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Kernel density estimation (KDE) is the most widely-used practical method
for accurate nonparametric density estimation. Many works had been done on
both the univariate and multivariate cases showing the efficacy, practicality and
applicability of this method. Despite the fact that multivariate kernel density
estimation is an important technique in multivariate data analysis and has a wide
range of applications, its performance worsens exponentially with high
dimensional data sets, this phenomenon is called “curse of dimensionality”, where
there is exponential growth in combinatorial optimization as the dimension of the
data set increases. Scott and Wand (1991) demonstrated a progressive
deterioration of the multivariate kernel density estimation as the dimension p
increases by showing that an increase in sample size is required to attain an
equivalent amount of accuracy.

This work proposes a new multivariate kernel density estimation approach
which is based on the sample means. The method has the characteristic that it
works for self-revolving densities or the ellipsoidally symmetric distributions. It
also works for spherical distributions since they can be transformed to
ellipsoidally symmetric distributions by undergoing an affine transformation. The
univariate normal, multivariate normal and the Cauchy distributions, just to
mention a few, are some of the distributions that possess this self-revolving or the
ellipsoidally symmetric property. In addition, this work also proposes another new
multivariate kernel density estimate which handles the curse of dimensionality
better.

We applied this new method to the probability density function, the
distribution function and nonparametric multivariate regression. In all these cases,
our multivariate kernel density estimation approach which is based on the sample
means performs better than the regular multivariate kernel density estimation
based on the sample data. We also observed that the proposed multivariate kernel
density method breaks the “curse of dimensionality” and remedy the deficiency of
high dimensional bandwidth selection. Besides, its performance is consistent in
most of the bandwidth selection methodologies. The second proposed new
multivariate density estimate does not completely breaks the curse of
dimensionality but the effect of the curse on it is minimal as compared to the
regular multivariate kernel density estimate.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction and Historical Background

In the past few decades, one nonparametric density estimation method known as kernel
density estimation (KDE) had become a renowned method of density estimation in statistics,
economics and other areas where this idea is applicable. KDE is now one of the most popular
methods for estimating the underlying probability density function (PDF) based on a data set. It is
also the most widely-used practical method for accurate nonparametric density estimation. Since
1951, a lot of work had been done on both the univariate and multivariate cases showing the
efficacy, practicality, and applicability of this method.

Kernel density estimation was originated by Fix and Hodges (1951) and Rosenblatt
(1956). Fix and Hodges (1951) were concerned with density estimation in connection with
nonparametric discrimination. In his fundamental paper, Rosenblatt (1956) gave a full
demonstration of the idea of nonparametric estimation of density function. Fix and Hodges (1951)

and Rosenblatt (1956) both defined the kernel density estimator as:



o~ 1 X—Xi
f((/_EZK( : j (L)

i=1

where  X,,X,,..., X is a random sample from a continuous density function f (<:, Kisa

known second order symmetric PDF referred to as the kernel and h is the bandwidth(a known
sequence of constants) which depends on n such that h — 0 and nh — 0 asn — oo. The choice

of the bandwidth h, is well-known to be crucial and of great importance since it controls the

smoothness of the estimator f (:. Choosing the bandwidth, h, involves a trade-off between the
variance and the bias of the estimate. Epanechnikov (1969) demonstrated that the choice of the
kernel K is not very crucial in density estimation. What both originators proposed was a
univariate kernel density estimator. A couple of error criteria were used to assess the performance
of this estimator. Scott and Wand (1991) used the mean absolute error (MAE) and mean
integrated absolute error (MIAE) to assess the performance of this estimator. Ahmad and
Amezziane (2012), among others, used the mean square error (MSE) and mean integrated square

error (MISE) to ascertain this assessment.

1.2 Multivariate Kernel Density Estimation

In recent times, there have been improvements which led to the extension of the
univariate kernel density estimation to the multivariate case. Specifically, based on the extensive
research carried out in the last three decades, multivariate kernel density estimation has reached a
level of maturity comparable to their univariate counterparts. Multivariate kernel density is an
important technique in multivariate data analysis and has a wide range of applications.

Ahmad and Amezziane (2012) proposed the multivariate kernel density estimator of the

PDE f X as



» x e IRP (1.2)

where H,the bandwidth matrix, is a symmetric positive definite px pmatrix that verifies the

following usual two conditions:

. = . -1 -12
H — 0, , where 0,is the null ©x p_matrixandn™|H| ™" 30,
n—oo

K (:the kernel, is a multivariate density function that satisfy the two moment conditions

IZK Z dz =0p
nP (13)

jzzTK zdz=1,

RP

and for every function g they defined:

gy X =|H[""g H*x .

Ahmad and Amezziane (2012) used the MSE and the MISE to measure the performance of the

above estimator. They also provided a data-based method to evaluate the bandwidth matrix.

1.3 Limitations

Even though multivariate kernel density estimation is an important technique in
multivariate data analysis and has a wide range of applications, its long standing worst-case
theoretical results showing that its performance worsens exponentially with the dimension of the

data have suppressed its applications to modern high-dimensional data sets for decades. This



phenomenon is what Bellman (1961) called the “curse of dimensionality”, where he describes the

exponential growth in combinatorial optimization as the dimension increases.

Scott and Wand (1991) also demonstrated a progressive deterioration of multivariate

kernel density estimation as the dimension P increases by showing that an increase in sample

size is required to attain an equivalent amount of accuracy. Ahmad and Amezziane (2012)
attempted to address the “curse of dimensionality” by using a weighted version of the MSE or

MISE with weights depending on the sample size n.

1.4 Mainstream: Multivariate Density Estimation Based on Sample Means

In all the papers presented on both univariate and multivariate kernel density estimation,
a sample from the underlying PDF is used to estimate it. Therefore, the estimator is always a
function of the sample from its PDF.

The work at hand develops a new method of kernel density estimation called “kernel
density estimation based on the sample means.” This work is found as a new modification of the
regular kernel density estimation in multivariate case that addresses the curse of dimensionality

and it uses average rather than individual data units.

This method has the characteristic that it works for self-revolving densities or the
ellipsoidally symmetric distributions. Applying this method of kernel density estimation to the
self-revolving densities or the ellipsoidally symmetric distributions, the curse of dimensionality is
alleviated and a remedy is found for the deficiency of high dimension bandwidth selection. This

is the main thrust of this work.



1.4.1 Ellipsoidally Symmetric Distributions

If Zis a random vector whose distribution is spherical about the origin then a random
vector X which is representable as the image of Z under affine transformation is said to have
an ellipsoidally symmetric distribution. Affine transformation between two vector spaces consists

of a transformation followed by a translation.

Ellipsoidal distributions are characterized by the fact that there exists a linear
transformation of the variables that results in a spherically symmetric distribution for the
transformed variables. An ellipsoidal distribution is fully specified by (i) its center of symmetry,
(i) its inner product defined by the linear transformation to sphericity and (iii) the distribution on
the radii of concentric hyperspheres on which there is uniform probability density. Such
multivariate distributions play an important role in the theory of matching because the symmetry

allows general results to be obtained.

The model of ellipsoidal symmetry is a useful generalization of multivariate normality.
The statistical model most frequently assumed in multivariate analysis is the normal distribution.

A notable feature of the N €, = density is the property that its constant surfaces are ellipsoids
centered at p with orientation and shape determined by the matrix X . This ellipsoidal

symmetry plays an important role in the geometrical interpretation of normal-model multivariate
analysis. Even without normality, ellipsoidal symmetry of the data distribution can provide a

rationale for the use of standard multivariate procedures (Dempster (1969)).

Recent interest in robust statistical methods has led to more detailed consideration of
statistical models which retain some of the features of the normal model while providing
flexibility in data-fitting. In a p-dimensional multivariate setting, a corresponding generalization

of the normal model is the model of the ellipsoidal symmetry: each observation has density of the



form [det A Th[A‘1 X—p :| where u is a px1 vector, A is a px P nonsingular
matrix, and h is a density on RP which is a spherically symmetric about the origin.

A special case of the multivariate t distribution when the common denominator has 1

degree of freedom is a multivariate Cauchy distribution. Ferguson (1967) has shown that this

multivariate Cauchy is characterized by the fact that any linear function of Y,,...,Y, has a

(univariate) Cauchy distribution. The multivariate Cauchy and multivariate normal distributions
belong to the class of spherical distributions. Therefore under an affine transformation, they

become ellipsoidally symmetric distributions.

Lemma 1.1: If f is ellipsoidally symmetric distribution, then f 6(} nP’2 f (/ﬁx .

1.4.2 The Proposed Estimate

Let X = (X}, X,,...,X,)" be the means of random samples from a population with unknown
density, f X assumed to be ellipsoidally symmetric, then we propose the following estimate of
f X based on the sample means:

~ 1 —VnX | ~
s & = 75 Kll:[x ;//ZH jﬂ/llz}, (1.4)

r]p/2|H| n

>

where H is a positive-definite smoothing matrix and P is the dimension of the X and K,is the

kernel which is assumed to be symmetric. Under the moment condition that _[Kl (szu =1, then
RP

our proposed estimator is a density as shown below:



~ ~ 1 - )? )
ok e o

np/2|H|

—VnX [0 12
Let U :W,then X =+/nX +nY2HY?u and therefore dX:ﬂp/2|H|1 du.
n
£ = 1 ~ 1/2 ~
— p/2 _ _
o, x«QX—np,2|H|l,2 [K, @B H["du= [K, 4 Tu=1.

Since our model works for ellipsoidal symmetric distributions, the above estimator is a
very good estimate which yields a trade-off between the bias and the variance to produce a good

optimum bandwidth.

Applications of estimate (1.4) are given in the case of estimating the distribution function

as well as the regression function in Chapters 2 and 3 to follow.



CHAPTER II

BASIC RESULTS

2.1 Multivariate Kernel Density Estimation

Let X =(X;, X,,.... X,)" be the means of random samples from a population with

unknown density, f X assumed to be ellipsoidally symmetric, then the estimate of f X

based on the sample means is given by

fo & = - 7z Kﬂx_fijﬂj”z}, 2.1)

np/2|H| n

where H is positive-definite smoothing matrix and K, is a symmetric kernel.

In this chapter, we develop some basic properties of the estimate (1.4). We concentrate

on the mean square and the mean integrated square errors.



2.1.1 Expectation and Bias of f, x

~ 1 x—ny ) ~ ~
E I)? « = W jKlHT]H /1/2})( ¢ dy, (2.2)

where dy =dy,,...,dy, .

Since f, y = n %t \/_y we get that,
< 1 X—\/ﬁ -~ ~
e fx S J Kl[(nszJﬂ f’ﬂn"’zf Uny dy. 23)
n

Let Jny=w, then((jj n’2.1. Hence dy— 1 ~dw and then
y

efe=— MH . _l\,/zﬁy](-i - Z}f @ dw. (2.4)

np/2|H|l/2 n

T 1/2
«-w €

==, then N> @ Z*u=x—w, which implies that
n

Now, let U=

1/2

w=x-n">€ 7*u and|dw|=n""?|H|"*du . Thus

EI ‘( = 1/2 IK (17‘( nllellzu}plzLHrlz du

|
- [k €@ &=n"?H"2u du (25)

Now applying the Taylor series expansion to second order, we have



\_ ~ ~ T ~
E k « ~ J‘Kl(ﬂf[f &« —n2HY2vi T +%nuT (—Il/Z/V2f Q(/Hllzu}du.
Hence

3 «JK, € u-n"?HY?vi & Ju"K, ¢ Ju
5 - - (2.6)
+%n(—|1/2/vzf «HY? Juu"K, G du.

Note that the multivariate kernel customary assumes the three moment’s conditions:

(i) IKl ¢ du=1, a multivariate density
RP

(i) JukK, (@u =0, the means of the marginal kernels are zero
RP

(iii) juuT K, (,@ju =1, this means the marginal kernels are all pairwise uncorrelated
RP

and that each has a unit variance.

Therefore,
E k « ~f 6(:+gtr ‘-I”Zjvzf 6(]—|l’zjuuT K, €@ du . 2.7)

Since the quadratic form in the equation (2.7) is a determinant matrix which is equal to its trace,

by applying the moment conditions, the covariance matrix of K, is I, and the integral factor

within the trace vanishes, so we have

ef &t «}gtr $Tver e (2.8)

10



-

The expectation of f x willequal f X tothe orderO‘ltr <—Il’2j(—|l’2:..

-

From equation (2.8), the bias of fA>z X is given by
Bias ri ((:_zgtr <_|1/2 jvz f «]_IUZ:

=gtr ¢ v e, (2.9)

by applying a property of trace. The asymptotic integrated square bias (AISB) is obtained by

squaring the right-hand side of (2.9) and integrating out X, that is

2
AISB:%nZI[tr{G”Z}I”ZjVZf «H dx. (2.10)

2.1.2 An Important Special Case

Now, let’s define a scalar h>0 anda px p matrix Q suchthat H =h?Q, where

Q-1

The idea behind choosing the matrix Q to have a unit determinant is that the elliptical shape of

the kernel is controlled by the matrix QQ" and the size of this kernel is governed by the scalar h,
which is the bandwidth and which controls the amount of smoothness in the estimator for a given

1/p

sample sizen, where h=(h h,,...,h )" is the geometric mean of the smoothing parameters.

Hence

< T
Bias f)? &« ~ % nhztr{Q”2 (}1/2 P V2§ «:}. (2.11)

11



Therefore, the asymptotic integrated squared bias (AISB) is given by

AISB = n2h4jl d”zo“ﬂvzf «/ij . (2.12)

A

2.1.3 Variance and AMISE of f, x

Squaring equation (2.1) yields

~ 1 ~nX g, 1o
= I

Again, assuming f, y = n P2 g \/ﬁy ,

f

x|~

Ef ‘( J‘ p|H| |:(X l\I/Z_YJ‘_l—uzinp/zf(/ﬁyEiy.

Let Vny =w, then — dw =n"?, dy= dV/VZ
dy n®
Ef « - j T HX ;/:yjﬂ‘qu@w. (2.14)

T /2
«-w €

1/2
n

Let u= then w=x—-n"> @4 fzu , which implies |dw|=n""?|H |l/2 du.

\
1/2
3 nllellzu}plzLH| du

24~ 1 2
EIX«/‘_np|H| Ki

—

12



:J'—l K2 G €-n"?H"2u du.

2 1/2
n®*|H|

Applying Taylor series expansion to the second order and the moments conditions,

where R€, = ij ¢ du.
The variance term is dominated by the E[ ] therefore

T T&RE,
Var Ix &« ~ W :

From equation (2.17), the asymptotic integrated variance (AlV) is given by

R K,

1/2 °

AV =————
n*’? |H|

Therefore, the asymptotic mean squared error (AMISE) is

AMlSE_—nZH Hvz @2 Ty «/ij+

In the above special case, where H =h’Q, |Q| =1, we get that

R K,
AlV ==L

nP’2hP

since Q isa Px P matrix with unit determinant.

13

RK,

p/2|H|l/2 '

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)



In this case, for a sufficiently smooth density function f X , the multivariate mean integrated

square error (MISE) is asymptotically given by
AMISE = AlV + AISB

Therefore,

~ 2
.
AMISE :%+%n2h4j[tr{(gllzbllz/v2f «H dx. (2.20)

n

As it was said in the introduction, the choice of the bandwidth h is well-known to be crucial and

of great importance since it controls the smoothness of the estimator f ((:. Choosing the

bandwidth h involves a trade-off between the variance and the bias of the estimate as can be seen
in the AMISE above. Therefore, an intermediate value of the bandwidth must be chosen to
control both the bias and the variance simultaneously and allowing the bandwidth h to slowly

decrease as the sample size increases for a better performance of the estimate. In the multivariate

standard case parameterized by H = hQ , where|Q| =1, the AMISE is given by
\
AMISE =Rhip/+%h4 j'l doTv2r €« px.,
n

where P is the dimension. Here, the bias is very small and the variance is large. The AMISE in

our special case as seen in equation (2.20) to that of the special case of the standard form, we

have a smaller variance and a bigger bias which is opposite of that of the standard case.

In this special case, the optimum h can be obtained by differentiating equation (2.20) and

equating it to zero as shown below:

O®MISE | - ph 'R, _ g ” ¢z @2 Tve s «\f}ix.

oh nP’2 -

14



Equating this to zero yields

ph~? :/Fi«l, n2h? J'l, 61/2 Qllva f((/_ﬂx

n

pR((1:: n2h? J‘l, dl/z 0’ RRver ((\_Z}jx '

n p/2h p+1
Thus

hP+4 pR«1:

n©+412 Il:tr{Qllz bl/Zjvzf «:HZ :

Hence

1/(p+4)

h 172 PR&, _

J‘i:tr{QUZ Qllzjvzf “}T

Note that the order of the optimum bandwidth h,,

(2.21)

is independent of the dimension pP. Despite

the tradeoff between the variance and the bias, we obtained an optimum bandwidth which is

independent of the dimension and this optimum bandwidth decreases as sample size increases to

allow for a better performance of the estimate. Besides for a fixed sample size, the order of the

optimum bandwidth is fixed as the dimension increases and it is small enough to guarantee

smoothness.

15



2.2 Curse of Dimensionality

Equation (2.21) is the optimum bandwidth for the multivariate density distribution based
on the sample means. This bandwidth preserves the character of the density under averaging.
Scott (1992) offers the optimum bandwidth in the usual multivariate special case, where

H =hQ as:

1/(p+4)
-1/ @+p PRK :

h
H dQTv? € Jax

opt =N (2.22)

Here, the order of the optimum bandwidth h . —1 as p—>oo, which is the curse of

opt
dimensionality. This will give a very rough estimate for large P since the optimum bandwidth is

constant irrespective of the sample sizen.The optimum bandwidth must depend on the sample

size N to avoid too much or too little smoothing.

Since the estimator should be “more local” when more information is added and when the density
is rougher, then smaller bandwidths are better for large n. So our optimum bandwidth based on
sample means shown in (2.21) is a better bandwidth than the one proposed by Scott (1992) in the

multivariate case and Jones, Marron and Sheather (1996) in the usual univariate case.

In practice, multivariate kernel density estimation is often restricted to two dimensions,

p = 2. The reason is that higher dimensional space (with p large or even of medium size)

will be very sparsely populated by data points unless the sample size is very large. This

phenomenon is called curse of dimensionality.

The term “curse of dimensionality” was first applied by Bellman (1961) to describe the

exponential growth in combinatorial optimization as the dimension increases. In statistics, it
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reflects the sparsity of data in multiple dimensions and it is the number of bins that grows

exponentially as the dimension increases.

Scott and Wand (1991) demonstrated a progressive deterioration of kernel density

estimation as the dimension p increases by showing that an increase in sample size is required

to attain an equivalent amount of accuracy. Epanechnikov (1969) showed that the growth in

sample size is at least exponential as the dimension increases algebraically.

The strategy advocated in this dissertation breaks the curse of dimensionality. For all,
p>1, h, =0 ¢ ’ which leads to an optimum bandwidth which decreases as the sample size

increases regardless of the dimensionality. Besides, this will give a bandwidth small enough for

large dimensions which guarantee smoothness.

2.3 Bivariate Product Kernel Case

_ S
Let X = «1, X, _ be the means of random samples from a population with unknown
density, f &, X, ,assumed to be ellipsoidally symmetric, then the estimate of f €,,x, , based

on the sample means is given by

(2.23)

< €&, X, = ahh K, T Ky e
2 2

where h, and h, are the bandwidths or the smoothing parameters and K, is the symmetric kernel

and ”f:: €, %, 9x,dx, =1whenever jKl ¢ du=1.
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Expectation and Bias of f, €,,X,

We can obtain the expectation and the bias of this new estimator as follows:

< 1 \/_yl xz—\/ﬁy2 ~
Efx«pxz//—nhhzﬂK( T, ]1[ oh, fo%yz,dyldyz-

But . €,,y, =nf If%yz,

Therefore we have

: Jny, | (% =ny, -
nhh, .”Kl( \/_hly ] {X \/ﬁh:y ]nf I/ﬁ(/l,y2 _dy,dy, . (2.29)

Let W, =+/ny, which implies (;—‘;Vl: n"? and dy, =%-
1

dw, .
n1/2

Similarly, let W, =~/ny, which implies % =n"? and dy, =

2

Substituting these into equation (2.24) we have

nhlh -U ( \/_h1 ]K [X\/_ ]f @, dWldWZ (2.25)

X, — W,
Now, let u= \l/ﬁh L then W, =X, —u\/ﬁh1 and dw, :\/ﬁhldu :
1

Similarly, lety = 22— "2 then W, = X, —v+/nh, and dw, =+/nh,dv.
\/ﬁh2

Therefore, substituting these into equation (2.25), we have
E€, «.x, = ”Kl G K, ¢ € —uvnh, x, —v+/nh, dudv.

Now applying the Taylor series expansion to second order, we have
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[[K, €K, €T €, %, - a/nh, f, €, %, v/nh, f, €. %,
+1/2 r2u? £, €, X, rnuvhh, f, €, %, +nvuhh f, €,x, +nh2v’f,, €, X, ]}udv

= [[Ki €K, €7 €&, x, Qudv - [[K, ¢ K, €Junh, T, &, x, v~/nh, T, €, x, Judv
+1/2 [[K, € K, € Thiu* ,, &, %, “didv +1/2 [[K, € K, € Rwhh, ,, €, x, “idv
+172 [[K, € K, € Avuh,h, f,, €, x, Qi +1/2 [[K, € K, € Thiv* £, €, x, ddv.

Now applying the moment conditions of kernel, that is juKl [ Bu, ijl (ﬂ\/ =0,

quKlﬂﬁu =0}, and Iszlﬂﬂv =0, we have
f €.x, ¥1/2nh2o? f, € x, 31/2nhZc2 f,, €, X, .

Therefore

E€, €.x, = 1€, % 1202 i€ +nf, &x, (2.26)
Therefore, the bias of fAY &, X, is

Bias I)T €., =1/2nok LZ f1 o X0 03T €y %o (2.27)

The asymptotic square bias (AISB) is given by

\_ 1 ~ ~
aise | €.x, =g moln [T €x dud + 2000 [ 1€, T, €%, e,

e ]2 € Sk

Therefore, AISB of f &, X, _is given by
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1

aise b €. x, > SOk INR @ 3 2hih; [ 1 €%, o, &%, B,0X, +h{R @, 1. (2.28)

—

where R€,, > ” f,2 €, x, Ox,dx, and R€,, = H f.2 &, %, dx,dx,.

Variance of fy &;,x,

Squaring equation (2.23) yields

f; €. x

~ 1 K{xl—\/ﬁil]K{xl—\/ﬁ)Tl]'

2 /:
n2h12h22 1 r]1/2hl 1 r]1/2h2

Therefore,

\_ 1 X _\/H X _\/ﬁ >
ek = I ( l yl]Kf (l—yzjfx%yz Y, -

rIZhthZZ r]l/2h1 n1/2h2

But f)? ‘/pyzjz nf I/ﬁvl’yz :_

Therefore we have

1 X _\/H X _\/ﬁ .
el | Kl{lThyl]Kl{zfn—hyzjm ey o
12 1 2

Let w, = \/ﬁyl which implies % =n"? and dy, = aw

12"
A n

dw,

Similarly, let W, =~/ny, which implies % =n"? and dy, = e

Y,
Therefore, substituting these into equation (2.29), we have
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1 X, — W, X, —W ~
WHKlZ( i/ﬁh lel{ f/ﬁh ij wl’WZ /dwldWZ'
2 1 2

Now, let u =" then W, = X, —u/nh, and dw, =~/nh,du .

Jnh,

Similarly, letv = X2~ "2 then w, = x, —v+/nh, and dw, =+/nh,dv .

Jnh,

Therefore, substituting these into equation (2.30), we have
2 ~ 1 2 ¢ 2 3
E€2 ¢, x i [[K? €K7 €3 & —uvnhy, x, —v/nh, dudv
2

Now applying the Taylor series expansion to first order, we have

1
nhh,

I.[Klz (I:Klz 03 ‘(1, X, Ijudv

— f ‘(1’X2:RZ «1:
nh;h,

where '[Kf(l:du:R((l: and J‘Klz(lziu:R((l:

X

(2.30)

Since the variance term is dominated by the E[ fEJ , then the variance of fAf €, %, : is given by

T f€,x, RK?
Varfi(q,xz,_z 1néﬁ -
2

Therefore, the asymptotic integrated variance (AlV) is given by

AlV f; €. X, ::= I f ‘(1’:&5«/ e = ifh: |
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Therefore, the asymptotic mean squared integrated error is given by

AMISE = AISB + AIV
:—n “o [N'R €y =+ 2hhy ”fll €, Xy 1o €0 %o Bxgdxy + 3R €, ]
R((i
nhlhz

We can easily find a solution for the optimum bandwidth if h, =h forall i.

Therefore, equation (2.33) becomes
AMISE = AISB + AIV
1
:4 o [n*R € +2h* ”fll‘(l’xz\fzz €. %, Oxdx, +h*R €5, ]

R«

nh2

Differentiating with respect to h and equating to zero, we have

1 ~ 2R
ano-li [4h°R €, /+8h3 J.J.fll €. % jzz €. %, dxdx, +4h3R¢221 :; =0

~ 2R
I"|6R¢11 +2h6 ijll‘(l7 2322‘(1’)( XmdX +h6R¢22 n3‘6<4 )
K

From Scott (1992), the general bivariate normal data using a normal kernel gives

-1

~ BY2
R¢11/=3I(37r‘—p2/ 0'150'2_'

1
5

~ Y2
R, /=3!67Z"—p2/ 0,0,

and
k) -1
J.fllfzzdxldxz = {+2p° j67r(—p2 6ol _

%2
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where p is the correlation coefficient.

Substituting these into equation (2.34) we have

_ 1
3h6167r( P’ /0'10'2 +2h° €+ 22 j67r( pzwzofof’_
=] 2

+3h6I67r 0'05 = )
‘ ,0 172 _ 47m3

he 3 24+2p° 3 _ 1
16%(—,02;5/ 0'10'2 16%(— 23/20'10'2 16%( P’ /20-1025 2m’

Assuming the standard deviation ¢, = o for all i, then we have

~
e rsa“+2(+2,)2 gt+30t| 1
5/2
o 167r‘ pz 510
8an’s* ‘+p 12
, B2
h= —%2‘3 P .
(+ p? 12
Therefore
,B2 e
h = n-WL i=12. (2.35)
‘+p 12

If the variables are independent, then p =0 and

h=n22fos P iz12 (2.36)
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Figure 2.3.1 The Bivariate Normal Density

Two dimensional Normal Distribution

1 Ca —w)® - e 06— w)?|

1
2

[
f(x)= Tenpq- s = +
2 G O (1-0%) L 2(1-p?) 19 FO A O e

Figure 2.3.2 Contour of the Bivariate Normal Density

contour produced by the bivariate normal distribution
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Figure 2.3.3 The Regular Kernel Estimate of the Bivariate Normal Density

Regular kernel estimate of the bivariate Normal Distribution

Figure 2.3.4 Contour of the Regular Kernel Estimate of the Bivariate Normal Density

contour produced by the regular Kernel estimate for
the bivariate normal distribution

4 2 0 2 4
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Figure 2.3.5 The Kernel Based on the Sample Means Estimate of the Bivariate Normal Density

kernel estimate of the bivariate Normal Distribution
based on sample means

Figure 2.3.6 Contour of the Kernel Based on the Sample Means Estimate of the Bivariate Normal
Density

contour produced by thekernel estimator based
on the sample means for the bivariate normal distribution
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In the simulations below, we used the product kernel which is a special form of the
multivariate kernel function. It is the recommended kernel used in practice. In this respect, the
individual multivariate product kernel does factor which means that the coordinates are
independent but the resultant multivariate kernel density estimate does not factor. In addition, the

same kernel is used in each dimension and the univariate standard normal distribution is used.

Table 2.3.1 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density
Estimate and the Multivariate Kernel Density Estimate Based on the Sample
Mean With Dimension p=2

10 7.245374x107° 9.102387x10°°
30 5.086887 x107° 9.097760x107°
50 3.094227x107° 9.088346x107°
100 2.084108x107° 9.087421x107°
200 1.391879x107° 9.086563x107°
300 1.101187x107° 9.083921x10°°
500 8.079000x10°® 9.076430x10°°
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Table 2.3.2 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density
Estimate and the Multivariate Kernel Density Estimate Based on the Sample

Mean With Dimension p=3

10 5.031122x10°° 1.121352x107°
30 3.205983x107° 1.121945%107°
50 2.562826x107° 1.121509x107°
100 1.871522x10°° 1.121322x107°
200 1.349858x10°° 1.120902x107°
300 1.109322x107° 1.121277x10°°
500 8.627890x10" 1.121335%x107°

Table 2.3.3 Mean Squared Error (MSE) of the Regular Multivariate Kernel Density
Estimate and the Multivariate Kernel Density Estimate Based on the Sample

Mean With Dimension p=4

5.895623x 107"

1.875326x107°

5.205983% 10~

1.875128x107°

4.592657x107"

1.875112x107°

100

3.882659x107"

1.875023x107°

200

2.358612x10°"

1.875011x107°

300

2.112615x10°"

1.874933x107°

500

9.561248x107°

1.874929x107°

28




Simulation results show that the standard or regular multivariate kernel density estimate

performs better when the dimension p is less than 4. When the dimension p is 4 and above, the

multivariate kernel density estimate based on the sample means outperforms the regular

multivariate kernel density estimate.

2.4 Multivariate Distribution Function Estimation Based on Sample Means

We propose the following estimate of the distribution function F x :

F& = Kﬂ%jﬂ j“z}, (2.37)

where ;c((} _[Kl (@u is the kernel corresponding to distribution function and K is the

—o0

kernel for the density function.

We can compute the expectation of this estimator as follows:

T

Since fy y = n P2 f \/ﬁy ,

EIE‘( J-l:(x I//:XJHjllz:|np/2f%y§y'

W
Letting v/ny =w, then d—W:n"’Z, dy:d— . 50 we have
dy ne’?
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315 j[(xn‘—wje jﬂf @3
_ jx[[xnj—,zw]ﬂ j“z}dF «

:K{((Xj,zwjﬂjl“mj} N 1,2K[[X:,;/Vjﬂjllz}dw.
n . np’2||-|| n

‘( —W]" -1/2

1/2

Letting u = pT cthen w=x—n"? @ ~?u, which implies |dw| =n""?|H["* duso
we get that
E &= [c0F&-n""H"udu.
Now, applying the Taylor series expansion to the second order, we have
E IE ((i: J.zc(iF « -n"’H’VF & U’ +%nuT G2 v F & H l’Zu}du
-F ((jx(lﬂu —n2HY2yF ((juTx(JBu +%n(—|l’2jV2F & BiY? juuTxQBu ,
Applying the moment conditions for kernel, we have
Ef«:}F«}gtr{(—ﬁ’zjsz«:Hl’z}. (2.38)
Therefore, the bias of the estimator is given by
Biaslf«:::gtr{(ﬂl/zjVF ((]-Illz} . (2.39)
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If AISB is the target then we must define a weight function W (<: such that

AISB =%n2 j[tr{(—l”zjw: «]—ll’z}rdw « < (2.40)

Next,
F2& =« HX n},/z_x j(—l j”z} . (2.41)

Hence,

R

Since fy y = n P2 f \/ﬁy ,

EIE ‘( J- |IX ;//Z—XJHjllz}np/zf(/ﬁyEy'

Letting ~/ny = w, theni—wznplz, dy:d—W so we have
y

If.]plz !

3 SN K 1,2] EW}@W

= [«? K — j(—l‘“z}de
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Lettingu = —W p,ZH  thenw = x—n"2 €@ 7?u, which implies|dw| =n®"?|H |l/2 d
S0 we get
EF « =2 [k 0RO F &-n"2H"?udu.
Thus
e P € or e 03 2R €T G 630 (2.42)

Since the variance term is dominated by the E I52 6(:_, it follows that
Var &~ F& 20" H"VF &3 ¢, (2.43)
where S € = [u'x 5 € du.
So, the asymptotic integrated variance is given by
AlV = JF «IW € - 2n2HY2s (J.VF «W €. (2.44)

Therefore, the AMISE is
2
™ -
AMISE=%n2 J'{tr{ﬂ”z/w «]41’2}} dW & }1/2-2nt2HY2s (jVF « W & (2.45)

Therefore in our special case where H =h’Q, [Q| =1,
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Biaslf((:_:%nzhztr él/Zj Qllz :VF ‘(: (2.46)
and the asymptotic integrated squared bias (AISB) is given by
1 T 2 -
A|SB=Zn2h4 ﬂtr{bl’z/VF «]gl’z}} dw & . (2.47)

The asymptotic integrated variance (AlV) is also given by

AIV = IF«@N«}zs@l’thEZIVF W€ (2.48)
Therefore AMISE = AlIV + AISB leads to,
2 <
AMISE:%nZh“ﬂtr{b”zjVF((]f’ZH dW((}1/2—28(B1’2h(2”2/jVF((E\N(C (2.49)

The optimum h can be obtained by differentiating equation (2.49) with respect to h and equating

it to zero as shown below:

12h3 J.[tr{bllzjVF ((Dllz}fdw €225 ¢ taz IVF €IV €0

n2he J‘[tr{bl/zjVF((Dl/gﬂzdw((}zsea/z o J‘VF((EW «

| 2CRT[VFEW €S
32 ﬂtr{ Ql/zj = ((DUZHZdW <

Hence
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1/3

| 2S€R [VF €AW €
ﬂtr{ 62T vF QY 2szw «

(2.50)

opt =N

This optimum bandwidth for the multivariate distribution function based on the sample means is

also independent of the dimension p just like that of its corresponding distribution function.

The optimal point-wise bandwidth for the estimation of multivariate distribution function

proposed by Jin and Shao (1999) in the classical kernel case is

* -1/3 M
hopt =N (Tj )

P oF X
-1

where M = ”W uwv [ uini}dudv,where uVv, =maxq,,v, and

L= AF x . Notealso that, here his independent of the dimension p.

On the other hand, the asymptotic optimal bandwidth for a p-dimensional kernel density estimator

proposed by Scott (1992) is typically of order n™ **® and the one in our case for the p-

dimensional multivariate kernel density estimator is of order n™"'2

, Which does not depend on
the dimension p and we realized the bandwidth in our case will yield a good estimator as the
dimensions increases. Since a good density estimator might yield a good distribution estimator, it
is natural to expect that the optimal bandwidth for the kernel distribution function does not to

depend on the dimension p and this is what happened in both our case and the one proposed by

Jin and Shao (1999). Jin and Shao (1999) established that the optimal bandwidth for a class of

kernel estimator of a multivariate distribution function is of order n*'® for all dimensions.

In this dissertation, the optimal bandwidth for the multivariate distribution function

-1/2

estimator based on sample means is of ordern™"<, which does not depend on the dimension p.
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Therefore, the optimal bandwidth for the kernel density estimator based on the sample means
(equation (2.19)) does not depend on the dimension p and so is the optimal bandwidth for the

distribution function based on the sample means.

Also we know those optimum bandwidths which decrease slowly as the sample size
increases and the dimensionality increases allow for a better performance of the estimator, which
means it guarantees better smoothness. So comparing the optimum bandwidth in our case to that
of the one proposed by Shao (1999), the one in our case decrease slowly as sample size increases

even though they both do not depend on the dimension p.
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CHAPTER IlI

ESTIMATION OF NONPARAMETRIC MULTIVARIATE REGRESSION FUNCTION

BASED ON THE SAMPLE MEANS

3.1 Introduction

In nonparametric multivariate regression, there exists a smooth function R - which relates the

response variable Yy and the predictors X . The nonparametric multivariate regression is of the

form

Yy, =R X +g for 1<i<n (3.1)

where & ~g R X ,67 x and g isassumed to be normal ando? X = o, a constant.
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3.1.1 Regression Estimation

H, 0
Based on the random sample means (X, X,...., X ,,Y)', let H :{ 01 h ]Where H, isthe
2
bandwidth matrix for the independent variable X and h, is the bandwidth for the response

X
variable Y .Also, let Z :[Y j and K isa (p+1)-dimensional kernel such that

K, X = IK z dy . Then, we can estimate f(:as follows:

n

f(2)=f(xy) :ﬁr{wm(ﬂﬂ. (3.2)

n

fAl(x) = ;F/z K1|:H1_l/2 [%Il , (3.3)

where K, # K, = JK X,y dy.

The nonparametric multivariate kernel regression estimator is given by

. . yf x,y dy
R x =E y|X:x:jyf y|xdy:J.A—. (3.4)
[f xy dy
Therefore, from equations (3.3) and (3.4) we have
A f x,yd
g x XYY 69

f, X

Considering the numerator part of equation (3.4) and substituting equation (3.2) we have
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s 1 2 2-InZ
[vf xy dy:fyinmr/zK{H ”{ T ﬂdy

- J')/;K[H‘l’z-n‘“2 z—JnZ }dy

+1/2 1/2
n " H]

) .[y 1 < HY2 0 x —/nX '
n p+l /2|H1|1/2 h;/z I 0 h2 . n—l/2 y_\/ﬁY_ y

_ 1 J' K X—\/HX H /2 y_\/ﬁY h2 |g
- n P /2|H |1/2 /2 y N2 1 nt/2 2 y.
1 b
Let & :(y_nl#thm =y =h'2n"2£ +nY and
dy 12 pr 12, pl2
@th n"*=dy=h,"n""d¢.
Substituting these into equation (3.6), we have
[vf xy dy
:Ih;/znl/zéng\/ﬁY— — 1 — K Hl—l/Z X—:{EX £ h21/2np/2d§
n H,| " h; n

_ J‘ h;/2n1/2§+\/ﬁY_ ;F/ZK[Hl—l/z(%}g}dg

nl/2|Hl
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H,

1/2
h2

1/2
[H|

{ij[Hl“z[x‘rﬁﬁ}f dé - HK[HE’{%],:F;]M

A [H;M x—¥nX ] 38)

by applying integration by parts in the fourth equation above.

Since J'K X,& d& =K, x theright hand side of (3.8) equals

h1/2 B X—\/H)z hl/2 ) X_\/H)z
ﬁéﬁKz{Hlm( 172 _|H2|1/2 JKZ Hlllz T de
1

n

Y o[ x=JnX
+ 1/2 K2|:H11/2{ 1/2 J}

n

1/2 va 1/2 va
M| g XX | e[ XX
H,| n H,| n
Y o x=+/nX
+ |H |1/2 K2 {Hl v { n1/2 J:|

1
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-k, {Hl‘”z [X;ﬂﬂ - (3.9)

[Hy

Therefore, the nonparametric multivariate kernel regression estimator in equation (3.5) can be

Y_ K H71/2 X—\/HX
1/2 2 1 1/2
R X = [H n (3.10)
1 o x=nX
|l/2 K1|:H11/2( 1/2 j:|
1

written as follows:

n

(3.11)

We realize that the nonparametric multivariate kernel regression estimator based on the sample

means is linear in the observation of the means Y and is therefore a linear smoother, which is a

property shared by many other nonparametric regression estimators. Besides, we also realize that

this estimator is independent of the particular choice of the smoothing parameter h, .
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3.2 Properties of R X

Because the nonparametric multivariate kernel regression estimator based on the sample means is
a ratio of two correlated random variables, finding its properties are quite involved. If the
numerator and the denominator of the estimator in equation (3.10) each converge to a (positive)
constant, then the asymptotic expectation of the ratio is the ratio of the asymptotic expectations of

the numerator and the denominator to first order.

3.2.1 Derivation of the Expectation

The properties of the kernel estimator in the denominator were presented in Chapter 2 of this

dissertation [see equation (2.8) and (2.16)]; the results are as follows:
~ ~ N T ~
eboe-rea S i Tvir e

and

R f xRK
Var[fi X }z—np’2|H -

|

Now, considering the expectation of the numerator in equation (3.10),

1 -1/2 —nX ||
E[W |<2LHl / (an—,*/zﬁ]]\(] (3.12)

By letting u= \/ﬁ)? and v= \/ﬁV , and applying the self-revolving property for regression,

equation (3.12) becomes
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1 2 X—uU
= ”n—p,z|H 7 Kz(Hl 1/2( I Dfo,y u,v dudv. (3.13)
1

1/2

X-uy,, -
Let s=( jHl Y2 then x—u=n""H"’s = u=x-n"?H"%s.
n

1/2

Therefore aui_ ne’ IH,[" =du= nP/2 | Hl|1/2 ds .
ds

Substituting these into equation (3.13), we have that it is equal to

1
”ﬁK2 s vf x—n'?H, %s,v n*?|H,["* dsdv
n**|H,|
= ”K2 s vf x—n"?H?s,v dsdv. (3.14)
But f x-n"?HY*s,v =f vix-n"’H;"’s f x-n"?H"%s . (3.15)

Substituting (3.15) into equation (3.14) , the integral over V in equation (3.14) is equivalent to
[ignoring K, s ]

f x—n"?H"%s _[vf vix-n"?H"?s dv (3.16)
1/2H11/23 R X_n1/2H11/25 , (317)

=f x—n

since the integral is the conditional mean and R - is the true regression function defined in

equation (3.1). Therefore, equation (3.14) becomes

_[Kz s f x-n"’H/"’s R x-—n"’H/}"*s ds. (3.18)
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Now expanding f x-n"?H,"’s and R x—n"?H,"?s in the Taylor series to second order,

we have

12 1 T
f x—n"?H"*s =f x —n"’s" H, ""Vf x +EnsT HY Vf x HY s

and
1 T
R x-n"2HY%s =R x —n%" H, "’ VR x +§nsT H'? VR x H/* s.
Therefore, expression (3.18) becomes

_[KZ S [f x —n¥2sT H, "*Vf x +%nsT HY? TV x HY? S:lx

[R x —n¥2s" H, "*VR x Jr%nsT HY2 "V?R x HY? s}ds

=_[K2 s f xR x ds—j‘K2 s f x n'2 H, "’WR x s"ds

1/2
sf x ds

+J%K2 sns’ HY 'V?R x H,
- [K, s 0 H " VE x sTR x ds
+[K, s n HY"Vf x sT HY VR x s'ds

T

_I%Kz s ¥’ H, "'Vf x sT HY VR x H}? sds (3.19)

+[K, s %nsT HY "Vv2f x HY? sR x ds
_ J‘% Kz @/25T 611/2 )sz @11/2 )Tnl/Z 611/2 )R @
+ IKZ qnszT 611/2 )VZf @11/2 )T 611/2 )VZR @11/2 )is.

Assuming K,s a second order kernel, equation (3.19) becomes
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:_[Kz s f xR x ds—J‘K2 s f x n'2 H, "’VR x s"ds
+J%K2 sns” HY? V2R x H, "’sf x ds

—IKZ s n'2 H, "*Vf x sTR x ds

+J‘K2 sn HY Vi x s HY VR x s'ds

+J'K2 s LnsT HY "V2f x HY sR x ds
2

(3.20)
=f x R x IKZ sds—f x n'> H, "*VR x J‘sTK2 s ds
+1n H' "VR x H, " f x [sTsK, s ds
2
-2 H, *Vf x R x J‘sTK2 s ds
+n HY” 'VE x HY VR x jsTsTK2 s ds
1 12 T g2 1/2 T
+En H™ V°f x H° R x Is sK, s ds. (3.21)

Now, applying some of the kernel multivariate moment conditions, equation (3.21) becomes

=f X R x +%n HY "VR x H, "’ f x ISTSKZ s ds
+n HY? 'VE x HY VR x IsTsTK2 s ds

+1n HY2 'v2f x HY? R x [s"sK. sds
2 1 1 2

1
=f X R x +%tr{n HY2 "VR x H,zf x jsTus S ds}
+tr n HY? 'VE x HY VR x jsTsTK2 s ds

+%tr n H," "V x H'? R x jsTus sds . (3.22)
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Again, by applying the moment conditions, the covariance matrix of K,is I, and the integral

factor within the trace vanishes, so equation (3.22) becomes

—f X R X +1tr n? H¥ "VRR x H, " f x

+trn HY2 ' VE x HY? VR x

+%tr n H Vi oy H"* R x

(3.23)

Therefore, the expectation of the nonparametric multivariate regression kernel estimator based on

the sample means is the ratio of the expectations in equations (3.23) and (2.8), that is

1/2
f x

E R {f x R x +%tr nHY VR x H,
+trn HY?2 TV x H, YPVR x

+itrn H,"? "V2E x H** R x }

{f X +%tr n HY? TV x HM2 }

Equation (3.24) can be written as

A 1
ER=f x {R X +%tr{n HY "VR x H, 2}
+trn HY2 ' VE x VR x H2 /f X

+%tr nHY Vi x R x HM /f x}

tr n H"? TV2E x H,"? }

+f x |1+ 1
2f x
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{R x +1tr n HY? TR x HY?
2
+trn HY2 ' VE x VR x H"2 /f X
1 12 T2 12
+§trnHl Vit X R x H; /fx}

+[1+;tr n HY? TV2E x HM? /f X } (3.25)

< -
Now, using the approximation (+t2c/1 = ‘—tZC/ for small C in the factor in the denominator

and 1, a scalar, equation (3.25) becomes

:[R x +1tr n HY? TR x H,
2
+tr n H? "Vf X VR x H,"? /f X +%tr n H,"? "VIf x R X H,"? /f x}

x[l—;tr nHY2 V2 ox HM /f x}

2

=[R X +%tr n H"? "VIR x H, Y2 4tron H,"? "Vf x VR x H /f X
1 2 T g2 12

+EtrnHl Vif x R x H; f x

—%R X %tr nHY? TV x HM2 /f X
1 112 T o2 vz 1 112 T o2 1/2

—EtrnH1 VR x H, EtrnH1 Vif x H,; f x

—tr n H? Vi X VR x H,"? /f X %tr n H" Vi x H,"? /f X

ey oo Y ey ioa Y@ o

1
Keeping H 12 to second order, equation (3.26) becomes
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2

:{R X +%tr nHY” VR x H, Y’ +trn HY2 TVE x VR x H /f X

+%tr nHY "V x R x HY /f X

—%R X %tr n HY? TVAE x HM? /f x}.

Simplifying equation (3.26) we have

2

=R X +%tr nHY VR x H " +trn HY TVE x VR x H} /f x. (327

Applying some properties of trace to equation (3.27), we have

E@«;R«;Etr ‘*f’CHf’Z {}VZR&;ZVR«/IC—«\ - (3.28)

Vi X
X

in equation (3.28) will be small.

If we have many data points, then the term oyRr x

3.2.2 Variance and AMSE of the Estimate

The variance of the estimator R X can be computed using the approximation of the ratio of two

random variables (Stuart and Ord, 1987),

2
2Cov U,V
Var E z|:EU} varUz + VarV2 — . (3.29)
V EV EU EV EU EV

From equation (3.10), and applying the above approximation, we can write
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vV o[ x=+/nx
yl/sz[Hlm(uzﬂ

[H,| n

%Kl H 2 X_li\l/zﬁx
n®?|H,| n

We already know the expectation of the numerator and we also know both the expectation and the

Var(R(x)) =Var (3.30)

variance of the denominator. Now, we need to find the variance of the numerator and the

covariance between the numerator and the denominator.

v o[ x=+/nx
ol )
1

n
1

5]

Now, considering the first term of equation (3.31), by letting u= \/ﬁi and V= Jﬁy ,

then the first term of equation (3.31) becomes

I IlH | KZZ(HIM [ );;’ZUDVZ fey UV dudv. (3.32)
1

1/2

X—=U
Lets = (—j H,?, then
n

x—u=n"’H;"’s = u=x-n""H"’s. (3.33)

1/2

Therefore du

= du=n®?|H,[""ds.
ds

—n?2|H|

Substituting these into equation (3.32), we have
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1
= ”n—p’2||—| |Kz2 s Vi f,, x—n""H"s,v dsdv. (3.34)
1

But f x—n"?HY?’s,v =f v|x-n"?H}?s f x-n"?H"?s . (3.35)

Substituting (3.35) into equation (3.34), the integral over V in equation (3.34) is equivalent to

[ignoring K> s ]

f X_nllell/zs J‘ 1

—————V*f v|x-n"’H}"%s dv. (3.36)
np/2 |H1|

Here, the integral is the conditional second moment, and R - is the true regression function

defined in equation (3.1). Therefore, equation (3.36) becomes

1
np/2|H 1/2

f x_nY? Hlllzs
y

R* x-n"?H"’s . (3.37)

Substituting this into equation (3.34) we have

1
np/z |H 1/2

2
| jKj s f x—n"’H/*s [R x-n"?H"’s " +02 x-n"?H%s }ds
1

1
=—1/2.[K22 Sf X—nllell/ZS 0'2 X_nl/ZHlllzs dS
p/2 X
n"H,|
1 2
+ﬁJ'K§ s f x—n"?HY?s R x—n"?H}*s "ds
n*%H,|

RK, fxo?x RK, fxRx"
- np/2|H 1/2 np/2|H 1/2

| |

Therefore equation (3.32) becomes
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=i lo?+R x 7, (3:38)

where o2 x =o? forall X.

Also, considering the second term of equation (3.31)

{f X R x +%tr n2 H¥ "VR x H,

1/2
f

1 2
+tr n? HY? "VE x H, Y’VR x +Etr N2 H¥2 "VZf x HY? R x }

=0 n’tr H'H, . (3.39)

Therefore (3.31) can be written as

1/2 1/2
p/2| |
1 n n Hl

y x|l R K, f
va{WK{H;M[X \/ﬁxmz 2 1 X [0§+R X 2]—0 ntr H,"H,

oZ+R x 2] (3.40)

where 6> X =o” forall X. Next,
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COVLHyr)/Z K (Hl_llz(x_nl\//zﬁx ]Jl np/2|:ll-_I |1/2 Kl(Hl_llz(X_r];//ZﬁX j]}
1 1
E[|Hy|1/2 Kz(Hll/Z(X_nl\//zﬁ)_(j] np/2 |]|-_| |1/2 Kl[H11/2(an\//zﬁi]]]
1 1
7 - X_\/ﬁi 1 B X—\/ﬁ)_(
! 1

Now, considering the first term of equation (3.41), we have

y -1/2 X—\/ﬁi 1 19 x_\/ﬁi
E[|Hl|l/2 KZ[Hl ( r.11/2 Jan/2|Hl|1/2 Kl[Hl LT]J] (342)
y1/2 K Hl—llz X _]'-\//ZH)_( 1 — Kl Hl_l/z ]'.\//Z_X p+l /2
H,] n n"?|H,| n

x f vnx,</ny dxdy

y 2 x—+/nx o[ x=+/nx . -
:”np’zylHle[Hlm[ n?”? BK{Hlm(TJJWZ f Jnx,J/ny dxdy.
1

du
Letting U=+/NX= — - =n"2 and v =+/ny :> d =nP""2 | then equation (3.42) becomes
X y

v 2 X=U 2 X—U
- -”.np Ay KZLHl 1/2(FD Kl(Hl 12 (FD f u,v dudv. (3.43)

X—-U
nY2

Now,lets:( jHl‘l’z then X —u=n"?H;"’s =>u=x-n"?H"*s.
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1/2

Therefore du = du=n""? H |1/2 ds

=

Substituting these into equation (3.43), we have

1/2 1/2H1/2
1

\'
:an|H1| K, s K. s np/2|Hl| f x—n s,V dsdv

(s Ky s Ky s vE x—n"?HY%s,v dsdv. (3.44)

12 1/2
N’ |H,|

But f X—nllelllzs,V _f VI X_nl/zHll/zs f X_nl/zHluzs _
Substituting this into equation (3.44), the integral over V in equation (3.44) is equivalent to

[ignoringK, s K, s ]

1/2 1/2
f x—n""H""s jnp’2|H T

| vi v|x-n"?H"?s dv
1

1
172

:np’2|H

| f X_nl/zHll/zs R X_nl/zHll/zs ,
1

as the integral is the conditional mean, and R - is the true regression function defined in

equation (3.1). Therefore, equation (3.44) becomes

1
I—K s K. s f x—n"2HY?s,v R x-nY?HY?s,v ds
0/2 172 N2 1 1 1
N’ |H,|

_RfoRx

np/2|H 1/2

(3.45)

|

Also, considering the second term of equation (3.31)
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E[—|Hy|1/z K{H{“z[—x _nﬁ X}}]E[—npﬂt B Kl(Hl‘“z[—X _nﬁ XD]
1 1

:[f X R x +%tr n? HY VR x H, " f x
+tr n? HY2 "VE x H, "’VR x +%tr n2 HY2 "v2f x HY R x }

x[f X +%tr n* H'? TVv2f ox H,"? }

—0@'tr HH, .

(3.46)
Now substituting equation (3.45) and (3.46) into equation (3.41), we have
y K. | H.v2 X_\/H)_( 1 K| H.-v2 X—\/ﬁi
cov p/2 2 1 1/2 ! 12 1/2 1 1 1/2
[H,| n NP [H,| n
RK f xRX ) T
= >0 ntr H H,
n*’?|H,|
RK f xR X
~ - 7 : (3.47)
"% H,|

Substituting equations (2.8), (2.16), (3.23), (3.38) and (3.47) into equation (3.29), we have

Var R x =1xIl,

where
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1/2

[f X R x +;tr n? HY "VPR x H, " f x

2
+r n®> H° "VE x H, Y2VR x +;tr n* H? TV2E ox H' R x }
| =

2
[f X +;tr n*> H? TV x H, 1/2}

and

1 T
f x R x +;tr{n2(H12j VR x H, " f x}

2
+tr n?> H? "VE x H, Y2VR x +%tr n* H"? TV x H'? R x }

f X RK

N np/2|Hl|l/2

2
{f X +;tr n? HY 'Vf x H 1/2}

2R K f X R X
np/2|H 1/2

|

[f OO €7 RS 1 O}
ar f @2 W €, RO £ €1 I @ﬁ)@}
x[f SEELED S T }

Letting

A:{f X R x +%tr n2 HY? TV2R x H, LI

+tr n*> H"? "V x H, 2VR x +%tr n* H"? Vi x H'* R x }
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and
B=f x +ltr n2 HllIZTvzf x H, e

we get that

AT 1 {R K f x (iR ]

Var R X :{E XA232 np+l/2|H1|l/2
fxRK ZRfoRxAB}

p/2| 172 p/2| |1,2
n™*H n®?|H,

|

'R K f x
—np’2|H ” [0'82+R X 2]52+
1
"Bl fxRK , 2RK f xR x AB
* p/2 12 - pl2 172
L n |H1| n |H1|
[R K f x}
p/2 H 1/2
=%[[05+R X 2}BZ+A2—2R X AB] (3.48)

Now, considering the first term of equation (3.48), we have

2
[0§+R XZJBZ:[05+R xz}[f X +%tr n> H"? Vi x H, 1’2}
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=[0'82+R X 2}

1/2

{f2 x +f xtr n? HY? ' V2f x H,

—f2 x o2+ f xtr n? HY V2f x H, " o
2

e v TV xR Y 6

+f2 x R x°+f xtrn? HY? 'v2f x H, "™ R x°

2

1
*2 tr n2 HY2 "v2f x H,"”* R x’

Also, considering the second term of equation (3.48), we have

12
f

Az{f X R X +{%tr n? HY2 VR x H,

1 2 2 T g2 vz
+Ztrn H™ V°f x H,

(3.49)

2
+tr n? HY2'VE x H, " VR x +%tr n2 HY? "v2f x HM R x H

Or,

1

T 1
A2=[f2 x R x 2+2f x R x Etr n2 HY V2R x H

1/2

;
+tr n? HY? Vvf x H VR X

1 1
T
vl n? 12 T2 x HY? R x }
2 1 1

T 1/2
+[ltr n? HY2 V2R x H f x
2 1 1
+tr n® HY2'VE x H, "’VR x
1 2 12 T g2 1/2 i
+Etr n° H, vVt x H; R X .

Also, considering the third term of equation (3.48), we have
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1/2
f

=2Rx{f xRx+%tr n? HY VR x H, X

+tr n? HY?2 'V x H, VR x +%tr n? HY2 ' V2f x HM R x }

x[f X +%tr n? HY2 T v2E o x H, }

1y 1
=2R x | f x R x +%tr{n2[H12J VIR x H, 2f x}
1 ! 1 1 1 u
+tr nz(leJ Vf x H, 2VR X p+=tr nz(lej Vi x (Hl
2
1 T
1 2 2 2 :
><fx+§trn H?2| Vif x H, 2

- {ZR x f X R X +2R X Btr n? HY2 VR x H,

N

8

1/2
f x

+tr n? HY2 Ve x H, "*VR x +%tr n? HY2'V2f x HM' R x ﬂ

x[f X +%tr n? HY2 Vi ox H, 1/2}

= {ZR X2f x°+R x °f x[%tr n’ Hl”zTVZf X Hl”z}

172
f

+2R x f x Btr n? HY VR x H, X

+tr 0?2 HY? Vi x H, "*VR x +%tr n? HY ' Vf x HY R x ﬂ.(3.51)

Now, substituting equations (3.49), (3.50) and (3.51) into equation (3.48) and carefully

simplifying, we have
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R R x f x
Var R x = X

P 4
n2|H1|1/2[f X +;tr n® HY TViE ox H, }

T 12 1 T v2
{fz x o?+f xtrn® HY Vf x H, ™~ o?+=trn* HY V’f x H, o’

&

2

+% tr n2 HY? "v2f x H, "> R x’

1/2

+Etr n? HY VR x H, " f x

+tr n? HY2 'VE x H, VR x +%tr J{ﬂf’z)vzf @f’z)@i
_R@%tr €7 W1 €63 }

XEU £€" WREOEF 1 O}

o £ @ 1 @O, FROPar £ €6 W' @)@}

(3.52)
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Assuming K is a second order kernel, equation (3.52) becomes

A

Var R x

R K f x

4
np’2|H1|1’2[f X +;tr n2 HY? 'v2f x H, " }

><[f2 X o’+f x tr n? Hll’ZTVZf X H, V2 o-z}

&

R K f x

R K [f x ol+tr 2 HY? ' vif x H, " o"f}

T 1/2
tr n2 ||11/2 sz X Ill
1/2

nP2|H, [ 2 x |1+

f x

-1
R K
- [f x oZ+tr n® HY?'VE x H, Y o
nP2IH, [ 2 x

&

tr n? HY2 ' v2f x H, "7
] 1+

f x
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. . . >1 = .
Now, using the approximation (+t20/ ~ ‘—tzc/ for small C, the equation above becomes

trn? HY? v x H, Y

R x
2 T [f x o?+tr n? HY? 'v2f x H, " o"f} 1- .
n . X X
R K 2 2 2 12 g2 v2 2 qu2 g2 vz 9
:anZ‘H ‘szz 3 [f X og—ogtr n® H™ Vof x H - +trn® H™ Vof x H  op
! / (3.53)
T 1/2 T 12
Z[tr n? HY? V2 x H ag}[ztr nt H? V2 x H }
f x
Assuming K is a second order kernel, we have that the right hand side of (3.53) is equal to
R K T
T [f x ol-oltr n? HY? Vi x H, M
n**H,
T R K
R R R e R
nP?|H,|" f
Hence
R R K o’
Var R x = . (3.54)
nP2IH,|" f x

This variance includes the amount of data through f X and it also includes the factor relating to the

noise variance o, .

The asymptotic mean square error (AMSE) of the estimator is
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R K o’

AMSE R x = -
nP?|H,[" f x

2
Vi X
+%[tr nHY T H Y {VZR X +2VR X — H . (3.55)
X

This is the AMSE of the multivariate regression estimator based on the sample mean. It
minimizes the asymptotic variance as the dimension increases thereby minimizing the asymptotic
mean square error. It has the form of the AMSE of the Nadaraya-Watson regression estimator for

the classical kernel case when it is generalized from the univariate to the multivariate case.
Now, in our special case where H, =h’Q, and |Q,|=1, the AMSE ¢ & _ is given by

R K o’

AMSE RO =omnrt x

2
Vi x
+%n2h4[tr Quz ' Qr2 {VZR X +2VR X — H . (3.56)
X

Therefore, the optimum bandwidth h for the regression function can be obtained by
differentiating equation (3.56), equating it to zero and solving for h.

So,

-1/ 4+p

h —n PR K o}
opt — 2
Vi x
f x {tr vz T QU {VZR X +2VR X f H
X

Therefore, in this multivariate regression setting just like the special case of the multivariate

(3.57)

2

density estimation, the optimum bandwidth h —>n

- as P —> 0. This means that the
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optimum bandwidth does not depend on the dimension as the dimension p— oo and this

optimum bandwidth decreases as sample size increases to allow for a better performance of the
estimator. This breaks the “curse of dimensionality” and remedies the deficiency of high
dimensional bandwidth selection as the optimum bandwidth is smaller enough for large

dimension to guarantee smoothness.
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CHAPTER IV

BANDWIDTH SELECTION METHODOLOGIES BASED ON THE SAMPLE MEANS

4.1 Cross-Validation for Density Estimation Based on the Sample Means-Univariate Case

It follows from the multivariate case with p =1that the estimate of density f & based

on the sample means is given by

o~ 1 x—/nX
f“fm’([ Jn j

(4.1)

where h is the window width, also called the smoothing parameter or the bandwidth, and K is the

kernel function usually assumed to be symmetric.

Now, the expectation of the density estimate can be obtained as
E f((:z f «JK@du-hnf’ (CjuK@qulhznf "« JuPK G du.
= 2
Applying the moment conditions for a univariate kernel, we have
\_ ~ 1 2 " ~ 2
efecs r e ot 6t (4.2)
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Therefore, the bias and variance of f (: are given by

Bias f ((j:: %’nznaf< , (4.3)
Var I (<:z mﬁ (4.4)

— h\/ﬁ

Therefore, the asymptotic integrated variance (AlV) is given by

~

AlV = RK =, (4.5)
hvn
The asymptotic integrated squared bias (AISB) is given by
AISB = %h“nzai [k« ox
_ 1.4, 4 ¢ "
_Zh n‘cRE | (4.6)
where R€” :: .”"((fdx.
Therefore, the asymptotic means integrated squared error (AMISE) is given by
AMISE = AIV + AISB
AMISE = R«/+;h4n20iR¢ " (4.7)
hvn 4 -

Thus the optimum bandwidth is obtained via calculus and is equal to

~ 1 1/5
h _n—lIZ{ R«/}
opt — 4 " '
oR€
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Recall that in the standard univariate case, we have

~

R«’+%h4aiR‘":

nh

AMISE® =

and

~ 15
h* _ —1/5{ R«/}
o =N g
o R€

Cross validation is one of the methods used to estimate how accurate a predictive model
will perform in practice. Therefore, to ascertain practical data-based algorithms and to prove
beyond theoretical results for optimal bandwidth specification, we perform cross validation. Here,

we examined both unbiased (Least Squares) and biased cross-validation.

4.1.1 Least Squares (Unbiased) Cross Validation (LSCV)

The motivation of the least squares cross-validation method of bandwidth selection

comes from expanding the mean integrated square error (MISE) of f €, h: and the minimization

of it.
mise | &h = E“ Fen—t ((fdx}
MISE I ((,h::: UI((,hjdx}—ZE If &«hi @lx} I[ ((jdx:. (4.8)

< <
Since the “‘ & _ dx term does not depend onh , minimization of the MISE I & h_isthe

same as minimization of MISE f « h::— _[f 2 & dx.

Therefore,
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mise f & h - [17«ax=E 2 enax-2[f «nTF €«ox. (4.9)

The LSCV is obtained by finding the unbiased estimate of the right hand side of equation (4.9)
since the second term is unknown due to the fact that it depends on f ((: . Using the method of

cross validation, it is suggested that we remove one sample mean and use the remaining n—1
sample means to construct the estimate (leave-one-out). To determine the quality of the fit, the
nth sample mean is then evaluated. The afore-illustrated procedure is then repeated N times, one

for each sample mean and the results averaged.

Therefore, the unbiased estimator of the right hand side of equation (4.9) is obtained as follows;

for simplicity, n—1 has been replaced by n;

_ |1 _2|2 (4.10)
where |, = Ifz &, h dx and IZ:EJ.f,l(,hﬂFn(EX-

Now, considering |,, we have

Cfirg e L ofea[x=VnX) 1 of X X\ x
=] «’h/dx_hanK( hv/n jdx_hdﬁjK [wﬁ hjd(wﬁJ

Letu-i_ézdu-d(ij
Jnh h hvn )’

Therefore,

66



1 2 ™~ R«
l,=——=|K°Qdu= = 4.11
' h\/nJ‘ ¢ hvn @1
. 1 - < SO \/_X_I
AISO, |2: J‘f—l(’hﬂFn (BX:HZ f_i (,h [ Z [ j:l . (412)
i=1 =1

Therefore, substituting equations (4.11) and (4.12) into equation (4.10), we have

LSCV € = Z [X ~VnX,, ] (4.13)

i=1
/

Thus, it seems reasonable to choose h to minimize LSCV € .

The aforementioned smoothing parameter obtained by the unbiased cross-validation
based on the sample means was then compared to that based on the sample data proposed by

Wand and Jones (1995); that is

LSCV " @ = [ &hdx—2n"f  &;;h, (4.14)

n -
where f_ &h =@ —1/12 K, €- X, is the density estimated on the sample with X;
j#i
deleted, often called the “leave-one-out” density estimator.
The plot below shows the results of the comparison. A symmetric kernel function (the standard

normal kernel) was used for the comparison.
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Figure 4.1.1 Plots Comparing the Least Squares Cross Validation (LSCV) of the
Univariate Standard Kernel Estimate Case and Univariate Kernel Estimate

Based on the Sample Mean

Bandwidth h that minimizes LSCV2-based on the
sample data and LSCV1-based on sample means
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It was observed from the plot that the smoothing parameter obtained by the unbiased
cross-validation based on sample means converges to the optimum bandwidth quicker than the
one based on the sample data. Also it was detected that, even for very small LSCV values, the

smoothing parameter based on the sample data is quite a bit of a far from the optimum bandwidth.

4.1.2 Biased Cross Validation (BCV) in the Univariate Case

Biased cross-validation (BCV) (Scott and Terrell, 1987) is based on the formula for the

asymptotic mean integrated squared error (AMISE) instead of the MISE. Proceeding to our case,
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N -
AMISE = %4 1 h*n’ciR€" .
hvn 4 -

In the above asymptotic expansion for the MISE, the only unknown quantity is R ( ’ This

unknown quantity can be replaced by the estimator R € " _to get

RE 1 ~ .~
BCV € = 4 “h*n*ciR€" . (4.15)
“ hJn 4 -

Now, to estimate R € " we know that
RE - 17 «Bx= [1 €3 €Bx.

Applying integration by parts,

RE €3 €] - [t €3 €= [t €3 €.

Applying integration by parts again,

RE -1 €T €] + [ €T €= [f €T €.

Therefore,
R¢' = jf“”(@l:n «}12?(‘” & . (4.16)
el N
o~ 1 x—/nX
But f € = K , SO
~ hJn [ Jnh j
5 —
~ ~ 1 x—\/ﬁX
f(4)(( =(—J K®| 22, 4.17
“ndn Jh (@47
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Substituting equation (4.17) into equation (4.16), we have

e~ 18 1Y wf X, -VnX
R¢ ’ZEE(WJ K()(TJ. (4.18)

Now, substituting equation (4.18) into equation (4.15), we have

hv/n S hvn

BCV(1:=R«/+ ! aiZK“{Xi_‘/ﬁXJ. (4.19)
4hnz '

The aforementioned smoothing parameter obtained by the biased cross- validation based
on the sample mean was then compared to that based on the sample data proposed by Wand and

Jones (1995), that is
BCV" € = mhle«}%h“uz «’R¢" (4.20)

where R€” :: ey > K *K, }(, - X, )

The plot below shows the results of the comparison. A symmetric kernel function (the standard

normal kernel) was used for the comparison.
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Figure 4.1.2 Plots Comparing the Biased Cross Validation (BCV) of the Univariate
Standard Kernel Estimate Case and Univariate Kernel Estimate Based on the
Sample Mean

The bandwidth h that minimizes BCV2-based on the
sample data and BCV1-based on sample means
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From the graph, it was observed that, even though the optimum bandwidth for the biased cross-

validation based on the sample data (h . = 0.01) is a little smaller than that based on the sample

opt

mean (h,,, = 0.08), they both approach their optimums at the same BCV value.

opt

It was observed from the plot that the density of the biased cross-validation based on the
sample data increases monotonically as the smoothing parameter increases whilst that of the one

based on the sample means increases gradually or steadily as the smoothing parameter increases.
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4.2. CROSS-VALIDATION OF MULTIVARIATE DENSITIES BASED ON THE
SAMPLE MEANS

Many studies of bandwidth selection or smoothing parameter selection for kernel density
estimation have been centered on the univariate case. Not too much has been done on the
multivariate due to the complexity of the situation. Here, we will do an explicit multivariate
derivation of both least-squares (unbiased) and biased cross-validation based on the sample

means using the product kernel estimator.

The multivariate product kernel estimator of f (<: based on the sample means is given

by

NS P (% —~/nX.
em— ,

= K , 4.21
~ h..hynP?ia Jnh, “2

where )?j denote the jth entry )7, and X is a Nxp data matrix of random vectors,

-
X=&,e0 X, is a point in RPand K is the univariate symmetric kernel with a different

p

smoothing parameter for each dimension.

4.2.1 Least Squares (Unbiased) Cross Validation (UCV)

The unbiased cross-validation is obtained by minimizing the integrated squared error

(ISE). The ISE is given by

sE6> [fen> f€Sox. (4.22)
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Expanding equation (4.20), we have

fdx—ZJf«,hj & dx + “ &« " dx.

see > [fen
This implies,

ISEQ =RE€&h-2[f&hT «x+RE &, (4.23)

where Rf((,h::: jI((,hjdx, RC € > '“‘ ((jdx,and R¢& = J'...J'l//é(fdx and

it’s the roughness of (:

The term R € :} “‘ ((jdx is independent of h and can therefore be ignored.

Now, applying the cross-validation using the leave-one-out estimator, we have

(4.24)

S 1 P (xi—\/n—lim}

f &= K
e hl...hp(1—11’/2g hv/n-1

where j=1,...,n.
But Ef_, &, :: Jf & h ¥ &dxhence f_; & estimates the second term of equation (4.23).

Therefore, the UCV estimate is given by
ucv & =R€ -2Ef &, .
Therefore,

ucv e =R€ 2[f&hT «ix. (4.25)
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We can therefore generalize the unbiased cross-validation to arbitrary dimensions with this
approach. For a symmetric kernel, the standard normal kernel, Rf _is obtained as in Sain and

Scott (1994), but here, it is based on the sample means and derived as follows:

R€ &= [fenox

I{hl n, el ( i sz‘

i=1

xi—\/_X

,thenx, = /nhu+~/nX, , which impliesdx, =+/nh,du .
Jnh,

Now, letu =

Substituting these into equation (4.24) we get

s

1

-5 5 R&.
o hij
o]
But for the standard normal kernel, R (( \/_ Therefore,
N 1
RE - , (4.27)

P o2
¢/~ /(n” Hhi J
Also, the second term of equation (4.21) is obtained as follows:
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If &«hJ_j «dx

xi—\/ﬁ)? X—\/_XI :
:—Zjhl hy <]~p/2 { \/ﬁhi }hl h, €- fp/zH { \/_h J]d.

n._p Xi_\/ﬁ)?i Xi_mii,~j
: (ﬁh Tnnp/z ¢G-17" Jz‘;l'—:[ IK[ \/ﬁhi jK( mhi ]dXi |

i=1

Now, letu =X‘_—\/ﬁxi , thenx, =+/nhu++/nX , which impliesdx, =~/nh.du .

Jnh,

Substituting these into the above equation, we get

1

Tpe ol
N1

i=1

n-1h

(\/ﬁhiwﬂ/ﬁx ~Jn-1X, jJ ]

Therefore, the above kernel convolution can be written as

1 v e (X -n-1X,
fipoar SR

Now, replacing n—1 with n for simplicity, the multivariate leased squared cross validation

function based on the sample means is then

ucv hl,...,hp
- — -7 iﬁK*KLﬁii‘ﬁiw} (4.29)
2\/; p[np/zl—[hij [ hiJnnp/Z =1 i1 \/ﬁhi
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For a bivariate case, that is when p = 2, we have

n 2 \/ﬁ)?_\/ﬁ)z_
ucv €.h, > L 2 ( ! "‘].

STk

47l'nh1h2 h1h2n2 j=1 i=1

Another way of estimating If &, h T & dx s as shown below:

Therefore
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In that case,

~ n P X —\/ﬁ)? :
ucvg,.....h, = 1 1 . ! I L | 2 b1 | (4.30)
Q\/;j(nplzﬁhij ET e = n-1 Jnh
I-1 i=1
For a bivariate case, that is when p = 2, we have
- n_2 X.._\/ﬁ)?. .
UCV ¢,,h, = t ) 2\ > K| —— (4.31)
4znhh, n?€@-1h.h, & Jnh

Figure 4.2.1 Plots of the Unbiased Cross-Validation of the Multivariate Kernel Estimate
Based on the Sample Means With Different Sample Sizes

Bivariate Unbiased Cross-Validation
Bivariate Unbiased Cross-Validation Based on Sample Means
Based on Sample Means with Sample Size =100
with Sample Size =50
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Bivariate Unhiased Cross-Validation Bivariate Unbiased Cross-Validation

Based on Sample Means Based on Sample Means
with Sample Size =300 with Sample Size =500

Figure 4.2.2 Plots of the Unbiased Cross-Validation of the Multivariate Standard Kernel
Estimate at Different Sample Sizes

Bivariate Unbiased
Bivariate Unbiased Cross-Validationon Based on Sample Data

Cross-Validationon Based on Sample Data with Sample Size n=100
with Sample Size n=50
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Bivariate Unbiased
Cross-Validationon Based on Sample Data
with Sample Size n=300

Even though both plots have spike due to singularities, the effect is minimal in figure (4.2.1).
Also, it can be observed that the performance of the bandwidth selection in the unbiased cross-
validation based on the sample means is better than the smoothing based on the sample data. The
surfaces of the plots based on the sample data are rougher. The spikes diminish in the plots of
unbiased cross-validation based on the sample means as sample size increases but still the same
in the case of the sample data even though sample size increases. Besides, comparing the
computational time for the unbiased cross-validation bandwidth selection based on the sample

means and the sample data, the computational time was significantly reduced in the case of the

sample means.

4.2.2 Biased Cross Validation (BCV)

In the univariate biased cross-validation based on the sample means, we derived the

Bivariate Unbiased
Cross-Validationon Based on Sample Data
with Sample Size n=500

BCV (fbased on the AMISE. The AMISE was obtained by
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RES 1 40
AMISE = ——-* h n‘c Rt (4.32)
hn «

Here, we will first outline the general derivation of BCV function for the bivariate case, that’s

when p = 2. Now, considering the bivariate form of the AMISE for the product kernel defined in
equation (4.21) above,

RK 2 <
AMISEG, ,h, 3 _ 12 f X dx,dx
61 Zjhlhz\/_ 4 Khjid_” xlxl(l 2 _MAUR7

+hJ ”-fxzxz €, x, 2dx;dx,
N

+2h7h3 _folx1 € %, ]xzxz L BxldXZ B

(4.33)

X, _and itis

But folxl €, x, Jdxdx, = J'J'fx<14> €.x, 3 €, x, dxdx, =E 'X(14) €. x,

estimated by

Z f—l 14) ‘(Il’ i2 _

Similarly, ”fxlx1 €. %, 1., € X, dxdx, =E

2 2

o' f €&, X,
O &%, and this is estimated by
OX; OX,

: @ -
1 Z”: f—il € X,
n xiox:

i=1

Substituting the estimates into equation (4.33) and simplifying, we have

n
Xil’ Xi2

S|
M
£<

RK?®
BCV h,h, = 1 n‘oy 4(1Zf(l4>)< Xi11 Xi ]+h4(
n

hhn 4 &
+2h12h22 lia‘l f—i Xll’XIZ .
n&e  oxlox;

This implies,
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BOV €y, = R L na4zn:K(4)Z
v hyhy/n 4(1—115/2h1h2 K|—1 j=1 h\/_

naﬁiw)i[x.h Jn ]

+—
44 —1:5/2 hyh, i=1 j=1
4% (4) % Xi—vnX
S (4.34)
TR TR

Figure 4.2.3 Plots Comparing the Biased Cross Validation (BCV) of the Multivariate
Standard Kernel Estimate and the Multivariate Kernel Estimate Based on
the Sample Means

Bivariate Biased
Cross-Validationon Based on Sample Means

h2
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Bivariate Biased
Cross-Validationon Based on Sample data

From the above plots, the biased cross-validation based on the sample data have some spikes,

which might be due to singularities but it not the case in the one based on the sample means.

4.3 Plug-In Technique
4.3.1 Plug-In Bandwidth Selection: Univariate Case

The main idea of the plug-in bandwidth selection is to replace the unknown quantities

that appear in the formulae for the asymptotically optimal bandwidth € ,,,,se : by their estimates.

From equation (4.7) above, AMISE was given as

\
AMISE = %/+ L

hvn 4

nnioiRE
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Therefore, the asymptotically optimal bandwidth can be obtained by differentiating the AMISE,

equating it to zero and solving for the h. By so doing, the asymptotically optimal bandwidth

1/5

B R K

hAMISE =N vz {W:l . (435)
K

The general integrated squared density derivative functional is defined as
REC= [ f € 2dx.
Using integration by parts, under sufficient smoothness assumption on f , it can be shown that
RE = €131 4% €dx. (4.36)
It is therefore very important to estimates functionals of the form
v, = [ T €«x (4.37)

for r even. The y notation is preferred to the usual R € notation since it’s easier to extend

it to the multivariate settings. From equation (4.37), we know that,
l//r = E ﬁ()Q( A

From equation (4.1), the estimate of density f (Cbased on the sample means was given by

s~ 1 x—/nX
f“/‘m‘{ Jnh ]

Therefore,
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This motivates the estimator

_nlzf()«“g -n { J ZLC{Xg\;_/—XJ, (4.38)

=1

where g and L are a bandwidth and kernel that are possibly different from h and K respectively.

Now, we know that,

MSE@, =Ed ¢ v, J=Var@, ¢+ Bas ¢, ¢ . (4.39)

= n‘lﬁx/ﬁjr_lnjL({x g\/‘/__x ]

L G

x fq dxdy -
avn x,, ¥ Ooxay
Assuming fg ¢ > Vn-1f (/n—ly;we get that
1 n—l 1/2
S i A—
Ey, g =gn [[L n f x Jn-1f, </n—1ly dxdy.
gvn

Now, let w=+/n—1y, then y =

This implies,
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ﬂ: ! and @=o
ow n-1 ou
( 1 n—l 1/2
X{1-—=[-y| — -1
EDLT s3]
Also, let u = ,then x=|u In+—[1-—1| .
gvn AN (A
This implies,
ox 1 1 1
Z=—]1-=| and Z=g/n|1-=
ow \/ﬁ( n) ’ ( j
So,
L 0
Jn-1 gvn (, 1
|\]|_ -1 \/_ 1 l——
1 ( 1} gvn|1-— Vvn-1 n
—|1-= n
JnUon
Therefore,

EQ,. ¢ = (Nﬁjrfl [ Hug\/ﬁ +%j(l—%} }/n_—lf « [J|dwdu

4 o o) o B o

-6 o1 5| ”umKUQJm -] 1}@wdu

SO (o I X (R SR
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Now, by Taylor series expansion and applying the moment conditions for a symmetric kernel

For large n and with the appropriate choice of g (g = 0(1‘1/ 2 :), we have

_ wr+(!jlyk({%(1—%j1]k(g\/ﬁ(1—%]ljk%k . (4.40)

Therefore, the bias of 7, is given by

bias@), =E@, ¢ v, = €'y, Cﬁﬁ(l—%j_ J [9\/5(1‘%]_ ] Vi (4.41)

If X,,..., X, be asetof identically and independently distributed random variables and applying

the symmetric nature of L for r even, it follows that, the variance of 7 is given by

gvn

_ [ (4.42)
€1 2 Toy) LD X=X ) | h Xz~ VDX
G-1%-2¢C {LJE i ]LJE n ]}

n@ _l?Var{L()E Xy - JnX ]}
Var()r}[n‘lﬁ\/ﬁjr_lr ’

Now, treating each component of both the variance and the covariance in turn, we first consider
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E{er(x */_XJ} ”L” (l_J_y( ;j f x f, y dxdy.

gv/n Yo

Assuming fg ¢ =/n-1f (n —1y; we get that

x| 1——

gv/n

E{L”[X ‘/_XJ} 1% ( 1j—y(n;1J f x Jn-1f, /n-1y dxdy.

Now, let w=+/n—1y, then y =

5.
H.

This implies,

ﬂ: ! andﬂzo.
ow n-1 ou

Also, let U = X(l_x/lﬁj_y(nn_ljm e x = [ug\/ﬁ+_}( __J_l

gv/n Jn U Vn
This implies,
-1 -1
x_ i(l—lj and g=g\/ﬁ(1—3j
ow n n ou n
So,
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n-1 -1
J= _ 1 = 1-—
| | i( _1)1 g\/ﬁ(l_ﬁj n_l n
n n
Therefore,
el €2 Xi=VnX JnX
~gdn

= JJL¢? ¢n-1f ‘”[(ugf Tj( ‘T]ll“"’w"”

o2 jL@G[[ugm%j{l—%ﬂf s

For large N, we have the above last term equal to

9\/_”L2(17Hug\/ﬁ+7j( —TJ_l}foﬂvBWdUzgy/oR(_O:.

{5 )
-

s | s

(4.44)

Now, considering = ”J‘L gn

xf x fin,l y f z dxdydz.

Assuming f, € >+/n-1f (/n—ly;we get
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(fu (w0 |

xf x Jn-1f;, Jn-1y f z dxdydz

Now, let w=+/n—1y, then y=

This implies,
%z nl—l , %:0 and %:o.
L1 n-1Y"
Also, let u = XK _\/ﬁgj/;(n) , then x = {ug\/ﬁ+%}[l—%r.
This implies,

n ou n

-1 -1
ax:i(l—lJ ,ﬁ:g\/ﬁ(l—lj and %:o.

L1 n-1y"
Again, let v = y( Jﬁg\/;(n) ,then z :[%—Vg\/ﬁ}(l—%jl.
This implies,
z=i(1—1jl 2 _0 and @=—g\/ﬁ(1—ij_1.
OW +/n n ou ov Jn
So,
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nl—l 0 0
|J|%(1—%Ji gﬁ[l—%]l 0 )
B nl—l g\/ﬁ(l—%j —9\/_(1()—%}1_#\/313[

Therefore,

el (BB e ()

R R A )

o) oo
SN[ SISERTR (T N

x f ({{%—ug\/ﬁ}(l—ﬁJ l]dwdudv

=6n > [1C@T @iwr o

for n, sufficiently large.

=

We also know from equation (4.40) that E{ L‘{@]} =y, +0 C
g+/n

Substituting these into equation (4.42), we have
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Var @, _

n€-1_ 'S
\gy/oR( /+n(1 1€-2_
z[n—lﬁﬁjr—l]z 2 (I 1
TR JﬁJ;N”ﬁ‘2W3¢ww vt
Var @, _
[ _16\/_)r_1} {_9W0R¢(”+n [(lx/ﬁ?zrff(? G Wﬁw—w?}} (4.46)
n—r—l B

:Tg_zr_ly/oR (Cn? e wiw—y? g

The asymptotic MSE is therefore obtained by substituting equations (4.41) and (4.42) into

equation (4.39) as shown below:

L k v k 2
MSE €, =1 € ="y Ci/—( ﬁj ](gﬁ(lﬁ] ]wHk

n—r—l

2

(4.47)

+

g2 yR(C 02§ C T @dw-y?

The value of g that minimizes the MSE €, € _ is obtained by differentiating MSE €, € _

with respect to g equating it to zero and solving for g as follows:

2{ !jl,uk(.%%(l%Jl]kgknkm@%jkwwk}
x{ !jl,uk(_%%(l%]jkkgkln“{l%]kwr”}

Which implies that
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-2 -2k -
2l 2,21 L1 g2l L 2 " o _1 722 R(O\—O
LI T g n T Yirek o+ 5 €2r-197""y, =U

Multiplying through by g2***we have

2k -2k
n"‘lezr—1E;‘2“2k‘1woR(O:=4(!j2uk2Qél—iJ kgz“nk(l—iJ ey
Jn
For large N, we have

n_r—l ‘_ or _1:9 _Zr_Zk_lWOR ‘_"::: 4(|j2 /ukz (_Egm(_lnkl/lzﬁ—k .

Therefore,

~@re2k+1)_ 4‘(!j2ﬂk2 (-I(QZK_lnk‘//ZHK

g er+1n "y R(C

- |~2 O 1/2r+2k+1
er+1%%y,RC % . (4.48)

g = =
AMSE |:4/uk2 ‘_/kl//zr+knk+r+l

Therefore, replacing the unknown quantity that appear in the formulae for the asymptotic optimal

bandwidth R€" by the functionaly, , equation (4.35) becomes

(4.49)

1/5
h _ n—l/2 |: R K :|
AMISE '

4
Oy

Now, replacing i, by the kernel estimator 7, (3: leads to what we called the direct plug-in

rule:

92



1/5
hop =N Y2 {&} . (4.50)
g

4 A
OV,

But this is not automatic since ﬁDP, depends on the choice of the pilot bandwidth ¢.The value

of g can be chosen by using the formulae for the AMSE-optimal bandwidth estimation of

v, € : Using the same second-order kernel,

1/13

gV/oR(-qjj

Oamse = | T 24~ 7 . (4.51)
21" € ygh

But here too, the method for choosing g has the problems as ﬁDPI since it also depends on the

unknown density functional, /. From equation (4.48), it is evident that the optimal bandwidth

for estimating y, dependson v/, ,.

This problem can be overcome by estimating the v, using the quick and simple estimate.
| —stagedirect plug-in bandwidth selector (ﬁDP,’,), the name given to a direct plug-in which

involves | successive kernel functional estimations, with the initial bandwidth chosen through a
quick and simple method. This approach uses the normal scale rule suggested by Sheather and

Jones (1991) as a zero-stage direct plug-in bandwidth.

The normal scale bandwidth selector makes use of the AMISE optimal bandwidth for the
normal density having the same scale as that estimated for the underlying density. From equation

(4.35), the optimal bandwidth was given as

1/5

_ R K

hAMISE =N vz [W:l . (452)
K
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If the unknown distribution f has a normal distribution with mean 0 and variance o2, then the

AMISE optimal bandwidth becomes (Wand and Jones, 1995, p.60)

87" R K T°
hanee =N ——— | o (4.53)
3oy

To obtain the normal scale bandwidth selector, the standard deviation o in the above equation

replace by its estimate & (Silverman 1986). Therefore, the normal scale bandwidth is given by

- 8" R K T7 .
fe =n 2| 2| 6. (4.54)
3oy

Usually, the sample standard deviation s is used as the estimator of & or a more robust estimator

of o such as the standardized inter-quartile range (5 z ) could be used. It’s been suggested that,

to avoid or lessen the chance of over smoothing, the smaller of sand &,QR is used (Silverman,

1986, p.47).

In general, if f is a normal density with variance o then, for r even (Wand and Jones, 1995,

p.72),

r/2

-1 "r!
S e 2 1 &5

This is an illustration of the two-stage plug-in bandwidth selector. Assuming L = K where K

is a second-order kernel:

105

Stepl: We estimate i/, by the normal scale rule, 17,° = ————
2r 6

%94



Step2: Now we estimate /¢ using the kernel estimate 7, (31: , Where

~ U7
_{ 23y,RC }
-

4’ €’
STEP3: We then estimate i/, using the kernel estimate 17, €, : ,where

> Tl
|: gl//oR(-QJ/ }l 13
g,=| —2>——=| .

2,uk2 (_@Bzﬂ

STEP4: The selected bandwidth is given by

R K 1/5
ﬁDPI,Z =n*? 7~ .
oW, 9,

Figure 4.3.1 Plots Comparing the Performance of the Plug-In Technique in the Univariate
Case for Both Standard Kernel Estimate and the Kernel Estimate Based on
the Sample Means

Estimation of a Density Based on the
Sample Data by the Plug-In Technique
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the indices.

Density

0.06

0.04

0.0z

0.00

Estimation of a Density Based on the
Sample Mean by the Plug-In Technique

2

optvec

In general, both the plug-in technique base on the sample data and the sample means does a good
job with the smoothing but the one based on the sample data loses tract of the smoothing at the

extreme right of the histogram. The one based on the sample means smoothens evenly throughout

4.3.2 Plug-In Bandwidth Matrix Selection for Bivariate Kernel Density Estimation

Here, we consider bandwidth matrix selection for the bivariate kernel density estimator

based on the sample means. A plug-in selector is developed for full bandwidth matrix.

Bivariate kernel density estimation is very important because it serves as the mediator or

the bridge between the univariate and the high-dimensional multivariate cases.

The bivariate kernel density estimate based on the sample means is defined by
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€= K[(X_fXJH‘“q, (4.56)

“nH)

T g T . . .
where X = ((1,x2j and X = «PXZ/, a random sample of means, K is the bivariate kernel

density which is usually symmetric and H is bandwidth matrix which is symmetric and positive

definite. As we all know, the choice of the bivariate bandwidth matrix H is very crucial in
determining the performance of our estimate f} ((j. The bandwidth matrix H can be chosen

from a class of diagonal (positive definite) matrices or a class of positive multiples of the identity
matrix as investigated by Wand and Jones(1993), but here we chose a full (i.e. unconstrained)
bandwidth matrix which allows for arbitrary orientation of the kernel function as investigated by

Duong and Hazelton (2003).

In order to measure the performance of the our estimate above, we shall make use of the

mean integrated squared error (MISE) criterion which we used in Chapter 2 in conformability

with majority of the researchers in this field. The MISE of the estimate fAX ((: is given by
J v
MisE€; & -E jf((}f((j_dx. (4.57)
RZ

Therefore, our optimal bandwidth matrix is supposed to be

Hmise = argmin MISE fx € (4.58)
HeH

where H is the space of all symmetric, positive definite 2 x 2 matrices and argmin is the
argument of the minimum. But this optimal bandwidth does not have a closed form so the use of

asymptotic analysis is employed.
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From Chapter 2, the AMISE for our estimate in the multivariate settings (p-dimensional) was

obtained to be

AMISE‘X((::: pl/:\;“(:rlz 3—1 2P J", |41/2 (_|1/z‘f\V f‘(/_}jx

But in the bivariate case, p=2 and H is also assumed to be symmetric, therefore our AMISE

becomes

AMISE€, €= > H l,2+ Ly “fer? §ver ek, (4.59)
n

where R = IKZ & dx.
RZ

To rewrite the AMISE into the form we need, we will need the following matrix results:

1. If Aisasymmetric matrix @ = A : then D,vechA =vecA, where D, isa

1 - . I .
d?x Ed € +1 matrix of zeros and ones and is called the duplication matrix of order d ,

vech is the vector half operator and VEC is the vector.

a'.l.l a'21

For example, given a symmetric 2 x 2 matrix A = {
a21 a22

} , and a duplication matrix of

order 2, then the above relation can be illustrated as

100&1 a,
01oa1 a,,
01oa21 a,,
00 1% |a,

D,vechA =vecA
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2. If Aisasquare matrix, then
D]vecA=vech@+ A" —dgA
where dgAis the same as A, but with all its off-diagonal entries equal to zero.
3. tr@’ B:z e A:ClecB:.

Therefore, the second term in equation (4.62) can be simplified by making use of the above

matrix results.

Consider

“’ RV f ((jdx = IQecT H :v%cvz f «:}{ECT f ((jecH x
= [€ectH D] vbov? f & ¥be’ f €, €echH I

Therefore,
_[trz HV?f & dk = Gech™H ¥, qechH _, (4.60)
. l ~ 1 ~ . -
where ¥, is a Ed ¢ +1/x§d ¢ +1 =3x3 matrix given by
W, = [vech fD? f & -dgD? f & Vech™ }D?f & - dgD* f & i,
RZ

where D?f 6(: is the Hessian matrix of f .

The above expansion holds if all the entries D? f 6(: are square integrable and all entries

H —0 and n’1|H|1/2 —0as N— o,
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Therefore, substituting equation (4.60) into equation (4.59), we have

<J B ~ ~
AMISE € &« = T—Tﬂ; +%n4 Cech™H ¥, ¢echH . (4.61)
nH

Now, let r = €,r, , where r,and r, are non-negative integers. Also let |r|=r, +r,, then can

write the rthpartial derivative of f as

- a\f\ -
f Ok = f &, 4.62
“oion - (4.62)

assuming that this derivative exists.

So the integrated density derivative functional

v, =E RS [T €x (4.63)
RZ

and

[T O Q& ax= €17 [T &iix (4.64)

if |r + s|is even and zero otherwise.

Making use of the equation (4.62), the ¥, in our bivariate case becomes

Wio W31 Wao
V,=|2p5 dy,, 2y,
'ZY 2‘//1,3 Yo,

Where the subscript 4 on the ¥ relates to the order of the derivative involved.
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Therefore, the bandwidth matrix for the plug-in method is given by

H awise = argmin AMISE € (<:. (4.65)
HeH

But here too, just like the situation we faced in the univariate case, the AMISE is a functional of

the unknown target density through ¥, . Therefore, we need to estimate the ¢/, functional which
would allow us to get an estimated AMISE (\M IASE‘ that can be minimized numerically to give

the plug-in bandwidth matrix H .

From equation (4.63), we know that

v, =E R T [ T «x
R2
which motivates the estimator

g, 6 =Y fOK;;6 =Py L‘{%] (4.66)
i=1 i=1

where G is the pilot bandwidth matrix usual different from H and L is also a bivariate kernel

density usually which is also symmetric but possibly different from K.

In section 4.4.1, we derived the bias and the variance for the univariate plug-in method which can

be extended to the bivariate bandwidth matrix settings.
Therefore,

Bias iy, G::%ﬂz (_:Itr D f €& f} & Ix+0¢G_ (4.67)
RZ

and
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Var@, 6 "=y, L€ nz{ [1O&«T «ix —wf}wﬁl:- (4.68)

R? R?

If we consider the pilot bandwidth matrix G of the form G = g1 (where | is a 2x 2 identity

matrix), then our bias and variance becomes

. e~ 1 -
Biasy, @ = Egzﬂz Y (4.69)

for large n, e, is the elementary vector( that is a vector of length 2 with 1 in the ith position and

0 elsewhere,

and

il . .
Var@, ¢ = ”T gy, RO+ nz{ [rO«T «ox- u/f} , (4.70)
R2

=2Ir|-1

provided the L€ is square integrable and g — 0 and n_‘r‘_lg —>0as N —> o0,

Therefore, the asymptotic mean square error (AMSE) of i/ is

—|r]-1
~ n

—2|r|= >~ 1 ~ 2
AMSE@, ¢ _= 5 g 2r] 1!//0R(Oj {Egzﬂz cyl’+26,:| (4.71)

since ¥, is a positive-definite for any continuous density f , when we assume the kernel L to be
a multivariate normal distribution, then it can be shown that 'f’4 is the, matrix corresponding to

f= f(Z‘lgzl _, hence the estimate Y}4will be positive definite. Therefore, a single or common
g is needed for the estimation of all elements of ¥,. As investigated by (Duong and Hazelton,

2003), we estimate the bandwidth that minimizes the sum of the AMSE (SAMSE) for v, that is
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J4,5sAMSE = argmin SAMSE @4 ;, (472)
g>0

where

SAMSE @, = SAMSE, ¢ = S AMSE €, ¢ . 4.73)

rir|=4

It is obvious from equations (4.69) and (4.71) that our estimate g, sause Will depend on
the functionals, v, ,, , for |r| = 4. But the functionals, v, ,,, also depends on ¥;. So we need the
bandwidth g, guuse » that is the minimize of SAMSE f’a / Therefore, in general, we need SAMSE
optimal bandwidth g; sayse for j = |r| =4,6,8,..., which is available in closed form as shown by

(Duong and Hazelton, 2003). So from equation (4.69),

-j-1

SAMSE, ¢ = > AMSE@, ¢ ="~ 5 -ZJ—WOZRG% 0%, C D W, - (474)
rir=] rirl=j rir=]

Now, letting A = Z:R(_O and A, = 12 ('/Zl//r+2€ , then
rirl=J rirl=J

~ I"I_j_1 _2i—
SAMSE; ¢ = > g2t Al+ g*A,. (4.75)

Now, differentiating the above with respect to g , we get

0

-j-1
< sAMSE, ¢ 3
a9

~1372% A +g°A, . (4.76)

Setting equation (4.76) to zero and dividing through by g*, we have
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2
Therefore,
g—2j—5 _ _ 2A2 .
n_J_lej +1yoA
which implies that,
1/Qj+5 "
Cj+1y -
9 j,sAMSE I{TfyoAl :
2n'A
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CHAPTER V

MULTIVARIATE KERNEL DENSITY ESTIMATION — NEW APPROACH

5.1 Introduction

The estimate we obtained in the previous Chapters which completely break the
curse of dimensionality and remedy the deficiency of high dimension bandwidth
selection was based on the fact that it works well for self-revolving densities or the
ellipsoidally symmetric distributions. We have obtained another solution in the form of
an estimate that handles partially the curse of dimensionality. This new estimate is devoid
of any restriction and works well for all densities unlike the one we previously obtained.
As said earlier, it partially solves the problem of the curse of dimensionality which is

better than the case of the classical or regular multivariate kernel density estimate.

5.2 Bivariate Case

Let X,,..., X, be random sample of independently distributed observations from

a population with unknown bivariate density f &, X, ;then we propose the new
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bivariate product kernel density estimator for the unknown density f &, X, :to be

pw ~ 2 N X — X X, — Xy
f. &, X, =——=— > K| 22— K| Z2=—2], (5.1)
AT e
where K is the kernel which is assumed to be symmetric, ”fn* €. x, Exldx2 =1

whenever jK ¢ Eu =1. Therefore f, €, X, “isadensity. h, and h, are the bandwidths

or the smoothing parameters.
5.2.1 Expectation and Bias of f €, x,

We can obtain the expectation and the bias of this new estimator as follows:

* ~ 2 \ X — Xy X2 — Xyi
g

2~ Y> =
n<1+1h1h2;” [ J [\ﬁhz val,yz/dyldyz- (5.2)

Let u :u, then y, = X, —u~/ih, and dy, =fihdu .
Jihy

Similarly, letv :% ,then y, = x, —vA/ih, and dy, =+/ih,dv.

I,

Therefore, substituting these into equation (5.2), we have

E€ . x, = < mhz; [ [K €K €3 € ~uvih, x, ~v+/ih, ihduvih,dv

= es 1:; ”K(lK(ﬁ(l u~/ih, x, —v+/ih, dudv
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Now applying the Taylor series expansion to second order, we have

o 1\2 [[K €K €I €. x, > ofinf, &, %, vin,f, &, x )

_i=1

+1/2 i2u?f,, €, X, Fiuvhh, f, €, X, Fivuhh f, €, %, Fih2v?f,, €, X, }udv

= es 1\2 ﬂ'K(l K€7 €,x, dudv - ”K(l K € unfih f, €, x, Fvi/ih, f, &, x, Jdudv

_ii=l

+1/2 [[K € K € 2071, €, x, "dhidv +1/2 [[K ¢ K € vhh, f,, &, x, “dudv
+12 [[K € K € Huh,h, f,, &, x, “Qudv +1/2 [[K € K ¢ v 1, &, x, dhav.

Now applying the moment conditions of kernel, that is IuK (@Ju, IVK (E\/ =0,

J.UZKQBU =0, and IVZK € dv =02, we have

o 1\2 i €. %, +1/2i°h%?2 £, € x, +1/2i°h262 f,, & %,

=1

T l:{f(l,x z|+1/2hf fax, D 0°+1/2 §a§f22(<1xzzi3}.
+ ' i=1 Y i=1

Applying the power summation, we have

nQ+1° N Q+1° ne+1
n(l+1{f‘<1, 22" 5 “+1/20 oy £, € %, T/+1/2h2 fzz((l'xz’T/

~ n(1+1 > n(1+1
_f‘(vz Tzzfn‘(lz /hzzfzz‘ﬁxz

Therefore
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\ n 1 ~
£€ €x T 1600 30 B T 53)

Therefore, the bias of f, &, X, is

n n+l
4

Bias[ f* %%, ]: o [hf f. XX +hif, XX, ] : (5.4)
The asymptotic square bias (AISB) is given by

AISB In* ‘(1')(2 :: (H_l/ oy [h1 J.If X ,dx, "‘2h12hz2 J.jfn «uxz :fzz« 1 X ijldxz

o (12 B

Therefore, AISB of fn* &, XZ: is given by

ABBF & 2\ n ﬁlgl) ok [R€; 3 2h'hS €y, f, FWRE,, T (5.5)

whereR€,, > _Ufj €. %, Ixdx,, RE,, = J'J'f22 &,, %, dx,dx, and

S€, T } j._[fll €. % Ezz €. % BxldXZ :

5.2.2 Variance and AMISE of f &, X,

Squaring equation (5.1) yields

£ *2 ~ 4 X~ X1| Xz_X2|
fn { DR R

Pl
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Therefore,

<2 D 4 n X, — X X, — X,
E ; ‘( X — E K2 1 1i KZ 2 2i
f 172 n2 (]+1Eh12h22 ; ( '\/7hl j ( '\/Thz ]

K2 X—Y K2 X =Ys ~
21’ hlhzzﬂ { hlj [\ﬁhz jf(/1,Y2QY1dY2-(5-6)

Let u :u, then y, :xl—u\/Th1 and dy, =\/Thldu :
Vih,

Similarly, letv :% .then y, = X, —v/ih, and dy, =~/ih,dv.

1,

Therefore, substituting these into equation (5.6), we have

€’ ¢, x

2> [[K? €GB €3 & ~uvfih,, x, ~v+fih, Yfinduyin,dv

1 2)_ 2 6 1jh1 h2 —

mz ”K (R’ (T(l—u\/—hl,xz—v\/_hz dudv.

Now applying the Taylor series expansion to first order, we have

Z HK (R*€3 €, x, dudv

n 6+1jh1h2 —

4f(<1,x2T22 P
n*€+12hh, Z_ll

where szﬂﬁu:R((: and jKZQBU:R((:.
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Applying the power summation, we have

_ 4T €% REKZn€+1 2f €%, RE
- n2<1+1fh1h2 2 n€@+1hh,

Since the variance term is dominated by the E[ f2 J then the variance of f &, X%, is

given by

Var I €« x, ~ 2 fn‘:’rli:j (5.7)
Therefore, the asymptotic integrated variance (AlV) is given by
AlV f €, X, j:z ﬂZf €.x REC dxdx, _ W& (5.8)

n€+1hh, n€+1hh,
Therefore, the asymptotic mean squared integrated error is given by

AMISE = AISB+ AIV

nﬂ—+1/ «['R€; 3 2n’h; ijll €% 322 €. % 3%, +WRE;, T (5.9)

2R(<7*
nﬁ +1Bh,

where R€,, > ” f,2 €, X, 9x,dx, and R€,, = ” f.2 &, %, dx,dx,.

We can easily find a solution for the optimum bandwidth if h, =h forall i.

Therefore, equation (5.9) becomes

AMISE = O'i [hAR qg11 :"‘ 2h* .”fn ‘(1! X, :fzz ((17 X, I]IdeXZ +hR 622]

N 2RK
n€+1h°

nQ+172
16
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Differentiating with respect to h and equating to zero, we have

n’ -I-:I.‘2 ~ ~
%Oﬁ [4h3R q‘11 _k 8h3 .[J‘fll «11 X, :fzz ‘(1’ X, /dxldXZ + 4h3R q:22 j
_4AREKZ 0
n€@+1h°
- < ~ 16RK’
NR €, 3 20 [ [, €% T €%, Dy + MR, = —h S (s.10)
n"€+1 0,
From Scott (1992), the general bivariate normal data using a normal kernel gives
RE, = 3I67r‘— p° jlzcrfaz o
RE,, = 3!6%(—p2 ;malo'g o
and
B/2 -1

an f,,dxdx, = €+2p? jGn(—pz _ olo) .

N2
where p is the correlation coefficient.
Substituting these into equation (5.10) we have

= =1
3h° Iﬁn(—pz Elzafaz o+ 2h° €+ 2p? j67r‘—p2 jlzafag’ _
-1 16
+3hGI67r‘— 2}/2005 = .
Pro %2 47rn3(1+1fai
o I G2 VDN 3 16
167r(—p2 Elzafaz _ 167[(—/)2 jlzafag _ 16%(—/)2 jlzalag’ 47n° €@ +lj
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Assuming the standard deviation o; = ¢ for all i, then we have

3¢ +2 1+2p° o' +30* ~ 4
[167z 1-p? 5/2510} an® n+1’

6

64z 1-p> "

87n® n+l’ot 1+ p% 12

1/6

n*@+1>4+p?/2

h6

Therefore

L yve g T
h=n" 8¢ e (5.11)
+1/n >4+ p* 12

If the variables are independent, then p =0 and

h = n‘{ﬂr (5.12)
' (+1/n3
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Figure 5.2.1 The Bivariate Normal Density Distribution

Two dimensional Normal Distribution

FOx) = 1 'e)(p{[— 1 D e el DO Tl )
_271'\'011 22 (1-07) L 2(1-p?) o1 F fon  Aom T2
Figure 5.2.2 Contour of the Bivariate Normal Density
contour produced by the bivariate normal distribution
o
o
o
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Figure 5.2.3 Regular Kernel Estimate of the Bivariate Normal Distribution

Regular kernel estimate of the bivariate Normal Distribution

Figure 5.2.4 Contour of the Regular Kernel Estimate of the Bivariate Normal Density

contour produced by the regular kernel estimate for
the bivariate normal distribution

114



Figure 5.2.5 The New Kernel Estimate of the Bivariate Normal Distribution

new kernel estimate of the bivariate Normal Distribution

Figure 5.2.6 Contour of the New Kernel Estimate of the Bivariate Normal Distribution

contour produced by the new Kernel estimate for
the bivariate normal distribution

4 -2 o] 2 4
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5.3 Multivariate Product Kernel Case

Let X,,..., X, be random sample of independently distributed observations from
a population with unknown density f «:, of dimension p . Let X be an nx p data

“and let X,; denote the ij™ entry of X . Then we

matrix of random vectors X = ((1 X,

propose the new multivariate product kernel density estimator for the unknown density

f & to be

e~ 2 n P =X

where K is the kernel which is assumed to be symmetric, h j are the respective smoothing

parameters for each dimension.

5.3.1 Expectation and Bias of fn* «

The expectation and the bias of this multivariate product kernel estimator as follows:

EI &« _E iﬁK( 1/ph J
thn(1+1:'*l )=
j=1

n(1+1,2ﬂ_[ . (“ph ]uat (5.14)
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X. . . .
Let u, :_l'Th‘, then t; = X, —u;i"Ph; and dt; =ih,du.

Substituting these into equation (5.14), we have

n(1+1\ZJ‘H_ "J‘ —u,ih, ihydu

_i=l

=hes 1\2 IHK‘ f( —u,it'Ph, d

- 1\2 jHK( f( CU,Ph, e x, U, Ph, QU
=1

Now applying the Taylor series expansion to second order, we have

r,s=1

n(1+1\z IHK( ){f« lelphu L Z‘Up Uusfrs‘(%

Also applying the moment conditions of kernel, we have

vy 1\2 {f(( 3o > e f”q

r,s=1

st

_i=1 r,s=1

Applying the power summation, we have

i=1 i=1  rs=1

= es 1{f(<z|+ aizu Zhj f”«j
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2 m(1+1 1n (1+1 P
= f h?f.
n(1+1{ « 2 2 4 o 2Ny &

r,s=1

n€+1>,< -
- f &3 1 /oighff”«,
J=
So,

e« f((}nﬁ+1/22hj f, €. (5.15)

Therefore, the bias of f. & is given by

- * N n +l\ B =~
Bias In € > 64 %ﬁ;hff” €. (5.16)
j=

The asymptotic integrated square bias (AISB) is given by

AISBI «‘ n “*1 [zw‘Rc,, 3> nnis €, q (5.17)

i]

where R€, > [[ 7 €3x and s, 1 = [f,f,x.

5.3.2 Variance and AMISE of f &
Squaring equation (5.13) yields

pxl o~ 4 i~ Xi_xi' n P Xi—Xi-
fn ‘(/: p {ZJ;HZHK [ l/phj_ ] 2[ il/ph : ]‘l'ZHKZ[ i]_/phlJ J}
n? @+1>] [h? 2 ) i
i=1

Therefore,
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T n? (1+1?Z.[Hh2 ( l/ph }f(/dt (5.18)

X —t.
_ i i — v —q1ilp i

Let UJ—W,then tj_Xi Ujl hj and dtj—lhjdu.
J

Therefore, substituting these into equation (5.18), we have

EIn*z((:: = szmhz ZQJ‘( UIl/ph Ihdu

n ﬁ+l),l

‘zz IH_KZ(‘J} & —uji’’h, Eju :

n<11|1:

Now applying the Taylor series expansion to first order, we have

n’ €+ 1’.2‘[1_[ <6 €

_ AT ERK ’Zn:'
n2(1+1/1_[hJ =t
j=1

AR €

2 i=
n2(1+1/1—!hj !
j=
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where IﬁKz(lj::Rp((:.
j=1

Applying the power summation, we have

4R K n@+1° 2f &R K _
p p '

n?@+17] [ 2 n€@+1] [,
j=1 j=1

Since the variance term is dominated by the E In*z 6(:_, then the variance of fn* 6<: is

given by
Var fn* ((::z w . (5.19)
n@ + lH h;
j=1
Therefore, the asymptotic integrated variance (AlV) is given by
av | ec= j’w:dx __ R« (5.20)

=
n(1+1th n(1+1th

j=1 j=1
Therefore, the asymptotic mean squared integrated error is given by

AMISE= AISB+ AIV

2 E p »

_n ﬁlgl/oﬁ[Zhﬁqui}Zhizhjzs ¢ fjijJ”# ' (5.21)
i=1 i#] n6+11—[hj

j=1

5.4 Multivariate Case-General

If X, is a independent random sample from a population with unknown density, f ((:,

}, and X € R’ has the representation X = ((l,...,x

p_

and X, = Q(il,...,Xi . Then we

p

propose the p-dimensional multivariate kernel density estimator as
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f, & = n(1+1Jj—||Z (( T j J (5.22)

where H is a positive definite px p matrix called the bandwidth matrix or the

smoothing matrix and K is the kernel which is assumed to be symmetric.

5.4.1 Expectation and Bias of f &

] T [C=

n(1+1Jj-||ZI K up) jf(@y, (5.23)

where dy =dy,,...,dy,.

1/
IP

Let u :(X__ y)H‘l, then y=X—Ui""H and dy =i|H|du.
Substituting the above into equation (5.23) we have

e €« [K G2 &-i*"uH H|du

TEy

v 1\2 J'K(J\f &-i"PuH du

=1

Now applying the Taylor series expansion to second order, we have

“ver 1\Z| IK(; TR& - UTiYPHVE & +1/2i2u"HTV2 f & Hu @1
=1
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) i
N of IKoj «du- [KQUiYPHVf & Ju+ [K @ 1/2i%u"HTV? f & Hudu
n€@+1 7 i

(5.24)

We notice that the quadratic form in the equation (5.21) above is a 1x1 matrix, which is

equal to its trace.

Applying the moment conditions for multivariate kernel and the first two terms and using

the trace identity and exchanging the integral operations and the trace, we have

(1 \ZI l &« r1/2i%tr ‘_ﬁJuTK(@uHTVZf «H -

/ll

Now applying the moment conditions for multivariate kernel on the second term we have

NUi F « +1/2i%r sz((H,
e 1§| /it §

since the covariance of K is assumed to be | o

So we have
_f i+1/2tr 'V f & H
n(\+ «}_:l §TVf & ﬂ:
\06+1 0 \n6+1
[ 2tr V2§
n6+1\f(( 2 ﬁ \l L €b 5 4
"L v g
Therefore
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~ n@+1

eh e« =6 "y drver g
Therefore, the bias of fn* &« is
T n@+1 n€@+1

Bias In*«: Ar V& H 5 tr HTV f &

4

The asymptotic square bias (AISB) is given by
—_ 2 -
niss | «j_:”‘l'—gl/ [ ATV €«CTax

5.4.2 Variance and AMISE of fn* ((:

Squaring equation (5.22) yields

Ve e 1;21H|2Z H J“j

*2 K2 X-y =) >
D

where dy =dy,,...,dy,.

1/
IP

Let u :(X__ yjH‘l, then y=X—Ui""H and dy =i|H|du.
Substituting the above into equation (5.28) we have

el e -

zzj 2 &—i"""uH iJH|du

n® @+ 1|H|

123

(5.25)

(5.26)

(5.27)

(5.28)



|Z .f K2Q T €- 1"’uHEu

N (1+1/|H

Applying Taylor series expansion to the first order and the moment conditions, we have

—— D if&R
€ +1 |H|ZI «Re
4 ng+1)
= A
n@q+17H| 2 «BE..
Therefore
g~ 2f&REK
E' « - n(1+1II—||

where RK = szczju.

Since the variance term is dominated by the E I , then

v~ 2T & RK
Varfn((/_ (1+1]]—I|

From equation (5.29), the asymptotic integrated variance (AlV) is given by

< 2R€_

av | «’:nﬁ+—1]]-l| .

Therefore, the asymptotic mean squared error (AMISE) is

AmiIsE | & = ‘”1/ [ ARV € _2RE&_
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5.4.3 An Important Special Case

Now, let’s define a scalar h >0 anda px P matrix Q suchthat H =hQ,

where|Q|=1.

The idea behind choosing the matrix Q to have a unit determinant is that the elliptical
shape of the kernel is controlled by the matrix QQ' and the size of this kernel is
governed by the scalarh, which is the bandwidth and which controls the amount of
smoothness in the estimator for a given sample sizen, where h=(h h,,..., hp)“p is the

geometric mean of the smoothing parameters. Hence

~

r QTVAT & (5.32)

Bias I‘n* « =" ¢4+1

—

Therefore, the asymptotic integrated squared bias (AISB) is given by

AsB | &« = % h* [ dorvie & x . (5.33)

In the above special case, where H =hQ , |Q| =1, the asymptotic integrated variance

will be given by

T 2R

AlV r” s n@+1h"" 5349

since Q isa Px P matrix with unit determinant.

In this case, for a sufficiently smooth density function f X , the multivariate mean

integrated square error (MISE) is asymptotically given by
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AMISE = AlIV + AISB

2R~ n*Q+17 , e g~
AMISE = —= =h Al X . 5.35
n@+1h° M. -H 2 «’} (5.35)

As it was said in the introduction, the choice of the bandwidth h is well-known to be

crucial and of great importance since it controls the smoothness of the estimator f «:.

Choosing the bandwidth, h involves a trade-off between the variance and the bias of the
estimate as can be seen in the AMISE above. Therefore, an intermediate value of the
bandwidth must be chosen to control both the bias and the variance simultaneously and
allowing the bandwidth h to slowly decrease as the sample size increases for a better

performance of the estimate.

In the multivariate standard case parameterized by H =hQ, Where|Q| =1, the

AMISE is given by
\
AMISE =Rh—(<p/+%h4jl éQTvzf ((:’a X (5.36)
n

where P is the dimension.

In this special case, the optimum h can be obtained by differentiating equation

(5.36) and equating it to zero as shown below:

O@MISE_ —2pR&H " 4n (1+1‘2 3 2
e e fhdervir ey

Equating this to zero yields
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2ph " 'R€ Q 13, .
pn6+1/ a h“’éQVf((\}lx

2ph~ le« n ('I+:|.‘2 hSJ."dQTV f((/_,dx

n@+1_

Thus

pra _ 8pRK _

n*€+1° [fQ vir €« Jux
Hence
« 1/(p+4)
6/ €+ 8pRK _
=77 (+1/nf'”‘péQTV2f ((jadx 530

We know that Scott (1992) gave the optimum bandwidth for the regular or the classical

multivariate kernel density estimator as below:

1/( p+4)

_n—1/(l+p pR«:

ot =
pt jl éQTVZf «:idx

Comparing the optimum bandwidth of our new estimate to the one obtained by Scott
(1992), we realized that in both cases, the order of the optimum bandwidths depend on

the dimension and the optimum bandwidthsh,, —1, a constant as p — . This will

opt
give a very rough estimate for large P since as P — oo the optimum bandwidth is a
constant irrespective of the sample size n. Therefore, they both experience the curse of
dimensionality. But our new multivariate kernel density estimate will give a bandwidth

smaller enough for large dimensions which will guarantee smoothness. This is not the
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case for the optimum bandwidth given by the regular or standard multivariate kernel
estimate. Therefore, even though they both experience the curse of dimensionality, the
effect will be minimal in our new multivariate kernel density estimate case compared to

that of the regular multivariate kernel density case.
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CHAPTER VI

CONCLUSIONS

We applied the idea of multivariate kernel density estimation to probability density
functions which have the self-revolving characteristics or the ellipsoidally symmetric
distributions. This time around we allowed the kernel to depend on the sample means rather than
the sample data. We observed that the order of the optimum bandwidth that smoothens the
density function is n"¥’2 which is independent of the dimension of the data used. This optimum
bandwidth decreases as sample size increases to allow for a better performance of the estimate.
The optimum bandwidth becomes small enough for larger dimension which guarantees
smoothness. This breaks the “curse of dimensionality” and remedies the deficiency of high
dimensional bandwidth selection as the optimum bandwidth gets smaller enough for large

dimension to guarantee smoothness.

The simulation results also shows that the regular multivariate kernel density estimate
performs better when the dimension of the data is less than 4 but when the dimension is 4 and
above, the multivariate kernel density estimate based on the sample means outperforms the
regular multivariate kernel density estimate. In addition, the bandwidth selections using Unbiased
Cross-Validation and Biased Cross Validation as well as the Plug-in Technigue indicate that the
multivariate kernel density estimate based on the sample means in general smoothens the function

better than the regular multivariate kernel density estimate.
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Based on the fact that a good density estimator might yield a good distribution estimator,
it is natural to expect the optimal bandwidth for the multivariate kernel distribution function not
to depend on the dimension p and this is what happened in our case but not in the case of the
regular multivariate kernel distribution function. The order of our optimal bandwidth for the
multivariate kernel distribution function based on the sample means is n~'2for all dimensions.
This optimum bandwidth decreases as sample size increases to allow for a better performance of
the estimate. The optimum bandwidth for the regular multivariate kernel distribution function

proposed by Scott (1992) is n~Y €3 Jin and Shao (1999) established that the optimal bandwidth

for a class of kernel estimator of a multivariate kernel distribution function is of order n™**for all
dimensions. Both the optimal bandwidth in our case and that of Jin and Shao (1999) are
independent of the dimension of the data. But for a given sample size, our estimate will produce a
bandwidth small enough for large dimension to guarantee smoothness.

In the multivariate kernel nonparametric regression estimation, we obtained the
Asymptotic Mean Square Error (AMSE) similar to that of the Nadaraya-Watson regression
estimation in its multivariate form. In our special case, the optimum bandwidth is of order n/2
which is independent of the dimension of the data set. This optimum bandwidth decreases as
sample size increases to allow for a better performance of the estimate. This breaks the “curse of
dimensionality” and remedies the deficiency of high dimensional bandwidth selection as the

optimum bandwidth gets smaller enough for large dimension to guarantee smoothness.

We also proposed a new multivariate kernel density estimate which does not completely
breaks the “curse of dimensionality” but the effect of the curse on it is minimal as compared to
the regular multivariate kernel density estimate. The order of the optimal bandwidth for the new
multivariate kernel density estimate is n8/€P-. This order optimum bandwidth decreases as
sample size increases to allow for a better performance of the estimate. The order optimal
bandwidth for the regular multivariate kernel density estimate is n™Y @) They both depend on
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the dimension of the data set and hence both experience the “curse of dimensionality”. The new
multivariate kernel density estimate gives a bandwidth small enough for large dimensions which
will guarantee smoothness. This is not the case for the optimum bandwidth given by the regular
multivariate kernel density estimate. Therefore, even though our new multivariate kernel density
estimate and the regular multivariate kernel density estimate both experience the “curse of

dimensionality”, the effect is minimal in our new multivariate kernel density estimate case.
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CHAPTER VII

FUTURE WORK

In the dissertation, we were able to investigate the bandwidth selection of both the
univariate and the multivariate kernel density estimates based on the sample means. We were also
able to compare them to their regular univariate and multivariate kernel density estimates
counterparts. We would also like to study the bandwidth selection of the multivariate kernel
distribution function and the multivariate kernel regression function based on sample means. We
would do these investigations via both biased and unbiased cross validations as well as the plug-
in technique. We will then compare these to the bandwidth selection of the regular multivariate
kernel distribution function and the regular multivariate kernel regression function and take notice
of the differences between them. We would then do some simulations to authenticate these

differences.
We are also interested in how the different error criteria play a role in the choice of the

bandwidth. We used the mean integrated square error (MISE = Ej[f(x)— f (x)]°dx) as the

error criterion to assess the performance of the estimate and to find the optimum bandwidth in our
estimate based on the sample means. This error criterion had been used by many but research
shows that using the MISE to obtain the optimum bandwidth slightly under smooth the function.

The mean supremum is another error criterion that we would like to use to assess the performance

of our estimate. The mean supremum (MSup = E{Sup

f((:— f ((]}) gives
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a precise upper bound that can also be used to obtain the optimum bandwidth. But research also
shows that using MSup to obtain the optimum bandwidth slightly over smooth the function.
Therefore, in the future, we will find the average of these two optimum bandwidths as the
combined optimum bandwidth choice for the estimate which we believe will do a better job in the

smoothing of the function than its individual components.

In the future, we would like to use the estimate of the multivariate kernel density function
based on the sample means that we obtained to find the non-parametric estimates of the quantiles
(percentiles) in the univariate case and then do a direct bandwidth selection on them. The
bandwidth selection will be done via biased and unbiased cross-validation as well as plug-in
technique. We also like to show their properties, and then generalize it to the multivariate

settings.

We are also interested in doing more research on the new multivariate kernel density
estimate. We would like to perform a bandwidth selection on this estimate find its asymptotic
properties and then compare to that of the regular multivariate kernel density estimate. We will
investigate more into why the issue of “the curse of dimensionality” is less intense in the new
estimate as compared to the regular multivariate kernel density estimate. We will then compare
them by simulations to show how they both handle the issue of “the curse of dimensionality.”

The new estimate is designed to work better for positive random variables or random
vectors. This major area has a lot of applications on its own. We will pursue how this new
estimate works for an aspect of reliability and life testing. We would like to know how the
estimate works in relation to hazard rate, multivariate hazard rate, mean residual life and
multivariate mean residual life. We would also like to investigate its performance within some

life testing properties like New Better than Used (NBU) and Increasing Hazard Rate (IHR).
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