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Abstract:

A new approach to one-way and two-way analysis of variance from the nonpara-
metric view point is introduced and studied. It is nonparametric in the sense that
no distributional format assumed and the testing pertain to location and scale pa-
rameters. In contrast to the rank transformed approach, the new approach uses the
measurement responses along with the highly recognized kernel density estimation,
and thus called “kernel transformed” approach. Firstly, a novel kernel transformed
approach to test the homogeneity of scale parameters of a group of populations with
unknown distributions is provided. When homogeneity of scales is not rejected, we
proceed to develop a one-way ANOVA for testing equality of location parameters
and a generalized way that handles the two-way layout with interaction. The pro-
posed methods are asymptotically F-distributed. Simulation is used to compare the
empirical significance level and the empirical power of our technique with the usual
parametric approach. It is demonstrated that in the Normal Case, our method is
very close to the standard ANOVA. While for other distributions that are heavy
tailed (Cauchy) or skewed (Log-normal) our method has better empirical significance
level close to the nominal level α and the empirical power of our technique are far
superior to that of the standard ANOVA.
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CHAPTER 1

Introduction

1.1 One-way Analysis of Variance

Analysis of Variance (ANOVA) is a process of analyzing the differences in means (or

medians; or distributions) among several groups. Both parametric and nonparametric

methods have been developed in the literature. The classical analysis of variance,

which is a parametric method, is usually called F-test or variance ratio test. It is

called ‘parametric’ test as its hypothesis is about population parameters, namely

the mean and standard deviation. Compared to parametric methods, nonparametric

methods do not make any assumptions about the distribution, therefore it usually

does not make hypothesis about the parameter, like the mean, but rather about the

population distributions or locations instead.

1.1.1 Parametric One-way ANOVA

Suppose {Xij} are independent random variables sampling from K populations (or

groups), where i = 1, 2, · · · , K, j = 1, 2, · · · , ni. The usual parametric ANOVA aims

to test H0 : µ1 = µ2 = · · · = µK versus Ha : µi 6= µj for any i 6= j, where µi is the

mean of ith population, i.e. µi = E(Xij). The usual parametric test, i.e. F-test, relies

on the assumptions of independence of observations, normality of the distribution and

constancy of variance. Thus, before implementing the analysis of variance, Levene’s

test [28] and/or Bartlett’s test( [5], [37]) are usually applied to test the homogeneity
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of variances. The Levene’s test statistics is given by

W =
N −K

K − 1

∑K
i=1 ni(z̄i. − z̄..)

2

∑K
i=1

∑ni

j=1 (zij − z̄i.)2
, (1.1)

where

N =
K
∑

i=1

ni,

zij =











∣

∣xij − x̄i.
∣

∣ if x̄i. is a mean of i-th group,
∣

∣xij − x̃i.
∣

∣ if x̃i. is a median of i-th group,

z̄i. =
1

ni

ni
∑

j=1

zij, and

z̄.. =
1

N

K
∑

i=1

ni
∑

j=1

zij .

It is known that Levene’s test statistic follows F distribution with degrees of

freedom K − 1 and N −K. So we reject the null hypothesis H0 : σ1 = σ2 = · · · = σK

if test statistics W > F (α,K − 1, N −K), where α is the significance level.

Barlett’s test is an alternative homogeneity of variances test to Levene’s test. Its

test statistic is given by

T =
(N −K)ln(S2

p)−
∑

i (ni − 1)ln(S2
i )

1 + 1
3(K−1)

(

∑

i (
1

ni−1
) 1
N−K

) , (1.2)

where, Si is the sample variance of the ith group and Sp =
∑

i (ni−1)S2

i

N−K
is the pooled

estimate of variance. The test statistic is shown to have approximately a χ2
K−1 dis-

tribution. Thus the null hypothesis is rejected if the test statistics T > χ2
K−1,α.

Both of these tests are used to detect if the K groups of samples come from popu-

lations with an equal variance. Bartlett’s test is very sensitive to the departures from

normality, while Levene’s test does not have the requirement of normality. How-

ever, both of them are homogeneity of variance tests. Most of the software packages

perform both of them before a comparison of means via classical ANOVA test.
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If the homogeneity of variances test is not rejected, then it is appropriate to

perform the analysis of variance tests. In the parametric analysis of variance, the

total variability (total sum of squared deviations from the mean) from the samples

are partitioned into parts. For example, in the one-way ANOVA, the sum of squares

is partitioned into two parts: sum of square within the groups (SSW) and sum of

square between the groups (SSB). SSW is also called error or residual sum of square,

which is measured by SSW =
∑

i

∑

j (xij − x̄i.)
2. SSB is usually called explained

sum of square, which is given by SSB =
∑

i ni(x̄i. − x̄..)
2. The F-test statistic is

constructed by taking the ratio of the two sum of squares with the adjustment of the

corresponding degrees of freedom. Large ratio indicates large differences between the

groups. Thus, the F-test statistic can be rewritten as: [34]

F =
MSB

MSW
=

SSB/(K − 1)

SSW/(N −K)
=

∑K
i=1 ni(x̄i. − x̄..)

2/(K − 1)
∑K

i=1

∑ni

j=1 (xij − x̄i.)2/(N −K)
, (1.3)

where, x̄i. =
1
ni

∑

j xij and x̄.. =
1
N

∑

i

∑

j xij . It follows F-distribution with degrees

of freedom K − 1 and N −K. Thus the null hypothesis H0 : µ1 = µ2 = · · · = µK is

rejected when F > F (α,K − 1, N −K).

1.1.2 Rank Transformed Nonparametric One-way ANOVA

Conover and Iman [9] proposed the rank transformation procedure as a ‘bridge’ be-

tween parametric and nonparametric statistics. Generally speaking, the rank trans-

formation procedure is simply carried out by replacing the numerical raw data with

their ranks and applying usual parametric methods, such as ANOVA, regression,

discriminant analysis, cluster analysis and so on. This approach includes a class

of nonparametric tests for one or more independent samples, such as the Wilcoxon

signed rank test for one sample, the Wilcoxon-Mann-Whitney test for two indepen-

dent samples, the Kruskal-Wallis test for one-way ANOVA and Friedman test for

one-way analysis of variance applied to a complete block design.
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Consider the K independent random samples {Xij} in Section 1.1.1. The rank

transformation procedure is implemented as follows: let R(Xij) be the rank of Xij in

the combined set of data and Ri =
∑ni

j=1R(Xij). Then the rank transformed F test

statistic is given by

FR =

[
∑K

i=1
R2

i

ni
− N(N+1)2

4

]

/(K − 1)
∑K

i=1

∑ni

j=1

(

R(Xij)− Ri

ni

)2
/(N −K)

, (1.4)

which approximately follows a F-distribution [34]. Another rank based nonparametric

one-way ANOVA is the well known Kruskal & Wallis H test [23]. The H test statistic,

with the correction for ties, is given by

H =

∑K
i=1

R2

i

ni
− N(N+1)2

4
(
∑K

i=1

∑ni

j=1R
2(Xij)− N(N+1)2

4

)

/(N − 1)
. (1.5)

Interestingly, the rank-transformed F test is equivalent to Kruskal-Wallis H test since

FR = H/(K−1)
(N−1−H)/(N−K)

, which can be easily verified through some elementary algebra.

H test statistic is shown to be approximated by a chi-square distribution with degrees

of freedom K − 1 when the sample size is large. The exact distribution of H if there

is no tie, is given by Iman, Quade and Alexander [20]. Hence there are two ways to

obtain the critical values for the rank transformed F test or Kruskal & Wallis H test:

one is to use the F-distribution tables for FR; the other is to use the chi-square tables

for FR as a function of H. Iman and Davenport [19] compared the two approximations

and showed that F approximation is preferred to chi-square in general.

1.2 Two-way Analysis of Variance

1.2.1 Parametric Two-way ANOVA

Let {Xijk} be the random variable denoting the response of kth replicate receiving the

ith level of treatment A and jth level of treatment B. Consider the two-way layout:

xijk = µ+ αi + βj + γij + eijk, (1.6)
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where, µ, αi, βj, γij are the general mean, the effect of the ith level of factor A

(i.e. row effect), the effect of the jth level of factor B (i.e. column effect) and the

interaction between ith-row and jth-column, respectively; eijk are independent and

identically distributed (i.i.d.) N(0, σ2) for all k = 1, 2, · · · , nij , i = 1, 2, · · · , r and

j = 1, 2, · · · , c. The hypotheses for testing the row, column and interaction of row

and column effects are as follows:

HA : all αi=0,(test for main effect of factor A)

HB : all βj=0,(test for main effect of factor B)

HAB : all γij=0(test for interaction).

Without loss of generality assume that
∑

i αi =
∑

j βj =
∑

i γij =
∑

j γij = 0 for

all i, j. Similar to the parametric one-way ANOVA, if the homogeneity of variance

assumption holds, the total variability from the samples is decomposed into four parts:

sum of squares for factor A (SSA), sum of squares for factor B (SSB), sum of squares

for the interaction of factor A and B(SSAB) and sum of squares for the error (SSE),

where

SSA =
r

∑

i=1

ni.(x̄i.. − x̄...)
2,

SSB =
c

∑

j=1

n.j(x̄.j. − x̄...)
2,

SSAB =
r

∑

i=1

c
∑

j=1

nij(x̄ij. − x̄i.. − x̄.j. + x̄...)
2,

SSE =
r

∑

i=1

c
∑

j=1

nij
∑

k=1

(xijk − x̄ij.)
2,
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and

ni. =
∑

j

nij , n.j =
∑

i

nij,
∑

i

∑

j

nij = N,

x̄ij. =
1

nij

nij
∑

k=1

xijk,

x̄i.. =
1

ni.

c
∑

j=1

nij
∑

k=1

xijk,

x̄.j. =
1

n.j

r
∑

i=1

nij
∑

k=1

xijk,

x̄... =
1

N

r
∑

i=1

c
∑

j=1

nij
∑

k=1

xijk.

The degrees of freedom for SSA, SSB, SSAB and SSE, are r−1, c−1, (r−1)(c−1) and

N−rc respectively. Thus, the F-test statistic for null hypothesesHA : all αi=0 is given

by FA = SSA/(r−1)
SSE/(N−rc)

, which follows a F-distribution with degrees of freedom r− 1 and

N − rc. Similarly, the test statistic for testing the main effect B is FB = SSB/(c−1)
SSE/(N−rc)

,

which follows a F-distribution with degrees of freedom c − 1 and N − rc. And the

F-test statistic for interaction HAB : all γij=0 is given by FAB = SSAB/((r−1)(c−1))
SSE/(N−rc)

,

which follows an F-distribution with degrees of freedom (r − 1)(c − 1) and N − rc.

The details are discussed in [34].

1.2.2 Rank Transformed Nonparametric Two-way ANOVA

Let Xijk, i = 1, 2, · · · , r, j = 1, 2, · · · , c, k = 1, 2, · · · , n, be independent random

variables such that Xijk has the continuous distribution function Fij. Note that

{Xijk}, as defined in Section (1.2.1), is the random variable denoting the response of

kth replicate in the (i, j) cell, and can be written in the two-way layout (1.6) as well.

We want to test the column effects, row effects and their interaction, just as in the

parametric two-way ANOVA. However, in the nonparametric case, the errors eijk are

neither assumed to be normal nor to have homogeneous variance. Thus, for instance,

6



to test the column effect, the null and alternative hypotheses are:

H0 : Fij = Fi, for j = 1, 2, · · · , c,

H1 : Fij 6= Fi, for at least one j = 1, 2, · · · , c. (1.7)

This is equivalent to the test:

H0 : Xijk = µ+ αi, for j = 1, 2, · · · , c,

H1 : Xijk = µ+ αi + δij for all i = 1, 2, · · · , r, j = 1, 2, · · · , c,

or

H0 : δij = 0, for all i = 1, 2, · · · , r, j = 1, 2, · · · , c,

H1 : δij 6= 0 for some i, j, (1.8)

where,

δij = βj + γij,

∑

i

αi =
∑

j

δij = 0,

and βj is the effect of jth level of Factor B as describe in equation(1.6).

In general, two rank-based approaches are commonly used to test either (1.7) or

(1.8): Hora & Conover rank-score transformed test and Akritas rank transformed

test. Let Rijk be the rank of Xijk among all {Xijk} data. Define the score of Xijk

by a(Rijk), where a(·) is the rank score function as in [16]. Set Si.. =
∑

j

∑

k a(Rijk),

S.j. =
∑

i

∑

k a(Rijk), Sij. =
∑

k a(Rijk) and S̄ = 1
c

∑

i

∑

j

∑

k a(Rijk). The rank-score

transformed test statistic proposed by Hora & Conover [18] is given by

WN =

∑

j (S.j. − S̄)2/(n(c− 1))
∑

i

∑

j

∑

k (a(Rijk)− Sij./n)2/(c(n− 1))
, (1.9)

which converges weakly to χ2
c−1, as n → ∞, under the null hypotheses. Under

a sequence of Pitman alternatives, the limiting distribution of WN is normal [40].

7



Rinaman [33] proposed a similar test statistic with its limiting distribution χ2
c−1 as

well, although Rijk is redefined as the rank of Xijk in row i instead of the whole

samples and a new score function is used.

Unlike Hora & Conover’s rank-score transformed approach, Akritas [4] adjusted

the rank transformed data for heteroscedasticity by defining zijk =
Ĝ(Xijk)

σ̂i
, where

Ĝ(Xijk) = Rijk/(rcn), σ̂i =
1
nc

∑

j

∑

k

(

Ĝ(Xijk)− ÂGi..

)2
, ÂGi.. =

1
nc

∑

j

∑

k Ĝ(Xijk)

and Rijk is the same as defined in Hora & Conover’s method. The rank transformed

test statistic proposed by Akritas [4] is as follows:

WA =
n
∑

i

∑

j (z̄ij. − z̄i..)
2/(r(c− 1))

∑

i

∑

j

∑

k (zijk − z̄ij.)2/(rc(n− 1))
, (1.10)

which asymptotically follows central χ2
r(c−1)/(r(c − 1)) distribution under H0. The

major advantage of Akritas rank transformed approach is not the adjustment of

heteroscedasticity ( [4] showed that it is not necessary for Hora and Conover statistic

to be adjusted for heteroscedasticity), but rather the simple extension to unbalanced

data. Suppose Xijk are independent random variables, where i = 1, 2, · · · , r, j =

1, 2, · · · , ci, k = 1, 2, · · · , nij . The Akritas test statistic for unbalanced data is almost

the same as the balanced one, and it is given by

WU
A =

∑

i

∑

j nij(z̄ij. − z̄i..)
2/(C − r)

∑

i

∑

j

∑

k (zijk − z̄ij.)2/(N − C)
, (1.11)

where, N =
∑

i

∑

j nij and C =
∑

i ci. It is shown that WU
A asymptotically follows a

central χ2
C−r/(C − r) distribution under H0.

The common limitation of the Hora & Conover’s WN test, Akritas WA test and

other rank transformed two-way ANOVA test such as Lemmer & Stoker [27], de Kroon

& van der Lann [11] is that they either ignore the test of interaction (H0 : γij = 0 for

all i, j), or fail to test the main effect in the presence of interaction. Blair, Sawilowsky

and Higgins [7] verified the fact that the Hora & Conover rank-score transform test is

robust when testing for main effects in the absence of interaction; however, the test
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may produce inflated Type I error rates when testing for main effect in the presence

of interaction.

The test of interaction in rank transformed based nonparametric two-way ANOVA

challenges researchers when they try to extend one-way ANOVA to the two-way case.

Until recently, there are several methods to test the interaction, i.e. H0 : γij = 0 for all

i, j. Patel and Hoel [31] defined their own interaction and derived the nonparametric

test on a special case. Bhapkar and Gore [6] introduced a nonparametric test based on

the U-statistics under the orthogonality assumption. [6] formed quadruplets of cells,

say, xij,xi′j,xij′ ,xi′j′ from the r×cmatrixX, and defined the function φ(t) to be 1 if t >

0, 1/2 if t = 0 and zero otherwise. Suppose each quadruplet have (nij, ni′j, nij′ , ni′j′)

quadruplet of observations. Let Vi,i′,j,j′ =
∑

a

∑

b

∑

c

∑

d φ(xija − xi′jb − xij′c + xi′j′d),

Ui,i′,j,j′ = Vi,i′,j,j′/nijni′jnij′ni′j′ , Wij =
∑r

i 6=i′

∑c
j 6=j′ Ui,i′,j,j′ , N =

∑

i,j nij and pij =

nij/N . By assuming pij = aibj, and defining Wi. =
∑

bjWij∑
j bj

, W.j =
∑

aiWij∑
i ai

and

W.. =
∑

i,j aibjWij, the test statistic proposed by Bhapkar and Gore [6] can be written

as

T =
N

r2c2(η̂(F )− 1/4)

∑

i

∑

j

aibj(Wij −Wi. −W.j +W..)
2, (1.12)

where, η̂(F ) is a consistent estimator of a nuisance parameter defined in ( [6], equation

(2.3)). It is shown that T follows asymptotically a central chi-square distribution

with (r− 1)(c− 1) degrees of freedom. However, this test statistic relies on unknown

nuisance parameter, which might reduce the power. Hartlaub, Dean and Wolfe [17]

proposed a rank transformed based test for interaction in two-way ANOVA with only

one observation per cell. Unfortunately, two-way layouts with replication in cells are

more frequent in practice. Gao and Alvo [15] proposed a rank transformed method

which combines the row rankings and column rankings, while other literature just

consider either one of the rankings or the rankings based on the whole data set.

Suppose rijk is the rank of Xijk with respect to the ith row and cijk is the rank of Xijk
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with respect to the jth column, where i = 1, 2, · · · , r, j = 1, 2, · · · , c, k = 1, 2, · · · , n.

Define

Sn(i, j) =
1

nc+ 1

∑

k

rijk,

Tn(i, j) =
1

nr + 1

∑

k

cijk,

Sn = (Sn(1, 1), Sn(1, 2), · · · , Sn(r, c))
′,

Tn = (Tn(1, 1), Tn(1, 2), · · · , Tn(r, c))′,

Σ1 = lim
n→∞

1

n
var(Sn),

Σ2 = lim
n→∞

1

n
var(Tn),

Σ12 = lim
n→∞

1

n
cov(Sn, Tn).

Then the statistic Gao and Alvo [15] proposed is given by:

W =
1

n
(ASn +BTn)

′(AΣ̂1A
′ + 2AΣ̂12B

′ +BΣ̂2B
′)−(ASn +BTn), (1.13)

where A = Jr

⊗

(−1
r
Ic) + Ir

⊗

Ic , B = Ir
⊗

(Ic − 1
c
Jc) , Σ̂1, Σ̂2, Σ̂12 are the

corresponding consistent estimates of Σ1, Σ2 and Σ12. It is shown that W follows a

central chi-squared distribution with (r − 1)(c − 1) degrees of freedom as n → ∞.

Actually, Gao and Alvo’s test statistics can be easily extended to unbalanced designs.

1.3 Limitations

The limitations for parametric ANOVA, no matter one-way or two-way layout, are

very obvious. It assumes normality and homogeneity of variances. None of the data in

our real world comes from an exact normal distribution. By the robustness of F-test,

it is still reliable to perform the test when the sample size is large and the population

distribution is not too far from normal. However, these assumptions sometimes are

too strict for the data in real research settings. In these circumstances, nonparamet-

ric techniques should be applied instead. Until now, almost all the nonparametric
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ANOVA tests are based on rank (score) transformed technique. The major drawback

of using the ranks, rather than the raw data, is that it loses information. The rank

keeps the order of the raw data, but it ignores the magnitude of the differences among

the data. There could be two sets of interval data with exactly the same rank, but

with totally different means, variances or distributions. If we throw away the raw data

by analyzing the ranks instead, no difference will be detected for these two groups of

data sets. Unfortunately, none of the rank transformed techniques can compensate

this loss. Moreover, the majority of the literature works in nonparametric ANOVA

try to express and interpret their models in the same way as the parametric models,

even when it is inappropriate to do so. For example, xijk = µ+ αi + βj + γij + eijk is

the two-way layout in the parametric ANOVA. In the nonparametric ANOVA, xijk

does not have to come from normal distribution any more, but the literature that

promote the rank transformed approaches still interpret µ as the grand mean and

µ + αi + βj + γij as the mean of cell (i, j), even if for some distributions, the first

moment does not exist.

1.4 Kernel Density Estimate

1.4.1 Kernel Estimate of Probability Density Function f(x)

Let F (x) be the cumulative distribution function (CDF) of the random variable X,

where X is a random variable with probability density function (pdf) f(x). From the

definition that f(x) = d
dx
F (x), an obvious estimate of f(x) is

f̂(x) =
Fn(x+ h)− Fn(x− h)

2h
, (1.14)

where Fn(x) is empirical cumulative distribution function defined by

Fn(x) =
the number of Xi’s such that Xi ≤ x

n
. (1.15)
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If we define a uniform kernel function by

K(z) =











1/2 if |z| ≤ 1,

0 otherwise,
(1.16)

then by substituting (1.15) into (1.14), we can rewrite (1.14) as

f̂(x) =
the number of Xi’s fall within [x− h, x+ h]

2nh

=
1

nh

n
∑

i=1

K

(

Xi − x

h

)

. (1.17)

Equation (1.17) is a “naive” kernel estimator of f(x) if K(·) is defined in (1.16). In

general, we refer to K(·) as a kernel function and to h as a smoothing parameter

(or alternative a bandwidth or window width). The kernel function is not limited to

equation (1.16), but rather has many other possible choices, such as standard normal

kernel, i.e.

K(z) =
1

√

(2π)
e−

1

2
z2 . (1.18)

It is shown in [29] that the kernel estimator f̂(x) defined in (1.17) with any general

non-negative bounded kernel function K(·) satisfying 3 conditions, i.e.

(a)
∫

K(z)dz = 1,

(b) K(z) = K(−z),

(c)
∫

z2K(z)dz = κ2 > 0,

is a consistent estimator of f(x). The literature for the kernel estimate is very rich

including the books by Wand and Jones, Silverman, Bowman and Azzalini, and Scott

( [41], [36], [35], [8]) among others.
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1.4.2 Kernel Estimate of
∫

f 2(x)dx

With the kernel estimate of f(x) in Section (1.4.1),
∫

f 2(x)dx can be estimated by

Ahmad [1],

∫

f̂ 2(x)dx =

∫

1

n2h2

∑∑

i 6=j

K

(

Xi − x

h

)

K

(

Xj − x

h

)

dx

=
1

n2h2

∑∑

i 6=j

∫

K

(

Xi − x

h

)

K

(

Xj − x

h

)

dx

=
1

n2h

∑∑

i 6=j

K̄

(

Xi −Xj

h

)

,

where, K̄(z) =
∫

K(u)K(z − u)du, which is also a kernel function.

1.5 Organization of the Dissertation

In Chapter 2, a kernel based nonparametric one-way ANOVA test is proposed. In

Section 2.1, the one-way kernel based nonparametric scale test is derived to test the

homogeneity of scale parameters among groups. In Section 2.2, the kernel based

test statistic for nonparametric one-way ANOVA with homogeneous scale parameter

among groups is constructed and its limiting distribution is studied as well. In Section

2.3, the powers of the kernel based nonparametric scale and location test are investi-

gated through simulation and compared to the corresponding parametric tests. The

kernel based nonparametric one-way ANOVA test for shape parameters are proposed

in Section 2.4.

In Chapter 3, the kernel based nonparametric one-way ANOVA test to the two-

way layout is extended. Section 3.1 has two subsections. In Section 3.1.1, the kernel

based nonparametric ANOVA test for main effects in locations is derived under the

assumption of homogeneous scale among cells. In Section 3.2.2, the kernel based non-

parametric ANOVA test for interactions in locations is studied under the assumption

of homogeneous scale among cells. In Section 3.3, the powers of the kernel based

nonparametric two-way ANOVA test of main effects and interactions in locations are
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investigated via simulation study and compared with the corresponding parametric

two-way ANOVA tests.

In Chapter 4, the kernel based nonparametric ANOVA model is applied to the

nonparametric policy analysis. In Section 4.1, a brief introduction of policy analysis is

given. In Section 4.2, Stock’s nonparametric policy analysis model is introduced and

the limitations of stock’s model are summarized. In Section 4.3, a new nonparametric

policy analysis model is proposed by extending our nonparametric ANOVA results in

Section 2.2.

Finally, Section 5.1 summarizes the contributions of this dissertation and the

major findings of the simulation studies. Section 5.2 outlines some possible future

research topics followed by the dissertation.
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CHAPTER 2

One-way Kernel Based Nonparametric ANOVA

Assume Xij comes from a distribution with probability density function (p.d.f.) fi(x),

where i = 1, 2, . . . , K and j = 1, 2, . . . , ni. Define µi and σi to be the location and

scale parameter of fi(x). That is to say, the following equation holds:

fi(x) =
1

σi
f0

(

x− µi

σi

)

, (2.1)

where, f0(·) is a base density. Thus, we have

∫

xf 2
i (x)dx =

∫

yσi + µi

σi
f 2
0 (y)dy

=

∫

yf 2
0 (y)dy +

µi

σi

∫

f 2
0 (y)dy,

which implies that

µi =
σi(

∫

xf 2
i (x)dx−

∫

yf 2
0 (y)dy)

∫

f 2
0 (y)dy

=
σi

∫

xf 2
i (x)dx

∫

f 2
0 (y)dy

− σi
∫

yf 2
0 (y)dy

∫

f 2
0 (y)dy

. (2.2)

By Ahmad and Amezziane [2], the scale parameters can be written as:

σi =

∫∞
−∞ f 2

0 (x)dx
∫∞
−∞ f 2

i (x)dx
. (2.3)

2.1 Kernel Based Nonparametric Test for Scale Parameters

Before introducing the ANOVA test, the homogeneity of scale parameters needs to be

verified. Suppose that σ1, σ2, · · · , σK are the scale parameters of the K populations.

The hypotheses to be tested are H0: σ1 = σ2 = . . . = σK versus H1: σi 6= σj for some

i 6= j.
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Let R0 =
∫∞
−∞ f 2

0 (x)dx and Ri =
∫∞
−∞ f 2

i (x)dx, then equation(2.3) can be written

as Ri = R0/σi. Thus, the null hypothesis of equal scale parameters becomes H0:

R1 = R2 = . . . = RK againstH1: Ri 6= Rj for some i 6= j. Consider the nonparametric

kernel estimates of Ri, denoted as R̂i, where

R̂i =
1

ni(ni − 1)hi

∑ ∑

j1 6=j2

K

(

Xij1 −Xij2

hi

)

. (2.4)

Lemma 2.1 If for any i = 1, 2, · · · , K, nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫∞
−∞ f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then

√
ni(R̂i −Ri)

d→ N(0, υ2i ), (2.5)

as min
i
ni → ∞, where, υ2i = 4{

∫

f 3
i (x)dx− (

∫

f 2
i (x)dx)

2}.

Proof: See the proof of Theorem 2.2 in [1].

The test statistic for the scale test is defined as

S1 =
K
∑

i=1

ni(R̂i − R̂·)
2

υ̂i
2 , (2.6)

where

R̂· =

∑K
i=1 niR̂i/υ̂i

2

∑K
i=1 ni/υ̂i

2
, (2.7)

and υ̂i
2 is a consistent estimate of υ2i . To obtain the asymptotic distribution of S1,

another two auxiliary variables are defined as follows:

S0
1 =

K
∑

i=1

Nλi(R̂i − R̄)2

υ2i
−N

[ K
∑

i=1

λi
υ2i

]

(R∗ − R̄)2, (2.8)

and

S00
1 =

K
∑

i=1

ni(R̂i − R̄)2

υ̂i
2 −

K
∑

i=1

ni(R̂· − R̄)2

υ̂i
2 , (2.9)
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where

R∗ =

∑K
i=1 λiR̂i/υ

2
i

∑K
i=1 λi/υ

2
i

,

R̄ =

∑K
i=1 λiRi/υ

2
i

∑K
i=1 λi/υ

2
i

,

λi = lim
ni→∞

ni

N
.

Lemma 2.2 Let N =
K
∑

i=1

ni. If λi = lim
ni→∞

ni

N
and υ̂i

2 p→ υ2i , then

(i) S0
1 − S00

1

p→ 0,

(ii) S00
1 − S1

p→ 0,

as min
i
ni → ∞.

Proof: They can be proved directly by applying Slutsky Theorems [10].

Theorem 2.3 Under the null hypothesis, if for any i = 1, 2, . . . , K, nih
4
i → 0, nihi →

∞ as min
i
ni → ∞,

∫∞
−∞ f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then S1 is

asymptotically χ2 with degrees of freedom K − 1. In general (under the alternative),

S1 is asymptotically non-central χ2(K − 1) with non-centrality parameter:

ψ1 =
1

2
µ(1)′B1µ

(1), (2.10)

where µ(1) = (µ
(1)
1 , µ

(1)
2 , . . . , µ

(1)
K ),

µ
(1)
i = −

√
λi(2di +

∑K
i=1

λidi/υ
2

i∑K
i=1

λi/υ2

i

)
∫∞
−∞ f 2

0 (x)dx

2
√

∫

f 3
i (x)dx− (

∫∞
−∞ f 2

i (x)dx)
2
, (2.11)

B1 =















1− λ1/υ2

1∑K
i=1

λi/υ2

i

− (
√
λ1/υ1)(

√
λ2/υ2)∑K

i=1
λi/υ2

i

· · · − (
√
λ1/υ1)(

√
λK/υK)

∑K
i=1

λi/υ2

i

...
...

. . .
...

− (
√
λ1/υ1)(

√
λK/υK)

∑K
i=1

λi/υ2

i

− (
√
λ2/υ2)(

√
λK/υK)

∑K
i=1

λi/υ2

i

· · · 1− λK/υ2

K∑K
i=1

λi/υ2

i















, (2.12)

λi = lim
ni→∞

ni
∑K

i=1 ni

and di is such that σi = 1 + di√∑K
i=1

ni

.
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Proof: Let N =
∑K

i=1 ni, and then λi ≃ ni

N
. Set T

(1)
i =

√
λiN(R̂i − R̄)/υi, and then

under H0, T
(1)
i

a∼ N(0, 1) as N → ∞ by Lemma (2.1).

Note that

S0
1 =

K
∑

i=1

Nλi(R̂i − R̄)2

υ2i
−N

[ K
∑

i=1

λi
υ2i

]

(R∗ − R̄)2

=
K
∑

i=1

Nλi(R̂i − R̄)2

υ2i
−N

[ K
∑

i=1

λi
υ2i

](∑

i λiR̂i/υ
2
i

∑

i λi/υ
2
i

−
∑

i λiRi/υ
2
i

∑

i λi/υ
2
i

)2

=
K
∑

i=1

Nλi(R̂i − R̄)2

υ2i
− N

∑K
i=1

λi

υ2

i

( K
∑

i=1

λi(R̂i −Ri)

υ2i

)2

=
K
∑

i=1

Nλi(R̂i − R̄)2

υ2i
−

K
∑

i=1

K
∑

j=1

√
Nλi(R̂i − R̄)

υi

√

Nλj(R̂j − R̄)

υj

(
√
λi/υi)(

√

λj/υj)
∑K

i=1 λi/υ
2
i

,

(2.13)

which can be written as a quadratic form, i.e. S0
1 = U1

′B1U1, where,

U1 = (T
(1)
1 , T

(1)
2 , · · · , T (1)

K )′, (2.14)

and

B1 =















1− λ1/υ2

1∑K
i=1

λi/υ2

i

− (
√
λ1/υ1)(

√
λ2/υ2)∑K

i=1
λi/υ2

i

· · · − (
√
λ1/υ1)(

√
λK/υK)

∑K
i=1

λi/υ2

i

...
...

. . .
...

− (
√
λ1/υ1)(

√
λK/υK)

∑K
i=1

λi/υ2

i

− (
√
λ2/υ2)(

√
λK/υK)

∑K
i=1

λi/υ2

i

· · · 1− λK/υ2

K∑K
i=1

λi/υ2

i















. (2.15)

It can be easily shown that B1 is symmetric and idempotent. Thus, we obtain that

rank(B1) = tr(B1)

= tr(I− a1a1
′)

= tr(I)− tr(a1a1
′)

= K − tr(a1
′a1)

= K − 1, (2.16)

where
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a1 =





















√
λ1/υ1

√
λ2/υ2
...

√
λK/υK





















. (2.17)

U1 follows approximately multivariate normal with mean 0 and variance I, since

{T (1)
i } is independent and asymptotically distributed univariate standard normal dis-

tribution. Therefore, S1 is asymptotically χ2(K − 1) under H0.

Under the alternative, since di is chosen such that σi = 1 + di√
N
, then we have

Ri =
R0

σi
=

R0

1 + di/
√
N

= R0(1−
di√
N

+ o(
1√
N
))

= R0 −R0
di√
N

+ o(
1√
N
).

Thus, R̄ can be written as:

R̄ =

∑K
i=1 λiRi/υ

2
i

∑K
i=1 λi/υ

2
i

=

∑K
i=1 λi(R0 −R0

di√
N
)/υ2i

∑K
i=1 λi/υ

2
i

+ o(
1√
N
)

= R0 −
R0√
N

∑K
i=1 λidi/υ

2
i

∑K
i=1 λi/υ

2
i

+ o(
1√
N
).

Under H1, T
(1)
i =

√
Nλi(R̂i − R̄)/υi =

√
Nλi(R̂i−Ri)

υi
+

√
Nλi(Ri−R̄)

υi
. By Lemma (2.1),

the first term
√
Nλi(R̂i−Ri)

υi
is approximately standard normally distribution, and the
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second term’s limit is given by

µ
(1)
i = lim

N→∞

√
Nλi(Ri − R̄)

υi

= lim
N→∞

√
Nλi(

∫∞
−∞ f 2

i (x)dx−R0 − R0√
N

∑K
i=1

λidi/υ
2

i∑K
i=1

λi/υ2

i

)

υi

= lim
N→∞

√
Nλi(

1
σ2

i

∫∞
−∞ f 2

0 (x)dx−
∫∞
−∞ f 2

0 (x)dx(1 +
1√
N

∑I
i=1

λidi/υ
2

i∑K
i=1

λi/υ2

i

))

υi

= lim
N→∞

√
Nλi(

1
(1+di/

√
N)2

− 1− 1√
N

∑K
i=1

λidi/υ
2

i∑K
i=1

λi/υ2

i

)
∫∞
−∞ f 2

0 (x)dx

υi

= lim
N→∞

√
Nλi(1− 2 di√

N
− 1− 1√

N

∑K
i=1

λidi/υ
2

i∑K
i=1

λi/υ2

i

)
∫∞
−∞ f 2

0 (x)dx

2
√

∫

f 3
i (x)dx− (

∫∞
−∞ f 2

i (x)dx)
2

= −
√
λi(2di +

∑K
i=1

λidi/υ
2

i∑K
i=1

λi/υ2

i

)
∫∞
−∞ f 2

0 (x)dx

2
√

∫

f 3
i (x)dx− (

∫∞
−∞ f 2

i (x)dx)
2
. (2.18)

Therefore, in general T
(1)
i is approximately normally distribution with mean µ

(1)
i given

in equation(2.17) and variance 1. This implies that S0
1 = U1

′B1U1 is asymptotically

noncentral χ2(K − 1) with non-centrality parameter ψ1 =
1
2
µ(1)′B1µ

(1).
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2.2 One-way ANOVA: Kernel Based Nonparametric Test for Location

Parameters with Equal Scale Parameter

Under the assumption of homogeneity of variance, i.e. σi = σ for all i. Thus, equation

(2.2) becomes:

µi =
σ
∫

xf 2
i (x)dx

∫

f 2
0 (y)dy

− σ
∫

yf 2
0 (y)dy

∫

f 2
0 (y)dy

.

Let Vi =
∫

xf 2
i (x)dx, c1 = σ∫

f2

0
(y)dy

and c2 = −σ
∫
yf2

0
(y)dy∫

f2

0
(y)dy

, thus µi = c1Vi + c2.

Therefore, the null hypothesis of equal location parameter H0: µ1 = µ2 = . . . = µK

becomes H0: V1 = V2 = . . . = VK against H1: Vi 6= Vj for some i 6= j. Consider the

nonparametric kernel estimates of Vi, denoted as V̂i, where

V̂i =
1

ni(ni − 1)hi

∑ ∑

j1 6=j2

(

Xij1 +Xij2

2

)

K

(

Xij1 −Xij2

hi

)

. (2.19)

Lemma 2.4 If for any i = 1, 2, · · · , K, nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫∞
−∞ x2f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then

√
ni(V̂i − Vi)

d→ N(0, ω2
i ), (2.20)

as min
i
ni → ∞, where, ω2

i = 4{
∫

x2f 3
i (x)dx− (

∫

xf 2
i (x)dx)

2}.

Proof: The proof follows the lines used to prove Theorem 2.1 in [2]. We include it

for completeness.

Let ϕ(Xij1 , Xij2) =
(

Xij1
+Xij2

2hi

)

K
(

Xij1
−Xij2

hi

)

, and µ̂i = c1V̂i + c2. Then µ̂i is a U-

21



statistics with mean

E(µ̂i) = c1E(V̂i) + c2

= c1E(
Xi1

hi
K

(

Xi1 −Xi2

hi

)

) + c2

= c1
1

hi

∫ ∫

xK

(

x− y

hi

)

fi(x)fi(y)dxdy + c2

= c1

∫ ∫

xK(u)fi(x)fi(x+ uhi)dxdu+ c2

= c1

∫ ∫

xK(u)fi(x)
(

fi(x) + f
(1)
i (x)uhi + o(h2i )dxdu

)

+ c2

= c1

∫

K(u)du

∫

xf 2
i (x)dx+ c2 +O(hi)

= c1

∫

xf 2
i (x)dx+ c2 +O(hi)

≃ µi, (2.21)

and variance written as

V ar(µ̂i) = c21

(

4

ni

cov(ϕ(Xi1, Xi2), ϕ(Xi1, Xi3)) +
2

ni(ni − 1)
var(ϕ(Xi1, Xi2))

)

.

It can easily be shown that var(ϕ(Xi1, Xi2)) = O(h−1
i ) and since 1/(nihi) = o(1), the

second term of V ar(µ̂i) in the parentheses can be neglected. Then the variance of µ̂i

is dominated by 1
ni
̟2

i , where
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̟2
i = 4c21cov(ϕ(Xi1, Xi2), ϕ(Xi1, Xi3))

= 4c21[E(ϕ(Xi1, Xi2)ϕ(Xi1, Xi3))− E(ϕ(Xi1, Xi2))E(ϕ(Xi1, Xi3))]

= 4c21

[

1

4h2i

∫ ∫ ∫

(x+ y)(x+ z)K(
x− y

hi
)K(

x− z

hi
)fi(x)fi(y)fi(z)dxdydz

−
(

E
(Xi1

hi
K
(Xi1 −Xi2

hi

))

)2]

= c21

[ ∫ ∫ ∫

(2x+ uhi)(2x+ vhi)K(u)K(v)fi(x)fi(x+ uhi)fi(x+ vhi)dxdudv

−4

(

1

hi

∫ ∫

xK
(x− y

hi

)

fi(x)fi(y)dxdy

)2]

= c21

[ ∫ ∫ ∫

(4x2 + 2uxhi + 2vxhi + uvh2i )K(u)K(v)fi(x)
(

fi(x) + f
(1)
i (x)uhi + o(h2i )

)

(

fi(x) + f
(1)
i (x)vhi + o(h2i )

)

dxdudv − 4

(∫ ∫

xK(u)fi(x)fi(x+ uhi)dxdu

)2]

= c21

[

4

∫

x2f 3
i (x)dx+ o(hi)− 4

(∫ ∫

xK(u)fi(x)
(

fi(x) + uhif
2
i (x) + o(hi)

)

dxdu

)2]

= 4c21

[ ∫

x2f 3
i (x)dx−

(∫

xf 2
i (x)dx

)2]

+ o(hi) (2.22)

By central limit theorem of U-statistics (See Koroljuk and Borovskich [22], pp.

128-129), we have
√
ni(µ̂i − µi)

d→ N(0, ̟2
i ). Thus, we obtain that

√
ni(c1V̂i + c2 − (c1Vi + c2)) =

√
nic1(V̂i − Vi)

d→ N(0, ̟2
i ). (2.23)

Let ω2
i =

̟2

i

c2
1

. Then we have
√
ni(V̂i − Vi)

d→ N(0, ω2
i ), where

ω2
i = 4

{∫

x2f 3
i (x)dx−

(∫

xf 2
i (x)dx

)2}

. (2.24)

Define the sum of squares between as

SSB =
K
∑

i=1

ni(V̂i − V̂·)
2

ω̂i
2 , (2.25)

where

V̂· =

∑K
i=1 niV̂i/ω̂i

2

∑K
i=1 ni/ω̂i

2
, (2.26)
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and ω̂i
2 is a consistent estimate of ω2

i . To obtain the asymptotic distribution of SSB,

another two auxiliary variables are defined as follows:

S0
2 =

K
∑

i=1

Nλi(V̂i − V̄ )2

ω2
i

−N

[ I
∑

i=1

λi
ω2
i

]

(V ∗ − V̄ )2, (2.27)

and

S00
2 =

K
∑

i=1

ni(V̂i − V̄ )2

ω̂i
2 −

K
∑

i=1

ni(V̂· − V̄ )2

ω̂i
2 , (2.28)

where

V ∗ =

∑K
i=1 λiV̂i/ω

2
i

∑K
i=1 λi/ω

2
i

,

V̄ =

∑K
i=1 λiVi/ω

2
i

∑K
i=1 λi/ω

2
i

.

Lemma 2.5 Let N =
K
∑

i=1

ni. If λi = lim
minni→∞

ni

N
and ω̂2

i

p→ ω2
i , then

(i) S0
2 − S00

2

p→ 0,

(ii) S00
2 − SSB

p→ 0,

as min
i
ni → ∞.

Proof: They can be proved directly by applying Slutsky Theorem [10].

Theorem 2.6 Under the null hypothesis, if for any i = 1, 2, . . . , K, nih
4
i → 0, nihi →

∞ as min
i
ni → ∞,

∫∞
−∞ x2f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then SSB

is asymptotically χ2(K−1). In general (under the alternative), SSB is asymptotically

non-central χ2(K − 1) with non-centrality parameter:

ψ2 =
1

2
µ(2)′B2µ

(2), (2.29)
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where µ(2) = (µ
(2)
1 , µ

(2)
2 , . . . , µ

(2)
K ),

µ
(2)
i =

√
λi(ei −

∑K
i=1

λiei/ω
2

i∑K
i=1

λi/ω2

i

)
∫

f 2(y)dy

σωi

, (2.30)

B2 =















1− λ1/ω2

1∑K
i=1

λi/ω2

i

− (
√
λ1/ω1)(

√
λ2/ω2)∑K

i=1
λi/ω2

i

· · · − (
√
λ1/ω1)(

√
λK/ωK)

∑K
i=1

λi/ω2

i

...
...

. . .
...

− (
√
λ1/ω1)(

√
λK/ωK)

∑K
i=1

λi/ω2

i

− (
√
λ2/ω2)(

√
λK/ωK)

∑K
i=1

λi/ω2

i

· · · 1− λK/ω2

K∑K
i=1

λi/ω2

i















, (2.31)

λi = lim
ni→∞

ni
∑K

i=1 ni

and ei is such that µi = 1 + ei√∑K
i=1

ni

.

Proof: Let N =
∑K

i=1 ni, and then λi ≃ ni

N
. Set T

(2)
i =

√
λiN(V̂i − V̄ )/ωi, and then

under H0, T
(2)
i

a∼ N(0, 1) as N → ∞ by Lemma (2.4). Note that

S0
2 =

K
∑

i=1

Nλi(V̂i − V̄ )2

ω2
i

−N

[ K
∑

i=1

λi
ω2
i

]

(V ∗ − V̄ )2

=
K
∑

i=1

Nλi(V̂i − V̄ )2

ω2
i

−N

[ K
∑

i=1

λi
ω2
i

](∑

i λiV̂i/ω
2
i

∑

i λi/ω
2
i

−
∑

i λiVi/ω
2
i

∑

i λi/ω
2
i

)2

=
K
∑

i=1

Nλi(V̂i − V̄ )2

ω2
i

− N
∑K

i=1
λi

ω2

i

( K
∑

i=1

λi(V̂i − Vi)

ω2
i

)2

=
K
∑

i=1

Nλi(V̂i − V̄ )2

ω2
i

−
K
∑

i=1

K
∑

j=1

√
Nλi(V̂i − V̄ )

ωi

√

Nλj(V̂j − V̄ )

ωj

(
√
λi/ωi)(

√

λj/ωj)
∑K

i=1 λi/ω
2
i

,

(2.32)

which can be written as a quadratic form, i.e. S0
2 = U2

′B2U2, where,

U2 = (T
(2)
1 , T

(2)
2 , · · · , T (2)

K )′, (2.33)

and

B2 =















1− λ1/ω2

1∑K
i=1

λi/ω2

i

− (
√
λ1/ω1)(

√
λ2/ω2)∑K

i=1
λi/ω2

i

· · · − (
√
λ1/ω1)(

√
λK/ωK)

∑K
i=1

λi/ω2

i

...
...

. . .
...

− (
√
λ1/ω1)(

√
λK/ωK)

∑K
i=1

λi/ω2

i

− (
√
λ2/ω2)(

√
λK/ωK)

∑K
i=1

λi/ω2

i

· · · 1− λK/ω2

K∑K
i=1

λi/ω2

i















. (2.34)
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It can be easily shown that B2 is symmetric and idempotent. Thus, we obtain that

rank(B2) = tr(B2)

= tr(I− a2a2
′)

= tr(I)− tr(a2a2
′)

= K − tr(a2
′a2)

= K − 1, (2.35)

where

a2 =





















√
λ1/ω1

√
λ2/ω2

...
√
λK/ωK





















. (2.36)

U2 follows approximately multivariate normal with mean 0 and variance I, since

T
(2)
i ’s independently follow uni-variate standard normal distribution. Therefore, S0

2

is asymptotically χ2 with degrees of freedom K − 1 under H0.

Under the alternative, since ei is chosen such that µi = 1 + ei√
N
, then we have

Vi =
µi

c1
− c2
c1

=
1− c2
c1

+
ei

c1
√
N
.

Thus, V̄ can be written as:

V̄ =

∑K
i=1 λiVi/ω

2
i

∑K
i=1 λi/ω

2
i

=
K
∑

i=1

λi
ω2
i

(
1− c2
c1

+
ei

c1
√
N
)/

K
∑

i=1

λi
ω2
i

=
1− c2
c1

+
1

c1
√
N

∑K
i=1 λiei/ω

2
i

∑K
i=1 λi/ω

2
i

.

Under H1, T
(2)
i =

√
Nλi(V̂i − V̄ )/ωi =

√
Nλi(V̂i−Vi)

ωi
+

√
Nλi(Vi−V̄ )

ωi
. By Lemma (2.4),

the first term
√
Nλi(V̂i−Vi)

ωi
is approximately standard normally distribution. And the
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second term’s limit is

µ = lim
N→∞

√
Nλi(Vi − V̄ )

ωi

= lim
N→∞

√
Nλi

1
c1
√
N
(ei −

∑K
i=1

λiei/ω
2

i∑K
i=1

λi/ω2

i

)

ωi

=

√
λi(ei −

∑K
i=1

λiei/ω
2

i∑K
i=1

λi/ω2

i

)

c1ωi

=

√
λi(ei −

∑K
i=1

λiei/ω
2

i∑K
i=1

λi/ω2

i

)
∫

f 2(y)dy

σωi

, (2.37)

where ωi is given by the square root of equation(2.24). Therefore, in general T
(2)
i

is approximately normally distribution with mean µ(2) given in equation (2.37) and

variance 1. This implies that S0
2 = U(2)′B2U

(2) is asymptotically non-central χ2(K−

1) with non-centrality parameter ψ2 =
1
2
µ(2)′B2µ

(2).

By Lemma (2.5), SSB converges in probability to S0
2 . Therefore, SSB follows

asymptotically χ2 with degrees of freedom K − 1 under null hypothesis and asymp-

totically non-central χ2(K − 1) with non-centrality parameter ψ2 =
1
2
µ(2)′B2µ

(2).

Let Aij1j2 =
1
hi

(

Xij1
+Xij2

2

)

K

(

Xij1
−Xij2

hi

)

. Then, V̂i can be rewritten as:

V̂i =
1

ni(ni − 1)

∑ ∑

j1 6=j2

Aij1j2 . (2.38)

Define

S0
3 =

K
∑

i=1

∑

ni
∑

j1 6=j2

(Aij1j2 − V̂i)
2/ωi

2
, (2.39)

and the sum of squares within as

SSW =

∑K
i=1

∑∑ni

j1 6=j2
(Aij1j2 − V̂i)

2/ω̂i
2

Cw

, (2.40)

where

Cw =











n
2
− 1 if ni = n for all i,

c0 otherwise,
(2.41)
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and c0 =
∑d

i=1 πi/d, π1, π2, · · · , πd are the eigenvalues of B3 with

B3 =





















(n1

2
− 1)(In1

− 1
n1

Jn1
) 0 · · · 0

0 (n2

2
− 1)(In2

− 1
n2

Jn2
) · · · 0

...
...

. . .
...

0 0 · · · (nK

2
− 1)(InK

− 1
nK

JnK
)





















.

(2.42)

Lemma 2.7 Let N =
K
∑

i=1

ni. If λi = lim
ni→∞

ni

N
and ω̂i

2 p→ ω2
i , then S

0
3 −CwSSW

p→ 0

as min
i
ni → ∞.

Proof: This can be proved directly by applying Slutsky Theorem [10].

Theorem 2.8 For any i = 1, 2, . . . , K, if nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫∞
−∞ x2f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then then SSW is asymptoti-

cally χ2 with degrees of freedom dfw, where

dfw =











K(n− 1) if ni = n for all i,

d otherwise,
(2.43)

where d is the number of eigenvalues of B3 given by equation (2.42).

Proof: By the Hajek projection [16], Aij1j2 can be decomposed into the sum of

conditional expected values and a residual as follows:

Aij1j2 = E(Aij1j2|Xij1) + E(Aij1j2|Xij2) +Op(ni). (2.44)

Set ϕ(Xij1) = E(Aij1j2|Xij1) and ϕ(Xij2) = E(Aij1j2|Xij2) , thus
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V̂i =
1

ni(ni − 1)

∑ ∑

j1 6=j2

Aij1j2

≈ 1

ni(ni − 1)

∑ ∑

j1 6=j2

(ϕ(Xij1) + ϕ(Xij2)) (2.45)

=
1

ni(ni − 1)

(

∑

j1

∑

j2

(ϕ(Xij1) + ϕ(Xij2))−
∑ ∑

j1=j2

(ϕ(Xij1) + ϕ(Xij2))

)

.

=
1

ni(ni − 1)

(

2ni

∑

j1

ϕ(Xij1)− 2
∑

j1

ϕ(Xij1)

)

.

=
1

ni

ni
∑

j1

2ϕ(Xij1) (2.46)

Hence,

∑ ∑

j1 6=j2

(Aij1j2 − V̂i)
2

ω2
i

≈
∑ ∑

j1 6=j2

(ϕ(Xij1) + ϕ(Xij2)− V̂i)
2

ω2
i

=
∑

j1

∑

j2

(ϕ(Xij1)− 1
ni

∑

ϕ(Xij1) + ϕ(Xij2)− 1
ni

∑

ϕ(Xij2))
2

ω2
i

−
∑

j1

(

2ϕ(Xij1)− 1
ni

∑ni

j1=1 2ϕ(Xij1)
)2

ω2
i

= 2ni

∑

j1

(ϕ(Xij1)− 1
ni

∑

ϕ(Xij1))
2

ω2
i

−
∑

j1

(

2ϕ(Xij1)− V̂i
)2

ω2
i

=
ni

2

∑

j1

(2ϕ(Xij1)− V̂i)
2

ω2
i

−
∑

j1

(

2ϕ(Xij1)− V̂i
)2

ω2
i

= (
ni

2
− 1)

∑

j1

(2ϕ(Xij1)− V̂i)
2

ω2
i

= (
ni

2
− 1)

[

ni
∑

j=1

(2ϕ(Xij1)− Vi)
2

ω2
i

− ni(V̂i − Vi)
2

ω2
i

]

, (2.47)

since
∑ni

j1=1 (2ϕ(Xij1)− Vi)
2 =

∑ni

j1=1 (2ϕ(Xij1)− V̂i)
2 + ni(V̂i − Vi)

2.

Let Hij =
2ϕ(Xij)−Vi

ωi
for j = 1, 2, · · · , ni and Hi = (Hi1, Hi2, · · · , Hini

)′ for i =

29



1, 2, · · · , K. Thus, equation (2.47) can be rewritten in matrix form as

(
ni

2
− 1)

[

ni
∑

j=1

(2ϕ(Xij1)− Vi)
2

ω2
i

− ni(V̂i − Vi)
2

ω2
i

]

= (
ni

2
− 1)

[

H′
iHi −H′

i

1

ni

Jni
Hi

]

= H′
i(
ni

2
− 1)(I− 1

ni

Jni
)Hi. (2.48)

Let H = (H′
1,H

′
2, · · · ,H′

K)
′. Therefore, S0

3 can be written in the matrix form as

S0
3 =

K
∑

i=1

∑

ni
∑

j1 6=j2

(Aij1j2 − V̂i)
2/ωi

2

=
K
∑

i=1

H′
i(
ni

2
− 1)(I− 1

ni

Jni
)Hi

= H′





















(n1

2
− 1)(In1

− 1
n1

Jn1
) 0 · · · 0

0 (n2

2
− 1)(In2

− 1
n2

Jn2
) · · · 0

...
...

. . .
...

0 0 · · · (nK

2
− 1)(InK

− 1
nK

JnK
)





















H

= H′B3H. (2.49)

Now, we need to show that H asymptotically follows multivariate normal distribu-

tion.

Note that E(2ϕ(Xij1)) = E( 1
ni

∑ni

j1=1 2ϕ(Xij1)) = E(V̂i) ≈ Vi since µ̂i is asymptoti-

cally unbiased by equation (2.21). Also V ar(2ϕ(Xij1)) =
1
ni

∑ni

j1=1 V ar(2ϕ(Xij1)) =

niV ar(
1
ni

∑ni

j1=1 2ϕ(Xij1)) = niV ar(V̂i) = ω2
i . By the central limit theorem of U-

statistics, Hij =
2ϕ(Xij)−Vi

ωi
is distributed asymptotically normal with mean 0 and

variance 1. Since the Hij’s are independent, then H follows asymptotically multivari-

ate normal distribution with mean 0 and variance I.

(i) If ni = n for all i, then it is easy to verify that B3/(
n
2
− 1) is a symmetric and

idempotent matrix with rank
∑I

i=1 ni − K = N − K = K(n − 1). Therefore,

S0
3/(

n
2
−1) is asymptotically χ2 with degrees of freedom N −K = K(n−1). By
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Lemma (2.7), the sum of square within SSW is asymptotically χ2 with degrees

of freedom K(n− 1).

(ii) If ni 6= nj for some i 6= j, B3 is symmetric, although not idempotent. Thus,

there exists H′B3H =
∑d

i=1 πiz
2
i , where π1, π2, · · · , πd are the eigenvalues

of B3, zi ∼ N(0, 1) and are independent. Let c0 =
∑d

i=1 πi/d, then by [42],

S0
3/c0 = H′B3H/c0

·∼ χ2
d. By Lemma (2.7), the sum of squares within (SSW )

is asymptotically χ2 with degrees of freedom d.

Define the F-test statistics of kernel based nonparametric test for location param-

eters as:

Fl =
MSB

MSW
=
SSB/(K − 1)

SSW/dfw

=

∑K
i=1

ni(V̂i−V̂·)2

ω̂i
2 /(K − 1)

(
∑K

i=1

∑∑ni

j1 6=j2
(Aij1j2 − V̂i)2/ω̂i

2
)

/dfw
, (2.50)

where dfw is given in equation (2.43).

Theorem 2.9 If for any i = 1, 2, . . . , K, nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫∞
−∞ x2f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then under null hypothesis, Fl

in equation (2.50) follows asymptotically F distribution with degrees of freedom K−1

and dfw. Under the alternative, Fl follows asymptotically non-central F (K − 1, dfw)

with non-centrality parameter ψ2 described in equation (2.29).

Proof: Theorem (2.6) shows that SSB follows asymptotically χ2 with degrees of

freedom K−1 under null hypothesis and asymptotically non-central χ2(K−1) under

the alternative. Furthermore, Theorem (2.8) implies that the sum of squares within

SSW is asymptotically χ2 with degrees of freedom K(n−1) for balanced data and χ2

with degrees of freedom d for unbalanced data, where d is the number of eigenvalues

of B3 in equation (2.49). In order to show Fl = MSB
MSW

follows asymptotically F
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distribution under null hypothesis and non-central F distribution under alternative,

we just need to show SSB and SSW are asymptotically independent as min
i
ni → ∞.

In theorem (2.6), S0
2 , which converges in probability to SSB, is written as a quadratic

form S0
2 = U2

′B2U2. Note that under the null hypothesis

T
(2)
i ≃ √

ni(V̂i − V̄ )/ωi =
1√
ni

H′
ijni

. (2.51)

Hence, S0
2 can also be written as
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Recall from Theorem (2.8) that S0
3 = H′B3H. And it is easy to check that

B3B4 = 0 ∗B2
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= 0. (2.53)

Thus, S0
2 and S0

3 are independent. By Lemma (2.5) and Lemma (2.7), SSB and

SSW are asymptotically independent under null hypothesis H0: V1 = V2 = . . . = VK .

Hence, under null hypothesis, Fl =
MSB
MSW

in equation (2.50) follows asymptotically F

distribution with degrees of freedom K−1 and K(n−1) for balanced data and F (K−

1, d) for unbalanced data. Under the alternative, Fl =
MSB
MSW

follows asymptotically
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non-central F (K − 1, K(n − 1)) for balanced data, and non-central F (K − 1, d) for

unbalanced data, with non-centrality parameter ψ2 described in equation (2.29).

2.3 Simulation Study for Evaluating the Power of Kernel-based

Nonparametric One-way ANOVA

In this section, powers of the kernel-based nonparametric scale tests and location

tests, i.e. ANOVA tests, are evaluated via simulation. To better demonstrate the

properties of kernel-based nonparametric ANOVA tests compared with the tradi-

tional parametric ANOVA tests, the performances of both tests on data from various

distributions are studied.

2.3.1 Simulation Study for Scale Tests

As stated in Section 1.1.1, Levene’s test for testing homogeneity of variance is not sen-

sitive to the departure of normality, as Bartlett’s is. So we compared the performance

of Levene’s test with our new proposed nonparametric scale test in 3 distinctive cases

listed in Table 2.1.

Table 2.1: Three Cases

Distribution

Case I Normal Distribution

Case II Cauchy Distribution

Case III Three-parameter Lognormal Distribution

In case study I, groups of data coming from Normal distributions with different

variances are tested with Levene’s test (called Parametric test later) and kernel-based

nonparametric scale test (called Nonparametric test later). In case study II, groups
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of data coming from Cauchy distributions with different scale parameters are tested

as in Case I. It is known that Cauchy distribution is a heavy-tailed distribution com-

pared to normal distribution. The histogram of Cauchy distribution with location

parameter 10 and scale parameter 10 is given in Figure 2.1. As shown in Figure

2.1, the data from Cauchy (10,10) ranges from around -15000 to 20000, which are

far more spread than normal distribution. In case study III, groups of data come

from Lognormal distributions with different scale parameters are tested as in Case I.

Lognormal distributions are very important in finance and economics. For example,

it is often used to characterize stock prices in financial modeling, including pricing

and hedging. A lognormal distribution is a right skewed distribution. Figure 2.2

gives the histogram of three-parameter lognormal distributions. Figure 2.2(a) shows

a lognormal distribution with location parameter 16, scale parameter 4 and shape

parameter 3, while Figure 2.2(b) shows a lognormal distribution with location pa-

rameter 6, scale parameter 2 and shape parameter 1. Comparing Figure 2.2(a) with

2.2(b), it is obvious that the larger the shape parameter is, the stronger the skewness

is. Our goal of investigating these three cases is to study the situations that the kernel

based nonparametric scale test outperforms the Levene’s test. Since in Section 2.1 we

showed that kernel based nonparametric scale tests are asymptotic F test, another

goal of simulation study in this section is to find the sample size we need to reach an

appropriate power.

To evaluate the actual Type I error rate and the power of the Levene’s and non-

parametric scale tests proposed in Section 2.1 in the 3 cases in Table 2.1, we test the

homogeneity of scale parameters of three groups, i.e. K = 3 for each case. To obtain

the actual Type I error while setting the significant level α = 0.05, we follow the steps

below:

(1) Randomly generate 3 groups of data with balanced sample size n from N(3,1)

for Case I, Cauchy(10, 10) for Case II and Lognormal(16, 4, 3) for Case III.
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Figure 2.2: Histogram of Lognormal Distribution
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(2) Apply the Levene’s test and our scale test separately. Record the test result as

1 or 0. 1 means “reject the null hypothesis” and 0 means fail to reject.

(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.

(4) Repeat (1)-(3) for sample size n = 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.

The procedure to calculate the empirical power is very similar except generating 3

groups of data from 3 different distributions for each case in Step (1). The distribution

types and parameters assigned to each group in each case are listed in Table 2.2.

Table 2.2: Evaluate the Power of Scale Tests in 3 Cases

Case Group1 Group2 Group3

Ia N(3, 0.25) N(3, 1) N(3, 1.75)

IIa Cauchy(10, 2) Cauchy(10, 10) Cauchy(10, 20)

IIIa Lognormal(16, 2, 3) Lognormal(16, 4, 3) Lognormal(16, 6, 3)

As shown in Table 2.2, in Case Ia, all the three groups are from normal with the

same mean 3, but standard deviation 0.25, 1 and 1.75. The side-by-side boxplot of

the three groups in Case Ia is given in Figure 2.3. In Figure 2.3, the plot with the box

painted in red is the boxplot for group 1, which is generated from N(3, 0.25). The plot

painted in green is the boxplot for group 2, which is generated from N(3, 1). And the

plot painted in blue is the boxplot for group 3, which is generated from N(3, 1.75). It

is not hard to tell that the three groups have the same central tendency, but different

variabilities.

The side-by-side boxplot of the three groups in Case IIa is given in Figure 2.4. In

Figure 2.4, the plot with the box painted in red is the boxplot for group 1, which is

generated from Cauchy(10, 2). The plot painted in green is the boxplot for group 2,

which is generated from Cauchy(10, 10). And the plot painted in blue is the boxplot
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Figure 2.3: Side-by-Side Boxplot for the 3 Groups in Case Ia: Normal Distributions

for group 3, which is generated from Cauchy(10, 20). The color of the boxes in Figure

2.4(a) is invisible, since Cauchy distribution has very fat tails. Figure 2.4(b) shows

the boxplot of the three groups after removing the extreme outliers, i.e. the points

that are smaller than the first quartile subtract 3 times inter-quartile range or bigger

than the third quartile plus 3 times inter-quartile range. It is clear to see in Figure

2.4(b) that the three groups have similar central tendency, but distinct spreadness.

The side-by-side boxplot of the three groups in Case IIIa is given in Figure 2.5.

In Figure 2.5, the plot with the box painted in red is the boxplot for group 1, which is

generated from lognormal distribution with location parameter 16, scale parameter 2

and shape parameter 3, i.e. Lognormal(16, 2, 3). The plot painted in green is the box-

plot for group 2, which is generated from Lognormal(16, 4, 3). And the plot painted

in blue is the boxplot for group 3, which is generated from Lognormal(16, 6, 3). Simi-

lar to Figure 2.4(a), the color of the boxes in Figure 2.5(a) is invisible, since lognormal

distribution is strongly right skewed. Figure 2.5(b) shows the boxplot of the three
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Figure 2.4: Side-by-Side Boxplot for the 3 Groups in Case IIa: Cauchy Distributions

groups after removing the extreme outliers as what we did in Figure 2.4(b). It is not

easy to tell in Figure 2.5(b) whether the three groups have similar central tendency

since the distributions are strongly right skewed.

By following the similar steps as calculating the actual Type I error rates, empirical

powers can be evaluated for each case and a series of sample sizes. The simulation

results are listed in Table 2.3 - Table 2.5.

Table 2.3 shows that the actual Type I errors for both tests, either parametric

and nonparametric, are around 0.05, the significant level. As we expected, in Case

Ia, Levene’s test performs a little bit better when the sample size is less than 35.

When the samples come from normal distribution, parametric tests are always the

best choice for small sample size. However, as shown in the Table 2.3, our test is as

good as the parametric test even in the normal case. The power of our nonparametric

test is around 90% when the sample size is only 20.

Table 2.4 shows that Levene’s test suffers from inflated Type I error rates when

the data come from fat-tailed distributions. Whereas, our kernel based nonparametric
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Table 2.3: Power for the Scale Test: Case Ia (Normal Distri-

bution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.8002 0.0599 0.7890 0.0620

20 0.9221 0.0586 0.8982 0.0587

25 0.9737 0.0568 0.9601 0.0508

30 0.9913 0.0553 0.9837 0.0610

35 0.9980 0.0516 0.9939 0.0567

40 0.9991 0.0554 0.9979 0.0629

45 0.9998 0.0546 0.9988 0.0546

50 1.0000 0.0532 0.9997 0.0597

55 1.0000 0.0533 0.9999 0.0613

60 1.0000 0.0502 1.0000 0.0619

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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Table 2.4: Power for the Scale Test: Case IIa (Cauchy Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.6743 0.2994 0.7317 0.0456

20 0.7028 0.2847 0.8220 0.0597

25 0.7155 0.2795 0.9159 0.0602

30 0.7306 0.2758 0.9523 0.0569

35 0.7506 0.2731 0.9734 0.0476

40 0.7633 0.2704 0.9805 0.0410

45 0.7748 0.2798 0.9897 0.0377

50 0.7799 0.2646 0.9933 0.0339

55 0.7852 0.2659 0.9967 0.0339

60 0.7928 0.2697 0.9991 0.0329

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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Figure 2.5: Side-by-Side Boxplot for the 3 Groups in Case IIIa: Lognormal Distri-

butions

tests’ actual type I error rates are close to α = 0.05 in Case IIa, though it tends

to be a little bit conservative when sample size is large (n > 40). However, this

little conservative does not affect the powerfulness of our test when sample size is

large. The power of the nonparametric test is 98% or above when sample size is

beyond 40. Although Levene’s test is robust to the departure from normality, it

losses power very quickly when the distribution has thick tails. The kernel based

nonparametric scale test significantly outperforms Levene’s test for the heavy-tailed

underlying distribution, such as Cauchy distribution.

Table 2.5 shows that Levene’s test severely suffers from inflated Type I errors

when the data come from strongly skewed distributions. The actually type I error

of Levene’s test is up to 0.6 when the nominal Type I error is just 0.05. The kernel

based nonparametric test’s actual type I errors are closer to α = 0.05 compare the

ones of Levene’s test in Case IIIa. Moreover, as the sample size increases, the prob-

lem of inflated Type I errors becomes weaker and weaker. When the sample size is
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Table 2.5: Power for the Scale Test: Case IIIa (Lognormal Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.8671 0.5874 0.8458 0.1445

20 0.8792 0.5659 0.9192 0.1016

25 0.9021 0.5740 0.9591 0.0851

30 0.9130 0.5518 0.9799 0.0790

35 0.9196 0.5527 0.9927 0.0668

40 0.9304 0.5526 0.9971 0.0598

45 0.9381 0.5480 0.9991 0.0583

50 0.9424 0.5448 0.9995 0.0596

55 0.9477 0.5344 0.9998 0.0590

60 0.9524 0.5354 0.9998 0.0568

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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40 or above, the actual type I error of the test is very close to 0.05. Table 2.5 also

demonstrates that the nonparametric test is very powerful. When the sample size is

30, the power is over 90%. To conclude, the kernel based nonparametric scale test sig-

nificantly outperforms Levene’s test for the strongly skewed underlying distribution,

such as Lognormal distribution.

Figure 2.6 demonstrates the power of the parametric and the new nonparametric

test with respect to sample size when the underlying distribution of the samples are

Normal, Cauchy and Lognormal distribution. In Figure 2.6, the solid line represents

the power of the parametric scale test (i.e. Levene’s test), while the dashed line

represents the power of our kernel based nonparametric test. The red line (solid and

dashed) represents the power of test in Case Ia when the underlying distribution is

Normal distribution. The green line (solid and dashed) represents the power of test

in Case IIa when the underlying distribution is Cauchy distribution. And the blue

line (solid and dashed) represents the power of test in Case IIIa when the underlying

distribution is Lognormal distribution.

Figure 2.6(a) compares the power of parametric and nonparametric scale test on

the three groups in Case Ia. It shows that the powers of both tests increase sharply

to around 95% when sample size goes from 15 to 25 in Case Ia. Parametric scale test

performs a little bit better than the nonparametric scale test we proposed for small

sample size in Case Ia, which confirms what we withdrawn from Table 2.3. Figure

2.6(b) compares the power of parametric and nonparametric scale test on the three

groups in Case IIa. It is shown in Figure 2.6(b) that the power of the parameter

test does not increase as much as the nonparametric test as the sample size increases.

The power of nonparametric test has a steep increase especially when sample size

goes from 15 to 25 in Case IIa. Figure 2.6(c) compares the power of parametric and

nonparametric scale test on the three groups in Case IIIa. It is indicated that the

power of parametric test is higher than the nonparametric test when the sample size
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Figure 2.6: (a) Power of the parametric and nonparametric scale test on the three

groups in Case Ia; (b) Power of the parametric and nonparametric scale test on the

three groups in Case IIa; (c) Power of the parametric and nonparametric scale test

on the three groups in Case IIIa; (d) Power of the parametric and nonparametric
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is very small, then the relationship is reversed when the sample size goes beyond 16

or so. Like in Case IIa, the power of nonparametric test increases way faster than the

parametric test in Case IIIa. Figure 2.6(d) combines Figure (2.6(a))(2.6(b))(2.6(c))

in one graph, so it is easier to compare the powers of the either test throughout the

3 cases. The relationship of three solid lines infers that the power of the parametric

scale test is far more severely hurt by fat tails or extreme outliers than the skewness

does. The relationship of three dashed lines infers that the power of the nonparametric

scale test is not sensitive to the fat tails or the skewness. As long as the sample size

is large, it is a very powerful test.

2.3.2 Simulation Study for the One-way ANOVA Tests

In this section we will evaluate the performance of our new proposed nonparametric

location test, i.e. kernel based nonparametric one-way ANOVA test, and compare

with the traditional parametric F test. Like the performance study of scale test, the

power of nonparametric and parametric ANOVA tests in 3 distinctive cases listed

in Table 2.1 are studies as well. To evaluate the actual Type I error rate and the

power of the parametric F test and nonparametric location tests proposed in section

2.2 in the 3 cases in Table 2.1, we test the equality of location parameters of three

groups, i.e. K = 3 for each case. To obtain the actual Type I error while setting the

significant level α = 0.05, we follow the steps below:

(1) Randomly generate 3 groups of data with balanced sample size n from N(3,1)

for Case I, Cauchy(10, 2) for Case II and Lognormal(6, 2, 1) for Case III.

(2) Apply the F test and the location test separately. Keep the test result as 1 or

0. 1 means “reject the null hypothesis” and 0 means fail to reject.

(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.

(4) Repeat (1) -(3) for sample size n = 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.
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The procedure to calculate the empirical power is very similar except generating 3

groups of data from 3 different distributions for each case in Step (1). The distribution

types and parameters assigned to each group in each case are listed in Table 2.6.

Table 2.6: Evaluate the Power of ANOVA Tests in 3 Cases

Case Group1 Group2 Group3

Ib N(2.5, 1) N(3, 1) N(3.5, 1)

IIb Cauchy(2, 2) Cauchy(10, 2) Cauchy(20, 2)

IIIb Lognormal(2, 2, 1) Lognormal(6, 2, 1) Lognormal(10, 2, 1)

As shown in Table 2.6, in Case Ib, all the three groups are from normal with the

same standard deviation 1, but mean 2.5, 3 and 3.5. The side-by-side boxplot of the

three groups in Case Ib is given in Figure 2.7. In Figure 2.7, the plot with the box

painted in red is the boxplot for group 1, which is generated from N(2.5, 1). The plot

painted in green is the boxplot for group 2, which is generated from N(3, 1). And

the plot painted in blue is the boxplot for group 3, which is generated from N(3.5, 1).

It is not hard to tell that the three groups have the same variability, but different

centralities.

The side-by-side boxplot of the three groups in Case IIb is given in Figure 2.8. In

Figure 2.8, the plot with the box painted in red is the boxplot for group 1, which is

generated from Cauchy(2, 2). The plot painted in green is the boxplot for group 2,

which is generated from Cauchy(10, 2). And the plot painted in blue is the boxplot

for group 3, which is generated from Cauchy(20, 2). The color of the boxes in Figure

2.8(a) is invisible, since Cauchy distribution has very fat tails. Figure 2.8(b) shows

the boxplot of the three groups when kicking out the extreme outliers, i.e. the points

that are smaller than the first quartile subtract 3 times inter-quartile range or bigger

than the third quartile plus 3 times inter-quartile range. It is clear to see in Figure
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Figure 2.7: Side-by-Side Boxplot for the 3 Groups in Case Ib: Normal Distributions

2.8(b) that the three groups have the same variability, but different centralities.

The side-by-side boxplot of the three groups in Case IIIb is given in Figure 2.9. In

Figure 2.9, the plot with the box painted in red is the boxplot for group 1, which is gen-

erated from lognormal distribution with location parameter 16, scale parameter 2 and

shape parameter 3, i.e. Lognormal(2, 2, 1). The plot painted in green is the boxplot

for group 2, which is generated from Lognormal(6, 2, 1). And the plot painted in blue

is the boxplot for group 3, which is generated from Lognormal(10, 2, 1). Although

the distributions are strongly right skewed, the difference in central measurements is

still visible from Figure 2.9.

Similar to the scale test, empirical powers of the location or ANOVA test can be

evaluated for each case and a series of sample sizes. The simulation results are listed

in Table 2.7 - Table 2.9.

Table 2.7 shows that the actual Type I errors for both tests, either parametric

and nonparametric, are around 0.05, the significance level. As we expected, in Case
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Table 2.7: Power for the ANOVA Test: Case Ib (Normal Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.6511 0.0501 0.6161 0.0471

20 0.7980 0.0515 0.7719 0.0472

25 0.8820 0.0468 0.8622 0.0461

30 0.9325 0.0495 0.9252 0.0487

35 0.9676 0.0463 0.9590 0.0457

40 0.9822 0.0503 0.9800 0.0484

45 0.9914 0.0495 0.9874 0.0469

50 0.9961 0.0505 0.9946 0.0491

55 0.9978 0.0499 0.9972 0.0455

60 0.9991 0.0543 0.9991 0.0508
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I, parametric F test performs a little bit better when the sample size is less than 40.

When the samples come from normal distribution, parametric tests are always the

best choice for small sample size. However, as shown in the Table 2.7, our test is as

good as the parametric test even in the normal case. The power of our nonparametric

ANOVA test is around 92% when the sample size is 30.

Table 2.8: Power for the ANOVA Test: Case IIb(Cauchy Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.6224 0.0177 0.7798 0.0110

20 0.6308 0.0177 0.7838 0.0156

25 0.6357 0.0160 0.8004 0.0157

30 0.6208 0.0184 0.8181 0.0155

35 0.6358 0.0181 0.8404 0.0141

40 0.6236 0.0177 0.8555 0.0136

45 0.6407 0.0199 0.8719 0.0165

50 0.6390 0.0171 0.8780 0.0156

55 0.6442 0.0171 0.8887 0.0166

60 0.641 0.0169 0.8962 0.0188

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.

Table 2.8 shows that both parametric and nonparametric test in Case IIb are

equally conservative since the actual Type I errors for both tests are around 0.01-

0.02, which is less than the significance level α = 0.05. It is known that conservative

tests to some degree reduce the power. However, our kernel based nonparametric test

still get pretty decent power compared to the parametric F test, around 86% when
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the sample size is 40. Moreover, the power of the our nonparametric test in Case IIb

increases as the sample size increases, although not as fast as in Case Ib and IIIb.

The parameter test does not benefit from the growth of sample size. So the kernel

based nonparametric ANOVA test significantly outperforms parametric ANOVA test

for the heavy-tailed underlying distribution, such as Cauchy distribution.

Table 2.9: Power for the ANOVA Test: Case IIIb (Lognormal Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.3202 0.0349 0.3898 0.0413

20 0.3913 0.0361 0.4854 0.0377

25 0.4482 0.0392 0.5866 0.0379

30 0.4848 0.0408 0.6741 0.0399

35 0.5407 0.0387 0.7434 0.0425

40 0.5945 0.0403 0.8093 0.0433

45 0.6340 0.0407 0.8562 0.0426

50 0.6671 0.0442 0.8917 0.0420

55 0.6987 0.0415 0.9203 0.0457

60 0.7336 0.0406 0.9423 0.0456

Table 2.9 shows that the parametric and nonparametric F test in Case IIIb are

a little bit conservative since the actual Type I errors for both tests are around 0.04.

But the kernel based nonparametric test tends to be less conservative as sample size

increases. Furthermore, as the sample size increases, the power of the nonparametric

test grows faster than the parametric test. Table 2.9 also demonstrates that the

nonparametric test is very powerful. When the sample size is 40, the power of the

nonparametric test is over 80%, while the power of the parametric test is below 60%.

To conclude, the kernel based nonparametric ANOVA test significantly outperforms
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tradition F test for the strongly skewed underlying distribution, such as lognormal

distribution.

Figure 2.10 demonstrates the power of the parametric and nonparametric test with

respect to sample size when the underlying distribution of the samples are normal,

cauchy and lognormal distribution. In Figure 2.10, the solid line represents the power

of the parametric location test (i.e. traditional F test), while the dashed line repre-

sents the power of our kernel based nonparametric ANOVA test. The red line (solid

and dashed) represents the power of test in Case Ib when the underlying distribution

is normal distribution. The green line (solid and dashed) represents the power of test

in Case IIb when the underlying distribution is Cauchy distribution. And the blue

line (solid and dashed) represents the power of test in Case IIIb when the underlying

distribution is lognormal distribution.

Figure 2.10(a) compares the power of parametric and nonparametric ANOVA test

on the three groups in Case Ib. It shows that the powers of both tests increase sharply

to around 95% when sample size goes from 15 to 30 in Case Ib. Parametric ANOVA

test performs a little bit better than the kernel based nonparametric ANOVA test

we proposed in Case Ib, which is consistent with what we concluded from Table 2.7.

Figure 2.10(b) compares the power of parametric and nonparametric scale test on the

three groups in Case IIb. It is shown in Figure 2.10(b) that the power of our nonpara-

metric ANOVA test grows as the sample size increases, while the power of parametric

ANOVA test almost keeps constant in Case IIb. Figure 2.10(c) compares the power

of parametric and nonparametric scale test on the three groups in Case IIIb. It is in-

dicated that the power of nonparametric test increase way faster than the parametric

test in Case IIIb. Figure 2.10(d) combines Figure (2.10(a))(2.10(b))(2.10(c)) in one

graph, so it is easier to compare the powers of the either test throughout the 3 cases.

The relationship of three solid lines infers that the power of the parametric ANOVA

test is far more severely hurt by fat tails or extreme outliers than the skewness does.
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Figure 2.10: (a) Power of the parametric and nonparametric ANOVA test on the

three groups in Case Ib; (b) Power of the parametric and nonparametric ANOVA

test on the three groups in Case IIb; (c) Power of the parametric and nonparametric

ANOVA test on the three groups in Case IIIb; (d) Power of the parametric and

nonparametric ANOVA test on the three groups in Case Ib, IIb and IIIb.
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If the data come from a skewed distribution, large sample size leads to better power.

However, if the data come from a fat-tailed distribution, large sample size would not

make any improvement in power. The relationship of three dashed lines infers that

the power of the nonparametric one-way ANOVA test is not sensitive to the fat tails

or the skewness. Larger sample size always helps.

2.4 One-way Kernel Based Nonparametric Test for Shape Parameters

The parameter θ is called shape parameter if it satisfies fθ(x) = θxθ−1f1s(x
θ), where

f1s is the base density. Thus, if fi(x) = θix
θi−1f1s(x

θi) for i = 1, 2, · · · , K, then

∫

xf 2
i (x)dx = θ2i

∫

x2θi−1f 2
1s(x

θi)dx

= θi

∫

yf 2
1s(y)dy. (2.54)

Let W =
∫

yf 2
1s(y)dy, then Vi = θiW . Thus, testing H0: θ1 = θ2 = · · · = θK versus

Ha: θi 6= θj for any i 6= j is equivalent to test H0: V1 = V2 = · · · = VK versus Ha:

Vi 6= Vj . Note that the kernel estimate of Vi is given in equation (2.19). Therefore,

the test statistic for testing shape parameters is exactly the same as the location

parameters.
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CHAPTER 3

Two-way Kernel Based Nonparametric ANOVA

Assume Xijk comes from a distribution with probability density function fij(x) ,

where i = 1, 2, . . . , r, j = 1, 2, . . . , c and k = 1, 2, . . . , nij . Define µij and σij as the

location and scale parameter of fij(x). That is to say, the following equation holds.

fij(x) =
1

σij
f00

(

x− µij

σij

)

, (3.1)

where f00 is the base density.

In Ahmad and Amezziane [2], the location and scale parameters can be written as:

µij =
σij(

∫∞
−∞ xf 2

ij(x)dx−
∫∞
−∞ xf 2

00(x)dx)
∫∞
−∞ f 2

00(x)dx
, (3.2)

and

σij =

∫∞
−∞ f 2

00(x)dx
∫∞
−∞ f 2

ij(x)dx
. (3.3)

We can test the homogeneity of scale parameters among the rc cells by using the

test statistics proposed in Chapter 2.

3.1 Two-way Kernel Based Nonparametric Test for Location

Parameters with Equal Scale Parameter

Under the assumption of homogeneity of scale parameters, i.e. σij = σ for all i and

j, we have

µij =
σ(
∫∞
−∞ xf 2

ij(x)dx−
∫∞
−∞ xf 2

00(x)dx)
∫∞
−∞ f 2

00(x)dx
. (3.4)

Define Vij =
∫∞
−∞ xf 2

ij(x)dx, C
0
1 = σ∫

∞

−∞
f2

00
(x)dx

and C0
2 = −

∫
∞

−∞
xf2

00
(x)dx

∫
∞

−∞
f2

00
(x)dx

. Then, µij

can be rewritten as

µij = C0
1Vij + C0

2 . (3.5)
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Consider the two way layout: µij = µ + αi + βj + γij, where µ is the overall

location, αi is the i
th row effect, βj is the j

th column effect and γij is the interaction

effect of ith row and jth column. The decomposition is not unique, so we impose the

following restrictions:
∑

i
λij

ω2

ij

αi = 0,
∑

j
λij

ω2

ij

βj = 0 and
∑

i
λij

ω2

ij

γij =
∑

j
λij

ω2

ij

γij = 0,

where λij = lim
mini,j nij→∞

nij

N
and N =

∑

i,j nij. Thus, we can infer that

µ+ αi =

∑

j λijµij/ω
2
ij

∑

j λij/ω
2
ij

, (3.6)

µ+ βj =

∑

i λijµij/ω
2
ij

∑

i λij/ω
2
ij

, (3.7)

µ =

∑

i

∑

j λijµij/ω
2
ij

∑

i

∑

j λij/ω
2
ij

. (3.8)

By plugging (3.5) into equations (3.6-3.8), we obtain

µ+ αi = C0
1 V̄i. + C0

2 , (3.9)

µ+ βj = C0
1 V̄.j + C0

2 , (3.10)

µ = C0
1 V̄.. + C0

2 , (3.11)

where

V̄i. =

∑

j mijVij

mi.

,

V̄.j =

∑

imijVij
m.j

,

V̄.. =

∑

i

∑

j mijVij

m..

,

mij = Nλij/ω
2
ij, mi. =

∑

j mij, m.j =
∑

imij, and m.. =
∑

i

∑

j mij. Thus, by some

algebra, we have

αi = C0
1(V̄i. − V̄..), (3.12)

βj = C0
1(V̄.j − V̄..), (3.13)

γij = µij − (µ+ αi)− (µ+ βj) + µ.

= C0
1(Vij − V̄i. − V̄.j + V̄..). (3.14)

56



Thus, the hypothesis for testing homogeneous row effects, i.e. H0 : αi = 0 for all i

versus H1 : αi 6= 0 for some i, becomes H0 : V̄i. = V̄.. for all i versus H1 : V̄i. 6= V̄.. for

some i. Similarly, the hypothesis for testing homogeneous column effects, i.e. H0 :

βj = 0 for all j versus H1 : βj 6= 0 for some j, becomes H0 : V̄.j = V̄.. for all j versus

H1 : V̄.j 6= V̄.. for some j, and the hypothesis for testing the homogeneous interaction

of the row and column effects, i.e. H0 : γij = 0 for all i, j versus H1 : γij 6= 0 for some

i, j, becomes H0 : Vij − V̄i.− V̄.j + V̄.. = 0 for all i, j versus H1 : Vij − V̄i.− V̄.j + V̄.. 6= 0

for some i, j.

3.1.1 Kernel Based Nonparametric Test for Main Effects

Consider the nonparametric kernel estimate of Vij, denoted as V̂ij, where

V̂ij =
1

nij(nij − 1)hij

∑ ∑

k1 6=k2

(

Xijk1 +Xijk2

2

)

K

(

Xijk1 −Xijk2

hij

)

. (3.15)

Lemma 3.1 If for any i = 1, 2, · · · , r, j = 1, 2, · · · , c, nijhij → ∞ as min
i,j

nij → ∞,
∫

uf 2(u)du <∞ and
∫

u2f(u)du <∞, then

√
nij(V̂ij − Vij)

d→ N(0, ω2
ij), (3.16)

as min
i,j

nij → ∞, where, ω2
ij = 4{

∫

x2f 3
ij(x)dx− (

∫

xf 2
ij(x)dx)

2}.

Proof: The proof is similar to Lemma 2.4.

Consider the test statistic for row effect first. To test H0 : V̄i. = V̄.. for all i, define

the Row Sum of Squares (SSR) as

SSR =
r

∑

i=1

m̂i.

(

V̂i. − V̂..

)2

, (3.17)

where, V̂i. =
∑

j m̂ij V̂ij

m̂i.
, V̂.. =

∑
i

∑
j m̂ij V̂ij

m̂..
, m̂i. =

∑

j m̂ij, m̂ij = nij/ω̂
2
ij and ω̂2

ij is a

consistent estimate of ω2
ij.

57



To obtain the asymptotic distribution of SSR, another auxiliary variable is defined

as follows:

S0
R =

r
∑

i=1

mi.

(

V ∗
i. − V ∗

..

)2

, (3.18)

where V ∗
i. =

∑
j mij V̂ij

mi.
and V ∗

.. =
∑

i

∑
j mij V̂ij

m..
.

Lemma 3.2 Let N =
r

∑

i=1

c
∑

j=1

nij. If λij = lim
minnij→∞

nij

N
and ω̂2

ij

p→ ω2
ij, then S0

R −

SSR
p→ 0, as min

i,j
ni,j → ∞.

Proof: This can be proved directly by applying Slutsky Theorem [10].

Theorem 3.3 Under the null hypothesis, H0 : V̄i. = V̄.., if for any i = 1, 2, · · · , r and

j = 1, 2, · · · , c, nijh
4
ij → 0, nijhij → ∞ as min

i,j
nij → ∞, and if

∫

x2f 3
ij(x)dx < ∞,

then SSR is asymptotically χ2(r − 1).

Proof: Set T
(3)
ij =

√

Nλij(V̂ij − Vij)/ωij. Then T
(3)
ij

a∼ N(0, 1) as N → ∞ by Lemma

(3.1). Note that, under the null hypothesis,
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S0
R =

r
∑

i=1

mi.

(

V ∗
i. − V ∗

..

)2

=
r

∑

i=1

mi.

(

(V ∗
i. − V̄i.)− (V ∗

.. − V̄..)
)2

=
r

∑

i=1

mi.

(

(V ∗
i. − V̄i.)

2 + (V ∗
.. − V̄..)

2 − 2(V ∗
i. − V̄i.)(V

∗
.. − V̄..)

)

=
r

∑

i=1

mi.(V
∗
i. − V̄i.)

2 +m..(V
∗
.. − V̄..)

2 − 2(V ∗
.. − V̄..)

r
∑

i=1

mi.

∑

j mij(V̂ij − Vij)

mi.

=
r

∑

i=1

mi.(V
∗
i. − V̄i.)

2 −m..(V
∗
.. − V̄..)

2

=
r

∑

i=1

1

mi.

(

c
∑

j=1

mij(V̂ij − Vij)
)2

− 1

m..

(

r
∑

i=1

c
∑

j=1

mij(V̂ij − Vij)
)2

=
r

∑

i=1

c
∑

j1=1

c
∑

j2=1

N

mi.

√

Nλij1
ωij1

(V̂ij1 − Vij1)

√

Nλij2
ωij2

(V̂ij2 − Vij2)

√

λij1
ωij1

√

λij2
ωij2

(3.19)

− N

m..

r
∑

i1=1

r
∑

i2=1

c
∑

j1=1

c
∑

j2=1

√

Nλi1j1
ωi1j1

(V̂i1j1 − Vi1j1)

√

Nλi2j2
ωi2j2

(V̂i2j2 − Vi2j2)

√

λi1j1
ωi1j1

√

λi2j2
ωi2j2

.

Let U3 = (T
(3)
11 , T

(3)
12 , · · · , T

(3)
rc ), then the first term of (3.19) can written as a quadratic

form U3
′M(1)U3, and the second term of (3.19) can written as a quadratic form

U3
′M(2)U3, where

M(1) =





















N
m1.

M11 0 · · · 0

0 N
m2.

M22 · · · 0

...
...

. . .
...

0 0 · · · N
mr.

Mrr





















, (3.20)

M(2) =





















N
m..

M11
N
m..

M12 · · · N
m..

M1r

N
m..

M21
N
m..

M22 · · · N
m..

M2r

...
...

. . .
...

N
m..

Mr1
N
m..

Mr2 · · · N
m..

Mrr





















, (3.21)
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and

Mij =





















√
λi1

√
λj1

ωi1ωj1

√
λi1

√
λj2

ωi1ωj2
· · ·

√
λi1

√
λjc

ωi1ωjc√
λi2

√
λj1

ωi2ωj1

√
λi2

√
λj2

ωi2ωj2
· · ·

√
λi2

√
λjc

ωi2ωjc

...
...

. . .
...

√
λic

√
λj1

ωicωj1

√
λic

√
λj2

ωicωj2
· · ·

√
λic

√
λjc

ωicωjc





















(3.22)

for all i = 1, 2, · · · , r, j = 1, 2, · · · , c. Thus, S0
R can be rewritten by the following

quadratic form:

S0
R = U3

′M(1)U3 −U3
′M(2)U3

= U3
′





















( N
m1.

− N
m..

)M11 − N
m..

M12 · · · − N
m..

M1r

− N
m..

M21 ( N
m2.

− N
m..

)M22 · · · − N
m..

M2r

...
...

. . .
...

− N
m..

Mr1 − N
m..

Mr2 · · · ( N
mr.

− N
m..

)Mrr





















U3

def
= U3

′B5U3. (3.23)

It can easily be shown that B5 is symmetric and idempotent. Thus, we obtain that

rank(B5) = trace(B5)

=
r

∑

i=1

1

mi.

c
∑

j=1

mij −
1

m..

r
∑

i=1

c
∑

j=1

mij

= r − 1 (3.24)

U3 follows approximately multivariate normal with mean 0 and variance I, since

T
(3)
ij ’s independently follow univariate standard normal distribution. Therefore, S0

R is

asymptotically χ2 with degrees of freedom r− 1 under H0. By Lemma (3.2), SSR is

asymptotically χ2 with degrees of freedom r − 1 under H0.

Let Aijk1k2 =
1
hij

(

Xijk1
+Xijk2

2

)

K
(

Xijk1
−Xijk2

hij

)

. Then V̂ij can be rewritten as:

V̂ij =
1

nij(nij − 1)

∑ ∑

k1 6=k2

Aijk1k2 . (3.25)
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And the Within cells Sum of Squares (SSW) is given by

SSW =

∑r
i=1

∑c
j=1

∑∑

k1 6=k2
(Aijk1k2 − V̂ij)

2/ω̂2
ij

Cw2

, (3.26)

where

Cw2
=











n
2
− 1 if ni = n for all i,

c
(2)
0 otherwise,

(3.27)

and c
(2)
0 =

∑d2
i=1 π

(2)
i /d2, and π

(2)
1 , π

(2)
2 , · · · , π(2)

d2
are all the eigenvalues of B6, where

B6 =





















(n11

2
− 1)(In11

− 1
n11

Jn11
) 0 · · · 0

0 (n12

2
− 1)(In12

− 1
n12

Jn12
) · · · 0

...
...

. . .
...

0 0 · · · (nrc

2
− 1)(Inrc

− 1
nrc

Jnrc
)





















.

(3.28)

To obtain the asymptotic distribution of SSW, another auxiliary variable is defined

as follows:

S0
W =

r
∑

i=1

c
∑

j=1

∑ ∑

k1 6=k2

(Aijk1k2 − V̂ij)
2/ω2

ij. (3.29)

Lemma 3.4 Let N =
r

∑

i=1

c
∑

j=1

nij. If λij = lim
minnij→∞

nij

N
and ω̂2

ij

p→ ω2
ij, then S0

W −

Cw2
SSW

p→ 0, as min
i,j

ni,j → ∞.

Proof: They can be proved directly by applying Slutsky Theorem [10].

Theorem 3.5 For any i = 1, 2, · · · , r and j = 1, 2, · · · , c, if nijh
4
ij → 0, nijhij → ∞

as min
i,j

nij → ∞, and if
∫

x2f 3
ij(x)dx <∞, then SSW follows asymptotically χ2 with

degrees of freedom dfw2
, where,

dfw2
=











rc(n− 1) if ni = n for all i,

d2 otherwise.
(3.30)
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Proof: By Hajek projection [16], Aijk1k2 can be decomposed into the sum of condi-

tional expected values and a residual as follows:

Aijk1k2 = E(Aijk1k2|Xijk1) + E(Aijk1k2|Xijk2) +Op(ni). (3.31)

Set ϕ(Xijk1) = E(Aijk1k2|Xijk1) and ϕ(Xijk2) = E(Aijk1k2 |Xijk2) , thus

V̂ij =
1

nij(nij − 1)

∑ ∑

k1 6=k2

Aijk1k2

≈ 1

nij(nij − 1)

∑ ∑

k1 6=k2

(ϕ(Xijk1) + ϕ(Xijk2)) (3.32)

=
1

nij(nij − 1)

(

∑

k1

∑

k2

(ϕ(Xijk1) + ϕ(Xijk2))−
∑ ∑

k1=k2

(ϕ(Xijk1) + ϕ(Xijk2))

)

.

=
1

nij(nij − 1)

(

2nij

∑

k1

ϕ(Xijk1)− 2
∑

k1

ϕ(Xijk1)

)

.

=
1

nij

nij
∑

k1

2ϕ(Xijk1) (3.33)

Hence,

∑ ∑

k1 6=k2

(Aijk1k2 − V̂ij)
2

ω2
ij

≈
∑ ∑

k1 6=k2

(ϕ(Xijk1) + ϕ(Xijk2)− V̂ij)
2

ω2
ij

=
∑

k1

∑

k2

(ϕ(Xijk1)− 1
nij

∑

ϕ(Xijk1) + ϕ(Xijk2)− 1
nij

∑

ϕ(Xijk2))
2

ω2
ij

−
∑

k1

(

2ϕ(Xijk1)− 1
nij

∑nij

k1=1 2ϕ(Xijk1)
)2

ω2
ij

= 2nij

∑

k1

(ϕ(Xijk1)− 1
nij

∑

ϕ(Xijk1))
2

ω2
ij

−
∑

k1

(

2ϕ(Xijk1)− V̂ij
)2

ω2
ij

=
nij

2

∑

k1

(2ϕ(Xijk1)− V̂ij)
2

ω2
ij

−
∑

k1

(

2ϕ(Xijk1)− V̂ij
)2

ω2
ij

= (
nij

2
− 1)

∑

k1

(2ϕ(Xijk1)− V̂ij)
2

ω2
ij

= (
nij

2
− 1)

[

nij
∑

k=1

(2ϕ(Xijk1)− Vij)
2

ω2
ij

− nij(V̂ij − Vij)
2

ω2
ij

]

. (3.34)
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Let Hijk =
2ϕ(Xijk)−Vij

ωij
for k = 1, 2, · · · , nij and Hij = (Hij1, Hij2, · · · , Hijnij

)′ for

i = 1, 2, · · · , r and j = 1, 2, · · · , c. Thus, equation(3.34) can be rewritten in matrix

form as

(
nij

2
− 1)

[

nij
∑

j=1

(2ϕ(Xijk1)− Vij)
2

ω2
ij

− nij(V̂ij − Vij)
2

ω2
ij

]

= (
nij

2
− 1)

[

H′
ijHij −H′

ij

1

nij

Jnij
Hij

]

= H′
ij(
nij

2
− 1)(I− 1

nij

Jnij
)Hij . (3.35)

Let H = (H′
11,H

′
12, · · · ,H′

rc)
′. Therefore, S0

W can be written in the matrix form as

S0
W =

r
∑

i=1

c
∑

j=1

∑

nij
∑

k1 6=k2

(Aijk1k2 − V̂ij)
2/ωij

2

=
r

∑

i=1

c
∑

j=1

H′
ij(
nij

2
− 1)(I− 1

nij

Jnij
)Hij

= H′B6H, (3.36)

where, B6 is given in equation (3.28).

Now we need to show that H follows asymptotically multivariate normal distri-

bution. Note that E(2ϕ(Xijk1)) = E( 1
nij

∑nij

k1=1 2ϕ(Xijk1)) = E(V̂ij) ≈ Vij since µ̂ij is

asymptotically unbiased by Lemma (3.1). Also V ar(2ϕ(Xijk1)) =
1
nij

∑nij

k1=1 V ar(2ϕ(Xijk1)) =

nijV ar(
1
nij

∑nij

k1=1 2ϕ(Xijk1)) = nijV ar(V̂ij) = ω2
ij. By the central limit theorem of U-

statistics, Hijk =
2ϕ(Xijk)−Vij

ωij
is distributed asymptotically normal with mean 0 and

variance 1. Since the Hijk’s are independent, then H follows asymptotically multi-

variate normal distribution with mean 0 and variance I.

(i) If nij = n for all i and j, then it is easy to verify that B6/(
n
2
−1) is a symmetric

and idempotent matrix with rank
∑r

i=1

∑c
j=1 nij − rc = N − rc = rc(n − 1).

Therefore, S0
W/(

n
2
− 1) is asymptotically χ2 with degrees of freedom N − rc =

rc(n − 1). By Lemma(3.4), the sum of square within SSW is asymptotically

χ2 with degrees of freedom rc(n− 1).
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(ii) If nij 6= ni′j′ for some i 6= i′ or j 6= j′, B6 is symmetric, although not idempotent.

Thus, there exists H′B6H =
∑d2

i=1 π
(2)
i z2i , where π

(2)
1 , π

(2)
2 , · · · , π(2)

d2
are the

eigenvalues of B6, zi ∼ N(0, 1) and are independent. Let c
(2)
0 =

∑d2
i=1 π

(2)
i /d2,

then by [42], S0
3/c

(2)
0 = H′B6H/c

(2)
0

·∼ χ2
d2
. By Lemma (3.4), the sum of square

within SSW is asymptotically χ2 with degrees of freedom d2, where d2 is given

in Theorem (3.5).

Define the F-test statistics of kernel based nonparametric test for location param-

eters of the row effect as:

FRl
=

MSR

MSW
=
SSR/(r − 1)

SSW/dfw2

=

∑r
i=1 m̂i.

(

V̂i. − V̂..

)2

/(r − 1)
(
∑r

i=1

∑c
j=1

∑∑

k1 6=k2
(Aijk1k2 − V̂ij)2/ω̂2

ij

)

/dfw2

, (3.37)

where dfw2
is given in equation (3.30).

Theorem 3.6 If for any i = 1, 2, · · · , r and j = 1, 2, · · · , c, nijh
4
ij → 0, nijhij → ∞

as min
i,j

nij → ∞, and if
∫

x2f 3
ij(x)dx <∞, then under null hypothesis, FRl

in equation

(3.37) follows asymptotically F distribution with degrees of freedom r − 1 and dfw2
.

Proof: Theorem (3.3) shows that SSR follows asymptotically χ2 with degrees of

freedom r − 1 under null hypothesis and asymptotically non-central χ2(r − 1) under

the alternative. Furthermore, Theorem (3.5) implies that SSW is asymptotically χ2

with degrees of freedom rc(n− 1) for balanced data and χ2 with degrees of freedom

d2 for unbalanced data, where d2 is the number of eigenvalues of B6 in equation

(3.28). In order to show FRl
= MSR

MSW
follows asymptotically F distribution under null

hypothesis and non-central F distribution under alternative, we just need to show

SSR and SSW are asymptotically independent as min
i,j

nij → ∞.

In Lemma (3.2), S0
R, which converges in probability to SSR, is written as a quadratic
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form S0
R = U3

′B5U3. Note that

T
(3)
ij ≃ √

nij(V̂ij − Vij)/ωij =
1

√
nij

H′
ijjnij

. (3.38)

Hence, S0
R can also be written as

S0
R = (

1√
n11

H′
11jn11

, · · · , 1√
nrc

H′
rcjnrc

)B5















1√
n11

H′
11jn11

...

1√
nrc

H′
rcjnrc















= H′





















1√
n11

j′n11
0 · · · 0

0 1√
n12

j′n12
· · · 0

...
...

. . .
...

0 0 · · · 1√
nrc

j′nrc





















′

B5





















1√
n11

j′n11
0 · · · 0

0 1√
n12

j′n12
· · · 0

...
...

. . .
...

0 0 · · · 1√
nrc

j′nrc





















H

def
= H′B7H. (3.39)

Recall from theorem (3.5) that S0
W = H′B6H. And it is easy to check that

B6B7 = 0 ∗B5





















1√
n11

j′n11
0 · · · 0

0 1√
n12

j′n12
· · · 0

...
...

. . .
...

0 0 · · · 1√
nrc

j′nrc





















= 0. (3.40)

Thus, S0
R and S0

W are independent. By Lemma (3.2) and Lemma (3.4), SSR and SSW

are asymptotically independent under null hypothesis V̄i. = V̄.. for all i. Hence, under

null hypothesis, FRl
= MSR

MSW
in equation (3.37) follows asymptotically F distribution

with degrees of freedom r − 1 and rc(n − 1) for balanced data and F (r − 1, d2) for

unbalanced data.

Similarly, to test the column effect, i.e. H0 : V̄.j = V̄.. for all j, define the Column

Sum of Squares (SSC) as

SSC =
c

∑

j=1

m̂.j

(

V̂.j − V̂..

)2

, (3.41)
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where V̂.j =
∑

i m̂ij V̂ij

m̂.j
and m̂.j =

∑

i m̂ij. Then, the F-test statistics of kernel based

nonparametric test for location parameters of the column effect is given by

FCl
=

MSC

MSW
=
SSC/(c− 1)

SSW/dfw2

=

∑c
j=1 m̂.j

(

V̂.j − V̂..

)2

/(c− 1)
(
∑r

i=1

∑c
j=1

∑∑

k1 6=k2
(Aijk1k2 − V̂ij)2/ω̂2

ij

)

/dfw2

, (3.42)

where dfw2
is given by equation (3.30).

Theorem 3.7 If for any i = 1, 2, · · · , r and j = 1, 2, · · · , c, nijh
4
ij → 0, nijhij →

∞ as min
i,j

nij → ∞, and if
∫

x2f 3
ij(x)dx < ∞, then under null hypothesis, FCl

in

equation(3.42) follows asymptotically F distribution with degrees of freedom c− 1 and

dfw2
.

Proof: Similar to Theorem (3.6).

3.1.2 Kernel Based Nonparametric Test for Interactions of Row and Col-

umn Effects

In order to test the interaction effects, i.e. H0 : Vij − V̄i. − V̄.j + V̄.. = 0 for all i and

j, define the Interaction Sum of Squares (SSI) as

SSI =
r

∑

i=1

c
∑

j=1

m̂ij

(

V̂ij − V̂i. − V̂.j + V̂..

)2

. (3.43)

To obtain the asymptotic distribution of SSI, another auxiliary variable is defined

as follows:

S0
I =

r
∑

i=1

c
∑

j=1

m̂ij

(

V̂ij − V ∗
i. − V ∗

.j + V ∗
..

)2

, (3.44)

where V ∗
.j =

∑
i mij V̂ij

m.j
. Note that V ∗

i. and V
∗
.. are defined in Section 3.1.1.
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Lemma 3.8 Let N =
r

∑

i=1

c
∑

j=1

nij. If λij = lim
minnij→∞

nij

N
and ω̂2

ij

p→ ω2
ij, then S0

I −

SSI
p→ 0, as min

i,j
ni,j → ∞.

Proof: This can be proved directly by applying Slutsky Theorem [10].

Theorem 3.9 Under the null hypothesis, H0 : Vij − V̄i.− V̄.j + V̄.. = 0 for all i and j,

if for any i = 1, 2, · · · , r and j = 1, 2, · · · , c, nijh
4
ij → 0, nijhij → ∞ as min

i,j
nij → ∞,

and if
∫

x2f 3
ij(x)dx <∞, then SSI is asymptotically χ2

(

(r − 1)(c− 1)
)

.

Proof: Set T
(3)
ij =

√

Nλij(V̂ij − Vij)/ωij. Then T
(3)
ij

a∼ N(0, 1) as N → ∞ by Lemma

(3.1). Note that, under the null hypothesis,
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S0
I =

r
∑

i=1

c
∑

j=1

mij

(

V̂ij − V ∗
i. − V ∗

.j + V ∗
..

)2

=
r

∑

i=1

c
∑

j=1

mij

(

(V̂ij − Vij)− (V ∗
i. − V̄i.)− (V ∗

.j − V̄.j) + (V ∗
.. − V̄..)

)2

=
r

∑

i=1

c
∑

j=1

mij

(

(V̂ij − Vij)
2 + (V ∗

i. − V̄i.)
2 + (V ∗

.j − V̄.j)
2 + (V ∗

.. − V̄..)
2

− 2(V̂ij − Vij)(V
∗
i. − V̄i.)− 2(V̂ij − Vij)(V

∗
.j − V̄.j) + 2(V̂ij − Vij)(V

∗
.. − V̄..)

+ 2(V ∗
i. − V̄i.)(V

∗
.j − V̄.j)− 2(V ∗

i. − V̄i.)(V
∗
.. − V̄..)− 2(V ∗

.j − V̄.j)(V
∗
.. − V̄..)

)

=
r

∑

i=1

c
∑

j=1

mij(V̂ij − Vij)
2 +

r
∑

i=1

mi.(V
∗
i. − V̄i.)

2 +
c

∑

j=1

m.j(V
∗
.j − V̄.j)

2 +m..(V
∗
.. − V̄..)

2

− 2
r

∑

i=1

mi.(V
∗
i. − V̄i.)

2 − 2
c

∑

j=1

m.j(V
∗
.j − V̄.j)

2 + 2m..(V
∗
.. − V̄..)

2

+ 2
r

∑

i=1

c
∑

j=1

mij(V
∗
i. − V̄i.)(V

∗
.j − V̄.j)− 2m..(V

∗
.. − V̄..)

2 − 2m..(V
∗
.. − V̄..)

2

=
r

∑

i=1

c
∑

j=1

mij(V̂ij − Vij)
2 −

r
∑

i=1

mi.(V
∗
i. − V̄i.)

2 −
c

∑

j=1

m.j(V
∗
.j − V̄.j)

2 +m..(V
∗
.. − V̄..)

2

+
r

∑

i=1

c
∑

j=1

mij(V
∗
i. − V̄i.)(V

∗
.j − V̄.j)− 2m..(V

∗
.. − V̄..)

2. (3.45)

If we assume mij =
(mi.)(m.j)

m..
, then

r
∑

i=1

c
∑

j=1

mij(V
∗
i. − V̄i.)(V

∗
.j − V̄.j) = 2m..(V

∗
.. − V̄..)

2.
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Hence,

S0
I =

r
∑

i=1

c
∑

j=1

mij(V̂ij − Vij)
2 −

r
∑

i=1

mi.(V
∗
i. − V̄i.)

2 −
c

∑

j=1

m.j(V
∗
.j − V̄.j)

2 +m..(V
∗
.. − V̄..)

2

=
r

∑

i=1

c
∑

j=1

mij(V̂ij − Vij)
2 −

r
∑

i=1

1

mi.

(

c
∑

j=1

mij(V̂ij − Vij)
)2

−
c

∑

j=1

1

m.j

(

r
∑

i=1

mij(V̂ij − Vij)
)2

+
1

m..

(

r
∑

i=1

c
∑

j=1

mij(V̂ij − Vij)
)2

=
r

∑

i=1

c
∑

j=1

Nλij(V̂ij − Vij)
2

ω2
ij

(3.46)

−
r

∑

i=1

c
∑

j1=1

c
∑

j2=1

N

mi.

√

Nλij1
ωij1

(V̂ij1 − Vij1)

√

Nλij2
ωij2

(V̂ij2 − Vij2)

√

λij1
ωij1

√

λij2
ωij2

−
r

∑

i1=1

r
∑

i2=1

c
∑

j=1

N

m.j

√

Nλi1j

ωi1j

(V̂i1j − Vi1j)

√

Nλi2j

ωi2j

(V̂i2j − Vi2j)

√

λi1j

ωi1j

√

λi2j

ωi2j

+
N

m..

r
∑

i1=1

r
∑

i2=1

c
∑

j1=1

c
∑

j2=1

√

Nλi1j1
ωi1j1

(V̂i1j1 − Vi1j1)

√

Nλi2j2
ωi2j2

(V̂i2j2 − Vi2j2)

√

λi1j1
ωi1j1

√

λi2j2
ωi2j2

.

Let U3 = (T
(3)
11 , T

(3)
12 , · · · , T

(3)
rc ), then the second term of (3.46) can written as a

quadratic form U3
′M(1)U3, the third term of (3.46) as U3

′N(1)U3 and the fourth

term of (3.46) as U3
′M(2)U3, where M(1) and M(2) are defined in equation (3.20)

and (3.21) respectively,

N(1) =





















N11 N12 · · · N1r

N21 N22 · · · N2r

...
...

. . .
...

Nr1 Nr2 · · · Nrr





















, (3.47)

and

Nij =





















N
m.1

√
λi1

√
λj1

ωi1ωj1
0 · · · 0

0 N
m.2

√
λi2

√
λj2

ωi2ωj2
· · · 0

...
...

. . .
...

0 0 · · · N
m.c

√
λic

√
λjc

ωicωjc





















(3.48)
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for all i = 1, 2, · · · , r, j = 1, 2, · · · , c. Thus, S0
I can be rewritten by the following

quadratic form:

S0
I = U3

′U3 −U3
′M(1)U3 −U3

′N(1)U3 +U3
′M(2)U3

= U3
′(Irc −M(1) −N(1) +M(2))U3

= U3
′B8U3,

(3.49)

where B8 is given by

B8 =





















Ic − ( N
m1.

+ N
m..

)M11 −N11 −N12 +
N
m..

M12 · · · −N1r +
N
m..

M1r

−N12 +
N
m..

M12 Ic − ( N
m2.

+ N
m..

)M22 −N22 · · · −N2r +
N
m..

M2r

...
...

. . .
...

−N1r +
N
m..

M1r −N2r +
N
m..

M2r · · · Ic − ( N
mr.

+ N
m..

)Mrr −Nrr





















(3.50)

It can easily be shown that B8 is symmetric and idempotent. Thus, we obtain

that

rank(B8) = trace(B8)

= rc−
r

∑

i=1

1

mi.

c
∑

j=1

mij −
c

∑

j=1

1

m.j

c
∑

i=1

mij +
1

m..

r
∑

i=1

c
∑

j=1

mij

= rc− r − c+ 1

= (r − 1)(c− 1). (3.51)

U3 follows approximately multivariate normal with mean 0 and variance I, since

T
(3)
ij ’s independently follow univariate standard normal distribution. Therefore, S0

I is

asymptotically χ2 with degrees of freedom (r− 1)(c− 1) under H0. By Lemma (3.8),

SSI is asymptotically χ2 with degrees of freedom (r − 1)(c− 1) under H0.
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Define the F-test statistics of kernel based nonparametric test for location param-

eters of interaction effects as:

FIl =
MSI

MSW
=
SSI/(r − 1)(c− 1)

SSW/dfw2

=

∑r
i=1

∑c
j=1 m̂ij

(

V̂ij − V ∗
i. − V ∗

.j + V ∗
..

)2

/(r − 1)(c− 1)
(
∑r

i=1

∑c
j=1

∑∑

k1 6=k2
(Aijk1k2 − V̂ij)2/ω̂2

ij

)

/dfw2

, (3.52)

where dfw2
is given by equation (3.30).

Theorem 3.10 If for any i = 1, 2, · · · , r and j = 1, 2, · · · , c, nijh→ ∞ as min
i,j

nij →

∞,
∫

uf 2(u)du <∞ and
∫

u2f(u)du <∞, then under null hypothesis, FIl in equation

(3.52) follows asymptotically F distribution with degrees of freedom (r− 1)(c− 1) and

dfw2
.

Proof: Theorem (3.9) shows that SSI follows asymptotically χ2 with degrees of

freedom (r− 1)(c− 1) under null hypothesis and asymptotically non-central χ2((r−

1)(c − 1)) under the alternative. Furthermore, Theorem (3.5) implies that SSW is

asymptotically χ2 with degrees of freedom rc(n − 1) for balanced data and χ2 with

degrees of freedom dr for unbalanced data, where dr is the number of eigenvalues

of B6 in equation (3.29). In order to show FIl = MSI
MSW

follows asymptotically F

distribution under null hypothesis and non-central F distribution under alternative,

we just need to show SSI and SSW are asymptotically independent as min
i,j

nij → ∞.

In Lemma (3.8), S0
I , which converges in probability to SSI, is written as a

quadratic form S0
I = U3

′B8U3. Note that

T
(3)
ij ≃ √

nij(V̂ij − Vij)/ωij =
1

√
nij

H′
ijjnij

. (3.53)
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Hence, S0
I can also be written as

S0
I = (

1√
n11

H′
11jn11

, · · · , 1√
nrc

H′
rcjnrc

)B8















1√
n11

H′
11jn11

...

1√
nrc

H′
rcjnrc















= H′





















1√
n11

j′n11
0 · · · 0

0 1√
n12

j′n12
· · · 0

...
...

. . .
...

0 0 · · · 1√
nrc

j′nrc





















′

B8





















1√
n11

j′n11
0 · · · 0

0 1√
n12

j′n12
· · · 0

...
...

. . .
...

0 0 · · · 1√
nrc

j′nrc





















H

def
= H′B9H. (3.54)

Recall from theorem (3.5) that S0
W = H′B6H. And it is easy to check that

B6B9 = 0 ∗B8





















1√
n11

j′n11
0 · · · 0

0 1√
n12

j′n12
· · · 0

...
...

. . .
...

0 0 · · · 1√
nrc

j′nrc





















= 0. (3.55)

Thus, S0
I and S

0
W are independent. By Lemma (3.8) and Lemma (3.4), SSI and SSW

are asymptotically independent under null hypothesis H0 : Vij − V̄i. − V̄.j + V̄.. = 0

for all i and j. Hence, under null hypothesis, FIl =
MSI
MSW

in equation (3.52) follows

asymptotically F distribution with degrees of freedom (r− 1)(c− 1) and rc(n− 1) for

balanced data and F ((r − 1)(c− 1), d2) for unbalanced data. Under the alternative,

FIl =
SSI
SSW

follows asymptotically non-central F ((r−1)(c−1), rc(n−1)) for balanced

data, and non-central F ((r − 1)(c− 1), d2) for unbalanced data,
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3.2 Simulation Study for Evaluating the Power of Kernel-based

Nonparametric Two-way ANOVA

In this section, powers of the kernel-based nonparametric two-way ANOVA tests,

including the test for interactions and main effects, are evaluated through simula-

tion. To better demonstrate the properties of kernel-based nonparametric ANOVA

tests compared with the traditional parametric ANOVA tests, the performances of

both tests for interaction and row effects based on data from the three distributions

described in Table 2.1 are studied.

3.2.1 Simulation Study of the Test for Interaction

The objective of this section is to study the Type I error rate and power of the test of

interaction proposed in section 3.1.2 and to compare it with the parametric two-way

ANOVA test in 3 distinctive cases: Normal, Cauchy and Lognormal, given in Table

2.1. Consider an experiment with two treatments, Factor A (Row) and Factor B

(Column). Each factor has three levels, i.e. r = 3 and c = 3 in Section 3.1. Consider

two-way layout µij = µ+ αi + βj + γij in Section 3.1. Let the overall location µ = 3,

row effect α = (α1, α2, α3) = (−1, 0, 1) and column effect β = (β1, β2, β3) = (−1, 0, 1).

To obtain the actual Type I error rate when the significant level is set to be 0.05,

we follow the steps below:

(1) Randomly generate 9 groups of data (considered as the observations of the

response variable) with balanced sample size n from distributions listed in Table

3.1 for Case I, II and III. Note that the location and scale parameters in Table

3.1 are determined by letting the interaction γ = 0, in addition to the µ, α and

β described above for all the three cases.

(2) Apply the parametric ANOVA test for interaction and the kernel based non-

parametric ANOVA test for interaction separately. Record the test result as 1

73



or 0. 1 means “reject the null hypothesis” and 0 means fail to reject.

(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.

(4) Repeat (1)-(3) for sample size n = 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.

Table 3.1: Evaluate the Type I Error Rate of Tests for Interaction in 3 Cases

Factor B

Level 1 Level 2 Level 3

Case Ic

Factor A

Level 1 N(1,1) N(2,1) N(3,1)

Level 2 N(2,1) N(3,1) N(4,1)

Level 3 N(3,1) N(4,1) N(5,1)

Case IIc

Level 1 Cauchy(1,1) Cauchy(2,1) Cauchy(3,1)

Level 2 Cauchy(2,1) Cauchy(3,1) Cauchy(4,1)

Level 3 Cauchy(3,1) Cauchy(4,1) Cauchy(5,1)

Case IIIc

Level 1 LN(1,0.5,1) LN(2,0.5,1) LN(3,0.5,1)

Level 2 LN(2,0.5,1) LN(3,0.5,1) LN(4,0.5,1)

Level 3 LN(3,0.5,1) LN(4,0.5,1) LN(5,0.5,1)

The procedure of calculating the empirical power is very similar except letting the

interaction

γN =















0.5 −0.5 0

−0.5 0.5 0

0 0 0















(3.56)

for Case Ic,

γC =















−1.5 −1.5 3

0 1.5 −1.5

1.5 0 −1.5















(3.57)
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for Case IIc, and

γL =















−1 0.5 0.5

1 0 −1

0 −0.5 0.5















(3.58)

for Case IIIc. Thus, for each case, we randomly generate 9 groups of data with

balanced sample size n from distributions listed in Table 3.2, rather than Table 3.1,

in Step (1).

Table 3.2: Evaluate the Power of Tests for Interaction in 3 Cases

Factor B

Level 1 Level 2 Level 3

Case Ic

Factor A

Level 1 N(1.5,1) N(1.5,1) N(3,1)

Level 2 N(1.5,1) N(3.5,1) N(4,1)

Level 3 N(3,1) N(4,1) N(5,1)

Case IIc

Level 1 Cauchy(-0.5,1) Cauchy(0.5,1) Cauchy(6,1)

Level 2 Cauchy(2,1) Cauchy(4.5,1) Cauchy(2.5,1)

Level 3 Cauchy(4.5,1) Cauchy(4,1) Cauchy(3.5,1)

Case IIIc

Level 1 LN(0,0.5,1) LN(2.5,0.5,1) LN(3.5,0.5,1)

Level 2 LN(3,0.5,1) LN(3,0.5,1) LN(3,0.5,1)

Level 3 LN(3,0.5,1) LN(3.5,0.5,1) LN(5.5,0.5,1)

As illustrated in previous paragraphs, Table 3.1 shows the distributions of the

9 cells under the null hypothesis, i.e. no interaction. For instance, in Case Ic, the

distribution of the response variable in cell (1, 1), when Factor A is set at the first

level and Factor B is set at the first level as well, is Normal distribution with mean

1 and standard deviation 1, denoted as N(1, 1). In Case IIc, the distribution of the

response variable in cell (2, 3), when Factor A is set at the second level and Factor B

is set at the third level, is Cauchy distribution with location parameter 4 and scale
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parameter 1, denoted as Cauchy(4, 1). In Case IIIc, the distribution of the response

variable in cell (3, 1), when Factor A is set at the third level and Factor B is set at

the first level, is three-parameter Lognormal distribution with location parameter 3,

scale parameter 0.5, and shape parameter 1, denoted as LN(3, 0.5, 1).

Table 3.2 shows the distributions of the 9 cells under the alternative hypothesis,

i.e. there exist interactions which are given in equation (3.56), (3.57) and (3.58)

for Case Ic, Case IIc and Case IIIc respectively. For instance, in Case Ic, the

distribution of the response variable in cell (1, 1), when Factor A is set at the first

level and Factor B is set at the first level as well, is Normal distribution with mean

1.5 and standard deviation 1, denoted as N(1.5, 1). In Case IIc, the distribution

of the response variable in cell (2, 3), when Factor A is set at the second level and

Factor B is set at the third level, is Cauchy distribution with location parameter 2.5

and scale parameter 1, denoted as Cauchy(2.5, 1). In Case IIIc, the distribution of

the response variable in cell (3, 1), when Factor A is set at the third level and Factor

B is set at the first level, is three-parameter Lognormal distribution with location

parameter 3, scale parameter 0.5, and shape parameter 1, denoted as LN(3, 0.5, 1).

To clearly illustrate the interactions in locations of the distributions under the null

hypothesis (in Table 3.1) and alternative hypothesis (in Table 3.2), Figure 3.1-Figure

3.3 plot the median of the distribution in the 9 cells for each case in Table 3.1 and

Table 3.2. Figure 3.1(a) shows the median of the 9 cells in the Case Ic of Table 3.1.

The horizontal axis represents the levels of factor A, and the vertical axis represents

the median of the response variable generated from the distribution in Case Ic of

Table 3.1. The colored lines represent the levels of factor B. The red line represents

the level 1 of factor B. The green line represents the level 2 of factor B. And the blue

line represents the level 3 of factor B. The three lines are parallel, which indicates no

interaction between factor A and factor B. Figure 3.1(b) shows the median of the 9

cells in the Case Ic of Table 3.2. The three lines are obviously not parallel, which
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Figure 3.1: Median of the 9 groups in Case Ic: Normal Distributions
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Figure 3.2: Median of the 9 groups in Case IIc: Cauchy Distributions
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Figure 3.3: Median of the 9 groups in Case IIIc: Lognormal Distributions

indicates that there exists interaction between the two factors in Case Ic of Table

3.2. Figure 3.2(a) and figure 3.3(a) show the median of the 9 cells in the Case IIc

and Case IIIc of Table 3.1. It is not hard to tell that three lines in Figure 3.2(a) and

figure 3.3(a) are almost parallel, which confirms that there is no interaction between

factor A and factor B in the Case IIc and Case IIIc of Table 3.1. Figure 3.2(b) and

figure 3.3(b) show the median of the 9 cells in the Case IIc and Case IIIc of Table

3.2 respectively. The unparallelled lines in Figure 3.2(b) and Figure 3.3(b) verify that

there exist interactions between factor A and factor B in the Case IIc and Case IIIc

of Table 3.2.

The simulation results for the test of interaction via the kernel based nonparamet-

ric two-way ANOVA test and parametric two-way ANOVA test are given in Table

3.3-Table 3.5.

Table 3.3 lists the actual Type I error rates and the empirical powers for the test

of interaction in Case Ic: Normal Case. It is shown that the actual Type I error

rates for both parametric and nonparametric test of interaction are around 0.05, the
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Table 3.3: Power for Test of Interactions: Case Ic (Normal

Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.8761 0.0489 0.2370 0.0462

20 0.9587 0.0489 0.3460 0.0548

25 0.9892 0.0496 0.3940 0.0463

30 0.9975 0.0532 0.4443 0.0519

35 0.9989 0.0495 0.5038 0.0464

40 0.9999 0.0556 0.5384 0.0454

45 0.9999 0.0507 0.5792 0.0476

50 1 0.0483 0.6133 0.0510

55 1 0.0473 0.6406 0.0427

60 1 0.0504 0.6702 0.0469

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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significance level. As we expected, in Normal Case, parametric F test performs better

than the kernel based nonparametric test of interaction. Moreover, the kernel based

nonparametric two-way ANOVA test is less powerful than nonparametric one-way

ANOVA. Although the power of the nonparametric test increases as the sample size

grows, the power of the nonparametric test of interaction is only 67% even when the

sample size is up to 60.

Table 3.4: Power for Test of Interactions: Case IIc (Cauchy

Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.2490 0.0183 0.6056 0.0133

20 0.2475 0.0162 0.7781 0.0139

25 0.2493 0.0164 0.9591 0.0173

30 0.2498 0.0161 0.9863 0.0177

35 0.2595 0.0156 0.9923 0.0267

40 0.2588 0.0180 0.9987 0.0265

45 0.2592 0.0165 0.9995 0.0331

50 0.2582 0.0140 0.9999 0.0394

55 0.2559 0.0156 0.9998 0.0409

60 0.2527 0.0143 1 0.0501

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.

Table 3.4 lists the actual Type I error rates and the empirical powers for the test

of interaction in Case IIc: Cauchy Case. It is shown that the actual Type I error

rates of the parametric test are around 0.01 when the significance level is 0.05, which
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infers that the parametric test of interaction is conservative in Case IIc. Whereas,

the actual Type I error rates of our nonparametric test are around 0.01 when the cell

sample size is small, and get closer and closer to 0.05 as the sample size grows. As

we expected, in the Cauchy Case, the kernel based nonparametric test performs way

better than the parametric F test of interaction. The power of nonparametric test

of interaction is 60.56% when the cell sample size is only 15. Moreover, the power

of nonparametric test quickly increases to 1 as the sample size rises. The power of

parametric test of interaction is only 24.9% when the sample size is 15 and does not

increase as the sample size grows.

Table 3.5: Power for Test of Interactions: Case IIIc (Lognor-

mal Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.4526 0.0431 0.2854 0.0169

20 0.5683 0.0413 0.5114 0.0250

25 0.6511 0.0436 0.6238 0.0331

30 0.7226 0.0419 0.7317 0.0461

35 0.7783 0.0435 0.8481 0.0509

40 0.8306 0.0438 0.9517 0.0518

45 0.8699 0.0461 0.9549 0.0553

50 0.8974 0.0442 0.9617 0.0525

55 0.9196 0.0473 0.9630 0.0518

60 0.9335 0.0443 0.9672 0.0528

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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Table 3.5 lists the actual Type I error rates and the empirical powers for the test

of interaction in Case IIIc: Lognormal Case. It is shown that the actual Type I error

rates for the parametric test are between 0.04 and 0.05 when the significance level

is 0.05, which infers that the parametric test of interaction is little bit conservative

in Case IIIc. Whereas, the actual Type I error rates of our nonparametric test are

around 0.02 when the cell sample size is small, and get closer and closer to 0.05

as the sample size grows. When the sample size is around 30-35, the actual Type

I error rates of the kernel based nonparametric test of interaction is around 0.05,

the significance level. Since the nonparametric test is more conservative than the

parametric test when the sample size is small, the parametric test has higher power

than the nonparametric test. However, when the sample size is 30 or above, the

nonparametric test is more powerful than the parametric test as we expected. When

the sample size is 40, the power of the parametric test is only 83.6%, while the power

of the nonparametric test is 95.17%.

Figure 3.4 demonstrates the power of the parametric and nonparametric test of

interaction with respect to sample size when the underlying distributions of the sam-

ples are Normal, Cauchy and Lognormal respectively. In Figure 3.4, the solid line

represents the power of the parametric test of interaction, while the dashed line rep-

resents the power of our kernel based nonparametric test of interaction in Section

3.1.2. The red line (solid and dashed) represents the power of test in Case Ic when

the underlying distribution is Normal distribution. The green line (solid and dashed)

represents the power of test in Case IIc when the underlying distribution is Cauchy

distribution. And the blue line (solid and dashed) represents the power of test in

Case IIIc when the underlying distribution is Lognormal distribution.

Figure 3.4(a) compares the power of parametric and the kernel based nonpara-

metric test of interaction in Case Ic. It shows that the power of the parametric test

increases sharply to around 95% when sample size goes from 15 to 20 in Case Ic.
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Figure 3.4: (a) Power of the parametric and nonparametric test of interaction on the

9 cells in Case Ic; (b) Power of the parametric and nonparametric test of interaction

on the 9 cells in Case IIc; (c) Power of the parametric and nonparametric test of

interaction on the 9 cells in Case IIIc; (d) Power of the parametric and nonparametric

test of interaction on the 9 cells in Case Ic, IIc and IIIc.
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Compare to the parametric test of interaction, the new nonparametric test is much

less powerful than the traditional parametric test, which is consistent with what we

concluded from Table 3.3. Fortunately, the new nonparametric test increases its

power as the sample size grows. Although in Figure 3.4(a), it is shown that there

is still a gap in power between the parametric and our nonparametric test, the gap

tends to reduce as the sample size go beyond 60. Figure 3.4(b) compares the power of

parametric and the kernel based nonparametric test of interaction in Case IIc. It is

shown in Figure 3.4(b) that the power of our nonparametric ANOVA test grows as the

sample size increases, while the power of parametric ANOVA test almost keeps con-

stant in Case IIc. Moreover, it is easy to tell from Figure 3.4(b) that the power of the

new nonparametric test of interaction in Case IIc is much higher than the one of the

parametric test, even when the sample size is 15. Figure 3.4(c) compares the power of

parametric and nonparametric test of interaction in Case IIIc. In Figure 3.4(c), it is

demonstrated that the blue solid line is above the blue dashed line when sample size

is less than 35, which infers that the parametric test outperforms our nonparametric

test when the sample size is less than 35 in Case IIIc. However, this relationship

flips as the sample size goes beyond 35, which indicates that the new parametric test

of interaction outperforms the traditional parametric test. Figure 3.4(d) combines

Figure (3.4(a))(3.4(b))(3.4(c)) in one graph, so it is easier to compare the powers of

the either test throughout the 3 cases. The relationship of three solid lines infers

that the power of the parametric ANOVA test is far more severely hurt by fat tails

or extreme outliers than the skewness does. If the data comes from a skewed distri-

bution, large sample size leads to better power. However, if the data come from a

fat-tailed distribution, large sample size would not make any improvement in power.

The relationship of three dashed lines infers that nonparametric test of interaction

for the two-way ANOVA is not as powerful as the nonparametric one-way ANOVA if

the underlying distribution is normal. However, larger sample size always helps.
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3.2.2 Simulation Study of the Test for Main Effect

If the test of interaction fails to reject, which means that there is no interaction

detected, then main effects will be tested. The purpose of this section is to study the

Type I error rate and power of the test of main effect proposed in Section 3.1.1 and

to compare with the parametric two-way ANOVA test in 3 distinctive cases: Normal,

Cauchy and Lognormal, given in Table 2.1. Since testing row effect is exactly the

same as testing the column effect, without loss of generality, we just illustrate the

simulation results of the test of row effect in this section. As in Section 3.2.1, we

consider the same experiment with two treatments, Factor A (Row) and Factor B

(Column). Each factor has three levels, i.e. r = 3 and c = 3. In the two-way layout,

we set the overall location µ = 3, and the interaction γ = 0. The column effect is set

to be βN = (−0.25, 0, 0.25) for the Normal case, βCL = (−2, 1, 1) for the Cauchy case

and Lognormal case.

To obtain the actual Type I error rate when the significant level is set to be 0.05,

we follow the steps below:

(1) Randomly generate 9 groups of data (considered as the observations of the

response variable) with balanced sample size n from distributions listed in Table

3.6 for Case I, II and III. Note that the location and scale parameters in Table

3.6 are determined by letting the row effect α = (α1, α2, α3) = 0, in addition to

the µ, βN (or βCL) and γ described above for all the three cases.

(2) Apply the parametric two-way ANOVA test for row effect and the kernel based

nonparametric two-way ANOVA test for row effect separately. Record the test

result as 1 or 0. 1 means “reject the null hypothesis” and 0 means fail to reject.

(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.

(4) Repeat (1)-(3) for sample size n = 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.
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The procedure of calculating the empirical power is very similar except letting the

row effect αN = (0,−0.25, 0.25) for the normal case (Case Id), αLC = (0.75,−1.5, 0.75)

for the Cauchy case (Case IId) and Lognormal case(Case IIId). Thus, for each case,

we randomly generate 9 groups of data with balanced sample size n from distributions

listed in Table 3.7, rather than Table 3.6, in Step (1).

Table 3.6: Evaluate the Type I Error Rate of Tests for Row Effect in 3 Cases

Factor B

Level 1 Level 2 Level 3

Case Id

Factor A

Level 1 N(2.75,1) N(3,1) N(3.25,1)

Level 2 N(2.75,1) N(3,1) N(3.25,1)

Level 3 N(2.75,1) N(3,1) N(3.25,1)

Case IId

Level 1 Cauchy(1,1) Cauchy(4,1) Cauchy(4,1)

Level 2 Cauchy(1,1) Cauchy(4,1) Cauchy(4,1)

Level 3 Cauchy(1,1) Cauchy(4,1) Cauchy(4,1)

Case IIId

Level 1 LN(1,1,1) LN(4,1,1) LN(4,1,1)

Level 2 LN(1,1,1) LN(4,1,1) LN(4,1,1)

Level 3 LN(1,1,1) LN(4,1,1) LN(4,1,1)

As illustrated in previous paragraphs, Table 3.6 shows the distributions of the

9 cells under the null hypothesis, i.e. no row effect. For instance, in Case Id, the

distribution of the response variable in cell (1, 1), when Factor A is set at the first

level and Factor B is set at the first level as well, is Normal distribution with mean

2.75 and standard deviation 1, denoted as N(2.75, 1). In Case IId, the distribution of

the response variable in cell (2, 3), when Factor A is set at the second level and Factor

B is set at the third level, is Cauchy distribution with location parameter 4 and scale

parameter 1, denoted as Cauchy(4, 1). In Case IIId, the distribution of the response

variable in cell (3, 1), when Factor A is set at the third level and Factor B is set at
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the first level, is three-parameter Lognormal distribution with location parameter 1,

scale parameter 1, and shape parameter 1, denoted as LN(1, 1, 1).

Table 3.7 shows the distributions of the 9 cells under the alternative hypothesis,

i.e. there exist row effects. For instance, in Case Id, the distribution of the response

variable in cell (2, 1), when Factor A is set at the second level and Factor B is set at

the second level as well, is Normal distribution with mean 2.75 and standard deviation

1, denoted as N(2.75, 1). In Case IId, the distribution of the response variable in cell

(3, 3), when Factor A is set at the third level and Factor B is set at the third level, is

Cauchy distribution with location parameter 4.75 and scale parameter 1, denoted as

Cauchy(4.75, 1). In Case IIId, the distribution of the response variable in cell (3, 1),

when Factor A is set at the third level and Factor B is set at the first level, is three-

parameter Lognormal distribution with location parameter 1.75, scale parameter 1,

and shape parameter 1, denoted as LN(1.75, 1, 1).

Table 3.7: Evaluate the Power of Tests for Row Effect in 3 Cases

Factor B

Level 1 Level 2 Level 3

Case Id

Factor A

Level 1 N(2.75,1) N(3,1) N(3.25,1)

Level 2 N(2.5,1) N(2.75,1) N(3,1)

Level 3 N(3,1) N(3.25,1) N(3.5,1)

Case IId

Level 1 Cauchy(1.75,1) Cauchy(4.75,1) Cauchy(4.75,1)

Level 2 Cauchy(-0.5,1) Cauchy(2.5,1) Cauchy(2.5,1)

Level 3 Cauchy(1.75,1) Cauchy(4.75,1) Cauchy(4.75,1)

Case IIId

Level 1 LN(1.75,1,1) LN(4.75,1,1) LN(4.75,1,1)

Level 2 LN(-0.5,1,1) LN(2.5,1,1) LN(2.5,1,1)

Level 3 LN(1.75,1,1) LN(4.75,1,1) LN(4.75,1,1)

Before comparing the simulation results of the parametric and nonparametric
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tests, the row effects in locations of the distributions under the null hypothesis (in

Table 3.6) and alternative hypothesis (in Table 3.7) are illustrated by the side-by-side

boxplots in Figure 3.5-Figure 3.12. Figure 3.5(a), Figure 3.7(a), Figure 3.8(a) and

Figure 3.11(a) show the side-by-side boxplots of the 9 cells in the Case Id, IId and

IIId respectively in Table 3.6. Figure 3.5(b), Figure 3.7(b), Figure 3.8(b) and Figure

3.11(b) show the side-by-side boxplots of the 9 cells in the Case Id, IId and IIId

respectively in Table 3.7. The horizontal axis represents the levels of factor A, and

the vertical axis represents the response variable generated from the distributions in

Table 3.6 or Table 3.7. The colored lines represent the levels of factor B. The red

box represents the level 1 of factor B. The green box represents the level 2 of factor

B. And the blue box represents the level 3 of factor B. Thus, the boxplot in red box

and located at level 2 on the horizontal axis is the plot for the cell when factor A is

at level 2 and factor B is at level 1. Figure 3.5 shows the side-by-side boxplot of the

9 cells in Normal case under null hypothesis and alternative hypothesis.
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Figure 3.5: Side-by-Side Boxplot for the 9 Cells in Case Id: Normal Distributions

The pink horizontal line in Figure 3.5 serves as a benchmark, which indicates
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the median of the samples from cell (1,1). This benchmark line, also used in Figure

3.6, Figure 3.11 and Figure 3.12, aims to help notifying the tiny differences in the

median of boxplots under the alternative hypothesis. The boxplot in Figure 3.5(a)

indicates that column effects do exist since the edge line (quartiles) and the middle

line (median) of red, green and blue box are not in a line. Figure 3.5(a) also indicates

that there is no row effect among the 9 cells in Case Id of Table 3.6, since all the

three red boxes lie on the same line and so do the green boxes and blue boxes. Figure

3.5(b) infers that there exists row effect among the 9 cells in Case Id of Table 3.7,

since the three red boxes are not on a line and so do the green boxes and blue boxes.
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Figure 3.6: Side-by-Side Boxplot for the 3 Rows in Case Id: Normal Distributions

To have a better view of the row effect under the null and alternative hypothesis,

cells from the same row are combined for each case both under null and alternative

hypothesis. For example, cell (1,1), (1,2) and (1,3) are the samples when factor A is

at the first level, and thus they are combined into one set of data. In this case, there

will be 3 sets of data for each case, one from row 1 when the factor A is at level 1,

one from row 2 when the factor A is at level 2 and one from row 3 when the factor A
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is at level 3. Figure 3.6, Figure 3.9, Figure 3.10 and Figure 3.12 show the side-by-side

boxplots of the three combined rows for the three cases in Table 3.6 and Table 3.7.

Figure 3.6(a) shows the side-by-side boxplots of the 3 combined rows in the Case Id

under the null hypothesis α = 0. Figure 3.6(b) shows the side-by-side boxplots of

the 3 combined rows in the Case Id under the alternative hypothesis α = αN. Like

Figure 3.5, the horizontal axis in Figure 3.6 represents the levels of factor A, and

the vertical axis represents the response variable. The deep pink box represents the

level 1 of factor A. The yellow box represents the level 2 of factor A. And the gray

box represents the level 3 of factor A. The red line in Figure 3.6 is a benchmark,

which points to the median of the samples when factor A is at the first level. The

relationship among the locations of the boxes and the benchmark in Figure 3.6(a)

and Figure 3.6(b) indicates that there is no row effects in Case Id of Table 3.6, and

there exist some row effects in Case Id of Table 3.7.
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Figure 3.7: Side-by-Side Boxplot for the 9 Cells in Case IId: Cauchy Distributions

Similar to Figure 3.5, Figure 3.7 shows the side-by-side boxplot of the 9 cells

in the Cauchy Case under null hypothesis and alternative hypothesis. Since Cauchy
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distribution has fat tails, it is hard to tell the color and the middle line of the boxplots.

Hence, Figure 3.8 plots the truncated 9 cells in Cauchy case under null hypothesis and

alternative hypothesis by removing the extreme outliers. The relationship among the

locations of the boxes and the benchmark in Figure 3.8(a) and Figure 3.8(b) indicate

that there is no row effect in Case IId of Table 3.6, and there exist some row effects

in Case IId of Table 3.7.
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Figure 3.8: Side-by-Side Boxplot (w/o extreme outliers) for the 9 Cells in Case IId:

Cauchy Distributions

Like Figure 3.6, Figure 3.9(a) shows the side-by-side boxplots of the 3 combined

rows in the Case IId under the null hypothesis α = 0. Figure 3.9(b) shows the

side-by-side boxplots of the 3 combined rows in the Case IId under the alternative

hypothesis α = αN. Due to the heavy tails of the Cauchy distribution, it is difficult

to tell the relative locations of the boxes. Figure 3.10 plots the truncated 3 combined

rows in Cauchy Case under null hypothesis and alternative hypothesis by removing

the extreme outliers. The relationship among the locations of the boxes in Figure

3.10(a) and Figure 3.10(b) confirms that there is no row effect in Case IId of Table
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Figure 3.9: Side-by-Side Boxplot for the 3 Rows in Case IId: Cauchy Distributions

3.6, and there exist some row effects in Case IId of Table 3.7.

Similar to Figure 3.5, Figure 3.11 shows the side-by-side boxplot of the 9 cells

in the lognormal case under null hypothesis and alternative hypothesis. The related

locations of the boxes and benchmark in Figure 3.11(a) and Figure 3.11(b) indicate

that there is no row effect in Case IIId of Table 3.6, and there exist some row effects

in Case IIId of Table 3.7. Like Figure 3.6, Figure 3.12(a) shows the side-by-side

boxplots of the 3 combined rows in the Case IIId under the null hypothesis α = 0.

Figure 3.12(b) shows the side-by-side boxplots of the 3 combined rows in the Case

IIId under the alternative hypothesis α = αCL. The relationship among the locations

of the boxes in Figure 3.12(a) and Figure 3.12(b) confirms that there is no row effect

in Case IIId of Table 3.6, and there exist some row effects in Case IIId of Table 3.7.

The simulation results for the test of row effects via the kernel based nonparametric

two-way ANOVA test and parametric two-way ANOVA test are given in Table 3.8-

Table 3.10.

Table 3.8 lists the actual Type I error rates and the empirical powers for the test of
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Figure 3.11: Side-by-Side Boxplot for the 9 Cells in Case IIId: Lognormal Distribu-

tions
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Table 3.8: Power for Test of Row Effect: Case Id (Normal

Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.5408 0.0517 0.2329 0.0128

20 0.6774 0.0469 0.3427 0.0118

25 0.7812 0.0530 0.4450 0.0088

30 0.8582 0.0505 0.5512 0.0067

35 0.9076 0.0541 0.6353 0.0072

40 0.9430 0.0487 0.7236 0.0113

45 0.9644 0.0492 0.7855 0.0103

50 0.9820 0.0473 0.8456 0.0067

55 0.9870 0.0528 0.8807 0.0063

60 0.9930 0.0474 0.9220 0.0065

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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Figure 3.12: Side-by-Side Boxplot for the 3 Rows in Case IIId: Lognormal Distribu-

tions

row effects in Case Id: Normal Case. It is shown that the actual Type I error rates for

the parametric test of row effects are around 0.05, the significance level. The actual

Type I error rates for the new nonparametric test of row effects are between 0.006 and

0.02, which infers that the new nonparametric test of row effects is very conservative

in Case Id. As we expected, in Normal Case, the parametric F test performs better

than the kernel based nonparametric test of row effects. The new nonparametric test

was hurt by its conservativeness in Type I error rates. Fortunately, the power of the

nonparametric test increases as the sample size grows. When the sample size is 60,

the power of the nonparametric test of interaction is 92.2%, which looks promising.

Table 3.9 lists the actual Type I error rates and the empirical powers for the

test of row effects in Case IId: Cauchy Case. It is shown that the actual Type I

error rates of the parametric test are around 0.02 while the significance level is 0.05.

This fact infers that the parametric test of row effects is conservative in Case IId.

Whereas, the actual Type I error rates of the new nonparametric test are around
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Table 3.9: Power for Test of Row Effect: Case IId (Cauchy

Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.1772 0.0186 0.7040 0.0578

20 0.1743 0.0180 0.8611 0.0548

25 0.1766 0.0200 0.9398 0.0459

30 0.1812 0.0180 0.9783 0.0507

35 0.1783 0.0184 0.9917 0.0480

40 0.1770 0.0201 0.9969 0.0454

45 0.1806 0.0169 0.9985 0.0437

50 0.1774 0.0187 0.9999 0.0472

55 0.1768 0.0195 1 0.0447

60 0.1808 0.0202 1 0.0428

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.
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0.05, the significant level. Without any surprise, in the Cauchy Case, the kernel

based nonparametric test performs much better than the parametric F test of row

effect. The power of the new nonparametric test of row effects is 70.4% when the

cell sample size is only 15. Moreover, the power of nonparametric test of row effect

quickly increases to 1 as the sample size rises. The power of the parametric test of

row effects is only 17.72% when the sample size is 15 and does not increase as the

sample size grows.

Table 3.10: Power for Test of Row Effect: Case IIId (Lognor-

mal Distribution)

Sample Size
Parametric Test Nonparametric Test

Power Type I Power Type I

15 0.5328 0.0443 0.7194 0.0467

20 0.6434 0.0382 0.7951 0.0512

25 0.7213 0.0429 0.8693 0.0519

30 0.7802 0.0409 0.9209 0.0502

35 0.8295 0.0433 0.9509 0.0489

40 0.8665 0.0455 0.9656 0.0466

45 0.8997 0.0479 0.9800 0.0474

50 0.9240 0.0419 0.9845 0.0450

55 0.9376 0.0443 0.9888 0.0439

60 0.9511 0.0461 0.9933 0.0447

1 ∗ Note: Given significance level: α = 0.05.

2 ∗ Note: The Type I in the table means Actual Type I Error.

Table 3.10 lists the actual Type I error rates and the empirical powers for the

test of row effects in Case IIId: Lognormal Case. It is shown that the actual Type
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I error rates for the parametric test are around 0.04 when the significance level is

0.05, which infers that the parametric test of row effects is little bit conservative in

Case IIId. Whereas, the actual Type I error rates of the new nonparametric test are

around 0.05, the significance level. Same as in the Cauchy Case, in the Lognormal

Case, the kernel based nonparametric test performs much better than the parametric

F test of row effects. The power of nonparametric test of row effects is 71.94% when

the cell sample size is only 15. Moreover, the power of the new nonparametric test of

row effects quickly increases to 95% when the sample size rises up to 35. The power

of the parametric test of row effects is only 53.28% when the sample size is 15 and

only increases to 82.95% as the sample size grows to 35.

Figure 3.13 demonstrates the power of the parametric and nonparametric test

of row effects with respect to sample size when the underlying distributions of the

samples are Normal, Cauchy and Lognormal respectively. In Figure 3.13, the solid

line represents the power of the parametric test of row effects, while the dashed line

represents the power of the kernel based nonparametric test of row effects in Section

3.1.1. The red line (solid and dashed) represents the power of the tests in Case Id

when the underlying distribution is Normal distribution. The green line (solid and

dashed) represents the power of the tests in Case IId when the underlying distribution

is Cauchy distribution. And the blue line (solid and dashed) represents the power of

the tests in Case IIId when the underlying distribution is Lognormal distribution.

Figure 3.13(a) compares the power of parametric and the new nonparametric test

of row effects in Case Id. It shows that the power of the parametric test increases to

around 90% when sample size goes up to 40 in Case Id. Compare to the parametric

test of row effects, the new nonparametric test is much less powerful than the tradi-

tional parametric test, which is consistent with what we concluded from Table 3.8.

Fortunately, the new nonparametric test increases its power as the sample size grows.

Although in Figure 3.13(a), it is shown that there is still a gap in power between
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Figure 3.13: (a) Power of the parametric and nonparametric test of row effect on the

9 cells in Case Id; (b) Power of the parametric and nonparametric test of row effect

on the 9 cells in Case IId; (c) Power of the parametric and nonparametric test of row

effect on the 9 cells in Case IIId; (d) Power of the parametric and nonparametric

test of row effect on the 9 cells in Case Id, IId and IIId.
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the parametric and our nonparametric test, the gap tends to reduce as the sample

size go beyond 60. Figure 3.13(b) compares the power of the parametric test with

the kernel based nonparametric test of row effects in Case IId. It is shown in Figure

3.13(b) that the power of the new nonparametric ANOVA test quickly grows to 1 as

the sample size increases, whereas the power of the parametric ANOVA test almost

keeps constant in Case IId. Moreover, it is easy to tell from Figure 3.13(b) that

the power of the new nonparametric test of row effects in Case IId is much higher

than the parametric test, even when the sample size is 15. Figure 3.13(c) compares

the power of parametric and nonparametric test of row effect in Case IIId. In Fig-

ure 3.13(c), it is demonstrated that the blue dashed line is above the blue solid line

even when the sample is as small as 15, which infers that the new nonparametric

test outperforms the parametric test in Case IIId. Figure 3.13(d) combines Figure

(3.13(a))(3.13(b))(3.13(c)) in one graph, so it is easier to compare the powers of the

either test throughout the 3 cases. The relationship of three solid lines infers that

the power of the parametric ANOVA test of row effects is far more severely hurt by

fat tails or extreme outliers than the skewness does. If the data come from a skewed

distribution, large sample size leads to better power. However, if the data come from

a fat-tailed distribution, large sample size would not make any improvement in power.

The relationship of three dashed lines infers that the new nonparametric test of row

effects for the two-way ANOVA is not as powerful as the traditional parametric two-

way ANOVA test of row effect, as well as, the nonparametric one-way ANOVA if the

underlying distribution is Normal.
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CHAPTER 4

Application to Policy Analysis

4.1 Introduction to Policy Analysis

Policy decisions are required to be made in corporations and/or most levels of gov-

ernment every year or even every day. Then policy analysis emerges to analyze

policy-related information and provides policy decision makers with rational deci-

sions. For instance, the U.S. Environmental Protection Agency (EPA) is planning

new rules to regulate the interstate transport of sulfur dioxide (SO2) and nitrogen

oxides (NOX) emitted from electric power generation facilities. Before the agency

determining which newly proposed rules or neither of them should be taken, the eco-

nomic impacts to regions, sectors and populations have to be assessed. The agency

will choose the rule that produces significant benefits in terms of some variables re-

flecting improved health outcomes, and better environmental amenities and services.

In order to make a rational decision, a policy analyst might not only be interested

in the positive or negative relationships the dependent variable may have with the

policy change, but also in estimating the mean benefit gained from a policy change,

such as the mean change in house prices resulting from building a high-quality school

or a highway nearby, or the mean change in consumption resulting from a change in

income taxes. Thus, quantitative, rather than qualitative analytical techniques are

most in need in policy analysis.

The quantitative policy analysis has its root in Harold Lasswell ( [24], [25]) and

has rapidly developed in social science and business since 1990s [14]. Statistical meth-

ods, such as, analysis of variance (ANOVA), regression analysis, are commonly used
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to evaluate the benefits or costs of proposed policies on dependent variables related

to individual or social welfare. However, all parametric models, such as ANOVA,

regression rely on the normality assumption. Deluchi & Bostrom [12] suggested to

be wary of standard methods, such as t tests and parametric ANOVA when analyz-

ing skewed-distribution data. It is known that the distributions of many economic

and/or financial variables (income, wealth, prices, asset return) are right skewed with

fat tails, since these variables never take values less than zero [32]. A more appro-

priate alternative for comparing the policy effects may be to use a nonparametric or

distribution-free method.

4.2 Stock’s Nonparametric Policy Analysis

Stock [38] proposed a nonparametric procedure to estimate the mean effect of certain

policy interventions. Suppose Y is the dependent variable of interest, such as, the

house price, and X is a p dimensional vector of independent variables, such as the size

of the lot, the living area in the house, age of the house, before the policy of cleaning up

a local hazardous waste site [39]. Let Y ∗ and X∗ be the corresponding dependent and

independent variables after the policy intervention. The policy benefit B is defined by

the mean change of dependent variable Y after policy, i.e. B = EY ∗−EY . Consider

the semi-parametric regression model:

Yi = g(Xi) + A′di + ei, (4.1)

where, A is a p dimensional vector of cell effects, E(ei|Xi, di) = 0 and E(e2i |Xi, di) =

σ2(x, d) <∞ for i = 1, 2, · · · , n. By assuming the cell effects remain unchanged after

the policy, the policy benefit becomes:

B = E∗g(Xi)− Eg(Xi), (4.2)

where, E∗[·] is the expectation taken over X∗. To estimate B, Stock [38] firstly

estimated A by borrowing the idea of ordinary least squares (OLS) estimator of A
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in general linear models, then gave the kernel estimate of g(X) by plugging in the

estimated A for both cases: before and after policy intervention, denoted as gn(X)

and gn(X
∗). Thus, the policy benefit is estimated by

Bn =
1

n

n
∑

i=1

(gn(X
∗
i )− gn(Xi)). (4.3)

Bn is a consistent estimate of B. Details are described in [38]. See also Ahmad,

Leelahanon and Li [3] for an extended semi-parametric approach.

Stock’s policy analysis model is limited in several aspects. Firstly, Stock’s model

only provides an estimate of the gain or loss of the new policy. Decision makers may

find it difficult to make a decision through only estimators, rather than a hypothesis

test. It is also not very meaningful to interpret a difference in policy impacts when

the difference is actually not statistically significant. Secondly, it can only evaluate

one policy with two levels at a time. There are plenty of situations in which three

or more policy effects need to be evaluated. For example, as in [21] one may need to

evaluate the effects of three land uses: golf courses, a university, and a nitrogen plant,

on the neighborhood home values in Lawrence, Kansas. Thirdly, Stock’s model uses

the average change of the dependent variable as a measurement of policy impacts. It

is known that most of the economic variables are skewed, sometimes strongly skewed.

The mean of samples from skewed distributions is not a good measurement of central

tendency. It is very sensitive to extreme values. Thus, the average change of de-

pendent variable should not be an appropriate policy benefit measurement. Finally,

in Stock’s model, g(x) and A are estimated by directly utilizing the analogy format

of the OLS estimator in generalized linear models without any theoretical verifica-

tion. To sum up, the development of a more generalized and reliable policy analysis

technique is a crucial task for many current policy analysts. In the next section, we

will propose a hypothesis test of policy benefits in locations (such as, median) of the

policy related variables.
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4.3 A New Approach of Policy Analysis

As we discussed in the previous section, mean or average is not a good choice of

measurements when the samples come from a skewed distribution. Therefore, the

location of the samples, defined in Chapter 2, is considered instead. Suppose there are

K policies that need to be evaluated. One of them is the old policy or current policy,

and the other K − 1 are newly proposed policies. In order to evaluate the efficiency

of the new policies, the location effects of K policies on a dependent variable X and

explanatory variable U are compared. Suppose (Xij , Uij) is the pair of observations

from the jth individual and under the ith policy. Define µi∗ and σi∗ be the location

and scale of the dependent variable X under the ith policy. Then the efficiency of the

K policies can be evaluated by performing a hypothesis test with the null hypothesis

H0: µ1∗ = µ2∗ = . . . = µK∗, which means none of the new policies do any better or

worse than the old one.

Assume that (Xij , Uij) comes from a joint distribution fi(x, u), where i = 1, 2, · · · , K

and j = 1, 2, . . . , ni. By the definition of location parameter in Chapter 2, the follow-

ing equation holds:

fi(x, u) =
1

σi∗
f0∗

(

x− µi∗

σi∗
, u

)

, (4.4)

where f0∗(·, ·) is a base density. Thus, we have

∫ ∫

xf 2
i (x, u)dxdu =

∫ ∫

(
yσi∗ + µi∗

σi∗
)f 2

0∗(y, u)dydu

=

∫

yf 2
0∗(y, u)dy +

µi∗

σi∗

∫

f 2
0∗(y, u)dy,

which implies that

µi∗ =
σi∗(

∫ ∫

xf 2
i (x, u)dxdu−

∫ ∫

yf 2
0∗(y, u)dydu)

∫ ∫

f 2
0∗(y, u)dydu

=
σi∗

∫ ∫

xf 2
i (x, u)dxdu

∫ ∫

f 2
0∗(y, u)dydu

− σi∗
∫ ∫

yf 2
0∗(y, u)dydu

∫ ∫

f 2
0∗(y, u)dydu

. (4.5)

Assume σi∗ = σ∗ for all i = 1, 2, · · · , K, and then equation (4.5) becomes:
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µi∗ =
σ∗

∫ ∫

xf 2
i (x)dxdu

∫ ∫

f 2
0∗(y, u)dydu

− σ∗
∫ ∫

yf 2
0∗(y, u)dydu

∫ ∫

f 2
0∗(y, u)dydu

. (4.6)

LetWi =
∫ ∫

xf 2
i (x, u)dxdu. Hence, the hypothesis of equal location H0: µ1∗ = µ2∗ =

. . . = µK∗ versus H1: µi∗ 6= µj∗ for some i 6= j becomes H0: W1 = W2 = . . . = WK

against H1: Wi 6= Wj for some i 6= j. Consider the nonparametric kernel estimate of

Wi, denoted as Ŵi, where

Ŵi =
1

ni(ni − 1)h2i

∑ ∑

j1 6=j2

(

Xij1 +Xij2

2

)

K

(

Xij1 −Xij2

hi

)

K

(

Uij1 − Uij2

hi

)

. (4.7)

Note that if σi∗ 6= σ∗ for some i, then the test statistic in Proposition 4.4 is to test

H0: µ1∗/σ1∗ = µ2∗/σ2∗ = . . . = µK∗/σK∗ vs Ha: µi∗/σi∗ 6= µj∗/σj∗ for some i 6= j,

instead of H0: µ1∗ = µ2∗ = . . . = µK∗ versus H1: µi∗ 6= µj∗ for some i 6= j.

Lemma 4.1 If for any i = 1, 2, · · · , K, nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫ ∫

x2f 3
i (x, u)dxdu <∞ and if fi(x, u) is twice differentiable with respect to x and u,

then

√
ni(Ŵi −Wi)

d→ N(0, ω2
i∗), (4.8)

as min
i
ni → ∞, where, ω2

i∗ = 4{
∫ ∫

x2f 3
i (x, u)dxdu− (

∫ ∫

xf 2
i (x, u)dxdu)

2}.

Proof: Let ϕ∗(Xij1 , Xij2 , Uij1 , Uij2) =
(

Xij1
+Xij2

2h2

i

)

K
(

Xij1
−Xij2

hi

)

K
(

Uij1
−Uij2

hi

)

, then Ŵi
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is a U-statistics with mean

E(Ŵi) = E(
Xi2

h2i
K

(

Xi1 −Xi2

hi

)

K

(

Ui1 − Ui2

hi

)

)

=
1

h2i

∫ ∫ ∫ ∫

x2K

(

x1 − x2
hi

)(

u1 − u2
hi

)

fi(x1, u1)fi(x2, u2)dx1dx2du1du2

=

∫ ∫ ∫ ∫

x2K(u)K(v)fi(x2 + uhi, u2 + vhi)fi(x2, u2)dudvdx2du2

=

∫ ∫ ∫ ∫

x2K(u)K(v)
[

fi(x2, u2) +
∂fi(x,u)

∂x

∣

∣

∣

(x2,u2)
uhi

+ ∂fi(x,u)
∂u

∣

∣

∣

(x2,u2)
vhi + o(hi)

]

fi(x2, u2)dudvdx2du2

=

∫ ∫ ∫ ∫

x2K(u)K(v)f 2
i (x2, u2)dudvdx2du2 + o(hi)

=

∫ ∫

x2f
2
i (x2, u2)dx2du2 + o(hi)

≃ Wi (4.9)

and variance written as

V ar(Ŵi) =
4

ni

cov(ϕ∗(Xij1 , Xij2 , Uij1 , Uij2), ϕ∗(Xij1 , Xij3 , Uij1 , Uij3))

+
2

ni(ni − 1)
var(ϕ∗(Xij1 , Xij2 , Uij1 , Uij2)).

It can easily be shown that var(ϕ(Xij1 , Xij2 , Uij1 , Uij2)) = O(h−1
i ) and since 1/(nihi) =

o(1), the second term of V ar(Ŵi) in the parentheses can be neglected. Then the

variance of Ŵi is dominated by 1
ni
ω2
i∗, where
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ω2
i∗ = 4cov(ϕ∗(Xij1 , Xij2 , Uij1 , Uij2), ϕ∗(Xij1 , Xij3 , Uij1 , Uij3))

= 4[E(ϕ∗(Xij1 , Xij2 , Uij1 , Uij2)ϕ∗(Xij1 , Xij3 , Uij1 , Uij3))

−E(ϕ∗(Xij1 , Xij2 , Uij1 , Uij2))E(ϕ∗(Xij1 , Xij3 , Uij1 , Uij3))]

= 4

[

1

4h4i

∫ ∫ ∫ ∫ ∫ ∫

(x1 + x2)(x1 + x3)K(
x1 − x2
hi

)K(
x1 − x3
hi

)

K(
u1 − u2
hi

)K(
u1 − u3
hi

)fi(x1, u1)fi(x2, u2)fi(x3, u3)dx1dx2dx3du1du2du3

−
(

1

h2i

∫ ∫ ∫ ∫

x1K(
x1 − x2
hi

)K(
u1 − u2
hi

)fi(x1, u1)fi(x2, u2)dx1dx2du1du2

)2]

=

∫ ∫ ∫ ∫ ∫ ∫

(2x1 + y1hi)(2x1 + y2hi)K(y1)K(y2)K(z1)K(z2)

fi(x1, u1)fi(x1 + y1hi, u1 + z1hi)fi(x1 + y2hi, u1 + z2hi)dx1dy1dy2du1dz1dz2

−4

(

1

h2i

∫ ∫ ∫ ∫

x1K(y1)K(z1)fi(x1, u1)fi(x1 + y1hi, u1 + z1hi)dx1dy1du1dz1

)2

=

∫ ∫ ∫ ∫ ∫ ∫

(4x21 + 2x1y2hi + 2x1y1hi + y1y2h
2
i )K(y1)K(y2)K(z1)K(z2)

fi(x1, u1)[fi(x1, u1) +
∂fi(x,u)

∂x

∣

∣

∣

(x1,u1)
y1hi +

∂fi(x,u)
∂u

∣

∣

∣

(x1,u1)
z1hi + o(hi)]

[fi(x1, u1) +
∂fi(x,u)

∂x

∣

∣

∣

(x2,u2)
y2hi +

∂fi(x,u)
∂u

∣

∣

∣

(x2,u2)
z2hi + o(hi)]dx1dy1dy2du1dz1dz2

−4

(

1

h2i

∫ ∫ ∫ ∫

x1K(y1)K(z1)fi(x1, u1)[fi(x1, u1) +
∂fi(x,u)

∂x

∣

∣

∣

(x1,u1)
y1hi

+ ∂fi(x,u)
∂u

∣

∣

∣

(x1,u1)
z1hi + o(hi)]dx1dy1du1dz1

)2

=

∫ ∫ ∫ ∫ ∫ ∫

4x21K(y1)K(y2)K(z1)K(z2)f
3
i (x1, u1)dx1dy1dy2du1dz1dz2

−4

(

1

h2i

∫ ∫ ∫ ∫

x1K(y1)K(z1)f
2
i (x1, u1)dx1dy1du1dz1

)2

+O(hi)

≃ 4

[ ∫ ∫

x21f
3
i (x1, u1)dx1du1 −

(∫ ∫

x1f
2
i (x1, u1)dx1du1

)2]

(4.10)

By central limit theorem of U-statistics (See Koroljuk and Borovskich [22], pp.

128-129), we have
√
ni(Ŵi −Wi)

d→ N(0, ω2
i∗), where,

ω2
i∗ = 4

{∫ ∫

x2f 3
i (x, u)dxdu−

(∫ ∫

xf 2
i (x, u)dxdu

)2}

. (4.11)
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Define

Ŵ· =

∑K
i=1 niŴi/ω̂

2
i∗

∑K
i=1 ni/ω̂2

i∗
, (4.12)

and the sum square between

SSB∗ =
K
∑

i=1

ni(Ŵi − Ŵ·)
2

ω̂2
i∗

. (4.13)

Lemma 4.2 Under the null hypothesis H0: W1 = W2 = . . . = WK, if for any

i = 1, 2, . . . , K, nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫ ∫

x2f 3
i (x, u)dxdu < ∞ and

if fi(x, u) is twice differentiable with respect to x and u, then SSB∗ is asymptotically

χ2(K − 1). In general (under the alternative), SSB∗ is asymptotically non-central

χ2(K − 1) with non-centrality parameter:

ψ2∗ =
1

2
µ(2)
∗

′
B2∗µ

(2)
∗ , (4.14)

where µ
(2)
∗ = (µ

(2)
1∗ , µ

(2)
2∗ , . . . , µ

(2)
K∗),

µ
(2)
i∗ =

√
λi(ei −

∑K
i=1

λiei/ω
2

i∗∑K
i=1

λi/ω2

i∗

)
∫ ∫

f 2(x, u)dxdu

σωi∗
, (4.15)

B2∗ =















1− λ1/ω2

1∗∑K
i=1

λi/ω2

i∗

− (
√
λ1/ω1∗)(

√
λ2/ω2∗)∑K

i=1
λi/ω2

i∗

· · · − (
√
λ1/ω1∗)(

√
λK/ωK∗)∑K

i=1
λi/ω2

i∗

...
...

. . .
...

− (
√
λ1/ω1∗)(

√
λK/ωK∗)∑K

i=1
λi/ω2

i∗

− (
√
λ2/ω2∗)(

√
λK/ωK∗)∑K

i=1
λi/ω2

i∗

· · · 1− λK/ω2

K∗∑K
i=1

λi/ω2

i∗















,

(4.16)

λi = lim
ni→∞

ni
∑K

i=1 ni

and ei is such that µi = 1 + ei√∑K
i=1

ni

.

Proof: Replace ωi with ωi∗, and then follow the proof of Theorem (2.6).

Define

A∗
ij1j2

=

(

Xij1 +Xij2

2h2i

)

K

(

Xij1 −Xij2

hi

)

K

(

Uij1 − Uij2

hi

)

, (4.17)
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and the Sum of Square Within

SSW ∗ =

∑K
i=1

∑∑ni

j1 6=j2
(A∗

ij1j2
− Ŵi)

2/ω̂2
i∗

Cw

, (4.18)

where Cw is given in equation (2.41).

Lemma 4.3 For any i = 1, 2, . . . , K, if nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫∞
−∞ x2f 3

i (x)dx <∞ and if fi(·) is twice differentiable, then SSW ∗ is asymptotically

χ2 with degrees of freedom dfw, where dfw is given in equation (2.43).

Proof: Replace ωi with ωi∗ and Aij1j2 with A∗
ij1j2

, and then follow the proof of The-

orem (2.8).

Proposition 4.4 If for any i = 1, 2, . . . , K, nih
4
i → 0, nihi → ∞ as min

i
ni → ∞,

∫∞
−∞ x2f 3

i (x)dx < ∞ and if fi(·) is twice differentiable, then under null hypothesis,

F ∗
l = MSB∗

MSW ∗
= SSB∗/(K−1)

SSW ∗/dfw
in equation (2.48) follows asymptotically F distribution with

degrees of freedom K − 1 and dfw. Under the alternative, F ∗
l follows asymptotically

non-central F (K − 1, dfw) with non-centrality parameter ψ2∗ described in equation

(4.14).

Proof: Replace ωi with ωi∗ and Aij1j2 with A∗
ij1j2

, and then follow the proof of The-

orem (2.9).

Proposition 4.4 illustrates a brand new hypothesis test to evaluate the impact of

new policies on some dependent variable X. Frankly speaking, this is an analysis

of covariance (ANCOVA) model. If the test fails to be rejected, it means that all

the K policies have the same effect on the dependent variable, such as the house

price. That’s to say, none of the new policies does any better or worse than the

old one. If the test is rejected, it means that there is at least one policy that has

different effects on the dependent variable. Then the next interesting question is to
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find which policy(s) are significantly different and by how much. This leads to the

multiple comparisons type problems. Until now, there is no literature work refers the

nonparametric multiple comparisons. We will leave this question to our future work.
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CHAPTER 5

Conclusions and Future Works

5.1 Conclusions

The analysis of variance (ANOVA) models play a vital role in analyzing the effect

of categorical factors on a response variable. They have been applied in analyzing

data from a wide range of areas such as biology, psychology, business and sociology.

The main idea of ANOVA is to decompose the variability in the response variable

according to the effect of different factors. The existing literature on ANOVA can be

categorized into two divisions: parametric and nonparametric techniques. The para-

metric tests, i.e. the traditional F test, rely on the assumptions of homoscedasticity

and normality of the errors. The existing nonparametric ANOVA are either based on

rank transformed techniques or performed purely by simulations. What’s worse, none

of the literature work in nonparametric two-way ANOVA has provided methods with

theoretical support to test the main effect and interaction defined in the traditional

way as the parametric ANOVA test. We propose a novel distribution-free ANOVA

test and provide a nonparametric analog of traditional F test for both one-way and

two-way layout. These newly constructed test statistics are not based on rank trans-

formed techniques, but rather our newly named “kernel transformed” technique. In

addition to the nonparametric ANOVA test, we also propose the nonparametric scale

test, which is considered as an nonparametric analog of homogeneity of variance test

in the parametric case.

Simulation results in Section 2.3 and Section 3.2 show that: (i) The kernel based

nonparametric scale test is almost as powerful as the Levene’s test when the samples

111



come from Normal distributions. It significantly outperforms Levene’s test when

the samples come from Cauchy or Lognormal distributions. (ii) The kernel based

nonparametric one-way ANOVA test is almost as powerful as the parametric one-way

ANOVA test when the samples come from Normal distributions and significantly

outperforms parametric one-way ANOVA test when the samples come from Cauchy

or Lognormal distributions. (iii) The kernel based nonparametric one-way ANOVA

test is less powerful than the kernel based nonparametric scale test in any of the three

cases. (iv) The kernel based nonparametric two-way ANOVA test of interaction and

test of main effects are less powerful than the nonparametric one-way ANOVA test for

the same cell size when the samples come from Normal distribution. (v) The kernel

based nonparametric two-way ANOVA test of interaction and test of main effects are

more powerful than the nonparametric one-way ANOVA test for the same cell size

when the samples come from Cauchy and Lognormal distributions. (vi) The kernel

based nonparametric two-way ANOVA test of main effects is slightly more powerful

than the nonparametric two-way ANOVA test of interaction in any of three cases

comparing to the corresponding parametric tests.

Kernel based nonparametric ANOVA test is more powerful than the standard

ANOVA for non-normal data, especially strongly skewed and fat-tailed data. Thus,

it is highly recommended if the shape of the data severely departs from mound-shaped

curve.

5.2 Future Work

For the future research, an extension to other experimental design models, such as

incomplete block design, in which not all the treatments occur in every block, and

Latin square design, can be considered. These are the designs that are more realistic

in real-world applications than the complete randomized design. In addition, the

multivariate analysis of variance (MANOVA) may be considered in the future when
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the response variable is not a single variable, but a vector of variables instead. Also,

a random effect, rather than fixed effect, nonparametric analysis of variance can be

studied in the future research.
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