf , of dimension p . Let X be an pn data 

matrix of random vectors pxx ,...,1x  and let ijX denote the ij
th
 entry of X . Then we 

propose the new multivariate product kernel density estimator for the unknown density 

xf to be  

n

i j
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n
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X
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nnh

f
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x

x ,

                                                

(5.13)

 

where K is the kernel which is assumed to be symmetric, jh are the respective smoothing 

parameters for each dimension. 

 

 

5.3.1 Expectation and Bias of x
*ˆ

nf  

The expectation and the bias of this multivariate product kernel estimator as follows: 
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(5.14) 
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Let 

j
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j
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Substituting these into equation (5.14), we have 
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Now applying the Taylor series expansion to second order, we have 
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Also applying the moment conditions of kernel, we have 
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Applying the power summation, we have  
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Therefore, the bias of x
*ˆ

nf  is given by 

p

j

jjjKn fhσ
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(5.16)
 

The asymptotic integrated square bias (AISB) is given by 
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1ˆ x ,                      (5.17) 

where dxffR iiii x
2

 and xdffffS jjiijjii, . 

5.3.2 Variance and AMISE of x
*ˆ

nf  

Squaring equation (5.13) yields 
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Let 
j

p
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j
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p
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Therefore, substituting these into equation (5.18), we have  
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Now applying the Taylor series expansion to first order, we have 
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where KRuK p

j

p

j 1

2
.   

Applying the power summation, we have  

p

j

j

p

p

j

j

p

hnn

KRfnn

hnn

KRf

11

22 1

2

2

1

1

4 xx
. 

Since the variance term is dominated by the x
2*ˆ

nfE , then the variance of x
*ˆ

nf  is 

given by 
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 Therefore, the asymptotic integrated variance (AIV) is given by 
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Therefore, the asymptotic mean squared integrated error is given by 
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5.4 Multivariate Case-General 

If iX is a independent random sample from a population with unknown density, xf ,  

and 
T

ipi XX ,...,1iX , and 
p

x has the representation pxx ,...,1x . Then we 

propose the p-dimensional multivariate kernel density estimator as  
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where H is a positive definite pp matrix called the bandwidth matrix or the 

smoothing matrix and K is the kernel which is assumed to be symmetric. 

5.4.1 Expectation and Bias of x
*ˆ

nf  
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where pdydyd ,...,1y . 

Let 
1

/1
H

i p
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u , then Huxy

pi /1
 and uHy did . 

Substituting the above into equation (5.23) we have  
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Now applying the Taylor series expansion to second order, we have 
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We notice that the quadratic form in the equation (5.21) above is a 11  matrix, which is 

equal to its trace.

  

Applying the moment conditions for multivariate kernel and the first two terms and using 

the trace identity and exchanging the integral operations and the trace, we have 

n

i

TT fdKtrifi
nn 1

222/1
1

2
              HxuHuuux  . 

Now applying the moment conditions for multivariate kernel on the second term we have 
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since the covariance of K is assumed to be pI .  

So we have
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Therefore, the bias of x
*ˆ

nf  is 
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The asymptotic square bias (AISB) is given by 
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5.4.2 Variance and AMISE of x
*ˆ

nf  

Squaring equation (5.22) yields 
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where pdydyd ,...,1y . 

Let 
1

/1
H

i p

yx
u , then Huxy

pi /1
 and uHy did . 

Substituting the above into equation (5.28) we have  
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Applying Taylor series expansion to the first order and the moment conditions, we have
 

n

i

KRif
Hnn 1

22 1

4
              x

 

KRf
nn

Hnn
x

2

1

1

4
              

22
 . 

Therefore 

Hnn

KRf
f

1

2
  E            2*

n

x
x  , 

where .2
uu dKKR  

Since the variance term is dominated by the
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From equation (5.29), the asymptotic integrated variance (AIV) is given by  

H
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Therefore, the asymptotic mean squared error (AMISE) is  
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5.4.3 An Important Special Case 

Now, let’s define a scalar 0h  and a p p  matrix Q  such that QH h , 

where 1Q . 

The idea behind choosing the matrix Q  to have a unit determinant is that the elliptical 

shape of the kernel is controlled by the matrix T
QQ  and the size of this kernel is 

governed by the scalar h , which is the bandwidth and which controls the amount of 

smoothness in the estimator for a given sample size n , where 
1/

1, 2( ,..., ) p

ph h h h  is the 

geometric mean of the smoothing parameters. Hence 

 

xx fQQtrh
nn

fBias T

n

22*

4

1
   .                          (5.32) 

Therefore, the asymptotic integrated squared bias (AISB) is given by 
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nn
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24
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In the above special case, where QH h , 1Q , the asymptotic integrated variance 

will be given by 

pn
hnn

KR
fAIV

1

2ˆ *
x ,                                      (5.34) 

since Q  is a p p  matrix with unit determinant. 

In this case, for a sufficiently smooth density function f x , the multivariate mean 

integrated square error (MISE) is asymptotically given by 
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As it was said in the introduction, the choice of the bandwidth h  is well-known to be 

crucial and of great importance since it controls the smoothness of the estimator xf̂ . 

Choosing the bandwidth, h  involves a trade-off between the variance and the bias of the 

estimate as can be seen in the AMISE above. Therefore, an intermediate value of the 

bandwidth must be chosen to control both the bias and the variance simultaneously and 

allowing the bandwidth h  to slowly decrease as the sample size increases for a better 

performance of the estimate. 

 In the multivariate standard case parameterized by QH h , where 1Q , the 

AMISE is given by  

xx dfQQtrh
nh

KR
AMISE T

p

224

4

1
                     (5.36) 

 where p is the dimension. 

In this special case, the optimum h  can be obtained by differentiating equation 

(5.36) and equating it to zero as shown below: 
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Equating this to zero yields 
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We know that Scott (1992) gave the optimum bandwidth for the regular or the classical 

multivariate kernel density estimator as below: 

)4/(1

22

4/1

p

T

p
opt

dfQtr

KpR
nh

xxQ

. 

Comparing the optimum bandwidth of our new estimate to the one obtained by Scott 

(1992), we realized that in both cases, the order of the optimum bandwidths depend on 

the dimension and the optimum bandwidths 1opth , a constant as p . This will 

give a very rough estimate for large p  since as p  the optimum bandwidth is a 

constant irrespective of the sample size n . Therefore, they both experience the curse of 

dimensionality. But our new multivariate kernel density estimate will give a bandwidth 

smaller enough for large dimensions which will guarantee smoothness. This is not the 
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case for the optimum bandwidth given by the regular or standard multivariate kernel 

estimate. Therefore, even though they both experience the curse of dimensionality, the 

effect will be minimal in our new multivariate kernel density estimate case compared to 

that of the regular multivariate kernel density case. 
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CHAPTER VI 
 

 

CONCLUSIONS 

 

 
We applied the idea of multivariate kernel density estimation to probability density 

functions which have the self-revolving characteristics or the ellipsoidally symmetric 

distributions. This time around we allowed the kernel to depend on the sample means rather than 

the sample data. We observed that the order of the optimum bandwidth that smoothens the 

density function is 2/1n  which is independent of the dimension of the data used. This optimum 

bandwidth decreases as sample size increases to allow for a better performance of the estimate. 

The optimum bandwidth becomes small enough for larger dimension which guarantees 

smoothness. This breaks the “curse of dimensionality” and remedies the deficiency of high 

dimensional bandwidth selection as the optimum bandwidth gets smaller enough for large 

dimension to guarantee smoothness. 

The simulation results also shows that the regular multivariate kernel density estimate 

performs better when the dimension of the data is less than 4 but when the dimension is 4 and 

above, the multivariate kernel density estimate based on the sample means outperforms the 

regular multivariate kernel density estimate. In addition, the bandwidth selections using Unbiased 

Cross-Validation and Biased Cross Validation as well as the Plug-in Technique indicate that the 

multivariate kernel density estimate based on the sample means in general smoothens the function 

better than the regular multivariate kernel density estimate. 
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Based on the fact that a good density estimator might yield a good distribution estimator, 

it is natural to expect the optimal bandwidth for the multivariate kernel distribution function not 

to depend on the dimension p and this is what happened in our case but not in the case of the 

regular multivariate kernel distribution function. The order of our optimal bandwidth for the 

multivariate kernel distribution function based on the sample means is 2/1n for all dimensions. 

This optimum bandwidth decreases as sample size increases to allow for a better performance of 

the estimate. The optimum bandwidth for the regular multivariate kernel distribution function 

proposed by Scott (1992) is .4/1 pn  Jin and Shao (1999) established that the optimal bandwidth 

for a class of kernel estimator of a multivariate kernel distribution function is of order 1/3n for all 

dimensions. Both the optimal bandwidth in our case and that of Jin and Shao (1999) are 

independent of the dimension of the data. But for a given sample size, our estimate will produce a 

bandwidth small enough for large dimension to guarantee smoothness. 

In the multivariate kernel nonparametric regression estimation, we obtained the 

Asymptotic Mean Square Error (AMSE) similar to that of the Nadaraya-Watson regression 

estimation in its multivariate form. In our special case, the optimum bandwidth is of order 2/1n  

which is independent of the dimension of the data set. This optimum bandwidth decreases as 

sample size increases to allow for a better performance of the estimate. This breaks the “curse of 

dimensionality” and remedies the deficiency of high dimensional bandwidth selection as the 

optimum bandwidth gets smaller enough for large dimension to guarantee smoothness. 

We also proposed a new multivariate kernel density estimate which does not completely 

breaks the “curse of dimensionality” but the effect of the curse on it is minimal as compared to 

the regular multivariate kernel density estimate. The order of the optimal bandwidth for the new 

multivariate kernel density estimate is pn 4/6 . This order optimum bandwidth decreases as 

sample size increases to allow for a better performance of the estimate. The order optimal 

bandwidth for the regular multivariate kernel density estimate is .4/1 pn  They both depend on 
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the dimension of the data set and hence both experience the “curse of dimensionality”. The new 

multivariate kernel density estimate gives a bandwidth small enough for large dimensions which 

will guarantee smoothness. This is not the case for the optimum bandwidth given by the regular 

multivariate kernel density estimate. Therefore, even though our new multivariate kernel density 

estimate and the regular multivariate kernel density estimate both experience the “curse of 

dimensionality”, the effect is minimal in our new multivariate kernel density estimate case. 
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CHAPTER VII 
 

 

FUTURE WORK 

 

In the dissertation, we were able to investigate the bandwidth selection of both the 

univariate and the multivariate kernel density estimates based on the sample means. We were also 

able to compare them to their regular univariate and multivariate kernel density estimates 

counterparts. We would also like to study the bandwidth selection of the multivariate kernel 

distribution function and the multivariate kernel regression function based on sample means. We 

would do these investigations via both biased and unbiased cross validations as well as the plug-

in technique. We will then compare these to the bandwidth selection of the regular multivariate 

kernel distribution function and the regular multivariate kernel regression function and take notice 

of the differences between them. We would then do some simulations to authenticate these 

differences. 

We are also interested in how the different error criteria play a role in the choice of the 

bandwidth. We used the mean integrated square error ))]()(ˆ[( 2 dxxfxfEMISE  as the 

error criterion to assess the performance of the estimate and to find the optimum bandwidth in our 

estimate based on the sample means. This error criterion had been used by many but research 

shows that using the MISE to obtain the optimum bandwidth slightly under smooth the function. 

The mean supremum is another error criterion that we would like to use to assess the performance 

of our estimate. The mean supremum })ˆ{( xfxfSupEMSup
x

 gives 
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a precise upper bound that can also be used to obtain the optimum bandwidth. But research also 

shows that using MSup to obtain the optimum bandwidth slightly over smooth the function. 

Therefore, in the future, we will find the average of these two optimum bandwidths as the 

combined optimum bandwidth choice for the estimate which we believe will do a better job in the 

smoothing of the function than its individual components. 

In the future, we would like to use the estimate of the multivariate kernel density function 

based on the sample means that we obtained to find the non-parametric estimates of the quantiles 

(percentiles) in the univariate case and then do a direct bandwidth selection on them. The 

bandwidth selection will be done via biased and unbiased cross-validation as well as plug-in 

technique. We also like to show their properties, and then generalize it to the multivariate 

settings. 

We are also interested in doing more research on the new multivariate kernel density 

estimate. We would like to perform a bandwidth selection on this estimate find its asymptotic 

properties and then compare to that of the regular multivariate kernel density estimate. We will 

investigate more into why the issue of “the curse of dimensionality” is less intense in the new 

estimate as compared to the regular multivariate kernel density estimate. We will then compare 

them by simulations to show how they both handle the issue of “the curse of dimensionality.”  

The new estimate is designed to work better for positive random variables or random 

vectors.  This major area has a lot of applications on its own. We will pursue how this new 

estimate works for an aspect of reliability and life testing. We would like to know how the 

estimate works in relation to hazard rate, multivariate hazard rate, mean residual life and 

multivariate mean residual life. We would also like to investigate its performance within some 

life testing properties like New Better than Used (NBU) and Increasing Hazard Rate (IHR). 
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