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Abstract: Scope and Method: Weather conditions such as temperature and precipitation 
are the most important crop growth limiting factors in Oklahoma. Less precipitation is 
available for crop growth during the summer months due to high evapotranspiration 
attributed to high temperature. In some years, the winter is dry affecting performance of 
winter crops. Soil applied phosphate fertilizers use efficiency in winter wheat is low 
because of soil and weather related factors. Therefore, control and field experiments were 
established to determine teff growth and yield. The growth chamber teff study comprised 
three temperature regimes, four levels of soil moisture, three times of watering intervals, 
and two photoperiods. Treatments for the field study included four levels of irrigation and 
two watering intervals. Foliar phosphorus improves P use efficiency of crops. However, 
no effective foliar products are available on the market. The objective of the phosphite 
study was to evaluate Nutri-phite, a foliar phosphorous product on winter wheat yield, 
quality and nutrient use efficiency in five fields over two years. Treatments for the foliar 
P study included application of a Nutri-phite at two growth stages of winter wheat. Nutri-
phite was applied with and without N at 100 and 75% of crop need and P at 100 and 80% 
of P sufficiency a long a check (no fertilizer) and standard (farmer practice) treatments. 

Findings and Conclusions: In the control study, teff biomass and grain yields increased 
with increasing soil moisture and decreased with increasing temperature and photoperiod. 
Grain yield was more affected by high temperature and drought than biomass yield in the 
growth chamber study. In the field experiment, biomass and grain yield were highly 
related to water amount. Teff produced acceptable biomass and grain yields under rainfall 
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especially when rainfall is not limiting during the growing season. In addition, Nutri-
phite was more efficient in increasing grain phosphorus concentration compared with the 
check treatment. Thus, application of Nutri-phite might improve the wheat growth and 
yield if weather conditions are normal, and the right amount of Nutri-phite is used. 
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CHAPTER I 
 

 

GENERAL INTRODUCTION 

 

This dissertation presents results of two independent experiments. The first 

experiment evaluated teff [Eragrostis tef (Zucc.) Trotter] as an alternative forage and 

grain crop in the State of Oklahoma in controlled and field situations in 2011 and 2012. 

Teff is a principal warm season annual grass crop grown in Ethiopia. It is tolerates low 

water stress and endures moderate water logging. It is grow in some African countries as 

livestock forage. Teff was introduced into the US by the missionaries and expatriates 

from Ethiopia in 1916 to the State of California (Ketema, 1997). It is growing as forage 

grass in 25 states in the US (Davison et al., 2011).  

In Oklahoma, during the last five years, many producers showed interest in 

growing teff. However, its establishment, growth and yield are influenced by day length, 

temperature, and soil moisture. Although the crop is drought tolerant, like any crop, it 

requires a certain level of soil moisture particularly given the high heat index in 

Oklahoma. This project is designed to establish the relationship between day length, 

temperature and soil moisture with teff growth parameters and yield. The controlled 
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study was conducted in the growth chambers and comprised three temperature regimes, four 

levels of soil moisture, three times of watering intervals, and two photoperiods. Treatments 

for the field study included four levels of irrigation and two watering intervals.  

The second experiment evaluated foliar phosphite on hard red winter wheat (Triticum 

aestivum L.) at Perkins, Perry and Morison, OK over 2009 and 2010. The major problem of 

soil applied fertilizers has been low nutrients use efficiency, especially nitrogen and 

phosphorous. To improve grain quality and nutrient use efficiency, we proposed foliar 

application of P. However, effective formulations that can be easily absorbed by cereal crop 

leaves are lacking. Nutri-phite® is a phosphite foliar fertilizer formulation that purportedly 

absorbed through leaf tissues. In this experiment, Nutri-phite was applied at two growth 

stages of winter wheat with and without soil applied nitrogen and phosphorus.  

In general, the two experiments are organized into four chapters including this 

General Introduction. Chapter II covers the controlled teff study entitled “Teff growth and 

yield as affected by day length, temperature and soil moisture”. Chapter III deals with the teff 

study conducted in the field entitled “Response of teff biomass and grain yield to soil water 

availability and watering interval”. The last chapter, Chapter IV covers the work conducted 

in winter wheat entitled “Response of winter wheat growth, grain yield, and phosphorus and 

nitrogen uptake to foliar phosphite fertilization”. All three chapters are strategically 

addressing environmental and management constraints for successful production of teff and 

red hard winter wheat in Oklahoma.  
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CHAPTER II 
 

 

TEFF GROWTH AND YIELD AS AFFECTED BY DAY LENGTH, 

TEMPERATURE AND SOIL MOISTURE 

 

ABSTRACT 

Teff [Eragrostis tef (Zucc.) Trotter] is an annual dual-purpose grass crop. 

Although the crop is drought tolerant, teff morphological and yield responses to different 

soil moisture regimes, day length period and temperature are not well understood. 

Therefore, a controlled environment growth chamber experiment was initiated in 2011 

and 2012. Experimental design was a split-plot arrangement and a completely 

randomized with three replications. A factorial combination of three levels of watering 

interval (3, 5 and 7 days) as main plot and four levels of field capacity (FC) (100%, 75%, 

50%, or 25% of FC) as sub-plot, was treated with two day lengths (14 light /10 dark or 16 

light /8 dark hours) and three day/night temperature regimens (24/19, 27/16, and 30/24 C 

day/night). Tiller number, plant height, and leaf area were decreased by increasing water 

deficit, temperature, and day length. The lowest tiller number and plant height (≈ 2 and 

43 cm) were recorded at the combination of 25% FC with a 7-day watering interval. The 

greatest leaf area was 47 cm2 at day length 14/10 hours. Biomass and grain yield were 
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decreased at high water and temperature stress. Changing day length from 14/10 to 16/8 

hours resulted in 14% decrease in biomass yield. Grain yield decreased by 13% at the 

combination of FC25 + I3 days compared to FC100 + I3 days. Grain yield response to 

water treatments was (R2=0.87 and 0.58) at (14/10 and 16/8 hours respectively). 

Photosynthetic assimilation rate (A) and stomatal conductance to water vapor (gws) were 

correlated to the combination of FC with watering intervals  (R2= 0.76, 0.45, and 0.40) 

and (R2= 0.90, 0.47, and 0.67) of 24/19°C, 27/16°C and 30/19°C respectively at (14/10 

and 16/8 hours respectively). Teff growth and yield were tightly correlated to water 

availability, temperature, and photoperiod. 
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INTRODUCTION AND LITERATURE REVIEW 

Most of the crops introduced into the US for food and fodder purposes were 

brought here by the immigrant communities from all parts of the world. Some of these 

crops and herbs are well accepted by local populations for alternative uses, thus creating 

a common interest and demand for those crops. One such crop is teff [Eragrostis tef 

(Zucc.) Trotter]. Teff is an annual warm grass indigenous to Ethiopia (Ketema, 1997). It 

is a tetraploid crop with 2n =40 chromosomes (Tavassoli 1986). Teff seeds are small in 

size, and weight of 1000 seeds is 0.3 to 0.4g, and teff produces massive fibrous root in 

early season growth (Stallknecht et al., 1993).  

Teff grain contains high levels of several minerals such as iron, magnesium, 

calcium, phosphorus, and thiamine (National Research Council, 1996; Mengesha, 1965). 

It is an excellent source of essential amino acids, especially lysine, the amino acid that is 

most often deficient in common grain foods including wheat and millet (Lovis, 2003; 

Spaenij-Dekking et al., 2005). Unlike common cereals (wheat, corn, and barley), teff has 

balanced nutrition but is low in gluten, which makes a good diet source for gluten 

intolerant people (Stallknecht et al., 1993). Teff forage contains high amount of proteins; 

a field trial research in Montana reported 9.6 to 13.7% hay protein and the same Relative 

Feed Quality (RFQ) as full-bloom alfalfa, which ranged from 78 to 108 in research from 

Oregon and Washington (Stallknecht et al., 1993; Norberg et al., 2009). 

Temperature, soil moisture, planting depth and soil texture are some of challenges 

to established teff. Though teff can be grown in a wide range of soil moisture conditions 

extending from highly drought to highly waterlogged soil, but the early season growth is 
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weak until a very good root system is established (Hunter et al., 2007; Millar, 2010). A 

preliminary green house study conducted in 2010 suggested that teff can well thrive if 

moisture level is over 15% water content (weight of water/weight of soil) and relative 

humidity (RH) of 65% or lower (Ali and Girma personal observation). Girma (2009) 

reported that teff produced 5 to 12 ton ha-1 of total biomass in central Oklahoma under 

optimal soil moisture. Drought soil conditions reduce grain yield, especially if the stress 

occurs during the vegetative growth stage, and grain yield reduction of 40% and 85.1% 

reported under greenhouse grown soil drought conditions (Ayale, 1993; Takele, 1997 & 

2001; Teferra et al., 2000). Likewise, tiller number, plant height and both yield of 

biomass and grain yield of all teff genotypes decreased under soil moisture stress 

compared to non-stress condition (Takele, 1997; Admas and Belay, 2011). In U.S.A, 

highest forage yield (9 to 13.5 ton/ha) was recorded dependent upon soil moisture levels 

ranged from dry to well irrigation (Boe et al. 1986; Eckhoff et al. 1993).  

In another study that compared the interaction of seed treatment and temperature 

on teff seedling vigor, Ghebrehiwot et al. (2008) showed that temperature was not a 

critical factor when temperatures range from 25 to 38.9°C. Generally, at 15°C teff should 

grow well. Soil temperature less than 18.4°C inhibits teff growth (Stallknecht, 1997; 

Millar, 2010). Debelo (1992) reported that low germination of teff seed was recorded at 

low temperatures 15/15° and 15/25°C compared to high temperatures 25/25°, 35/35°, 

15/35°, and 25/35°C. Highest yields (700 to 1600 kg ha-1) are typically obtained in its 

native country, Ethiopia, under a range of temperature from 10° to 29°C (Stallknecht, 

1997; Hunter et al., 2007; Millar, 2010).  
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Teff is a photoperiod sensitive plant, and optimal day length (12 hours) is 

appropriate to induce flowering in teff. Shorter day lengths (8 hours) and longer day 

lengths (16 hours) reduce and delay flowering of teff (Katema, 1997; Roseberg et al., 

2005). Growing teff in early season (low temperature at less than 10°C) can lead to more 

weed problems as it is very sensitive and less tolerant to frost and freezing (Stallknecht, 

1997; Millar, 2010). Teff forage yield is more sensitive to day length and decreased yield 

at short day lengths, especially in fall season (Katema, 1997). 

Photosynthetic efficiency of teff is also affected by temperature. Carbon exchange 

rate of teff increased with increasing the temperature from 18 to 42°C and then decreased 

at temperatures above that. In the same time intercellular CO2 concentration was not 

significantly affected by temperature but in general intercellular CO2 concentration level 

decreased at the temperature in which it was optimal to carbon exchange rate. Stomatal 

conductance increased as temperature increased (Kebede et al., 1989). Net photosynthetic 

assimilation and respiration rates of teff decreased by 92.8% and 60% respectively at 

very high water stress less than 75% of soil water availability. Water stress during the 

vegetative growth stage decreased a photosynthesis rate, and water stress had a 

significant effect on stomatal conductance (Dejene, 2009).            

In Oklahoma, teff is a new crop and farmers are interested in growing teff to 

produce hay during summer, but its management is not well understood. More 

importantly, establishment, erratic rainfall, and summer heat make production difficult. 

The objective of this study was to determine the effect of day length, temperature, soil 
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moisture level and watering intervals on growth and yields of teff. The specific objectives 

of this project were: 

(1) Evaluate teff response to the interaction of water quantity (field capacity), and 

watering interval. 

(2) Determine the interaction of day lengths, and temperature on growth and yield of teff 

under controlled environment. 

 

MATERIALS AND METHODS 

Six controlled environment growth chambers at the Control Environmental 

Research Laboratory (CERL) facility of Oklahoma State University were used to 

accommodate six day length by temperature combinations. Two day lengths were 

evaluated 14/10 (short day, SD), and 16/8 (long day (LD) light/dark hours to mimic 

Oklahoma day length during summer. Three temperature regimes were evaluated (1) 

24/19°C day/night chosen to represent an ambient ideal temperature (IT), (2) 27/16°C 

day/night which mimicked the 10- years average temperature of Oklahoma during May to 

August as minimum temperature (MT) , and (3) 30/24°C day/night as high temperature 

(HT) in which the temperature was set to 30°C in the first month, 35°C in the second 

month with an increase in temperature of 1°C every 4 days until reached 35°C and a 

decrease in temperature from 35°C in the third month at a rate of 1°C every 4 days. The 

last temperature regime was designed to mimic a severe summer in Oklahoma. Relative 

humidity of growth chambers was set to 50/50, 55/50, 55/50 % day/night for 24/19°, 
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27/16°, and 30/24°C temperature, respectively, to mimic the Oklahoma environmental 

conditions during summer. The trial was repeated over 2011 and 2012. 

In each growth chamber, a factorial combination of four soil water levels and 

three levels of watering interval were implemented. Soil moisture levels were maintained 

at 25, 50, 75 and 100% of field capacity (FC100, FC75, FC50, and FC25) corresponding to 

12.5, 25, 37.5 and 50 (v/v of soil/water), respectively. Field capacity was measured 

depending on the field soil at Agronomy Research Station at Stillwater and as described 

by Anderson and Ingram (1993). Dominant soil type at this location is a norge fine-silty, 

mixed, active, thermic udic apleustolls. Watering intervals were watering every 3, 5, and 

7 days (I3, I5, and I7). Water requirement was obtained by weighing pots before and after 

irrigation to measure the amount of water needed according to field capacity and soil 

weight.     

The experimental design within a growth chamber was split-plot arrangement and 

completely randomized within three replications. Main plots were watering interval and 

sub-plots were field capacity. Each growth chamber contained 36 small pots (12.7 cm 

depth by 15.3 cm diameter). Each pot was filled with 2 kg of soil (silty clay loam) from 

the Agronomy Research Station. Soil water amount (table 1.1) and watering interval 

treatments were treated 10 days after planting and were continued until physiological 

maturity. The 10 days delay after planting ensured complete emergence of teff. About 15 

seeds of teff were planted in each pot and each pot had 65 kg N h-1 and 50 kg P h
-1 

available to plant growth, accounting for residual N and P in the soil. Two-third of 

nitrogen was applied before jointing. 
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Planting date was August 3, 2011 and February 2, 2012. Teff was harvested 

manually at physiological maturity with scissors on November 15, 2011 for all the 

growth chambers except the 30/24°C and 16/8 hours chamber, which was harvested on 

October 25. In 2012 the harvest date was on May 20 for all growth chambers except the 

30/24°C chambers which were harvested on April 30.  

Number of seedlings, plant height (cm) from the soil surface until the end of 

panicle, leaf numbers per plant, and leaf area were measured at 3-4, 6-8, and 10-11 weeks 

after planting. Number of tillers were measured during tillering stage (4-5 weeks from the 

planting date) and at final harvest (11-12 weeks from the planting date). Aboveground 

biomass, and grain yield was measured at physiological maturity. After harvest teff was 

dried in an oven (42°C) for 7 days, and then was weighted for biomass yield and threshed 

by hand and cleaned to determine grain yield.  

Leaf area was measured using LI-3000 leaf area meter (LI-COR, Lincoln, 

Nebraska USA). Physiological variables including photosynthetic CO2 assimilation A 

(µmol CO2 m-2 s-1), stomatal conductance to water vapor (gws) (mol H2O m-2 s-1), and 

intercellular CO2 concentration Ci (µmol CO2 mol air-1) were measured with a LI-6400 

portable photosynthesis system (LI-COR, Lincoln, Nebraska USA). A CO2 cylinder was 

used to supply CO2 (400 µL L-1) in CO2 injection system during the measurement, and 

light source (6400-02 LED) was used to supply 1500 µmol m-2 s-1 of photosynthetically 

active radiation (PAR). The temperature of the leaf cuvette chamber was set depending 

upon the growth chamber temperature. The measurement was repeated weekly, beginning 

20 days after emergence (six times). 
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A polynomial model was used to estimate the effect of treatments on the 

relationship of grain yield to biomass yield, the effect of treatment on A, and the response 

of A to gws and Ci ; 

Y= y0 + ax + bx2  

Raw data we analyzed with PROC MIXED and PROC REPEATED statistical 

procedures of SAS statistical software program (SAS 9.3). Least squares means and tests 

of effect slices of treatment were used for mean separations at 5% level of significance 

probability. Linear contrast of treatments was also measured for biomass and grain yields. 
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Table 1.1. Total amount of water (ml) added to each pot of teff plant based on field capacity, watering interval, temperature and day 

length. The pots were watered between 9 and 10 AM. at growing seasons 2011 and 2012 at the control experiment.   

Treatment  

Growing season 2011 Growing season 2012 
Day length (light/ dark) hours Day length (light/ dark) hours 

14/10 hours  16/8 hours 14/10 hours  16/8 hours 
24/19°C 27/16°C 30/24°C 24/19°C 27/16°C 30/24°C 24/19°C 27/16°C 30/24°C 24/19°C 27/16°C 30/24°C 

3 Days  
  

  
  

    
 

  
   

25%FC  3092 3123 3241 3196 3102 3349 3002 3100 3201 3106 3129 3334 
50%FC  6142 6146 6369 6246 6289 6410 6049 6112 6263 6156 6219 6400 
75%FC 9170 9171 9493 9299 9356 9499 9095 9201 9339 9108 9350 9402 

100%FC  12348 12368 12685 12488 12591 12699 12151 12212 12400 12488 12570 12592 
5 Days         

25%FC  2255 2240 2385 2242 2292 2344 2342 2349 2398 2392 2392 2416 
50%FC  4493 4485 4562 4500 4509 4579 4500 4499 4527 4594 4509 4629 
75%FC 6599 6618 6794 6797 6730 6797 6528 6598 6690 6702 6613 6742 

100%FC  8986 8982 8984 8974 8999 9095 8809 8882 8914 8998 8915 9015 
7 Days         

25%FC  1610 1609 1700 1675 1699 1710 1649 1669 1709 1775 1700 1787 
50%FC  3247 3279 3303 3290 3316 3405 3240 3279 3310 3391 3324 3435 
75%FC 4848 4863 4902 4899 4525 4988 4852 4897 4900 4912 4937 4518 

100%FC  6495 6495 6601 6500 6545 6698 6401 6485 6521 6581 6555 6607 
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RESULTS 

Morphological Variables 

None of watering regimes evaluated affected number of seedlings (Table 1.2). 

Number of tillers per plant was significantly affected by the combination of Field capacity 

and watering interval treatments (Figure 1.1 and Table1.3) at (P≤0.05). Combination of water 

quantity (%field capacity) with watering interval had no significant effect on tiller number at 

24/19°C at either measurement time (4-5 and 11-12 weeks). A similar effect was also 

observed with the 27/16°C temperature regimen at the tillering stage (4-5 weeks). However, 

at 27/16°C, a significant effect was recorded with the combination of water quantity (FC75 

and FC100) with watering interval at harvesting (11-12 weeks) under the effect of day length 

(SD). Thus, tillers per plant decreased (3.6) of the combination of FC75 + I7 compared with 5 

and 4.8 tillers per plant of FC75 + I3 and FC75 + I5 days, respectively. Also, at the 

combination of FC100 + I5 and FC100 + I7 treatments, tillers number per plant were 4 and 3, 

respectively compared with 5.4 tillers per plant of the combination FC100 + I3 day of 

watering interval. The same results were also obtained at 30/24°C at tillering and harvesting 

stages. The number of tiller per plant was decreased of the combination FC75 + I3 and FC75 + 

I7 treatments (2.8 and 2.8 tillers per plant) compared to FC75 + I5 treatment (4 tillers per 

plant) at LD setting. Also, tiller number decreased of the combination FC100 + I5 and FC100 + 

I7 treatments (2.7 and 2.8 tillers per plant) compared with a 3.3 tillers per plant at FC100 + I3 

treatment. In general, tiller number per plant decreased with decreasing soil moisture level, 

and it was affected by temperatures more than day length in which tiller number decreased 

with increasing temperature. 
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Table 1.2. Statistical analysis (PROC MIXED with repeated measurement) of teff seedling 

numbers per pot as affected by the combination of each field capacity (%) with watering 

intervals (day) treatments under the effect of the combination of temperature (°C) with day 

length (hour) treatments in growth chamber studies in 2011 and 2012 

Day Length (14/10 hours) light/dark 

Effect Num DF 
Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

F Value Pr>F F Value Pr>F F Value Pr>F 
FC%† 3 1.35 0.27 1.45 0.24 0.36 0.78 

25 2 0.23 0.80 0.53 0.59 0.44 0.65 
50 2 1.60 0.21 1.56 0.22 0.28 0.76 
75 2 0.66 0.52 1.21 0.31 0.35 0.71 
100 2 0.04 0.96 0.10 0.91 1.63 0.20 

WIdays‡ 2 0.79 0.46 0.76 0.48 1.40 0.26 
3 3 0.55 0.65 0.55 0.65 0.16 0.92 
5 3 0.29 0.83 1.16 0.34 0.53 0.66 
7 3 1.67 0.18 1.51 0.22 0.53 0.66 

FC*WIdays§ 6 0.58 0.75 0.88 0.51 0.43 0.85 
Day Length (16/8 hours) light/dark 

Effect Num DF 
Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

F Value Pr>F F Value Pr>F F Value Pr>F 
FC% 3 1.75 0.17 1.54 0.21 0.48 0.70 

25 2 0.14 0.87 0.62 0.54 0.86 0.43 
50 2 2.43 0.10 0.75 0.48 0.6 0.55 
75 2 1.41 0.25 0.19 0.83 0.15 0.86 
100 2 3.04 0.06 0.89 0.42 0.50 0.61 

WIdays 2 0.85 0.43 1.36 0.27 0.09 0.92 
3 3 1.32 0.28 0.24 0.87 0.51 0.67 
5 3 3.92 0.01 0.68 0.57 0.42 0.74 
7 3 0.62 0.61 1.35 0.27 0.90 0.45 

FC*WIdays 6 2.06 0.07 0.36 0.90 0.68 0.67 
† FC%= Field capacity (%). 
‡ WIdays= Watering intervals (day). 
§ FC*WIdays= Interaction of field capacity and watering interval. 
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Figure 1.1. Teff tillers number per plant at 4-5 weeks and at 11-12 weeks after emergence as 
affected by the combination of field capacity (%) with watering intervals (day) treatments. 
Each combination of field capacity with watering interval treatments compared individually 
and bars with the same letter are not statistically different at p≤ 0.05 level of least square 
means. 
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Table 1.3. Statistical analysis (PROC MIXED with repeated measurement) of teff tillers 

number per plant as affected by the combination of each field capacity (%) with watering 

intervals (day) treatments under the effect of the combination of temperature (°C) with day 

length (hours) treatments in growth chamber studies in 2011 and 2012. 

Day Length (14/10 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C) 

Temperature 
(27/16°C) 

Temperature 
(30/24°C) 

F Value Pr>F F Value Pr>F F Value Pr>F 
Date† 1 15.29 0.0002 56.01 <.0001 9.96 0.002 
FC%‡ 3 4.21 0.007 5.49 0.002 2.74 0.047 
       +Date 3 0.35 0.789 3.54 0.017 2.23 0.089 
WIdays§ 2 0.23 0.792 7.34 0.001 2.34 0.101 
       +Date 2 2.06 0.132 3.15 0.047 1.76 0.177 
FC*WIdays¶ 6 0.67 0.677 0.54 0.777 0.5 0.807 
DATE*FC*WIdays# 6 0.32 0.926 1.42 0.213 0.57 0.751 

Day Length (16/8 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C) 

Temperature 
(27/16°C) 

Temperature 
(30/24°C) 

F Value Pr>F F Value Pr>F F Value Pr>F 
Date 1 21.45 <.0001 15.03 0.0002 4.88 0.03 
FC% 3 11.09 <.0001 3.71 0.01 3.12 0.03 
      +Date 3 0.57 0.64 0.39 0.76 0.23 0.88 
WIdays 2 3.93 0.02 3.5 0.03 1.38 0.26 
      +Date 2 2.13 0.12 2.67 0.07 1.09 0.34 
FC*WIdays 6 0.69 0.66 0.42 0.86 1.31 0.26 
DATE*FC*WIdays 6 1.59 0.16 0.28 0.95 0.78 0.59 

†Date Time to measure the Tiller Number per plant (teller and harvesting stages). 
‡ FC%= Field capacity (%). 
§ WIdays= Watering intervals (day). 
¶ FC*WIdays= Interaction of field capacity and watering interval. 
# Date*FC*WIdays= Interaction of date, field capacity and watering interval.  
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Teff plant height (cm) was significantly affected (P≤0.05) by the combination of field 

capacity and watering interval (Tables 1.4 and 1.5). Plant height at 4 weeks was affected by 

the combination of water quantity (% field capacity) with watering interval affected 

regardless of temperatures at the SD (14/10 hours light/dark). At LD (16/8 hours light/dark), 

however, the combination of FC75 + I3 treatment grew to 63 cm height as compared to 43 

and 49 cm height for the combination of FC75 + I5 and FC75 + I7 treatments. 

At eight weeks, the combination of water quantity with watering interval significantly 

affected plant height. Differences among the treatments for plant height were more common 

at LD compared with short day length (14/10 hours). The greatest difference for plant height 

were associated with the combination of FC75 and FC50 + I3 and FC75 and FC50 + I7 

treatments were 19 and 18 cm, respectively compared to 12 and 7 cm height of the 

combination of FC25 and FC100 + I3 and FC25 and FC100 + I7 treatments under the effect of 

LD (16/8 hours) and temperature 27/16°C.  

The same results were obtained of 11-12 week measurements of plant height, which 

were affected by the combination of water quantity (field capacity) with watering interval. A 

greater effect of treatments on plant height was recorded at day length 16/8 hours, and the 

greatest difference of 30 cm was between the combination of FC25 + I3 and FC25 + I7 

treatments at the effect of temperature 24/19°C. However, plant height decreased under the 

effect of low and high temperature (24/19° and 30/24°C) and increased at temperature 

27/16°C. Also it increased with increasing time of water from 3 to 7 days. 

Overall, plant height increased with increasing soil water availability and at day 

length 16/8 hours (light/dark) and decreased with increasing temperatures regimen.  
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Table 1.4. Teff plant height (cm) at 4, 8 and 12 weeks after emergence as affected by the 
combination of field capacity (%) with watering intervals treatments. Each combination of 
field capacity with watering interval treatments compared individually and treatments means 
with the same letter are not statistically different at p≤ 0.05 level of least square means. 

Measurement 

time 

Field 
capacity 

% 

Watering 
interval 
(day) 

Day length (light/ dark) hours 
DL (14/10)† DL (16/8) 

Temp.‡ 
24/19°C 

Temp. 
27/16°C 

Temp. 
30/24°C 

Temp. 
24/19°C 

Temp. 
27/16°C 

Temp. 
30/24°C 

---------------cm---------------- --------------cm---------------- 

4 weeks from 
emergence 

25 
3  14 a§ 32 a 26 a 40 a 24 a 33 a 
5 13 a 35 a 27 a 37 a 29 a 38 a 
7 11 a 32 a 25 a 29 b 24 a 30 a 

50 
3 17 a 38 a 35 a 40 a 30 a 40 a 
5 20 a 38 a 27 a 38 a 33 a 48 a 
7 16 a  37 a 25 a 42 a 24 a 40 a 

75 
3 19 a 42 a 37 a 63 a 29 a 45 a 
5 26 a 39 a 35 a 43 b 36 a 43 a 
7 19 a 36 a 29 a 49 b 23 a 39 a 

100 
3 22 a 41 a 31 a 51 a  33 a 24 b 
5 27 a 32 a 35 a 50 a 30 a 38 a 
7 22 a 30 a 30 a 52 a 31 a 31 a 

8 weeks from 
emergence 

25 
3 30 a 56 a 28 a 53 a 51 a 34 b 
5 25 a 57 a 30 a 52 a 53 a 43 a 
7 18 b 55 a 22 a 40 b 39 b 41 a 

50 
3 44 a 66 a 39 a 61 a 62 a 50 a 
5 35 a 63 a  35 a 65 a 54 ab 56 a 
7 25 b 58 a 36 a 59 a 44 b  48 a 

75 
3 44 a 75 a 49 a  78 a 67 a 59 a 
5 43 a 72 a 35 a 67 b  66 a 54 a 
7 38 a 67 a 39 a  65 b 48 b 56 a 

100 
3 43 a 81 a 45 a 71 a 67 a 61 a 
5 48 a 68 b  42 a 63 a 66 a 58 ab 
7 40 a 68 b 34 a 71 a 60 a 52 b 

11-12 weeks 
from 

emergence 

25 
3 62 a 64 a 27 a 79 a 66 a 10 a 
5 56 a 67 a 33 a 67 a 68 a 18 a 
7 43 b 62 a 27 a 49 b 59 a 15 a 

50 
3 80 a 79 a 41 b 87 a 78 a 30 a 
5 66 b 76 a 51 a 76 ab 72 a 30 a 
7 52 c 72 a 46 ab 69 b 55 b 18 b 

75 
3 83 a 90 a 65 a 93 a 88 a  33 a 
5 78 a 81 b 64 a 86 ab 80 ab 28 a 
7 77 a 79 b 58 a 82 b 68 b 33 a 

100 
3 84 a 96 a 81 a 92 a 89 a 32 a 
5 89 a 87 a 73 a 89 a 85 a 31 a 
7 80 a 86 a 58 b 90 a 74 b 33 a 

†DL= day length (14/10 and 16/8 hours light/dark). 
‡ Temp.= Temperature treatments.  
§ Combination of each field capacity (%) with water interval (day) individually followed by the same 

letter are not statistically different at p≤ 0.05 level of least square means.   
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Table 1.5. Statistical analysis (PROC MIXED with repeated measurement) of teff plant 

height (cm) as affected by the combination of each field capacity (%) with watering intervals 

(day) treatments under the effect of combination of temperature (°C) with day length (hour) 

in growth chamber studies in 2011 and 2012. 

Day Length (14/10 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

 F Value Pr>F  F Value Pr>F  F Value Pr>F 
Date† 2 255.26 <.0001 275.16 <.0001 79.8 <.0001 
FC‡ 3 18.07 <.0001 12.02 <.0001 19.52 <.0001 
     +Date 6 1.94 0.079 4.12 9E-04 10.91 <.0001 
Widays§ 2 6.05 0.004 3.92 0.03 3.1 0.05 
     +Date 4 1.48 0.2 0.18 0.95 0.8 0.5 
FC*WIdays¶ 6 0.85 0.5 0.72 0.64 0.5 0.8 
Date*FC*WIdays# 12 0.29 1.0 0.12 1.00 1.2 0.3 

Day Length (16/8 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

 F Value Pr>F  F Value Pr>F  F Value Pr>F 
Date 2 182.24 <.0001 325.4 <.0001 17.36 <.0001 
FC 3 26.38 <.0001 9.38 <.0001 3.94 0.01 
     +Date 6 0.79 0.6 1.9 0.09 0.79 0.58 
Widays 2 8.37 0.001 13.02 <.0001 0.62 0.54 
     +Date 4 1.46 0.2 2.64 0.04 0.11 0.98 
FC*WIdays 6 2.01 0.08 0.64 0.70 0.3 0.93 
Date*FC*WIdays 12 0.7 0.8 0.41 0.96 0.15 1.00 

†Date Time to measure the Tiller Number per plant (teller and harvesting stages). 
‡ FC%= Field capacity (%). 
§ WIdays= Watering intervals (day). 
¶ FC*WIdays= Interaction of field capacity and watering interval. 
# Date*FC*WIdays= Interaction of date, field capacity and watering interval. 
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The combination of water quantity with watering interval affected leaf number per 

plant (Tables 1.6 and 1.7). The effect of the combination of water quantity (field capacity) 

with watering interval had no effect on leaf number at 3 weeks, especially at day length 

(14/10 hours light/dark) over all temperatures levels. More significant impact on leaf number 

was obtained from the effect of day length (16/8 hours light/dark) and the greatest leaf 

number was 17 at the combination of FC75 + I3 treatment at temperature (24/19°C). On the 

other hand, opposite effect of the combination of water quantity with watering interval was 

observed at 6 weeks compared to 3 weeks leaf number measurements under the effect of day 

lengths. At day length (14/10 hours), some of the treatments showed a significant effect on 

leaf number, especially at the combinations of FC25 and FC50 with watering interval at 

temperature treatments (24/19°C and 30/24°C, respectively). In general, statistically most of 

the combination of water quantity with watering interval had no effect in leaf number at day 

length (14/10 hours light/dark), and leaf number increased with increasing the soil moisture 

level. Some combinations (FC25 and FC50 with watering interval) affected the leaf number at 

day length (16/8 hours). Leaf number of the combination of FC25 + (I3, I5 and I7 days) 

treatments was (11, 10 and 7 leaf/plant respectively) at temperature (24/19°C) and was (10, 

10 and 7 leaf/plant respectively) at temperature (27/16°C) in which leaf number decreased 

with decreasing soil moisture level. In general the number of leaves ranged between 4 to 17 

leaves per plant, and the effect of temperatures was consistent in leaf number compared to 

the effect of soil moisture levels in which it decreased leaf number at low level of soil 

moisture and increased leaf number at high level of soil moisture. 
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Table 1.6. Leaf number per teff plant at 3, 6 and 9-10 weeks after emergence as affected by 
the combination of field capacity treatments (%) with watering intervals treatments. Each 
combination of field capacity with watering interval treatments compared individually and 
treatments means with the same letter are not statistically different at p≤ 0.05 level of least 
square means. 

Measurement 

time 

Field 
Capacity 

% 

Watering 
Interval 
(day) 

Day length (light/ dark) hours 

DL (14/10)† DL (16/8) 
Temp.‡ 
24/19°C 

Temp. 
27/16°C 

Temp. 
30/24°C 

Temp. 
24/19°C 

Temp. 
27/16°C 

Temp. 
30/24°C 

3 weeks from 
emergence  

25 
3 6 a§ 8 a 6 a 10 a 7 ab 7 a 
5 5 a 6 a 6 a 8 a 8 a 9 a 
7 4 a 6 a 6 a 8 a  5 b 9 a 

50 
3 6 a 7 a 8 a 8 a 8 a 12 a 
5 6 a 6 a 7 a 10 a 7 a 12 a 
7 5 a 6 a 6 a 10 a 3 b 8 b 

75 
3 5 a 5 b 8 a 17 a 6 ab 11 a 
5 6 a 6 a  9 a 9 b  8 a 11 a 
7 6 a 8 a 7 a 11 b 5 b 10 a 

100 
3 5 a 6 a 7 a 12 ab 6 a 3 b  
5 7 a 5 a 8 a 11 b  6 a 10 a  
7 5 a  4 a 7 a 15 a 5 a 8 a 

6 weeks from 
emergence  

25 
3 8 a 7 a 4 a  7 a 7 a 5 a 
5 6 ab 7 a 6 a 7 a 7 a 7 a 
7 5 b 6 a 4 a 6 a 6 a 7 a 

50 
3 7 a 7 a 5 b  6 a 7 a 7 a 
5 7 a 7 a 7 ab 7 a 6 a 7 a 
7 6 a 6 a 8 a 7 a 5 a 7 a 

75 
3 7 a 7 a 7 a 7 a  7 a 7 a 
5 8 a 8 a 7 a 7 a 7 a 7 a 
7 7 a 7 a 7 a 6 a 6 a 7 a 

100 
3 8 a 7 a 7 a 6 a 7 a 7 a 
5 8 a 6 a 8 a 7 a 7 a 7 a 
7 7 a 7 a 6 a 7 a 7 a 8 a 

9-10 weeks 
from 

emergence 

25 
3 9 a 9 a 9 a 11 a 10 a  -¶ 
5 8 a 9 a 10 a 10 a 10 a  - 
7 7 a 9 a 8 a 7 b 7 b - 

50 
3 8 a 9 a 9 a 11 a 10 a - 
5 9 a 8 a 10 a 11 a 11 a - 
7 8 a 8 a 9 a 11 a 6 b - 

75 
3 9 a 9a 9 a 11 a 11 a - 
5 9 a 9 a 8 a 11 a 10 a - 
7 9 a 8 a 9 a 11 a 11 a - 

100 
3 9 a 10 a 9 a 11 a 11 a - 
5 9 a 9 a 8 a 11 a 10 a - 
7 9 a 9 a 9 a 11 a 10 a - 

†DL= day length (14/10 and 16/8 hours light/dark). 
‡ Temp. = Temperature treatments.  
§ Combination of each field capacity (%) with water interval (day) individually followed by the same 

letter are not statistically different at p≤ 0.05 level of least square means. 
¶ Data was not available (early reached the physiological maturity because of high temperature).  
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Table 1.7. Statistical analysis (PROC MIXED with repeated measurement) of Leaf number 

per teff plant as affected by the combination of each field capacity (%) with watering 

intervals (day) treatments under the effect of combination of temperature with day length in 

growth chamber studies in 2011 and 2012. 

Day Length (14/10 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C) 

Temperature 
(27/16°C) 

Temperature 
(30/24°C) 

F Value Pr>F F Value Pr>F F Value Pr>F 
Date† 2 59 <.0001 25.36 <.0001 8.1 0.003 
FC‡ 3 5.0 0.004 0.7 0.6 8.2 0.001 
     +Date 6 0.6 0.8 1.5 0.2 1.0 0.5 
Widays§ 2 4.7 0.01 1.2 0.3 1.9 0.2 
     +Date 4 1.0 0.4 0.4 0.8 0.3 0.9 
FC*WIdays¶ 6 1.2 0.3 0.7 0.7 1.2 0.3 
Date*FC*WIdays# 12 0.3 1.0 0.5 0.9 0.7 0.7 

Day Length (16/8 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C) 

Temperature 
(27/16°C) 

Temperature 
(30/24°C) 

F Value Pr>F F Value Pr>F F Value Pr>F 
Date 2 37 <.0001 56.85 <.0001 121.46 <.0001 
FC 3 6.2 0.0009 2.00 0.12 1.9 0.14 
     +Date 6 4.2 0.001 2.02 0.08 1.85 0.10 
Widays 2 1.4 0.25 11.96 <.0001 1.16 0.32 
     +Date 4 3.4 0.01 2.10 0.09 0.69 0.60 
FC*WIdays 6 2.5 0.03 1.83 0.11 0.87 0.52 
Date*FC*WIdays 12 2.6 0.007 0.98 0.48 0.75 0.70 

†Date Time to measure the Tiller Number per plant (teller and harvesting stages). 
‡ FC%= Field capacity (%). 
§ WIdays= Watering intervals (day). 
¶ FC*WIdays= Interaction of field capacity and watering interval. 
# Date*FC*WIdays= Interaction of date, field capacity and watering interval.  
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The statistical Results of the combination of water quantity with watering interval 

(P≤0.05) showed that there was a significant effect on leaf area per plant (Tables 1.8 and 

1.9). At 4 weeks, all of water quantity (field capacity) by watering interval combinations 

treatments affected leaf area at both day lengths. The greatest leaf area was (16 cm2) at the 

combination of FC100 + I3 treatment at temperature (24/19°C) under the effect of (14/10 

hours) day length and it was also (16 cm2) but at different combination of FC75 and FC100 

with watering interval at day length (16/8 hours). The same results of the effect of the 

combination of water quantity (field capacity) with watering interval was obtained at 8 and 

10 weeks measurements at both day length as well as the effect of day length and 

temperatures. The lowest leaf area (1 cm2) was obtained at different combinations treatments 

of FC25 and FC50 with watering interval at either day lengths at 10 weeks measurement. 

Likewise, the greatest leaf area was (47 cm2) at the combination of FC75 + I3 days of 

watering interval treatment at the effect of day length (14/10 hours) and temperature 

(24/19°C) at 10 weeks of measurement. However, leaf area per plant was highly related to 

soil moisture, and it increased at high level of soil moisture (FC100 and FC75) and decreasing 

at low level of soil moisture (FC25). Leaf area decreased with increased temperature at day 

length (14/10 hours), but slightly increased with increasing temperature at day length (16/8 

hours). 

  



24 

 

Table 1.8. Leaf area (cm2) per teff plant at 4, 8 and 10 weeks after emergence as affected by 
the interaction of field capacity (%) with watering intervals treatments. Each combination of 
field capacity with watering interval treatments compared individually and treatments means 
with the same letter are not statistically different at p≤ 0.05 level of least square means. 

Measurements 
time  

Field 
Capacity 

% 

Watering 
Interval 
(day) 

Day length (light/ dark) hours 
DL (14/10)† DL (16/8) 

Temp.‡ 
24/19°C 

Temp. 
27/16°C 

Temp. 
30/24°C 

Temp. 
24/19°C 

Temp. 
27/16°C 

Temp. 
30/24°C 

----------------cm2--------------- ----------------cm2--------------- 

4 weeks from 
emergence 

25 
3 4 a§ 4 a 2 a 4 b 6 a 8 a 
5 5 a 4 a 3 a 12 a 5 a 9 a 
7 7 a 3 a 3 a 8 a 2 a 5 a 

50 
3 5 b 11 a 3 a 5 a 10 a 11 a 
5 7 ab 4 b 4 a 8 a 12 a 8 a 
7 11 a 4 b 8 a 7 a 6 a 6 a 

75 
3 10 a 8 a 5 b 8 a 10 a 16 a 
5 4 b 5 a 4 b 11 a 7 a 12 a 
7 12 a 4 a 10 a 8 a 10 a 8 a 

100 
3 16 a  10 a  6a 11 a 15 a 16 a 
5 5 c 6 a 4 a 16 a 11 a 13 a  
7 11 b 5 a 5 a 12 a 10 a 11 a 

8 weeks from 
emergence 

25 
3 9 a 25 a -¶ 25 a 24 a - 
5 9 a 21 a 13    22 ab  27 a 12 a 
7 10 a 24 a - 17 b 26 a 12 a 

50 
3 19 a 24 a - 23 a 25 a 7 ab 
5 9 b 21 a 12 a 22 a 23 a     4 b 
7 12 b 22 a 15 a 18 a 22 a 12 a 

75 
3 27 a 30 a 6 b 27 a 28 a 17 a  
5 13 c 26 a   8 ab 20 b    26 ab 15 a 
7 19 b 27 a 12a 20 b 21 b 13 a 

100 
3 16 a 33 a 22 a 26 a  30 a 16 a 
5 9 b 21 b 16 b 25 a 26 a 20 a 
7 16 a 20 b 3 c 25 a 27 a  14 a 

10 weeks 
from 

emergence 

25 
3 14 a 20 a - 13 a 12 a - 
5 13 a 26 a 1 8 a 11 a - 
7 15 a 20 a  - 7 a 12 a - 

50 
3 30 a 32 a 2 a 14 a 16 a - 
5 14 b  29 a 4 a 12a 13 a - 
7 19 b 29 a 2 a 13 a 12 a - 

75 
3 47 a 45 a 5 a 23 a 22 a - 
5 19 c  43 a 7 a 18 ab 19 a - 
7 28 b 33 b 3 a 15 b 17 a - 

100 
3 39 a 43 a  6 ab 21 a 27 a - 
5 20 b 45 a 8 a 18 a 22 ab - 
7 25 b 39 a 3 b 17 a 19 b - 

†DL= day length (14/10 and 16/8 hours light/dark). 
‡ Temp.= Temperature treatments.  
§ Combination of each field capacity (%) with water interval (day) individually followed by the same letter are not 

statistically different at p≤ 0.05 level of least square means. 
¶ Data was not available (early reached the physiological maturity because of high temperature). 
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Table 1.9. Statistical analysis (PROC MIXED with repeated measurement) of leaf area (cm2) 

per teff plant as affected by the combination of each field capacity (%) with watering 

intervals (day) treatments under the effect of combination of temperature with day length in 

growth chamber studies in 2011 and 2012. 

Day Length (14/10 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C) 

Temperature 
(27/16°C) 

Temperature 
(30/24°C) 

F Value Pr>F F Value Pr>F F Value Pr>F 
Date† 2 144 <.0001 165.1 <.0001 13.46 0.0007 
FC‡ 3 22 <.0001 7.84 0.001 8.73 0.0008 
      +Date 6 7.4 <.0001 5.27 0.0005 1.2 0.33 
Widays§ 2 32 <.0001 3.27 0.06 2.35 0.12 
      +Date 4 10 <.0001 1.19 0.33 3.45 0.02 
FC*WIdays¶ 6 4.4 0.004 0.4 0.87 5.07 0.003 
Date*FC*WIdays# 12 2.3 0.02 0.51 0.90 2.23 0.04 

Day Length (16/8 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C) 

Temperature 
(27/16°C) 

Temperature 
(30/24°C) 

F Value Pr>F F Value Pr>F F Value Pr>F 
Date 2 71 <.0001 193.8 <.0001 61.29 <.0001 
FC 3 24 <.0001 13.1 <.0001 6.68 0.002 
     +Date 6 1.8 0.16 3.71 0.005 0.66 0.68 
Widays 2 9.8 0.01 5.49 0.01 1.09 0.35 
     +Date 4 3.5 0.03 0.23 0.92 1.60 0.20 
FC*WIdays 6 1 0.49 0.68 0.67 1.20 0.34 
Date*FC*WIdays 12 0.3 0.97 0.88 0.57 0.43 0.94 

†Date Time to measure the Tiller Number per plant (teller and harvesting stages). 
‡ FC%= Field capacity (%). 
§ WIdays= Watering intervals (day). 
¶ FC*WIdays= Interaction of field capacity and watering interval. 
# Date*FC*WIdays= Interaction of date, field capacity and watering interval. 
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Biomass and grain yield 

Biomass production (g pot-1) was significantly affected by the combination of water 

quantity (field capacity) and watering interval under the effect of the combination of 

temperature with day length treatments (Figure 1.2 and Table 1.10). 

At temperature 24/19°C, biomass yield increased as field capacity increased and 

watering interval decreased at both day lengths. Thus, I3 and I5 days of watering interval 

yielded the greatest biomass production compared to I7 days watering interval. Likewise, 

biomass yield was greater at FC100 and FC75 than biomass yield at FC50 and FC25. Biomass 

production was significantly affected by the combination of field capacity with watering 

interval at day length 16/8 hours compared with day length 14/10 hours. Thus, the greatest 

biomass yield was (18 and 17 g/pot) at the combination of FC75 and FC100 with I3 and I5 

days of watering interval treatment, respectively. At temperature 27/16°C, opposite effect of 

24/19°C, biomass yield at day length 16/8 hours was lower than for day length 14/10 hours. 

Furthermore, biomass yield increased with increasing water quantity (field capacity) and with 

decreasing watering interval time, thus, the combination of FC100 and FC75 + I3 days 

produced the greatest yield (27 & 23 g/pot at 14/10 hours and 13 & 11 g/pot at 16/8 hours 

respectively). 

The same result of 24/19°C was obtained at 30/24°C, and biomass yield at day length 

16/8 hours was greater than biomass yield at day length 14/10 hours. Likewise, biomass yield 

increased at the combination of FC100 + I3 days of watering interval treatment at 16/8 and 

14/10 hours (17 and 14 g/pot). Thus, biomass production typically increased with increasing 

field capacity (FC100 and FC75) at I3 and I5 treatments at either day lengths. 
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Figure 1.2. Biomass yield (g pot-1) of teff plant as affected by the combination of each field 
capacity treatments (%) with watering intervals (day) treatments. Each combination of field 
capacity with watering interval treatments compared individually and bars with the same 
letter are not statistically different at p≤ 0.05 level of least square means. 
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Table 1.10. Statistical analysis (PROC MIXED with repeated measurement) of Biomass 

yield (g pot-1) of teff plant as affected by the combination of each field capacity (%) with 

watering intervals (day) treatments under the effect of combination of temperature with day 

length in growth chamber studies in 2011 and 2012.  

Day Length (14/10 hours) light/dark 

Effect 
Num 
DF 

Temperature  
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

F Value Pr>F F Value Pr>F F Value Pr>F 
FC† 3 1.20 0.351 9.87 0.002 6.85 0.007 

        +25 2 1.06 0.378 0.68 0.528 0.54 0.600 
        +50 2 0.50 0.619 4.62 0.035 0.32 0.734 
        +75 2 6.02 0.015 6.08 0.017 0.47 0.639 

         +100 2 0.59 0.568 16.31 0.001 9.54 0.004 
WIdays‡ 2 4.88 0.028 22.09 0.000 3.18 0.081 

             +3 3 0.57 0.647 9.95 0.002 7.03 0.007 
             +5 3 0.23 0.874 3.36 0.059 1.77 0.210 
             +7 3 2.60 0.100 0.29 0.832 3.16 0.068 

FC*WIdays§ 6 1.10 0.417 1.87 0.175 2.56 0.084 
Day Length (16/8 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

F Value Pr>F F Value Pr>F F Value Pr>F 
FC 3 34.1 <.0001 15.15 <.0001 11.0 <.0001 

            +25 2 4.24 0.023 0.72 0.496 4.0 0.029 
            +50 2 4.89 0.0138 1.35 0.272 5.3 0.0105 
           +75 2 20.8 <.0001 7.65 0.002 17.7 <.0001 

            +100 2 12.5 <.0001 15.29 <.0001 22.1 <.0001 
WIdays 2 37.1 <.0001 17.17 <.0001 42.6 <.0001 

              +3 3 17.4 <.0001 15.73 <.0001 11.9 <.0001 
              +5 3 14.7 <.0001 3.66 0.022 2.6 0.069 
              +7 3 5.61 0.0032 0.97 0.417 0.8 0.491 
FC*WIdays 6 1.79 0.1326 2.61 0.035 2.2 0.073 

† FC%= Field capacity (%). 
‡ WIdays= Watering intervals (day). 
§ FC*WIdays= Interaction of field capacity and watering interval. 
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The results of grain yield (g pot-1) showed that the combinations of water quantity 

with watering interval significantly were affected the grain yield at either day length at all 

temperatures (Figure 1.3 and Table 1.11). In general, grain yield at 24/19°C was constant 

under both day lengths, and it increased with increasing soil moisture (field capacity) and 

decreased watering interval necessary to sustain production. Thus the highest yield was 

obtained at the combination of FC100 + I3 days water interval compared to FC25, which had 

the lowest grain yield at both day lengths (≈ 1.1 g pot-1). On the other hand, grain yield was 

more affected by the combinations of water treatments at 27/16°C compared with 24/19°C. 

However, grain yield decreased dramatically with changing photoperiod to 16/8 hours and 

increased as water quantity exceeded FC50. I3 days of watering interval treatment was more 

efficient in grain yield, and the greatest yield was (≈3.8 and 3.5 g pot-1) at the combination of 

FC75 and FC100 + I3 treatments, respectively. At 30/24°C, grain yield highly decreased and 

the greatest yield was (≈0.5 g pot-1). 
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Figure 1.3. Grain yield (g pot-1) of teff plant as affected by the combination of each field 
capacity (%) with watering intervals (day) treatments. Each combination of field capacity 
with watering interval treatments compared individually and bars with the same letter are not 
statistically different at p≤ 0.05 level of least square means. 
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Table 1.11. Statistical analysis (PROC MIXED with repeated measurement) of grain yield (g 

pot-1) of teff plant as affected by the combination of each field capacity (%) with watering 

intervals (day) treatments under the effect of combination of temperature with day length in 

growth chamber studies in 2011 and 2012.  

Day Length (14/10 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

F Value Pr>F F Value Pr>F F Value Pr>F 
FC† 3 3.28 0.059 17.79 0.0002 0.82 0.51 

        +25 2 0.36 0.708 0.26 0.778 -¶ - 
        +50 2 1.55 0.252 1.18 0.344 - - 
        +75 2 5.09 0.025 26.54 <.0001 0.57 0.58 

          +100 2 2.54 0.12 22.9 0.0001 3.69 0.06 
WIdays‡ 2 6.35 0.013 32.57 <.0001 1.79 0.21 
           +3 3 3.29 0.058 25.89 <.0001 2.47 0.12 
           +5 3 0.6 0.624 3.29 0.062 - - 
           +7 3 1.5 0.264 0.81 0.517 - - 

FC*WIdays§ 6 1.06 0.435 6.10 0.005 0.82 0.57 

Day Length (16/8 hours) light/dark 

Effect 
Num 
DF 

Temperature 
(24/19°C)   

Temperature 
(27/16°C)   

Temperature 
(30/24°C)   

F Value Pr>F F Value Pr>F F Value Pr>F 
FC 3 24.38 <.0001 6.08 0.002 4.11 0.01 

        +25 2 0.23 0.7927 0.02 0.976 0.12 0.89 
        +50 2 1.21 0.3122 2.52 0.096 1.43 0.25 
        +75 2 4.57 0.0178 0.34 0.717 - - 

          +100 2 24.41 <.0001 3.58 0.039 0.26 0.77 
WIdays 2 17.87 <.0001 4.31 0.022 3.75 0.03 

            +3 3 25.25 <.0001 5.2 0.005 1.41 0.26 
            +5 3 5.15 0.005 0.89 0.457 - - 
            +7 3 2.34 0.091 1.43 0.253 0.3 0.82 

FC*WIdays 6 4.18 0.003 0.72 0.639 1.69 0.15 
† FC%= Field capacity (%). 
‡ WIdays= Watering intervals (day). 
§ FC*WIdays= Interaction of field capacity and watering interval. 
¶ - = Data not available.  
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The results of linear contrasts of biomass and grain yields to treatments support the 

previous finding of this study (Tables 1.12 and 1.13). 

Biomass yield and showed that there was a significant trend with treatments. At 

temperature 24/19°C, a significant (P≤0.05) linear contrast of biomass yield to water interval 

was reported at FC25, FC50, FC75 and FC100 at LD day length, and a linear contrasts to field 

capacity was also significant at I3, I5 and I7 at either day lengths. The results of linear 

contrast of watering interval and field capacity at 27/16°C showed a significant effect of 

treatments in biomass yield at both day lengths, but only the linear contrast of watering 

interval at FC25 at day length (LD) hours was not significant. At temperature 30/24°C, all 

the linear contrast of treatments watering interval and field capacity had a significant effect in 

biomass production at either day lengths. Also, biomass yield decreased by the combinations 

of field capacity with watering interval at LD compared with other day length (Figure 1.4).  

Linear contrasts of grain yield of water interval and water quantity (Tables 1.12 and 

1.13) showed a negative significant response of grain yield to treatment combinations. Most 

of the linear contrasts of water interval were significant at 24/19°C and 27/16°C at both day 

lengths as well as linear contrasts of field capacity. Likewise, none of treatments of watering 

interval and field capacity at 30/24°C showed a significant linear contrast in grain yield at 

either day lengths. Furthermore, results (Figure 1.4) showed that the response of grain yield 

to the combinations of water quantity with watering interval at LD was significant (R2= 0.58) 

under all temperatures and was highly significant (R2= 0.87) at SD. Day length 16/8 hours 

had a negative effect on increasing in grain production compared with day length 14/10 

hours. 
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Table 1.12.Linear contrast of biomass and grain yield (g pot-1) of teff plant as affected by 

watering interval of the treatments of the combination of day lengths with temperatures. 

Yield factor 
(g/pot) 

Temperature 
Treatments 

Linear Contrast 

Day Length 14/10 
hours (light/dark) 

Day Length 16/8 
hours (light/dark) 

Field Capacity (%) Field Capacity (%) 

25 50 75 100 25 50 75 100 

Biomass 
Yield 

24/19°C Watering Interval *† NS NS NS * * ** * 

27/16°C Watering Interval * * * * NS * * * 

30/24°C Watering Interval NS * * * * * * * 

Grain Yield 

24/19°C Watering Interval * * NS * NS * * ** 

27/16°C Watering Interval * NS * ** NS  NS * NS 

30/24°C Watering Interval -‡ - NS NS NS NS NS NS 

†NS, *, and ** = Nonsignificant or significant at the 0.05, 0.01probability level respectively. 
‡ -= Data was not available. 
  



34 

 

Table 1.13. Linear contrast of biomass and grain yield (g pot-1) of teff plant as affected by 

field capacity of the treatments of the combination of day lengths with temperatures. 

Yield factor 
(g/pot) 

Temperature 
Treatments 

Linear Contrast 

Day Length 14/10 
hours (light/dark) 

Day Length 16/8 
 hours (light/dark) 

Watering Interval 
(day) 

Watering Interval 
(days) 

3 5 7 3 5 7 

Biomass 
Yield 

24/19°C Field capacity *† * * * *** ** 

27/16°C Field capacity * * * ** * ** 

30/24°C Field capacity * * ** ** * * 

Grain Yield 

24/19°C Field capacity NS NS * *** * NS 

27/16°C Field capacity * * NS * * * 

30/24°C Field capacity NS -‡ - NS NS * 

†NS, *, and ** = Nonsignificant or significant at the 0.05, 0.01probability level respectively. 
‡- = Data was not available. 
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Figure 1.4. Relation of grain yield (g pot-1) to biomass yield (g pot-1) of teff plant as affected 

by the combination of watering quantity (field capacity) with watering interval under the 

effect of the combination of day lengths with temperatures. Each value is presented the mean 

of three replicates of each interaction between field capacity and watering interval at either 

day lengths and temperatures. 
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Teff Photosynthetic traits 

Photosynthetic CO2 assimilation yield A (µmol CO2 m
-2 s-1) and stomatal conductance 

to water vapor gsw (mol H2O m-2s-1) were affected by the combination of field capacity with 

watering interval at both day lengths and all temperatures (Figure 1.5). The trend of gsw to A 

rate showed that gsw decreased with decreasing A, especially with increasing time of watering 

interval. Also, both were decreased with increasing temperature and with changing day 

length from 14/10 hours to 16/8 hours. Maximum gsw and A was (≈ 0.4 and 16 mol m-2 s-1 

respectively) of the combination FC25 + I3 treatment of day length 14/10 hours and 24/19°C. 

The response at 14/10 hours to the treatments was quadratic (R2= 0.76, 0.45, 0.40) at 24/19, 

27/16 and 30/24°C respectively and at 16/8 hours was (R2= 0.90, 0.47 and 0.67) at the 

temperatures respectively.  

Combinations of water quantity with watering interval, and combinations of 

temperature and day length treatments were not clearly affected the intercellular CO2 

concentration Ci (µmol CO2 mol air-1), and the range of Ci was (100 to 300 µmol mol air-1). 

Response A to intercellular [CO2] Ci was related to the influence of treatments in Ci and A, 

especially at high temperatures and low water treated (Figure 1.6). The response was not 

significant at (P<0.4 and P<0.0001) and single linear regression (R2= 0.18 and 0.28) at 24/19 

and 27/16°C respectively at day length 14/10 hours. On the other hand, it was significant at 

(P<0.0001) with individual single regression (R2= 0.7, 0.76 and 0.55) at 30/24, 27/16 and 

30/24°C respectively at both day lengths.  
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 Figure 1.5. Photosynthetic assimilation rate A and stomatal conductance gsw of teff plant as 

affected by the combinations of watering quantity (field capacity) with watering interval 

under the effect of the combination of day lengths and temperatures. Each value is presented 

five time readings over crop growth season of each combination between field capacity and 

watering interval at both day lengths and temperatures.    
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Figure 1.6. Response teff photosynthetic assimilation rate A to intercellular [CO2] Ci of teff 

plant as affected by the combinations of watering quantity (field capacity) with watering 

interval under the effect of the combination of day lengths and temperatures. Each value is 

presented five time readings over crop growth season of each combination between field 

capacity and watering interval at both day lengths and temperatures. 
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DISCUSSION 

The combination of field capacity with watering interval under the combination of 

temperature with day length showed that there was significantly increased tiller number, 

plant height, leaf number and leaf area. However, the impact of the combination treatments 

was not consistent. The reason for this effect in tiller number, plant height and leaf number 

might be due to the effect of temperature and water availability. Water stress decreased the 

growth and development of plant because of decreasing the level plant photosynthesis in 

addition to physical causes especially stomates closer, and leaf rolling that will be decreased 

the water-gas exchange between plant and atmosphere. Plant growth especially leaf growth 

and elongation is highly related to temperature and leaf elongation rate of C4 plant is 

correlated to temperature (13° and 36°C) (Ben-Haj-Salah and Tardieu, 1995). However, plant 

vegetative growth is affected by the time of the moisture and temperature stress effect in 

early growth stages and/or late growth stages. The results of the current study agreed with 

previous studies. Dejene (2009) mentioned that later moisture deficit negatively affected teff 

development, especially initiation of flag leaf and flowering. Escalada and Plucknett (1975) 

found less sorghum tillering under of 23.9/15.5°C day/night temperature and ten hours or less 

day length, but also found it increased at the same temperature by increasing the day length 

to 14 hours light. Shiferaw et al. (2012) reported that there was highly significant effect of 

environmental conditions (non water stress, water stress, and temperature stress) and highly 

correlated with teff plant height in Ethiopia. These results might due to the effect of 

increasing the effect of temperature by increasing day length of photoperiod as well as 

decreasing in amount of soil moisture. Teff is sensitive to day length and to moisture stress 

and high temperature (Admas and Belay, 2011; Ketema, 1997; Miller, 2010; Roseberg et al., 
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2005). Fahej (2012) reported that switchgrass plant height and tiller number decreased with 

increasing moisture stress under green house conditions. 

Crop growth is sensitive to environmental conditions such as temperature, light and 

moisture. Water is important and essential for cell division and expansion. Both very low and 

high temperature caused physiological injuries to plant. Combination of temperature with 

short and long photoperiod can be effect the metabolism and growth of plants (Went, 1953, 

Escalada and Plucknett, 1975). Biomass and grain yield was affected by the combination of 

treatments. Day length might affect the flowering stage then negatively affect grain yield. 

Teff in this study responded to photoperiod more than 12 hours and that might be due to the 

genotype that used in this study (Quick-E), but in general teff is sensitive to photoperiod and 

that decreased the grain yield. The results of this study concur with previous studies, that teff 

showed flowered very well at 12 hours photoperiod in Ethiopia (Ketema, 1997; Miller, 2010; 

Roseberg et al., 2005) and teff’s flowers failed to produce pollen grain at short daylength (8 

hours light). The response of biomass and grain due to drought stress of this study agree with 

Teferra et al., (2000) who found decreasing in biomass and grain yield of teff under early and 

terminal moisture stress as compared with well watered. Water stress from anthesis to 

maturity is critical and affects the translocation of photosynthetic assimilation. This causes 

grain yield decreases, especially with increase temperature (Shpiler and Blum, 1991). Late 

moisture stress affected teff flowering, panicle initiation and early grain filling (Dejene, 

2009). However, biomass yield was more efficient than grain yield at the highest 

temperature, long photoperiod, and lowest level of moisture due to these environmental 

conditions might affect the flowering stage more than the vegetative sages. Thus teff 

produced lowest grain yield than biomass yield.  
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Photosynthetic CO2 assimilation A (µmol CO2 m-2 s-1) was highly related to water 

treatments and affected by temperature and photoperiod. Thus photosynthetic CO2 

assimilation decreased at high water and temperature stress. Temperature and moisture stress 

decreased the net assimilation of teff, bahiagrass and switchgrass (Dejene, 2009; Kakani et 

al, 2008; Fahej, 2012). Likewise stomatal conductance to water vapor was slightly decreased 

with increasing water and temperature stress. Kebede et al. (1989) reported that stoamtal 

conductance to water vapor and [CO2] was slowly affected by temperature and gws increased 

with increasing temperature from 18 to 48°C but Ci increased at very low and very high 

temperature. Stomatal conductance was highly affected by water stress at the time of teff 

growth and switchgrass (Dejene, 2009; Fahej, 2012). Ci level was constant at all the 

treatments levels might due to bundle sheath increased CO2 concentration inside plant cell in 

turn to phase the effect of water and temperature stress.                      

 

CONCLUSIONS 

Even though the influence was not constant among the treatment combinations, this study 

showed that environmental conditions had a significant effect in teff growth and yield. 

Environment had a slight influence on tiller number per plant, and the greatest tiller number 

was reported at the high level of soil moisture and less time to water as well as at optimal 

temperature 27/16°C especially at day length 16 light/8 dark hours. Likewise, the same effect 

was reported for plant height, and it increased with changing day length from 14/10 hours to 

16/8 hours as well increased with increasing soil moisture and time to water. Furthermore, 

leaf number per plant was significantly affected by the treatments. Also, Leaf area per plant  
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was decreased with increasing temperature at the lowest soil moisture FC25 and least time of 

I7 days watering interval. Effect of day lengths on leaf area was not constant and it increased 

slightly at long day 16/8 hours. The economic yield (biomass and grain g pot-1) was highly 

affected by the treatments, and biomass yield greater than grain yield. Biomass yield was 

significantly increased with increasing water quantity FC100 and FC75 + I3 treatments and 

decreased with increasing temperature and day length. In general, non orthogonal linear 

contrasts showed a significant response of biomass yield to treatments combinations at either 

day lengths. The same results were also reported for grain yield, and the low grain yield was 

reported at high temperature at both day lengths. In addition, soil moisture treatments were 

also impacted grain yield and there was almost zero at low moisture. Photosynthetic CO2 

assimilation A, stomatal conductance to water vapor gws were highly related to the 

combination of water treatments and slightly to temperatures and day lengths. Intercellular 

CO2 concentration Ci was somewhat not affected significantly by the interaction of 

treatment, especially at the temperature with day length. Teff growth and yield was affected 

by the high temperature and long day length with very sever moisture deficit. Thus, its 

response to these environmental conditions can be used to improve and estimate teff grain 

and biomass yield in simulation model.   
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CHAPTER III 
 

 

RESPONSE OF TEFF BIOMASS AND GRAIN YIELDS TO SOIL WATER 

AVAILABILITY AND WATERING INTERVALS. 

 

Abstract 

Teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop grown in some states in the 

US as a forage crop and in some parts of State of Oklahoma. Field trials were established 

at the Stillwater Agronomy Research Station to understand teff response to water deficit 

stress and to typical Oklahoma summer temperatures. Treatments were three genotypes 

(DZ-Cr-387, Quick-E and Tiffany), four soil moisture regimes (rainfed, water at field 

capacity (FC), 75% FC, and 50% FC), and two watering intervals (7 and 14 days). Plots 

were arranged in a split plot arrangement of a randomized complete block with two 

replications in 2011 and three replications in 2012. Whole plot were teff genotypes, and 

sub-plots were water treatments. Tiller number, plant height, and leaf area were highly 

responsive to water treatments R2= 0.94, R2=0.78, and R2=0.79 respectively. Tiller 

number ranged 4.7, 3.4 and 2.5 tillers/ plant for DZ-Cr-387, Quick-E and Tiffany, 

respectively. Leaf area was 677, 478 and 301 cm2 for DZ-Cr-387, Quick-E and Tiffany, 

respectively. Biomass and grain yield increased within creasing water amount and ranged 
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from 0.707 to 0.372 kg biomass m-2 and from 0.309 to 0.062 kg grain m-2 for 100% FC* 

weekly water and rainfed respectively. Quick-E produced the highest grain yield 0.234 kg 

m-2. Water use efficiency (WUE) of biomass and grain significantly responded to water 

treatments R2=0.58 and R2=0.92, respectively. Quick-E was highly tolerant to drought 

and produced grain and biomass in the presence of drought. Teff might be adopted by 

producers as forage under high water deficit and used to produce grain with acceptable 

amount of rain in Oklahoma. 
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INTRODUCTION AND LITERATURE REVIEW 

Teff [Eragrostis tef (Zucc.) Trotter] is a major cereal crop in Ethiopia and 

represents approximately 25-30% of cereal production in Ethiopia. It can be grown under 

300 mm to 1000 mm of rainfall (Debelo, 1992; Admas and Belay, 2011). Temperature, 

light, soil type, and soil moisture affecte teff growth and yield, as any other crop. Teff is 

grown in many countries around the world such as India, Australia, New Zealand, 

Argentina, Zimbabwe, Kenya, and Zaire. It was introduced by Ethiopian immigrants to 

California in 1962 (Tadesse, 1975). Approximately 250,000 acres in the US in 2008-2009 

were planted to teff as a summer forage crop, with acres mostly concentrated in the 

Midwestern and Southeastern United States (Millar, 2010). The crop grows well in wide 

ranges of ecologies and soil types but Veritsols such as Heiden clay located in the SE 

corner of Oklahoma and Osage clays in the NE corner have greatest potential for teff 

(Keith Boevers and Jerry Chandler, personal communication). 

Diversification of crop enterprises is an effective strategy for achieving 

agricultural sustainability. Crop diversification can increase crop production, helps to 

build soil health, and minimize weed and pest populations by interfering with their life 

cycle (Katema, 1997; Ghebrehiwot et al., 2008). Above all, crop diversification increases 

income per unit area and enhances the economy of local communities. 

Teff gives reasonable yield when other cereals yield is depressed under low or 

excess moisture conditions (Hunter et al., 2007). According to Belayneh (1986), teff in 

Ethiopia produced 106% more yield than wheat in waterlogged and unfertilized 

conditions and 70% greater in fertilized and waterlogged conditions. Teff makes 
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excellent quality hay and can be grown for grain and forage for horses, cattle and sheep 

(Hunter et al., 2007; Nsahlai et al., 1998; Twidwell et al., 2002). In fact, sheep and horse 

preferentially feed on teff hay (Keith Boevers and Jerry Chandler, personal 

communication).  

Several preliminary experiments have been conducted prior to the current 

experiment in Central Oklahoma to evaluate suitability of teff as an alternative crop. Six 

and ten varieties were evaluated in 2009 and 2010, respectively, for forage and grain 

production by Girma (2009), who determined the spring temperature determines the 

establishment and growth of early-planted teff for forage/hay and grain. Some varieties 

(Quick-E and DZ-01-99) performed well during the hot summer (Girma, et al., 2012; 

Reinert, 2012), and all varieties performed well after the heat index dropped below 90. 

Evertt et al. (2009) reported that temperature did not influence final plant population or 

biomass production of teff. Optimal temperature for teff was 26.7- 32.3°C, and teff 

growth was very slow at 15.5- 23.4°C (Roseberg et al., 2005). Teff germinated very well 

at 15.5°C soil temperature with a frequent irrigation for 2-3 weeks from planting until the 

establishment of the root system (Davison et al., 2011).    

Acceptable teff grain yield was obtained with a minimum 432 mm of rain per 

season in Ethiopia, and in general teff needs at least 610 mm of rain per season to achieve 

the highest grain and forage yield (Hunter et al., 2007; Millar, 2010). In Ethiopia, teff 

grain yield of different genotypes was decreased under stress. Yield of Denkeye and DZ-

Cr-387 genotypes ranged from 55 to 100 g m-2 under stress and yield of Rubicunda and 

DZ-01-974 genotypes ranged from 108 to 203 g m-2 under non-stress condition (Shiferaw 
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et al., 2012). Eckhoff et al., (1993) and Stallknecht et al., (1993) reported that teff grain 

yield in Montana was (700 and 1400 kg ha-1) under drought and irrigation conditions 

respectively. Shiferaw et al., (2012) reported that total biomass yield of Addisie and DZ-

01-974 genotypes was 537 to 866 g m-2 respectively under stress compared with 737 to 

1056 g m-2 for Rubicunda and DZ-01-974 genotypes under non-stress conditions. In 

Oregon State, forage yield of teff required at least 102-254 mm of irrigation water for 

each cutting, and in Nevada and California the minimum amount of water was 610 mm 

per season (Davison et al., 2011). Teff forage yield in Montana was increased by 13.8 

tons ha-1 by irrigation compared with drought land, and the grain yield ranged from 0.2 to 

1.5 ton ha-1 under drought land conditions (Stallknecht et al., 1993). Approximately 69 to 

77% of teff grain yield is lost under drought conditions in Ethiopia (Takele, 1997, 2001). 

Other studies have shown tiller number, shoot biomass, root number and weight and 

grain yield to be significantly decreased at low soil moisture (Admas and Belay, 2011). 

Shiferaw and Baker (1996a) reported that in Ethiopia about 14% of teff grain yield was 

lost to drought conditions. Effect of stress, especially water stress in leaf stomata and 

photosynthetic assimilation of teff was observed in some studies in Ethiopia. Water stress 

had more effect on stomatal conductance than on photosynthetic rate (Shiferaw and 

Baker, 1996b; Abuhay et al., 2001). Abuhay et al., (2001) reported that teff germination 

increased with increasing soil moisture from 25% to 85% of field capacity. A study in 

Japan showed that there were a significant effect of soil water potential (-2.0 MPa) and 

severe soil water stress in relative growth rate, leaf water potential, and leaf rolling in all 

teff genotypes (Degu et al., 2008).         
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Producers are interested in growing teff for grain and hay in some parts of 

Oklahoma and preliminary studies in Kingfisher, Hennessey, Morrison, and Perry 

clarified some of the challenges for teff production in Oklahoma. High temperature, lack 

of rainfall, and high humidity of Oklahoma weather in summer make it important to 

study teff in this area to understand if teff will produce acceptable biomass and grain 

yield. The objectives of this study were: 

1- Evaluate the impact of soil moisture at different level of soil field capacity at 

watering intervals on the growth of teff as compared to a non-irrigated treatment 

(rainfall).  

2- Determine the best time to estimate teff biomass and grain yields by using NDVI 

measurements. 

3- Evaluate drought susceptibility index (DSI) and cumulative stress relative index 

(CSRI) of teff varieties. 

 

 

MATERIALS AND METHODS 

The field experiment was initiated at the Stillwater Agronomy Research Station in 

2011 and repeated in 2012. Treatments included three genotypes (DZ-Cr-387, Quick-E 

and Tiffany), four soil moisture regimes {rainfed, water at field capacity (FC100), 75% of 

FC (FC75), and 50% of FC (FC50)} treatments and two watering intervals 7 days (1W) 

and 14 days (2W) treatments. Experimental design was split plot arranged in a 

randomized complete block design with two replications in 2011 and three replications in 
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2012. Whole plots were teff genotypes and sub-plots were the interaction of field 

capacity treatments with watering intervals. Plot size was 1.53 m by 3.05 m within a 1.53 

m alley between plots. Each plot was surrounded by soil berms to keep irrigation water 

inside the plot (Figure 2.1.A). For the soil moisture treatments, a 0.61 m by 0.31 m micro 

plot with depth 0.304 m was set up to contain lateral water movement using custom 

designed (13 mm thickness) iron sheet (Figure 2.1.B).  

Field capacity was determined using methods similar to Anderson and Ingram 

(1993). Micro plots were covered by a plastic sheet (0.4 cm thickness) to protect the area 

from rainfall (Figure 2.1.C). Teff was manually planted as broadcast in 1 May 2011 and 

26 May in 2012. Two teff varieties ‘Quick-E and DZ-Cr-387’ were used in 2011. In 2012 

‘Quick-E and Tiffany’  were used due to unavailability of DZ-Cr-387. Quick-E and DZ-

Cr-387 were harvested in 15 August and 2 September in 2011. Quick-E and Tiffany were 

harvested in 15 September and 1 October in 2012. Harvesting was performed by using 

sickle and electric clipper (AccuPower 100, Gardena model 8805, 4-Inch). Crop and 

weather related data were collected throughout the study period from the weather station 

150 m away from the field (Table 2.1).  

Each plot received 65 kg N h-1and 50 kg P h
-1 in the form of urea and triple 

superphosphate. One-third of N was applied as pre-plant and the two third was applied 

after the tillering stage and P was applied as pre-plant.  

Crop related measurements included number of tillers per plant at tillering stages 

(4-5 weeks from planting date), plant height (cm) at harvesting, leaf area (cm2) before 

flowering stage by using LI-3000 leaf area meter (LI-COR, Lincoln, Nebraska USA), and 
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total biomass and grain yields kg per m2. Biomass and grain yield per micro plot was 

measured and included with whole final plot results. The plot area was 4.7 m2. After 

harvesting teff was dried at 42°C for 7-10 days in a forced-air dryer and then weighted to 

determine biomass yield. Dried teff was threshed using a custom made belt thresher, and 

teff seeds were cleaned to determine the grain yield. Normalized difference vegetative 

index (NDVI) was measured 7 times throughout the growing season by using green 

seeker (Ukiah, CA, USA) fitted with hp iPAQ (pocket PC 2003 prem).  

Polynomial linear (equation 1) and quadratic (equation 2) models were used to 

determine the relationship of grain and biomass yields and treatment.  

(Y= a + ax)                                    1 

(Y= y0 + ax + bx2)                        2 

A soil moisture tensiometer (2725 ARL12 JET FILL, CA, USA) was used to 

measure soil water tension (water potential KPa) at a 0.30 m depth in each plot (Figure 2-

1-D) every week starting at watering interval initiation (10 days from planting). The 

amount of irrigation water (Table 2.2) was calculated by using a portable soil moisture 

meter (TDR 300, IL USA) fitted with a 20 cm probe to determine volumetric water 

content (VWC) in soil.  

Drought susceptibility index (DSI) (Fischer and Maurer, 1978) of teff varieties 

was calculated using the following formula: 
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DSI = 
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CSRI = 100

EYQc

EYQcEYQs

EPIIc

EPSIIcEPSIIs

YGc

YGcYGs

YBc

YBcYBs

LAc

LAcLAs

PHc

PHcPHs

TNc

TNcTNs

×

























−
+

−
+

−

+
−

+
−

+
−

+
−

 

where, TN= tillers number, PH= plant height, LA= leaf area, YB= biomass yield, YG= 

grain yield, EPSII= efficiency of PSII, EYQ= yield of quantum efficiency, C= control 

treatment (water quantity treatments plot), and S= stress treatment (rainfed plot). 

Water use efficiency (WUE) of the teff crop was also established as describe by 

the equation of Viest (1962),  

WUE  =
 grain or biomass yield (kg)

water amount (mm)
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A chlorophyll fluorometer (OS1-FL, NH USA) was used to measure the 

physiological variables Fo; minimal fluorescence (arbitrary unit), Fm= maximal 

fluorescence (arbitrary unit), Fv= variable fluorescence, Fv/Fm= photosynthetical 

efficiency of PSII, FVS= Fluorescence under steady state conditions (arbitrary unit), Fms= 

maximal fluorescence under steady state conditions (arbitrary unit), and yield= yield of 

quantum efficiency (Fms/Fvs). 
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Figure 2.1. Soil berm, iron sheet, plastic sheet, and soil moisture tensiometer.  
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Table 2.1. Average maximum and minimum (°C) air temperature and relative humidity 

(%) and total rainfall (mm) from May to September, 2011 and 2012 at Stillwater, 

Oklahoma.    

Year Month 
Temperature (°C)† Relative humidity (%) Total rainfall 

(mm) Max.‡ Min. Ave. Max. Min. Ave. 

2011 

May 26 14 20 87 49 70 99.3 

June 36 22 29 87 49 70 43.4 

July 40 25 32 71 23 45 18.5 

August 39 23 31 79 25 49 38.1 
Average 
and total rain 

35 21 28 81 37 58 199.4 

2012 

May 29 16 23 87 38 62 28.4 

June 32 19 26 87 40 62 54.9 

July 38 23 31 72 24 46 1.8 

August 35 20 27 79 25 50 67.1 

September 31 17 23 84 34 58 27.9 
Average 
and total rain 

33 19 26 82 32 56 180.1 

† Source of data (http://www.mesonet.org;  
http://www.mesonet.org/index.php/weather/daily_data_retrieval).  

‡ Max, Min, and Ave.= maximum, minimum and average respectively. 
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Table 2.2. Total amount of water (Liter) added to each plot of teff plant based on the 

combination of field capacity and watering interval at Stillwater, OK at growing seasons 

2011 and 2012. 

Treatment 
Growing season 

2011 2012 

-------------------Liter plot-1------------------ 
1 weeks (1W)† 

  
FC100

‡ 5878 6964 

FC75 3654 4109 

FC50 1999 2523 

2 weeks (2W)     

FC100 7489 8234 

FC75 4013 5823 

FC50 2370 3846 

† 1W and 2W= Watering interval every 1 and 2 weeks. 
‡ FC= Field capacity at 100%, 75%, and 50%. 
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RESULTS 

Morphological Variables 

Analysis of variance (Table 2.3) showed that years and treatment had highly 

significant effect (P< 0.001) on tiller number per plant, plant height (cm), and leaf area 

(cm2). Tiller number and leaf area were significantly different (P<0.01, and P<0.05 

respectively) among varieties.  

Tillers per plant increased with increasing water quantity as well as with increased 

frequency of watering, thus the greatest tiller number was (3.4 tillers plant-1) at treatment 

of the combination of FC100 + 1W. The lowest number of tillers was (2.4 tillers plant-1) at 

the non-irrigated treatment. Tiller number decreased with decreased soil moisture thus 

tiller number at FC100 (4 tiller plant-1) was higher than tiller number at FC75 and FC50 (3.5 

and 3 tiller plant-1, respectively). DZ-Cr-387 had the highest number of tillers (4.7 tillers 

plant-1) compared to Tiffany (2.5 tillers plant-1). A highly significant linear contrast of 

variety and treatment was obtained on tillers per plant with high response of tillers to 

treatments and variety R2=0.94; N=70; at P<0.001 respectively (Table 2.4).  

Plant height was reduced by some treatments (P<0.001), and ranged from 62.9 to 81.5 cm 

for non-irrigated and the combination FC100 + 1W treatment. Over all, the highest soil 

moisture (FC100) had the greatest plant height 79 cm compared to the lowest soil moisture 

FC75 and FC50 (76 and 71 cm, respectively). Also, plant height decreased from (77 to 74 

cm) with decreased the watering frequency from 1W to 2W. Although, the analysis of 

variance showed no significant effect of variety on plant height, a linear correlation 
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response (R2= 0.78; N=70; at P<0.01) of plant height to variety was observed (Table 

2.4).  

The greatest leaf area was 618.6 cm2 for the treatment of the combination of FC100 

+ 1W compared with 248.4 cm2 for the non-irrigated treatment. Leaf area decreased from 

577 to 478 and 449 cm2 with decreasing field capacity from FC100 to FC75 and FC50, 

respectively. Also, the largest leaf area was 524 cm2 at 1W compared to 479 cm2 at 2W. 

The lowest leaf area was (198.7 and 376.2 cm2) of Quick-E and Tiffany variety, 

respectively, compared with DZ-Cr-387 (677.6 cm2). There was a significant linear 

relation contrast of leaf area to treatments and variety (R2=0.79; N=70; at P<0.001 and 

P>0.05), which means that leaf area was significantly affected by treatments and 

varieties.  
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Table 2.3. Analysis of variance (PROC GLM) and means separation for tillers per teff 

plant at tillering stage (4-5 weeks from planting date), teff plant height (cm) at harvesting 

stags, and leaf area (cm2) of teff before flowering stage as affected by year, variety and 

the combination of water quantity (field capacity) with watering interval treatments at 

Stillwater, OK, 2011-2012. 

Source of Variation 
 

DF† 
Tiller number/ 

plant 
Plant height 

(cm) 
Leaf area (cm2) 

Replication (Year) 3 NS‡ NS * 
Year 1 *** *** *** 

Variety  2 ** NS * 
Treatment 6 *** *** *** 

Variety X Treatment 12 NS NS NS 

Treatment 
  Treatment Means 
  Tiller number Plant height  Leaf area 

-----cm----- ----cm2---- 
1 week (1W)§ 

   
FC100

¶ 
 

  4.3 a†† 81.5 a 618.6 a 
FC75  

3.7 b 77.1 ab 462.7 bc  
FC50  

3.1 c 71.4 c 489.7 bc 
2 weeks (2W) 

    
FC100  

3.8 b 76.0 bc 535.3 ab 
FC75  

3.4 c 74.2 bc 493.9 bc 
FC50  

3.0 c 71.3 c 409.2 c 
Non-irrigated#   2.4 d 62.9 d 248.4 d 

Duncan's multiple range   0.36 5.3 122.7 
DZ-Cr-387   4.7 a 81.5 a 677.6 a 
Quick-E 

 
3.4 b 72.6 b 478.9 b 

Tiffany   2.5 c 69.7 b 301.4 c 
Duncan's multiple range   0.25 NS 83.4 

† DF= degree of freedom. 
‡  *, **, ***, and NS= nonsegnificant and significant at 0.5, 0.01, and 0.001 respectively. 
§  WI= watering interval every one and two weeks. 
¶   FC= field capacity at 100, 75, and 50%. 
#   Non-irrigated= rain treatment. 
†† Means followed by a common letter in a column are not statistically different alpha = 

0.05 using Duncan’s multiple range test. 
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Table 2.4. Linear and quadratic contrast and response of NDVI, tillers number per plant 

at tillering stage of teff plant, teff plant height (cm) at harvesting stage, and leaf area 

(cm2) of teff plant (before flowering stage) to variety and the combination of water 

quantity (field capacity) with watering interval treatments, at Stillwater, Ok, 2011-2012. 

Contrast   

Variable Factors 

NDVI-1† NDVI-4 NDVI-7 
Tiller 

number 
Plant 
height 

Leaf 
area 

Linear        
      Variety  ***‡ ** ** *** ** * 

           Treatment *** *** *** *** *** *** 

Quadratic        

        Variety NS NS * NS NS NS 

            Treatment * NS NS NS NS NS 

R-Square 0.69 0.72 0.70 0.94 0.78 0.79 

C.V. (%)§ 14.97 17.15 16.55 10.8 7.4 26.95 

Number of 
Observations  

70 70 70 70 70 70 

† NDVI= normalized difference vegetative index at three weeks after planting (NDVI-1), 
four weeks from emergence (NDVI-4), and flowering stage (NDVI-7). 

‡ NS, *, **, and ***= nonsegnificant and significant at 0.5, 0.01, and 0.001 respectively. 
§ C.V.= coefficient variance.  
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Biomass and Grain Yield 

Biomass yield was not affected by year, and there was no difference among 

varieties in biomass production. Treatments had a significant effect (P<0.01) on biomass 

yield (Table 2.5). Biomass productivity increased with increasing the soil moisture, thus 

the maximum and minimum yields were 0.707 and 0.372 kg m-2 at FC100 + 1W and at 

non-irrigated respectively. In general, the trend biomass yield increased with increasing 

field capacity 0.501, 0.512 and 0.629 kg m-2 for FC50, FC75 and FC100, respectively, and 

increased with increasing frequency for watering interval 0.604 and 0.490 kg m-2 for 

watering weekly and every two weeks, respectively. A significant linear relation of 

biomass yield with treatments (P<0.001) and with varieties (P<0.05) was observed with a 

significant correlation response (R2= 49; N=70) (Table 2.5). 

NDVI readings were analyzed statistically using stepwise regression procedure in 

SAS to choose the NDVI measurement timing to estimate biomass yield. The early 

reading of NDVI at four weeks from emergence (NDVI-4) was the best time to estimate 

biomass yield (Table 2.4). There was a significant linear correlation of variety and 

treatment to NDVI-4 (P>0.01 and P>0.001 respectively) with a significant single 

response (R2= 0.72; N= 70). A significant linear and quadratic response of biomass yield 

to treatments was reported, and water use efficiency of biomass (kg biomass m-2 mm-1) 

was highly significant (P<0.001) with a significant single regression response (R2= 0.92, 

N= 70) (Table 2.6).   

Grain yield was significantly affected by year, variety, treatment and combination 

of variety with treatment (Table 2.5). Grain yield decreased with decreasing field 
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capacity, and the maximum and minimum grain yield was 0.309 and 0.062 kg m-2 at the 

combination of FC100 + 1W and rainfed treatments, respectively. Trend of grain 

production increased with increasing field capacity by 31% and 50% at FC100 compared 

to FC75 and FC50, respectively. Also, grain yield increased by 26% at 1W watering 

compared to 2W watering. Quick-E variety produced the highest yield (0.234 kg m-2) 

compared with DZ-Cr-387 (0.129 kg m-2) and Tiffany (0.081 kg m-2). In general, average 

grain yield of varieties was (0.148 kg m-2) compared with biomass yield (0.531 kg m-2). 

The best NDVI readings to estimate grain yield was NDVI-1 (three weeks after 

planting) and NDVI-7 (flowering stage). NDVI-1 highly linear related to grain yield of 

variety and treatment (P<0.001 and P<0.01 respectively) with a significant single 

regression response (R2= 0.69, N= 70). Likewise, grain yield response to NDVI-7 was a 

significant linear and quadratic contrast at variety and was linear at treatments (R2= 0.70, 

N= 70; at P>0.01, P>0.001, and P>0.05, respectively) (Table 2.4). Grain yield responded 

linearly to variety and treatment with a significant single contrast (R2= 92; N= 70; at 

P<0.01), and WUE of grain yield was significant response to water quantity (field 

capacity) with watering interval treatments (R2=58; N=70; at P<0.01) (Table 2.6).  
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Table 2.5. Analysis of variance (PROC GLM) and separation means of biomass and grain 

yields (kg m-2) of teff plant as affected by year, variety and the combination of water 

quantity (field capacity) with watering interval treatments at Stillwater, Ok, 2011-2012. 

Source of Variation DF† Biomass yield kg m-2 Grain yield kg m-2 

Replication (Year) 3  NS‡ ** 

Year 1 NS * 

Variety  2 NS *** 

Treatment 6 ** *** 
Variety X Treatment 12 NS NS 

Treatment 
Treatment Means 

Biomass yield  Grain yield  

  -------------------------kg m-2--------------------- 
1 week (1W)§ 

   
FC100

¶ 
 

  0.707 a†† 0.309 a 

FC75  
0.564 b 0.211 b 

FC50  
0.540 b 0.146 c 

2 weeks (2W) 
   

FC100  
0.550 b 0.222 b 

FC75  
  0.459 bc 0.153 c 

FC50  
  0.462 bc 0.117 c 

Non-irrigated#   0.372 c 0.062 d 

Duncan's multiple range   0.144 0.039 

DZ-Cr-387   0.534 a 0.129 b 

Quick-E 
 

0.491 a 0.234 a 

Tiffany   0.567 a 0.081 c 

Duncan's multiple range   NS 0.027 
†  DF= degree of freedom. 
‡  *, **, ***, and NS= nonsegnificant and significant at 0.5, 0.01, and 0.001 respectively. 
§  WI= watering interval every one and two weeks. 
¶   FC= field capacity at 100, 75, and 50%. 
#   Non-irrigated= rain treatment. 
†† Means followed by a common letter in a column are not statistically different at alpha 

= 0.05 using Duncan’s multiple range test. 
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Table 2.6. Linear and quadratic contrast and response of biomass and grain yields (kg m-

2) of teff plant, and water use efficiency (kg plot-1 mm-1) of teff plant to variety and the 

combination of water quantity (field capacity) with watering interval treatments at 

Stillwater, Ok, 2011-2012. 

Contrast   
Variable Factors 

Biomass Yield  Grain Yield WUE of Grain‡ WUE of biomass 

Linear     

    Variety *† ** NS NS 

Treatment *** ** ** *** 

Quadratic     

    Variety NS NS NS NS 

Treatment NS * ** *** 

R-Square 0.49 0.92 0.58 0.92 

C.V. (%)§ 29.2 22.1 331.1 92.4 

Number of 
Observations  

70 70 70 70 

† NS, *, **, and ***= nonsegnificant and significant at 0.5, 0.01, and 0.001 respectively. 
‡ WUE= water use efficiency of grain and biomass yields. 
§ C.V= coefficient variance.  
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Soil water potential (KPa) had a significant effect on biomass and grain yield, but 

grain yield was more affected by the water amount in soil than biomass yield (Figure 

2.2). Response of biomass and grain yield to water potential was polynomial (linear) and 

there were significantly correlated (R2= 0.95 and R2= 0.92, respectively). In general, soil 

water potential more than -75 KPa had significant effect to decreased the biomass and 

grain yield of teff, thus, teff grew well with acceptable biomass yield (≈ 450 kg m-2) and 

grain (≈ 150 kg m-2) under soil water potential -75 KPa. With decreasing soil water 

potential less than (-75 KPa), biomass and grain yield increased significantly. However, 

teff grew well under soil water potential ranged from -25 Kpa to about -100 KPa (Figure 

2.3) and produced acceptable biomass and grain yield.   
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Figure 2.2. Trend of biomass and grain yields (g m-2) of teff plant as affected by water 

potential (KPa). Each point is the average of eleven readings of each combination of 

water quantity (field capacity) with watering interval during growth seasons at Stillwater, 

Ok, 2011-2012. 
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Figure 2.3. Soil water potential of water quantity (field capacity) at every one week and 

two weeks watering interval over teff plant growing seasons at Stillwater, Ok, 2011-

2012. 
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Photosynthesis and physiological resistance related traits  

 The analysis of variance showed that there was no significant difference among 

varieties or between years on yield of quantum efficiency (Fms/FVS), but water treatments 

had a significant effect (P< 0.05) on Fms/FVS (Table 2.7). 

Yield of quantum efficiency decreased with increasing the intervals between 

irrigations and ranged from 0.513 to 0.498 for weekly and every two weeks watering, 

respectively. Likewise, the greatest yield of quantum efficiency was 0.522 at the 

combination of FC100 + 1W treatment compared with the non-irrigated treatment 0.480 

with a significant correlation (R2= 0.36 at P<0.05). The same trend was observed in 

photosynthetic efficiency of PSII, and it increased with increasing water quantity (field 

capacity) and ranged from 0.519 at the combination of FC100 + 1W and the combination 

of FC75 + 1W treatments compared to 0.482 at non-irrigated treatment with positive 

correlation response (R2= 0.35 at P<0.05). 

Results of cumulative stress response index (CSRI) showed that CSRI ranged -

269.3 to -146.6 at the combination of FC100 + 1W and at the combination of FC50 + 2W 

treatments. CSRI of teff varieties ranged from -186.8, -231.7 to -249.1 for Quick-E, DZ-

Cr-387 and Tiffany, respectively. However, CSRI increased with increasing water 

quantity and watering interval (Table 2.8). Thus Quick-E was considered as tolerant 

variety to water stress compared to other varieties, and in general, teff is water stress 

tolerant depending upon the results of current study.  
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Drought stress among varieties was evaluated using drought stress index (DSI) to 

estimate performance of varieties under stress (Table 2.9). DSI of biomass production 

was 0.6 to 0.9 for all varieties, and Quick-E had the greatest DSI which ranged from 0.6 

to 0.9 compared to other varieties. Likewise, Quick-E showed the best DSI of grain 

which ranged from 0.3 to 0.6 compared with DZ-Cr-387 ranged from 2.0 to 2.8 and 

Tiffany ranged from 2.1 to 4.6.  
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Table 2.7. Analysis of variance (PROC GLM) and separation means of yield of quantum 

efficiency and photosynthetical efficiency of PSII of teff plant as affected by year, variety 

and the combination of water quantity (field capacity) with watering interval treatments 

at Stillwater, Ok, 2011-2012. 

Source of Variation DF† 
Yield of quantum 

efficiency 
Photosynthetical efficiency 

of PSII§ 
Replication( Year)  3 ***‡ *** 

Year 1 NS * 
Variety  2 NS NS 

Treatment 6 * * 

Variety X Treatment 12 NS NS 

Treatment 
Treatment Means 

Yield of quantum 
efficiency 

Photosynthetical efficiency 
of PSII 

1 week (1W)¶ 
  

FC100
#  0.522 a‡‡ 0.519 a 

FC75 0.513 ab 0.519 a 
FC50 0.506 ab   0.512 ab 

2 weeks (2W) 
 

FC100 0.510 ab 0.492 bc 
FC75 0.496 bc 0.508 ab 
FC50 0.489 bc 0.488 bc 

Non-irrigated††          0.480 c                0.482 c 
Duncan's multiple range  0.023 0.024 

DZ-Cr-387 0.500 a 0.502 a 
Quick-E 0.502 a 0.500 a 
Tiffany 0.506 a 0.507 a 

Duncan's multiple range  NS NS 
R square 
C.V.(%) 

0.36 
14.5 

0.35 
14.7 

† DF= degree of freedom. 
‡ *, **, ***, and NS= nonsegnificant and significant at 0.5, 0.01, and 0.001 respectively. 
§ PSII= photosystem 2.  
¶ WI= watering interval every one and two weeks. 
# FC= field capacity at 100, 75, and 50%. 
†† Non-irrigated= rain treatment. 
‡‡ Means followed by a common letter in a column are not statistically significant at   
alpha = 0.05 using Duncan’s multiple range test. 
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Table 2.8. Cumulative stress response index (CSRI) of tillers number at tillering stage (4-5 weeks from planting date), plant height at 

harvesting stage, leaf area before the flowering stage, biomass and grain yield, yield of quantum efficiency, and photosynthetical 

efficiency of PSII of teff plant under the effect of the combination of water quantity (field capacity) with watering interval treatments 

and the effect of varieties at Stillwater, Ok, 2011-2012. 

Treatment 
 Stress response index (SRI) 

CSRI‡ Tiller 
number 

Plant 
height  

Leaf 
area 

Biomass 
yield 

Grain 
yield 

Yield of quantum 
efficiency 

Photosynthetical 
efficiency of PSII 

1 week WI 
      

  
 

 FC100
† -44.2 -22.8 -59.8 -47.4 -79.9 -8.0 -7.1 -269.3 

 FC75 -35.1 -18.4 -46.3 -34.0 -70.7 -6.4 -7.1 -218.2 

FC50 -22.6 -11.9 -49.3 -31.1 -57.5 -5.1 -5.9 -183.4 

2 weeks WI 
      

  
 

 FC100 -36.8 -17.2 -53.6 -32.4 -72.1 -5.9 -2.0 -220.1 

 FC75 -29.4 -15.2 -49.7 -19.0 -59.5 -3.2 -5.1 -181.1 

FC50 -20.0 -11.8 -39.3 -19.5 -47.0 -1.8 -1.2 -140.6 

DZ-Cr-387 -32.1 -27.8 -39.1 -42.5 -82.1 -4.4 -3.7 -231.7 

Quick-E -32.6 -15.6 -58.4 -39.2 -34.9 -3.2 -2.9 -186.8 

Tiffany -37.0 -9.1 -45.9 -81.1 -69.9 -3.6 -2.5 -249.1 

† FC100, FC75 and FC50 = treatment at 100, 75 and 50% of field capacity. 
‡ CSRI= Cumulative stress response index.  
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Table 2.9. Drought susceptibility index (DSI) of biomass and grain yields of teff varieties 

under the effect of the combination of water quantity (field capacity) with watering 

interval at Stillwater, Ok, 2011-2012. 

Treatment 

Quick-E DZ-Cr-387 Tiffany 

DSI† of 
biomass 

DSI of 
Grain 

DSI of 
biomass 

DSI of 
Grain 

DSI of 
biomass 

DSI of 
Grain 

1 week (1W)     
 

  
  

 FC100
‡ 0.7 0.5 0.6 2.1 0.7 4.2 

 FC75 0.7 0.5 0.7 2.1 0.6 2.1 

FC50 0.8 0.4 0.7 2.5 0.7 2.3 

2 weeks (2W)      
  

  
 FC100 0.9 0.4 0.7 2.4 0.7 4.6 

 FC75 0.6 0.3 0.6 2.0 0.6 2.2 

FC50 0.8 0.6 0.7 2.8 0.6 2.6 

† DSI = Drought susceptibility index 
‡ FC100, FC75 and FC50 = treatment at 100, 75 and 50% of field capacity. 
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DISCUSSION 

The observation of effect of high temperature coupled with low soil moisture 

might affect seedling establishment at adequate moisture (Girma and Ali, personal 

observation). A preliminary study we conducted in 2010 suggested that teff can thrive if 

soil moisture is over 15% of water content (weight of water/weight of soil) at relative 

humidity of 65% or lower. The effect of weather conditions might have a major role in 

the results of this study. A dramatic increase in temperature and relative humidity from 

May to August in both seasons combined with decrease in total amount of rainfall (Table 

2.1) might be affected teff growth and its response to the combination of field capacity 

with watering interval treatments. Thus, teff tillers number, plant height and leaf area 

decreased with decreasing soil water availability to plant. In general, teff varieties grew 

well and resulted in a good stand under low soil moisture level. The results of 

morphological variables of the current study agreed with some previous observation and 

studies about teff. Quick-E and DZ-01-99 varieties grew well during the hot summer, and 

growth of all varieties decreased with increasing heat index above 90 (Girma, et al., 

2012; Reinert, 2012). Adams and Belay (2011) reported that tillers number per plant of 

teff decreased at low soil moisture, and Roseberg et al., (2005) reported that the optimal 

temperature for teff growth was 26.7- 32.3°C. Plant height of soybean was increased at 

the adequate soil water by about 5-21 cm compared with the low or limiting soil water 

(Doss et al., 1974). Teff can grow under drought conditions, especially after establishing 

very good root system, therefore; in this trial, teff had a good growing season. Davision et 

al., (2011) reported that teff root system was established very well after 2-3 weeks from 

planting with frequent water during this period. 
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The results of biomass and grain yields of this trial showed that both yields were 

affected by the combination of field capacity with watering interval treatment, and 

biomass yield was higher under the low soil moisture than grain yield. Both biomass and 

grain yields linearly related to the water treatments combinations. The reason of the 

difference response of biomass and grain yields to water treatments might due to the 

effect of weather conditions (Table 2.1). At low level of soil moisture, grain yield was 

more negatively affected than biomass yield and that might due to the effect of stress on 

the flowering stages and failed to pollinate. Teff at the flowering stage responded 

negatively to day length, temperature, and water amount. This has affected final grain 

yield. Similar result was reported in the past (Ketema, 1997; Miller, 2010; Roseberg et 

al., 2005, Shpiler and Blum, 1991). The response of biomass and grain to drought stress 

in this study agreed with previous studies of teff.  In Ethiopia, Teferra et al., (2000) found 

in Ethiopia that teff biomass and grain yields decreased under the early and terminal 

moisture stress compared with well watered. The results of this study showed that there 

was an effect of moisture on grain and biomass yields as well as varieties. In contrast, 

Shiferaw et al.(2012) found in Ethiopia that the yield increased of both genotypes DZ- 

01- 974 and DZ- Cr- 387 under moisture stress and non- stress conditions. In Montana, 

teff grain yield increased from 700 to 1700 kg ha-1 under drought and irrigation 

treatment, respectively (Eckhoff et al., 1993; Stallknecht et al., 1993). Biomass 

production under the rainfed treatment was somewhat acceptable because teff can grow 

and yield under drought conditions (Katema, 1997; Miller, 2010; Davison et al., 2011). In 

contrast, vegetative growth is more sensitive to water stress than grain filling, especially 

if the stress happened at vegetative stages (Teffera et al., 2000). In the current study, 
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grain yield decreased at high level of stress compared to biomass yield. The reasons for 

the contrasting results between these two studies might be due to the effect of 

temperature and photoperiod besides the effect of water stress on the flowering and 

pollination.    

Teff grain yield was highly related to NDVI for measurements taken three weeks 

after planting and at flowering stage, but biomass yield was more closely related to NDVI 

measurements taken four weeks after emergence. Likewise, water use efficiency was also 

highly related to water treatment combinations, and WUE was low for both biomass and 

grain yield, especially in the well watered treatment. In addition, the high temperature 

might be increasing the transpiration of water (Table 2.1). Teff, especially after 

establishing a good root system, is considered tolerant to water stress (Katema, 1997; 

Miller, 2010; Davison et al., 2011). The crop grew well under high soil water potential -

2.0 MPa (Degu et al., 2008). 

Teff varieties in this study are considered tolerant to water stress because they had 

high level of PSII photochemical efficiency (Fv/ Fm) and yield of quantum efficiency. 

Munné- Bosch and Alegre (1999) reported that a plant is considered tolerant to particular 

stress if it has high level of Fv/ Fm. These results showed that there was no clear effect of 

water stress treatments on photosynthetic traits because teff net photosynthesis was 

tolerant to water stress (Shiferaw and Baker, 1996b; Abuhay et al., 2001). However, high 

water deficit or high water stress affected photosynthetic assimilation rate (Dejene, 2009) 

as shown in the rainfed treatment in this study. In addition, teff is considered resistance to 

water stress if the DSI is less than 1 unit and is considered sensitive or susceptible to 
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water deficits (Clarke et al., 1987). Consequently, all varieties in this study were resistant 

to water stress for producing biomass yield. Quick-E was highly resistant to drought to 

produce grain yield compared with DZ-Cr-387 and Tiffany which were susceptible to 

drought. The results of current study agreed with Admas and Belay (2011) who reported 

that of 25 genotypes the studied, 17 were resistance to water stress because DSI ranged 

from 0.5 to 1, and 8. 

 

CONCLUSIONS 

 In this study, teff growth was highly responsive to different levels of combination 

of water quantity and watering intervals under field conditions. Tiller number, plant 

height, and leaf area significantly increased with increasing soil moisture or water 

availability (R2= 0.94, R2= 0.78 and R2= 0.79 respectively). Biomass and grain yield were 

affected by water stress treatments and were highly related to soil water potential. In 

general, teff resulted acceptable biomass under non-irrigated treatment of 0.372 kg m-2 

compared to grain yield (0.257 kg m-2); especially under very low amount of rainfall in 

both growing seasons. Teff varieties were identified to be drought tolerant; especially to 

produce biomass, but only Quick-E and somewhat DZ-Cr-387 were considered tolerant to 

water deficit to produce grain yield. More agronomic studies are needed to get enough 

information about teff response and grow under Oklahoma weather condition to adopt it 

as summer alternative crop. 
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CHAPTER IV 
 

 

RESPONSE OF WINTER WHEAT GROWTH, GRAIN YIELD, AND 

PHOSPHORUS AND NITROGEN UPTAKE TO FOLIAR PHOSPHITE 

FERTILIZATION 

 

ABSTRACT 

One of the major problems that potentially hinders the use of foliar application as 

a tool to improve nutrient use efficiency is the lack of formulations that can be easily 

absorbed by cereal leaves. A phosphite based product, Nutri-phite was evaluated as an 

alternative formulation for foliar application in hard red winter wheat in this study. Hard 

red winter wheat field trials were established in the fall of 2009 and 2010 at Perkins, 

Perry, and Morrison, OK. Treatments encompassed the application of nitrogen (N) at 100 

and 75% of crop need, and phosphorus at 100 and 80% sufficiency with and without 

Nutri-phite. Nutri-phite was applied at two stages of winter wheat (GS 13 to 14) and (GS 

49 to 53) at the rate of 4 L ha-1. Non-treated and standard practice treatments were treated 

as control treatments, and seed treated was studied in 2009. Application of Nutri-phite at 

both growth stages (2 app Nutr) with P100% sufficiency and N100% of crop need 

improved plant height (50 and 56 cm) at Perkins and Perry field 2 respectively. Grain
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yield was slightly increased by Nutri-phite treatments, especially using Nutri-phite (2 app 

Nutr) with N100% (1563, 1220, and 1718 kg ha-1) at Perkins, Perry field 2, and Morrison 

respectively. Grain yield was negatively affected by the combination of Nutri-phite with 

P100% and was the same as non-treated effect. Total phosphorus of grain was 

significantly increased at Nutri-phite (2 app Nutr) (4565, 3625, and 2830 mg kg-1) at 

Perkins 2009 & 2011 and Perry field 2 respectively. P uptake was increased by using 

Nutri-phite (5.79 and 4 kg ha-1) at Perkins in both seasons. The application of Nutri-phite 

with adequate N and P did , somewhat, slightly result in yield increases and quality when 

compared with only Nutri-phite application. 
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INTRODUCTION AND LITERATURE REVIEW 

Since nutrient use efficiency of crops remains low for major cereals (33% for N 

(Raun and Johnson, 1999), 15% for P (Sander et al., 1990; 991), it is necessary to 

investigate methods for improving nutrient use efficiency of cereal crops. The cost 

associated with traditionally-applied P fertilizers has also become an issue for many 

producers, especially as phosphorus use efficiency (PUE) is considered very poor 

because of P behavior in soil. Millions of tons of soil P fertilizer are lost, thus Tillman et 

al., (2001) predicted that P fertilizer use will increase by 1.4 xs in 2020 and by 2.4 xs in 

2050 as compared to current P use. Finding methods to reduce the cost and loss of P 

fertilizer are critical for wheat (Triticum aestivum L.) producers in Oklahoma. 

Foliar fertilization of nutrients, especially P, in major cereal crops has been 

evaluated to improve nutrient use efficiency (Girma et al., 2007; Mosali et al., 2006). 

Applying foliar P fertilizer to coincide with crop need to complete its metabolism is 

important to complete the crop life cycle. One of the potential hindrances for the use of 

foliar application as a tool to improve nutrient use efficiency is the lack of a good 

formulation that can be easily absorbed by cereal leaves (Girma et al., 2007). Several 

products including powdered forms of diammonium phosphate (DAP), triple 

superphosphate (TSP), monoammonium phosphate (MAP), and potassium phosphate 

monobasic salt have been evaluated with limited success (Walsh, unpublished data; 

Torres, Unpublished data). Some of these products were not small enough for entry 

through the leaf while others, like potassium phosphate monobasic, dried quickly 

resulting in poor entry into the leaf.  
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Nutri-phite® is a fertilizer formulation designed to overcome problems associated 

with absorption of P through leaf tissue and to thereby improve nutrient use efficiency, 

boost crop yield, and increase grain quality (Biagro Western, 2006). Nutri-phite® contains 

phosphite (PO3) and a blend of organic acids (Biagro Western Inc., 2006) that stabilize 

and safens the phosphite molecule that is taken up by leaves of plants. The compound is 

designed to improve nutrient use efficiency by plants including major nutrients such as N 

and P. The Nutri-phite compositions are 3-20-7 and 0.5 Mn-0.5 Zn. This product has 

been used in many horticultural crops; however, it has not been tested in major cereals 

like corn (Zea mays L.) and wheat. Nutri-phite is proposed as an alternative formulation 

for foliar application in wheat in this study. 

The goal of most agricultural producers is to obtain optimal crop yields with 

minimum input from fertilizers and to minimize negative environmental impacts of 

agricultural operations (Morel and Fardeau, 1990). Applying fertilizer directly to the soil 

surface is a popular method for supplying crop nutrients that are lacking, but surface 

applied nutrients can be lost from the soil. In Oklahoma, winter wheat is a primary 

agricultural crop and requires many tons of nitrogen and phosphorus.  

Phosphorus is second only to nitrogen in importance as an essential crop nutrient 

It is critical for plant growth, especially in the early jointing stages (between 6 and 9 

Feekes), and for enhancing grain yield and yield components (Römer and Schilling, 

1986). Phosphorus has an important role throughout the plant growth cycle. It increases 

and improves the development of roots and flowers, strengthens stalk and stem, increases 

seed yield, and ensures timely crop maturity (Griffith, unpublished). Phosphorus is 
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important in building energy for metabolism of plant growth through cellular productions 

such as ATP and ADP from the early stages to the end of the plant’s life. Phosphorus is 

necessary for building coenzymes, phospholipids, nucleic acid, and nucleotide 

components structures. Further, phosphorus is important in building the phosphorus bond 

that helps link DNA and RNA. In addition, P can be stored as polyphosphate and phytate 

forms in plant vacuole tissue (Marschner, 1995). Phosphorus also enhances plant disease 

resistance, crop quality, and legume N-fixation capacity, (Griffith, unpublished.; 

Marschner, 1995). The amount of P in plant tissues is very small and the total phosphorus 

is approximately 0.05% to 0.30% of the total dry weight of plant tissues (Vance, 2001). 

The inorganic form of P is absorbed by plant roots from soil solutions; therefore, soil 

should be fertilized continuously after each crop harvesting and before planting to 

recover P again (Holford, 1997).  

Several researchers have reported that there are many issues that affect P 

availability to the plant when it is applied directly in soil (Sander et al., 1990; 991, 

Batten, 1992; Mosali et al., 2006, and Schachtman et al., 1998). In acidic soil, phosphorus 

is fixed by Al3+, Fe3+, and Mg2+ at soil pH 6 to 6.5. But, in alkaline soil, P is adsorbed by 

calcium carbonate and becomes unavailable to plants (Lindasy et al., 1989). Moreover, 

the recycling of P in soil is considered very slow because it gets fixed and adsorbed in 

soil particles. More than 80% of soil P is unavailable for plant use (Batten, 1992; Mosali 

et al., 2006). Movement of P through soil is very low because it moves only via diffusion 

(Schachtman et al., 1998). Mosali et al. (2006) found that application of broadcast-

incorporated pre-plant fertilizer at 11 to 22 kg P ha-1 was required for cereal production in 
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Oklahoma. Römer and Schilling (1986) reported that yield of winter and spring wheat 

was affected by the time application of foliar P (1 ppm, especially at 6 to 9 Feekes).  

In phosphorus-deficient soils, surface-applied P needs to be applied in large 

quantities which can increase PUE. Foliar phosphorus may assist in increasing PUE 

while still correcting P deficiency. The time and method of foliar P fertilizer application 

are critical factors for increasing wheat grain yield. McBeath et al., (2011) reported that 

foliar P fertilizer increased grain yield, grain P uptake, and the transfer of P to grain. 

Sherchand and Paulsen (1985) examined four sources of foliar P fertilizer applied at the 

flowering stage of winter wheat and found that the grain yield was increased by foliar P 

fertilizer with the exception of phytic acid. Shoot growth, leaf area, and chlorophyll of 

maize were increased by the foliar application of P fertilizer (Ling and Silberbush, 2002). 

Mosali et al., (2006) reported a linear relationship between P grain concentration and 

foliar treatments of P at Lahoma and a slight effect on P uptake, especially at Feekes 7. 

Phosphorus absorption and metabolism in the plant was very fast when P was applied as 

a foliar fertilizer when compared to traditional P soil fertilizer application (Bayton, 1954).    

Mosali et al., (2006) found that delaying foliar P application to a Feekes 10.5 

increased PUE by 8% as compared to the same application at Feekes 7. Girma et al. 

(2007) reported a greater PUE at 2 kg P ha-1 of foliar P in applied to corn at growth stage 

V8 compared to 4 and 8 kg P ha-1 applied at the same time. Foliar P increased wheat PUE 

by 28% compared with pre-plant P fertilizer in soil (Torres, 2011). There is a need to 

improve PUE as well as P concentration in grain and plant tissues to increase grain yield. 
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In addition, using foliar P application methods is considered the best way to reduce the 

amount of phosphorus fertilizer required as a soil fertilizer. 

Foliar inorganic fertilizers have been studied for the last 200 years (Kannan, 1986 

a). There are many factors that affect the absorption or uptake of foliar fertilizer. The first 

factor is the cuticle layers on the plant leaves. Foliar applied nutrients of inorganic foliar 

fertilizer is absorbed through leaves in a two-step process in which they penetrate the 

cuticle (passive percolation or surface adsorption) and then pass through (active 

absorption) the cells below the cuticle layers (Kannan, 1986 a; Tyree et al., 1990). Foliar 

applied nutrients can be absorbed by leaves through the cuticle, stomata, leaf hairs, and 

epidermal cells (Noack et al., 2010). Movement of nutrient within and from leaves is 

achieved by two pathways, passive (apoplastic) and active (symplastic), through the 

plasmadesmate (Erwee et al., 1985; and Kannan, 1986 b). Light, temperature, and relative 

humidity affect the opening stomata which will, in turn, affect absorption of nutrition 

(Kannan, 1986 a; Noack et al., 2010). The uptake of foliar fertilizer was affected by 

temperature and relative humidity when a thin layer of moisture is made on the leaves by 

transpiration (Thorne, 1958). At high temperatures, cuticle adhesiveness increases, 

surface tension increases and nutrition is increasingly diffused through the cuticle and 

stomata (Kirkwood, 1999). Phosphorus absorption is also affected by leaf age (upper and 

lower leaf), wetting of leaf surface, and solution droplet angle (Koontz and Biddulph, 

1957; Wittwer and Teubner, 1959; Reed and Tukey, 1987). Phosphorus was rapidly 

absorbed at low solution PH compared to high solution PH; in addition, solution pH (3 to 

5.5) was the best for uptake of minerals (Fisher and Walker, 1955; Kannan, 1980). Fritz 

(1978) reported that the plant benefited from P fertilizer by 10% of the total P amount 
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when the fertilizer was applied at the plant root compared with 50% of the total P amount 

when the P fertilizer was sprayed on the canopy. Supplying phosphorus fertilizer in the 

early growth stage impacts the grain yield of the wheat crop. Römer and Schilling (1986) 

reported that applied phosphorus at Feekes 6 to 9 at a (1ppm) rate increased grain yield 

compared with Feeks 11 to 17 at the same application rate.  

There are several papers that reported the impact of P foliar fertilizer on the grain 

yield of wheat, PUE, and P grain concentration. KH2PO4 sprayed on the wheat canopy at 

rates of 1 to 4 kg P ha-1 increased grain yield in low temperature conditions in China 

(Sherchand and Paulsen, 1985). KH2PO4 sprayed at late wheat flowering at rates 0, 2.2, 

4.4, and 6.6 kg P ha-1 and increased grain yield especially at the higher rate (Benbella and 

Paulsen, 1998).  

The hypothesis of this study was the application of Nutri-phite with and without 

the addition of N at 100 and 75 % of crop need and P at 100 and 80 % sufficiency would 

increase and/or improve growth, grain yield and grain quality of hard red winter wheat. 

Thus, the objective of this study was to determine whether Nutri-phite application with 

and without pre-plant P (100 and 80% sufficiency) fertilizer at two growth stages (GS 13 

to 14 and GS 49 to 53 growth stages) at the rate of 4L ha-1 would increase hard red winter 

wheat grain yield and improve grain quality. 
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MATERIALS AND METHODS 

Five winter wheat field experiments were established over the fall of 2009/2010 

and 2010/2011. Two fields were chosen in 2009/2010 one at Perkins (Kirkland silt loam-

fine, mixed, thermic Udertic Paleustoll) and one at Perry field 1 (Kirkland fine, mixed, 

superactive, thermic Udertic Paleustolls). Three fields were chosen in 2010/2011 at 

Perkins, Perry field 2 (Norge fine-silty, mixed, active, thermic Udic Paleustolls), and 

Morrison (Grainola fine, mixed, active, thermic Udertic Haplustalfs) as described in 

(Table 3.1). A total of 18 and 12 treatments were arranged in a randomized complete 

block design with three replications 2009/2010 and 2010/2011 respectively. Plot size was 

6 m by 3 m with a 3 m alley between replicates. 

 

Table 3.1. Study fields at location over two production years of hard red winter wheat at 

State of Oklahoma.  

Location  
Year of study 

2009 2010 

Perkins   +† + 

Perry field 1 + - 

Perry field 2 - + 

Morrison - + 
† +, - = field studied within a production year 
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Treatments and treatments structure  

Nutri-phite was applied at two stages of hard red winter wheat: 2-4 leaf stage (GS 

13 to 14) and at 61 cm high (GS 49 to 53) at the rate of 4L ha-1. There were two control 

treatments consisting of no fertilizer add (non-treated) and standard practice (full 

fertilizer). Fertilizer treatments were applied with and without Nutri-phite at one stage (1 

app Nutr) in the 2009/2010 season and at two stages (2 app Nutr) of wheat growth in both 

seasons. Additionally, the treatments encompassed the application of N at 100 and 75% 

of crop need, and P at 100 and 80% sufficiency, both with and without Nutri-phite at one 

and two stages of hard red winter wheat, in the 2009/2010 season. A combination of both 

nutrients, each at 75% of crop need and 80% P sufficiency, was evaluated with and 

without Nutri-phite. Also, seed treated with Nutri-phite was evaluated in the 2009/2010 

season (Table 3.2). 
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Table 3.2. Structure and abbreviations of treatments of Nutri-phite and soil fertilizer with 

and without Nutri-phite of hard red winter wheat at 2009/ 2010 and 2010/ 2011 seasons 

at State of Oklahoma. 

Treatment Structure  Abbreviations 2009 2010 
No Fertilizer control Non-treated +† + 

Treated seed by Nutri-phite Treated Seed + - 

No Fertilizer + Nutri-phite @ 2-4 leaf stage 1 app Nutr - + 
No Fertilizer + Nutri-phite  @ 2-4 leaf stage & 61 cm 
height  

2 app Nutr 
+ + 

100% Sufficiency N and P (standard practice) NP 100% + + 
N applied at 75% of crop need N 75%  + - 
N applied at 75% of crop need+ Nutri-phite @ 2-4 
leaf stage 

N 75% & 1 
app Nutr + - 

N applied at 75% of crop need+ Nutri-phite @ 2-4 
leaf stage & 61 cm height 

N 75% & 2 
app Nutr + - 

N applied at 100% of crop need N 100%  + + 

N applied at 100% of crop need+ Nutri-phite @ 2-4 
leaf stage 

N 100% & 1 
app Nutr + + 

N applied at 100% of crop need + Nutri-phite @ 2-4 
leaf stage & 61 cm height 

N 100% & 2 
app Nutr + + 

P applied at 80% sufficiency P 80% + - 
P applied at 80% sufficiency + Nutri-phite @ 2-4 leaf 
stage 

P 80% & 1 app 
Nutr + - 

P applied at 80% sufficiency + Nutri-phite 2-4 leaf 
stage & 61 cm height 

P 80% & 2 app 
Nutr + - 

P applied at 100% sufficiency P 100% + + 
P applied at 100% sufficiency + Nutri-phite @ 2-4 
leaf stage 

P 100% & 1 
app Nutr + + 

P applied at 100% sufficiency + Nutri-phite  @ 2-4 
leaf stage & 61 cm height 

P 100% & 2 
app Nutr + + 

N applied at 75% of crop need and P applied at 80% 
sufficiency 

N 75% & P 
80% + + 

N applied at 75% of crop need and P applied at 80% 
sufficiency + Nutri-phite @ 2-4 leaf stage & 61 cm 
height 

N 75% &P 
80% & 2 app 
Nutr + + 

† +, - = Treatments applied or not applied within a production year.  
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Soil samples and fertilizer application 

Soil samples (0-15 cm depth) were collected and analyzed for available N and P 

in the soil prior to initiation of the experiment. This information was used to calculate 

additional fertilizer needed for 100% and 75% of crop N need and 100% and 80% P 

sufficiency Based on soil analysis results, K was applied uniformly to all plots if analysis 

warranted application (Table 3.3). Nitrogen (urea) was split (1/3 and 2/3) between pre-

planted and Feekes 5, and all P (TSP) was applied pre-plate. In addition, Nutri-phite was 

sprayed by using a backpack sprayer over the wheat canopy at the rate of 4L ha-1 in both 

growth stages.  

 

Table 3.3. Initial surface (0-15 cm) soil test characteristics of hard red winter wheat field 

at Perkins, Perry, and Morrison, OK, 2009/2010 and 2010/2011. 

Location 

2009/2010 2010/2011 

NO3-N  P  K NO3-N  P K  

---------------kg ha-1------------- --------------------kg ha-1-------------- 

Perkins 28 45 300  27 43 297 

Perry field 1 37 39  295 - - - 

Perry field 2  -† -  - 25 42 302 

Morrison -   -  - 45 17  284 
† - = field was not planted within a year production. 
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Sowing date and field practices  

Duster winter wheat was no-till planted November 6, 2009 at Perry field 1 and 

November 18, 2009 at Perkins. Endurance winter wheat was no-till planted October 8, 

2010 at Perry field 2 and Morrison and on October 11, 2010 at Perkins with 19.5 cm row 

spacing at the rate of 101 kg ha-1 at all sites. Weeds were controlled following Oklahoma 

Cooperative Extension Service recommendations.  

Data collection and analyzing  

Primary data included tillers per plant at harvesting stage, plant height (cm) at 

harvesting stage, grain yield (kg ha-1), and grain phosphorus concentration (mg kg-1). 

Grain was harvested at maturity by harvesting the center 2 m using a Massey Ferguson 

8XP experimental combine. This combine was equipped with a Harvest Master 

automated weighing system (Harvest Master Inc, Logan, Utah). Grain subsamples of 

some treatments in 2009 and all treatments in 2010 were collected for P quantification in 

SWAFL lab. Also P uptake was calculated by multiplying P percentage in grain by grain 

yield. All data were analyzed using the GLM procedure of SAS 9.3 (Sas institute, Cary, 

NC). 
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RESULTS 

Perry field 1, 2009 

The analysis of variance showed that none of the treatments affected 

morphological characteristics or grain yield at Perry field 1 in 2009/2010 (Table 3.4). 

Also, grain phosphorus concentration in mg kg-1 and P uptake in kg ha-1were not 

significantly affected by treatments (Table 3.6). 
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Table 3.4. Analysis of variance and mean separation for tiller number per wheat plant, 

plant height (cm), and grain yield (kg ha-1) in hard red winter wheat as affected by 

treatments at Perry field 1, OK, 2009. 

Source of Variation  df 
Tiller Number/ 

plant 
Plant Height 

(cm) 
Grain Yield 

(kg ha-1) 
Treatment 17 NS† NS NS 
Replication 2 NS NS NS 

 
Treatment 

Treatment Means 
Tiller Number/ 

plant 
Plant Height Grain Yield  

   
cm kg ha-1 

 Non-treated  
 

3 50 1629 
 Treated seed 

 

3 48 1806 
 2 app Nutr‡ 

 

3 42 1077 
 NP 100% 

 

3 48 1622 
 N 75% 

 

3 43 1356 
          + 1 app Nutr§ 

 

2 41 1636 
          + 2 app Nutr 

 

2 43 1123 
 N 100% 

 

2 42 1183 
          + 1 app Nutr 

 

2 42 1334 
          + 2 app Nutr 

 

3 46 1454 
 P 80% 

 

3 47 1756 
           + 1 app Nutr 

 

2 44 1021 
           + 2 app Nutr 

 

3 48 1350 
 P 100% 

 

3 46 1602 
            + 1 app Nutr 

 

2 47 1114 
            + 2 app Nutr 

 

2 48 1123 
 N 75% & P80% 

 

2 46 1275 
            + 2 app Nutr 

 

2 44 1407 
C.V. (%)   35 12 29 

†NS= Nonsignificant. 
‡Nutri-phite at two growth stages. 
§Nutri-phite at one growth stage. 

df= Degree of freedom; CV= Coefficient of variation. 
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Perkins 2009 

There were no significant differences found between the treatments in number of 

tillers per plant in Perkins (Table 3.5). Significant differences were found among the 

treatments in plant height (cm) and ranged from 51 to 43 cm (Table 3.5). Nutri-phite 

increased plant height gradually from 45, 47, to 50 cm in the P100%, P100% & 1 app 

Nutr, and P100% & 2 app Nutr treatments respectively. The effect of Nutri-Phite with 

P80% was not as consistent. Plant height increased from 47 to 49 cm by using 2 app Nutr 

with N75% & P80% treatment compared to N75% & P80% without Nutri-Phite. 2 app 

Nutr treatments had less impact in plant height compared with non-treated and NP 100%, 

and plant height increased by 3 cm at non-treated and NP 100%. However, using only 

Nutri-phite without N and P did not significantly affect plant height compared with using 

the combination of Nutri-phite with P pre-plant treatments.  

Grain yield was significantly affected by treatments, and treated seed treatment 

resulted in greater grain yield (1779 kg ha-1) compared P80% & 1 app Nutr treatment 

(1106 kg ha-1). There was no significant difference in grain yield among 2 app Nutr, non-

treated, and NP 100% treatments (1236, 1401 and 1217 kg ha-1 respectively). Nutri-phite 

at 1 and 2 app Nutr did not increase grain yield when used in conjunction with P100% 

and P80% compared to P100% and P80% without Nutri-phite. The same result was found 

at N100% and N75% with and without Nutri-phite. There was a slight increase in grain 

yield (243 kg ha-1) by using 2 app Nutr with N75% & P80% compared to combination of 

N75% & P80% without Nutri-phite.  
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Table 3.5. Analysis of variance and mean separation for tiller number per wheat plant, 

plant height (cm), and grain yield kg ha-1 in hard red winter wheat as affected by 

treatments at Perkins, OK, 2009/2010. 

Source of Variation  Df Tiller Number/plant 
Plant Height 

(cm) 
Grain Yield 

(kg ha-1) 
Treatment 17  NS† ** * 
Replication 2 NS ** NS 

Treatment 
Treatment Means 

Tiller Number/plant Plant Height Grain Yield  
  cm kg ha-1 

Non-treated 2 49 abc¶ 1401 bc 
Treated seed   3 51 a 1779 a 
2 app Nutr‡   2 46 cde 1236 bc 
NP 100%   2 49 abc 1217 bc 
N 75%   2 49 abc 1330 bc 
        + 1 app Nutr§   2 45 de 1167 c  
        + 2 app Nutr   2 49 abc 1115 c 
N 100%   2 47 bcd 1246 bc 
          + 1 app Nutr   2 43 e 1146 c 
          + 2 app Nutr   3 46 cde 1563 ab 
P 80%   2 45 de 1120 c 
         + 1 app Nutr   2 47 bcd 1106 c 
         + 2 app Nutr   2 46 cde 1314 c 
P 100%   2 45 de 1167 c 
         + 1 app Nutr   2 47 bcd 1113 c 
         + 2 app Nutr   2 50 ab 1260 bc 
N75% & P80%   2 47 bcd 1176 c 
          + 2 app Nutr   2 49 abc 1420 abc 

LSD 0.7 3 367 
C.V. (%) 20.2 4.3 17.4 

† NS,*, **non significant or significant at the P ≤ 0.05 or 0.01 respectively.  
‡ Nutri-phite at two growth stages. 
§ Nutri-phite at one growth stage. 
¶ a, b, c, d, e= Test of treatments means (LSD at P ≤ 0.05 and 0.01)  
df= Degree of freedom; CV= Coefficient of variation; LSD= Least significant difference.  
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Grain phosphorus concentration (mg kg-1) was significantly affected by 

treatments (Table 3.6), and the results showed that 2 app Nutr significantly increased the 

grain phosphorus concentration compared to non-treated and NP 100% (4565, 3335, and 

3155 mg kg-1 respectively). The 2 app Nutr of Nutri-phite had greater impact on grain 

phosphorus concentration compared to P 100%, and it was increased by the combination 

of Nutri-phite (1 and 2 app Nutr) with P 100% from 3655 to 3735 and 3725 mg kg-1 at 

P100%, P100% & 1 app Nutr and P100% & 2 app Nutr respectively. A slight increase in 

grain phosphorus concentration was recorded when using Nutri-phite (1 and 2 app Nutr) 

with N100% compared to N 100% alone (1146, 1563 and 1246 kg ha-1 respectively). In 

general, the greatest grain phosphorus concentration was recorded at 2 app Nutr of Nutri-

phite (4565 mg kg-1) when compared with other treatments. 

 Phosphorus uptake was significantly affected by treatments (Table 3.6). Nutri-

phite (2 app Nutr) was effective for increasing P uptake (5.79 kg ha-1) than control 

treatments (4.67, and 3.99 kg ha-1) at non-treated and NP% respectively. Likewise, the 

trend of increased P uptake was more efficient when using Nutri-phite (2 app Nutr) in 

contrast to P100% (3.96 kg ha-1). Also the combination of P100% with 2 app Nutr 

significantly increased P uptake compared to the combination of P100% with 1 app Nutr 

(4.74 and 3.93 kg ha-1 respectively). However, the greatest P uptake was recorded at 

treated seed, Nutri-phite (2 app Nutr), and N100% & 2 app Nutr treatments (5.87, 5.79, 

and 5.73 kg ha-1 respectively).  
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Table 3.6. Analysis of variance and mean separation for total phosphorus mg kg-1 and P 

uptake kg ha-1 in hard red winter wheat as affected by treatment at Perkins, and Perry 

Field 1, OK, 2009/2010. 

Location Source of Variation DF 
Grain P 

concentration(mg 
kg-1) 

P uptake 
(kg ha-1) 

Perkins Treatment 11 *† * 

Perry field 1 Treatment 11 NS NS 

Treatment 

Perkins Perry field 1 
Grain P 

concentration 
P uptake 

Grain P 
concentration 

P uptake 

mg kg-1 kg ha-1 mg kg-1 kg ha-1 
Non-treated 3335 b¶ 4.6 abcd 4450 7.3 
Treated seed 3440 b 5.8 a 3435 6.7 
2 app Nutr‡ 4565 a 5.7 ab 4355 4.7 
NP 100% 3155 b 3.9 cd 3675 6.2 
N 75% & 2 app Nutr 3050 b 3.1 d 3615 4.5 
N 100% 3045 b 3.4 d 3680 3.0 
        + 1 app Nutr§ 3215 b 4.0 bcd 2975 4.3 
        + 2 app Nutr 3240 b 5.7 abc 3345 4.8 
P 80% & 2 app Nutr 3460 b 4.1 abcd 4315 6.3 
P 100%  3655 b 3.9 cd 3055 6.1 
        + 1 app Nutr 3735 ab 3.9 d 3825 4.1 
        + 2 app Nutr 3725 ab   4.7 abcd 4245 5.2 

LSD 368 1.8 NS NS 
C.V% 11.9 18 17.3 33.7 

† NS,* Nonsignificant or significant at P ≤ 0.05, respectively. 
‡ Nutri-phite at two growth stages. 
§ Nutri-phite at one growth stage. 
¶ a, b, c, d, e= Test of treatments means (LSD  P ≤ 0.05) 
df= Degree of freedom; CV= Coefficient of variation; LSD= Least significant difference. 
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Perkins 2010 

The results of variance analysis of morphological characteristics and grain yield at 

this site revealed no significant differences among the treatments (Table 3.7).  

There was a significant effect of treatments in grain phosphorus concentration mg 

kg-1. (Table 3.10). There was no significant difference between Nutri-phite treatments 

(1and 2 app Nutr) compared to control treatments (non-treated and NP 100%). There was 

a significant influence when using Nutri-phite with N100%, P100% and N75% & P80% 

to increase grain phosphorus concentration. The greatest total grain phosphorus was 

3770, 3710, 3645 and 3625 mg kg-1 from treatments N100% & 1 app Nutr, N 75% & P 

80% & 2 app Nutr, N100% & 2 app Nutr and 2 app Nutr respectively.  

Nutri-phite treatments (1and 2 app Nutr) significantly affected P uptake compared 

to non-treated treatment (Table 3.10) and the P uptake of those treatments was (3, 4 and 2 

kg ha-1 respectively). NP% treatment was more significant to increase P uptake (5 kg ha-

1) compared to Nutri-phite treatments (1and 2 app Nutr) 3 and 4 mg kg-1 respectively. 

The combination of Nutri-phite treatments (1and 2 app Nutr) with P100 had a negative 

effect compared with the combination of Nutri-phite (1and 2 app Nutr) with N100%. P 

uptake was decreased from (4 kg ha-1) at P100% to (1 kg ha-1) at P100% &1 and 2 app 

Nutr. Nutri-phite (2 app Nutr) was more efficient than Nutri-phite (1app Nutr) in P 

uptake, especially at the combination with N100% and N75% & P80%.  
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Table 3.7. Analysis of variance and mean separation for tiller number per wheat plant, 

plant height (cm), and grain yield kg ha-1 in hard red winter wheat as affected by 

treatment at Perkins, Ok, 2010/2011. 

Source of Variation df Tiller Number/plant Plant Height (cm) 
Grain Yield 

(kg ha-1) 
Treatment 11  NS† NS NS 
Replication 2 NS NS * 

Treatment 
Treatment Means 

Tiller Number/plant Plant Height  Grain Yield 
  cm kg ha-1 

Non-treated   3 51 698 
1 app Nutr‡   3 51 1058 
2 app Nutr§   3 52 1305 
NP 100%   3 55 1413 
N 100%   3 48 782 

        +  1 app Nutr   3 51 1015 
        +  2 app Nutr   3 57 1410 

P 100%   3 55 1191 
        +  1 app Nutr   3 58 1727 
        +  2 app Nutr   3 58 1321 

N75% & P80%   4 57 1286 
             +  2 app Nutr   3 53 867 

C.V. (%)   16.9 10.9 45 
† NS, * Nonsignificant or significant at P ≤ 0.05. 
‡ Nutri-phite at one growth stage. 
§ Nutri-phite at two growth stages. 
df= Degree of freedom; CV= Coefficient of variation. 
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Perry field 2, 2010 

 The analysis of variance showed significant effects among treatments on tillers 

number per plant, plant height (cm), and grain yield (kg ha-1) (Table 3.8). Nutri-phite 

treatments (1 and 2 app Nutr) did not show a significant increase in tiller number 

compared to non-treated wheat. Plant height was significantly increased at the 

combination of N100% with Nutri-phite (2 app Nutr treatment) (3 tiller per plant) 

compared to N100% without Nutri-phite (2 tiller per plant). The same effect was also 

recorded at N75% & P80% with and without Nutri-phite. The treatments with P100% 

with and without Nutri-phite treatments resulted in no significant effect on tiller number 

(2 tillers per plant).  

 There was no difference between Nutri-phite treatments and non-treated wheat, 

especially between 2 app Nutr and non-treated in plant height (39 and 40 cm 

respectively). In addition, plant height increased significantly by (5 and 21 cm) at N100% 

with 1 and 2 app Nutr respectively compared to N100%. Also, plant height increased at 

N75% & N80% & 2 app Nutr by 11 cm compared with N75% & P80%. Nutri-phite 

treatments did not significantly affect plant height when Nutri-phite use with P100%.  

The grain yield (kg ha-1) result showed that there was no significant differences 

among Nutri-phite treatments (1 and 2 app Nutr) and non-treated wheat. Grain yield was 

significantly affected by NP100% compared to Nutri-phite (1 and 2 app Nutr) treatments 

(1138, 345, and 434 kg ha-1 respectively). Application of Nutri-phite treatments (1 and 2 

app Nutr) with P100% did not show any impact on grain yield but grain yield was 

slightly decreased from (650 kg ha-1) at P100% to (481 and 525 kg ha-1) at Nutri-phite (1 



105 

 

and 2 app Nutr) respectively. Otherwise, slight increase in grain yield was recorded at 

N75% & P80% with 2 app Nutr compared to N75% & P80% without 2 app Nutr (1223 

and 969 kg ha-1 respectively). Also, the effect of Nutri-phite treatments with N100% in 

grain yield was not consistent and slightly increased at N100% & 2 app Nutr (1220 kg ha-

1) but decreased at N100% & 1 app Nutr (977 kg ha-1) compared to N100% (1106 kg ha-

1).  

The analysis of variance showed that the treatments had a significant effect in 

grain phosphorus concentration (Table 3.10). The effect of Nutri-phite treatments was not 

consistent, and there was similar effect of Nutri-phite treatments (1 and 2 app Nutr) on 

grain phosphorus concentration (3320 and 2830 mg kg-1 respectively) and non-treated, 

and NP100% treatments (3485 and 2545 mg kg-1 respectively). Nutri-phite with pre-plant 

N100% did not show any effect on grain phosphorus concentration. In contrast, grain 

phosphorus concentration was increased by using Nutri-phite (1 and 2 app Nutr) with 

P100% (3650 and 3950 mg kg-1 respectively) compared to P100% (3470 mg kg-1). 

Furthermore, there was a negative effect of the combination of Nutri-phite (2 app Nutr) 

with N75% & P80% compared to N75% & P80%, and grain phosphorus concentration 

decreased from (3180 mg kg-1) at N75% & P80% to (2765 mg kg-1) at N75% & P80% & 

2 app Nutr. None of the treatments significantly affected the P uptake kg ha-1 (Table 

3.10). 
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Table 3.8. Analysis of variance and mean separation for tiller number per wheat plant, 

plant height (cm), and grain yield kg ha-1 in hard red winter wheat as affected by 

treatments at Perry Field 2, Ok, 2010/2011. 

Source of Variation df Tiller Number/plant Plant Height (cm) 
Grain Yield 

(kg ha-1) 

Treatment 
1
1 

* † * ** 

Replication 2 * NS * 

Treatment 
Treatment Means 

Tiller Number/plant Plant Height  Grain Yield 
  cm kg ha-1 

Non-treated   2 cde¶ 40 bcd 471 c 
1 app Nutr‡   1 e 31 d 345 c 
2 app Nutr§   2 cde 39 bcd 434 c 
NP 100%   3 abc 51 abc 1138 a 
N100%   2 de 35 d 1106 a 
        + 1 app Nutr 2 cde 40 bcd 977 ab 
        + 2 app Nutr 3 ab 56 a 1220 a 
P100%   2 cde 42 abcd 650 bc 
        +  1 app Nutr 2 bcde 43 abcd 481 c 
        +  2 app Nutr 2 cde 38 cd 525 c 
N75% & P80% 2 abcd 43 abcd     969 ab 
          +  2 app Nutr 3a  53 ab    1223 a 

LSD 0.9 15 419 
C.V. (%) 24 20 31 

† NS, *, ** Nonsignificant or significant at P ≤ 0.05 or 0.01. 
‡ Nutri-phite at one growth stage. 
§ Nutri-phite at two growth stages. 
¶ a, b, c, d, e= Test of treatments means (LSD  P ≤ 0.05 or 0.01) 
df= Degree of freedom; CV= Coefficient of variation; LSD= Least significant difference. 
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Morrison 2010 

 None of the treatments affected tiller number per plant or plant height (cm) at 

Morrison (Table 3.9). In contrast, the treatments significantly affected grain yield (kg ha-

1) and the greatest and lowest grain yield were (1830 and 874 kg ha-1) at the combination 

of N75% & P80% with 2 app Nutr and non-treated respectively. The results showed that 

there was a significant increase in grain yield (1416 and 1498 kg ha-1) at 1 app Nutr and 2 

app Nutr compared to the control (non-trated) treatment (874 kg ha-1). On the other hand, 

a negative influence of Nutri-phite (1 and 2 app Nutr) treatments in grain yield was 

observed when combined with P100% (1497, 1025 and 1744 kg ha-1). Grain yield was 

significantly increased at N75% & P80% & 2 app Nutr (1809 kg ha-1) compared with the 

combination of N75% & P80% (1289 kg ha-1). The combination of N100% with and 

without Nutri-phite treatments (1 app Nutr and 2 app Nutr) did not show significant 

differences in grain yield and there was only slight difference among the treatments. The 

results of variance analysis showed that none of the treatments was significantly affected 

grain phosphorus concentration (mg kg-1) or P uptake (kg ha-1) (Table 3.10).     
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Table 3.9. Analysis of variance and mean separation for tiller number per wheat plant, 

plant height (cm), and grain yield kg ha-1 in hard red winter wheat as affected by 

treatments at Morrison, Ok, 2010/2011. 

Source of Variation df Tiller Number/plant 
Plant Height 

(cm) 
Grain Yield 

(kg ha-1) 
Treatment 11  NS† NS ** 
Replication 2 NS NS *** 

Treatment 
Treatment Means 

Tiller Number/plant Plant Height Grain Yield 
  cm kg ha-1 

Non-treated 
 

3 55 874 d¶ 
1 app Nutr‡ 

 
2 50 1416 abc 

2 app Nutr§ 
 

3 55 1498 abc 
NP 100% 

 
3 49 1355 abcd 

N 100% 
 

3 54 1419 abc 
+ 1 app Nutr 

 
3 55 1830 a 

+ 2 app Nutr 
 

3 58 1718 ab 
P 100% 

 
3 56 1744 ab 

+ 1 app Nutr 
 

4 60 1497 abc 
+ 2 app Nutr 

 
3 53 1025 dc 

N75% & P80% 
 

3 54 1289 bcd 
+ 2 app Nutr 

 
4 64 1809 a 

LSD NS NS 486.2 
C.V. (%) 19 12 20 

† NS, *, ** Nonsignificant or significant at P ≤ 0.05 or 0.01or 0.001. 
‡ Nutri-phite at one growth stage. 
§ Nutri-phite at two growth stages. 
¶ a, b, c, d, e= Test of treatments means (LSD  P ≤ 0.05 or 0.01 or 0.001 ) 
df= Degree of freedom; CV= Coefficient of variation; LSD= Least significant difference. 
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Table 3.10. Analysis of variance and mean separation for total phosphorus (mg kg-1) and 

P uptake (kg ha-1) in hard red winter wheat as affected by treatments at Perkins, Perry 

Field 2, and Morrison, OK, 2010/2011. 

Location 
Source of 
Variation 

DF 
Grain P concentration  

(mg kg-1) 
P uptake  
(kg ha-1) 

Perkins Trt 11 *† * 
Perry field 2 Trt 11 * NS 

Morrison Trt 11 NS NS 

Treatment 

Perkins Perry Field 2 Morrison 
Grain P 

concentrat
ion 

P uptake  
Grain P 

concentratio
n 

P uptake  
Grain P 

concentrat
ion 

P uptake  

mg kg-1   kg ha-1 mg kg-1  kg ha-1 mg kg-1  kg ha-1 
Non-treated 3365 ab¶ 2 d 3485 ab 1 2605 2 
1 app Nutr‡ 2815 b 3 abcd 3320 abc 1 2705 3 
2 app Nutr§ 3625 a 4 abcd 2830 bcd 1 2915 3 
NP 100% 3405 ab 5 a 2545 cd 3 2770 3 
N 100% 3525 ab 2 dc 2490 d 3 2695 3 
       +  1 app Nutr 3770 a 3 abcd 2460 d 2 2540 4 
       +  2 app Nutr 3645 a 5 ab 2455 d 2 2525 4 
P 100% 3090 ab 4 abcd 3470 ab 2 2585 4 
       +  1 app Nutr 3520 ab 4 abc 3650 a 1 2405 3 
       +  2 app Nutr 2740 b 1 d 3950 a 2 2735 2 
N75% & P80% 3475 ab 1 d 3180 abcd 2 2785 3 
         +   2app Nutr 3710 a 2 bcd 2765 bcd 3 2935 4 

LSD 807 2.3 819 NS NS NS 
C.V% 10.8 30.8 12.2 31.5 16.1 30.1 

† NS, * Nonsignificant or significant  at P ≤ 0.05. 
‡ Nutri-phite at one growth stage 
§ Nutri-phite at two growth stages.  
¶ a, b, c, d= Test of treatments means (LSD at P ≤ 0.05). 
df= Degree of freedom; CV= Coefficient of variation; LSD= Least significant difference.  
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DISCUSSION 

 Among all the trials and years, the results of analysis of variance showed 

inconsistence results of Nutri-phite on tillers number, plant high, grain yield, grain 

quality and phosphorus uptake compared to non-treated standard practice treatments. 

Nutri-phite alone applied once or twice slightly increased tillers, plant height, grain yield, 

and grain phosphorus concentration compared to P100 & 80% sufficiency with and 

without Nutri-phite (1 and 2 app Nutr) treatments. The reason for this response may be 

because the high levels of P concentration in the soils of this study (Table 3.3) making 

the effect of additional P fertilizer minimal. In addition, the effect of the environmental 

conditions, especially less rainfall and high temperature during these two years, might 

have influenced results, because of their negative impact on Nutri-phite absorption 

through stomata (Thorne, 1958; Kannan, 1986 a; Tyree et al., 1990; Kirkwood, 1999). 

In contrast to tiller per plant, plant height was more affected by Nutri-phite 

treatments and the combination of Nutri-phite with P100% and N100% compared to 

P100% and N100% without Nutri-phite as well as using 2 app Nutr of Nutri-phite with 

N75% & P80% compared to N75% & P80% at Perkins, 2009 and at Perry field 2, 2010 

seasons. Number of tillers was increased significantly by using Nutri-phite with 

treatments (N100% and N75% & P80%) at Perry field 2, 2010. Ling and Silberbush 

(2002) reported that there was a significant effect of P foliar fertilizer on corn shoot 

growth. In addition, fertile tillers of winter wheat were increased by using P foliar 

fertilizer at early stages (Batten et al., 1986; McBeath et al., 2011; Grant et al., 2001). 

This effect of Nutri-phite especially at two growth stages (2 app Nutr) might improve the 
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uptake of nitrogen fertilizer by wheat which then increases the plant growth. Phosphorus 

is essential to root growth and development that then might help to increase root uptake 

of nutrients (Marschner, 1995). 

 The influence of Nutri-phite (1 and 2 app Nutr), especially with other treatments, 

was shown to have somewhat limited impact on grain yield (kg ha-1) The increase of 

grain yield was not consistent among locations and between years; the treatments 

significantly affected grain yield at Perkins in 2009, Perry field 2 and Morrison in 2010. 

The combination of Nutri-phite (1 and 2 app Nutr) with N100% significantly increased 

grain yield compared to the combination of Nutri-phite with P100% as well as the 

combination of Nutri-phite (2 app Nutr) with N75% & P80% compared to N75% & 

P80% without Nutri-phite. The influence of Nutri-phite (1 and 2 app Nutr) in grain yield 

was same essentially as the influence of non-treated and standard practice treatments. 

These results disagree with Mosali et al., (2006) and Torres (2011) who found a 

slight effect of foliar P on the P uptake and grain yield of wheat especially at Feekes 7 as 

foliar P was applied with a pre-plant fertilizer. In addition, the use foliar P at the V8 corn 

growth stage at 2 kg P ha-1 affected yield and PUE (Girma et al., 2007). The reasons for 

the effect were not consistent among locations and years and could be influenced by the 

condition of the soil and the weather, especially the moisture and temperature. These last 

two reasons maybe affect the opening of the stomata which may affect absorption and the 

movement of Nutri-phite throughout leaf tissues. Light, temperature, and relative 

humidity are the most powerful environmental conditions influencing the opening of the 

stomata, which, then affect absorption, and evaporation of foliar nutrition (Thorne, 1958; 
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Kannan, 1986a; Kirkwood, 1999; Noack et al., 2010). In addition, the time or growth 

stage of the crop and the application rate of Nutri-phite might affect uptake of P. Mosali 

et al., (2006) mentioned that high rate of application of P as a foliar fertilizer at the 

earliest growth stages (6 to 9 Feekes) was more efficient, but Sherchand and Paulsen 

(1985) reported that grain yield of winter wheat increased at the lower rate of foliar P at 

flowering stages. Contrarily, wheat grain yield was affected positively at high rate of 

foliar P at the flowering stage (Benbella and Paulsen, 1998). Similarly, using 120 L ha-1 

(1.65 P ha-1) increased grain yield of winter wheat (McBeath et al., 2011).  

Grain phosphorus concentration was also affected by treatments, especially Nutri-

phite treatments and the significant effect was reported in three of five fields at two years 

of this study. Nutri-phite treatments, especially 2 app Nutr increased grain phosphorus 

concentration at Perkins in two years compared with control treatments, N treatments, 

and P treatments. Also the results showed that there was a significant increase in grain 

phosphorus concentration when Nutri-phite was combined with P treatments at Perkins in 

2009 and Perry field 2 in 2010. However, Nutri-phite treatments with and without other 

treatments somewhat increased grain phosphorus concentration. Grain phosphorus 

concentration of wheat might be increased when foliar phosphorus was sprayed at 

anthesis (Sherchand and Paulsen, 1985).  

Application of Nutri-phite (2 app Nutr) was more efficient at affecting crop 

growth development and slightly increased grain yield than the Nutri-phite (1 app Nutr). 

Also, application of Nutri-phite (2 app Nutr) with the other treatments was more effective 

than the combination of Nutri-phite (1 app Nutr) with the other treatments. The reason for 
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this effect might be the increased amount of Nutri-phite (2 app Nutr) compared with 

Nutri-Phite (1 app Nutr). Using foliar P fertilizer at high rate (1 ppm) gave greater grain 

yield in wheat (Römer and Schilling, 1986); also, Benbella and Paulsen (1998) reported 

that the grain yield of wheat was increased at high level of foliar KH2PO4. P uptake kg 

ha-1 was significantly affected by the treatments, and the stronger effect was reported by 

Nutri-Phite treatments (1and 2 app Nutr) compared to check treatment (non-treated). 

Likewise, the impact of P100% and Nutri-Phite treatments (1and 2 app Nutr) in P uptake 

was not consistent but was essentially the same. There was a slight increase in P uptake 

in wheat grain by using P foliar fertilizer (Mosali et al., 2006; Torres, 2011).   

 

 

CONCLUSIONS 

Nutri-phite (1 and 2 app Nutr) with and without other treatments at all locations 

and years did slightly affect growth and grain yield of wheat, and there was a significant 

effect in grain phosphorus concentration and P uptake. The results of this study showed 

that Nutri-phite (1 and 2 app Nutr) treatments increased the number of tillers at Perry 

field 2 in 2010. The same effect was also noted in plant height at Perkins in 2009 and at 

Perry field 2 in 2010. Thus, Nutri-phite treatments with and without P and N had a 

greater impact on plant height than on tillers number per plant. 

Grain yield determined by ANOVA was slightly increased by the combination of 

Nutri-phite (1 and 2 app Nutr) with N 100 and 75% treatments as well as with N75% & 

P80%, but the combination with P treatments decreased grain yield. There was no 
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significant different effect between Nutri-phite (1 and 2 app Nutr) and check treatment 

(non-treated) in grain yield compared with standard practice treatment. Nutri-phite (1 and 

2 app Nutr) was more efficient in increasing grain phosphorus concentration compared to 

control treatment (non-treated) and NP% treatment. Likewise, combining Nutri-phite (1 

and 2 app Nutr) with P and N treatments resulted in slight increase in grain phosphorus 

concentration. 

In general, two application of Nutri-Phite was more effective at improving 

growth, grain yield and grain phosphorus concentration compared to one application. 

When pre-plant P fertilizer was supplied at 100 and 80% sufficiency, the influence of 

Nutri-phite at (1 and 2 app Nutr) on plant height and grain phosphorus concentration was 

slight, but the effect on grain yield it was not significant. Even so, there was a slightly 

significant effect of Nutri-phite treatments on grain yield, especially compared to the 

control treatment (non-treated). Likewise, P uptake was increased by Nutri-phite 

application, especially at 2 app Nutr, compared to check treatments (non-treated). Nutri-

phite treatments were more efficient than P treatments in P uptake, and Nutri-phite (2 app 

Nutr) was more efficient than Nutri-Phite (1 app Nutr) in P uptake.   

This study demonstrated that the application of Nutri-phite treatments as a P foliar 

fertilizer might enhance and/or improve the wheat growth, grain yield and grain quality, 

especially under good environmental conditions. Thus, this study showed that foliar P 

fertilization should concentrate on the amount of foliar fertilizer applied at the best time 

of the crop life cycle to get the benefit of foliar application.               
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