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CHAPTER 1

INTRODUCTION

1.1 Historical overview of Bose-Einstein condensation

The history of Bose-Einstein condensation starts in 1924 with the notion of Satyendra

Nath Bose’s statistical argument in deriving the black-body photon spectrum [1]. This

concept was later extended and generalized to the case of noninteracting atoms by

Albert Einstein [2, 3] which is now known as Bose-Einstein statistics. This predicted

that at very low but finite temperature a large fraction of the atoms would go into

the lowest energy quantum state. This phenomenon is now known as Bose-Einstein

condensation (BEC). Some good reviews on BEC can be found in references [4–6].

Einstein’s prediction was not taken seriously until mid 1930s when Fritz London

and Laszlo Tisza revived those ideas as a possible mechanism underlying superfluidity

in liquid Helium-4 [7,8]. This was in fact the first work to suggest that BEC displays

quantum behavior on a macroscopic scale. BEC is a genuinely quantum statistical

phase transition that occurs without the help of interactions. Einstein called it “con-

densation without interaction” [3] to draw the contrast to most phase transitions that

occur due to the interactions between the constituent particles. For example, ferro-

magnetism is caused due to the spin exchange interaction [9,10] and superconductivity

occurs due to the effective interactions between electrons [11, 12]. The occurrence of

the transition to BEC requires a phase space density roughly greater than unity. More

precisely the transition occurs when the de Broglie wavelength, λdB, of atoms overlap

each other. For a noninteracting Bose gas, the phase space density, nλ3
dB, should be

approximately greater than 2.61 (see section 1.2).
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It took about 70 years in order for scientists to finally realize a BEC in dilute

gases in a series of remarkable experiments in 1995 [13–15]. Eric Cornel and Carl

Wieman’s group at JILA, University of Colorado, Boulder, created a BEC of 87Rb

atoms [13], Wolfgang Ketterle’s group at MIT, created a BEC of Na atoms [14], and

Randall Hulet’s group at Rice University, created a BEC of 7Li atoms [15–17]. It

should be mentioned here that the effort on BEC was begun with hydrogen a long

time before. However the first observation of BEC in spin-polarized hydrogen was

not reported until 1998 [18]. Towards the realization of BEC, some other remarkable

discoveries should not be forgotten. These include: the demonstration of the idea of

the magneto-optical trap (MOT) by Migdall, et al (1985) [19], the first observation

of optically trapped atoms by Chu, et al. (1986) [20], realization of a MOT by Rabb,

et al. (1987) [21], demonstration of evaporative cooling by Davis, et al. and Petrich

et al. (1994) [22, 23], and the demonstration of a time orbiting potential by Petrich,

et al. (1995) [24]. These incredible works opened the pathway to the realization of

the BEC, revolutionizing the field of atomic physics. Two Nobel prizes were awarded

for these remarkable achievements: laser cooling (1997) and BEC (2001).

A BEC of 87Rb atoms is produced in our lab at Oklahoma state University using

an all-optical trap, which has proved to be a simple, yet robust method [25,26]. An in-

depth discussion of BEC in the Summy group can be found in the theses of Ahmadi,

Timmons, Behin Aein, Ramareddy, and Talukdar [27–31].

1.2 Fundamentals of Bose-Einstein condensation

Quantum statistics is governed by the principle of indistinguishability of identical

particles. Particles with integer spin are called bosons and half integer spins are called

fermions. Photons are example of bosons whereas the elementary particles such as

electrons, protons, neutrons, quarks and neutrinos are examples of fermions. Thus

an atom with an even number of total constituent particles is a boson. Bosons obey

2



Bose-Einstein statistics in which there is no restriction on the occupation number of

any single-particle state. However in the case of fermions, no more than one particle

can occupy any single-particle state (Pauli’s exclusion principle [32]). Moreover the

many-body wave function of identical bosons is symmetric under the exchange of any

two bosons. For identical fermions, such an exchange is anti-symmetric.

The grand partition function, Ξ, of a system of particles with particle-number

operator N̂ and the Hamiltonian Ĥ is given by

Ξ = Tre−β′(Ĥ−µN̂), (1.1)

where β′ = 1/(kBT ) with kB and T the Boltzman constant and temperature respec-

tively, and µ is the chemical potential which serves as the Lagrange multiplier. For

an ideal Bose gas (i.e., noninteracting identical bosons) with the dispersion relation

εk = ~2k2/2M , one can write

Ĥ − µN̂ =
∑

k

(εk − µ)n̂k. (1.2)

Where n̂k is the number operator of a particle with wave vector k. Thus Eq. (1.1)

can be written as

Ξ = Πk

∞∑
nk=0

[eβ′(µ−εk)]nk . (1.3)

This is a geometric series which converges only if eβ′(µ−εk) is less than one. It requires

µ < 0 provided εk ≥ 0. Then Eq. (1.3) becomes

Ξ = Πk
1

1− eβ′(µ−εk)
. (1.4)

With this grand partition function the thermodynamic potential can be defined as

Ω = − 1

β′
ln Ξ =

∑

k

1

β′
ln(1− eβ′(µ−εk)). (1.5)

This leads to the Bose-Einstein distribution function

N =
∑

k

n̄k =
∑

k

1

eβ′(εk−µ) − 1
. (1.6)

3



Where n̄k = −∂Ωk

∂µ
is the average number of particles with wave vector k and N is

the average total number of bosons. In the thermodynamic limit in which both the

volume V and N are infinitely large, the sum in Eq. (1.6) can be replaced by an

integral i.e.,
∑

k → V
(2π)3

∫
d3k then Eq. (1.6) becomes

N

V
=

1

(2π)3

∫
d3k

1

eβ′(εk−µ) − 1
. (1.7)

If the temperature is reduced maintaining the particle number density, n = N/V a

constant, the value of chemical potential increases and becomes zero at some temper-

ature Tc. Substituting µ = 0 and εk = ~2k2/2M one gets

n = 2.612

(
MkBTc

2π~2

)3/2

, (1.8)

where we have used the formula
∫∞

0
xa−1

ex−1
= Γ(a)ξ(a). Here ξ(a) is the Riemann zeta

function with ξ(3
2
) = 2.612 and Γ(3

2
) =

√
π

2
. Now one can calculate the transition

temperature for Bose-Einstein condensation (BEC). Which from Eq. (1.8) is

kBTc =
3.31~2

M
n2/3 (1.9)

For T < Tc, a nonzero fraction of bosons condense into the lowest-energy state. Note

that the particles with ε = 0 do not contribute to the integral. For T < Tc, we

can write a quantity called normal fraction as Nε>0

N
=

(
T
Tc

)3/2

. Thus the fraction of

condensate atoms can be written as

Nε=0

N
= 1−

(
T

Tc

)3/2

. (1.10)

BEC occurs when quantum degeneracy sets in, i.e., when the thermal de Broglie

length defined as λdB = h√
2πMkBT

[33], of individual bosons begins to overlap. Using

this expression for the de Broglie length in Eq. (1.8), the phase space density, ρ, of

Bose gas at T = Tc can be written as

ρ = nλ3
dB ' 2.612. (1.11)
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This shows that an ideal Bose gas undergoes BEC at a phase space density of 2.612

and that at the transition temperature, the thermal de Broglie length is on the order of

the average interparticle distance. The condensation of an ideal Bose gas at constant

volume is a third-order phase transition because the specific heat of an ideal Bose gas

is continuous whereas its derivative is discontinuous.

1.3 Thesis organization

The work presented in this thesis is almost entirely releted to the atom-optical quan-

tum kicked rotor (AOQKR) and closely related systems. The experimental study of

the AOQKR has been made possible due to the existence of laser cooling and trapping

and more recently BEC. Thus we begin Chapter 2 with an overview of the theory of

this process and continue with a discussion of the magneto-optical trap (MOT) and

evaporative cooling techniques. The realization of Bose-Einstein condensation is also

discussed in this Chapter.

The classical δ−kicked rotor model and its quantum analog using atom-optics is

introduced in Chapter 3. A closely related model called the atom-optical δ−kicked

accelerator (AOQKA) is also discussed in this Chapter. Quantum resonances and

anti-resonances are defined and the ε− classical theory, that describes the dynamics

of the system near these resonances is explained.

Chapter 4 details the experimental set up required to create a MOT and a BEC

of 87Rb including the imaging system, vacuum chamber and the alignment of the

far off-resonant trap. From the day of its realization, the AOQKR has become the

workhorse for the study of several quantum mechanical effects. The two applications

of the AOQKR studied in this thesis are fidelity and the quantum ratchet effect.

Fidelity, a relatively new concept for applying the AOQKR towards possible precision

measurements of frequency and acceleration are the subject of discussion in Chapter 5.

It is shown that the width of fidelity resonances scale at sub-Fourier rates with respect
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to the measurement time. The sensitivity of the fidelity to an external acceleration

is also studied. An in-depth discussion of fidelity of a quantum kicked accelerator is

presented in Chapter 5.

It is shown that by creating an initial external atomic state which is a superposi-

tion of two momentum states and exposing it to a periodic potential, a non-dissipative

transport of atoms known as a quantum ratchet can be produced. A purely quan-

tum treatment of the ratchet effect at resonance and the experimental findings are

presented in Chapter 6. The quantum ratchet effect is studied in a very general away

and it is shown that it can be described by a classical treatment that depends on

a single variable which encapsulates all of the important experimental parameters.

The mean momentum is found to change direction without altering the underlying

symmetry center of the system.

In Chapter 7 a brief review of ε−classical theory to explain quantum accelerator

modes is presented. The decay of quantum accelerator modes is also discussed. Fi-

nally, the summary of the work in this thesis has been drawn and some of the future

experiments are laid out in Chapter 8.
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CHAPTER 2

Laser cooling and trapping

2.1 Preliminary concepts

The interaction of atoms with the light field of a laser can cause a force on atoms due

to the scattering of photons. The average force is defined as the expectation value of

the quantum mechanical force operator,

F̂ = −∇Ĥ. (2.1)

Where Ĥ = Ĥ0 + Ĥ ′(t) is the total Hamiltonian of the system with Ĥ0, the field-free

time independent Hamiltonian and Ĥ ′(t), the time dependent interaction Hamilto-

nian. The expectation value of F̂ is given by,

〈F̂ 〉 = Tr(ρ̂F̂ ). (2.2)

Where ρ̂ is the density matrix and its time evolution is given by,

dρ̂

dt
= − i

~
[Ĥ, ρ̂]. (2.3)

Here the operator Ĥ0 has eigenvalues En = ~ωn and eigenfunctions φn(~r). Also the

eigenfunctions are linearly independent forming a complete set. In order to calculate

the force on the atoms by the laser field, a good starting point is the solution of the

time dependent Schrödinger equation,

Ĥψ(~r, t) = i~
∂ψ(~r, t)

∂t
, (2.4)

where the wavefunction ψ(~r, t) can be expanded in terms of φn(~r) as

Ĥ(t)ψ(~r, t) = [Ĥ0 + Ĥ ′(t)]
∑

k

ck(t)φk(~r) (2.5)
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Multiplying by φ∗j(~r) after applying Eq. (2.5) to Eq. (2.4) and integrating over spatial

coordinates ~r one gets,

i~
dcj(t)

dt
= cj(t)Ej +

∑

k

ck(t)Ĥ
′
jk(t), (2.6)

where Ĥ ′
jk(t) = 〈φj|Ĥ ′(t)|φk〉. When considering a simple two state atom the problem

is known as the Rabi two-level problem [34] and has just two coupled differential

equations

i~
dcg(t)

dt
= cg(t)(Eg + Ĥ ′

gg) + ce(t)Ĥ
′
ge(t), (2.7)

and

i~
dce(t)

dt
= ce(t)(Ee + Ĥ ′

ee) + cg(t)Ĥ
′
eg(t). (2.8)

The subscripts g and e refer to ground and excited states respectively and Ĥ ′
ge = Ĥ ′∗

eg.

The interaction term is given by Ĥ ′
ge(t) = −~µ · ~E(~r, t) [35] . Here ~E(~r, t) is the

electric field and ~µ = q〈e|~r|g〉 is the induced dipole moment of the atom, where q is the

electronic charge, and ~r is the position. Also due to the odd parity of Ĥ ′, only opposite

parity atomic states can couple through the dipole interaction (Ĥ ′
ee(t) = Ĥ ′

gg(t) = 0)

giving the final form of the Hamiltonian matrix as,

Ĥ =




0 −~µ · ~E∗(~r, t)

−~µ · ~E(~r, t) ~ωe


 . (2.9)

Using Eq. (2.9) in Eq. (2.3) one can now calculate the time evolution of the density

matrix which becomes



ρ̇gg ρ̇∗eg

ρ̇eg ρ̇ee


 = i




Ω∗(~r, t)ρeg − Ω(~r, t)ρ∗eg ωeρ
∗
eg − Ω∗(~r, t)u

−ωeρeg + Ω(~r, t)u −Ω∗(~r, t)ρeg + Ω(~r, t)ρ∗eg


 . (2.10)

Where Ω(~r, t) = ~µ · ~E(~r, t)/~ is the Rabi frequency and u = ρgg−ρee is the population

difference. For a closed two level system, the total population is conserved i.e., ρee +

ρgg = 1, and ρeg = ρ∗ge. Then the optical Bloch equations can be written as [36]

dρeg(t)

dt
= −γ

2
ρeg − iωeρeg + iΩ(~r, t)u (2.11)
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and

du

dt
= γ(1− u) + i

(
Ω∗(~r, t)ρeg − Ω(~r, t)ρ∗eg

)
. (2.12)

Where the spontaneous emission rate is γ =
ω3

` µ2

3πε0~c3 , with ω` the laser frequency.

The first term in the equations is introduced to account for the effect of spontaneous

emission in the evolution of the density matrix. Let us write ρeg = σege
−iω`t and

~E(~r, t) = ~E(~r) cos(ω`t) then Eq. (2.11) and Eq. (2.12) reduce to

dσeg

dt
= −(γ/2− iδ)σeg +

iuΩ∗(~r)
2

(2.13)

and

du

dt
= γ(1− u) + i

(
Ω∗(~r)σeg − Ω(~r)σ∗eg

)
. (2.14)

Where the rotating wave approximation is used (we ignore the terms with high fre-

quencies (2ω`) because they average to zero) and δ = ω` − ωe is the laser frequency

detuning from the atomic transition. The steady state solutions of Eq. (2.13) and

Eq. (2.14) are

σeg =
2Ω

(−δ + iγ
2

)

γ2

[
1 +

(
2δ
γ

)2

+ 2Ω2

γ2

] (2.15)

and

u =
1 +

(
2δ
γ

)2

[
1 +

(
2δ
γ

)2

+ 4Ω2

γ2

] (2.16)

where Ω = ~µ· ~E(~r)/~ is the Rabi frequency. Using the conservation of total population,

we can explicitly calculate ρgg and ρee and thus the force operator. For a special

case, where electric field is produced by a traveling wave propagating in z−direction,

E(z) = E0 cos(kz − ω`t), the force operator can be written as

F̂ =




0 µ∂E∗(z)
∂z

µ∂E(z)
∂z

0


 . (2.17)

Now Eq. (2.2) can be rewritten as,

〈F̂ 〉 = Tr(ρ̂F̂ ) = µ
∂E

∂z
σ∗ege

iω`t + µ
∂E∗

∂z
σege

−iω`t, (2.18)
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after substituting Eq. (2.15) in Eq. (2.18), the force on a stationary atom is

F =
~kγs

2

[
1 +

(
2δ
γ

)2

+ s

] , (2.19)

where s = 2Ω2

γ2 , is the saturation parameter. It is also defined as s = I/Is, where

I and Is = πhc
3λ3τ

, and τ the upper state life time, are the laser light intensity and

saturation intensity respectively. Now we can extend this result to an atom moving

with velocity v. An atom moving with velocity v will see a Doppler shift of ±kv in

the laser frequency. Where the plus (minus) sign refers to an atom moving in the

opposite (same) direction to the laser beam. Thus an atom sees the laser frequency

detuned by δ ± kv and the force on a moving atom is given by

F = ± ~kγs

2

[
1 +

(
2(δ∓kv)

γ

)2

+ s

] . (2.20)

Where the plus (minus) refers to the force experienced by an atom moving along

(opposite) the direction of light field. Let us consider the case of an atom interacting

with two counter propagating beams in z−direction, then the total force on an atom

will be

F =
~kγs

2

[
1 +

(
2(δ−kv)

γ

)2

+ s

] − ~kγs

2

[
1 +

(
2(δ+kv)

γ

)2

+ s

] . (2.21)

In the limit of Doppler shift small compared to δ, the above equation results in a

velocity dependent force F = −βv, where β is a damping coefficient given by

β =
8~k2sδ

γ

[(
1 +

(
2δ
γ

)2

+ s

)]2 . (2.22)

This equation can be interpreted as follows: With a laser light frequency detuned

below the atomic resonant frequency i.e., δ < 0, atoms traveling towards the laser

beam see the light Doppler shifted closer to resonance where as atoms moving in the

same direction to that of laser beam see the light Doppler shifted further away from
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the resonance. Thus atoms scatter more photons from the beam counter propagating

to their velocity resulting in a decreasing velocity. This is a damping mechanism

called optical molasses. By using three pairs of counter propagating beams in three

orthogonal directions the atoms will feel a damping force in three dimensions no

matter what the direction of the atom’s motion. Note that this is a velocity dependent

force and is therefore non-conservative. This force from the counter propagating laser

beams with a frequency detuned below the atomic resonant frequency is one of the

basic tools of laser cooling. The experimental implementation of this theory to cool

atoms was first done by Chu and co-worker [37].

2.2 Limits of laser cooling

With a purely damping force as described in the previous section, one may think that

the atomic velocity can be reduced without any limitations. However there is a lowest

temperature that can be obtained in an optical molasses because of recoil heating.

Due to the random nature of the photon scattering process, this causes a diffusion

of atoms in momentum space and atoms are heated. A steady state is reached when

the molasses cooling rate equal the recoil heating rate. This determines the limiting

temperature called the Doppler temperature, TD, which is given by

TD =
~γ
2kB

, (2.23)

where kB is the Boltzman constant and γ is the natural line width. For 87Rb the

Doppler temperature is 146µK. However, surprisingly, in one of the early experiments

[38], a lower temperature than the Doppler temperature was observed. W. Phillips

and co-workers revealed that the multiple levels that were not considered in the simple

two level treatment were playing a role to produce this sub-Doppler cooling [39, 40].

The theory of this cooling, which is also known as the polarization gradient cooling

since the origin of the cooling is the gradient in polarization, was then developed by
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Cohen Tanoudji [41]. The next limit to the laser cooling temperature is determined

by the energy associated with a single photon recoil, Er = ~2k2

2m
. The limit of the

temperature by this process is.

Tr =
~2k2

mkB

. (2.24)

For 87Rb, the recoil limit has a value of 360nK.

2.3 Magneto-Optical Trap

Magneto-optical trapping is the most popular approach for trapping neutral atoms

and employs both optical and magnetic fields. It was first demonstrated in 1987 [21].

The operation of a magneto-optical trap (MOT) depends on both an inhomogeneous

magnetic field and an appropriate arrangement of near-resonant laser beams. The

MOT is a very robust trap because it neither depends on precise balance nor high

degrees of polarization of the counterpropagating laser beams. In order to understand

the operation of the MOT, let us consider an atomic transition with a simple scheme

Jg = 0 → Je = 1 subjected to a linearly inhomogeneous magnetic field B = B(z) =

B0z. This magnetic field splits the excited state into three Zeeman components

Me = −1, 0, and +1 as shown in Fig. 2.1. Adding two counterpropagating laser

beams of opposite circular polarization, each detuned below the zero field atomic

transition completes the requirement to create a MOT.

Because of the Zeeman shift for B > 0, the excited states Me = +1 is shifted up

and Me = −1 is shifted down. The shift of Me = ±1 is reversed for B < 0. Thus

at a position z′ in Fig. 2.1, the magnetic field tunes the ∆M = −1 transition closer

to the resonance and the ∆M = +1 transition further away from the transition. If

the polarization of the laser beam incident from the right is chosen to be σ− and

correspondingly σ+ for the beam incident from left, then the atoms scatter more light

from the σ− beam than from the σ+ beam. Thus the atoms are driven towards the

center of the trap where the magnetic field is zero. On the other side of the center
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Figure 2.1: Arrangement for a MOT. Three Zeeman components of the excited state

of atoms in the Jg = 0 → Je = 1 schemes are represented by Me = −1, 0, and +1.

Two oppositely circular polarized beams are incident from left (σ+) and right (σ−).

At z = z′, atoms are closer to resonance with the σ− beam than with the σ+ beam,

and are therefore driven toward the center of the trap.
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of the trap, the magnetic field tunes the ∆M = +1 transition closer to the resonance

hence the atoms scatter more light from the σ+ beam driving the atoms towards

the center of the trap. In the optical molasses, the damping force due to Doppler

effect operates in the velocity space whereas in this situation it operates in position

space. Thus by using the laser light with a frequency detuned below the resonance in

conjuction with the B-field gradient, compression and cooling of the atoms is obtained

simultaneously. A 3D extension of a MOT scheme can be implemented by using three

pairs of counterpropagating laser beams in three orthogonal directions. The detuning

of each laser beam in the presence of the magnetic field is given by

δ± = δ ∓ ~k.~v ± µ′B/~. (2.25)

Where the effective magnetic moment is µ′ = µB(geMe − ggMg), with µB the Bohr

magneton and g the Lande
′
g-factor. Thus the total force on the atom is

F± = ±~
~kγ

2

s0

1 + s0 + (2δ±/γ)2)
, (2.26)

where s0 = 2|Ω|2/γ2 = I/Is.

2.4 Evaporative cooling

In order to observe the BEC transition, the phase space densities, ρ = nλ3
dB, should

be greater than 2.612 [42], where n is the density and λdB is the thermal de Broglie

wavelength of the atom [33]. For ordinary gases at room temperature and pressure,

ρ ∼ 10−6 and for an atomic beam ρ ∼ 10−10. In the early days of laser cooling

there was a great hope that this technique could be used to cool the atoms with

out any limitations. However due to the limitation in temperature imposed by recoil

heating as described in the previous section, the maximum achievable phase space

density with laser cooling is about 10−5−10−4. With laser cooling, one can obtain

µK temperatures with very little loss of atoms, thus increasing the density of the
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atomic gas. However the increase in density leads to an increase in the collision rate

between atoms with one in the excited state (S+P collision). Since this collision is

inelastic, the energy exchange leads to a heating effect on the atoms. Therefore near-

resonant light should be avoided in order to achieve BEC, and thus laser cooling alone

is not the most likely route for achieving BEC. Physicists soon made a breakthrough

on overcoming this problem realizing that evaporative cooling would be a way to

increase the phase space density further [43–45]. Harald Hess [43] originally proposed

this idea for atomic hydrogen. His idea was based on the preferential removal of

atoms with energy higher than the average from a trap, followed by rethermalization

of the remaining atoms by elastic collisions. Since both the temperature and volume

decrease, the phase space density can increase. In 1994 this idea was extended to

alkali atoms by combining evaporative cooling with laser cooling [22].

For evaporative cooling of atoms, magnetic fields or far-off-resonant optical fields

have been used. The later has been used in Summy’s lab and will be described here.

A far off-resonant trap (FORT) is based on the fact that an off-resonant laser creates

a potential which is attractive or repulsive depending on whether it is red or blue

detuned from an atomic transitions. The depth of the trap depends approximately on

the laser intensity I divided by the detuning δ` (U ≈ ~I/4δ`) whereas the spontaneous

scattering rate depends on intensity divided by the square of the detuning (γ ≈
ΓI/4δ2

` , where Γ is the spontaneous-emission rate of atom) [46]. Thus the advantage

of a large detuning is that the same potential well depth can be achieved with a

reduced scatter rate.

Several models for the evaporating cooling process have been developed [47–51].

A simple but instructive model is due to Davis et al. [49] and will be reviewed here.

In this model, the trap depth is lowered in one single step to a finite energy ηkBT , the

atoms then thermalize by collisions and the effect on the thermodynamical quantities

such as the volume, the density, and the temperature are finally calculated. The
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fraction of atoms remaining in the trap after cooling is given by ν = N ′/N and

the decrease in temperature of the remaining atoms due to removal of hot atoms is

measured by a quantity, γ (not the natural linewidth), as

γ =
log(T ′/T )

log ν
. (2.27)

Here the primed quantities refer to values after the cooling process. Thus we have the

scaling of important thermodynamical quantities, N ′ = Nν, T ′ = Tνγ, and V ′ = V νγξ

[36], where the quantity ξ characterizes the type of potential. For example, for a linear

potential like a spherical quadrupole trap, ξ = 3 and for a harmonic potential as in

an optical trap, ξ = 3/2. The phase space density scales as ρ′ = ρν1−γ(ξ+3/2) and the

collision rate scales as k′ = k1−γ(ξ−1/2). Thus with the help of the parameters such as

ξ, ν, and γ for a given value of η, the evolution of all thermodynamical quantities can

be determined. The density of states for the atoms in a trapping potential U(x, y, z)

is given by [52],

D(E) =
2π(2M)3/2

~3

∫

V

√
E − U(x, y, z)d3r (2.28)

and the fraction of atoms in the trap after lowering the trap depth to ηkBT is

ν =
1

N

∫ ηkBT

0

D(E)e−(E−µ)/kBT dE, (2.29)

where µ is the chemical potential and the occupancy number is given by the Maxwell-

Boltzman distribution. Defining the reduced energy as ε = E/kBT and the reduced

density of states as ∆(ε) = εξ+1/2

Γ(ξ+3/2)
, where Γ(x) is a gamma function, Eq. (2.29) can

be written as [36],

ν =

∫ η

0

∆(ε)e−εdε. (2.30)

The total energy of the atoms after truncation is α(η)NkBT where

α(η) =

∫ η

0

ε∆(ε)e−εdε. (2.31)

Therefore the average total energy per atom in units of kBT is α(η)/ν(η). When

η →∞, this quantity is α(∞)/ν(∞) = (3/2 + ξ)/1 and the ratio of the temperature
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is given by,

T ′

T
=

α(η)/ν(η)

α(∞)/ν(∞)
. (2.32)

Thus the quantity γ in Eq. (2.27) can be written as

γ =
log

[
α(η)

ν(η)α(∞)

]

log[ν(η)]
. (2.33)

This quantity measures the excess energy above average energy that has been carried

away by the evaporated atoms. For a specific type of potential one can determine the

value of γ. For example, for a harmonic trap: ξ = 3/2,

ν(η) =
1

Γ(3)

∫ η

0

ε2e−εdε = 1− 2 + 2η + η2

2eη
,

and

α(η) =
1

Γ(3)

∫ η

0

ε3e−εdε = 3− 6 + 6η + 3η2 + η3

2eη
.

Where Γ(n) = (n− 1)! and
∫

u(x)v(x)dx = u
∫

vdx− ∫
u′(

∫
vdx)dx have been used.

Here it can be seen that for larger ξ, higher phase space density is achieved due to

the faster shrinking of the volume with decreasing temperature (T ∝ V ξ). In addi-

tion, this increases the rate of elastic collisions and consequently the rethermalization

process, thus speeding up the cooling process.
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CHAPTER 3

The Atom-Optics Quantum Delta Kicked Rotor and Accelerator

Understanding the nature of the crossover between classical and quantum behavior

is one of the most important unresolved problems in physics. One place where the

stark difference between the two paradigms becomes very clear is in classical non-

linear systems. Classically, such a system can exhibit chaos in which it is effectively

impossible to predict its long term evolution, while in contrast because of the linearity

of the Schrödinger equation, an equivalent quantum mechanical systems is completely

deterministic. One of the systems of choice for studying this behavior is the so-called

delta-kicked rotor, typically realized with a sample of cold or ultra-cold atoms kicked

by short pulses of an optical standing wave. While theory and experiment has been

successful in elucidating some features of this and similar systems, there are still many

aspects that remain to be discovered.

Ever since the realization of the atom optics quantum kicked rotor (AOQKR)

[53,54], it has been one of the workhorses for studies of experimental quantum chaos.

It has revealed a wide variety of interesting effects including: dynamical localization

[55, 56], quantum resonances (QR) [55, 57–59], and quantum ratchets [60–67]. A

closely related system, the quantum delta kicked accelerator (QDKA), differs from the

usual QDKR by adding a linear potential in the form of an acceleration. The QDKA

has been used in studying aspects of the transition to chaos in both classical and

quantum regimes [68], and is a system in which quantum accelerator modes [69–74]

are observed. In this chapter we will discuss the classical kicked rotor system and its

quantum analog the AOQKR as well as the closely related QDKA.
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3.1 The classical δ−kicked rotor

The classical kicked rotor is defined as a particle of mass M with linear momentum

~p, constrained to move in a circle of radius R, which is exposed to a periodic constant

force referred as kicks as shown in Fig. 3.1. The effect of a kick depends sinusoidally on

the azimuthal angular displacement θ. The kicked rotor is described by a Hamiltonian

[75]

H =
J ′2

2I
+ V0 cos(θ)

∑
q

δ(t− qT ). (3.1)

Where J ′ = |~J ′| = |~R × ~p| is the angular momentum and I = MR2 is the moment

of inertia. The time-evolution of the canonically conjugate position and momentum

variables are given by Hamilton’s equations of motion

θ̇ =
∂H

∂J ′
=

J ′

I
(3.2)

J̇ ′ = −∂H

∂θ
= V0 sin(θ)

∑
q

δ(t− qT ). (3.3)

Now we evaluate the evolution over one period between t = q and t = q + 1 by

integrating Eqns. (3.2) and (3.3). This becomes

∫ (q+1)T

qT

θ̇dt = θq+1 − θq =
J ′q+1

I
T (3.4)

∫ (q+1)T

qT

J̇ ′dt = J ′q+1 − J ′q = V0 sin θq. (3.5)

Using the rescaled variables J = J ′T/I and K = TV0/I, we obtain the Chirikov-

Taylor standard map [75,76]

θq+1 = θq + Jq+1 (3.6)

Jq+1 = Jq + K sin θq. (3.7)

This map describes the dynamics of a kicked rotor by a single variable K, known

as the stochasticity parameter. A stable trajectory characterized by closed curves

dominates the phase space (θ, J ′) plot for small values of K, whereas the chaotic
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Figure 3.1: The classical δ−kicked rotor. A particle of mass M is constrained to move

on a circle of radius R and is subjected to periodic pulses of force ~F .
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Figure 3.2: Phase space plot of the classical δ−kicked rotor for different values of K.

Note that the chaotic region dominates for higher values of K.
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region dominates for large values of K as shown in Fig. 3.2. The transition from

stability to global chaos is predicted to occur for K = 0.971635 [77,78].

3.2 The quantum δ−kicked rotor

While Rydberg atoms provided the first insights into the quantum version of the

δ−kicked rotor, most of the work on this system has been reformed using atom optics.

Such a system is realized by exposing a collection of atoms to short, periodic pulses

of far-detuned optical standing wave. The quantum δ−kicked rotor can be described

by the Hamiltonian

H =
P̂ 2

2M
+ ~φd cos(GX̂)

t∑
q=0

δ(t− qT ). (3.8)

Where P̂ is the momentum, X̂ is the position, G = 2π/λG is the grating wave vector

with λG the spatial period of the standing wave. Other quantities are φd = Ω2∆t
8δL

,

the strength of the kick (phase modulation depth), t , the continuous time variable

(integer units), and q, the number of kicks with period T . Where Ω is the Rabi

frequency between the ground and excited state, ∆t is the length of a pulse and δL

is the detuning of the laser frequency from the atomic transition.

It is convenient to write the above Hamiltonian in dimensionless units. Let us

define the momentum in units of two photon recoils, ~G, i.e., p̂ = P̂ /~G, the position

in units of spatial period of the standing wave i.e., x̂ = GX̂. The scaled pulse period

is written as τ = 2πT/T1/2, where T1/2 is a characteristic time called half-Talbot time

which is defined as

T1/2 =
2πM

~G2
. (3.9)

Now the Hamiltonian in dimensionless unit can be written as

H =
p̂2

2
+ φd cos(x̂)

t∑
q=1

δ(t′ − qτ). (3.10)
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Where H = H
(~2G2/M)

and t′ = 2πt
T1/2

. Also an identity
∑

δ(Ax) = 1
A

∑
δ(x) is used.

It is convenient to write the momentum into discrete and continuous components

as p = n + β with n, the integer part and β, the fractional part also called quasi-

momentum. Since the potential is periodic with spatial period of 2π/G, only the

transitions between the momenta that differ by integer multiples of two photon recoils,

~G are allowed. The periodicity of the potential allows the connection between a

particle and the kicked rotor where the position of the particle can be folded into an

angular coordinate θ = x mod 2π. The solutions are invariant under the translation

of the wave function by one period of the potential and hence by the Bloch theorem

[10] the quasi-momentum is conserved. The dynamics of the rotor are then described

by a one-period evolution operator called the Floquet operator, given by

Û = e−iφd cos θ̂e−ip̂2 τ
2 . (3.11)

3.2.1 Quantum resonance and anti-resonance

The evolution of the wave function from one kick to immediately after the next kick

is given by the Floquet operator which is written as

F̂ = ÛkickÛfree

= e−iφd cos(x̂)e−i p̂2

2
τ (3.12)

and the wave function after t kicks is then given by

|ψ(tτ)〉 = Û t|ψ(0)〉. (3.13)

When the kicking period τ is an integer multiple of 4π, this corresponds to the Talbot

time [79, 80] defined as TT = 4πM
~G2 . In this case the free evolution operator will be

unity and the effect of all the kicks add coherently which is equivalent to a single

kick of strength tφd. This is a quantum resonance and the Floquet operator takes the

form

F̂ = Û t
kick = e−itφd cos(x̂). (3.14)
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Assuming an initial momentum state |0〉, the probability for a momentum state |n〉
to be populated in the final state after t kicks is given by

Pn = |〈n|Û t|0〉|2

= |〈n|e−itφd cos(x̂)|0〉|2

= J2
n(tφd). (3.15)

Where the Jacobi-Anger relation, eiz cos x =
∑∞

n=−∞ inJn(z)einx, is used. Then the

mean energy of the ensemble at the end of tth kick is given by

〈E〉 =
∞∑

n=−∞
n2Pn

=
∞∑

n=−∞
n2J2

n(tφd)

=
1

2
t2φ2

d. (3.16)

Which shows that for a kicked rotor starting from the zero momentum state, the

mean energy grows quadratically in time, a characteristic of the quantum resonance.

Now we consider the evolution dynamics of a kicked rotor with a kicking period

equal to the half-Talbot time T1/2 i.e., τ = 2π or any odd multiple of 2π. The wave

function after a one-period evolution can be written as

|ψ(τ = T1/2)〉 = e−iφd cos(x̂)e−i p̂2

2
τ |ψ(0)〉.

=
∞∑

n=−∞
(−i)nJn(φd)e

−iπn2

e−inx̂|ψ(0)〉

=
∞∑

n=−∞
(i)nJn(φd)e

−inx̂|ψ(0)〉

=
∞∑

n=−∞
(i)−nJ−n(φd)e

inx̂|ψ(0)〉

=
∞∑

n=−∞
(i)nJn(φd)e

inx̂|ψ(0)〉

= eiφd cos x̂|ψ(0)〉 (3.17)

24



0 2 4 6 8 10
−20

−10

0

10

20

kicks

M
o

m
e

n
tu

m

Anti−resonance

(b)

0 2 4 6 8 10
0

0.5

1

kicks

M
e

a
n

 E
n

e
rg

y (d)

0 2 4 6 8 10
−20

−10

0

10

20

kicks

M
o

m
e

n
tu

m

Resonance

(a)

0 2 4 6 8 10
0

50

100

150

200

kicks

M
e

a
n

 E
n

e
rg

y

(c)

Figure 3.3: Momentum distribution as a function of kick number at (a) quantum

resonance and (b) anti-resonance with φd = 2. A quadratic growth in mean energy

at a quantum resonance (Talbot time) and an oscillatory mean energy at an anti-

resonance (half-Talbot time) can be seen in (c) and (d) respectively.
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Where the Bessel function property, J−n(x) = (−1)nJn(x), is used. Equation (3.17)

shows that when the kicking period is an odd multiple of 2π, the phase evolution

between kicks changes the sign and results in a re-image of the grating transmission

function which is inverse to the previous one. Thus the effect is that two kicks with

a period equal to half the Talbot time cancel each other, recreating the original state

and thus the mean energy will be oscillatory. This is called quantum anti-resonance.

In general the resonance condition can be described in terms of scaled pulse period

as

τ = 2π`, (3.18)

where ` is integer and even (odd) values of ` correspond to resonance (anti-resonance).

Figure 3.3 shows a numerical simulation beginning with a zero momentum initial state

for (a) quantum resonance and (b) anti-resonance along with the quadratic growth

in mean energy with time in resonance (c) and oscillatory behavior of mean energy

at quantum anti-resonance (d).

3.3 The δ−kicked accelerator

3.3.1 The Hamiltonian

The dynamics of an atom of mass M subjected to pulses of sinusoidal potential with

temporal period, T , in the presence of an external acceleration, g′, is described by

H =
P̂ 2

2M
+ Mg′X̂ + ~φd cos(GX̂)

t∑
q=0

δ(t− qT ), (3.19)

which differs from Eq. (3.8) by an extra second term where g′ is the acceleration

of the atoms relative to the standing wave. By defining η = Mg′T
~G , a dimensionless

acceleration parameter, the Hamiltonian of a QDKA takes the form

H =
p̂2

2
+

η

τ
x̂ + φd cos(x̂)

t∑
q=1

δ(t′ − qτ). (3.20)
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In the presence of acceleration the potential is not periodic and hence the quasi-

momentum is not conserved anymore. However the spatial periodicity of the potential

and hence the conservation of quasi-momentum can be restored by writing the above

Hamiltonian in a non-accelerating frame (moving to a frame co-moving with the

acceleration).

3.3.2 Hamiltonian in the non-accelerating frame

In the non-accelerating frame, the Hamiltonian after a gauge transformation will

become

H(t′) =
1

2

(
P̂ − ηt′

τ

)2

+ φd cos(x̂)
t∑

q=1

δ(t′ − qτ) (3.21)

which is periodic in space and hence the quasi-momentum is conserved. Decomposing

p = n + β, where n and β are the integer and fractional part of the momentum p

respectively. Since the quasi-momentum β is conserved the evolution dynamics are

equivalent to that of an independent β− rotor, characterized by a particular value of

β. The one-step evolution operator becomes

Uβ(q) = e(−iφd cos θ̂)e−i τ
2 (N̂+β−ηq−η/2)

2

. (3.22)

Where θ = xmod(2π) and N̂ = −i d
dθ

is the momentum operator which gives the

integer eigenvalues n. For η = β = 0, the above expression reduces to usual kicked

rotor.
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3.3.3 ε−classical theory

We are interested in the case close to resonance such that τ = 2π` + ε with |ε| ¿ 1.

We simplify Eq. (3.22) by substituting α = β − ηq − η/2, which then becomes

Uβ(q) = e(−iφd cos θ̂)e[−i τ
2
(n+α)2]

= e(−iφd cos θ̂)e[−i 2π`+ε
2

(n2+2nα+α2)]

= e(−iφd cos θ̂)e[−iπ`n−i(2π`+ε)nα−i ε
2
n2−i τ

2
α2]

= e(−iφd cos θ̂)e[−i ε
2
n2−in(π`+τα)]

Ûβ(q) = e(−iφd cos θ̂)e[−i ε
2
N̂2−iN̂(π`+τ(β−ηq−η/2))]. (3.23)

In the third step, an identity e−iπ`n2
= e−iπ`n is used and an irrelevant phase factor

is dropped. Let us define the scaling variables Î = |ε|N̂ and k̃ = φd|ε| so that the

evolution operator takes the form

Ûβ(q) = e

(
−i k̃

|ε| cos θ̂
)
e

[
−i ε

2

(
Î
|ε|

)2−i Î
ε
(π`+τ(β−ηq−η/2))

]

= e

(
−i k̃

|ε| cos θ̂
)
e

[
− i

2|ε| sign(ε)Î2−i Î
|ε| (π`+τ(β−ηq−η/2))

]

= e

(
−i k̃

|ε| cos θ̂
)
e[−

i
|ε| Ĥβ(Î,q)]. (3.24)

Where

Ĥβ(Î , q) =
1

2
sign(ε)Î2 + Î (π` + τ(β − ηq − η/2)) . (3.25)

From the above operator, we can deduce the Hamiltonian from the general evolution

relation

Û = e(−
i
~

∫ Ĥ(t)dt). (3.26)

If |ε| is assigned the role of Planck’s constant we can write the Hamiltonian as

Ĥ =
1

2
sign(ε)Î2 + Î (π` + τ(β − ηq − η/2)) + k̃ cos(θ̂)

t∑
q=0

δ(t′ − q). (3.27)
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Let us now write Hamilton’s equations of motion usin Eq. (3.27)

İ = −∂H
∂θ

= k̃ sin(θ)
∑

q

δ(t′ − q), (3.28)

θ̇ =
∂H
∂I

= sign(ε)I + π` + τ(β − ηq − η/2). (3.29)

The above equations are now integrated from a time just before the kick q at t′ = qτ

to just before the subsequent kick q + 1 at t′ = (q + 1)τ so that the kick at q + 1 does

not contribute to the integral. Thus the integrals describe the dynamics due to a kick

which is on for infinitesimally short time ∆t(∆t → 0), followed by a period of free

evolution. The evolution dynamics will be described by a map obtained after solving

the following integrals:

∫ (q+1)τ−

qτ−
θ̇dt′ =

∫ (qτ−+∆t)

qτ−
θ̇dt′ +

∫ (q+1)τ−

qτ−+∆t

θ̇dt′

θq+1 − θq = 0 +

∫ (q+1)τ−

qτ−+∆t

[±I + π` + τ(β − ηq − η/2)]dt′

= ±Iq+1 + [π` + τ(β − ηq − η/2)]

θq+1 = θq ± [Iq+1 ± π`± τ(β − ηq − η/2)] (3.30)

and

∫ (q+1)τ−

qτ−
İdt =

∫ (qτ−+∆t)

qτ−
İdt +

∫ (q+1)τ−

qτ−+∆t

İdt

Iq+1 − Iq = k̃ sin θq + 0

Iq+1 = Iq + k̃ sin θq. (3.31)

Thus the maps become

θq+1 = θq±[Iq+1±π`±τ(β−ηq−η/2)], Iq+1 = Iq+k̃ sin θq mod (2π) (3.32)

The assumptions made in these integrals are that during the kick, which is on for

short time ∆t (δ−kick), the potential term in Hamiltonian (3.27) dominates the
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kinetic energy term (which corresponds to the Raman-Nath approximation) and in

between kicks, the potential term is zero and the motion is that of a free particle.

Furthermore the explicit time dependence of the maps (3.32) can be removed by

changing the variable Jq = Iq ± π`± τ(β − ηq − η/2). Thus the map takes the form

Jq+1 = Jq + k̃ sin θq ± τη,

θq+1 = θq ± Jq+1. (3.33)

These area-preserving maps are 2π−periodic in J and θ.
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CHAPTER 4

EXPERIMENTAL CONFIGURATION

In this chapter the detailed experimental configuration used to create a magneto-

optical trap (MOT) and A Bose-Einstein condensate (BEC) of 87Rb atoms is pre-

sented. The experimental set up was broadly divided into two optical tables namely

the “Laser table” and the “BEC optical table”. The Laser table was isolated from

the BEC optical table and the light was transported between the two using optical

fibers.

4.1 Laser table

4.1.1 MOT laser

The laser optical table consisted of optics which were used to produce light to trap

and cool the 87Rb atoms. There were two sets of lasers set up on this table. The

master laser and associated injection locked slave lasers, and the repump laser. The

latter will be described in the next section. The master laser was a grating stabilized

DL 100 Toptica laser in a temperature controlled housing. The laser operated in cw

mode and had 20mW of output power. It was frequency locked to the transition

between the 52S1/2, F = 2 ground state and the cross-over line between the 52P3/2,

F = 2 and F = 3 excited state as shown in Fig. 4.1. Since the output power from

the master laser was very low, three other home built diode lasers referred to as slave

lasers were used. Each slave laser was a 100 mW cw laser operated in a temperature

controlled housing. Following the injection locking techniques modes of the slave

lasers were identical to the mode of the master laser.
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The optical components used to produced the MOT light are shown in Fig. 4.2.

A small portion of light coming out from the master laser was taken to the optical set

up to perform saturation absorption spectroscopy, the basis of the frequency locking

technique. The collimated laser beam from the laser was initially elliptical in shape,

passing through a pair of anamorphic prisms so as to change the profile into a circular

shape. A half-wave (λ/2) plate placed immediately after the prism pair rotated the

polarization of the light so that all the light went through a polarizing beam splitter

cube (PBSC) that was placed with its rotation axis at 45o to the vertical. The

light was then sent through a Faraday rotator which rotated the polarization of light

coming from the left 45o clockwise, making it horizontally polarized. Any reflected

horizontally polarized light passing from the right through the Faraday rotator had

its plane of polarization rotated in the other direction so that the light was reflected

(eliminated) by the PBSC placed in front of the laser. Thus the master laser was

isolated from any reflected and scattered light. About 5 mW of light from the master

laser was sent to a slave laser with the help of PBSC for injection locking. In order

to monitor whether the slave frequency followed the master laser or not, some light

(∼ 200µW) was directed through a rubidium vapor cell using a partial reflector. This

light was monitored using a Thorlabs PDA 400 photodiode model. If it was possible

to see an absorption dip on the oscilloscope, the slave followed the master laser. All

the slave lasers were setup using near identical procedures. In order to realize a BEC,

precise control of the laser frequency was crucial. The following four different laser

frequencies were needed:

1. −20 MHz detuning from the F = 2 of the 52S1/2 ground state to F = 3 of the

52P3/2 excited state transitions to make the MOT (MOT light).

2. −90 MHz detuning from the F = 2 of the 52S1/2 ground state to F = 3 of the

52P3/2 excited state transitions for optical molasses cooling and loading of the

atoms into an optical trap.
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3. Exact resonant light with the F = 2 of the 52S1/2 ground state to F = 3 of the

52P3/2 excited state transition for imaging the atoms (Imaging light)

4. Light for the F = 1 of the 52S1/2 ground state to F = 2 of the 52P3/2 excited

state transitions (Repump light described in the next section).

The first three requirements were met by using several acousto-optic modulators

(AOMs) which were electronically controlled by using LabView program. The master

laser was locked at a frequency of 133.3 MHz below the MOT transition. After being

injection locked to the master laser, the light from the main slave was double passed

through an ISOMET 1205 C-2 AOM excited with an rf frequency of fAOM as shown

in Fig. 4.4. This AOM was used to change the detuning of the MOT light. Taking

the positive first order on each pass through the AOM gave a frequency for the slave

light of f = f0 +2fAOM), where f0 is master laser frequency. This light was then used

for the injection locking of the other slave lasers referred to as slave 1 and slave 2. The

advantage of using the double pass AOM was that use of different frequencies would

not cause a deflection of the beam, which was very important in the alignment. A

telescopic configuration using two lenses were used for this purpose so that the retro-

reflected first order beam from the mirror after the second lens co-propagate with the

original beam before the AOM. The light beams from slave 1 and slave 2 were sent

together through another ISOMET 1205 C-1 AOM which was driven at frequency of

80 MHz. The negative first order (f ′ = f − 80MHz) was separated into two beams

by using a PBSC and then sent to the BEC optical table by using two polarization

preserving, single mode fibers referred to as fiber 1 and fiber 2. It is worthy of note

that the coupling efficiency of the fiber depends on the shape and size of the laser

beam. Thus using two lenses in a telescopic configuration before the fiber enhanced

the coupling efficiency significantly. The final detuning achieved by the light entering
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the vacuum chamber can be found using the equation [30]

δMOT = −133.3MHz + 2fAOM − 80MHz. (4.1)

To obtain a good MOT, −20MHz detuning was normally used. This was achieved by

driving the double pass AOM at a frequency of fAOM = 96.65 MHz. The −90MHz

detuning and resonant imaging light required the double pass AOM be driven at

frequencies fAOM = 61.65 MHz and 106.65 MHz respectively.

4.1.2 Repump laser

Due to the power broadening mechanism, there is always some possibility that atoms

excited to the 52P3/2, F = 3 excited state by the MOT light can decay to the 52S1/2,

F = 1 ground state, so that without further intervention the MOT would disappear.

To prevent this and maintain a closed “cycling” transition an additional laser called

the repump laser is needed. The repump laser depopulates the F = 1, 52S1/2 state in

order to maintain the cycling transition for the MOT.

The repump laser was a grating stabilized DL 100 Toptica laser in a temperature

controlled housing which was frequency locked to the cross over line between the

52S1/2, F = 1 to 52P3/2, F = 1 and F = 2 excited state. The optical alignment of

the repump laser was similar to that of the master laser as described above and is

shown in Fig. 4.4. The laser was double passed through an ISOMET 1205 C-2 AOM

driven by an ISOMET model 301B voltage tunable rf driver. The positive first order

after double pass was sent to the BEC optical table with the MOT light beam in fiber

2. This enabled the atoms to be excited from the 52S1/2,F = 1 ground state to the

52P3/2, F = 2 excited state and thus to eventually decay to the 52S1/2, F = 2 state.

During the loading of the atoms into the optical dipole trap, the repump power had

to be reduced to optimize the loading. This was done by changing the rf power in

the AOM via a command from the controlling LabView program.

34



Figure 4.1: Energy level structure of Rubidium-87 D2 line. The transitions for MOT

light and repump light are shown.

35



Figure 4.2: Optical setup on the laser optical table showing various optical compo-

nents and lasers used to prepare the MOT light.
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Figure 4.3: Optical setup for (a) repump and (b) kicking lasers.
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4.2 BEC optical table

The heart of the experiment was located on the BEC optical table where the vacuum

chamber (discussed later) was placed. The optical setup on this table is shown in

Fig. 4.5. The light exiting from fiber 1 consisted of a MOT beam (Beam 1) and

the imaging beam. Fiber 2 contained a MOT beam (split into two by a PBSC to

form Beam 2 and Beam 3) and a repump beam. The beams were expanded to about

an inch diameter by using a combination of two lenses and were separately sent

through quarter-wave (λ/4) plates to make the light circularly polarized. For fiber 1

a small portion of the light was taken as an imaging beam using a partial reflector

and the main portion of the light was expanded and sent through a quarter-wave

plate. These three expanded MOT beams were sent into the vacuum chamber and

were retro-reflected using mirrors. These six beams were aligned to intersect at the

center of the chamber, with the MOT appearing at the intersection of the beams.

During the experiment, the imaging laser, the MOT laser, and the repump laser

were extinguished at different times. In order to facilitate this, each laser beam was

passed through a fast electronic shutter(UNIBLITZ LS2T2). These shutters were

controlled by drivers which are connected to digital voltage signals using a PCI 6713

card installed on the computer and the LabView program.

4.3 Imaging system

Figure 4.7 shows the schematic for the imaging system that was used in our lab.

A small portion of light which was resonant with the atomic transition from the

52S1/2, F = 2 ground state to the 52P3/2, F = 3 excited state exited from fiber

1 to form an imaging beam. It was then expanded to 1 cm diameter using a beam

expander and passed through a quarter-wave plate to make it circularly polarized. An

absorption imaging technique based on the resonant interaction of light with atoms
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Figure 4.4: A double pass AOM setup. The first order diffracted beam (red) from

an AOM placed in between two lenses in a telescopic configuration is retroreflected

(blue) and passed through the AOM again. The first order diffracted beam after the

second pass co-propagates with the original beam. This light was made orthogonally

polarized by sending it twice through a quarter wave plate. It should be noted that

the path of the diffracted beam in this setup does not deflect in position, a crucial

requirement in the laser cooling and trapping setup. The red and blue lines after the

AOM are intentionally drawn slightly apart (even though they really co-propagate)

to distinguish the reflected beam from original beam.
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Figure 4.5: Experimental configuration on the BEC optical table. Three MOT beams,

the repump laser beam and the imaging beam are shown.
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Figure 4.6: Schematic drawing of the vacuum system showing the six way cross and

an octagonal multi-port chamber.
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was implemented. When the cold atoms were exposed to a weak (∼ 100 nW), short

pulse (50 − 60µs) of resonant light they scattered photons and cast a shadow which

was imaged onto a high resolution CCD camera ANDOR DV437-BV. The imaging

system is described in more detailed in ref. [28]. The operating temperature and

camera shutter time were controlled electronically using the LabView program. The

camera had best performance at operating temperature of −20oC. Two inexpensive

security CCD cameras were also used to monitor the MOT in real time.

The number of atoms was calculated from the image as follows: The loss in

intensity I of a laser beam traveling in the z−direction which passes through a sample

of atoms will be given by

dI

dz
= −σnI, (4.2)

where n is the density of atoms and the scattering cross section [36] σ = ~ωγ
2Is

= 3λ2

2π
,

with ω the laser frequency, γ the natural linewidth and Is the saturation intensity.

The solution of Eq. (4.2) is I(x, y) = I ′0(x, y) exp(−σñ) where ñ is the column density

(number of atoms per unit area). The intensity I(x, y) was found by taking three

images. The first image was taken when there was no imaging light to account for

background noise which gave the background intensity Ib. The other two images

were taken with and without atoms these gave intensity I1 and I0 respectively. The

intensity profile I(x, y) is then given by

I(x, y) =
I0 − Ib

I1 − Ib

. (4.3)

The number of atoms can be calculated by integrating over the column density

N = −S

σ

∑

pixels

ln(I). (4.4)

Where S = (13µm)2 is the scaled area of a pixel for the ANDOR DV437-BV camera

and the sum is taken over all pixels.
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Figure 4.7: Schematic drawing of the imaging setup.
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4.4 Vacuum system

The vacuum system is the heart of the experiment. It is where the atoms are trapped,

BEC created and the experiments carried out. The vacuum system is shown in Fig.

4.6 and consisted of a six way cross made of stainless steel with an octagonal multi-

port chamber from MDC vacuum products attached to one of its flanges. The chamber

had four 2.0 inch diameter, antireflection coated, quartz viewports for directing the

MOT beams into the chamber, and four 1.0 inch diameter ZnSe viewports. The

ZnSe viewports with their low absorption at 10.6 µm were used for directing the high

power CO2 laser beams into the chamber for the dipole trap. A 5.0 inch diameter

quartz viewport was attached to one side of the six way cross and another to the

large opening on the orthogonal chamber. Each viewport had a conflat flange sealing

surface which enabled baking to 200oC.

One side of the six way cross provided an outlet valve to connect a turbo-molecular

pump during the initial pumping of the vacuum system . A Turbovac model # 151

C was used for this purpose. A two port generic Varian style 8 liter/s ion pump

powered by Terrenova 751 controller was connected to another side of the six way

cross to maintain a pressure of ∼ 10−10 Torr. Three SAES Getter rubidium dispenser

sources were installed in the vacuum chamber and were connected to electric feed

through terminals installed on one side of the six way cross. The remaining side of

the six way cross was sealed. The vacuum chamber was shielded from the ion pump’s

magnetic field using magnetic shields (not shown in the figure).

During the installation process, many precautions were taken to ensure cleanliness.

All parts were cleaned with methanol to remove any foreign material and gloves were

worn to prevent clean parts from contamination. A Travac-b rotary vane vacuum

pump was used as a roughing pump and then a Turbo-molecular pump, Turvac model

# 151 C, was turned on to pump the vacuum chamber to a lower pressure. A

Varian 0351 vacuum gauge was installed in order to indicate pressures in the range
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of atmospheric down to 10−4 Torr. The leakage on the system was checked by using

Helium and Argon gas, with a sudden increase in pressure while applying the gas to

a seal indicative of a leak. Any leaks were removed by tightening the bolts evenly

and carefully. The entire vacuum system was then baked in a tent with insulating

sides. Ceramic heaters powered by variacs (variable transformers) provided the heat

source for the baking process and thermocouples were attached to the various parts

of the system in order to monitor the temperature. The temperature was gradually

increased and raised to a maximum of ≈ 200oC over two days and then left to bake

for 3 days. While baking, the turbo-molecular pump was running. The temperature

was decreased gradually and the heaters turned off. A Varian Valcon Plus 55 ion

pump was turned on which after several weeks pumped the system to a pressure of

10−10 Torr.

4.5 Magnetic coil

In order to trap and cool the atoms, a suitable magnetic field gradient, in addition

to the optical field provided by the lasers was also required. The necessary magnetic

field was provided by a pair of coils (referred to as the main coils) in anti-Helmoltz

configuration (identical coils separated from each other by a distance equal to its

radius with current flowing in opposite direction). The coils had a radius of 3 inches

and consisted of 5 × 5 layers (25 turns) of copper tube with a square cross section

of external dimension of 0.125 inch and internal dimension 0.016 inch. The coil was

designed in such a way that coolant could circulate internally so that a large current

could be used in the experiments if needed. In order to trap atoms and create BEC

about a 16A current was supplied. This produced an inhomogeneous magnetic field

between the coils with a field gradient of ≈ 16G/cm and a zero field at the center

as shown in Fig.4.8. The current was supplied by a remotely programmable Lambda

ESS 45-333-2-D DC power supply which required a three phase 190-250 V, 60A AC
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Figure 4.8: Schematic drawing of the coil system. The pair of coils is placed in anti-

Helmholtz configuration to produce a zero magnetic field and an approximately linear

field gradient near the center.
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input. The power supply was reconfigured so that it was able to supply up to 400A

DC current controllable with an external 0V to 5V analog signal. Alternatively, the

current on the magnetic coils can be turned on and off by using a solid state switch

as explained in Appendix A.

Additionally, three pairs of coils were positioned on all six sides of the trapping

chamber to nullify the Earth’s magnetic field and any stray field produced by other

sources. Each coil in a pair had current flowing in the same direction and each pair

was powered by a separate DC power supply. Keeping future experiments in mind,

one more set of coils made of solid copper wire was wrapped on top of the main coils,

however they were not used for the current experiments. The resistance of the copper

tube in main coils was 2.356 mΩ/m so the total resistance of a coil was only 28 mΩ

(L = 12m). With the help of this information, the heat energy developed in the coil

can be estimated by Q = I2Rt, where Q, I, R and t are respectively heat energy,

current, resistance, and time. Thus a cooling system can be designed accordingly.

4.6 CO2 laser system

A 50 W cw laser beam at 10.6µm wavelength was used to produce a far off-resonant

trap or FORT. This beam originated from a Coherent GEM Select 50 CO2 laser pow-

ered by an Agilent 6573A DC power supply. Thermal plates made with an anodized

aluminium heat sink overlayed with thermal sensitive phosphor was used to align

and detect the beam. When these thermally sensitive phosphor plates were exposed

to infrared laser radiation, the absorbed energy raised the surface temperature and

produced corresponding thermal images. These images appeared as dark spots when

illuminated by ultraviolet light (3600Ao), with the darkness of the spot increasing

with laser power. A Macken Instruments’ Lamp Model 22-UV was used to sensitize

the plates.

Due to the high absorption coefficient of glass and quartz at 10.6µm, the usual
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Figure 4.9: CO2 beam geometry. When aligning the HeNe laser described in the text

the beam dump was removed.
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optics for the near infra-red MOT lasers could not be used. One of the materials with

the lowest absorption coefficient at this wavelength is Zinc-Selenide (ZnSe). Lenses

and viewports were made of this material. The 50W laser beam exited from the

CO2 laser and was carefully aligned and directed to the vacuum chamber as shown

in Fig. 4.9. The beam was passed through a water cooled Intra Action Corp. Model

AGM-406B1 AOM driven by Intra Action Modulator Driver Model GE-4030H which

was electronically controlled by using an analog voltage signal from the computer.

The AOM was placed as close as possible to the laser source in order to minimize

the divergence of the beam which is quite substantial due to the long wavelength.

The zeroth order AOM beam was sent to a beam dump and the first order beam

(≈ 30W) was transported into the chamber through an assembly of three lenses.

The first two lenses formed a beam expander in a telescopic configuration and were

followed by a third focussing lens of focal length 1.5 inches which was installed inside

the vacuum chamber. The beam was directed into the chamber through a 1 inch

diameter ZnSe viewport. The final spot size of the beam at the center of the chamber

was w0 = λf/(πR), where R is the radius of the beam incident on the third lens and

f is the focal length of the lens. For the loading and evaporative cooling phases, the

beam waist was set at either a large or small size respectively. In order to facilitate

this, the second lens of the beam expander was mounted on a Aerotech translation

stage Model 101SMB2-HM driven by a Soloist driver interface.

4.6.1 CO2 beam alignment with the MOT

The frequency of the CO2 light is far-off resonant from any electronic transition of the

Rb atoms making it difficult to align the FORT beam with the MOT. Compounding

the difficulty of manipulating this light is that it is invisible to the eye and very high

power. The method (trick) that was used for aligning purposes required several steps.

First, since the MOT was formed at the center of the chamber, a HeNe laser was sent
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from the other end of the chamber through the center of both ZnSe viewports in the

opposite direction to that of the CO2 laser. The HeNe laser was aligned through

the rest of the optics by using mirrors, with two pinhole apertures used to define the

beam path. Finally the CO2 beam was aligned to pass through the same apertures by

adjusting its optical components before the apertures. After this procedure the FORT

beam usually passed through the center of the ZnSe viewports and hence through the

center of the chamber where the MOT was located. In order to observe the FORT

beam, the fluorescence of the MOT was reduced by increasing the detuning of the

MOT light from resonance. The FORT beam was then turned off and on every 500

ms and the MOT was slowly moved in x, y and z directions with the help of the

three pairs of nulling coils. Due to the Stark effect changing the effective detuning of

the MOT light, the presence of the far off-resonant electric field could be seen as a

flashing of the MOT at the location of the CO2 light.

4.7 Polarization

In order to produce the magneto optical trap, the polarization configuration of the six

MOT beams was very important. Setting the beams to a circularly polarized state

was not sufficient. The four beams which propagate along the direction perpendicular

to the axis of the coils used to produce the magnetic field gradient should all have

the same circular polarization relative to the direction of propagation of the beams.

On the other hand the beams that propagate along the axis of the coil should have

opposite circular polarization to the first four beams. The σ+ and σ− polarization

configurations of the beams are determined by the direction of current on the coils.

Although in principle it is possible to set the polarization of all beams correctly with

respect to the field gradient, in practice it is much simpler to set the polarization

combinations of the six beams by switching the direction of current on the coils to

determine which sign of the magnetic field gradient makes the trap work.
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Figure 4.10: Schematic to set up the circulation polarization analyzer (a). Panel (b)

shows how to use the analyzer to make a circularly polarized laser beam.
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A circular polarization analyzer was used to make the beams circularly polarized.

The analyzer consisted of a combination of a PBSC cube, a λ/4 waveplate and a

mirror as shown in Fig. 4.10 (a). A laser beam sent from the left was reflected back

using a mirror and the beam reflected from the cube was maximized by rotating

the λ/4 waveplate. Then using the analyzer, the MOT beams directed into the

chamber were made circularly polarized with the help of “λ/4 waveplate 1”. The

reflected and transmitted beam from the cube showed the amount of light in each

type of circular polarization. Pure circular polarization was obtained by rotating the

λ/4 waveplate 1 until all the light from cube was either transmitted or reflected as

shown in Fig.4.10(b). Each of the retro-reflected MOT beams was sent through an

additional λ/4 wave plate so that the three pairs of MOT beams would have correct

σ+, σ− combinations.

4.8 Kicking Laser alignment

The kicking laser was derived from a slave diode laser which was injection locked to

the master laser from the 52S1/2, F = 2 ground state to the cross over line between

52P3/2, F = 2 and F = 3 excited state. It was thus 6.8 GHz red detuned with respect

to the atoms in the condensate which is in the 52S1/2, F = 1 state (Fig. 4.1). This

laser was transported to the BEC table using a single mode polarization preserving

fiber. On the BEC table, the light exited the fiber and was divided into two beams

using a 50-50 beam splitter cube. Each of these beams had 20 mW of power and

was separately passed through an Isomet Model 40N AOM. The first order beam

diffracted by the AOMs was directed into the vacuum chamber using the same two

view ports used for two of the MOT beams as shown in Fig. 4.11. Each beam made

53o with the vertical forming a horizontal standing wave of wavelength λ/2 sin 53o,

where λ = 780nm.

Each AOM was driven by an rf electrical signal supplied by an arbitrary waveform
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Figure 4.11: Optical setup for the kicking standing wave. Two laser beams were sent

into the chamber making 53o to the vertical thus forming a horizontal standing wave.
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generator HP8770A which passed through a 1W amplifier. This rf signal generates

the acoustic wave in the AOM and thus the first order beam diffracted by the AOM is

Doppler shifted by an amount equal to the frequency of the acoustic wave. The same

order from both AOMs was used for each kicking beam. One of the AOMs was driven

by a function generator HP8770A at a fixed 40 MHz frequency while the other was

driven at a variable frequency by another HP8770A which was phase-locked to the first

one. Each of these function generators was programmed using a GPIB interface card

allowing for control of all rf waveform properties directly from a LabView program. By

adjusting the variable part of the frequency, ωD = 2π
T1/2

β + 1
2
Gat, where G = 4π

λ
sin 53o

is the grating vector of the standing wave and T1/2 is the half Talbot time (discussed

later), the initial (quasi) momentum β, and the acceleration a, of the standing wave

relative to the condensate could be controlled.

4.9 Bose-Einstein condensation of 87Rb

The atomic gas BEC can be regarded as a macroscopic matter wave that is an ideal

testing ground for the investigation of quantum many-body physics. BEC can also be

regarded as an atom laser since it provides a phase-coherent intense atomic source.

With the advent of laser cooling and trapping as well as the evaporative technique, al-

kali atoms became the best candidates for realizing BEC since their optical transitions

can be addressed by available lasers. They also have a favorable internal energy-level

structure for cooling to a very low temperature.

In order to create a BEC in our lab, atomic vapor of 87Rb is used which can be

cooled and trapped by using inexpensive diode lasers at a wavelength of 780nm. We

employed all-optical trapping method pioneered by M. Chapman’s group [25, 26] at

the Georgia Institute of Technology to create BEC. We started by creating a MOT

of about 30 million atoms and then a high power single beam from CO2 laser was

aligned with the MOT using a technique described in Chapter 4.6.1. A focused CO2
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laser beam at a wavelength of 10.6µm which is far detuned from the atomic transition

forms a far off-resonant trap (FORT). The effect of this laser beam on the atoms can

be considered as that of a static electric field. This electric field induces a dipole

moment on the atoms which then interacts with the electric field of the radiation.

Since the laser frequency is far below the atomic transition (red detuned), it creates

an attractive interaction potential given by

U = −1

2
αgE

2. (4.5)

Where αg(= 5.3 × 10−39m2C/V for 87Rb) is the ground state polarizabity of atoms.

For a gaussian beam propagating in the z−direction, the electric field E(x, y, z) is

given by

E(x, y) = E0

exp
[

−(x2+y2)

w2
0(1+(z/zR)2)

]
√

1 + (z/zR)2
. (4.6)

Where w0 is the beam waist size at the focus and zR = πw2
0/λ is the Rayleigh range

which gives the axial extent of the trap. Taking z << zR, the trapping potential can

be approximated as a harmonic potential given by

U ≈ −1

2
αgE

2
0

(
1− 2x2

w2
0

− 2y2

w2
0

− z2

z2
R

)

= −U0 +
1

2

[
Kxx

2 + Kyy
2 + Kzz

2
]
. (4.7)

Where K is a positive constant. The trapping frequencies defined as w =
√

K/M in

x, y, and z directions are given by

wx = wy =
√

2αgE2
0/(Mw2

0)

wz =
√

αgE2
0/(Mz2

R).

The Output of the CO2 laser was passed through an AOM driven by a 40 MHz

RF signal. The first order diffracted beam from the AOM was overlapped with the

MOT for about 20 seconds in order to load the atoms in the FORT trap. Then

the power on the repump MOT laser beam, which was originally about 1.8 mW
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(intensity ≈ 1W/m2), was reduced by a factor of at least 10 to make a temporal dark

SPOT [82,83]. This is a very crucial step for effective loading, where the atoms start

entering into a state that is “dark” to the cooling light. The resultant decrease in the

recoil heating and the excited state collisions lead to an increase in the phase space

density. The detuning of the cooling light was then changed to -90 MHz so that even

after the consideration of the ac-stark shift between the ground and the excited states

which reduces their energy difference, the atoms still see the MOT beams negatively

detuned. About 100 ms later, the MOT beams and repump beam were extinguished

by using fast electronic shutters and the magnetic field was turned off by reducing

the current on the coils to zero. About 2 millions atoms were loaded in the trap.

During the loading, the FORT beam had a waist of about 100µm so as to optimize

the loading, it was then compressed tightly to about 25µm to increase the elastic

collision rate and hence the efficiency of the evaporative cooling. This was done by

using the beam expander geometry discussed in Chapter 4.6.

The next step was to implement a two-stage evaporative cooling (EVC) process.

The first stage was an exponential ramp down of the CO2 laser power from 35 W

to about 2W with a time constant of 2 seconds. This was done by reducing the

RF power driving the CO2 AOM. The second stage involved the reduction of laser

power in a series of tiny steps followed by a times to allow rethermalization. The

power in the second stage was reduced to about 50mW over 5s, to produce a pure

condensate of about 40,000 atoms in the 5S1/2, F = 1. In order to image the BEC,

a destructive absorption method was used. After being released from the trap, the

repump light was turned on so that the the atoms on the condensate were pumped

5S1/2, F = 2 state. After 9 ms of expansion, the BEC was then exposed to a 100ns

pulse of imaging light which was resonant with the transition from the 5S1/2, F = 2

to the 5P3/2, F = 3 state. Due to absorption, a shadow of the BEC was observed on

the CCD camera (signal). Taking another image without the condensate (which was
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referred as reference image) and dividing with the signal gave the final view of the

BEC.
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CHAPTER 5

Fidelity

The study of non-linear systems is important to many branches of science. Conse-

quently the chaotic behavior that they can exhibit in the classical regime has been

extensively studied and used [75,76,84]. A particularly interesting aspect of such sys-

tems is that due to the linearity of the Schrödinger equation, their quantum and clas-

sical dynamics can be dramatically different. For this reason the so called δ−kicked

rotor and its quantum analog the quantum δ−kicked rotor (QDKR) have received

much attention. The latter can be experimentally realized by subjecting a sample of

cold atoms to short pulses of an off-resonant standing wave of laser light [53]. The

QDKR has proved to be a paradigmatic model to study several important phenom-

ena including quantum resonances (QR) [55, 57–59], dynamical localization [55, 56],

and quantum ratchets [60–66]. A closely related system, the quantum delta kicked

accelerator (QDKA), differs from the usual QDKR by adding a linear potential in

the form of an acceleration. The QDKA has been used in studying aspects of the

transition to chaos in both classical and quantum regimes [68], and is a system in

which quantum accelerator modes [69–74] are observed.

One of the common themes in the experiments mentioned above is that the quan-

tum evolution is typically measured indirectly through observations of the momentum

distribution. However recently it has become possible to study the coherent evolution

of a superposition of state vectors directly by examining the overlap of the atomic

state with a reference state. This quantity is termed “fidelity”. It has garnered consid-

erable interest as an alternative way of studying coherent evolution in the context of
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quantum-classical correspondence [85, 86] and quantum information processing [87].

It can be shown that the width of a pulse period fidelity resonance of the QDKR

exhibits sub-Fourier scaling [88, 89], where the width of the resonance scales as the

inverse cube of the number of applied pulses. Because of this sensitivity to the pulse

period, the fidelity technique was proposed as a means for improving the precision

of frequency measurements [89]. Although subsequent work has shown possible lim-

itations with this approach [90], there are still parameter regimes where the fidelity

may be useful for precision measurements. In this chapter both theoretical and ex-

perimental aspects of fidelity measurements are discussed for the QDKR and the

QDKA.

5.1 Fidelity of a quantum δ−kicked rotor

The theory and mathematical details of fidelity in the case of the quantum δ−kicked

rotor are presented in references [31, 88, 89]. In this section we give a brief review of

the theory as well as experimental and numerical simulation results.

The dynamics of the QDKR can be described by a Hamiltonian (3.10) which in

dimensionless units is:

Ĥ =
p̂2

2
+ φd cos(x̂)

t∑
q=1

δ(t′ − qτ). (5.1)

We start from the evolution of an initial state |ψ(0)〉 due to t kicks at a period close

to the Talbot time, i.e., τ = 4π + ε, which is given by

|ψ(t′ = tτ)〉 = Û t|ψ(0)〉. (5.2)

Where Û , the one-period evolution operator, is given by

Û = e(−ip̂2τ/2)e−iφd cos(x̂). (5.3)

As noted previously, at quantum resonance the free evolution term e(−ip̂2τ/2) = 1

so the kicks add constructively such that several kicks behave like a single kick of
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strength equal to the sum of the individual kicks. McDowall et al. [88] proposed a

scheme for measuring the fidelity of a QDKR by the application of a tailored pulse

at the end of a rotor pulse sequence. The fidelity is then defined as

F = |〈ψ(0)|ÛRÛ t|ψ(0)〉|2, (5.4)

where ÛR = e[itφd cos(x̂)] is the tailored pulse, shifted in phase by π (that is the potential

is displaced by λG/2) and carrying a strength of tφd. This is referred to as a “reversal

pulse”. A perturbative treatment near the Talbot time, τ = 4π + ε, where (ε ¿ 1)

showed that the fidelity is given by [88]

F (ε, β = 0, η = 0) ' J2
0

(
1

12
t3φ2

dε

)
, (5.5)

where J` is the Bessel function of the first kind. Thus the fidelity width in ε scales as

1/(t3φ2
d), displaying a sub-Fourier dependence on the measurement time, expressed

in units of kick number. In a similar way, we investigated the effect of acceleration

on fidelity at Talbot time. The derivations of the theory are detailed in [31]. For a

perturbation only due to acceleration close to η = 0, this leads to an expression for

the fidelity which is

F (η, β = 0, ε = 0) ' J2
0

(
4π

3
t3φdη

)
. (5.6)

This shows that the width of the fidelity peak centered at zero acceleration (η = 0)

drops as 1/t3, which is again sub-Fourier. With a similar approach, the fidelity as a

function of the initial momentum, β, near β = 0 is [88]

F (β, η = 0, ε = 0) ' J2
0 [2πφdt(t + 1)β] . (5.7)

.

5.1.1 Experimental configuration and results

Our experiments to investigate the fidelity of a kicked rotor were performed by cre-

ating a BEC of about 30,000 87Rb in the 5S1/2, F = 1, mF = 0 level. The creation of
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the mF = 0 Zeeman sublevel BEC was done by keeping the magnetic field on during

evaporative cooling. Only atoms in the mF = 0 level, which are insensitive to the

magnetic field, undergo a stable evaporation and the pure condensate in the mF = 0

level is produced.

Approximately 5 ms after being released from the trap, the condensate was ex-

posed to a pulsed horizontal standing wave as shown in Fig. 4.11. This was formed

by two laser beams of wavelength λ = 780 nm, detuned 6.8GHz to the red of the

atomic transition. The direction of each beam was aligned at 52o to the vertical.

With these parameters the primary QR (half-Talbot time) occurred at multiples of

53.25± 0.05 µs. Each laser beam passed through an acousto-optic modulator driven

by an arbitrary waveform generator. This enabled control of the phase, intensity,

pulse length, and the relative frequency between the kicking beams.

The kicking pulse sequence used in these experiments is shown in Fig. 5.1. The

atoms were exposed to a set of t periodic pulses (forward pulses) each of length 0.8 µs

and kicking strength φd = 0.6 followed by the reversal pulse with a strength tφd. The

reversal pulse was obtained by displacing the standing wave by λG/2. We varied the

intensity rather than the pulse length to change the kicking strength φd. This was

done by adjusting the amplitudes of the RF waveforms driving the kicking pulses.

This ensured that the experiments were always performed in the Raman-Nath regime

(the distance an atom travels during the pulse is much smaller than the spatial period

of the potential). Adding two counterpropagating waves differing in frequency by ∆f

resulted in a standing wave that moved with a velocity v = 2π∆f/G. Since the

quasi-momentum β of the BEC relative to the standing wave is proportional to v,

changing ∆f enabled the value of β and η to be systematically controlled. Finally the

kicked atoms were absorption imaged in a time-of-flight experiment. A time-of-flight

image of a kicking sequence on resonance is shown in Fig. 5.2.

Experimentally the fidelity was defined as F = p0/
∑

n pn where pn is the number
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Figure 5.1: The schematic of the pulse sequence used in the fidelity experiment. A

sequence of t rotor pulses each of strength φd was followed by a π−phase shifted

reversal pulse of strength tφd.
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Figure 5.2: Horizontal stack of the momentum distributions due to a sequence of

8 kicks of strength φd=0.6 with a pulse period equal to the Talbot time, 106.5µs,

followed by a π−phase shifted reverse kick of strength 8φd.
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Figure 5.3: Pulse period scans comparing fidelity and mean energy. (a) Shows the

momentum distributions from a fidelity experiment around the Talbot time. Each

image was due to 5 kicks with φd = 0.6 followed by a π−phase shifted reversal kick of

strength 5φd. In (b) The experiment consisted of 5 kicked rotor pulses (no reversal).

Panel (c) shows the fidelity (circles) and mean energy (triangles) derived from the data

in (a) and (b). Please see the main text for a description of how these quantities are

determined. The results of numerical simulations of the experiment for a condensate

with an initial momentum width of 0.06~G are also plotted for fidelity (blue dashed

line) and for mean energy (red solid line). The offset and amplitude of the simulated

fidelity were adjusted to account for the experimentally imperfect reversal phase.
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Figure 5.4: The plot of pulse period fidelity resonance width (FWHM) (circles) and

the mean energy width (FWHM) (triangles) as a function of (a) scaled kick number

and (b) scaled kick strength. In (a) the data are for 4 to 9 kicks in units of width that

are normalized to the 4th kick. In (b) the kick strength φ̃d is scaled to the strength φd

of the first data point. The lines are the linear fit to the data. Error bars in (a) are

found by taking standard deviation from three sets of experiment and in (b) are 1σ

of a Gaussian fit to the distribution. Stars are the data from numerical simulations

for an initial state with an initial momentum width of 0.06~G.
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of atoms in the nth momentum state. Thus the fidelity is the fraction of atoms which

return to the initial momentum state. The fidelity (blue circles) and mean energy

(red triangles) due to 5 kicks with φd = 0.6 are plotted as a function of pulse period

in Fig. 5.3 (c). The results of the numerical simulations of the experiment for a BEC

with an initial momentum width of 0.06~G are also plotted in the same figure, where

the red solid line is the mean energy and the blue dashed line corresponds to the

fidelity. It can be seen that even for a few kicks, the fidelity resonance width is much

narrower than that of mean energy. The respective time-of-flight images for fidelity

and mean energy are shown in Fig. 5.3 (a) and (b).

In order to investigate the scaling of the resonance width with kick number, a scan

in pulse period around the Talbot time was performed for each kick. To facilitate

the analysis of the data, all of the resonance widths, δε, were scaled to that of a

reference kick number of t = 4. That is a scaled fidelity width ∆ε = δε/δεt=4 was

calculated for each scaled pulse number ts = t/4. From Eq. (5.5) it is expected

that log ∆ε = −3 log ts. The scaled resonance width (FWHM) of fidelity (circles) and

mean energy (triangles) as a function of the scaled kick number on a log scale are

plotted in Fig. 5.4 (a). A linear fit to the data gives a slope of −2.73± 0.13, which is

in reasonable agreement (within an experimental error) with the predicted value of

-3 [89]. In a similar way the mean energy width (FWHM) ∆〈E〉 was scaled to that

of the fourth kick. On the log scale, the width gets narrower with the pulse number

with a slope of −1.93 ± 0.21 as shown in Fig. 5.4 (a), in agreement with previous

results [57,108]. In Fig. 5.4 (b), the scaled fidelity width and mean energy width are

plotted as a function of kick strength φ̃d scaled to the φd of the first data point. It

was found that the fidelity width changes with φd with a slope of −1.96± 0.30, close

to the predicted value of −2 and the mean energy width decreases with a slope of

−0.88± 0.24 close to the theoretical value which is −1.

From Eq. (5.7), the fidelity width in β is expected to change as 1/[t(t + 1)]
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Figure 5.5: Plot of fidelity width in β around β = 0 as a function of kick number

t(t + 1)s = t(t + 1)/20 scaled to the fourth kick. A straight line is a linear fit to the

data with a slope of −0.92± 0.06. Error bars are found by taking standard deviation

from three sets of experiment.
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Figure 5.6: The fidelity width in acceleration around η = 0 at Talbot time as a

function of kick number in units scaled to fourth kick. The solid line is a liner fit to

the data with a slope of −3.00 ± 0.23. Error bars are the standard deviation from

three sets of experiments.
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around the resonance. In order to test this prediction, the initial momentum of the

condensate with respect to the standing wave was changed by moving the standing

wave and several scans were performed around the resonant value of β for 4 to 9

kicks. The measured width in β was then scaled to that of the fourth kick i.e.,

∆β = δβ/δβt=4 and was then plotted as a function of t(t+1) in Fig. 5.5. This shows

a scaling of ∆β ∝ [t(t + 1)]−0.92 close to the theoretical value.

We also investigated the sensitivity of the fidelity resonance width in acceleration

by changing the acceleration of the condensate relative to the standing wave around

η = 0 and at the Talbot time. The width ∆g scaled to that of the fourth kick

is plotted as a function of kick number in Fig. 5.6. The linear line is a linear fit

to the data points and shows that the width of the peak decreases with a slope of

−3.00 ± 0.23 in excellent agreement with the value predicted Eq. (5.6). A more

in-depth investigation of the fidelity of the δ−kicked accelerator is provided in the

following section.

In conclusion, we performed an experimental investigation of the fidelity of the

δ−kicked rotor near a quantum resonance. The width of the fidelity resonance peak

centered at the Talbot time was found to decrease as 1/t2.73 in good agreement with

the predicted value of 1/t3. This is much narrower than the mean energy width that

decreases at a rate of only 1/t1.93. Furthermore, the fidelity width in momentum was

found to decrease at the rate of 1/[t(t+1)]0.92 which is also consistent with the theory.

We also demonstrated a 1/t3 dependence of the resonance width with acceleration.

This fast scaling of the fidelity resonances could be exploited in determining the

resonance frequency with a resolution below the Fourier limit. This could lead to

measurement of the photon recoil frequency and fine structure constant with higher

precision [91–93].

69



5.2 Fidelity of a quantum δ−kicked accelerator

In this section we discuss in more detail the fidelity of the QDKA. A full analytical

theory (neglecting atomic interactions) along with corresponding experimental results

and numerical simulations are presented. We show that the width of the resonant

peaks in fidelity as a function of acceleration are sensitive to the momentum width

of the atomic sample, the pulse period, and the magnitude and direction of the

acceleration.

The dynamics of the kicked accelerator are described by the dimensionless Hamil-

tonian (3.20) which is:

Ĥ =
p̂2

2
+

η

τ
x̂ + φd cos(x̂)

t∑
q=1

δ(t′ − qτ). (5.8)

In the absence of acceleration, the above Hamiltonian reduces to the standard kicked

rotor system (3.10). Due to the spatial periodicity of the kicking potential the mo-

mentum can be decomposed as p = n+β where n is the integer part of the momentum

and β (0 ≤ β < 1) is the fractional part of the momentum or quasi-momentum. The

spatial periodicity of the kicking potential only allows transitions between momenta

that differ by an integer multiple of two photon recoils, ~G, ensuring the conservation

of quasi-momentum. The dynamics of any single value of the quasi-momentum is the

same as that of a rotor known as a β−rotor.

With a non-zero acceleration, the kicked particle becomes the kicked accelerator

and the quantum dynamics of the system can be understood by applying the one-step

operator,

Ûβ,φd,η(q) = e−iφd cos θ̂e−i τ
2
(N̂−β−ηq−η/2)2 , (5.9)

which is time dependent. Thus the quasi-momentum will no longer be conserved.

However, conservation of quasi-momentum can be restored by writing Eq. (5.8) in a
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freely falling frame using a gauge transformation. The Hamiltonian then becomes,

Ĥ(N̂ , θ̂, t′) =
1

2

(
N̂ + β − η

t′

τ

)2

+ φd cos(θ̂)
t∑

q=1

δ(t′ − qτ). (5.10)

Here θ̂ = x̂ mod (2π) and N̂ = −i d
dθ

is the angular momentum operator.

In the current fidelity experiments, the initial state |ψ(0)〉 was kicked t times, each

kick having a strength φd. At the end of the tth kick a π− phase shifted reversal kick

with strength tφd was applied. Thus the fidelity for a particular β−rotor is :

F (η, t) = |〈ψ(0)|Û †β,tφd,η=0Û t
β,φd,η|ψ(0)〉|2. (5.11)

Following the technique introduced in [95, 96], the final expression for the fidelity is

then given by,

F (η, t) =

∣∣∣∣e−iφ(β,η,t)−in0`π(2β+1)(t−1)+i`πn0ηt2

J0

(√
(tφd)2 + φ2

d|Wt|2 − 2tφ2
dReWt)

) ∣∣∣∣
2

, (5.12)

where p0 = n0 + β is the initial momentum of the plane wave. The global phase

φ(β, η, t) and Wt(β, η) are given by

φ(β, η, t) = `π
t−1∑
q=0

(β − qη − η/2)2 (5.13)

Wt(β, η) =
t−1∑
q=0

e−i[(2β+1)`π]q+2`πiqηt−i`πηq2

. (5.14)

In the limit η → 0 for ` = 2 and β = 0, the general result in Eq. (5.12) reduces

to Eq. (5.6), obtained there by the use of several approximations. As discussed

previously, this shows a sub-Fourier scaling of the fidelity resonance width, verified

from the experimental results presented in Fig. (5.6). Equation (5.12) can allow

for consideration of cases in which the initial state is a mixture of plane waves, this

state is assumed to have a Gaussian distribution with a FWHM = ∆β. For a given

distribution ρ(β) of the quasi-momentum, the formula for fidelity is generalized as:

F (η, t) =
∣∣
∫ 1

0

ρ(β)〈ψ(0)|Û †β,tφd,η=0Û t
β,φd,η|ψ(0)〉dβ

∣∣2, (5.15)
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where the average is computed numerically based on Eq. (5.12) [94–96]. From the

global phase term, φ(β, η, t), it can be seen that when β 6= 0 the phase induced by

different values of η depends not only on the magnitude of η but also on its sign.

5.2.1 Experimental configuration and results

Our experiments to investigate this theory were performed using a similar set up to

that described in Section 5.1.1 with the exceptions that the BEC was created in the

5S1/2, F = 1 level and the kicking beam was aligned at 53o to the vertical so that

the value of half-Talbot time was changed slightly to 51.5 ± 0.05 µs. The value of

∆β was varied by changing the power of the CO2 laser beam which formed the dipole

trap used to perform evaporative cooling in the experiment. By adjusting the final

power of the laser beam we were able to change ∆β.

Figure 5.7 is the momentum distribution showing the fidelity at multiple values of

acceleration due to four kicks with the scaled period of 2π (` = 1), each of strength

φd ≈ 0.6 followed by a reversal kick of strength φd ≈ 2.4. The initial momentum

β = 0.5 was used. The experimentally measured fidelity for these experimental

parameters as a function of acceleration is shown in Fig. 5.8. Numerical simulations

were performed with these experimental parameters under two different conditions.

First the black solid line is a simulation in which the reversal pulse is perfect in

amplitude ( amplitude = tφd), and there are no random phase variations in the

standing wave that could be caused by vibrations of the optics used to form it. In

order to attempt to explain the large deviation of this simulation from the experiment,

we also carried out a simulation in which the above experimental imperfections were

included (red dashed line). Here we used experimentally realistic values of strength

of the reversal kick (±7% from the ideal kick strength) and a random phase variation

due to vibrations of 0.02π per pulse. As can be seen the fit to the experiment is quite

good, leading us to believe that these effects are the most likely reason for the black
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Figure 5.7: Horizontally stacked time-of flight images of a fidelity scan as a function

of effective acceleration due to four kicks of strength φd ≈ 0.6 followed by a reversal

kick of strength φd ≈ 2.4 for τ = 2π and β = 0.5.
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Figure 5.8: Fidelity as a function of the scaled acceleration, η, due to four kicks of

strength φd ≈ 0.6 followed by a reversal kick of strength ≈ 4φd. The black solid

(red dashed) line is a numerical simulation with τ = 2π (i.e. ` = 1), β = 0.5 and

initial momentum width ∆β = 0.06~G without (with) effects such as vibrations and

reversal phase imperfections (see more in the text). Circles are experimental data.

Note that the fidelity has a rich structure with multiple resonant peaks. All fidelity

measurements are ±0.01.
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Figure 5.9: Plot showing the fidelity as a function of acceleration. Experimentally

measured fidelity for ` = 1 (blue diamonds), ` = 2 (black circles) and ` = 3 (red

stars) due to four kicks of strength φd ≈ 0.6 followed by a reversal kick of strength

≈ 4φd. The lines are the corresponding fidelity from numerical simulations with

∆β = 0.06~G. Note that the horizontal axis is the real acceleration in order to show

the reduction in the peak width as ` increases.
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Figure 5.10: Fidelity as a function of η for τ = 4π and β = 0.5. Red circles and

black stars represent experimental fidelity with negative and positive accelerations

respectively. Panels (a) and (b) correspond to different ∆β (panel (b) with higher

∆β). The measurements were done with four kicks of strength φd ≈ 0.6 followed

by a reversal kick of strength ≈ 4φd. The dashed lines are the simulations for (a)

∆β = 0.06~G, and (b) ∆β = 0.07~G. The inset shows the theoretical asymmetry

visibility (see text) as a function of ∆β.
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Figure 5.11: Fidelity as a function of η for τ = 4π and β = 0. Red circles and black

stars correspond to the fidelity measured with negative and positive accelerations

respectively. The measurements were done with four kicks of strength φd ≈ 0.6

followed by a reversal kick of strength ≈ 4φd. The ∆β’s are the same as that used

in Fig. 5.10. Note that in contrast to Fig. 5.10 there is no asymmetry between the

positive and negative η’s.
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curves poor match to the experiment at the η = 0 resonance. In the simulations

that follow, we will employ the method used to generate the red dashed curve (with

the same parameters for the experimental imperfections). Unlike in previous work

where only the central resonance was observed [88, 89], it is now possible to see that

the fidelity has a more complex structure with many resonances away from η = 0.

The validity of the theory for higher resonances at ` = 2 and ` = 3 was also tested,

the results of which are presented in Fig. 5.9. Here the central fidelity resonance

as a function of acceleration g is plotted. Due to the longer time available for the

momentum state phases to evolve at the larger `, the peaks become narrower as ` is

increased. It is important to note that for ` = 2 (Talbot time), the width (FWHM)

of this peak reduces as 1/t3 (refer to Fig. 5.6). Note that the fidelity is presented as

a function of real acceleration and not η in order to show this effect.

We also examined the dependence of the fidelity to the sign of η (positive and nega-

tive acceleration). A scan was performed by changing the value of η over a large range

on both sides of the resonance for two different ∆β′s. The experimentally measured

fidelity is plotted as a function of |η| in Fig. 5.10 and Fig. 5.11. When the β−rotor

distribution was centered at β = 0.5 an asymmetry was observed which became more

prominent as ∆β was increased as shown in Fig. 5.10. Note that the results corre-

spond to pulse periods, τ = 4π (` = 2). This was found to lead to larger asymmetries

as compared to the case of ` = 1 in Fig. 5.8. The origin of the asymmetry is the

different phases φ(β, η, t) induced by the negative and positive values of acceleration.

Figure 5.10 shows the development of the asymmetry, both in the experiment and

simulations, as ∆β is increased. The dashed lines are the plot of the simulations with

∆β = 0.06~G and 0.07~G (panels (a) and (b) respectively). Calculations of visibility

signal for the asymmetry defined by (F (η−) − F (η+))/(F (η−) + F (η+)), shows an

almost linear scaling with the momentum width (∆β ≤ 0.08~G) of the cloud (see

inset).Thus the measurement of the asymmetry may provide a means of measuring
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Figure 5.12: Numerical data for the fidelity due to four kicks, each of strength φd =

0.6, followed by a reversal kick, showing the asymmetry in the fidelity with the sign

of acceleration for various ∆β. Other parameters used were τ = 4π and β = 0.5.
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small ∆β and hence the temperature.

Interestingly, if the initial β distribution is chosen centered at β = 0, as is possible

for l = 2, the asymmetry goes away. This is shown in Fig. 5.11 for the same two ∆β’s

used in Fig. 5.10. The reason behind this asymmetry is understood in terms of the

initial distribution of the β− rotors. For the case of a distribution centered at β = 0,

the distribution is symmetric so that the distribution on the negative side is identical

to that on the positive side. Thus changing the sign of the acceleration, η, has no

effect on the dynamics or in other words the effect of changing the sign of acceleration

or the sign of β will have same effect and there is no asymmetry. However with the

β distribution centered at any value other than zero, the distribution is no longer

symmetric and the effect of η will be different for each half of the β distribution. This

causes an asymmetry and will be maximized when β = 0.5. A numerical calculation

of fidelity (in which the reversal pulse is perfect in amplitude (amplitude = tφd) and

there are no random phase variations in the standing wave that could be caused by

vibrations of the optics used to form it) as a function of η for different ∆β is plotted

in Fig. 5.12. As expected, the asymmetry increases as ∆β gets larger.

In conclusion, we performed an experimental investigation on the sensitivity of

the fidelity to the acceleration by exposing a BEC to a set of δ-kicked rotor optical

pulses followed by a stronger reversal pulse. The experimental results and analytical

theory were in good agreement, with both showing the presence of multiple fidelity

resonances. The width of the central fidelity resonance was found to become narrower

as the pulse period increased. The importance of the position of the center of the

initial momentum distribution was also explored. When the distribution was centered

at some values other than zero, an asymmetry between the fidelity at positive and

negative values of acceleration was observed which became more prominent with

increasing ∆β. The asymmetry was maximized for a distribution centered at β =

0.5, disappearing almost completely when the distribution was centered at β = 0.
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These findings may be useful in determining externally applied accelerations and the

temperature of ultracold atoms.
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CHAPTER 6

The quantum ratchet

A ratchet is a mechanical device that allows motion in only one direction. The concept

of classical ratchet was discussed by Feynman in his famous lectures on physics [97].

He demonstrated how random thermal noise could be used to extract useful work

after cleverly designing a device called a “ratchet and pawl”. However if the system

is in thermal equilibrium, no useful work can be extracted according to the second

law of thermodynamics. Thus the combination of non-equilibrium and an asymmetry

generally leads to a ratchet effect [98–102]. The basic idea is that the system which

is not in thermal equilibrium tends towards equilibrium. If the system is asymmetric,

then moving towards equilibrium will usually involve spatial movement. In order to

keep the system moving, it is necessary to perpetually keep it away from thermal

equilibrium, this costs energy and this is the energy that drives the motion. An

example of this is a flashing ratchet [103] (Fig. 6.1). Here Brownian particles are

trapped in a periodic, asymmetric (sawtooth-like) potential that can be turned on

and off. When the potential is off the particles undergo random diffusion which is

converted into a net motion to the left by the asymmetry. Some of the interesting

applications of a classical ratchet are a flow of current without bias voltage in a

metal [104] and some biological motors [105,106] which can use thermal fluctuations

to establish particle current. Classical ratchets require dissipative energy to produce

a directed transport.

A quantum ratchet is a Hamiltonian ratchet (no dissipation) and has no classical

analog. It is manifested by a directed current of particles in the absence of net bias
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Figure 6.1: The flashing ratchet. The sawtooth-like potential is periodically switched

on and off. The particles subjected to Brownian motion are on average transported

in a specific direction (towards the left in the picture) by the asymmetric potential.
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forces and has been extensively studied theoretically and experimentally [60–67]. The

basic idea behind the quantum ratchet effect due to a sinusoidal periodic potential

is that the initial atomic distribution experiences a force from the potential gradient.

The net force on the distribution equals zero (as shown in panel (a) and (b) in Fig.

6.2) when the initial distribution is symmetric with respect to the potential, so that

the ratchet effect does not appear. However in the case of the non-coincidence of the

symmetry centers of the atomic state and the potential (panel (c) in Fig. 6.2), the

atoms experience a net force due to the potential gradient thus causing an atomic

ratchet effect. Such a ratchet phenomenon is discussed in Section 6.1 at QR and the

away from resonance case is discussed in Section 6.2.

6.1 Ratchet at resonance: a quantum treatment

In order to create a ratchet we start with an initial state that is a superposition of

two plane waves. The potential and the particle distributions are shown in Fig. 6.2

(a)-(c), where γ is the offset phase. As described earlier, the atoms can experience a

net force due to the potential gradient. To understand the theoretical basis for this

process, consider an initial state given by

|ψ0〉 =
1√
2

[|0~G〉+ eiγ|1~G〉] , (6.1)

this is equivalent to the rotor state

|ψ0(θ)〉 =
1√
4π

[1 + ei(θ+γ)]. (6.2)

Here γ is an additional phase used to account for the fact that the initial atomic dis-

tribution is shifted in position relative to the applied periodic potential. As discussed

earlier, the dynamics of the kicked rotor system can be described by the Hamiltonian

(3.10) which in dimensionless units is

H =
p̂2

2
+ φd cos(X̂)

t∑
q=1

δ(t− qτ). (6.3)
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Figure 6.2: Picture of the potential and initial atomic state distribution. In panels

(a) and (b) the net forces experienced by the state from the potential gradient is

zero. Thus the directed motion of the atoms are not possible. However due to the

non-coincidence of the symmetry centers in panel (c), the state experiences a net force

which causes a directed motion of the atoms to the right.
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Since the momentum in this system is only changed in quanta of ~G, we break down p̂

as p̂ = N̂ +β where N̂ = −i d
dθ

is the angular momentum operator with an eigenvalue

n, and β (the quasi-momentum) is conserved. Here θ̂ = X̂ mod (2π). The one step

evolution operator for this Hamiltonian is given by

Ûβ = e−iφd cos(θ̂+γ)e−i(N̂+β)2 τ
2

= e−iφd cos(θ̂+γ)e−iπ`(N̂ 2+2N̂β+β2)

= e−iφd cos(θ̂+γ)e−iN̂ τβ , (6.4)

where τβ = π`(2β + 1) with ` an integer and the irrelevant phase factor e−iπ`β2
has

been ignored. In the last step, the relation e−iπ`n2
= e−iπ`n is also used. The mean

momentum after time q is given by [61]

〈N̂ 〉 = 〈ψq|N̂ |ψq〉 (6.5)

where the rotor state after q kicks can be explicitly calculated as,

ψq(θ) = Û q
βψ0(θ)

= Û q−1
β e−iφd cos(θ̂+γ)ψ0(θ − τβ)

= Û q−2
β e−iφd cos(θ̂+γ)e−iφd cos(θ̂+γ−τβ)ψ0(θ − 2τβ)

= e−iφd
∑q−1

s=0 cos(θ̂+γ−sτβ)ψ0(θ − qτβ).

Using the geometric series relation
∑q−1

s=0 eas = 1−eaq

1−ea we get

ψq(θ) = e

[
−iφd

sin(qτβ/2)

sin(τβ/2)
cos[θ−(q−1)

τβ
2

+γ]

]

ψ0(θ − qτβ). (6.6)

86



Now applying Eq. (6.6) and the definition of N̂ , Eq. (6.5) gives

〈N̂ 〉q =− i

∫ 2π

0

ψ∗q (θ)
dψq(θ)

dθ
dθ

=− i

∫ 2π

0

[iφd
sin(qτβ/2)

sin(τβ/2)
sin{θ − (q − 1)

τβ

2
+ γ}|ψ0(θ − qτβ)|2

+ ψ∗0(θ − qτβ)
dψ0(θ − qτβ)

dθ
]dθ

=− i

∫ 2π

0

[
iφd

sin(qτβ/2)

sin(τβ/2)
sin{θ − (q − 1)

τβ

2
+ γ}|ψ0(θ − qτβ)|2

]
dθ

+ 〈N̂ 〉0. (6.7)

The momentum current, also called a ratchet current, is defined as the change in the

mean momentum at any time relative to its initial value. Mathematically it is given

by [61,64]

∆〈p̂〉q = 〈N̂ 〉q − 〈N̂ 〉0

=
φd

2

sin(qτβ/2)

sin(τβ/2)
sin

[
(q + 1)

τβ

2
+ γ

]
. (6.8)

It can be seen clearly that if an initial state is a plane wave, the integral in Eq. (6.7)

vanishes and there will be no ratchet current. This is a justification of why a special

initial state is required to produce ratchet current. For τβ = 2πr, r is an integer, Eq.

(6.8) reduces to

∆〈p̂〉q,r = −φd

2
sin(γ)q (6.9)

which shows a linear growth of current in time. This theory has been extended to

the general case which considers the finite width of initial momentum ∆β which is a

more realistic model of the experiments [30, 31, 61]. This assumes a condensate as a

mixture of quasimomenta β′ with a Gaussian distribution centered at β given by [61]

Γβ,∆β(β′) =
1√

2π(∆β)2
exp

[−(β′ − β)2

2(∆β)2

]
(6.10)
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Then the expressions for momentum current given by Eqs. (6.8) and (6.9) takes the

following forms:

〈∆〈p̂〉q〉∆β =
φd

2

q∑
s=1

sin(sτβ + γ) exp[−2(π`∆βs)2] (6.11)

and

〈∆〈p̂〉q〉r,∆β = −φd

2
sin(γ)

q∑
s=1

exp[−2(π`∆βs)2. (6.12)

6.1.1 Experimental configuration and results

The experimental details and the results on the ratchet phenomenon at QR are pre-

sented in references [30,31,61]. As explained in the following section, the initial state

was prepared as a superposition of two momentum states |p = 0~G〉 and |p = 1~G〉
and the experiments were performed by using the pulse scheme as shown in Fig. 6.3.

The main results are presented in Fig. 6.4 and 6.5. The mean momentum of the

kicked BEC was experimentally measured as a function of several variables. Figure

6.4 shows the dependence of mean momentum on the phase γ for resonant β = 0.5

after 5 kicks. The maximum value of mean momentum was achieved for γ = π/2

as suggested by the theory. The dependence of mean momentum current on quasi-

momentum β for γ = π/2 and γ = −π/2 are shown in Fig. 6.5(a) and (b) respectively.

The mean momentum is a maximum at β = 0.5 in both panels. In both figures, the

dashed line is a plot of Eqs. (6.8) and the solid line is a plot of Eq. (6.12) with

initial momentum width of ∆β = 0.056. The ratchet effect is found to be suppressed

by the width in the initial momentum distribution. The error bars in both figures

correspond the standard deviation from three sets of experiments.

In summary, a quantum-resonance ratchet was realized by applying pulses from a

symmetric optical potential to a superposition of two momentum states. The ratchet

current was created by the asymmetry between the center of the kicking potential

and the initial distribution. The ratchet current was a maximum at γ = ±π/2 and
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Figure 6.3: Initial state preparation for the ratchet experiment. A long, weak in-

tensity Bragg pulse creates a superposition of two momentum states with an equal

population. The kicking pulses were applied immediately after the Bragg pulse
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Figure 6.4: Change in mean momentum as a function of phase angle γ after 5 kicks

each of strength φd = 1.4 and resonant quasimomentum β = 0.5. The filled circles

with associated error bars are from the experiment. The dashed line is the plot of

Eq. (6.8) and the solid line is the plot of Eq. (6.12) with ∆β = 0.056.
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Figure 6.5: Plot of change in mean momentum as a function of quasimomentum β

after 5 kicks each of kick strength φd = 1.4 for (a) γ = −π/2 and (b) γ = π/2. The

filled circles with error bars are the experimental data. The dashed line and the solid

lines are plot of Eqs. (6.8) and (6.12) with ∆β = 0.056.

91



β = 0.5, and was suppressed by an initial momentum width ∆β.

6.2 Off-resonant ratchet: a classical treatment

We now discuss the ratchet phenomenon away from quantum resonance. The question

of what happens to a ratchet in this regime was addressed in a recent theoretical

paper [107]. In that work, the authors developed a classical-like theory and proposed

the existence of a one-parameter scaling law that could be used to predict the ratchet

current for a wide variety of parameters. It was also shown that an inversion of the

momentum current might be possible for some sets of scaling variables. In this section,

we discuss the experimental observation of such an inversion and the verification of

the scaling law for a wide variety of experimental parameters. Moreover the cross

over between the classical and the quantum regimes can also be studied using the

off-resonant ratchet effect.

The dynamics of the AOQKR system can be described using the Hamiltonian of

Eq. (6.1). A successful approach to treating this system close to resonant values of τ

(i.e. τ = 2π`, with l > 0 integer) is the so called ε−classical theory. Here the scaled

pulse period is written as τ = 2π` + ε, where |ε| ¿ 1, and can be shown to play

the role of Planck’s constant. In this case the dynamics can be understood by the

classical mapping (3.33),

Jq+1 = Jq + k̃ sin(θq+1), θq+1 = θq + Jq, (6.13)

where k̃ = |ε|φd is the scaled kicking strength, Jq = εpq + `π + τβ is the scaled

momentum variable and θq = X mod (2π) + π[1 − sign(ε)]/2 is the scaled position

exploiting the spatial periodicity of the kick potential. As mentioned previously,

in order to create the ratchet we start with a superposition of plane waves |ψ0〉 =

1√
2
[|0~G〉+ eiγ|1~G〉], or equivalently a rotor state 1√

4π
[1 + ei(θ+γ)]. This leads to the

position space probability distribution function
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P (θ) = |ψ(θ)|2

=
1

2π
[1 + cos(θ + γ)]. (6.14)

Here γ is an additional phase used to account for the possibility that the initial

spatial atomic distribution is shifted in position relative to the applied periodic po-

tential. Although the distribution P (θ) is quantum in origin, in what follows it will

be interpreted as a classical probability.

The original application of ε−classical theory to the kicked rotor system showed

the existence of a one-parameter scaling law for the mean energy [94]. This was

experimentally verified in the vicinity of the first and second quantum resonances

(` = 1 and ` = 2) in Ref. [108]. It was found that the scaled energy could be written

as

E

φ2
dq

= 1− Φ0(x) +
4

πx
G(x) (6.15)

where x =
√

φd|ε| q is a scaling variable and Φ0(x) and G(x) are closed form functions

of x. The existence of a one-parameter scaling law for the ratchet current using the

same scaling parameter x was proposed [107]. In what follows the consequences of

such an assumption are explored and shown to lead to the possibility of current

reversals for some values of x.

To begin the theoretical discussion we make the pendulum approximation [109]

in which the motion of the kicked rotor in continuous time is described by the scaled

Hamiltonian

H ′ ≈ (J ′)2/2 + |ε|φd cos(θ), (6.16)

where J ′ = J/(
√

φd|ε|) is a scaled momentum variable. Near the quantum resonance,

using the position space probability distribution function P (θ), one can calculate the
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ratchet current, 〈J ′ − J ′0〉, as

〈J ′ − J ′0〉 =

∫ π

−π

dθ0P (θ0)(J
′ − J ′0). (6.17)

For |ε| . 1, Eq. (6.13) gives a phase space dominated by a pendulum-like resonance

island of extension 4
√

k̃ À |ε| [94]. Hence p = 0 and p = 1 essentially contribute in

the same way giving J ′0 = 0 so that the map (6.13) can be rewritten as

J ′q+1 =
√

k̃
t−1∑
q=0

sin(θq+1). (6.18)

Using Eq. (6.14) and scaling variable x, Eq. (6.17) becomes

〈J ′ − J ′0〉 =
1

2π

∫ π

−π

dθ0[1 + cos(θ0 + γ)]J ′(θ0, J0 = 0, x)

=
1

2π

∫ π

−π

dθ0J
′(θ0, J0 = 0, x) +

1

2π
cos γ

∫ π

−π

cos θ0dθ0J
′(θ0, J0 = 0, x)

− 1

2π
sin γ

∫ π

−π

sin θ0dθ0J
′(θ0, J0 = 0, x)

=− sin γ
1

2π

∫ π

−π

sin θ0dθ0J
′(θ0, J0 = 0, x)

=− sin γF (x). (6.19)

Here the integrals in the first and second term at the second step vanish due to the

fact that J ′ is an odd function. We also define

F (x) =
1

2π

∫ π

−π

sin θ0J
′(θ0, J

′
0 = 0, x)dθ0. (6.20)

Thus the mean momentum (units of ~G) expressed in terms of the scaled variables is

〈p〉 =

√
φd

|ε|〈J
′ − J ′0〉 = −φdt sin γ

x
F (x)

〈p〉
−φdq sin γ

=
F (x)

x
(6.21)

where F (x) can be computed from the pendulum approximation [107].
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6.2.1 Experimental configuration and results

We now discuss the experiments that were carried out to observe the ratchet effect

away from resonance. Mostly the underlying setup was very similar to that used

to measure fidelity (Sec. 5.1.1). Nevertheless there were some important differences

so the full setup is described. The experiments used the setup shown in Fig. 4.11.

A BEC of about 40000 87Rb atoms was created in the 5S1/2, F = 1 level using an

all-optical trap technique. Approximately 5 ms after being released from the trap,

the condensate was exposed to a pulsed horizontal standing wave of wavelength λG.

This was formed by two laser beams of wavelength λ = 780 nm, detuned 6.8GHz

to the red of the atomic transition. The direction of each beam was aligned at 53o

to the vertical to give λG = λ/(2 sin 53o). With these parameters the primary QR

(half-Talbot time [57,79,80]) occurred at multiples of 51.5±0.05 µs. Each laser beam

was passed through an acousto-optic modulator driven by an arbitrary waveform

generator. This enabled control of the phase, intensity, and pulse length as well as

the relative frequency between the kicking beams. Adding two counterpropagating

waves differing in frequency by ∆f resulted in a standing wave that moved with a

velocity v = 2π∆f/G. The initial momentum or quasi-momentum β of the BEC

relative to the standing wave is proportional to v, so that by changing ∆f the value

of β could be systematically controlled. The kicking pulse length was fixed at 1.54

µs, so we varied the intensity rather than the pulse length to change the kicking

strength φd. This was done by adjusting the amplitudes of the RF waveforms driving

the kicking pulses, ensuring that the experiments were performed in the Raman-Nath

regime (the distance an atom travels during the pulse is much smaller than the period

of the potential).

The initial state for the experiment was prepared as a superposition of two mo-

mentum states |p = 0~G〉 and |p = 1~G〉 by applying a long (∆t = 38.6µs) and

very weak standing wave pulse (Bragg pulse). By using a pulse of suitable strength,
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an equal superposition of the two aforementioned external atomic states was created

(π/2 pulse). The Bragg pulse was immediately followed by the kicking pulses in which

a relative phase of γ between the beams was applied. This phase was experimentally

controlled by adjusting the phase difference between the RF waveforms driving the

two AOMs. The schematic of the pulse sequences to prepare the initial superposition

state and to create the ratchet current is shown in Fig. 6.3. Finally the kicked atoms

were absorption imaged after 9 ms using a time-of-flight measurement technique to

yield momentum distributions like those seen in Fig. 6.6.

Figure 6.6 shows raw momentum distributions as a function of the pulse period’s

offset from the first QR and the kick number (Fig. 6.6 (a) and (b) respectively). It

can be seen that there are certain values of time offset and kick number where the

distribution is weighted more strongly towards negative momentum. This is evidence

of a current reversal. Furthermore, Fig. 6.6 (a) and (b) contain other similarities.

For example, there are parameter regimes where the momentum distributions tend

strongly towards positive momenta, followed by the current reversal regions where

the distributions tend negative. This suggests a link to the single-parameter ratchet

theory described in Section 6.2. Moreover, since the time offset from QR effectively

defines a new Planck constant [69, 94], we can easily switch from the classical to the

quantum regime by a simple change of the pulse period. This allows for the study of

the crossover between classical and quantum dynamics.

The measurements involve the determination of the mean momentum of kicked

BECs for various combinations of the parameters q, φd, ε and γ. The measured

momentum was then scaled by −φdq sin γ and is plotted as a function of the scaling

variable x for ` = 1 in Fig. 6.7 and for ` = 0 in Fig. 6.8. In Fig. 6.7(a) and Fig. 6.8, x

was changed by varying kick number, q, while in Fig. 6.7(b) different x were obtained

by scanning either |ε| (red circles and green squares) or φd (blue triangles). The solid

line in both panels is a plot of the function F (x)
x

given by Eq. (6.21). It can be seen
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Figure 6.6: Experimental momentum distributions after exposing a BEC to short

pulses of an off-resonant standing wave of light. The momentum distributions are

shown as a function of (a) pulse period offset from resonance (µs) (10 kicks, φd = 2.6,

γ = −π/2), and (b) kick number (|ε| = 0.18, φd = 1.8 and γ = −π/2.). Each

momentum distribution was captured in a separate time-of-flight experiment.
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Figure 6.7: Scaled mean momentum 〈p〉/(−φdq sin γ) as a function of the scaling

variable x =
√

(φd|ε|) q. The data were taken away from QR (` = 1). In (a) x was

varied by scanning over kick number for different combinations of φd, |ε| and γ. In

panel (b) x was varied by scanning over |ε| with q = 8, φd = 3.0 (green squares), and

with q = 10, φd = 2.6 (red circles). Also plotted in (b) is data from a scan over φd

with |ε| = 0.18, q = 8 (blue triangles). In both panels, the solid line is the function

F (x)/x given by Eq. (6.21). This demonstrates that no matter how x is obtained,

the scaled mean momentum is approximately universal.
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Figure 6.8: Scaled mean momentum 〈p〉/(−φdq sin γ) as a function of the scaling

variable x =
√

(φd|ε|) q. The data were taken away from ` = 0, the true classical

regime. x was varied by scanning over kick number for different combinations of φd,

|ε| and γ = −π/2. The solid line is the function F (x)/x given by Eq. (6.21).
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that no matter how x is varied, the experimental results are in good agreement with

the theory for many different combinations of parameters. An exception to this is

seen in Fig. 6.8 at high x values. We postulate that this could be due to the lack of

precision in the measurement of the kick strength. In addition, there is a regime over

x where an inversion of the ratchet current takes place, with a maximum inversion at

x ≈ 5.6. Interestingly this reversal of the ratchet takes place without altering any of

the centers of symmetry of the system. Even though the ε−classical theory assumes

|ε| is small, the experimental results show that it remains valid for higher values of

|ε| as well. This is also the case in the true classical regime near ` = 0. In fact the

window of valid |ε| depends on the kick number [94], being rather large for small

q . 10− 15. This is expected from a Heisenberg/Fourier argument [108,110,112].

Since the time offset from QR effectively defines a new Planck constant [69, 94],

we can easily switch from the classical to the quantum regime by a simple change of

the pulse period. Figure 6.9 is a false color plot of scaled mean momentum for the

pulse periods starting from close to true classical limit (` = 0) up to the first quantum

resonance (` = 1). The data were collected by scanning over the kick number for the

different pulse periods. The data presentation is such that the scaling variable x is on

the x−axis, pulse periods are on the y−axis and the mean momentum is plotted on

the color axis. The deep blue color represents negative scaled mean momentum. It

can be clearly seen that, when the pulse periods are closer to the classical limit, τ = 0

(bottom of the y−axis) and to the first quantum resonance τ = 2π i.e. T = 51.5µs

(top of the y−axis), an inversion of the momentum current is present. However the

inversion becomes weak and disappears far away from either end (in the middle).

Also visible near τ = 0 is a second region of inversion around x = 15. This is the

same as the second inversion seen in Fig. 6.8.

If a ratchet is to be used to transfer momentum, an important question is, how

sensitive will the momentum transfer be to an unavoidable finite spread in initial
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Figure 6.9: False color plot of the mean momentum current as a function of scaling

variable x (the x−axis) and pulse period (the y−axis). The color scale is the mag-

nitude and direction of the mean momentum. The deep blue color represents the

lowest value of mean momentum (negative in this case) showing regions of current

inversion. Note that there is a momentum current inversion close to true classical and

ε−classical (bottom and top on the y−axis respectively) regimes which disappears if

one goes away from either (towards the region between ` = 0 and ` = 1).
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Figure 6.10: Momentum current as a function of kick number for |ε| = 0.006 (red

crosses), |ε| = 0.04 (blue circles), |ε| = 0.07 (green diamonds), |ε| = 0.09 (black stars)

and |ε| = 0.19 (purple squares). The blue solid line is the plot of 〈pt,res〉 = −φdt
2

sin γ

for φd = 1.3 and γ = −π/3. The dashed lines are the plot of Eq. (6.21) with

corresponding |ε| and the red solid line is the plot of Eq.(2) in Ref. [61] for β = 0.5

and ∆β = 0.02.
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quasi-momentum, ∆β? Figure 6.10 shows a plot of momentum current as a function

of kick number for |ε| = 0.006 (red crosses), |ε| = 0.04 (blue circles), |ε| = 0.06 (green

diamonds), |ε| = 0.09 (black stars) and |ε| = 0.19 (purple squares) for fixed φd = 1.5

and γ = 4π/3. The solid blue line is a plot of Eq. (6.9) and the dashed lines are plots

of Eq. (6.21) for the corresponding experimental parameters. The experiment shows

that the farther one goes from resonance the sooner the momentum current turns

towards negative values (current reversal). These results are in good agreement with

the theory except very close to resonance, where the red dashed curve fits poorly to

the red crosses. For this data, we note that the suppression in momentum current

is likely to be caused mainly by the effect of the initial spread of quasi-momentum.

This phenomenon was also seen in Ref. [61] where the ratchet current for finite ∆β

was given by Eq. (6.11). This equation with ∆β = 0.028 (independently estimated

from time-of-flight measurements) is also plotted in Fig. 6.10 (red solid line). It

can be seen to agree well with experiment. We thus conclude that for |ε| & 0.04

(corresponding to an offset from resonance of 0.3 µs), ∆β plays an unimportant role

in the dynamics of the ratchet. This is because at resonance the total phase the

momentum states acquire must be an integer multiple of 2π. Any deviation from this

condition significantly suppresses the momentum current at longer times. However

the momentum state phases away from resonance are already pseudo-random, so the

phase changes caused by ∆β have a negligible effect.

In conclusion, We have performed experiments to investigate several aspects of the

off-resonant atomic ratchet by exposing an initial atomic state which was a super-

position of two momentum states to a series of standing wave pulses. We measured

the mean momentum current as a function of a scaling variable x, which contained

important pulse parameters such as the offset of the kicking period from resonance,

the kick number, and the kick strength both in true classical (` = 0) and the ε−
classical (` = 1) regimes. We showed that a scaled version of the mean momentum
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in both cases could be described solely by x, a result postulated by a theory based

on a classical treatment of the system [107]. The experiment verified that for certain

ranges of x the momentum current exhibited an inversion. We showed that the true

classical and ε− classical regimes essentially display the same behavior. However it

should be noted that in the ` = 0 case, the amplitude of the ratchet current oscilla-

tions as a function of x are more pronounced and are a better match to the theory.

We postulate that this is due to the fact that the short time between the pulses near

` = 0 provides little opportunity for dephasing effects from vibrations and sponta-

neous emission to become important. The experiment verified that for certain ranges

of x the momentum current exhibited an inversion. We also studied the effect of initial

quasi-momentum width on the ratchet current away from resonance. This width has

a large impact extremely close to resonance, but plays an unimportant role as we go

only a little farther from resonance. Ultimately one can now control the strength and

direction of the ratchet without changing the underlying relative symmetry between

the initial state and the potential. In addition the crossover between classical and

ε−classical dynamics was observed.
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CHAPTER 7

Accelerator modes

The mean energy of the QDKR at quantum resonance increases ballistically while the

mean momentum remains fixed. The presence of a linear potential such as gravity

breaks the symmetry of the system. The experimental realization of the atom-optical

quantum kicked accelerator (AOQKA) has provided a testing ground for studying

aspects of the transition to chaos in both classical and quantum regimes [68]. The

most striking feature is the observation of quantum accelerator modes (QAMs) [69–

74, 81, 113–116]. The QAMs are characterized by a linear growth of momentum of a

fraction of atomic ensemble with time. These modes appear for pulse periods close

to an integer multiple of the half-Talbot time.

7.1 Theory

We now briefly review the accelerator mode theory based on the ε−classical model

presented in Ref. [69,70]. Fishman, Guarneri, and Rebuzzini pioneered an approach to

understanding the QAM, the so called ε− classical theory [69,70], which describes the

strongly quantum mechanical dynamics in terms of an effective classical map. It has

been been used to great effect in the interpretation and prediction of experimentally

observable QAMs [71,116,117]. They defined the closeness of the kicking period to a

particular quantum resonance τ = 2π`, where ` is an integer, by a small parameter

ε = 2π(T/T1/2 − `). It was found that |ε| could be assigned the role of Planck’s

constant and for small |ε| the dynamics can be described by a Hamiltonian which is
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a formal quantization of the following maps (3.33):

Jq+1 = Jq + k̃ sin θq+1 ± τη,

θq+1 = θq ± Jq. (7.1)

Where k̃ = |εφd|, η = mgT/~G and τ = 2πα. The dimensionless variables J and θ

are defined as

Jq = Iq ± π`± τ(β − ηq − η/2) (7.2)

and

θ = GX mod 2π. (7.3)

These area-preserving maps are 2π−periodic in J and θ with p/(~G) = I/|ε| + β.

The map of Eq. (7.1) can have period-p fixed points. These fixed points are “stable”

and will be surrounded by regions of phase space that can also be classified as stable.

If the atomic wave packet has a sizable overlap with one of these stable islands, its

momentum will grow linearly with time thus realizing the accelerator modes. The

momentum of the atoms in the accelerator mode after q kicks is given by the relation

r = r0 +
ητ

ε
q +

2πj

pε
. (7.4)

These accelerator modes are characterized by the parameters (p, j) where p is the

order j is the jumping index. The parameter p represents the number of kicks required

before cycling back to the initial point in phase space, while the jumping index j

represents the number of units of momentum acquired in each of those cycles. Modes

of order 1 are given on the 2−torus by J0 = 0, θ0 = θj where

sin(θj) = (2πj∓ τη)/k̃, (7.5)

and j is any integer such that the absolute value on the right-hand side of the equation

is less than 1. For a primary QAM (the most predominant modes in experiment),
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Figure 7.1: Phase space of QAMs generated by the map of Eq. (7.1) for τ = 5.86,

φd = 1.4 and η = 2.14. Primary QAMs is seen with mode (a) (p, j)= (1,0). The

higher order modes are seen with mode (p, j) equal to (b) (2,1), (c) (3,1) (d) (4,1) (e)

(5,1) and (f) (5,2).

107



j = 0,

r =
ητ

ε
q (7.6)

The phase space of QAMs generated by the map of (7.1) is shown in Fig. 7.1. Primary

QAMs is seen with mode (a) (p, j)= (1,0). The higher order modes with (p, j) equal

to (b) (2,1), (c) (3,1) (d) (4,1) (e) (5,1) and (f) (5,2) are seen.

7.2 Decay of QAMs

Classical Hamiltonian systems display a combination of regular motion and chaotic

motion in phase space [118]. Although there is no classical transport allowed between

two regions, quantum transport is possible due to dynamical tunneling [119–121].

The wave-packets which are initially localized within the stable island leak to the

chaotic region and decay after a long time. QAMs which are formed when an atomic

wave-packet is at least partially trapped inside a stable island thus decays with time.

The decay rate can be estimated as [122]

Γ =
ω0

2π
e−A/~, (7.7)

where A is the area of the island in phase space and ω0 is the angular frequency of

the small oscillations. The decay rate can be extracted from the population of the

atoms in the accelerator mode and is defined as

P (q) =

n(q)+∆n/2∑

n(q)−∆n/2

|ψ(n)|2, (7.8)

where n(q) = n0 − τη
ε
q and ∆n is the width of the accelerator mode centered at n0.

In the experiments, it is very challenging to observe the small tunneling decay since

the decay of the QAM is dominated by other effects, mostly spontaneous emission

and dephasing. With the scaling of

A

2π|ε| ≈
φd√
τη

(7.9)
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The decay rate can be estimated as

Γ =
ω0

2π
e

[−2πφd√
τη

]
. (7.10)

7.3 Experimental configuration and results

We now discuss the experiments that were carried out to observe the QAMs and

to investigate its decay behavior. Mostly the underlying setup was similar to that

described in Sec.6.2.1. The condensate was exposed to a pulsed horizontal standing

wave of wavelength λG. Several scans were performed by increasing the number of

pulses at fixed pulse period and effective acceleration. The time-of-flight images of

one such scans for T = 49µs (close to T1/2 = 51.5µs) and g = 5m/s2 is shown in Fig.

7.2. These experimental parameters correspond to η = 0.0257 and ε = −0.305. The

decay of the accelerator mode after a long time was calculated using an exponential

fit to the population as a function of time (kick numbers) as shown in Fig. 7.3. We

performed such scans for different φd and the experimentally measured decay rate as

a function of φd is plotted in Fig. 7.5 (a). This shows that the decay rate decreases

as φd increases as predicted by Eq. (7.2). Furthermore the area of the islands was

calculated from the phase space plot of maps (7.1) as a function of φd used in Fig.

7.5 (a). The calculated areas are then plotted as a function of φd in Fig. 7.5 (b).

Finally, the dependence of decay rates on the size of islands is depicted in Fig. 7.5

(c). As mentioned earlier, it is very challenging to observe decays purely from the

quantum tunneling. However the observed decay rates are qualitatively in agreement

with the theory, showing a decrease in decay rate with increasing φd and area. This

is exactly the opposite effect one would expect from the decay due to spontaneous

emission where the decay rate should increase with larger φd.

In conclusion, we have investigated the QAMs and its decay behavior. The depen-
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Figure 7.2: Momentum distribution of a kicked BEC as a function of kick number

showing the accelerator mode close to T1/2. The scan was performed with an effective

acceleration of g = 5ms−2, kicking strength of φd ≈ 0.9 and kicking period of T =

49µs.
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Figure 7.3: Population in the accelerator modes as a function of kick number in Fig.

7.2. The solid line is an exponential fit to the population.

111



Figure 7.4: Phase space plot of the map in Eq. (7.1) for T = 49µs and g = 5m/s2 for

φd = (a) 0.88 (b) 1.06 (c) 1.3 (d) 1.4 (e)1.5.
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Figure 7.5: Experimentally measured decay rate Γ as a function of kicking strength

φd in panel (a) and area A of the stable islands in the phase space (θ, J) plot of Eq.

(7.1) as a function of kicking strength φd in panel (b) for τ = 5.98 and η = 0.0257.

The decay rate as a function of area of the island is plotted in (c). Error bars are the

standard deviations of the exponential fitting.
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dence of the decay rate on the kick strength and the area of the islands in the phase

space was explored. The decay rates were found to decrease as the kick strength

increased.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

The work described in this thesis mainly explored the applications of the atom-optical

kicked rotor. The experiments began with the creation of Bose-Einstein conden-

sate (BEC) of 87Rb atoms in an all-optical trap. The quantum delta kicked rotor

(QDKR) system was realized by exposing a BEC to short periodic pulses (kicks)

of an off-resonant standing wave formed by the interference of two laser beams. A

closely related system called quantum delta kicked accelerator (QDKA) was realized

by exposing BEC to short pulses of optical standing wave in presence of external

acceleration. Two main applications of the QDKR and QDKA were studied in this

thesis.

Measurement of the fidelity or the overlap of a resonant QDKR state with a

reference state was performed. The width of the fidelity peaks were found to scale

as the inverse cube of the measurement time, in units of kicks. The sensitivity of the

QDKR to the external acceleration was also investigated by performing the fidelity

measurement. It was found that the fidelity width in acceleration also scaled as the

inverse cube of the pulse number. Additionally, the fidelity was found to depend on

the direction of external acceleration provided the distribution of atomic ensemble

had some initial momentum width and was centered at a quasimomentum of 0.5 (in

units of two photon recoils).

The quantum ratchet effect at a primary resonance (T1/2) as well as away from

resonance was investigated. The directed ratchet current as a function of initial mo-

115



mentum of the atomic ensemble and the asymmetry between the atomic distribution

and potential were experimentally investigated and explained by the theory. The off-

resonant ratchet behavior had some additional interesting features. It was shown to be

determined by a single variable which consisted of the main experimental parameters,

and in addition could exhibit inversion of the momentum current even though the un-

derlying symmetries of the system were unaltered. The off-resonant ratchet behavior

was used for crossover studies between classical and ε−classical regimes. The effect

of the width in initial momentum on the quantum ratchet was also demonstrated.

Using a QDKA, quantum accelerator modes were studied and its decay behavior

was discussed.

8.2 Future work

With the slight modification on the existing experimental setup, we have realized that

a second off-resonant standing light wave with a grating vector which is one half of

that of the existing standing wave can be applied. One of the distinguished features

of applying two different optical lattices is that the basis momentum states for each

of the spatial frequencies are independent. Both the standing waves are formed from

the same off-resonant laser beam aligned at two different geometry. Using these two

sets of optical lattices of different spatial periods, several interesting experiments can

be performed. These include: (i) the measurement of the quantum fidelity to study

quantum chaotic behavior (ii) to study the quantum non-linear dynamics of a non-

Kolmogorov-Arnold-Moser system and (iii) phase selected momentum transport using

a two-component kicking potential.
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Nez, L. Julien, and F. Biraben, “Combination of Bloch Oscillations with a

Ramsey-Bord Interferometer: New Determination of the Fine Structure Con-

stant”, Phys. Rev. Lett. 101, 230801 (2008).
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APPENDIX A

SWITCH

During the process of creating BEC, magnetic field due to main coil was turned on

and off at different times. To facilitate this, an electronic switch was designed and

built in the lab as shown in Fig. A.1. It was made up of STE250NS10 N-MOSFET.

The switch was used in an inductive load (coil) which generates an induced emf and

can easily damage the electonic components. In order to prevent from this type of

damage, the circuit was clamped by using a fast diode. A 6.5µF nonelectrolytic and

1100µ F electrolyic capacitors were used. The gate source voltage (VGS) needed to

operate switch was provided by digital voltage signal from the PCI card. In order to

operate it fully, VGS = 10V was applied.
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Figure A.1: Schematic drawing of the switch system used for turning the magnetic

field produced by main coil on and off .
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Abstract: This thesis reports on the experimental investigation of several applications
of the atom-optical quantum kicked rotor (AOQKR) using a Bose-Einstein conden-
sate (BEC) of 87Rb atoms. The AOQKR was achieved by exposing a BEC to short
periodic pulses from a horizontal optical standing wave formed from the interference
of two off-resonant laser beams. In the first set of experiments the fidelity or over-
lap between the kicked rotor states with a reference state was studied. The fidelity
resonance widths in pulse period and in acceleration were found to scale as the in-
verse cube of the kick numbers, a sub-Fourier behavior with possible application in
precision measurement experiments. The sensitivity of the fidelity to acceleration
was experimentally and theoretically investigated and found to depend on the mag-
nitude and direction of the applied acceleration. The asymmetry between positive
and negative acceleration was found to be related to the temperature of the atomic
sample. In the second set of experiments, the phenomenon of a quantum ratchet
(which is manifested by a directed current of particles in the absence of a net bias
force) both at resonance and away from resonance was studied. It was confirmed that
the current direction can be controlled by changing experimental parameters which
leave the underlying symmetries of the system unchanged. It was demonstrated that
this behavior can be understood using a single variable containing many of the ex-
perimental parameters. These experiments confirmed that such a ratchet behavior
can under certain circumstances be the same in both the true classical and quantum
regimes. The final application of the AOQKR discussed in this thesis is the quantum
accelerator mode. Both the formation and decay mechanism of these modes were
studied.
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