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Abstract:

A new approach to one-way and two-way analysis of variance from the nonpara-
metric view point is introduced and studied. It is nonparametric in the sense that
no distributional format assumed and the testing pertain to location and scale pa-
rameters. In contrast to the rank transformed approach, the new approach uses the
measurement responses along with the highly recognized kernel density estimation,
and thus called “kernel transformed” approach. Firstly, a novel kernel transformed
approach to test the homogeneity of scale parameters of a group of populations with
unknown distributions is provided. When homogeneity of scales is not rejected, we
proceed to develop a one-way ANOVA for testing equality of location parameters
and a generalized way that handles the two-way layout with interaction. The pro-
posed methods are asymptotically F-distributed. Simulation is used to compare the
empirical significance level and the empirical power of our technique with the usual
parametric approach. It is demonstrated that in the Normal Case, our method is
very close to the standard ANOVA. While for other distributions that are heavy
tailed (Cauchy) or skewed (Log-normal) our method has better empirical significance
level close to the nominal level o and the empirical power of our technique are far
superior to that of the standard ANOVA.
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CHAPTER 1
Introduction

1.1 One-way Analysis of Variance

Analysis of Variance (ANOVA) is a process of analyzing the differences in means (or
medians; or distributions) among several groups. Both parametric and nonparametric
methods have been developed in the literature. The classical analysis of variance,
which is a parametric method, is usually called F-test or variance ratio test. It is
called ‘parametric’ test as its hypothesis is about population parameters, namely
the mean and standard deviation. Compared to parametric methods, nonparametric
methods do not make any assumptions about the distribution, therefore it usually
does not make hypothesis about the parameter, like the mean, but rather about the

population distributions or locations instead.

1.1.1 Parametric One-way ANOVA

Suppose {X;;} are independent random variables sampling from K populations (or
groups), where i = 1,2,--- | K, j =1,2,-+-  n;. The usual parametric ANOVA aims
to test Hy : pi1 = p1o = -+ = pg versus H, : p; # p; for any i # j, where p; is the
mean of i*" population, i.e. y; = E(X;;). The usual parametric test, i.e. F-test, relies
on the assumptions of independence of observations, normality of the distribution and
constancy of variance. Thus, before implementing the analysis of variance, Levene’s

test [28] and/or Bartlett’s test( [5], [37]) are usually applied to test the homogeneity



of variances. The Levene’s test statistics is given by

_N-K Zfil ni(5 —z.)?

— —, (1.1)
K—=1355 50 (2 — )2

where

It is known that Levene’s test statistic follows F distribution with degrees of
freedom K —1 and N — K. So we reject the null hypothesis Hy : 01 =05 = -+ = 0k
if test statistics W > F(«, K — 1, N — K), where « is the significance level.

Barlett’s test is an alternative homogeneity of variances test to Levene’s test. Its
test statistic is given by
(N — K)ln(SQ) > (ny — 1)in(S?)

' s (S G ets)

(1.2)

where, S; is the sample variance of the i group and S, = %}1)52 is the pooled

estimate of variance. The test statistic is shown to have approximately a x%_, dis-
tribution. Thus the null hypothesis is rejected if the test statistics T > x%_; -
Both of these tests are used to detect if the K groups of samples come from popu-
lations with an equal variance. Bartlett’s test is very sensitive to the departures from
normality, while Levene’s test does not have the requirement of normality. How-
ever, both of them are homogeneity of variance tests. Most of the software packages

perform both of them before a comparison of means via classical ANOVA test.



If the homogeneity of variances test is not rejected, then it is appropriate to
perform the analysis of variance tests. In the parametric analysis of variance, the
total variability (total sum of squared deviations from the mean) from the samples
are partitioned into parts. For example, in the one-way ANOVA, the sum of squares
is partitioned into two parts: sum of square within the groups (SSW) and sum of
square between the groups (SSB). SSW is also called error or residual sum of square,
which is measured by SSW = >".>" ; (z;; — z;)?. SSB is usually called explained
sum of square, which is given by SSB = >~ n;(Z; — Z.)?. The F-test statistic is
constructed by taking the ratio of the two sum of squares with the adjustment of the

corresponding degrees of freedom. Large ratio indicates large differences between the

groups. Thus, the F-test statistic can be rewritten as: [34]

F (1.3)

_ MSB  SSB/(K-1) i m(@, —3.)*/(K—1)

- MSW O SSW/(N - K) 3 S (g — 72/ (N - K)
where, T; = n% > i Tij and T = % Do T It follows F-distribution with degrees
of freedom K — 1 and N — K. Thus the null hypothesis Hy : 1 = o = - -+ = ug is
rejected when F' > F(a, K — 1, N — K).

1.1.2 Rank Transformed Nonparametric One-way ANOVA

Conover and Iman [9] proposed the rank transformation procedure as a ‘bridge’ be-
tween parametric and nonparametric statistics. Generally speaking, the rank trans-
formation procedure is simply carried out by replacing the numerical raw data with
their ranks and applying usual parametric methods, such as ANOVA, regression,
discriminant analysis, cluster analysis and so on. This approach includes a class
of nonparametric tests for one or more independent samples, such as the Wilcoxon
signed rank test for one sample, the Wilcoxon-Mann-Whitney test for two indepen-
dent samples, the Kruskal-Wallis test for one-way ANOVA and Friedman test for

one-way analysis of variance applied to a complete block design.



Consider the K independent random samples {X;;} in Section 1.1.1. The rank
transformation procedure is implemented as follows: let R(X;;) be the rank of X;; in
the combined set of data and R; = Z;”:l R(X;;). Then the rank transformed F test

statistic is given by

[, B NP (- 1)

T YE Y (R(Xy) - B (N - K)

which approximately follows a F-distribution [34]. Another rank based nonparametric

Fr (1.4)

one-way ANOVA is the well known Kruskal & Wallis H test [23]. The H test statistic,
with the correction for ties, is given by

K R?  N(N+1)?
O e . (15)
(i 2o B2 (Xyy) = =) /(N = 1)

Interestingly, the rank-transformed F test is equivalent to Kruskal-Wallis H test since

Fr = ( Nﬁflf %]&37 7y which can be easily verified through some elementary algebra.

H test statistic is shown to be approximated by a chi-square distribution with degrees
of freedom K — 1 when the sample size is large. The exact distribution of H if there
is no tie, is given by Iman, Quade and Alexander [20]. Hence there are two ways to
obtain the critical values for the rank transformed F test or Kruskal & Wallis H test:
one is to use the F-distribution tables for Fg; the other is to use the chi-square tables
for Fr as a function of H. Iman and Davenport [19] compared the two approximations

and showed that F' approximation is preferred to chi-square in general.

1.2 Two-way Analysis of Variance

1.2.1 Parametric Two-way ANOVA

Let {X;jx} be the random variable denoting the response of k" replicate receiving the

i'" level of treatment A and ;' level of treatment B. Consider the two-way layout:

Tiji = b+ oG + B + Yij + €iji, (1.6)



where, p, i, Bj, 7i; are the general mean, the effect of the i level of factor A
(i.e. row effect), the effect of the j™ level of factor B (i.e. column effect) and the

h

interaction between i""-row and j"-column, respectively; e, are independent and

identically distributed (i.i.d.) N(0,0?) for all k = 1,2,--- ,ny, i = 1,2,--- ,r and
J =1,2--- c. The hypotheses for testing the row, column and interaction of row

and column effects are as follows:

H, : all 0;=0,(test for main effect of factor A)
Hp : all 3;=0,(test for main effect of factor B)

Hap : all v;;=0(test for interaction).

Without loss of generality assume that > o = >, 68; = > ;v = >_;vi; = 0 for
all i, j. Similar to the parametric one-way ANOVA, if the homogeneity of variance
assumption holds, the total variability from the samples is decomposed into four parts:
sum of squares for factor A (SSA), sum of squares for factor B (SSB), sum of squares
for the interaction of factor A and B(SSAB) and sum of squares for the error (SSE),

where

SSA = an(fz—f)za
SSB = Y n;(z; —z.)%
SSAB = YN ny(@y — i — 14+ 7.)%

SSE = ZZZ(xijk—fij.)27



and

n; = E nijan.j:E nij;E E nij:Na
J i i

r  MNij

_ 1
T = —E E Tijks
ng -
i=1 k=1
c Mg

i=1 j=1 k=1
The degrees of freedom for SSA, SSB, SSAB and SSE, are r—1, c—1, (r—1)(¢—1) and
N —rcrespectively. Thus, the F-test statistic for null hypotheses H 4 : all ;=0 is given

by Fa = %, which follows a F-distribution with degrees of freedom r — 1 and

N — re. Similarly, the test statistic for testing the main effect B is Fp = %,
which follows a F-distribution with degrees of freedom ¢ — 1 and N — re. And the

F-test statistic for interaction Hap : all v;;=0 is given by Fap = Ssgjgg;?&?gi;l))’

which follows an F-distribution with degrees of freedom (r — 1)(¢ — 1) and N — re.

The details are discussed in [34].

1.2.2 Rank Transformed Nonparametric Two-way ANOVA

Let Xijg, @ = 1,2,---,r, 5 = 1,2,--- ,¢, k = 1,2,--- ,n, be independent random
variables such that Xj;; has the continuous distribution function Fj;. Note that
{Xijr}, as defined in Section (1.2.1), is the random variable denoting the response of
k" replicate in the (4, j) cell, and can be written in the two-way layout (1.6) as well.
We want to test the column effects, row effects and their interaction, just as in the
parametric two-way ANOVA. However, in the nonparametric case, the errors e;;;, are

neither assumed to be normal nor to have homogeneous variance. Thus, for instance,



to test the column effect, the null and alternative hypotheses are:

Hy Ej:E7forj:1727"'acv

H, : F,; # F, for at least one j =1,2,--- ,c. (1.7)
This is equivalent to the test:

Hy @ Xiyjp=p+as forj=1,2---c

Hy : Xz'jk:,u—FOéi—i—(sij for aHZ:LQ’ 7r’j:l,z’... ,C,

or
Hy : 0;;=0,foralle=1,2,---,r,7=1,2,--- ¢,
Hy, : 0;; #0 for some i, j, (1.8)
where,
o = Bj+ v

ZOKZ' = Z(SZ] :0,
i J

and $3; is the effect of j™ level of Factor B as describe in equation(1.6).

In general, two rank-based approaches are commonly used to test either (1.7) or
(1.8): Hora & Conover rank-score transformed test and Akritas rank transformed
test. Let R;;, be the rank of X;;;, among all {X;;;} data. Define the score of Xy
by a(R;jx), where a(-) is the rank score function as in [16]. Set S; = >, > a(Rijr),
S =i pa(Rijr), Sij. = > a(Rix) and S = £ 37,3737, a(Rijx). The rank-score

transformed test statistic proposed by Hora & Conover [18] is given by

_ > (85— 8)*/(n(c—1))
225225 2ok (a(Rigw) = Sij /n)?/(c(n — 1))’

which converges weakly to x2 ,, as n — oo, under the null hypotheses. Under

Wy (1.9)

a sequence of Pitman alternatives, the limiting distribution of Wy is normal [40].



Rinaman [33] proposed a similar test statistic with its limiting distribution x?_, as
well, although R;j;; is redefined as the rank of X;;, in row ¢ instead of the whole
samples and a new score function is used.

Unlike Hora & Conover’s rank-score transformed approach, Akritas [4] adjusted

G(Xijn)

the rank transformed data for heteroscedasticity by defining z;;, = A where

~

. A ~ 2~ A
G(Xij) = Rig/(ren), 67 = 2257, 5 (G(Xipw) — AG;)7, AG: = L5700 50 G(Xign)
and R;jj is the same as defined in Hora & Conover’s method. The rank transformed

test statistic proposed by Akritas [4] is as follows:

_ ny ;> (zij — z.)?/(r(c—1))
52020 2 (zigk = 23)?/ (re(n = 1))’

which asymptotically follows central X?(cq) /(r(c — 1)) distribution under Hy. The

Wa (1.10)

major advantage of Akritas rank transformed approach is not the adjustment of
heteroscedasticity ( [4] showed that it is not necessary for Hora and Conover statistic
to be adjusted for heteroscedasticity), but rather the simple extension to unbalanced
data. Suppose X,j; are independent random variables, where ¢ = 1,2,--- 7, j =
1,2,---,¢,k=1,2,--- ,n;. The Akritas test statistic for unbalanced data is almost
the same as the balanced one, and it is given by

iy mi(Fy — 2.)?/(C =)
D> o (i — 252/ (N = C)

where, N =%, > . n;; and C'= ) ¢;. It is shown that WY asymptotically follows a

1% (1.11)

central x%_,/(C — r) distribution under Hj.

The common limitation of the Hora & Conover’s Wy test, Akritas W, test and
other rank transformed two-way ANOVA test such as Lemmer & Stoker [27], de Kroon
& van der Lann [11] is that they either ignore the test of interaction (Hy : v;; = 0 for
all i, 7), or fail to test the main effect in the presence of interaction. Blair, Sawilowsky
and Higgins [7] verified the fact that the Hora & Conover rank-score transform test is

robust when testing for main effects in the absence of interaction; however, the test



may produce inflated Type I error rates when testing for main effect in the presence
of interaction.

The test of interaction in rank transformed based nonparametric two-way ANOVA
challenges researchers when they try to extend one-way ANOVA to the two-way case.
Until recently, there are several methods to test the interaction, i.e. Hy : 7;; = 0 for all
i, j. Patel and Hoel [31] defined their own interaction and derived the nonparametric
test on a special case. Bhapkar and Gore [6] introduced a nonparametric test based on
the U-statistics under the orthogonality assumption. [6] formed quadruplets of cells,
Say, Xij,Ti;,Tij Ty from the rxc matrix X, and defined the function ¢(¢) to be 1if ¢ >
0, 1/2 if t = 0 and zero otherwise. Suppose each quadruplet have (n;j, ni;, nijr, niryr)
quadruplet of observations. Let Vi ;i = > > > > &(Tija — Tirjp — Tijic + Tirjra),
Ui g = Vi g [mignagnigmig, Wig = 3200 3 5 Ui gy N = 325 ;ni; and py; =
ni;/N. By assuming p;; = a;b;, and defining W; = %, W, = % and
W._ =3, aibjWi;, the test statistic proposed by Bhapkar and Gore [6] can be written
as

N
i

r2c(n(F) —1/4)
where, 77(F') is a consistent estimator of a nuisance parameter defined in ( [6], equation
(2.3)). It is shown that T follows asymptotically a central chi-square distribution
with (r —1)(c — 1) degrees of freedom. However, this test statistic relies on unknown
nuisance parameter, which might reduce the power. Hartlaub, Dean and Wolfe [17]
proposed a rank transformed based test for interaction in two-way ANOVA with only
one observation per cell. Unfortunately, two-way layouts with replication in cells are
more frequent in practice. Gao and Alvo [15] proposed a rank transformed method
which combines the row rankings and column rankings, while other literature just
consider either one of the rankings or the rankings based on the whole data set.

Suppose 75, is the rank of X;;, with respect to the it" row and Ciji is the rank of X,



with respect to the j** column, where i = 1,2,--- ,r, j=1,2,--- ¢, k=1,2,--- ,n.

Define

. 1
SH(Z7.]) = ne + 1 Zrijlm
k

. 1
Tn(%]) = nr—+ 1 Zcijlm
k

Sn = (Sn(1,1),5,(1,2),---, S,(r,0)),

T, = (T,(1,1), T,(1,2),- -+ , Tn(r,c)),

1
¥ = lim —wvar(S,),

n—oo M

1
Yo = lim —war(T,),

n—oo M,

1
Yo = lim —cov(S,, T,).

n—oo N

Then the statistic Gao and Alvo [15] proposed is given by:
1 - - R
W ==(AS, + BT,)'(A¥X;A’ + 2AX,,B' + BX,B’)"(AS, + BT,), (1.13)
n

where A = J,Q(-1L) + L ®L , B = LI — 1J.) , 51, ¥y, ¥pp are the
corresponding consistent estimates of 1, ¥ and 5. It is shown that W follows a
central chi-squared distribution with (r — 1)(¢ — 1) degrees of freedom as n — 0.

Actually, Gao and Alvo’s test statistics can be easily extended to unbalanced designs.

1.3 Limitations

The limitations for parametric ANOVA, no matter one-way or two-way layout, are
very obvious. It assumes normality and homogeneity of variances. None of the data in
our real world comes from an exact normal distribution. By the robustness of F-test,
it is still reliable to perform the test when the sample size is large and the population
distribution is not too far from normal. However, these assumptions sometimes are
too strict for the data in real research settings. In these circumstances, nonparamet-

ric techniques should be applied instead. Until now, almost all the nonparametric

10



ANOVA tests are based on rank (score) transformed technique. The major drawback
of using the ranks, rather than the raw data, is that it loses information. The rank
keeps the order of the raw data, but it ignores the magnitude of the differences among
the data. There could be two sets of interval data with exactly the same rank, but
with totally different means, variances or distributions. If we throw away the raw data
by analyzing the ranks instead, no difference will be detected for these two groups of
data sets. Unfortunately, none of the rank transformed techniques can compensate
this loss. Moreover, the majority of the literature works in nonparametric ANOVA
try to express and interpret their models in the same way as the parametric models,
even when it is inappropriate to do so. For example, x;;, = p + o; + 5 + 75 + €4 is
the two-way layout in the parametric ANOVA. In the nonparametric ANOVA, z;j
does not have to come from normal distribution any more, but the literature that
promote the rank transformed approaches still interpret p as the grand mean and
i+ a; + B; + 75 as the mean of cell (4,7), even if for some distributions, the first

moment does not exist.

1.4 Kernel Density Estimate

1.4.1 Kernel Estimate of Probability Density Function f(x)

Let F(x) be the cumulative distribution function (CDF) of the random variable X,
where X is a random variable with probability density function (pdf) f(z). From the

definition that f(z) = L F(z), an obvious estimate of f(z) is

Fu(z +h) — Fu(z — h)

f(l’) = o ) (1.14)

where F),(z) is empirical cumulative distribution function defined by

_the number of X’s such that X; <z

(1.15)

11



If we define a uniform kernel function by

PN RCEUCES
(2) = (1.16)

0 otherwise,

then by substituting (1.15) into (1.14), we can rewrite (1.14) as

5 the number of X’s fall within [z — h, x + h]

= — K . 1.17
nh — ( h ) ( )

Equation (1.17) is a “naive” kernel estimator of f(z) if K(-) is defined in (1.16). In

general, we refer to K (-) as a kernel function and to h as a smoothing parameter
(or alternative a bandwidth or window width). The kernel function is not limited to
equation (1.16), but rather has many other possible choices, such as standard normal
kernel, i.e.

K(2) L -4 (1.18)

~ e

It is shown in [29] that the kernel estimator f(z) defined in (1.17) with any general

non-negative bounded kernel function K(-) satisfying 3 conditions, i.e.

(a) [K(z)dz =1,

(¢) [2*K(z)dz = k2 > 0,

is a consistent estimator of f(x). The literature for the kernel estimate is very rich
including the books by Wand and Jones, Silverman, Bowman and Azzalini, and Scott

( [41], [36], [35], [8]) among others.
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1.4.2 Kernel Estimate of [ f?(z)dx

With the kernel estimate of f(z) in Section (1.4.1), [ f?(x)dz can be estimated by

[ P = /#Z§K(Xih_x)}(()(jh_x)dx
SR R
- @I ()
7]

where, K(2) = [ K(u)K (2 — u)du, which is also a kernel function.

Ahmad [1],

1.5 Organization of the Dissertation

In Chapter 2, a kernel based nonparametric one-way ANOVA test is proposed. In
Section 2.1, the one-way kernel based nonparametric scale test is derived to test the
homogeneity of scale parameters among groups. In Section 2.2, the kernel based
test statistic for nonparametric one-way ANOVA with homogeneous scale parameter
among groups is constructed and its limiting distribution is studied as well. In Section
2.3, the powers of the kernel based nonparametric scale and location test are investi-
gated through simulation and compared to the corresponding parametric tests. The
kernel based nonparametric one-way ANOVA test for shape parameters are proposed
in Section 2.4.

In Chapter 3, the kernel based nonparametric one-way ANOVA test to the two-
way layout is extended. Section 3.1 has two subsections. In Section 3.1.1, the kernel
based nonparametric ANOVA test for main effects in locations is derived under the
assumption of homogeneous scale among cells. In Section 3.2.2, the kernel based non-
parametric ANOVA test for interactions in locations is studied under the assumption
of homogeneous scale among cells. In Section 3.3, the powers of the kernel based

nonparametric two-way ANOVA test of main effects and interactions in locations are

13



investigated via simulation study and compared with the corresponding parametric
two-way ANOVA tests.

In Chapter 4, the kernel based nonparametric ANOVA model is applied to the
nonparametric policy analysis. In Section 4.1, a brief introduction of policy analysis is
given. In Section 4.2, Stock’s nonparametric policy analysis model is introduced and
the limitations of stock’s model are summarized. In Section 4.3, a new nonparametric
policy analysis model is proposed by extending our nonparametric ANOVA results in
Section 2.2.

Finally, Section 5.1 summarizes the contributions of this dissertation and the
major findings of the simulation studies. Section 5.2 outlines some possible future

research topics followed by the dissertation.
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CHAPTER 2
One-way Kernel Based Nonparametric ANOVA

Assume X;; comes from a distribution with probability density function (p.d.f.) f;(z),
where ¢ = 1,2,..., K and 7 = 1,2,...,n;. Define u; and o; to be the location and

scale parameter of f;(z). That is to say, the following equation holds:

filz )=—fo( “’), (2.1)

7

where, fo(+) is a base density. Thus, we have

[afi@ar = [P By
~ [uwir+ 2 [ fway

. oi( [ 2 ff (2)dx — [ yf(y)dy)
l | Ry
_ o [afi(x)de  oi [yf5(y)dy (2.2)
[ f3w)dy [ fRy)dy ’

By Ahmad and Amezziane [2], the scale parameters can be written as:

2 fi(@)de
Jo i (@)da

which implies that

(2.3)

g; =

2.1 Kernel Based Nonparametric Test for Scale Parameters

Before introducing the ANOVA test, the homogeneity of scale parameters needs to be

verified. Suppose that o1, 09, - - -, o are the scale parameters of the K populations.
The hypotheses to be tested are Hy: 01 = 03 = ... = ok versus Hy: 0; # o, for some
1#£ .

15



Let Ry = f fé(z)dx and R; = f fZ(x)dx, then equation(2.3) can be written
as R; = Ry/o;. Thus, the null hypothesis of equal scale parameters becomes Hy:
Ry =Ry, = = Ry against Hy: R; # R, for some ¢ # j. Consider the nonparametric
kernel estimates of R;, denoted as }?i, where

R, = n_lhzz (”l_XW). (2.4)

J1#j2

Lemma 2.1 If for any i = 1,2,--- /K, n;h} — 0, n;h; — oo as minn; — oo,

[ f@)de < oo and if fi(+) is twice differentiable, then

V(R — Ri) 5 N(0,02), (2.5)
asm1nn1—>oo where, v = 4{ [ f}(x)dx — ([ f2(x)

Proof: See the proof of Theorem 2.2 in [1].

The test statistic for the scale test is defined as

A A

Z R R (2.6)

where

K 5 ~2
R =<5 (2.7)

and 0,2 is a consistent estimate of UZ-Q . To obtain the asymptotic distribution of 57,

another two auxiliary variables are defined as follows:

K A = K
NX(R; — R)? Xl o, -
S?;Z%-N{ZE}(R — R)?, (2.8)
i=1 i i—1 i
and
K A — A —
niRi—RQ niR.—RQ
S I T 29)
i=1 ¢ i=1 4



where

R - S AiRi/o?
Zfil)‘i/vzz ,
R - >iii AR/ v
ZzKl i/ ’

A o= lim 2
N —00
K ni
Lemma 2.2 Let N = E n;. If \; = lim NZ and 02 % 02, then
n;—00
=1

(i) S — S 50,
as minn; — oo.

Proof: They can be proved directly by applying Slutsky Theorems [10].

Theorem 2.3 Under the null hypothesis, if for anyi=1,2,..., K, n;h} — 0, n;h; —

0o as minn; — oo, [T f3(x)dx < oo and if fi(-) is twice differentiable, then Sy is

asymptotically x* with degrees of freedom K — 1. In general (under the alternative),

Sy is asymptotically non-central x*(K — 1) with non-centrality parameter:

1 (1)/

=5

(1)
2 )

Biu

1 1
where ™ = (u, 1, .. 1Y),

Vi(2d; + Lo S K A;l/? f fi(@
2\/fff x)de — ([ f2(x)dx)?

(1)

i

1— A1/vi _ Wfo)(We/fva) 0 (WA u) (VA vk)
25:1 Ai/“iz Zf(:l /\i/UiQ 2521 )‘i/vg
]31 _ . . X .
o)Ak (el Brfo) L Aw/vk
27{;1 /\i/vi2 Zfil )‘i/vz‘z Zf(:l )\i/vf

and d; s such that o; = 1+

Ai = lim — ; —L .
moo S g VELm

17
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Proof: Let N = Zfil n;, and then \; ~ Zi. Set T(l) VAN (R; — R)/v;, and then
under Hy, Tz-(l) ~ N(0,1) as N — co by Lemma (2.1).

Note that

]
_ MR R_[5A) (BARE R
- SRR V(AR

ENNR = R)? s VXL — R) /NN (R — R) (Vv (VA Jv5)
Z; (Uz' | _22 <UZ | Yi Zf;)\\z//;

(2.13)

Y

which can be written as a quadratic form, i.e. SY = U;'B, Uy, where,

U1 = (Tl(l)a T2(1)a e 7T[({1)),7 (214)
and
1 — A1/vf _ (/o)) /o) (VA )
Zf{:l >\i/Ui2 ZzK:l /\i/v% 25:1 )‘i/viZ
B, = : : : . (2.15)
_ /o)W AR /vr)  (Ve/v) Ak /vr) 1 _Ax/vR
ZzK:I /\i/Uiz Zfil ’\i/UiQ ZzK:l /\i/“i2

It can be easily shown that By is symmetric and idempotent. Thus, we obtain that

rank(By) = tr(B;)
= tr(I—aja;)
= tr(I) —tr(aja;’)
= K —tr(a;’a;)

= K-1, (2.16)
where

18



\/)\_1/111
@/UQ . (2.17)

a] =

vV )\ K / VK
U; follows approximately multivariate normal with mean 0 and variance I, since

{Ti(l)} is independent and asymptotically distributed univariate standard normal dis-

tribution. Therefore, S; is asymptotically x?(K — 1) under Hy.

Under the alternative, since d; is chosen such that o; =1 + jiﬁ, then we have

R o= Ho_ T
' o 1+di/VN
d; 1
= Ro(l—-—=+o(—))

VN VN
d; 1

\/N+0(\/—N).

= Ro— Ry

Thus, R can be written as:

>t AR /0]

R p—
Zi[il )‘i/Uiz

_ >imi Ai(Ro — Ro ) /v tof 1 )
Zi[il Aif v} VN
K 7 2
R RO Zi:l Aldl/vz 1 )

VN S N +0(\/_N'

Under Hy, Ti(l) = VNX(R; — R)Jv; = VN)‘Z'E}E_RZ') 4 YOAEG-R), By Lemma (2.1),

% Uj

the first term —W is approximately standard normally distribution, and the

19



second term’s limit is given by

VNX(R; — R)

2( Ro Tty Nidi/v}
—  lim VA folade = Fo = 5 5 0)
N—oo Ui
VXL [ 3 (a)de — [, f(a)de(l + S Bl
g NG e e Sl N SR
- N—o00 'UZ'
1 1 l 1/\cl/v
. vNAi<(1+di/\/N)2 1= VN SE N0 f fo (@
= lim
N—oo Uz
/ d; )\d/v
N=oo 2\/ff-3:cd:c— ffooffa:da:

(2, + Sty e e,
— ZK w7 . (2.18)

2\/f f2(x)dxr — f_oo f?(x)dx)?

Therefore, in general Ti(l) is approximately normally distribution with mean ,ugl) given

in equation(2.17) and variance 1. This implies that SY = U;'B;U; is asymptotically

noncentral x*(K — 1) with non-centrality parameter 1); = u( )'B, .

20



2.2 One-way ANOVA: Kernel Based Nonparametric Test for Location

Parameters with Equal Scale Parameter

Under the assumption of homogeneity of variance, i.e. ; = o for all 7. Thus, equation

(2.2) becomes:
= o [zfi(x)de o [yfi(y)dy
L [ fiw)dy [ iy)dy

_ 2 _ o _ o fyf3y)dy _
Let V; = [aff(z)dx, ¢1 = T and ¢y = —W‘)y)dy, thus pu; = Vi + co.
Therefore, the null hypothesis of equal location parameter Hy: 3 = ps = ... = ug
becomes Hy: Vi = Vo = ... = Vi against Hy: V; # V; for some ¢ # j. Consider the

nonparametric kernel estimates of V;, denoted as V}, where

. 1 X+ X X — X
Vi —m4mM —— L PR ) o e S PR 2.19
N#j2
Lemma 2.4 If for any i = 1,2,--- /K, n;h} — 0, n;h; — oo as minn; — oo,

22 a? f2(x)de < oo and if fi(+) is twice differentiable, then
ViV = Vi) 5 N(0,wd), (2.20)
as minn; — 0o, where, w? = 4{ [ 2* f}(x)dx — ([ x f?(x)dz)?}.

Proof: The proof follows the lines used to prove Theorem 2.1 in [2]. We include it

for completeness.

Let o(Xij,, Xijy) = <X”12:j(”2>K<X”1};X”2>, and fi; = c1Vi + ¢5. Then f; is a U-
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statistics with mean

~

E(i) = aBE\V)+e

Xo [ Xn— X,
- ClE%K(TQ))*CQ

L
- / / £ (0) fi(@) i + uhy)dedu + ¢,

~ / / 2K () fi(@) (file) + £ (@)ahy + o(h?)dedu) + ¢,
- / K (u)du / f2(@)dz + e + O(hy)

= c1/xff(x)dx+c2+0(hi)

S o) dedy + e

12

and variance written as

R 4
Va?"(,uz‘) = C? <—COU(90(X1'17 Xi?)a SD(Xﬂ, Xi3)) +

. nz(nz — 1) ’UCLT(QO(XH, XZQ))) .

It can easily be shown that var(¢(X;1, X)) = O(h; ') and since 1/(n;h;) = o(1), the
second term of Var(f;) in the parentheses can be neglected. Then the variance of /i;

is dominated by +w?, where
1
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4ctcov(p( X, Xio), 0(Xit, Xi3))

A E(p(Xin, Xia)o(Xin, Xis)) — E(p(Xir, Xin)) E(p(Xin, Xia))]
@]z [ [ [+ wte+ AR DR 0 s
(e ) )

[/// (22 + uhy) (2 + vhy) K (u) K (v) fi(x) fi(x + uhi) fi(x + vh;)dedudo

(o)

cl[ / / / (42 + 2uzh, + 2ozh; + wh) K (W) K (0)f,(2) (fi(x) + fO(@)uhs + o(h2)

(fz(i) + fi(l)(x)vh' + o(hz))dxdudv — 4(//xK w) fi(z) fi(x + uh»)dajdu) 2}

c§[4/a:2f3( )dz + o(h (//:UK ) filz fl ) 4 uhi f2(z) + o(h ))dxdu)}
40?[/x2fi3( )dx—(/ zf?(z)d H+o(h) (2.22)

By central limit theorem of U-statistics (See Koroljuk and Borovskich [22], pp.

128-129), we have /n;(fi; — ;) A N(0,w?). Thus, we obtain that

VeV + s — (Vi + &) = aer (Vi = Vi) %5 N (0, w2). (2.23)

Let w? = T—; Then we have /n;(V; — V;) % N(0,w?), where

where

w? = 4{/x2fi3(:v)d:v— (/a:ff(x)dx)z}. (2.24)

|
Define the sum of squares between as
K A~ A
(Vi = V)2
i=1 v

K a2

~ i1 1 Vi /Wi
= iz i/ (2.26)

Zilil ni/c&f ’
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and «;” is a consistent estimate of w?. To obtain the asymptotic distribution of SSB,

another two auxiliary variables are defined as follows:

K ~ — I
NN (V; = V)2 A A
ngzT—N[ZE](V — V)2
1=1 v i=1 ¢
and
K - - K ~ —_
ni(V; — V)? ni(V. — V)2
SSO - Z @2 - Z 002 ’
i=1 ¢ =1 ?
where
vt oo Zfi}{l AiVi/w]
Zz’:l )‘i/%’?
- Zfil )\iVi/wZ.Q

K
_ . — lim 4 2 P2
Lemma 2.5 Let N = Zlnl. If N\ minlzririoo N and w; — w;, then
(i) S8 =85 50,
(ii) S —SSB 20,

as minn; — oo.
3

Proof: They can be proved directly by applying Slutsky Theorem [10].

(2.27)

(2.28)

Theorem 2.6 Under the null hypothesis, if for anyi=1,2,..., K, n;h} — 0, n;h; —

00 as minn; — oo, [*o #? f}(x)dx < 0o and if fi(+) is twice differentiable, then SSB

is asymptotically x*(K —1). In general (under the alternative), SSB is asymptotically

non-central x*(K — 1) with non-centrality parameter:

1

/
Py = 5/1(2) BzM(2)7

24
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where p? =

Proof: Let N = 32X n;, and then )\, ~ %

under H,

and e; s

T® LN
NA(Vi=V)?
w}
NX(V; = V)2
W,

2 2
= (u?, 1, 1D,
V(e — Bmelaly 12y
MEQ) _ Zz lo-zj/w , (230)
1 — A1 /w? _ (VM /w) (Vs /wa) _ (VA w) VA Jwi)
25:1 )‘i/wi2 25:1 )‘i/‘*’i2 ZzK:I /\i/‘*’?
: : : . (2.31)
_ (/o) WAk /wr) (Ve /w2)(VAK /wk) 1_%
St Aifw? S Aifw? S Ai/w?

such that p;

=14+ ==
vZfilni

Set T(2 VAN (V; = V) /w;, and then

N

(0,1) as N — oo by Lemma (2.4). Note that

N[i %} VAt

o[ a] Ce

_ > AiVi/jwy ’
Zi /\i/(f‘)i2

ZN Al (Z)\ (vw2 V))

2
i Wi i=1 0?2 N i=1 i
B imz(f/ V)2 ii\/_mz (Vi = V) /NN (V; = V) (VA fwi) (Vg fw;)
i wy i=1 j=1 Wi Zz 1A i/w}
(2.32)
which can be written as a quadratic form, i.e. S9 = Uy'B5Us, where,
U, = (TP, 17, ... T2y, (2.33)
and
1 At /w? (VA1 w) (Vg /w2) _ (VA /w) WAk Jwk)
25:1 Ai/w? Zszl Aifw? ZiK:I i fw?
B, = ; : : (2.34)
_ W w) (VAR /wr) (VA2 /w2) (VK [wic) 1— Ak /wk
L ZiKzl /\i/‘*’i2 Zle >‘z'/‘%'2 Zf{:l >\i/wi2

25




It can be easily shown that By is symmetric and idempotent. Thus, we obtain that

rank(Bz) = tr(Bj)
= tr(I — azay’)
= tr(I) — tr(azas’)
= K —tr(a)ay)
- K1, (2.35)

where

\//\_1/w1

ag = @/ <l (2.36)

vV A K / WK
U, follows approximately multivariate normal with mean 0 and variance I, since
Ti(z)’s independently follow uni-variate standard normal distribution. Therefore, S9

is asymptotically x? with degrees of freedom K — 1 under H,.

Under the alternative, since e; is chosen such that p; =1+ f

Ki  C2

v, = 22
C1 C1
]_—CQ €;

+ .
C1 C1 \/N

Thus, V can be written as:

vV o= Zfil )‘1‘/1/0%2
Zil; )‘i/("}i2
K K
A1 —
B i1 %2( €1 01\/_ /z_;
1— Co 1 1 Zi:l )\iei/wi
o aVN DA/

Under Hj, Ti(Q) = VNNV, = V) /w; = VN)“SA/"_W) + VNA"S/"_V). By Lemma (2.4),

i

the first term —N’\S/% is approximately standard normally distribution. And the

26



second term’s limit is

VNNV - V)

= 1
avaull! i Niei/w?

= lim NAzvm (e T Nifw? )

N—oo Wi
Ve - RS

Clwz
Aie; /Wy

VAi(er = ZRRel) [ ()

- L , (2.37)

where w; is given by the square root of equation(2.24). Therefore, in general Ti(z)

is approximately normally distribution with mean p(?) given in equation (2.37) and
variance 1. This implies that S = U®'B,U® is asymptotically non-central y2(K —
1) with non-centrality parameter 1, = %,u(z)/Bz,u@)

By Lemma (2.5), SSB converges in probability to S5. Therefore, SSB follows
asymptotically y? with degrees of freedom K — 1 under null hypothesis and asymp-

totically non-central x?(K — 1) with non-centrality parameter ¢, = ,u(2) B,u®. m

Let Ay = (M>K(%) Then, V; can be rewritten as:
1

hi;
Vé = _ 1 Z Z Al]lj2 (238)

J1#£72

Define

Z Z Z ij1j2 ~ /wl ) (2.39)

J1#£3j2

and the sum of squares within as

Zz 1 Z 231;:&32 ( iJ1J2 ‘;;)2/('&12

SSW = . ,

(2.40)

where

5—1 if n;, = n for all i,
c, — (2.41)

Co otherwise,
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d : .
and ¢g =) ;_, m;/d, i, ma, - - -, Ty are the eigenvalues of By with

(% - 1)(In1 - nLlJm) 0 0
0 ng _ ] Im_LJn2 0
. (5 = DT, — £3)
0 0 (nTK - 1)<IHK - i']nx)
] (2.42)
K .
Lemma 2.7 Let N = an If \i = lim — and &;® B w2, then S —C,SSW 50
i1 n;—00 N
as minn; — oo.
Proof: This can be proved directly by applying Slutsky Theorem [10].
|
Theorem 2.8 For any i = 1,2,..., K, if n;h} — 0, n;h; — oo as minn; — oo,

[ 2?2 (x)de < oo and if fi(+) is twice differentiable, then then SSW is asymptoti-

cally x* with degrees of freedom df,,, where

i K(n—1) ifn;=n for all i, (2.43)

d otherwise,

where d is the number of eigenvalues of B given by equation (2.42).

Proof: By the Hajek projection [16], A;j;, can be decomposed into the sum of

conditional expected values and a residual as follows:

Aijrjs = E( A Xijy) + E(Aij | Xij,) + Op(ni). (2.44)

Set p(Xij,) = E(Aij | Xij,) and o(Xij,) = E(Aij 4, Xij,) , thus
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v, = m Zj%% Aiivis
~ ni(nj_ 0 Z];Q (X)) + 0(Xig)) (2.45)
- ni(nil— 1) <; %: (e(Xijy) + o(Xij)) — Zg;g (p(Xijy) + SO(Xijg)))-
_ ﬁ <2ni ; o(Xiy,) — 2 ; gp(xijl)) .
= nl nZ 2p(Xi51) (2.46)
Hence, ]1
Z% <Az-m;?— D Zﬁ% (p(Xis,) + i;xij» —Vp)?
> (P(Xin) = 5 20 (Xis) :;o(Xm) — LY (X))
B jzl (ZSO(XW - %52:?;1 20(Xy5,))°

since >0 (20(Xy5,) —

Let Hz'j = w for ]

Wi

Ji Ji
- AN 2
& (290(Xij1) B ‘/1)2 . Z (290(le1> - VZ)
2 £ w? : w?
J1 J1
n; (20(Xi;,) — Vi)?
(E - 1) Z W2‘2
J1
n; - (QSO(Xijl) - Vz)2 nz(‘}; - ‘/;)2

Vi) =254

(20(Xi,) — Vi)? + na(V; — V;)2
1127"' , T and Hz = (Hil,HZ‘Q,"' ,Hmi)/ for ¢
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1,2,--+, K. Thus, equation (2.47) can be rewritten in matrix form as

~

(% — ) [Z (2e(Xiy) = Vi)* (Vi = Vi)

w? w?

j=1 i
. 1
- & [H/H, - H,— I H,
1

- H’(E — (I3 )H; (2.48)
Let H= (H},H), -- ,H} ). Therefore, SJ can be written in the matrix form as
S5 = ZZ 5" (s = Vi

1772
1

= ZH’ (&1 I——Jnl)Hl

(%_1)(1711 _n_ll']nl) 0 0
BT 0 (7122 - 1)(ITL2 - nLQJnQ) 0 H
0 0 s (= DT = - Tng)
— H'B;H. (2.49)

Now, we need to show that H asymptotically follows multivariate normal distribu-
tion.

Note that E(2¢(X;j,)) = E’(L > 20(Xij)) = E(V;) ~ V; since fi; is asymptoti-
cally unbiased by equation (2.21). Also Var(2p(X,;,)) = + Do Var(2e(Xy;,)) =
n;Var(+ Zh 1 20(X55,)) = n;Var(V;) = w?. By the central limit theorem of U-

20(Xij)=Vi

i

statistics, H;; = is distributed asymptotically normal with mean 0 and
variance 1. Since the H;;’s are independent, then H follows asymptotically multivari-

ate normal distribution with mean 0 and variance I.

(i) If n; = n for all i, then it is easy to verify that Bs/(5 — 1) is a symmetric and
idempotent matrix with rank 3./ n; — K = N — K = K(n — 1). Therefore,

S9/(% —1) is asymptotically x* with degrees of freedom N — K = K(n—1). By
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Lemma (2.7), the sum of square within SSW is asymptotically x? with degrees
of freedom K(n —1).

(ii) If n; # n; for some ¢ # j, Bs is symmetric, although not idempotent. Thus,
there exists HBsH = Z?:l w22, where my, m, -+, Ty are the eigenvalues
of By, 2z ~ N(0,1) and are independent. Let ¢g = 3%, m;/d, then by [42],
SY/co = HB3H/cy ~ x% By Lemma (2.7), the sum of squares within (SSW)

is asymptotically y? with degrees of freedom d.

|
Define the F-test statistics of kernel based nonparametric test for location param-

eters as:

MSB  SSB/(K —1)
MSW — SSW/df,
SO S () — 1)

i=1

= i - , 2.50
(i o> (A, — Va2 Jwi®) [ df,, (2:50)

where df,, is given in equation (2.43).

F =

Theorem 2.9 If for any i = 1,2,..., K, n;h} — 0, n;h; — oo as miinni — 00,
[ a2 f2(x)de < oo and if f;(-) is twice differentiable, then under null hypothesis, F,
in equation (2.50) follows asymptotically F distribution with degrees of freedom K —1
and df,. Under the alternative, F; follows asymptotically non-central F(K — 1, df,,)

with non-centrality parameter 1y described in equation (2.29).

Proof: Theorem (2.6) shows that SSB follows asymptotically x? with degrees of

freedom K — 1 under null hypothesis and asymptotically non-central x?(K — 1) under

the alternative. Furthermore, Theorem (2.8) implies that the sum of squares within

SSW is asymptotically x* with degrees of freedom K (n— 1) for balanced data and y?

with degrees of freedom d for unbalanced data, where d is the number of eigenvalues
MSB

of B3 in equation (2.49). In order to show F; = 755 follows asymptotically F
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distribution under null hypothesis and non-central F distribution under alternative,
we just need to show SSB and SSW are asymptotically independent as minn; — oo.
In theorem (2.6), S5, which converges in probability to SSB, is written as a quadratic

form S = Uy'BaUs,. Note that under the null hypothesis

N 1
T o (Vi = V) e = —=Hiju (2.51)
Hence, SY can also be written as
LHj.,
0 L. | :
52 = (\/_n—lHl.]nu ) \/T—KHK.]nK)B2
_ - e -
1 - 1
Fdm 0 0 Zdn, 0 0
0 s, 0 ZHh, 0
= H v B, v - |H
1 - 1
| 0 0 g |0 0 Jadni
“ wB,H. (2.52)
Recall from Theorem (2.8) that S = H'B3H. And it is easy to check that
\/%j;,l 0 Tt O
0 Lj/n 0
BB, = 0« B, V2t =0. (2.53)
0 0 .. in;IK

Thus, S9 and S are independent. By Lemma (2.5) and Lemma (2.7), SSB and

SSW are asymptotically independent under null hypothesis Hy: V) = Vo = ... = Vk.
Hence, under null hypothesis, F; = ]\z\jgg/ in equation (2.50) follows asymptotically F

distribution with degrees of freedom K —1 and K (n—1) for balanced data and F(K —

MSB
MSW

1,d) for unbalanced data. Under the alternative, F; = follows asymptotically
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non-central F'(K — 1, K(n — 1)) for balanced data, and non-central F'(K — 1,d) for

unbalanced data, with non-centrality parameter 1 described in equation (2.29).

2.3 Simulation Study for Evaluating the Power of Kernel-based

Nonparametric One-way ANOVA

In this section, powers of the kernel-based nonparametric scale tests and location
tests, i.e. ANOVA tests, are evaluated via simulation. To better demonstrate the
properties of kernel-based nonparametric ANOVA tests compared with the tradi-
tional parametric ANOVA tests, the performances of both tests on data from various

distributions are studied.

2.3.1 Simulation Study for Scale Tests

As stated in Section 1.1.1, Levene’s test for testing homogeneity of variance is not sen-
sitive to the departure of normality, as Bartlett’s is. So we compared the performance
of Levene’s test with our new proposed nonparametric scale test in 3 distinctive cases

listed in Table 2.1.

Table 2.1: Three Cases

Distribution
Case 1 Normal Distribution
Case 11 Cauchy Distribution
Case III | Three-parameter Lognormal Distribution

In case study I, groups of data coming from Normal distributions with different
variances are tested with Levene’s test (called Parametric test later) and kernel-based

nonparametric scale test (called Nonparametric test later). In case study II, groups
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of data coming from Cauchy distributions with different scale parameters are tested
as in Case L. It is known that Cauchy distribution is a heavy-tailed distribution com-
pared to normal distribution. The histogram of Cauchy distribution with location
parameter 10 and scale parameter 10 is given in Figure 2.1. As shown in Figure
2.1, the data from Cauchy (10,10) ranges from around -15000 to 20000, which are
far more spread than normal distribution. In case study III, groups of data come
from Lognormal distributions with different scale parameters are tested as in Case I.
Lognormal distributions are very important in finance and economics. For example,
it is often used to characterize stock prices in financial modeling, including pricing
and hedging. A lognormal distribution is a right skewed distribution. Figure 2.2
gives the histogram of three-parameter lognormal distributions. Figure 2.2(a) shows
a lognormal distribution with location parameter 16, scale parameter 4 and shape
parameter 3, while Figure 2.2(b) shows a lognormal distribution with location pa-
rameter 6, scale parameter 2 and shape parameter 1. Comparing Figure 2.2(a) with
2.2(b), it is obvious that the larger the shape parameter is, the stronger the skewness
is. Our goal of investigating these three cases is to study the situations that the kernel
based nonparametric scale test outperforms the Levene’s test. Since in Section 2.1 we
showed that kernel based nonparametric scale tests are asymptotic F test, another
goal of simulation study in this section is to find the sample size we need to reach an
appropriate power.

To evaluate the actual Type I error rate and the power of the Levene’s and non-
parametric scale tests proposed in Section 2.1 in the 3 cases in Table 2.1, we test the
homogeneity of scale parameters of three groups, i.e. K = 3 for each case. To obtain
the actual Type I error while setting the significant level o = 0.05, we follow the steps

below:

(1) Randomly generate 3 groups of data with balanced sample size n from N(3,1)
for Case I, Cauchy(10, 10) for Case II and Lognormal(16, 4, 3) for Case III.
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(2) Apply the Levene’s test and our scale test separately. Record the test result as

1 or 0. 1 means “reject the null hypothesis” and 0 means fail to reject.
(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.
(4) Repeat (1)-(3) for sample size n = 15,20, 25, 30, 35, 40, 45, 50, 55, 60.

The procedure to calculate the empirical power is very similar except generating 3
groups of data from 3 different distributions for each case in Step (1). The distribution

types and parameters assigned to each group in each case are listed in Table 2.2.

Table 2.2: Evaluate the Power of Scale Tests in 3 Cases

Case Groupl Group2 Group3

I N(3, 0.25) N(3, 1) N(3, 1.75)

Ir° Cauchy(10, 2) Cauchy(10, 10) Cauchy (10, 20)
I171* | Lognormal(16, 2, 3) | Lognormal(16, 4, 3) | Lognormal(16, 6, 3)

As shown in Table 2.2, in Case I?, all the three groups are from normal with the
same mean 3, but standard deviation 0.25, 1 and 1.75. The side-by-side boxplot of
the three groups in Case I is given in Figure 2.3. In Figure 2.3, the plot with the box
painted in red is the boxplot for group 1, which is generated from N(3,0.25). The plot
painted in green is the boxplot for group 2, which is generated from N(3,1). And the
plot painted in blue is the boxplot for group 3, which is generated from N (3,1.75). It
is not hard to tell that the three groups have the same central tendency, but different
variabilities.

The side-by-side boxplot of the three groups in Case 1% is given in Figure 2.4. In
Figure 2.4, the plot with the box painted in red is the boxplot for group 1, which is
generated from Cauchy(10,2). The plot painted in green is the boxplot for group 2,

which is generated from Cauchy(10,10). And the plot painted in blue is the boxplot
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Figure 2.3: Side-by-Side Boxplot for the 3 Groups in Case I*: Normal Distributions

for group 3, which is generated from Cauchy(10,20). The color of the boxes in Figure
2.4(a) is invisible, since Cauchy distribution has very fat tails. Figure 2.4(b) shows
the boxplot of the three groups after removing the extreme outliers, i.e. the points
that are smaller than the first quartile subtract 3 times inter-quartile range or bigger
than the third quartile plus 3 times inter-quartile range. It is clear to see in Figure
2.4(b) that the three groups have similar central tendency, but distinct spreadness.
The side-by-side boxplot of the three groups in Case I11° is given in Figure 2.5.
In Figure 2.5, the plot with the box painted in red is the boxplot for group 1, which is
generated from lognormal distribution with location parameter 16, scale parameter 2
and shape parameter 3, i.e. Lognormal(16,2,3). The plot painted in green is the box-
plot for group 2, which is generated from Lognormal(16,4,3). And the plot painted
in blue is the boxplot for group 3, which is generated from Lognormal(16,6,3). Simi-
lar to Figure 2.4(a), the color of the boxes in Figure 2.5(a) is invisible, since lognormal

distribution is strongly right skewed. Figure 2.5(b) shows the boxplot of the three
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Figure 2.4: Side-by-Side Boxplot for the 3 Groups in Case /7*: Cauchy Distributions

groups after removing the extreme outliers as what we did in Figure 2.4(b). It is not
easy to tell in Figure 2.5(b) whether the three groups have similar central tendency
since the distributions are strongly right skewed.

By following the similar steps as calculating the actual Type I error rates, empirical
powers can be evaluated for each case and a series of sample sizes. The simulation
results are listed in Table 2.3 - Table 2.5.

Table 2.3 shows that the actual Type I errors for both tests, either parametric
and nonparametric, are around 0.05, the significant level. As we expected, in Case
1%, Levene’s test performs a little bit better when the sample size is less than 35.
When the samples come from normal distribution, parametric tests are always the
best choice for small sample size. However, as shown in the Table 2.3, our test is as
good as the parametric test even in the normal case. The power of our nonparametric
test is around 90% when the sample size is only 20.

Table 2.4 shows that Levene’s test suffers from inflated Type I error rates when

the data come from fat-tailed distributions. Whereas, our kernel based nonparametric

38



Table 2.3: Power for the Scale Test: Case I* (Normal Distri-

bution)
Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.8002 | 0.0599 | 0.7890 0.0620
20 0.9221 | 0.0586 | 0.8982 0.0587
25 0.9737 | 0.0568 | 0.9601 0.0508
30 0.9913 | 0.0553 | 0.9837 0.0610
35 0.9980 | 0.0516 | 0.9939 0.0567
40 0.9991 | 0.0554 | 0.9979 0.0629
45 0.9998 | 0.0546 | 0.9988 0.0546
50 1.0000 | 0.0532 | 0.9997 0.0597
95 1.0000 | 0.0533 | 0.9999 0.0613
60 1.0000 | 0.0502 1.0000 0.0619

1 % Note: Given significance level: o = 0.05.

2 x Note: The Type I in the table means Actual Type I Error.
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Table 2.4: Power for the Scale Test: Case I1* (Cauchy Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type 1 | Power Type I
15 0.6743 | 0.2994 | 0.7317 0.0456
20 0.7028 | 0.2847 | 0.8220 0.0597
25 0.7155 | 0.2795 | 0.9159 0.0602
30 0.7306 | 0.2758 | 0.9523 0.0569
35 0.7506 | 0.2731 | 0.9734 0.0476
40 0.7633 | 0.2704 | 0.9805 0.0410
45 0.7748 | 0.2798 | 0.9897 0.0377
20 0.7799 | 0.2646 | 0.9933 0.0339
55 0.7852 | 0.2659 | 0.9967 0.0339
60 0.7928 | 0.2697 | 0.9991 0.0329

1 % Note: Given significance level: a = 0.05.

2 ¥ Note: The Type I in the table means Actual Type I Error.
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Figure 2.5: Side-by-Side Boxplot for the 3 Groups in Case [11*: Lognormal Distri-

butions

tests” actual type I error rates are close to a = 0.05 in Case 1%, though it tends
to be a little bit conservative when sample size is large (n > 40). However, this
little conservative does not affect the powerfulness of our test when sample size is
large. The power of the nonparametric test is 98% or above when sample size is
beyond 40. Although Levene’s test is robust to the departure from normality, it
losses power very quickly when the distribution has thick tails. The kernel based
nonparametric scale test significantly outperforms Levene’s test for the heavy-tailed
underlying distribution, such as Cauchy distribution.

Table 2.5 shows that Levene’s test severely suffers from inflated Type I errors
when the data come from strongly skewed distributions. The actually type I error
of Levene’s test is up to 0.6 when the nominal Type I error is just 0.05. The kernel
based nonparametric test’s actual type I errors are closer to a = 0.05 compare the
ones of Levene’s test in Case I11¢. Moreover, as the sample size increases, the prob-

lem of inflated Type I errors becomes weaker and weaker. When the sample size is
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Table 2.5: Power for the Scale Test: Case I11* (Lognormal Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type 1 | Power Type I
15 0.8671 | 0.5874 | 0.8458 0.1445
20 0.8792 | 0.5659 | 0.9192 0.1016
25 0.9021 | 0.5740 | 0.9591 0.0851
30 0.9130 | 0.5518 | 0.9799 0.0790
35 0.9196 | 0.5527 | 0.9927 0.0668
40 0.9304 | 0.5526 | 0.9971 0.0598
45 0.9381 | 0.5480 | 0.9991 0.0583
50 0.9424 | 0.5448 | 0.9995 0.0596
55 0.9477 | 0.5344 | 0.9998 0.0590
60 0.9524 | 0.5354 | 0.9998 0.0568

1 % Note: Given significance level: a = 0.05.

2 ¥ Note: The Type I in the table means Actual Type I Error.
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40 or above, the actual type I error of the test is very close to 0.05. Table 2.5 also
demonstrates that the nonparametric test is very powerful. When the sample size is
30, the power is over 90%. To conclude, the kernel based nonparametric scale test sig-
nificantly outperforms Levene’s test for the strongly skewed underlying distribution,
such as Lognormal distribution.

Figure 2.6 demonstrates the power of the parametric and the new nonparametric
test with respect to sample size when the underlying distribution of the samples are
Normal, Cauchy and Lognormal distribution. In Figure 2.6, the solid line represents
the power of the parametric scale test (i.e. Levene’s test), while the dashed line
represents the power of our kernel based nonparametric test. The red line (solid and
dashed) represents the power of test in Case I* when the underlying distribution is
Normal distribution. The green line (solid and dashed) represents the power of test
in Case I1* when the underlying distribution is Cauchy distribution. And the blue
line (solid and dashed) represents the power of test in Case I77/* when the underlying
distribution is Lognormal distribution.

Figure 2.6(a) compares the power of parametric and nonparametric scale test on
the three groups in Case I®. It shows that the powers of both tests increase sharply
to around 95% when sample size goes from 15 to 25 in Case [*. Parametric scale test
performs a little bit better than the nonparametric scale test we proposed for small
sample size in Case I®, which confirms what we withdrawn from Table 2.3. Figure
2.6(b) compares the power of parametric and nonparametric scale test on the three
groups in Case [1*. It is shown in Figure 2.6(b) that the power of the parameter
test does not increase as much as the nonparametric test as the sample size increases.
The power of nonparametric test has a steep increase especially when sample size
goes from 15 to 25 in Case I1*. Figure 2.6(c) compares the power of parametric and
nonparametric scale test on the three groups in Case I11*. It is indicated that the

power of parametric test is higher than the nonparametric test when the sample size
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scale test on the three groups in Case [*, I1* and I11°.
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is very small, then the relationship is reversed when the sample size goes beyond 16
or so. Like in Case 11, the power of nonparametric test increases way faster than the
parametric test in Case I17°. Figure 2.6(d) combines Figure (2.6(a))(2.6(b))(2.6(c))
in one graph, so it is easier to compare the powers of the either test throughout the
3 cases. The relationship of three solid lines infers that the power of the parametric
scale test is far more severely hurt by fat tails or extreme outliers than the skewness
does. The relationship of three dashed lines infers that the power of the nonparametric
scale test is not sensitive to the fat tails or the skewness. As long as the sample size

is large, it is a very powerful test.

2.3.2 Simulation Study for the One-way ANOVA Tests

In this section we will evaluate the performance of our new proposed nonparametric
location test, i.e. kernel based nonparametric one-way ANOVA test, and compare
with the traditional parametric F test. Like the performance study of scale test, the
power of nonparametric and parametric ANOVA tests in 3 distinctive cases listed
in Table 2.1 are studies as well. To evaluate the actual Type I error rate and the
power of the parametric F test and nonparametric location tests proposed in section
2.2 in the 3 cases in Table 2.1, we test the equality of location parameters of three
groups, i.e. K = 3 for each case. To obtain the actual Type I error while setting the

significant level a = 0.05, we follow the steps below:

(1) Randomly generate 3 groups of data with balanced sample size n from N(3,1)
for Case I, Cauchy(10, 2) for Case II and Lognormal(6, 2, 1) for Case III.

(2) Apply the F test and the location test separately. Keep the test result as 1 or

0. 1 means “reject the null hypothesis” and 0 means fail to reject.
(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.
(4) Repeat (1) -(3) for sample size n = 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.
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The procedure to calculate the empirical power is very similar except generating 3
groups of data from 3 different distributions for each case in Step (1). The distribution

types and parameters assigned to each group in each case are listed in Table 2.6.

Table 2.6: Evaluate the Power of ANOVA Tests in 3 Cases

Case Groupl Group2 Group3

It N(2.5, 1) N(3, 1) N(3.5, 1)

Ir° Cauchy(2, 2) Cauchy(10, 2) Cauchy (20, 2)
II1% | Lognormal(2, 2, 1) | Lognormal(6, 2, 1) | Lognormal(10, 2, 1)

As shown in Table 2.6, in Case I°, all the three groups are from normal with the
same standard deviation 1, but mean 2.5, 3 and 3.5. The side-by-side boxplot of the
three groups in Case I° is given in Figure 2.7. In Figure 2.7, the plot with the box
painted in red is the boxplot for group 1, which is generated from N(2.5,1). The plot
painted in green is the boxplot for group 2, which is generated from N(3,1). And
the plot painted in blue is the boxplot for group 3, which is generated from N(3.5,1).
It is not hard to tell that the three groups have the same variability, but different
centralities.

The side-by-side boxplot of the three groups in Case 11 is given in Figure 2.8. In
Figure 2.8, the plot with the box painted in red is the boxplot for group 1, which is
generated from Cauchy(2,2). The plot painted in green is the boxplot for group 2,
which is generated from Cauchy(10,2). And the plot painted in blue is the boxplot
for group 3, which is generated from Cauchy(20,2). The color of the boxes in Figure
2.8(a) is invisible, since Cauchy distribution has very fat tails. Figure 2.8(b) shows
the boxplot of the three groups when kicking out the extreme outliers, i.e. the points
that are smaller than the first quartile subtract 3 times inter-quartile range or bigger

than the third quartile plus 3 times inter-quartile range. It is clear to see in Figure
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Figure 2.7: Side-by-Side Boxplot for the 3 Groups in Case I°: Normal Distributions

2.8(b) that the three groups have the same variability, but different centralities.

The side-by-side boxplot of the three groups in Case I11° is given in Figure 2.9. In
Figure 2.9, the plot with the box painted in red is the boxplot for group 1, which is gen-
erated from lognormal distribution with location parameter 16, scale parameter 2 and
shape parameter 3, i.e. Lognormal(2,2,1). The plot painted in green is the boxplot
for group 2, which is generated from Lognormal(6,2,1). And the plot painted in blue
is the boxplot for group 3, which is generated from Lognormal(10,2,1). Although
the distributions are strongly right skewed, the difference in central measurements is
still visible from Figure 2.9.

Similar to the scale test, empirical powers of the location or ANOVA test can be
evaluated for each case and a series of sample sizes. The simulation results are listed
in Table 2.7 - Table 2.9.

Table 2.7 shows that the actual Type I errors for both tests, either parametric

and nonparametric, are around 0.05, the significance level. As we expected, in Case
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Table 2.7: Power for the ANOVA Test: Case I’ (Normal Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.6511 | 0.0501 | 0.6161 0.0471
20 0.7980 | 0.0515 | 0.7719 0.0472
25 0.8820 | 0.0468 | 0.8622 0.0461
30 0.9325 | 0.0495 | 0.9252 0.0487
35 0.9676 | 0.0463 | 0.9590 0.0457
40 0.9822 | 0.0503 | 0.9800 0.0484
45 0.9914 | 0.0495 | 0.9874 0.0469
50 0.9961 | 0.0505 | 0.9946 0.0491
95 0.9978 | 0.0499 | 0.9972 0.0455
60 0.9991 | 0.0543 | 0.9991 0.0508
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[, parametric F test performs a little bit better when the sample size is less than 40.
When the samples come from normal distribution, parametric tests are always the
best choice for small sample size. However, as shown in the Table 2.7, our test is as
good as the parametric test even in the normal case. The power of our nonparametric

ANOVA test is around 92% when the sample size is 30.

Table 2.8: Power for the ANOVA Test: Case I1°(Cauchy Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type 1 | Power Type I
15 0.6224 | 0.0177 | 0.7798 0.0110
20 0.6308 | 0.0177 | 0.7838 0.0156
25 0.6357 | 0.0160 | 0.8004 0.0157
30 0.6208 | 0.0184 | 0.8181 0.0155
35 0.6358 | 0.0181 | 0.8404 0.0141
40 0.6236 | 0.0177 | 0.8555 0.0136
45 0.6407 | 0.0199 | 0.8719 0.0165
50 0.6390 | 0.0171 | 0.8780 0.0156
55 0.6442 | 0.0171 | 0.8887 0.0166
60 0.641 0.0169 | 0.8962 0.0188

1 % Note: Given significance level: o = 0.05.

2 % Note: The Type I in the table means Actual Type I Error.

Table 2.8 shows that both parametric and nonparametric test in Case I1° are
equally conservative since the actual Type I errors for both tests are around 0.01-
0.02, which is less than the significance level a = 0.05. It is known that conservative
tests to some degree reduce the power. However, our kernel based nonparametric test

still get pretty decent power compared to the parametric F test, around 86% when
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the sample size is 40. Moreover, the power of the our nonparametric test in Case 11°
increases as the sample size increases, although not as fast as in Case I® and I11°.
The parameter test does not benefit from the growth of sample size. So the kernel
based nonparametric ANOVA test significantly outperforms parametric ANOVA test

for the heavy-tailed underlying distribution, such as Cauchy distribution.

Table 2.9: Power for the ANOVA Test: Case I11° (Lognormal Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type 1l | Power Type I
15 0.3202 | 0.0349 | 0.3898 0.0413
20 0.3913 | 0.0361 | 0.4854 0.0377
25 0.4482 | 0.0392 | 0.5866 0.0379
30 0.4848 | 0.0408 | 0.6741 0.0399
35 0.5407 | 0.0387 | 0.7434 0.0425
40 0.5945 | 0.0403 | 0.8093 0.0433
45 0.6340 | 0.0407 | 0.8562 0.0426
20 0.6671 | 0.0442 | 0.8917 0.0420
95 0.6987 | 0.0415 | 0.9203 0.0457
60 0.7336 | 0.0406 | 0.9423 0.0456

Table 2.9 shows that the parametric and nonparametric F test in Case I11° are
a little bit conservative since the actual Type I errors for both tests are around 0.04.
But the kernel based nonparametric test tends to be less conservative as sample size
increases. Furthermore, as the sample size increases, the power of the nonparametric
test grows faster than the parametric test. Table 2.9 also demonstrates that the
nonparametric test is very powerful. When the sample size is 40, the power of the
nonparametric test is over 80%, while the power of the parametric test is below 60%.

To conclude, the kernel based nonparametric ANOVA test significantly outperforms
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tradition F test for the strongly skewed underlying distribution, such as lognormal
distribution.

Figure 2.10 demonstrates the power of the parametric and nonparametric test with
respect to sample size when the underlying distribution of the samples are normal,
cauchy and lognormal distribution. In Figure 2.10, the solid line represents the power
of the parametric location test (i.e. traditional F test), while the dashed line repre-
sents the power of our kernel based nonparametric ANOVA test. The red line (solid
and dashed) represents the power of test in Case I when the underlying distribution
is normal distribution. The green line (solid and dashed) represents the power of test
in Case II® when the underlying distribution is Cauchy distribution. And the blue
line (solid and dashed) represents the power of test in Case I71° when the underlying
distribution is lognormal distribution.

Figure 2.10(a) compares the power of parametric and nonparametric ANOVA test
on the three groups in Case I°. It shows that the powers of both tests increase sharply
to around 95% when sample size goes from 15 to 30 in Case I°. Parametric ANOVA
test performs a little bit better than the kernel based nonparametric ANOVA test
we proposed in Case I°, which is consistent with what we concluded from Table 2.7.
Figure 2.10(b) compares the power of parametric and nonparametric scale test on the
three groups in Case I1°. It is shown in Figure 2.10(b) that the power of our nonpara-
metric ANOVA test grows as the sample size increases, while the power of parametric
ANOVA test almost keeps constant in Case I1°. Figure 2.10(c) compares the power
of parametric and nonparametric scale test on the three groups in Case I71°. It is in-
dicated that the power of nonparametric test increase way faster than the parametric
test in Case I11°. Figure 2.10(d) combines Figure (2.10(a))(2.10(b))(2.10(c)) in one
graph, so it is easier to compare the powers of the either test throughout the 3 cases.
The relationship of three solid lines infers that the power of the parametric ANOVA

test is far more severely hurt by fat tails or extreme outliers than the skewness does.
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Figure 2.10: (a) Power of the parametric and nonparametric ANOVA test on the
three groups in Case I (b) Power of the parametric and nonparametric ANOVA
test on the three groups in Case I1° (c) Power of the parametric and nonparametric
ANOVA test on the three groups in Case I1I° (d) Power of the parametric and

nonparametric ANOVA test on the three groups in Case I°, I1° and I11°.
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If the data come from a skewed distribution, large sample size leads to better power.
However, if the data come from a fat-tailed distribution, large sample size would not
make any improvement in power. The relationship of three dashed lines infers that
the power of the nonparametric one-way ANOVA test is not sensitive to the fat tails

or the skewness. Larger sample size always helps.

2.4 One-way Kernel Based Nonparametric Test for Shape Parameters

The parameter @ is called shape parameter if it satisfies fo(z) = 0291 f1,(2?), where

f1s is the base density. Thus, if fi(z) = ;2% 1 fi (2%) for i =1,2,--- | K, then

eff(w)de = 607 [ «* 7 f (a")do
/ /

_ / yF2(y)dy. (2.54)
Let W = [yfE(y)dy, then V; = 6;W. Thus, testing Hy: 6; = 0y = -+ = O versus
H,: 0; # 0, for any ¢ # j is equivalent to test Hy: Vi = Vo = .-+ = Vi versus Hy:

Vi # V;. Note that the kernel estimate of V; is given in equation (2.19). Therefore,
the test statistic for testing shape parameters is exactly the same as the location

parameters.
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CHAPTER 3
Two-way Kernel Based Nonparametric ANOVA

Assume X;j;; comes from a distribution with probability density function f;;(x) ,
where ¢ = 1,2,...,r, 7 =1,2,...,cand k = 1,2,...,n;;. Define p;; and o;; as the

location and scale parameter of f;;(x). That is to say, the following equation holds.

fij(x) = —f00< 'MU) (3.1)

4]

where fyo is the base density.

In Ahmad and Amezziane [2], the location and scale parameters can be written as:
- Uijqfooox fj(x)dx - ffooo  fio(x)dx)
K ffooo foo(z)da 7

(3.2)

and
o — ffooo foo(@)dzx
i T o
f_oo ZQJ(x)alx

We can test the homogeneity of scale parameters among the rc cells by using the

(3.3)

test statistics proposed in Chapter 2.

3.1 Two-way Kernel Based Nonparametric Test for Location

Parameters with Equal Scale Parameter

Under the assumption of homogeneity of scale parameters, i.e. 0;; = o for all ¢ and

J, we have
o(J 7 afi(@)de — [7 afs(x)dw)
Hij = < 12 : (3.4)
f,oo foo(@)dz
= [ xf? 0 ; 0 %

Define Vi; = [ xf7(x)dx, CY = s and Oy = —Fmras. Then,

can be rewritten as
Hij = C?Vij +C3. (3.5)
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Consider the two way layout: p;; = p+ oy + B85 + 745, where p is the overall
location, «; is the i row effect, 3; is the j* column effect and ;; is the interaction

effect of i row and j** column. The decomposition is not unique, so we impose the

following restrictions: ZZ w2 ;= 0, >, 7 2y ﬁ] = 0 and ZZ wQ i = ) %%j =0,
ij

where \;; =  lim " and N = > jMij- Thus, we can infer that
ming, ; 145 —»00
Zj )"ij,uij/w?j
pto = =5 (3.6)
Zj )‘ij/wij
Niiflij | w?
p+ B = M’ (3.7)

> )\ij/wzzj
. Do s Nijhig W (3.8)
> Zj Aij/ng

By plugging (3.5) into equations (3.6-3.8), we obtain

pta; = OV, +C3, (3.9)
p+ B = CYV;+Cy, (3.10)
p o= CYV.+C3, (3.11)
where
o 2V
2. ml 9
- > mij Vi
o D0 2 mijVi
’ m. ’
= N /w, m = Mmij, myj = ;mj, and m_ = 3,5 mi;. Thus, by some
algebra, we have
a = CY(Vi. = V), (3.12)
B = CYV; =V, (3.13)

Yij = pig— (B +ai) = (u+ By + p

= C)(Vij = Vi =V, + V). (3.14)



Thus, the hypothesis for testing homogeneous row effects, i.e. Hy: a; = 0 for all ¢
versus H; : a; # 0 for some i, becomes Hy : V; = V. for all i versus H, : V; # V._ for
some 7. Similarly, the hypothesis for testing homogeneous column effects, i.e. Hy :
B; = 0 for all j versus H; : 8; # 0 for some j, becomes Hy : V; = V_for all j versus
H: ‘7.]' £ V. for some j, and the hypothesis for testing the homogeneous interaction
of the row and column effects, i.e. Hy : v;; = 0 for all 7, j versus H; : v;; # 0 for some
i, 7, becomes Hy : Vij — Vi, —V;4+ V. = 0for all i, j versus H, : Vi; —V;. = V,; 4+ V. #0

for some 1, j.

3.1.1 Kernel Based Nonparametric Test for Main Effects

Consider the nonparametric kernel estimate of V;, denoted as \A/Z-j, where

~ 1 Xijk, + Xijr Xijky — Xijk
(o o) (K)o
T ng(ng — hy 2 ,gi 2 hij

Lemma 3.1 If for anyi=1,2,--- ,r, 5 =1,2,--- , ¢, njjh;; — 0o as minn;; — 00,
/L?]

Juf?(u)du < 0o and [u®f(u)du < oo, then

A

d
Vi (Vij = Vig) = N(0,w3), (3.16)

as rrzlznnw — 00, where, wi; = 4{ [ 2 f5(x)dx — ([ xf}(x)dr)?}.

Proof: The proof is similar to Lemma 2.4.
|
Consider the test statistic for row effect first. To test Hy : V; = V_ for all i, define
the Row Sum of Squares (SSR) as

SSR = Zm (v - V,)Q, (3.17)

=1

where, V; =

>, miVig ¢ S miVig o s A A ~2 a2
Gy Vo= S iy = Y0y, My = ng /wp; and W) is a

consistent estimate of wfj

57



To obtain the asymptotic distribution of SSR, another auxiliary variable is defined

as follows:
! 2
Sh=dmi (Vi -V7) (3.13)
=1
L

_TC‘. P Nij ~2 P2 0o _
Lemma 3.2 Let N = ;;”m- If Nij = mmlyngl_}oo N and w;; — w;;, then Sp

P, .
SSR = 0, as minn,; ; — oo.
1/7]

Proof: This can be proved directly by applying Slutsky Theorem [10].

Theorem 3.3 Under the null hypothesis, Hy : V; = V., if for anyi=1,2,--- ,r and
ji=12,--- ¢, nijh?j — 0, nj;h;; — oo as nzlinn” — 00, and if [a? %(x)dx < 00,
then SSR is asymptotically x*(r — 1).

Proof: Set 7}(]-3) =\ /N)\ij(f/ij — Vij)/wij. Then Ti(j?’) ~ N(0,1) as N — oo by Lemma

(3.1). Note that, under the null hypothesis,
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s = T -v)
(G ARa)
= ;mi.(wx—m2+<v:*—v>2—2<v:—v;><v*—v>)
- ﬁ;mmv:—vz)%m..(v..*—V>2—2<v*—v>ilmzme"jizf %)
- li;m,(v;%—vn?—m(v*—m?

ZJ1 -
Wij, Wiy Wijy  Wijs

N VN WVM A o v N
- Z Z Z — Vi) 2 (Vigy = Viga) Aij Vi (3.19)
=1 j1= 132 1 &

N)\Z2.72

om. Z Z Z Z \/m Z1J1 - ‘/11]1) (‘/;2J2 - ‘/izjz) )\iljl )‘izjz .

W; Wiriy Wi
m. i1=1142=1j1=1 jo=1 Wirja i272 11 i2]2

Let Us = (Tl(f’), T ... | T'Y), then the first term of (3.19) can written as a quadratic
form Us'M®Us, and the second term of (3.19) can written as a quadratic form

U3’ M@ Uj;, where

_mlLMH 0 0o |
0 0 N Mee
M, NMy o M,
M@ | M M - Mar , (3.21)
Mo A M M
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and

Aitn/ Aj1 Aity/ Aj2 o At/ Nje

Wi1wj1 wi1wj2 WilWje
VAiza/Aj1 Ai2n/ Aj2 o Aizn/ Nje
Mij — 12Wj51 12W52 12Wj5c (322)

Vdien/Aj1 Ve A2 L Vicy/Aje

WicWj1 WicWs;2 WicWjc

forall i = 1,2,--- ,r, j = 1,2,--- ,c¢. Thus, S% can be rewritten by the following

quadratic form:

5% = Us/MYU; — U/ MU,
(% - mi“)Mll _mﬂ”Mlz e _ml“er
_ U3/ _m_M21 (% - %)M22 —%Mzr U3
—75 M;, —i”Mrz <7rjz\: - mi)Mrr
Y UyBsUs. (3.23)

It can easily be shown that Bs is symmetric and idempotent. Thus, we obtain that

rank(Bs) = tmce(Bg,)

- Satmea

Ta=

r c
2 my
1 j=1

— -1 (3.24)

Uj follows approximately multivariate normal with mean 0 and variance I, since
7—;(]'3)’8 independently follow univariate standard normal distribution. Therefore, S is
asymptotically x? with degrees of freedom r — 1 under Hy. By Lemma (3.2), SSR is

asymptotically y? with degrees of freedom r — 1 under H,.

[ |
Let Ajjkik, = hlij ( Jk12 "“Q)K< Jklhij ”2). Then V;; can be rewritten as:
‘/ij Z Z Az]k1k2 (325)
nij(nij —

k1#k2
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And the Within cells Sum of Squares (SSW) is given by

22:1 25:1 Z Zkgékg (Aijk1k2 - ‘A/;J)Z/wzzj

SSW = 3.26
o , (3.20
where
5 — 1 if n; =mn for all i
Cuy, = (3.27)
(2) .
o otherwise,
and 082) =%, 1(2) /dz, and 7r12 , 7T§2), e 7'('((1? are all the eigenvalues of Bg, where
(% - 1)<In11 - nil’]nu) 0 0
B 0 (%_1)“7112 _%Jnm) 0
6=
0 0 T <% - 1)(In7c - nic Jn'r(;)
] (3.28)

To obtain the asymptotic distribution of SSW, another auxiliary variable is defined

as follows:

Shy = ZZZ D Aijars — Vig) . (3.29)

=1 j=1 k1#£k2

_ ~\ _ . Tij D, 0

Lemma 3.4 Let N = 22”” If Nij = minglll_r?_}oo N and w .= ww, then Sy,
i=1 j
Cuy SSW N 0, as minn, ; — oo.
irj

Proof: They can be proved directly by applying Slutsky Theorem [10]. [ |
Theorem 3.5 For anyi=1,2,---,7 and j =1,2,--- ,c, if nghj; = 0, nghy; — oo

as minn;; — oo, and if [ 2 f; ( Ydx < oo, then SSW follows asymptotically x* with
’]

degrees of freedom df,,,, where,

re(n—1) if n;, =n for all i,
TR (3.30)
dsy otherwise.
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Proof: By Hajek projection [16], A;jkk, can be decomposed into the sum of condi-

tional expected values and a residual as follows:

Aijrrky = E(Aijiiko| Xijrr ) + E(Aijrka| Xigy) + Op(7). (3.31)

Set ©(Xijk,) = E(Aijriky | Xijry) and ©(Xijn,) = E(Aijiyky | Xijr,) , thus

V;j = § E AlﬂﬂkQ
nw n”

k1#k2

Z > (e(Xign) + ¢ (Xijna)) (3.32)

k1 ks

- (n (ZZ ow)K)) =30 3 (o) + oK)
EAS) k1 ke
— nm(”w (ZHUZS@ ijkr ) 2%:90(Xijk1))-

Q

ni;(ni; —

1 &
= FZQSO(XUIH) (3.33)
1 &y
Hence,
Ao N
3 Z mklkz— Vi) 3 Z Xijr,) + o(Xijry) — Vij)
~ 2
k1#£ko kl;ekQ wij

a0 (X, ) + 0(Xighy) = 7 20 0(Xijiy))?

- yy e ”
w2

k1 ke v

(2<P(Xz‘jk1) - n—lj 21]:1 290(Xijk1))
_ Z ~

k1 ij

2

_ 27%] Z (@(lekl) - Z 90 Z]kl . Z 2%0 Z]k1 ‘/Z )2

k1 wz’j
~ N
_ oy 3 2p(Xijr) = Viy)* > (QSO(Xz'jkl) — Vij)
kl v k‘l 1]
1 (290(Xl kl) Vl )2
= G -0X P
k1 ij
n; A (20(Xigw) = Vig)® iy (Vig = Viy)?
_ (73 1) [Z sz. J J ;2 J
k=1 ) 1]
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Let Hijk = w fOI' k = 1,27" . ,nij and Hij = (Hij17HZ‘j2, s >Hijnij)/ fOl"

)

i=1,2,---,rand j = 1,2,--- ,c. Thus, equation(3.34) can be rewritten in matrix
form as
(i 1)[ N (20(Xig,) = Vig)® ng(Vyy = Vig)®
2 : w2, w2
=1 ij ij

1
= (n2] —1) [H%Hij - HQjFijHz’j]

%)

T 1

Let H= (H};,H),, - ,H..). Therefore, S{}; can be written in the matrix form as
T c Nij ) 9
S = D D (Aijpars — Vig)* i
=1 j=1 k1#£k2
r c ng: 1
i=1 j=1 ij
= H'BGH, (3.36)

where, Bg is given in equation (3.28).
Now we need to show that H follows asymptotically multivariate normal distri-
bution. Note that E(2¢0(Xijx,)) = E(= 307 20(Xijr,)) = E(f/w) ~ V,; since fi;; is

ni; 2aki=1

asymptotically unbiased by Lemma (3.1). Also Var(2¢(Xji,)) = % S Var(20(X, ) =

M5 &

nijVar(n%_]_ 1 20(Xijr,)) = ng;Var(Vi;) = wi. By the central limit theorem of U-

statistics, Hyjp = MXZ& is distributed asymptotically normal with mean 0 and
ij
variance 1. Since the H;j;;’s are independent, then H follows asymptotically multi-

variate normal distribution with mean 0 and variance I.

(i) If ny; = n for all 4 and j, then it is easy to verify that Bg/(§ —1) is a symmetric
and idempotent matrix with rank Y37 >7°  n;; —rc = N —re = re(n — 1).
Therefore, Sy, /(% — 1) is asymptotically x* with degrees of freedom N —rc¢ =
re(n — 1). By Lemma(3.4), the sum of square within SSW is asymptotically

x? with degrees of freedom rc(n — 1).

63



(i) If n;; # nyj for some ¢ # i’ or j # j', Bg is symmetric, although not idempotent.
Thus, there exists HBsH = ZZ 1 1(2) 2 where 7r£2), 7r§2), N 7T((12) are the
eigenvalues of Bg, z; ~ N(0,1) and are independent. Let 0(2) ZZ 1 l / ds,
then by [42], $9/c) = H'BeH/c? ~ X5, By Lemma (3.4), the sum of square
within SSW is asymptotically x? with degrees of freedom ds, where dy is given

in Theorem (3.5).

|
Define the F-test statistics of kernel based nonparametric test for location param-

eters of the row effect as:

MSR  SSR/(r—1)
Fp, = -
MSW ~— SSw/df,,

Sy (V=) =)

R — S , (3.37)
(Zi:l Zj:l Z Zkl;ﬁkQ (Aijklkz - Vz’j)z/wij)/dfwz
where df,, is given in equation (3.30).
Theorem 3.6 If for anyi=1,2,--- ;7 and j = 1,2,--- ¢, nghl; = 0, nghg; — 0o

as minn;; — oo, and if [ *f; ( Ydx < oo, then under null hypothesis, Fg, in equation
,J

(3.37) follows asymptotically F distribution with degrees of freedom r — 1 and df,,

Proof: Theorem (3.3) shows that SSR follows asymptotically x* with degrees of
freedom r — 1 under null hypothesis and asymptotically non-central x*(r — 1) under
the alternative. Furthermore, Theorem (3.5) implies that SSW is asymptotically x>
with degrees of freedom rc(n — 1) for balanced data and y? with degrees of freedom

do for unbalanced data, where dy is the number of eigenvalues of Bg in equation

(3.28). In order to show Fp, = ]]\\f 5MR/ follows asymptotically F distribution under null
hypothesis and non-central F distribution under alternative, we just need to show
SSR and SSW are asymptotically independent as minn;; — 00.

Z?]

In Lemma (3.2), 5%, which converges in probability to SSR, is written as a quadratic
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form S% = Us'BsUjs. Note that

3 ~ 1 .
T iy (Vi — Vi) Jwij = ﬁngan- (3.38)
Hence, S% can also be written as
L H.j
Nh 11Jn11
1 1
SO = ——H] .n y T /.n B :
R (\/n_]_l 11J 11 \/n—rc T’c-] rc) 5
1 /s
\/m TC-]n'rc
- — / - —
TlLllj;’Lll 0 O Tillj;lll 0 O
1 s 1 s
_ H/ 0 \/@Jnm O B5 0 \/@sz 0 H
0 0 'rllrcj;lrc 0 0 717,7«Cj;11"c
“ wB.H. (3.39)
ecall from theorem (3.5) that = ¢H. And i1t 1s easy to check that
Recall f h 3.5) th ng H'B¢H. And it i y heck th
illj;&l 0 0
0 L 0
B¢B; = 0 % B; Vit = 0. (3.40)
1 s
i O 0 \/m.]n,rc-

Thus, S% and SY, are independent. By Lemma (3.2) and Lemma (3.4), SSR and SSW

are asymptotically independent under null hypothesis V; = V_ for all i. Hence, under

MSR

null hypothesis, Fp,

in equation (3.37) follows asymptotically F distribution

MSW

with degrees of freedom r — 1 and re(n — 1) for balanced data and F(r — 1,dy) for
unbalanced data.
|
Similarly, to test the column effect, i.e. Hy : Vj =V _for all j, define the Column
Sum of Squares (SSC) as
ssc =Y i, (712

Jj=1

(3.41)
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where Vj = % and m; = ) ,7,;. Then, the F-test statistics of kernel based
-

nonparametric test for location parameters of the column effect is given by

_ MSC  SSC/(c—1)
! MSW — SSw/df,,
N N 2
D g1 T (V.j - V.) /(c—1)

S - , (3.42)
(D0 2ot D0 D kg (Aigiak, — Vij)2/002) /A,

where df,,, is given by equation (3.30).

Theorem 3.7 If for any i = 1,2,---,r and j = 1,2,--- ¢, nghj; = 0, nijhy; —
00 as Hzlinn” — o0, and if [a? g(aj)dm < o0, then under null hypothesis, Fg, in
equation(3.42) follows asymptotically F distribution with degrees of freedom ¢ —1 and

df, -

Proof: Similar to Theorem (3.6).

3.1.2 Kernel Based Nonparametric Test for Interactions of Row and Col-

umn Effects

In order to test the interaction effects, i.e. Hy: V;; — Vi — Vj +V =0 for all i and
Jj, define the Interaction Sum of Squares (SSI) as
T c . N . R 2
i=1 j=1
To obtain the asymptotic distribution of SSI, another auxiliary variable is defined

as follows:

Sy = Zr: imm (sz -Vi-Vi+ V..*>27 (3.44)

i=1 j=1

where V7 = % Note that V;* and V* are defined in Section 3.1.1.

J
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Lemma 3.8 Let N = ZZnU If \ij = lim % and &% 5 w2, then S —

. ij7
. - min 75 —»00
=1 j=1

SSI 50, as minn; ; — oo.
1/"7

Proof: This can be proved directly by applying Slutsky Theorem [10].

Theorem 3.9 Under the null hypothesis, Hy : Vij — Vi = V;+ V. =0 for alli and j,

if foranyt=1,2,--- ;randj=1,2,--- ¢, nijhfj — 0, nijh;j — 00 as minn;; — oo,
0]

and if [ 2 f3(x)dx < oo, then SST is asymptotically x*((r — 1)(c — 1)).

Proof: Set ﬂ(f) = /NX;(Vi; = Vi;) Jwi;. Then ﬂ(j’) X N(0,1) as N — oo by Lemma

(3.1). Note that, under the null hypothesis,
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Sy szz‘jozj—‘/f—VQ*vLVf)

i=1 j=1

. . > * (7 * > * ¥, 2
SN i (Vi = Vi) = (Vi = Ta) = (V= V) + (V! = T2)
i=1 j=1
SO s (Vi = Vi) (Vi = Vo) o (V) = V) o (V= VL)
i=1 j=1
2(Vij = Vi) (Ve = Vi) = 2(Viy = Vip) (Vs = V) +2(Viy = Viy) (VI = V)
2V, = V)V = V) = 2(V = V)(V* = V) =2V = V)V = V)
SN T mi(Vig = Vi) + Y mi (Vi = Vi) Y m (Vi = V)R m (V= V)
i=1 j=1 i=1 j=1
2y mi (Vi =Vi)?=2) m (Vi—V;)* +2m (V= V)

i=1 Jj=1
2> Y my (Vi = Vi) (Vi = V) = 2m (VF = V.)* =2m (V7 = V.)*

i=1 j=1
DO my (Vi = Vi) = i (Vi = Vi)> = m(Vy = V)P +m (V= V)
i=1 j=1 i=1 j=1
D my (V= Vi)V = V) = 2m (VI = V). (3.45)
i=1 j=1

If we assume m;; = MM, then
SN my (V= Vi)V = V) = 2m (V= V)2
i=1 j=1
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Hence,

Sp = Z Zmz‘j(vz‘j Vij) Zmz - Vi)? - ZmJ(V; — V) 4 m (V= V)?
=1

i=1 j=1
. S| " .
= ZZm” i — Vij) _ZE<Zmij(‘/ij_‘/ij)>2_ZE<Zmij(‘/ij_‘/;j)>2
i=1 j=1 =1 j=1 j=1""7 =1
+ %(szij(% V;j))Q
i=1 j=1
= ZZ AL V” V) (3.46)
i=1 j=1
]\7)\21 N)\i'g ~ )‘i'l /\i'z
- ;;; s = (Vijy = Vi) o 2 (Vg — Vi) Wijlj Wij:
N ]\7)\@1 \/N)\ig' ~ \V )‘il‘ \/ >‘i2‘
- ZZZ W J 21] ‘/ilj) Wi ](‘/Zéj _V;QJ') W ‘j W 4J
i1=14is=1 j=1 m.j 1] 127 117 i2]

+ Z Z Z Z VAR R TTARVA LTS i\ Piain

“i1=1ia=1j1=1 jo=1 Wirgi i272 1171 i2]2

Let Uz = (Tl(lg),Tl(;’),--- ,Tr(g’)), then the second term of (3.46) can written as a
quadratic form Ug'M®Us, the third term of (3.46) as Us'N(MU; and the fourth
term of (3.46) as Ug'M®Us, where M®) and M(® are defined in equation (3.20)

and (3.21) respectively,

Nll N12 e Nlr
N(l) _ N21 N22 N2r 7 (347)
er Nr2 Nrr
and _ -
mil \/Ew]j\jl O O
0 N Ve 0
Nij — m2  Wij2W;2 (348)
0 O 77]ch \/ijijp
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for all i = 1,2,---,7, j = 1,2,--- ,c. Thus, S? can be rewritten by the following
quadratic form:
SV = Us'Us — Us/MPU; — Us/NVU;3 + U/ MP U,

= Ug'(Le — MY - NO 4 M®)U,

= Uy'BsUs,
(3.49)
where Bg is given by
I — (- + 2-)My; — Ny —Niz + 2 My, .. Ny + My,
B —Ni2 + m—anz I. - ( -t )M22 —Noy --- —No, + %_Mzr
8 =

—Nip+ =My, —Nap + =M o Lo (G )M —

_ (3.50)

It can easily be shown that Bg is symmetric and idempotent. Thus, we obtain

that

rank(Bg) = trace(Bs)

r 1 c
= ’I“C—Z;m—i'z;mij Z . ZmZ]jL—”z;z;m”
i= j= =117

= rc—r—c+1

= (r—1)(c—1). (3.51)

Uj follows approximately multivariate normal with mean 0 and variance I, since
Y’i(f)’s independently follow univariate standard normal distribution. Therefore, S9 is
asymptotically x* with degrees of freedom (r —1)(c — 1) under Hy. By Lemma (3.8),

SST is asymptotically x? with degrees of freedom (r — 1)(c — 1) under H,.
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Define the F-test statistics of kernel based nonparametric test for location param-

eters of interaction effects as:

7o MSI  SSI/(r—1)(c—1)
T oMSwW T SSw/df,

~ 2
i S (Vi = Ve = Vi V) /= 1)(e = 1)

- r c 5 N ) (352)
(D0t Dot D0 ik (A, — Vig)2/002) ) A,
where df,,, is given by equation (3.30).
Theorem 3.10 If foranyi=1,2,--- ;randj=1,2,--- ¢, nj;h — oo as minn;; —
irj

o0, [uf*(u)du < 0o and [u*f(u)du < oo, then under null hypothesis, F, in equation

(3.52) follows asymptotically F distribution with degrees of freedom (r —1)(c—1) and

f, -

Proof: Theorem (3.9) shows that SSI follows asymptotically y? with degrees of
freedom (7 — 1)(c — 1) under null hypothesis and asymptotically non-central x*((r —
1)(¢ — 1)) under the alternative. Furthermore, Theorem (3.5) implies that SSW is
asymptotically x? with degrees of freedom rc(n — 1) for balanced data and x? with

degrees of freedom d, for unbalanced data, where d, is the number of eigenvalues

MSI
MSW

of B¢ in equation (3.29). In order to show Fj = follows asymptotically F

distribution under null hypothesis and non-central F distribution under alternative,

we just need to show SS1 and SSW are asymptotically independent as minn;; — oo.
Z?]

In Lemma (3.8), SY, which converges in probability to SSI, is written as a

quadratic form S9 = Us'BgUjz. Note that

A 1

\ :
T = i (Vig = Vig) fwr; = ——=Hijin,;- (3.53)
v/ Tij
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Hence, SY can also be written as

\/%Hllljnu
1 1
Sy = (—Hjny, H j..)B :
I <\/n_11 11dn11> ) \/n_rc rel rc) 8
\/%H;"Cjnrc
_ < -
TlLlljglll O 0 TlLllj;lll O 0
1 s 1 s
_ H/ O \/@Jnu 0 BS O \/@Jnlz O H
1 v Y,
! 0 Tardn | 0 0 VeI |
“ WB.H. (3.54)
Recall from theorem (3.5) that SY, = H'BgH. And it is easy to check that
1
n11‘];111 0 0
0 Ly 0
B¢By = 0 * Bg Vit = 0. (3.55)
1 s
i O 0 \/m.]n,rc-

Thus, S? and Sy, are independent. By Lemma (3.8) and Lemma (3.4), SST and SSW

are asymptotically independent under null hypothesis Hy : Vij = V; = V;+ V. =0

MSIT
MSW

for all 4 and j. Hence, under null hypothesis, Fj, = in equation (3.52) follows

asymptotically F distribution with degrees of freedom (r —1)(c—1) and re¢(n —1) for

balanced data and F'((r — 1)(¢ — 1),ds) for unbalanced data. Under the alternative,

SSI

b = SSW

follows asymptotically non-central F'((r—1)(c—1),rc(n—1)) for balanced

data, and non-central F'((r — 1)(c — 1), ds) for unbalanced data,
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3.2 Simulation Study for Evaluating the Power of Kernel-based

Nonparametric Two-way ANOVA

In this section, powers of the kernel-based nonparametric two-way ANOVA tests,
including the test for interactions and main effects, are evaluated through simula-
tion. To better demonstrate the properties of kernel-based nonparametric ANOVA
tests compared with the traditional parametric ANOVA tests, the performances of
both tests for interaction and row effects based on data from the three distributions

described in Table 2.1 are studied.

3.2.1 Simulation Study of the Test for Interaction

The objective of this section is to study the Type I error rate and power of the test of
interaction proposed in section 3.1.2 and to compare it with the parametric two-way
ANOVA test in 3 distinctive cases: Normal, Cauchy and Lognormal, given in Table
2.1. Consider an experiment with two treatments, Factor A (Row) and Factor B
(Column). Each factor has three levels, i.e. » =3 and ¢ = 3 in Section 3.1. Consider
two-way layout p;; = p + oy + 8; 4+ 7;; in Section 3.1. Let the overall location p = 3,
row effect a = (aq, ag,a3) = (—1,0,1) and column effect g = (1, B2, B3) = (—1,0,1).

To obtain the actual Type I error rate when the significant level is set to be 0.05,

we follow the steps below:

(1) Randomly generate 9 groups of data (considered as the observations of the
response variable) with balanced sample size n from distributions listed in Table
3.1 for Case I, IT and III. Note that the location and scale parameters in Table
3.1 are determined by letting the interaction v = 0, in addition to the u, o and

[ described above for all the three cases.

(2) Apply the parametric ANOVA test for interaction and the kernel based non-

parametric ANOVA test for interaction separately. Record the test result as 1
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or 0. 1 means “reject the null hypothesis” and 0 means fail to reject.
(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.

(4) Repeat (1)-(3) for sample size n = 15,20, 25, 30, 35, 40, 45, 50, 55, 60.

Table 3.1: Evaluate the Type I Error Rate of Tests for Interaction in 3 Cases

Factor B
Level 1 Level 2 Level 3
Level 1 N(1,1) N(2,1) N(3,1)
Case I° Level 2 N(2,1) N(3,1) N(4,1)
Level 3 N(3,1) N(4,1) N(5,1)
Level 1 | Cauchy(1,1) | Cauchy(2,1) | Cauchy(3,1)
Case II° | Factor A | Level 2 | Cauchy(2,1) | Cauchy(3,1) | Cauchy(4,1)

Level 3 | Cauchy(3,1) | Cauchy(4,1) | Cauchy(5,1)

Level 1 | LN(1,0.5,1) | LN(2,0.5,1) | LN(3,0.5,1)
Case III° Level 2 | LN(2,0.5,1) | LN(3,0.5,1) | LN(4,0.5,1)
Level 3 | LN(3,0.5,1) | LN(4,0.5,1) | LN(5,0.5,1)

The procedure of calculating the empirical power is very similar except letting the

interaction -~ _
0.5 —05 0
W= |[-05 05 0 (3.56)
0 0 0
for Case 1€, i ) ) i
-15 —-15 3
=0 15 —15 (3.57)
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for Case I1¢, and

7L

-1 05 05
1 0 -1
0 —-05 0.5

(3.58)

for Case I1I°. Thus, for each case, we randomly generate 9 groups of data with

balanced sample size n from distributions listed in Table 3.2, rather than Table 3.1,

in Step (1).

Table 3.2: Evaluate the Power of Tests for Interaction in 3 Cases

Factor B
Level 1 Level 2 Level 3
Level 1 | N(1.5,1) N(1.5,1) N(3,1)
Case I¢ Level 2 | N(1.5,1) N(3.5,1) N(4,1)
Level 3 N(3,1) N(4,1) N(5,1)
Level 1 | Cauchy(-0.5,1) | Cauchy(0.5,1) | Cauchy(6,1)
Case II° | Factor A | Level 2 | Cauchy(2,1) | Cauchy(4.5,1) | Cauchy(2.5,1)
Level 3 | Cauchy(4.5,1) | Cauchy(4,1) | Cauchy(3.5,1)
Level 1 | LN(0,0.51) | LN(2.5,0.5,1) | LN(3.5,0.5,1)
Case IIT¢ Level 2| LN(3,0.51) | LN(3,0.51) | LN(3,0.5,1)
Level 3| LN(3,0.5,1) | LN(3.5,0.5,1) | LN(5.5,0.5,1)

As illustrated in previous paragraphs, Table 3.1 shows the distributions of the

9 cells under the null hypothesis, i.e. no interaction. For instance, in Case I¢, the

distribution of the response variable in cell (1,1), when Factor A is set at the first

level and Factor B is set at the first level as well, is Normal distribution with mean

1 and standard deviation 1, denoted as N(1,1). In Case I1¢, the distribution of the

response variable in cell (2,3), when Factor A is set at the second level and Factor B

is set at the third level, is Cauchy distribution with location parameter 4 and scale
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parameter 1, denoted as Cauchy(4,1). In Case 111, the distribution of the response
variable in cell (3, 1), when Factor A is set at the third level and Factor B is set at
the first level, is three-parameter Lognormal distribution with location parameter 3,
scale parameter 0.5, and shape parameter 1, denoted as LN (3,0.5,1).

Table 3.2 shows the distributions of the 9 cells under the alternative hypothesis,
i.e. there exist interactions which are given in equation (3.56), (3.57) and (3.58)
for Case I¢, Case II° and Case III¢ respectively. For instance, in Case I¢, the
distribution of the response variable in cell (1,1), when Factor A is set at the first
level and Factor B is set at the first level as well, is Normal distribution with mean
1.5 and standard deviation 1, denoted as N(1.5,1). In Case II¢ the distribution
of the response variable in cell (2,3), when Factor A is set at the second level and
Factor B is set at the third level, is Cauchy distribution with location parameter 2.5
and scale parameter 1, denoted as Cauchy(2.5,1). In Case 111, the distribution of
the response variable in cell (3, 1), when Factor A is set at the third level and Factor
B is set at the first level, is three-parameter Lognormal distribution with location
parameter 3, scale parameter 0.5, and shape parameter 1, denoted as LN (3,0.5,1).

To clearly illustrate the interactions in locations of the distributions under the null
hypothesis (in Table 3.1) and alternative hypothesis (in Table 3.2), Figure 3.1-Figure
3.3 plot the median of the distribution in the 9 cells for each case in Table 3.1 and
Table 3.2. Figure 3.1(a) shows the median of the 9 cells in the Case I¢ of Table 3.1.
The horizontal axis represents the levels of factor A, and the vertical axis represents
the median of the response variable generated from the distribution in Case ¢ of
Table 3.1. The colored lines represent the levels of factor B. The red line represents
the level 1 of factor B. The green line represents the level 2 of factor B. And the blue
line represents the level 3 of factor B. The three lines are parallel, which indicates no
interaction between factor A and factor B. Figure 3.1(b) shows the median of the 9

cells in the Case [¢ of Table 3.2. The three lines are obviously not parallel, which
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Figure 3.1: Median of the 9 groups in Case I°: Normal Distributions
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Figure 3.3: Median of the 9 groups in Case [11°: Lognormal Distributions

indicates that there exists interaction between the two factors in Case I¢ of Table
3.2. Figure 3.2(a) and figure 3.3(a) show the median of the 9 cells in the Case II°
and Case I11° of Table 3.1. It is not hard to tell that three lines in Figure 3.2(a) and
figure 3.3(a) are almost parallel, which confirms that there is no interaction between
factor A and factor B in the Case I1¢ and Case I11¢ of Table 3.1. Figure 3.2(b) and
figure 3.3(b) show the median of the 9 cells in the Case I1¢ and Case I11¢ of Table
3.2 respectively. The unparallelled lines in Figure 3.2(b) and Figure 3.3(b) verify that
there exist interactions between factor A and factor B in the Case I1¢ and Case [11¢
of Table 3.2.

The simulation results for the test of interaction via the kernel based nonparamet-
ric two-way ANOVA test and parametric two-way ANOVA test are given in Table
3.3-Table 3.5.

Table 3.3 lists the actual Type I error rates and the empirical powers for the test
of interaction in Case I°: Normal Case. It is shown that the actual Type I error

rates for both parametric and nonparametric test of interaction are around 0.05, the
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Table 3.3: Power for Test of Interactions: Case I¢ (Normal

Distribution)
Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.8761 | 0.0489 | 0.2370 0.0462
20 0.9587 | 0.0489 | 0.3460 0.0548
25 0.9892 | 0.0496 | 0.3940 0.0463
30 0.9975 | 0.0532 | 0.4443 0.0519
35 0.9989 | 0.0495 | 0.5038 0.0464
40 0.9999 | 0.0556 | 0.5384 0.0454
45 0.9999 | 0.0507 | 0.5792 0.0476
50 1 0.0483 | 0.6133 0.0510
95 1 0.0473 | 0.6406 0.0427
60 1 0.0504 | 0.6702 0.0469

1 % Note: Given significance level: o = 0.05.

2 x Note: The Type I in the table means Actual Type I Error.
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significance level. As we expected, in Normal Case, parametric F test performs better
than the kernel based nonparametric test of interaction. Moreover, the kernel based
nonparametric two-way ANOVA test is less powerful than nonparametric one-way
ANOVA. Although the power of the nonparametric test increases as the sample size
grows, the power of the nonparametric test of interaction is only 67% even when the

sample size is up to 60.

Table 3.4: Power for Test of Interactions: Case [1¢ (Cauchy

Distribution)
Parametric Test | Nonparametric Test
Sample Size

Power | Type 1 | Power Type I
15 0.2490 | 0.0183 | 0.6056 0.0133
20 0.2475 | 0.0162 | 0.7781 0.0139
25 0.2493 | 0.0164 | 0.9591 0.0173
30 0.2498 | 0.0161 | 0.9863 0.0177
35 0.2595 | 0.0156 | 0.9923 0.0267
40 0.2588 | 0.0180 | 0.9987 0.0265
45 0.2592 | 0.0165 | 0.9995 0.0331
50 0.2582 | 0.0140 | 0.9999 0.0394
55 0.2559 | 0.0156 | 0.9998 0.0409
60 0.2527 | 0.0143 1 0.0501

1 % Note: Given significance level: a = 0.05.

2 ¥ Note: The Type I in the table means Actual Type I Error.

Table 3.4 lists the actual Type I error rates and the empirical powers for the test
of interaction in Case I1¢: Cauchy Case. It is shown that the actual Type I error

rates of the parametric test are around 0.01 when the significance level is 0.05, which
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infers that the parametric test of interaction is conservative in Case I7°. Whereas,
the actual Type I error rates of our nonparametric test are around 0.01 when the cell
sample size is small, and get closer and closer to 0.05 as the sample size grows. As
we expected, in the Cauchy Case, the kernel based nonparametric test performs way
better than the parametric F test of interaction. The power of nonparametric test
of interaction is 60.56% when the cell sample size is only 15. Moreover, the power
of nonparametric test quickly increases to 1 as the sample size rises. The power of
parametric test of interaction is only 24.9% when the sample size is 15 and does not

increase as the sample size grows.

Table 3.5: Power for Test of Interactions: Case I11¢ (Lognor-

mal Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.4526 | 0.0431 | 0.2854 0.0169
20 0.5683 | 0.0413 | 0.5114 0.0250
25 0.6511 | 0.0436 | 0.6238 0.0331
30 0.7226 | 0.0419 | 0.7317 0.0461
35 0.7783 | 0.0435 | 0.8481 0.0509
40 0.8306 | 0.0438 | 0.9517 0.0518
45 0.8699 | 0.0461 | 0.9549 0.0553
50 0.8974 | 0.0442 | 0.9617 0.0525
95 0.9196 | 0.0473 | 0.9630 0.0518
60 0.9335 | 0.0443 | 0.9672 0.0528

1 % Note: Given significance level: o = 0.05.

2 % Note: The Type I in the table means Actual Type I Error.
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Table 3.5 lists the actual Type I error rates and the empirical powers for the test
of interaction in Case I11°: Lognormal Case. It is shown that the actual Type I error
rates for the parametric test are between 0.04 and 0.05 when the significance level
is 0.05, which infers that the parametric test of interaction is little bit conservative
in Case [11¢. Whereas, the actual Type I error rates of our nonparametric test are
around 0.02 when the cell sample size is small, and get closer and closer to 0.05
as the sample size grows. When the sample size is around 30-35, the actual Type
I error rates of the kernel based nonparametric test of interaction is around 0.05,
the significance level. Since the nonparametric test is more conservative than the
parametric test when the sample size is small, the parametric test has higher power
than the nonparametric test. However, when the sample size is 30 or above, the
nonparametric test is more powerful than the parametric test as we expected. When
the sample size is 40, the power of the parametric test is only 83.6%, while the power
of the nonparametric test is 95.17%.

Figure 3.4 demonstrates the power of the parametric and nonparametric test of
interaction with respect to sample size when the underlying distributions of the sam-
ples are Normal, Cauchy and Lognormal respectively. In Figure 3.4, the solid line
represents the power of the parametric test of interaction, while the dashed line rep-
resents the power of our kernel based nonparametric test of interaction in Section
3.1.2. The red line (solid and dashed) represents the power of test in Case /¢ when
the underlying distribution is Normal distribution. The green line (solid and dashed)
represents the power of test in Case I7¢ when the underlying distribution is Cauchy
distribution. And the blue line (solid and dashed) represents the power of test in
Case I11¢ when the underlying distribution is Lognormal distribution.

Figure 3.4(a) compares the power of parametric and the kernel based nonpara-
metric test of interaction in Case €. It shows that the power of the parametric test

increases sharply to around 95% when sample size goes from 15 to 20 in Case [I°.
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Figure 3.4: (a) Power of the parametric and nonparametric test of interaction on the
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interaction on the 9 cells in Case 111 (d) Power of the parametric and nonparametric
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Compare to the parametric test of interaction, the new nonparametric test is much
less powerful than the traditional parametric test, which is consistent with what we
concluded from Table 3.3. Fortunately, the new nonparametric test increases its
power as the sample size grows. Although in Figure 3.4(a), it is shown that there
is still a gap in power between the parametric and our nonparametric test, the gap
tends to reduce as the sample size go beyond 60. Figure 3.4(b) compares the power of
parametric and the kernel based nonparametric test of interaction in Case I1¢. It is
shown in Figure 3.4(b) that the power of our nonparametric ANOVA test grows as the
sample size increases, while the power of parametric ANOVA test almost keeps con-
stant in Case I1¢. Moreover, it is easy to tell from Figure 3.4(b) that the power of the
new nonparametric test of interaction in Case [7¢ is much higher than the one of the
parametric test, even when the sample size is 15. Figure 3.4(c) compares the power of
parametric and nonparametric test of interaction in Case I71¢. In Figure 3.4(c), it is
demonstrated that the blue solid line is above the blue dashed line when sample size
is less than 35, which infers that the parametric test outperforms our nonparametric
test when the sample size is less than 35 in Case I11¢. However, this relationship
flips as the sample size goes beyond 35, which indicates that the new parametric test
of interaction outperforms the traditional parametric test. Figure 3.4(d) combines
Figure (3.4(a))(3.4(b))(3.4(c)) in one graph, so it is easier to compare the powers of
the either test throughout the 3 cases. The relationship of three solid lines infers
that the power of the parametric ANOVA test is far more severely hurt by fat tails
or extreme outliers than the skewness does. If the data comes from a skewed distri-
bution, large sample size leads to better power. However, if the data come from a
fat-tailed distribution, large sample size would not make any improvement in power.
The relationship of three dashed lines infers that nonparametric test of interaction
for the two-way ANOVA is not as powerful as the nonparametric one-way ANOVA if

the underlying distribution is normal. However, larger sample size always helps.
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3.2.2 Simulation Study of the Test for Main Effect

If the test of interaction fails to reject, which means that there is no interaction
detected, then main effects will be tested. The purpose of this section is to study the
Type I error rate and power of the test of main effect proposed in Section 3.1.1 and
to compare with the parametric two-way ANOVA test in 3 distinctive cases: Normal,
Cauchy and Lognormal, given in Table 2.1. Since testing row effect is exactly the
same as testing the column effect, without loss of generality, we just illustrate the
simulation results of the test of row effect in this section. As in Section 3.2.1, we
consider the same experiment with two treatments, Factor A (Row) and Factor B
(Column). Each factor has three levels, i.e. 7 =3 and ¢ = 3. In the two-way layout,
we set the overall location u = 3, and the interaction v = 0. The column effect is set
to be fn = (—0.25,0,0.25) for the Normal case, Scr, = (=2, 1,1) for the Cauchy case
and Lognormal case.

To obtain the actual Type I error rate when the significant level is set to be 0.05,

we follow the steps below:

(1) Randomly generate 9 groups of data (considered as the observations of the
response variable) with balanced sample size n from distributions listed in Table
3.6 for Case I, IT and III. Note that the location and scale parameters in Table
3.6 are determined by letting the row effect a = (ay, ag, ag) = 0, in addition to

the u, An (or fcr) and «y described above for all the three cases.

(2) Apply the parametric two-way ANOVA test for row effect and the kernel based
nonparametric two-way ANOVA test for row effect separately. Record the test

result as 1 or 0. 1 means “reject the null hypothesis” and 0 means fail to reject.
(3) Repeat (1) and (2) 10,000 times and count the percentage of rejections.

(4) Repeat (1)-(3) for sample size n = 15,20, 25, 30, 35, 40, 45, 50, 55, 60.
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The procedure of calculating the empirical power is very similar except letting the
row effect an = (0, —0.25, 0.25) for the normal case (Case I¢), arc = (0.75, —1.5,0.75)
for the Cauchy case (Case I1%) and Lognormal case(Case IT11%). Thus, for each case,
we randomly generate 9 groups of data with balanced sample size n from distributions

listed in Table 3.7, rather than Table 3.6, in Step (1).

Table 3.6: Evaluate the Type I Error Rate of Tests for Row Effect in 3 Cases

Factor B
Level 1 Level 2 Level 3
Level 1 | N(2.75,1) N(3,1) N(3.25,1)
Case I¢ Level 2 | N(2.75,1) N(3,1) N(3.25,1)
Level 3 | N(2.75,1) N(3,1) N(3.25,1)
Level 1 | Cauchy(1,1) | Cauchy(4,1) | Cauchy(4,1)
Case II¢ | Factor A | Level 2 | Cauchy(1,1) | Cauchy(4,1) | Cauchy(4,1)
Level 3 | Cauchy(1,1) | Cauchy(4,1) | Cauchy(4,1)
Level 1 | LN(1,1,1) | LN(4,1,1) | LN(4,1,1)
Case III Level 2| LN(1,1,1) | LN(4,1,1) | LN(4,1,1)
Level 3| LN(1,1,1) | LN(4,1,1) | LN(4,1,1)

As illustrated in previous paragraphs, Table 3.6 shows the distributions of the
9 cells under the null hypothesis, i.e. no row effect. For instance, in Case I?, the
distribution of the response variable in cell (1,1), when Factor A is set at the first
level and Factor B is set at the first level as well, is Normal distribution with mean
2.75 and standard deviation 1, denoted as N(2.75,1). In Case I1¢, the distribution of
the response variable in cell (2, 3), when Factor A is set at the second level and Factor
B is set at the third level, is Cauchy distribution with location parameter 4 and scale
parameter 1, denoted as Cauchy(4,1). In Case I11¢, the distribution of the response

variable in cell (3, 1), when Factor A is set at the third level and Factor B is set at
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the first level, is three-parameter Lognormal distribution with location parameter 1,

scale parameter 1, and shape parameter 1, denoted as LN (1,1, 1).

Table 3.7 shows the distributions of the 9 cells under the alternative hypothesis,

i.e. there exist row effects. For instance, in Case I?, the distribution of the response

variable in cell (2, 1), when Factor A is set at the second level and Factor B is set at

the second level as well, is Normal distribution with mean 2.75 and standard deviation

1, denoted as N(2.75,1). In Case I1%, the distribution of the response variable in cell

(3,3), when Factor A is set at the third level and Factor B is set at the third level, is

Cauchy distribution with location parameter 4.75 and scale parameter 1, denoted as

Cauchy(4.75,1). In Case 1114, the distribution of the response variable in cell (3, 1),

when Factor A is set at the third level and Factor B is set at the first level, is three-

parameter Lognormal distribution with location parameter 1.75, scale parameter 1,

and shape parameter 1, denoted as LN(1.75,1,1).

Table 3.7: Evaluate the Power of Tests for Row Effect in 3 Cases

Factor B
Level 1 Level 2 Level 3

Level 1|  N(2.75,1) N(3,1) N(3.25,1)
Case I¢ Level 2 | N(2.5,1) N(2.75,1) N(3,1)

Level 3 N(3,1) N(3.25,1) N(3.5,1)

Level 1 | Cauchy(1.75,1) | Cauchy(4.75,1) | Cauchy(4.75,1)
Case IT? | Factor A | Level 2 | Cauchy(-0.5,1) | Cauchy(2.5,1) | Cauchy(2.5,1)

Level 3 | Cauchy(1.75,1) | Cauchy(4.75,1) | Cauchy(4.75,1)

Level 1 | LN(1.75,1,1) | LN(4.75,1,1) | LN(4.75,1,1)
Case IIT¢ Level 2 | LN(-0.51,1) | LN(251,1) | LN(2.51,1)

Level 3 | LN(1.75,1,1) | LN(4.75,1,1) | LN(4.75,1,1)

Before comparing the simulation results of the parametric and nonparametric
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tests, the row effects in locations of the distributions under the null hypothesis (in
Table 3.6) and alternative hypothesis (in Table 3.7) are illustrated by the side-by-side
boxplots in Figure 3.5-Figure 3.12. Figure 3.5(a), Figure 3.7(a), Figure 3.8(a) and
Figure 3.11(a) show the side-by-side boxplots of the 9 cells in the Case I¢, 7% and
I11% respectively in Table 3.6. Figure 3.5(b), Figure 3.7(b), Figure 3.8(b) and Figure
3.11(b) show the side-by-side boxplots of the 9 cells in the Case I¢, 1% and I11¢
respectively in Table 3.7. The horizontal axis represents the levels of factor A, and
the vertical axis represents the response variable generated from the distributions in
Table 3.6 or Table 3.7. The colored lines represent the levels of factor B. The red
box represents the level 1 of factor B. The green box represents the level 2 of factor
B. And the blue box represents the level 3 of factor B. Thus, the boxplot in red box
and located at level 2 on the horizontal axis is the plot for the cell when factor A is
at level 2 and factor B is at level 1. Figure 3.5 shows the side-by-side boxplot of the

9 cells in Normal case under null hypothesis and alternative hypothesis.
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Figure 3.5: Side-by-Side Boxplot for the 9 Cells in Case I%: Normal Distributions

The pink horizontal line in Figure 3.5 serves as a benchmark, which indicates
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the median of the samples from cell (1,1). This benchmark line, also used in Figure
3.6, Figure 3.11 and Figure 3.12, aims to help notifying the tiny differences in the
median of boxplots under the alternative hypothesis. The boxplot in Figure 3.5(a)
indicates that column effects do exist since the edge line (quartiles) and the middle
line (median) of red, green and blue box are not in a line. Figure 3.5(a) also indicates
that there is no row effect among the 9 cells in Case I¢ of Table 3.6, since all the
three red boxes lie on the same line and so do the green boxes and blue boxes. Figure
3.5(b) infers that there exists row effect among the 9 cells in Case I¢ of Table 3.7,

since the three red boxes are not on a line and so do the green boxes and blue boxes.
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Figure 3.6: Side-by-Side Boxplot for the 3 Rows in Case I%: Normal Distributions

To have a better view of the row effect under the null and alternative hypothesis,
cells from the same row are combined for each case both under null and alternative
hypothesis. For example, cell (1,1), (1,2) and (1,3) are the samples when factor A is
at the first level, and thus they are combined into one set of data. In this case, there
will be 3 sets of data for each case, one from row 1 when the factor A is at level 1,

one from row 2 when the factor A is at level 2 and one from row 3 when the factor A
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is at level 3. Figure 3.6, Figure 3.9, Figure 3.10 and Figure 3.12 show the side-by-side
boxplots of the three combined rows for the three cases in Table 3.6 and Table 3.7.
Figure 3.6(a) shows the side-by-side boxplots of the 3 combined rows in the Case 4
under the null hypothesis @« = 0. Figure 3.6(b) shows the side-by-side boxplots of
the 3 combined rows in the Case I¢ under the alternative hypothesis o = ay. Like
Figure 3.5, the horizontal axis in Figure 3.6 represents the levels of factor A, and
the vertical axis represents the response variable. The deep pink box represents the
level 1 of factor A. The yellow box represents the level 2 of factor A. And the gray
box represents the level 3 of factor A. The red line in Figure 3.6 is a benchmark,
which points to the median of the samples when factor A is at the first level. The
relationship among the locations of the boxes and the benchmark in Figure 3.6(a)
and Figure 3.6(b) indicates that there is no row effects in Case I of Table 3.6, and

there exist some row effects in Case I of Table 3.7.
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Figure 3.7: Side-by-Side Boxplot for the 9 Cells in Case I1%: Cauchy Distributions

Similar to Figure 3.5, Figure 3.7 shows the side-by-side boxplot of the 9 cells

in the Cauchy Case under null hypothesis and alternative hypothesis. Since Cauchy
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distribution has fat tails, it is hard to tell the color and the middle line of the boxplots.
Hence, Figure 3.8 plots the truncated 9 cells in Cauchy case under null hypothesis and
alternative hypothesis by removing the extreme outliers. The relationship among the
locations of the boxes and the benchmark in Figure 3.8(a) and Figure 3.8(b) indicate
that there is no row effect in Case I1? of Table 3.6, and there exist some row effects

in Case 1% of Table 3.7.
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Figure 3.8: Side-by-Side Boxplot (w/o extreme outliers) for the 9 Cells in Case I7¢:

Cauchy Distributions

Like Figure 3.6, Figure 3.9(a) shows the side-by-side boxplots of the 3 combined
rows in the Case I1% under the null hypothesis a = 0. Figure 3.9(b) shows the
side-by-side boxplots of the 3 combined rows in the Case I1¢ under the alternative
hypothesis a = an. Due to the heavy tails of the Cauchy distribution, it is difficult
to tell the relative locations of the boxes. Figure 3.10 plots the truncated 3 combined
rows in Cauchy Case under null hypothesis and alternative hypothesis by removing
the extreme outliers. The relationship among the locations of the boxes in Figure

3.10(a) and Figure 3.10(b) confirms that there is no row effect in Case I1? of Table
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Figure 3.9: Side-by-Side Boxplot for the 3 Rows in Case I7¢: Cauchy Distributions

3.6, and there exist some row effects in Case I1% of Table 3.7.

Similar to Figure 3.5, Figure 3.11 shows the side-by-side boxplot of the 9 cells
in the lognormal case under null hypothesis and alternative hypothesis. The related
locations of the boxes and benchmark in Figure 3.11(a) and Figure 3.11(b) indicate
that there is no row effect in Case 1119 of Table 3.6, and there exist some row effects
in Case I11% of Table 3.7. Like Figure 3.6, Figure 3.12(a) shows the side-by-side
boxplots of the 3 combined rows in the Case I77¢ under the null hypothesis a@ = 0.
Figure 3.12(b) shows the side-by-side boxplots of the 3 combined rows in the Case
I17% under the alternative hypothesis @ = acr,. The relationship among the locations
of the boxes in Figure 3.12(a) and Figure 3.12(b) confirms that there is no row effect
in Case I11% of Table 3.6, and there exist some row effects in Case I11¢ of Table 3.7.

The simulation results for the test of row effects via the kernel based nonparametric
two-way ANOVA test and parametric two-way ANOVA test are given in Table 3.8-
Table 3.10.

Table 3.8 lists the actual Type I error rates and the empirical powers for the test of
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Figure 3.10: Side-by-Side Boxplot (w/o extreme outliers) for the 3 Rows in Case I7¢:

Cauchy Distributions
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Figure 3.11: Side-by-Side Boxplot for the 9 Cells in Case I11%: Lognormal Distribu-

tions
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Table 3.8: Power for Test of Row Effect: Case I¢ (Normal

Distribution)
Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.5408 | 0.0517 | 0.2329 0.0128
20 0.6774 | 0.0469 | 0.3427 0.0118
25 0.7812 | 0.0530 | 0.4450 0.0088
30 0.8582 | 0.0505 | 0.5512 0.0067
35 0.9076 | 0.0541 0.6353 0.0072
40 0.9430 | 0.0487 | 0.7236 0.0113
45 0.9644 | 0.0492 | 0.7855 0.0103
50 0.9820 | 0.0473 | 0.8456 0.0067
95 0.9870 | 0.0528 | 0.8807 0.0063
60 0.9930 | 0.0474 | 0.9220 0.0065

1 % Note: Given significance level: o = 0.05.

2 x Note: The Type I in the table means Actual Type I Error.
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Figure 3.12: Side-by-Side Boxplot for the 3 Rows in Case I11¢: Lognormal Distribu-

tions

row effects in Case I¢: Normal Case. It is shown that the actual Type I error rates for
the parametric test of row effects are around 0.05, the significance level. The actual
Type I error rates for the new nonparametric test of row effects are between 0.006 and
0.02, which infers that the new nonparametric test of row effects is very conservative
in Case I?. As we expected, in Normal Case, the parametric F test performs better
than the kernel based nonparametric test of row effects. The new nonparametric test
was hurt by its conservativeness in Type I error rates. Fortunately, the power of the
nonparametric test increases as the sample size grows. When the sample size is 60,
the power of the nonparametric test of interaction is 92.2%, which looks promising.
Table 3.9 lists the actual Type I error rates and the empirical powers for the
test of row effects in Case I1¢: Cauchy Case. It is shown that the actual Type I
error rates of the parametric test are around 0.02 while the significance level is 0.05.
This fact infers that the parametric test of row effects is conservative in Case I

Whereas, the actual Type I error rates of the new nonparametric test are around
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Table 3.9: Power for Test of Row Effect: Case II? (Cauchy

Distribution)
Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.1772 | 0.0186 | 0.7040 0.0578
20 0.1743 | 0.0180 | 0.8611 0.0548
25 0.1766 | 0.0200 | 0.9398 0.0459
30 0.1812 | 0.0180 | 0.9783 0.0507
35 0.1783 | 0.0184 | 0.9917 0.0480
40 0.1770 | 0.0201 | 0.9969 0.0454
45 0.1806 | 0.0169 | 0.9985 0.0437
50 0.1774 | 0.0187 | 0.9999 0.0472
95 0.1768 | 0.0195 1 0.0447
60 0.1808 | 0.0202 1 0.0428

1 % Note: Given significance level: o = 0.05.

2 x Note: The Type I in the table means Actual Type I Error.
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0.05, the significant level. Without any surprise, in the Cauchy Case, the kernel
based nonparametric test performs much better than the parametric F test of row
effect. The power of the new nonparametric test of row effects is 70.4% when the
cell sample size is only 15. Moreover, the power of nonparametric test of row effect
quickly increases to 1 as the sample size rises. The power of the parametric test of
row effects is only 17.72% when the sample size is 15 and does not increase as the

sample size grows.

Table 3.10: Power for Test of Row Effect: Case I11¢ (Lognor-

mal Distribution)

Parametric Test | Nonparametric Test
Sample Size

Power | Type I | Power Type 1
15 0.5328 | 0.0443 | 0.7194 0.0467
20 0.6434 | 0.0382 | 0.7951 0.0512
25 0.7213 | 0.0429 | 0.8693 0.0519
30 0.7802 | 0.0409 | 0.9209 0.0502
35 0.8295 | 0.0433 | 0.9509 0.0489
40 0.8665 | 0.0455 | 0.9656 0.0466
45 0.8997 | 0.0479 | 0.9800 0.0474
50 0.9240 | 0.0419 | 0.9845 0.0450
95 0.9376 | 0.0443 | 0.9888 0.0439
60 0.9511 | 0.0461 | 0.9933 0.0447

1 % Note: Given significance level: o = 0.05.

2 % Note: The Type I in the table means Actual Type I Error.

Table 3.10 lists the actual Type I error rates and the empirical powers for the

test of row effects in Case I11%: Lognormal Case. It is shown that the actual Type
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I error rates for the parametric test are around 0.04 when the significance level is
0.05, which infers that the parametric test of row effects is little bit conservative in
Case I11%. Whereas, the actual Type I error rates of the new nonparametric test are
around 0.05, the significance level. Same as in the Cauchy Case, in the Lognormal
Case, the kernel based nonparametric test performs much better than the parametric
F test of row effects. The power of nonparametric test of row effects is 71.94% when
the cell sample size is only 15. Moreover, the power of the new nonparametric test of
row effects quickly increases to 95% when the sample size rises up to 35. The power
of the parametric test of row effects is only 53.28% when the sample size is 15 and
only increases to 82.95% as the sample size grows to 35.

Figure 3.13 demonstrates the power of the parametric and nonparametric test
of row effects with respect to sample size when the underlying distributions of the
samples are Normal, Cauchy and Lognormal respectively. In Figure 3.13, the solid
line represents the power of the parametric test of row effects, while the dashed line
represents the power of the kernel based nonparametric test of row effects in Section
3.1.1. The red line (solid and dashed) represents the power of the tests in Case 9
when the underlying distribution is Normal distribution. The green line (solid and
dashed) represents the power of the tests in Case I1¢ when the underlying distribution
is Cauchy distribution. And the blue line (solid and dashed) represents the power of
the tests in Case I71¢ when the underlying distribution is Lognormal distribution.

Figure 3.13(a) compares the power of parametric and the new nonparametric test
of row effects in Case I¢. It shows that the power of the parametric test increases to
around 90% when sample size goes up to 40 in Case I¢. Compare to the parametric
test of row effects, the new nonparametric test is much less powerful than the tradi-
tional parametric test, which is consistent with what we concluded from Table 3.8.
Fortunately, the new nonparametric test increases its power as the sample size grows.

Although in Figure 3.13(a), it is shown that there is still a gap in power between

98



Normal Cauchy

e L S,
— — _e--T - -"
-
4
4
0 [ee) /
o 7| o 7 ’
/
1
L 9 . 9 —— Parametric
g ©° g ©° - - Nonparametric
je} o
a a
< i <
o 7 L7 —— Parametric o
’ - - Nonparametric
,/
~N ’ N
c o 7
T T T T T T T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60
Sample Size Sample Size
(a) Case I’: Normal (b) Case I1%: Cauchy
Lognormal Power for the Test of Row Effects
e o ]
— -
© ©
o o 7
©o ©
g o 7| g o |
g 3
o —— Parametric a
- - Nonparametric
< ~
o o
’
7/
4
~N N
o 7 o 7
T T T T T T T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60
Sample Size Sample Size
(c) Case ITI%: Lognormal (d) Case 14,114, ITT¢

Figure 3.13: (a) Power of the parametric and nonparametric test of row effect on the
9 cells in Case I%; (b) Power of the parametric and nonparametric test of row effect
on the 9 cells in Case I1¢; (c) Power of the parametric and nonparametric test of row
effect on the 9 cells in Case I11% (d) Power of the parametric and nonparametric

test of row effect on the 9 cells in Case I, I1% and 1119,
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the parametric and our nonparametric test, the gap tends to reduce as the sample
size go beyond 60. Figure 3.13(b) compares the power of the parametric test with
the kernel based nonparametric test of row effects in Case I7¢. It is shown in Figure
3.13(b) that the power of the new nonparametric ANOVA test quickly grows to 1 as
the sample size increases, whereas the power of the parametric ANOVA test almost
keeps constant in Case IT%. Moreover, it is easy to tell from Figure 3.13(b) that
the power of the new nonparametric test of row effects in Case I7% is much higher
than the parametric test, even when the sample size is 15. Figure 3.13(c¢) compares
the power of parametric and nonparametric test of row effect in Case I77¢. In Fig-
ure 3.13(c), it is demonstrated that the blue dashed line is above the blue solid line
even when the sample is as small as 15, which infers that the new nonparametric
test outperforms the parametric test in Case I77¢. Figure 3.13(d) combines Figure
(3.13(a))(3.13(b))(3.13(c)) in one graph, so it is easier to compare the powers of the
either test throughout the 3 cases. The relationship of three solid lines infers that
the power of the parametric ANOVA test of row effects is far more severely hurt by
fat tails or extreme outliers than the skewness does. If the data come from a skewed
distribution, large sample size leads to better power. However, if the data come from
a fat-tailed distribution, large sample size would not make any improvement in power.
The relationship of three dashed lines infers that the new nonparametric test of row
effects for the two-way ANOVA is not as powerful as the traditional parametric two-
way ANOVA test of row effect, as well as, the nonparametric one-way ANOVA if the

underlying distribution is Normal.
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CHAPTER 4

Application to Policy Analysis

4.1 Introduction to Policy Analysis

Policy decisions are required to be made in corporations and/or most levels of gov-
ernment every year or even every day. Then policy analysis emerges to analyze
policy-related information and provides policy decision makers with rational deci-
sions. For instance, the U.S. Environmental Protection Agency (EPA) is planning
new rules to regulate the interstate transport of sulfur dioxide (SO2) and nitrogen
oxides (NOX) emitted from electric power generation facilities. Before the agency
determining which newly proposed rules or neither of them should be taken, the eco-
nomic impacts to regions, sectors and populations have to be assessed. The agency
will choose the rule that produces significant benefits in terms of some variables re-
flecting improved health outcomes, and better environmental amenities and services.
In order to make a rational decision, a policy analyst might not only be interested
in the positive or negative relationships the dependent variable may have with the
policy change, but also in estimating the mean benefit gained from a policy change,
such as the mean change in house prices resulting from building a high-quality school
or a highway nearby, or the mean change in consumption resulting from a change in
income taxes. Thus, quantitative, rather than qualitative analytical techniques are
most in need in policy analysis.

The quantitative policy analysis has its root in Harold Lasswell ( [24], [25]) and
has rapidly developed in social science and business since 1990s [14]. Statistical meth-

ods, such as, analysis of variance (ANOVA), regression analysis, are commonly used
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to evaluate the benefits or costs of proposed policies on dependent variables related
to individual or social welfare. However, all parametric models, such as ANOVA,
regression rely on the normality assumption. Deluchi & Bostrom [12] suggested to
be wary of standard methods, such as t tests and parametric ANOVA when analyz-
ing skewed-distribution data. It is known that the distributions of many economic
and /or financial variables (income, wealth, prices, asset return) are right skewed with
fat tails, since these variables never take values less than zero [32]. A more appro-
priate alternative for comparing the policy effects may be to use a nonparametric or

distribution-free method.

4.2 Stock’s Nonparametric Policy Analysis

Stock [38] proposed a nonparametric procedure to estimate the mean effect of certain
policy interventions. Suppose Y is the dependent variable of interest, such as, the
house price, and X is a p dimensional vector of independent variables, such as the size
of the lot, the living area in the house, age of the house, before the policy of cleaning up
a local hazardous waste site [39]. Let Y* and X* be the corresponding dependent and
independent variables after the policy intervention. The policy benefit B is defined by
the mean change of dependent variable Y after policy, i.e. B = EY* — EY. Consider

the semi-parametric regression model:

where, A is a p dimensional vector of cell effects, E(e;|X;,d;) = 0 and E(e?|X;, d;) =
0%(z,d) < oo fori=1,2,--- ,n. By assuming the cell effects remain unchanged after

the policy, the policy benefit becomes:
B = FE"g(X;) — Eg(X;), (4.2)

where, E*[-] is the expectation taken over X*. To estimate B, Stock [38] firstly

estimated A by borrowing the idea of ordinary least squares (OLS) estimator of A
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in general linear models, then gave the kernel estimate of g(X) by plugging in the
estimated A for both cases: before and after policy intervention, denoted as g,(X)

and g,(X™). Thus, the policy benefit is estimated by
Bu= 13" (0aX) — gu(X0). (13
i=1
B,, is a consistent estimate of B. Details are described in [38]. See also Ahmad,
Leelahanon and Li [3] for an extended semi-parametric approach.

Stock’s policy analysis model is limited in several aspects. Firstly, Stock’s model
only provides an estimate of the gain or loss of the new policy. Decision makers may
find it difficult to make a decision through only estimators, rather than a hypothesis
test. It is also not very meaningful to interpret a difference in policy impacts when
the difference is actually not statistically significant. Secondly, it can only evaluate
one policy with two levels at a time. There are plenty of situations in which three
or more policy effects need to be evaluated. For example, as in [21] one may need to
evaluate the effects of three land uses: golf courses, a university, and a nitrogen plant,
on the neighborhood home values in Lawrence, Kansas. Thirdly, Stock’s model uses
the average change of the dependent variable as a measurement of policy impacts. It
is known that most of the economic variables are skewed, sometimes strongly skewed.
The mean of samples from skewed distributions is not a good measurement of central
tendency. It is very sensitive to extreme values. Thus, the average change of de-
pendent variable should not be an appropriate policy benefit measurement. Finally,
in Stock’s model, g(z) and A are estimated by directly utilizing the analogy format
of the OLS estimator in generalized linear models without any theoretical verifica-
tion. To sum up, the development of a more generalized and reliable policy analysis
technique is a crucial task for many current policy analysts. In the next section, we

will propose a hypothesis test of policy benefits in locations (such as, median) of the

policy related variables.
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4.3 A New Approach of Policy Analysis

As we discussed in the previous section, mean or average is not a good choice of
measurements when the samples come from a skewed distribution. Therefore, the
location of the samples, defined in Chapter 2, is considered instead. Suppose there are
K policies that need to be evaluated. One of them is the old policy or current policy,
and the other K — 1 are newly proposed policies. In order to evaluate the efficiency
of the new policies, the location effects of K policies on a dependent variable X and
explanatory variable U are compared. Suppose (Xj;,U;;) is the pair of observations
from the j** individual and under the i policy. Define u,;, and o, be the location
and scale of the dependent variable X under the i** policy. Then the efficiency of the
K policies can be evaluated by performing a hypothesis test with the null hypothesis
Hy: pye = pox = ... = ligs, which means none of the new policies do any better or
worse than the old one.

Assume that (X;;, U;;) comes from a joint distribution f;(z,w), wherei =1,2,--- | K

and j = 1,2,...,n,;. By the definition of location parameter in Chapter 2, the follow-

ing equation holds:

filz,u) =

o %

L ( ~ tae u) (4.4)

where fo.(+, ) is a base density. Thus, we have

[ [erwan = [ [ 220 (g wdyda

= /yfg*(y,U)dva Z /fg*(y,U)dy,

which implies that

ou([ [ o fP (@, u)dedu — [ [ yf5.(y, u)dydu)

Hix =
I 13y, w)dydu
o [ [afE(z,u)dedu O [ [yf3.(y,u)dydu (4.5)
J S 3.y, w)dydu J [ 1.y, w)dydu '
Assume 0y, = 0, for all i = 1,2,--- | K, and then equation (4.5) becomes:
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ou [ [af?(z)dedu a*ffny* y, u)dydu
Hisx =
] By wdydu [ [ f5.(y, w)dydu

Let W; = [ [ af?(z, u)dxdu. Hence, the hypothesis of equal location Hy: pi14 = pios =

(4.6)

. = ks versus Hy: pi. # ;. for some @ # j becomes Hy: Wy =Wy = ... = Wk
against Hy: W; # W; for some @ # j. Consider the nonparametric kernel estimate of

W;, denoted as I/T/Z-, where

3 Xij + Xijy Xij — Xijy Uijy — Uy,
W; = E E K K . (4.
' ni(n; — 1)h2 ( h; h; (4.7)

J1#j2

Note that if 0;, # o, for some i, then the test statistic in Proposition 4.4 is to test

Ho: pia/o1e = plow/02 = .. = Uke /0K« VS Hyt plin /0 # s/ 0. for some i # j,
instead of Hy: 14 = plox = ... = i versus Hi: pu # pj, for some 7 # j.
Lemma 4.1 If for any i = 1,2,--- | K, n;h} — 0, n;h; — oo as minn; — oo,

[ [ 222 (z,u)dzdu < oo and if fi(x,u) is twice differentiable with respect to x and u,
then

as minn; — oo, where, w?, = 4{[ [ 2? f}(x,u)dxdu — ([ [z f?(x, u)dzdu)?}.

Proof: Let @*(Xijp Xijza Uiju Uijg) = <M>K<%> K(%), then VVZ

2h2
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is a U-statistics with mean
A Xio X — Xio Ui — Us2
EOW,) = p(aRp(2i— e (Ya = Ye
(W) <h?<hz‘><hz‘>)

- %////le{(xl_@)<u1f;UQ)fi(xl,ul)fi(x2,u2)dx1dm2du1duz

— ////xQK (v) fi (22 + uhy, ug + vhy) fi (22, us)dudvdrydusy

- JJ] oy

8f1 X U) Uh + 0( ):| fl(aj27 UQ)dUdUd»IQduQ
(z2,u2)

_ / / / / 22K (W) K (0) £2 (2, uz) dudvdasduy + o(h;)

_ / / 22 f2 (w3, uz)dwadus + o(h)

(w2,u2)

12
—~

e~

=)
~—

and variance written as

- 4
Var(Wy) = —cov(p(Xijy, Xijs, Uigy, Uija), 0 (Xigo, Xija, Ui, Uigs))
2
+nz‘(ni _ 1)UGT(QO*(Xij1, Xijza Uiju Uijg))'

It can easily be shown that var(¢( Xy, , Xijy, Uijys Uij,)) = O(h; ') and since 1/ (n;h;) =
0(1), the second term of Var(W;) in the parentheses can be neglected. Then the

variance of W; is dominated by w where

3%
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wi, = deov((Xij,, Xijy, Uiji» Usjy), 0(Xijy s Xigo, Ui, Uijy))
= AE(p«(Xijy, Xijy, Uijy, Uiy )0 (Xijy, Xijs, Uijy, Uijy))
_E(@* XanXszv Umu UZJz))E(SD*(XUnXusv Uma Um))]

- [4h////// o1+ )+ ) K () K ()

K( )K( )fl(:vl, uy) fi(xe, ug) fi(ws, us)drdrodrsdus dusdus

hi

(hzf///le g Y }:UQ)fZ(:L‘l,ul)fz(xg,u2)dx1dx2du1du2>2}
= [ ][] ] ] et uno@e + whok @K e KK )

filzr,w) fi(z1 + yrhi, ur + 21hy) fi(@y + yohy, wi + 20h;)dzdyr dysdus dzydzy

1 2
—4<§////£U1K(ZJ1)K(21)fz‘(SU1,Ul)fi(xl+Z/1hz‘,u1+Z1hz’)d5€1dy1du1dz1)

— //////(4.75%+2x1y2hi+2x1y1h,-+ylyghf)K(yl)K(yz)K(zl)K(Zz)

filzr,w)[fi(z1,u) + W y1h; + afl(x ) z1hi + o(h;)]

(z1,u1) (z1,u1)
[fi(x1,u1) + afl(;c ) zoh; + o(h;)]dx1dyrdysduy dzydzy

thz + aflgz )

1’2 u2

x2 u2

_4(h2////le (1) K (20) filwr, w) [filwn, u) + 2L52e)

+ Gfl(ac u)

yih;

(w1,u1)

zlh + o(h; )]d:vldylduldzl)

_ / / / / / / L2 K () K (o) K (21) K (22) £ (21, un ) dlys dyading dr d 2
_4(h_? / / / / le(yl)K(zl)ff(xl,ul)dxldylduldzl) +O(hy)
4[//x§f§(x1,u1)dx1du1 — (//xlff(:vl,ul)dxldm)T (4.10)

By central limit theorem of U-statistics (See Koroljuk and Borovskich [22], pp.

12

128-129), we have \/m;(W; — W) <% N(0,w?), where,

) Mk

W = 4{ //fof’(x,u)dxdu— (//mff(ac,u)dxdu)Q}. (4.11)
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Define
K A7 /02
W= Zz:;(" /;" , (4.12)
D i1 i/ W3,

and the sum square between

K ~ A
ny(W; — W.)?
SSB* = _ 4.13
2 o
Lemma 4.2 Under the null hypothesis Hy: Wy = Wy = ... = Wk, if for any
i=1,2,...,K, n;h}{ = 0, n;h; — 00 as minn; — oo, [ [2*f3(z,u)dzdu < co and

if fi(x,u) is twice differentiable with respect to x and u, then SSB* is asymptotically
X2(K —1). In general (under the alternative), SSB* is asymptotically non-central

X2(K — 1) with non-centrality parameter:

1
Ve = S Baup, (4.14)

2 2 2 2
where ,ufk ) = (uﬁ*),ué*), . aN%D;

V(e — —zf{:l)‘iei/w?*)ffo(x,u)da:du

K Y]
niy = B Mo/ , (4.15)
O Wi
1 _ )‘1/"‘)%* _ (\/H/Wl*)(\/g/w%z) . _ (m/wl*)(m/wK*)
S A/ iy i/, HEPYPS
B,. — ) : : ’
_ (W/fwid) A fwis)  _ (Ve/was) VAR /wis) 1— Ak /wk,
ZiKzl i Jw2, 25:1 i Jw?, ZiK:l AiJw?, i
(4.16)
n,
A = lim . and e; is such that p; = 1 + ——2—.
n;—00 fil n; " \/ Zfil n;
Proof: Replace w; with w;,, and then follow the proof of Theorem (2.6).
|
Define
; Xijy + Xy Xijy — Xy Uij, — Ui
AZ]L]Q — < 12h12 2>K( ! hZ 2 K 1 hZ . 9 (4'17)
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and the Sum of Square Within

K i * T ~
Zi:1 > 2?1#2 (Aij1j2 - Wi)2/wi2*

SSW* = , 4.18
- (.19

where C,, is given in equation (2.41).
Lemma 4.3 For any i = 1,2,.... K, if n;h} — 0, n;h; — 0o as minn; — oo,

[Z 2 f2(x)dx < oo and if f;(-) is twice differentiable, then SSW* is asymptotically

X% with degrees of freedom df,,, where df,, is given in equation (2.43).

Proof: Replace w; with w;, and A;;,;, with A} and then follow the proof of The-

iJ1J27

orem (2.8). |

Proposition 4.4 If for any i = 1,2,..., K, n;h} — 0, n;h; — 0o as minn; — oo,

ffooo 22 f3(x)dx < oo and if fi(+) is twice differentiable, then under null hypothesis,

Fp = MSBT _ SSB/UK-D) i equation (2.48) follows asymptotically F distribution with

MSW* — ~SSW+/df,

degrees of freedom K — 1 and df,. Under the alternative, F}* follows asymptotically

non-central F(K — 1, df,) with non-centrality parameter 1, described in equation

(4-14).

Proof: Replace w; with w;, and A;;, ;, with A7 and then follow the proof of The-

ij1j2°

orem (2.9). |

Proposition 4.4 illustrates a brand new hypothesis test to evaluate the impact of
new policies on some dependent variable X. Frankly speaking, this is an analysis
of covariance (ANCOVA) model. If the test fails to be rejected, it means that all
the K policies have the same effect on the dependent variable, such as the house
price. That’s to say, none of the new policies does any better or worse than the
old one. If the test is rejected, it means that there is at least one policy that has

different effects on the dependent variable. Then the next interesting question is to
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find which policy(s) are significantly different and by how much. This leads to the
multiple comparisons type problems. Until now, there is no literature work refers the

nonparametric multiple comparisons. We will leave this question to our future work.
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CHAPTER 5

Conclusions and Future Works

5.1 Conclusions

The analysis of variance (ANOVA) models play a vital role in analyzing the effect
of categorical factors on a response variable. They have been applied in analyzing
data from a wide range of areas such as biology, psychology, business and sociology.
The main idea of ANOVA is to decompose the variability in the response variable
according to the effect of different factors. The existing literature on ANOVA can be
categorized into two divisions: parametric and nonparametric techniques. The para-
metric tests, i.e. the traditional F test, rely on the assumptions of homoscedasticity
and normality of the errors. The existing nonparametric ANOVA are either based on
rank transformed techniques or performed purely by simulations. What’s worse, none
of the literature work in nonparametric two-way ANOVA has provided methods with
theoretical support to test the main effect and interaction defined in the traditional
way as the parametric ANOVA test. We propose a novel distribution-free ANOVA
test and provide a nonparametric analog of traditional F test for both one-way and
two-way layout. These newly constructed test statistics are not based on rank trans-
formed techniques, but rather our newly named “kernel transformed” technique. In
addition to the nonparametric ANOVA test, we also propose the nonparametric scale
test, which is considered as an nonparametric analog of homogeneity of variance test
in the parametric case.

Simulation results in Section 2.3 and Section 3.2 show that: (i) The kernel based

nonparametric scale test is almost as powerful as the Levene’s test when the samples
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come from Normal distributions. It significantly outperforms Levene’s test when
the samples come from Cauchy or Lognormal distributions. (ii) The kernel based
nonparametric one-way ANOVA test is almost as powerful as the parametric one-way
ANOVA test when the samples come from Normal distributions and significantly
outperforms parametric one-way ANOVA test when the samples come from Cauchy
or Lognormal distributions. (iii) The kernel based nonparametric one-way ANOVA
test is less powerful than the kernel based nonparametric scale test in any of the three
cases. (iv) The kernel based nonparametric two-way ANOVA test of interaction and
test of main effects are less powerful than the nonparametric one-way ANOVA test for
the same cell size when the samples come from Normal distribution. (v) The kernel
based nonparametric two-way ANOVA test of interaction and test of main effects are
more powerful than the nonparametric one-way ANOVA test for the same cell size
when the samples come from Cauchy and Lognormal distributions. (vi) The kernel
based nonparametric two-way ANOVA test of main effects is slightly more powerful
than the nonparametric two-way ANOVA test of interaction in any of three cases
comparing to the corresponding parametric tests.

Kernel based nonparametric ANOVA test is more powerful than the standard
ANOVA for non-normal data, especially strongly skewed and fat-tailed data. Thus,
it is highly recommended if the shape of the data severely departs from mound-shaped

curve.

5.2 Future Work

For the future research, an extension to other experimental design models, such as
incomplete block design, in which not all the treatments occur in every block, and
Latin square design, can be considered. These are the designs that are more realistic
in real-world applications than the complete randomized design. In addition, the

multivariate analysis of variance (MANOVA) may be considered in the future when
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the response variable is not a single variable, but a vector of variables instead. Also,
a random effect, rather than fixed effect, nonparametric analysis of variance can be

studied in the future research.
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