
 GALERKIN CFD SOLVERS FOR USE IN A

 MULTI-DISCIPLINARY SUITE FOR MODELING

 ADVANCED FLIGHT VEHICLES

 By

 NICHOLAS J MOFFITT

 Bachelor of Science in Aerospace Engineering

 Oklahoma State University

 Stillwater, Oklahoma

 2002

 Master of Science in Mechanical Engineering

 Oklahoma State University

 Stillwater, Oklahoma

 2004

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 DOCTOR OF PHILOSOPHY

 May 2013

���

�

GALERKIN CFD SOLVERS FOR USE IN A

 MULTI-DISCIPLINARY SUITE FOR MODELING

 ADVANCED FLIGHT VEHICLES

 Dissertation Approved:

 Dr. Andrew S. Arena

 Dissertation Adviser

 Dr. Frank W. Chambers

 Dr. J. Keith Good

 Dr. A. J. Johannes

����

������	
��

�����
�	
�����
���
��������
��������������
�����
�����
����������

�

�
��������	���������
�����
�������

ACKNOWLEDGEMENTS

�

I am very grateful to have many family, friends, faculty, staff, and students to thank for

all of their help throughout this work:

I should start with those who affected the work directly. My work is the continuation of

Tim Cowan's dissertation. Tim, thank you leaving a solid base for development and

many opportunities for advancement.

Charles O'Neill gave me the initial training in using the CASE lab software. Charles,

thank you for all you help, guidance, support and friendship. I will always remember our

late night discussions that mixed physics, economics, and religion.

I had the opportunity to work with several Master's students, who assisted my endeavors

during their time in the CASE lab: Cody Pinkerman, Anthony Hassett, Colin Brown,

Matt Sukraw, and Robert Fischer. Thank you to all of you for all hard work, dedicated

hours, and respect while working with the codes that I was developing. Thank you for

not only being co-workers but also friends.

Dr. Gupta, NASA, and AES provided the culmination of many small projects into the

body of work in this document. I want to thank Dr. Gupta, NASA, and AES for the

opportunity and funding that accompanied the task.

Dr. Arena, thank you for advising me in my endeavors in teaching, designing, and

research. Thank you for brining all of these people and projects into my life; I would not

be the same person or engineer without these experiences. Times were often rocky, but I

am ever grateful for the freedom to choose my own direction and experience that I gained

along the way.

Thank you to my committee for the encouragement and great devotion to reading this

document. I cannot thank you enough for your time and guidance.

The most influential people were not even involved directly in this work. My family and

friends kept me fighting through the hard times and kept my spirits up when there did not

seem to be a light at the end of the tunnel:

Mom and Dad, thank you for all of your love and support, emotionally and financially. I

cannot thank you enough for everything that you have given me. I definitely would not

have stuck out the last several years without your supporting words.

���

������	
��

�����
�	
�����
���
��������
��������������
�����
�����
����������

�

�
��������	���������
�����
�������

Heather and Tod, thank you for also being supporting and giving me a place to go when I

left Stillwater. We have all been struggling to finish our degrees, and I am so happy that

all three of us finished this last stretch together, as a family.

Uncle Tom, thank you for providing me with a laptop when I could not afford to replace

my computer. The laptop gave me the opportunity to visit family and friends while still

working on this research.

Thank you to my many friends, who have supported me over the many years. Thank you

for distracting me with games and talks as breaks in the research; but most of all, thank

you for helping me keep on task when my research required it. I hope we can all catch up

on lost time: (alphabetically) Deric & Kati Babcock, Mike Beavers, Megan Busby, Carol

Challenger, Max and Jean Cobb, Joe Conner, Alex Christie, Mark Davey, Josh and Anna

Edwards, Shawn Fleming, Thomas Hayes, Shannon Honer, Fred Keating, James Kidd,

Ryan Oliver & China, Heather Orr, Shannon Robinson, Gentry Shelton, John and Sarah

Terrell, Cindy Washington, and many others.

Thank you for all of the people at Countryside and BSF (St Louis) for your encouraging

words and support. And thank you to all of my co-workers at Boeing who have kept me

going during these last four months: Andrew, Andy, Josh, Brian, Matthew, and Mark.

Finally, I have to thank God for the love and patience, for all of the people listed on this

page, and for all of the opportunities and financial support that came along when it was

most needed.

��

�

Name: NICHOLAS J MOFFITT

Date of Degree: MAY 2013

Title of Study: GALERKIN CFD SOLVERS FOR USE IN A MULTI-DISCIPLINARY

SUITE FOR MODELING ADVANCED FLIGHT VEHICLES

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

�����������

This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite.

The suite is proposed as a means of modeling advanced flight vehicles, which exhibit

strong coupling between aerodynamics, structural dynamics, controls, rigid body motion,

propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics,

stability and control, and other highly coupled applications. The suite uses NASA-

STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion,

and rigid body dynamics are modeled in one of the five CFD solvers below.

Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These

solvers are capable of modeling compressible inviscid aerodynamics with modal elastics

and rigid body motion. This work reorganized these solvers to improve efficiency during

editing and at run time. Simple and efficient propulsion models were added, including

rocket, turbojet, and scramjet engines.

Viscous terms were added to the previous solvers to create NS2D and NS3D. The

viscous contributions were demonstrated in the inertial and non-inertial frames. Variable

viscosity (Sutherland�s equation) and heat transfer boundary conditions were added to

both solvers but not verified in this work. Two turbulence models were implemented in

NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter�s SST

model (1994). A rotation correction term (Shur, et al., 2000) was added to the production

of turbulence. Local time stepping and artificial dissipation were adapted to each model.

CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved

the time accuracy, far field stability, viscous terms, Sutherland�s equation, and SA model

with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol.

Simple geometries were demonstrated to utilize current meshing and processing

capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

application of the suite. The current models are accurate at low supersonic speed and

reasonable for engineering approximation at hypersonic speeds. Improvements to extend

the models fully into the hypersonic regime are given in the Recommendations section��

vi

TABLE OF CONTENTS

Contents Page

Table of Figures xii

Table of Tables xxvi

List of Symbols xxvii

Chapter 1: Introduction 1

1.1 State-of-the-Art 9

1.2 Comparison of Turbulence Models 17

Chapter 2: Problem Statement 28

2.1 Emphasis and Objectives 28

2.1.1 Work with NASA-CFDsol (NASA Contract) 28

2.1.2 Work with In-House Codes 30

2.1.3 Objectives and Milestones 32

2.1.4 Additional Work 37

Chapter 3: Theory 39

3.1 Euler Equations 39

3.2 Navier-Stokes Equations 42

3.3 Thermodynamic Relationships 45

3.4 Turbulence Modeling Theory 51

3.4.1 Reynolds-Average Navier-Stokes (RANS) 52

vii

Contents Page

3.4.2 Favre-Averaged Navier-Stokes (FANS) 64

3.4.3 Spalart-Allmarus Model (Inertial) 70

3.4.4 Menter�s SST Model (Inertial) 75

3.4.5 Non-Inertial RC Correction to Turbulence Models 80

3.5 Non-Dimensional Equations 84

3.6 Boundary Conditions 90

3.7 Rigid Body Model 97

3.8 Structural / Controls Model 102

Chapter 4: Development 107

4.1 In-House Codes 107

4.1.1 Shape Function 107

4.1.2 Element Jacobian 109

4.1.3 Element Gradients 110

4.1.4 Consistent and Lumped Mass Matrices 112

4.1.5 Gauss Quadrature 113

4.1.6 Galerkin Formulation 115

4.1.7 Gauss�s Theorem 117

4.1.8 Unsteady Term 119

4.1.9 Element Fluxes Terms 119

4.1.10 Boundary Flux Terms 120

4.1.10.1 Riemann Invariants 121

4.1.10.2 Viscous Boundary Fluxes 129

4.1.10.3 Turbulent Fluxes 130

4.1.11 Boundary Conditions 132

viii

Contents Page

4.1.11.1 Far Field 133

4.1.11.2 Inviscid Wall 133

4.1.11.3 Viscous Wall 136

4.1.11.4 Symmetry Plane 138

4.1.11.5 Rocket Exhaust 142

4.1.11.6 Turbojet Engine Planes 145

4.1.12 Artificial Dissipation 153

4.1.13 Predictor-Corrector and Temporal Discretization 156

4.1.14 Residual and Boundary Conditions 159

4.2 CFDsol 160

4.2.1 Taylor Formulation 161

4.2.2 Galerkin Formulation 162

4.2.2.1 Stiffness Matrix 163

4.2.2.2 Pressure Vector 164

4.2.3 Boundary Conditions 165

4.2.3.1 Far Field 165

4.2.3.2 Inviscid Wall 170

4.2.3.3 Viscous Wall 171

4.2.3.4 Symmetry Plane 171

4.2.3.5 Rocket Exhaust 172

4.2.4 Stability 174

4.2.5 Boundary Integrals 176

4.2.6 Artificial Dissipation 180

4.3 Source Terms 186

ix

Contents Page

4.3.1 Non-Inertial Terms 187

4.3.2 Turbulent Source Terms 189

4.3.3 Quasi-Combustion Terms 190

4.4 Integration of Momentum 194

4.5 Local Time Stepping 202

4.5.1 Inviscid Local Time Step 203

4.5.2 Inviscid vs. Viscous Stability 204

4.5.3 Numerical Error in Derivatives 205

4.5.4 Viscous Local Time Step 207

Chapter 5: Implementation 221

5.1 In-House Codes 221

5.1.1 General Changes 222

5.1.2 Upgrade to Rigid Body Dynamics Model 224

5.1.3 Creation of NS2D/3D 225

5.1.4 Proper Tracking of Total Energy / Pressure 231

5.1.5 Zero Dissipation Length 231

5.1.6 Sutherland's 232

5.1.7 Acoustic Output Files 233

5.2 NASA-CFDsol 234

5.2.1 Proper Tracking of Total Energy / Pressure 234

5.2.2 Non-Inertial Frame and Rigid Body Dynamics Model 234

5.2.3 Structural Dynamics Model 237

5.2.4 Viscous Terms 238

5.2.5 Sutherland's Equation 239

x

Contents Page

5.2.6 Zero Dissipation Length � Instabilty 240

5.3 Propulsion Models 253

5.4 Turbulence Modeling 256

5.5 Memory 272

5.6 Run Times 273

5.7 Support Software 276

Chapter 6: Demonstration of In-House Codes 289

6.1 Inviscid Aerodynamics 289

6.1.1 Subsonic 289

6.1.2 Transonic 308

6.1.3 Supersonic 323

6.1.4 Time-Accurate 343

6.2 Propulsion Modeling 349

6.3 Viscous Aerodynamics 389

6.3.1 Laminar 390

6.3.2 Turbulent 421

Chapter 7: Comparison with NASA-CFDsol 436

7.1 Inviscid Aerodynamics 436

7.1.1 Subsonic 437

7.1.2 Transonic 450

7.1.3 Supersonic 465

7.1.4 Time-Accurate (Acoustic) 469

7.2 Propulsion Modeling 479

7.3 Viscous Aerodynamics 504

xi

Contents Page

7.3.1 Laminar 504

7.3.2 Turbulent 515

Chapter 8: Conclusions and Recommendations 520

8.1 Conclusions 520

8.1.1 Objectives 520

8.1.2 Evaluation 523

8.1.3 Precaution against Pitfalls 532

8.1.4 Standards and Good Practices 534

8.1.5 Converting between Solvers 539

8.2 Recommendations 542

References 552

Appendices 566

Appendix A: Stokes' Hypothesis 566

Appendix B: Analytical Integrals 570

Appendix C: Euler2D File Formats 584

Appendix D: NS2D File Formats 637

Appendix E: Euler3D File Formats 663

Appendix F: NS3D File Formats 718

Appendix G: 2D Acoustic Outputs 749

Appendix H: 3D Acoustic Outputs 752

Appendix I: Entropy-Based Artificial Dissipation 759

xii

TABLE OF FIGURES

Figure Page

Figure 1.1: Specific Impulse vs. Mach Number (taken from Curran, 1996). 4

Figure 2.1: Flow Diagram (Lower Order System Model). 26

Figure 2.2: Flow Diagram (Higher Order System Model). 27

Figure 2.3: Flow Diagram (NASA-CFDsol). 28

Figure 2.4: Flow Diagram (In-House OSU Codes). 31

Figure 3.1: Relative Velocity at Boundary Node of a Translating / Spinning Domain. 100

Figure 3.2: Solid Wall Normals with Elastic Motion. 103

Figure 4.1: Linear Shape Function and Property Distribution. 108

Figure 4.2: Local Coordinates and Shape Functions for Linear Triangular Element. 109

Figure 4.3: Discontinuity at the Boundary Element. 122

Figure 4.4: Behavior of Characteristic Waves in Different Flow Regimes. 125

Figure 4.5: 2D Characteristics: Acoustic, Subsonic, Sonic, & Supersonic. 125

Figure 4.6: Normals along Trailing Edge of an Airfoil. 135

Figure 4.7: Traveling Waves within Rocket Combustion Chamber. 143

Figure 4.8: Progressive Growth of Pressure within Rocket Combustion Chamber. 144

Figure 4.9: Rocket Engine � Pressure and Mach Number Distributions. 145

Figure 4.10: Phase Plane for Inlet Mass Flow Rate and Static Pressure. 147

Figure 4.11: Oscillating Mass Flow Rate and Boundary Pressure (Subsonic). 148

xiii

Figure Page

Figure 4.12: Oscillating Mass Flow Rate and Boundary Pressure (Supersonic). 149

Figure 4.13: Engine Inlets under Various Conditions. 150

Figure 4.14: Properties along Turbojet Inflow Boundary over 15k Ramp-up Steps. 154

Figure 4.15: Fluxes along Turbojet Inflow Boundary over 15k Ramp-up Steps. 154

Figure 4.16: Effective Density Change and Number of Iterations to Zero. 158

Figure 4.17: Pressure Distribution around NACA 0012 Airfoil (Mach 0.5, 5o, CFDsol). 166

Figure 4.18: Velocity Distribution around NACA 0012 Airfoil (Mach 0.5, 5o, CFDsol). 166

Figure 4.19: Coefficient of Pressure from CFDsol and Potential Flow Solution. 167

Figure 4.20: Domain Pressure through NACA 0012 Solution (Mach 0.5, 5o, CFDsol). 168

Figure 4.21: Density and Velocity from NACA 0012 (Mach 0.5, CFDsol). 168

Figure 4.22: Velocity Distribution for NACA 0012 in Rectangular Domain (Mach 0.5). 169

Figure 4.23: Surface and Domain Pressure for NACA 0012 (Improved). 170

Figure 4.24: Static Properties at Rocket Boundary (CFDsol, Euler3D). 173

Figure 4.25: Development of Static Pressure Downstream of Rocket Inflow Plane. 174

Figure 4.26: Velocity around NACA 0012 in �Wind Tunnel� (CFDsol). 175

Figure 4.27: Oscillations in Pressure Distribution from CFDsol. 176

Figure 4.28: Unsteady Solution Accuracy vs. Time Step and Dissipation. 181

Figure 4.29: Inaccurate Motion of Wagner Vortex. 184

Figure 4.30: Corrected Motion of Wagner Vortex. 186

Figure 4.31: Cylinder Translating at 45-deg and CD vs. Re. 188

Figure 4.32: Oscillations in Velocity Profile around Spinning Cylinder. 188

Figure 4.33: Circumferential Velocity Profile around Spinning Cylinder. 189

Figure 4.34: Afterburner Properties Simulated with a �Step� Generation. 193

Figure 4.35: Afterburner Properties Simulated with a �Cosine� Generation. 193

xiv

Figure Page

Figure 4.36: Body and Reaction Forces . 194

Figure 4.37: Control Volume around Body. 195

Figure 4.38: Stable CFL Values vs. Element Reynolds Number Rex. 204

Figure 5.1: Organization of Nodes in case.g2d and case.g3d. 228

Figure 5.2: Organization of Boundary Elements in case.g2d and case.g3d. 228

Figure 5.3: Laminar Velocity Profiles from NS2D with diss = 1.0 and 0.0. 231

Figure 5.4: Effective Dissipation. 232

Figure 5.5: Pressure over NACA 0012 Airfoil (CFDsol, Inviscid, Non-Inertial). 236

Figure 5.6: Empty Domain under Non-Inertial Translation and Rotation. 237

Figure 5.7: Pressure over NACA 0012 Airfoil (CFDsol, Inviscid, Transpiration) . 239

Figure 5.8: Cross-Flow Velocity Vectors (Looking Down on Plate, Sym on Top & Btm). 241

Figure 5.9: Contributions and Cross-Flow Velocity at Single Node. 243

Figure 5.10: Inviscid Contributions to Crossflow Velocity at Single Node. 243

Figure 5.11: Large Vertical Oscillation near Bottom of Boundary Layer. 244

Figure 5.12: Divergence in Pressure on Surface of Inviscid Ellipse (niter x tau = 958). 247

Figure 5.13: Oscillations in Density along Wall of Ellipse (Re = 4000). 248

Figure 5.14: Oscillations in Velocity along Wall of Ellipse (Re = 4000). 248

Figure 5.15: Oscillations in Pressure Distribution around Inviscid Cylinder. 249

Figure 5.16: Time Step Study for Circular Cylinder (Re = 41.0). 250

Figure 5.17: Time Step Study for Circular Cylinder (Re = 26.0). 251

Figure 5.18: Six Snapshots of Turbulent Advection in a Straight Domain. 262

Figure 5.19: Turbulent Bubble Initial Conditions and Advected Downstream. 263

Figure 5.20: Slices of Turbulent Bubble being Advected Downstream. 263

Figure 5.21: Slices of Turbulent Bubble with Different Levels of Viscous Diffusion. 264

xv

Figure Page

Figure 5.22: Advected Bubble at Various Levels of Molecular & Artificial Dissipation. 266

Figure 5.23: Slices of Turbulent Bubble Solution from NS2D-SA (Various Re). 266

Figure 5.24: Turbulent Bubble Initial Conditions and Advected Downstream. 267

Figure 5.25: Slices of Turbulent Bubble being Advected Downstream. 267

Figure 5.26: Slices of Turbulent Bubble with Different Levels of Viscous Diffusion. 268

Figure 5.27: Advected Bubble at Various Levels of Molecular & Artificial Dissipation. 269

Figure 5.28: Slices of Turbulent Bubble from Complete SA Model (Various Re). 269

Figure 5.29: Comparison of Run Times for Euler2D and NS2D. 274

Figure 5.30: Comparison of Run Times for Euler3D and NS3D. 275

Figure 5.31: Comparison of Run Times in 2D Inertial and Non-Inertial Frames. 276

Figure 5.32: Comparison of Run Times in 3D Inertial and Non-Inertial Frames. 277

Figure 5.33: Remeshed Solutions for Supersonic Wedge. 281

Figure 5.34: Remeshed Solutions for Supersonic Cones. 281

Figure 6.1: NACA 0012 Airfoil Mesh, Elliptical Far Field. 291

Figure 6.2: Pressure, Density, Mach, and Entropy Distrib. for NACA 0012 (Mach 0.3). 291

Figure 6.3: Pressure, Density, Mach, and Entropy Distrib. for NACA 0012 (Mach 0.3). 292

Figure 6.4: Coefficient of Pressure from Euler2D Compared to Smith-Hess Solution. 293

Figure 6.5: Coefficient of Pressure from Euler3D Compared to Smith-Hess Solution. 293

Figure 6.6: Coefficient of Pressure through Euler3D Solution Domain. 294

Figure 6.7: Distribution of Density and Velocity from Euler3D Solution. 295

Figure 6.8: Mesh for NACA 0012 Airfoil (Mach 0.502, 1.77-deg AOA). 296

Figure 6.9: Pressure and Mach around NACA 0012 (Mach 0.502, 1.77-deg AOA). 297

Figure 6.10: Surface Pressure over NACA 0012 Airfoil (Mach 0.502, 1.77-deg AOA). 297

Figure 6.11: Mesh for RAE 2822 Airfoil (Mach 0.6, 2.57-deg AOA). 298

xvi

Figure Page

Figure 6.12: Pressure and Mach around RAE 2822 Airfoil (Mach 0.6, 2.57-deg AOA). 299

Figure 6.13: Surface Pressure over RAE 2822 Airfoil (Mach 0.6, 2.57-deg AOA). 300

Figure 6.14: Pressure, Mach Number, and Entropy Distrib. near Cat�s Eye (Mach 0.3). 300

Figure 6.15: Mesh for 6:1 Ellipse (Mach 0.3). 301

Figure 6.16: Pressure and Mach Distributions around Ellipse (Mach 0.3). 302

Figure 6.17: Surface Pressure over Ellipse (Mach 0.3). 302

Figure 6.18: Mesh for Circular Cylinder (Mach 0.3). 303

Figure 6.19: Pressure, Mach Number, and Entropy Distrib. near Cylinder (Mach 0.3). 304

Figure 6.20: Surface Pressure Distributions over Circular Cylinder (Mach 0.3). 305

Figure 6.21: Velocity Distributions over Surface of Circular Cylinder (Mach 0.3). 305

Figure 6.22: Mesh for Sphere (Mach 0.3). 306

Figure 6.23: Pressure and Mach around Sphere (Mach 0.3). 307

Figure 6.24: Surface Pressure over Sphere (Mach 0.3). 308

Figure 6.25: Pressure and Mach around NACA 0012 Airfoil (Mach 0. 835, -0.13-deg). 309

Figure 6.26: Mesh for NACA 0012 Airfoil (Mach 0.835, -0.13-deg AOA). 310

Figure 6.27: Surface Pressure over NACA 0012 Airfoil (Mach 0. 835, -0.13-deg AOA). 311

Figure 6.28: Pressure and Mach around RAE 2822 Airfoil (Mach 0.73, 2.8-deg AOA). 312

Figure 6.29: Mesh for RAE 2822 Airfoil (Mach 0.73, 2.8-deg AOA). 313

Figure 6.30: Surface Pressure over RAE 2822 Airfoil (Mach 0.73, 2.8-deg AOA). 314

Figure 6.31: Cast 7 Airfoil Mesh (Mach 0.765, 2.52-deg AOA). 316

Figure 6.32: Pressure and Mach Distrib. around CAST 7 (Mach 0.765, 2.52-deg AOA). 317

Figure 6.33: Surface Pressure Distrib. over CAST 7 (Mach 0.765, 2.52-deg AOA). 317

Figure 6.34: Cast 7 Airfoil Mesh (Mach 0.785, 2.52-deg AOA). 318

Figure 6.35: Pressure and Mach Distributions around CAST 7 (Mach 0.785, 2.52-deg). 319

xvii

Figure Page

Figure 6.36: Surface Pressure Distribution over CAST 7 Airfoil (Mach 0.785, 2.52-deg). 319

Figure 6.37: Pressure and Mach around NASA 10% Supercritical (Mach 0.79, 2-deg). 320

Figure 6.38: Mesh for NASA 10% Supercritical Airfoil (Mach 0.79, 2-deg AOA). 321

Figure 6.39: Surface Pressure over NASA 10% Supercritical Airfoil (Mach 0.79, 2-deg). 322

Figure 6.40: Pressure Distribution over NASA 10% Supercritical Airfoil (Mach 0.7). 323

Figure 6.41: Pressure Distribution over NASA 10% Supercritical Airfoil (Mach 0.7) 323

Figure 6.42: Shock Tube Geometry 324

Figure 6.43: Pressure Slices through Shock Tube at Regular Intervals. 326

Figure 6.44: Density Slices through Shock Tube at Regular Intervals 327

Figure 6.45: Velocity Slices through Shock Tube at Regular Intervals. 328

Figure 6.46: Mesh and Pressure for Compression Corner at M = 10. 329

Figure 6.47: Pressure along Wall of Compression Corner, M = 10. 330

Figure 6.48: Pressure Profiles Downstream of Compression Corner versus Spacing. 331

Figure 6.49: Pressure Profiles Downstream of Compression Corner (M = 2). 332

Figure 6.50: Number of Elements versus Compression Angle and Mach Number. 334

Figure 6.51: Mesh and Density for Expansion Corner at M = 5. 335

Figure 6.52: Pressure along Wall of Expansion Corner, M = 3. 335

Figure 6.53: Number of Elements versus Expansion Angle and Mach Number. 336

Figure 6.54: Double-Wedge Airfoil Geometry (to scale). 337

Figure 6.55: Pressure and Mach Distributions for Double-Wedge Airfoil (Euler2D). 338

Figure 6.56: Pressure and Mach Distributions for Double-Wedge Airfoil (Euler3D). 339

Figure 6.57: Double-Wedge Airfoil Mesh (Euler3D). 339

Figure 6.58: Pressure, Density, Mach, and Entropy Distrib. for Double-Wedge Airfoil. 341

Figure 6.59: Mach Distrib. for Double-Wedge Airfoil at Mach 5 and 10 (Euler3D). 342

xviii

Figure Page

Figure 6.60: Convergence of Energy Residual vs. CFL. 343

Figure 6.61: Wagner Solution from Euler2D Compared to Jones� Approximation. 345

Figure 6.62: Wagner Solution from Euler3D Compared to Jones� Approximation. 346

Figure 6.63: Snapshots of the Unsteady Velocity Distribution for Wagner Solution. 346

Figure 6.64: Snapshots of the Unsteady Pressure Distrib. for Wagner Solution. 347

Figure 6.65: Wagner Pressure Slices Up and Downstream of Airfoil. 348

Figure 6.66: LE and TE Wave Position as a Function of Time. 349

Figure 6.67: Subsonic (Mach 0.4) Constant Heat Generation. 354

Figure 6.68: Subsonic (Mach 0.4) Cosine Heat Generation. 355

Figure 6.69: Subsonic (Mach 0.4) Constant Mass Generation. 356

Figure 6.70: Subsonic (Mach 0.4) Cosine Mass Generation. 357

Figure 6.71: Subsonic (Mach 0.4) Constant Mass and Heat Generation. 358

Figure 6.72: Subsonic (Mach 0.4) Cosine Mass and Heat Generation. 359

Figure 6.73: Supersonic (Mach 2.0) Constant Heat Generation. 360

Figure 6.74: Supersonic (Mach 2.0) Cosine Heat Generation. 361

Figure 6.75: Supersonic (Mach 2.0) Constant Heat Generation. 362

Figure 6.76: Supersonic (Mach 2.0) Cosine Heat Generation. 363

Figure 6.77: Supersonic (Mach 2.0) Constant Mass Generation. 364

Figure 6.78: Supersonic (Mach 2.0) Cosine Mass Generation. 365

Figure 6.79: Supersonic (Mach 2.0) Constant Mass and Heat Generation. 366

Figure 6.80: Supersonic (Mach 2.0) Cosine Mass and Heat Generation. 367

Figure 6.81: Supersonic (Mach 7.0) Constant Heat Generation. 368

Figure 6.82: Supersonic (Mach 7.0) Cosine Heat Generation. 369

Figure 6.83: Supersonic (Mach 7.0) Constant Heat Generation. 370

xix

Figure Page

Figure 6.84: Supersonic (Mach 7.0) Cosine Heat Generation 371

Figure 6.85: Flow around Generic Hypersonic Vehicle and Exit of Combustor. 373

Figure 6.86: GHV Geometry and Mesh. 375

Figure 6.87: Local Mach Number around GHV at Mach 11 and 0o AOA. 375

Figure 6.88: Variation of Force and Moment Coefficients with Nozzle Length. 376

Figure 6.89: Variation of Force and Moment Coefficients with Lower Lip Length. 376

Figure 6.90: Variation of Force and Moment Coeff. with Mach Number with Stability. 377

Figure 6.91: Variation of Force and Moment Coeff. with Angle of Attack with Stability. 377

Figure 6.92: Variation Force and Moment Coeff. with Pitching Rate with Stability. 378

Figure 6.93: Local Mach along Centerline and Wall Surface of Rocket Nozzle. 379

Figure 6.94: Rocket Nozzle Mesh. 380

Figure 6.95: Local Mach Number within Rocket Nozzle: pt/pinf = 1.67, 1.78, and 2. 381

Figure 6.96: Pressure, Mach, and Internal Energy for Subsonic Inlet at Mach 0.6. 383

Figure 6.97: Local Mach Number at Various Freestream Velocities. 384

Figure 6.98: Local Mach Number at 0 and 4-deg Angle-of-Attack. 385

Figure 6.99: Supersonic Normal Shock Inlet at Mach 1.5 and Mach 0.7. 385

Figure 6.100: Mesh for Supersonic Oblique Shock Inlet. 386

Figure 6.101: Local Mach Number for Oblique Shock Inlet at Two Mass Flow Rates. 387

Figure 6.102: Mesh for Coupled Turbojet. 388

Figure 6.103: Local Mach and Pressure around Coupled Turbojet. 388

Figure 6.104: Two Coupled Engines in one Domain. 389

Figure 6.105: Laminar Velocity Profile and Shear Stress for Coarse Meshes (NS2D). 391

Figure 6.106: Laminar Velocity Profile and Shear Stress for Fine Meshes (NS2D). 392

Figure 6.107: Suggested Meshing Scheme for Laminar Flows. 393

xx

Figure Page

Figure 6.108: Boundary Layer Profile Properties for Mesh 3. 394

Figure 6.109: Laminar Velocity Profile and Shear Stress for Coarse Meshes (NS3D). 395

Figure 6.110: Laminar Velocity Profile and Shear Stress for Fine Meshes (NS3D). 396

Figure 6.111: Boundary Layer Profile Properties for Mesh 3. 397

Figure 6.112: Effective Reynolds Number vs. Artificial Dissipation Scalar in NS3D. 398

Figure 6.113: Oscillating Wake behind Ellipse (Entropy, Rec = 4000, diss = 0.6). 399

Figure 6.114: Mesh for Ellipse (Rec = 4000). 400

Figure 6.115: Surface Pressure at Various Times over Ellipse (Rec = 4000, diss = 0.6). 400

Figure 6.116: Lift and Drag Histories for Ellipse (Rec = 4000, diss = 0.6). 401

Figure 6.117: Velocity Distribution near Circular Cylinder at Re = 1.54 (NS2D). 402

Figure 6.118: Velocity Distribution near Circular Cylinder at Re = 9.6 (NS2D). 402

Figure 6.119: Velocity Distribution near Circular Cylinder at Re = 26 (NS2D). 403

Figure 6.120: Cylinder at Re = 41: Velocity (top) and Entropy (bottom) (NS2D). 403

Figure 6.121: Oscillating Wake Behind Circular Cylinder (Entropy, Re = 105) (NS2D). 404

Figure 6.122: Oscillating Wake Behind Circular Cylinder (Entropy, Re = 200) (NS2D). 404

Figure 6.123: Entropy Distribution Downstream of Solid Fence. 407

Figure 6.124: Density Fluctuations Downstream of Solid Fence. 408

Figure 6.125: Entropy Showing Vortices Downstream of Solid Fence. 408

Figure 6.126: Entropy Distribution Downstream of Porous Fence. 409

Figure 6.127: Density Fluctuations Downstream of Porous Fence. 410

Figure 6.128: Entropy Showing Vortices Produced by Holes in Porous Fence. 410

Figure 6.129: Velocity Distribution around Equally Sized Holes 411

Figure 6.130: Velocity Distribution around Incremented Holes 411

Figure 6.131: Instantaneous Velocity Profile One and Two Fence Heights Downstream. 412

xxi

Figure Page

Figure 6.132: Square Cavity Simulation (NS2D). 414

Figure 6.133: Mesh for Top of Cavities (L:D = 1:1, 1:2, and 4:1). 415

Figure 6.134: Entropy and Velocity in Square Cavity (L:D = 1:1). 415

Figure 6.135: Entropy and Velocity in Shallow Cavity (L:D = 4:1). 416

Figure 6.136: Entropy and Velocity in Deep Cavity (L:D = 1:2). 416

Figure 6.137: Pressure Frequency Spectra for 17 Locations around Square Cavity. 417

Figure 6.138: Pressure Frequency Spectra for 17 Locations around Shallow Cavity. 418

Figure 6.139: Lipped Cavity (Entropy, NS2D). 419

Figure 6.140: Acoustic Waves above Lipped Cavity (Density, NS2D). 420

Figure 6.141: Vorticity in Lipped Cavity Flow. 420

Figure 6.142: Grid Convergence of SA Velocity and Eddy Viscosity Profiles at x = 7. 423

Figure 6.143: Convergence of SA Skin Friction with Near-Wall Spacing. 423

Figure 6.144: Grid Convergence of Profile Properties with SA Turbulence Model. 424

Figure 6.145: Geometry for Rumsey�s Flat Plate Grids (Mesh 4). 426

Figure 6.146: Skin Friction along Rumsey Plate for 5 Meshes in Family . 427

Figure 6.147: Convergence of Velocity and Eddy Viscosity Profiles at x = 0.97. 428

Figure 6.148: Convergence of Velocity and Eddy Viscosity Profiles at x = 1.83. 428

Figure 6.149: Maximum Eddy Viscosity as a Function of Distance along Plate. 429

Figure 6.150: Rumsey�s Coarsest Grid for Bump Plate Case. 430

Figure 6.151: Pressure Distribution over Bump Plate for Four NS2D Solutions. 430

Figure 6.152: Skin Friction along Bump Plate for Four NS2D Solutions. 431

Figure 6.155: Pressure, Velocity, and Eddy Viscosity Distribution around Bump Plate. 432

Figure 6.156: Velocity Vectors around Bump Plate. 432

Figure 6.153: Velocity and Eddy Viscosity Profiles at Top of Bump (x = 0.75). 433

xxii

Figure Page

Figure 6.154: Maximum Eddy Viscosity along Bump Plate for Four NS2D Solutions. 433

Figure 6.157: Orthogonal Elements. 434

Figure 7.1: NACA 0012 Airfoil Mesh (Mach 0.3, 2-deg AOA). 438

Figure 7.2: Pressure Distribution around NACA 0012 Airfoil at Mach 0.3, 2-deg AOA. 438

Figure 7.3: Pressure Distribution around NACA 0012 Airfoil at Mach 0.3, 2-deg AOA. 439

Figure 7.4: Mesh for NACA 0012 Airfoil (Mach 0.502, 1.77-deg AOA). 440

Figure 7.5: Pressure and Mach Distributions around NACA 0012 Airfoil (Mach 0.502). 440

Figure 7.6: Pressure Distribution over NACA 0012 Airfoil at Mach 0.502, 1.77-deg. 441

Figure 7.7: Mesh for RAE 2822 Airfoil (Mach 0.6, 2.57-deg AOA). 442

Figure 7.8: Pressure Distribution around RAE 2822 Airfoil (Mach 0.6). 442

Figure 7.9: Mach Distribution around RAE 2822 Airfoil (Mach 0.6). 443

Figure 7.10: Pressure Distribution over RAE 2822 Airfoil (Mach 0.6, 2.57-deg AOA). 443

Figure 7.11: Pressure and Velocity around Inviscid Ellipse (Mach 0.3). 444

Figure 7.12: Ellipse Mesh. 445

Figure 7.13: Pressure over Inviscid Ellipses (Mach 0.3). 445

Figure 7.14: Inviscid Cylinder Mesh. 446

Figure 7.15: Pressure and Velocity Distrib. around Inviscid Cylinder. 447

Figure 7.16: Pressure Distribution over Cylinder. 448

Figure 7.17: Pressure and Velocity Distrib. along Sym Plane around Inviscid Sphere. 449

Figure 7.18: Inviscid Sphere Mesh. 450

Figure 7.19: Pressure Distribution over Sphere. 450

Figure 7.20: Mesh for NACA 0012 Airfoil (Mach 0.835, -0.13-deg AOA). 452

Figure 7.21: Pressure and Mach Distrib. around NACA 0012 Airfoil (Mach 0.835). 453

Figure 7.22: Pressure Distribution over NACA 0012 Airfoil (Mach 0. 835, -0.13-deg). 453

xxiii

Figure Page

Figure 7.23: Pressure and Mach Distributions around RAE 2822 Airfoil (Mach 0.73). 454

Figure 7.24: Mesh for RAE 2822 Airfoil (Mach 0.73, 2.8-deg AOA). 455

Figure 7.25: Pressure Distribution over RAE 2822 Airfoil (Mach 0.73, 2.8-deg AOA). 456

Figure 7.26: Mesh for CAST 7 Airfoil (Mach 0.765, 2.52-deg AOA). 457

Figure 7.27: Pressure and Mach Distributions around CAST 7 Airfoil (Mach 0.765). 458

Figure 7.28: Pressure Distribution over CAST 7 Airfoil (Mach 0.765, 2.52-deg AOA). 458

Figure 7.29: Pressure Distribution over CAST 7 Airfoil (Mach 0.785, 2.52-deg AOA). 459

Figure 7.30: Mesh for CAST 7 Airfoil (Mach 0.785, 2.52-deg AOA). 460

Figure 7.31: Pressure and Mach Distributions around CAST 7 Airfoil (Mach 0.785). 460

Figure 7.32: Mesh for NASA 10% Thick Supercritical Airfoil (Mach 0.79, 2-deg AOA). 462

Figure 7.33: Pressure Distribution around NASA 10% Supercritical Airfoil (CFDsol). 463

Figure 7.34: Mach Distribution around NASA 10% Supercritical Airfoil (CFDsol). 463

Figure 7.35: Pressure Distribution around NASA 10% Supercritical Airfoil (Euler2D). 464

Figure 7.36: Mach Distribution around NASA 10% Supercritical Airfoil (Euler2D). 464

Figure 7.37: Pressure Distribution over NASA 10% Supercritical Airfoil (Mach 0.79). 465

Figure 7.38: Double-Wedge Airfoil Mesh (Mach 2, 2-deg AOA). 466

Figure 7.39: Flow around a Supersonic Double-Wedge Airfoil at Mach 2. 466

Figure 7.40: Pressure and Mach around Double Wedge Airfoil at Mach 2 and 2-deg. 467

Figure 7.41: Four Flow Regions around Double-Wedge Airfoil. 468

Figure 7.42: Convergence Rate of Energy Residual vs. tau. 468

Figure 7.43: Wagner Solution for NACA 0012 Airfoil (Mach 0.3, 2o AOA). 470

Figure 7.44: Snapshots of Unsteady Pressure Distribution for Wagner Solution. 470

Figure 7.45: Velocity Distribution around Pitching Airfoil (Non-Inertial). 471

Figure 7.46: Entropy Distribution around Pitching Airfoil (Non-Inertial). 472

xxiv

Figure Page

Figure 7.47: Lift and Drag History for Pitching Airfoil (Non-Inertial). 472

Figure 7.48: Moment History for Pitching Airfoil (Non-Inertial). 473

Figure 7.49: Velocity & Entropy around Plunging Airfoil (Non-Inertial). 474

Figure 7.50: Lift and Drag History for Pitching Airfoil (Non-Inertial). 475

Figure 7.51: Moment History for Pitching Airfoil (Non-Inertial). 475

Figure 7.52: Generalized Force for Pitching Mode (Transpiration). 476

Figure 7.53: Velocity (top) & Entropy (bottom) around Pitching Airfoil (Transp.). 477

Figure 7.54: Velocity Distribution around Plunging Airfoil (Transpiration). 478

Figure 7.55: Entropy Distribution around Plunging Airfoil (Transpiration). 478

Figure 7.56: Generalized Force for Plunging Mode (Transpiration). 479

Figure 7.57: Subsonic (Mach 0.4) Constant Heat Generation. 483

Figure 7.58: Subsonic (Mach 0.4) Cosine Heat Generation. 484

Figure 7.59: Subsonic (Mach 0.4) Constant Mass Generation. 485

Figure 7.60: Subsonic (Mach 0.4) Cosine Mass Generation. 486

Figure 7.61: Subsonic (Mach 0.4) Constant Mass and Heat Generation. 487

Figure 7.62: Subsonic (Mach 0.4) Cosine Mass and Heat Generation. 488

Figure 7.63: Supersonic (Mach 2.0) Constant Heat Generation. 490

Figure 7.64: Supersonic (Mach 2.0) Cosine Heat Generation. 491

Figure 7.65: Supersonic (Mach 2.0) Constant Heat Generation. 492

Figure 7.66: Supersonic (Mach 2.0) Cosine Heat Generation. 493

Figure 7.67: Supersonic (Mach 2.0) Constant Mass Generation. 494

Figure 7.68: Supersonic (Mach 2.0) Cosine Mass Generation. 495

Figure 7.69: Supersonic (Mach 2.0) Constant Mass and Heat Generation. 496

Figure 7.70: Supersonic (Mach 2.0) Cosine Mass and Heat Generation. 497

xxv

Figure Page

Figure 7.71: Supersonic (Mach 7.0) Constant Heat Generation. 499

Figure 7.72: Supersonic (Mach 7.0) Cosine Heat Generation. 500

Figure 7.73: Supersonic (Mach 7.0) Constant Heat Generation. 501

Figure 7.74: Supersonic (Mach 7.0) Cosine Heat Generation. 502

Figure 7.75: Local Mach Number within Rocket Nozzle at pt = 1.67 pinf = 0.84 pdesign. 503

Figure 7.76: Local Mach Number along Centerline and Wall Surface of Rocket Nozzle. 504

Figure 7.77: Moderate Mesh for Laminar Boundary Layer (Re = 3600). 506

Figure 7.78: Laminar Boundary Layer Results from CFDsol. 506

Figure 7.79: Course and Fine Meshes and Dim�less Velocity Profiles. 507

Figure 7.80: Effective Reynolds Number vs. Artificial Dissipation Scalar. 509

Figure 7.81: Pressure and Velocity around Viscous Ellipse (Re = 4000). 510

Figure 7.82: Ellipse Mesh. 511

Figure 7.83: Pressure over Inviscid & Viscous Ellipse (Mach 0.3). 511

Figure 7.84: Viscous Cylinder Mesh (ReD = 9.6). 512

Figure 7.85: Pressure and Velocity around Viscous Cylinder (ReD = 9.6). 513

Figure 7.86: Pressure and Velocity around Viscous Cylinder (ReD = 41). 514

Figure 7.87: Viscous Cylinder Mesh (ReD = 41). 515

Figure 7.88: Velocity and Eddy Viscosity for Turbulent Section. 516

Figure 7.89: Eddy Viscosity Profiles at Quarter Locations across Turbulent Section. 516

Figure 7.90: Velocity and Eddy Viscosity for Trans. Boundary Layer. 518

Figure 7.91: Velocity and Eddy Viscosity Profiles along a Flat Plate Boundary Layer. 519

Figure 7.92: Growth of Turbulence (Eddy Viscosity) along Length of Plate. 519

xxvi

TABLE OF TABLES

Table Page

Table 1.1: State-of-the-Art in Viscous Finite Element Solvers. 18

Table 4.1: Gauss Quadrature � Triangle Elements. 114

Table 4.2: Gauss Quadrature � Tetrahedra Elements. 114

Table 6.1: Number of Elements (N) versus Compression Angle and Mach Number. 333

Table 6.2: Number of Elements (N) versus Expansion Angle and Mach Number. 336

Table 6.3: Results from Euler2D Compared with Shock-Expansion Theory. 340

Table 6.4: Results from Euler3D Compared with Shock-Expansion Theory. 340

Table 6.5: Comparison of Mach 5 Solutions to SE Theory. 342

Table 6.6: Comparison of Mach 10 Solutions to SE Theory. 342

Table 6.7: Comparison of GHV Solution to SE Theory. 373

Table 6.8: Profiles Tested for SA Grid Convergence. 422

Table 7.1: Comparison to Theory for Double-Wedge Airfoil (Mach 2, 2-deg AOA). 467

xxvii

LIST OF SYMBOLS

a Acoustic speed (= ργ /p)

ioa ,
Acceleration (vector) of non-inertial frame

ita ,
Local mesh acceleration (non-inertial frame)

beA Area of boundary element (3D domain)

eA Area of domain element (2D domain)

eA Inverse Jacobian matrix for element

iA Rows of inverse Jacobian matrix
*

A Riemann invariant matrix

b� Unit binormal vector for boundary element (tn �� ×=)

ijB Transformation of the plane; rotation about center of frame

pc Specific heat under constant pressure

vc Specific heat under constant volume

C Damping matrix

d Wall distance

Number of dimensions in domain and governing equations

e Internal energy (= cv T)

E , Eρ Total energy (= Kuue ii ρρρ ++
2
1)

rE , rEρ Total relative energy (= KVuue tii ρρρ +−+)(2

2
1)

F Uninstalled thrust (turbojet engine)

F
�

Rigid body forces

21 , FF Interpolation functions (SST models)
*

f Pressure contribution vector, adapted

ee ,2,1 ,ff Pressure contribution vector

cF
�

Generalized forces on control surfaces

dF
�

Rigid body forces and moments (= F
�

, M
�

)

iF External forces on body

iF Inviscid flux vector

iv ,F Viscous flux vector

σf Viscous boundary integral vector

xxviii

g
�

Gravity vector (body frame)

h Enthalpy (= cp T = e + p/ρ)

H , Hρ Total enthalpy (= Kuuh ii ρρρ ++
2
1)

rH , rHρ Total relative enthalpy (= KVuuh tii ρρρ +−+)(2

2
1)

[]II, Identity matrix (= 1, if i = j; = 0, otherwise)

mI Mass moment of inertial (inertial) matrix

eJ Element Jacobian matrix

eJ Element Jacobian (= d! Ωe = le, 2Ae, 6Ve)

k Thermal conductivity

K Stiffness matrix

eKK, Element inviscid stiffness matrices, global and elemental

*
K Element inviscid stiffness matrices, adapted

K , Kρ Turbulent kinetic energy (= iiuu ′′ρ
2
1 = iiuu ′′′′ρ

2
1)

ambK Ambient (freestream) turbulent kinetic energy

σK Viscous element contributions matrix

bel Length of boundary edge (2D domain)

m Mass of vehicle

m� Mass flow rate, inlet (turbojet engine)

fm� Mass flow rate of fuel (turbojet engine)

Hm� Enthalpy flow rate (turbojet engine)

M Mach number (= auu ii /)

M
�

Rigid body moments

M Mass matrix (= m I)

CM Consistent mass matrices (global)

becec ,, ,MM Consistent mass matrices (element and boundary element)

LM Lumped mass matrix

TM Turbulent Mach number (= aK /2)

inn �,� Unit normal vector for boundary element

p Static pressure

bp Static pressure along boundary

jP Momentum vector

tp Total pressure

Pr Prandtl number (= cp µ / k = 0.71 for air)

TPr Turbulent Prandtl number (= cp µT / kT = 0.9 for air)

q� ′′′ Heat generation (quasi-combustion)

bq ′′ Heat flux through boundary

iq ′′ Heat flux

iQ Turbulent transport of heat (= hui
′′ρ = hui

′′′′ρ)

xxix

s Entropy

S Sutherland�s coefficient (= 110.4 K = 198.72
o
R for air)

Strain tensor, magnitude (= ijijSS2)

ijS Strain tensor

S Source terms, integrated and combined

SC Source term (combustion)

SNI Source term (non-inertial)

ST Source term (turbulence)

t Time

t� Unit tangent vector for boundary element

T Static temperature

Period of integration for time-averaging

bT Static temperature along boundary

eT Inverse Jacobian dotted with velocity vector (= ur,i Ai / |Je|)

TT Total temperature

iu Velocity vector

iru ,
Relative velocity vector (= ui � Vt,i)

U Unknowns vector

bee UU , Unknowns vector for element and boundary element

oV
�

, ioV ,
Translational velocity (vector) of non-inertial frame (body fixed)

bV
�

Velocity (vector) of boundary

dV
�

Rigid body unknowns vector (= oV
�

, ω
�

)

eV Volume of domain element (3D domain)

ntV
�

Velocity vector in normal-tangential frame (= Vn, Vt, Vb)

itV ,
Local mesh velocity (non-inertial frame)

ix Coordinates in global (inertial) frame

iox ,
Center of non-inertial rotation (inertial) frame

ibx ,
Coordinates relative to center of rotation (non-inertial) frame (= Bij

T
(xi � xo,i)

dx
�

Rigid body unknowns vector (=
ox
�

, θ
�

)

nx
�

Elastic unknowns vector (= nδ
�

, nV
�

)

γ Ratio of specific heats (= cp / cv)

beΓ Boundary element (= 1± , lbe, Abe)

cδ Deflection of control surface(s)

ijδ Kronecker delta (= 1 for i = j; = 0, otherwise)

ne ttt ∆∆∆ ,, Time step (global, elemental, nodal)

ε , ρε Dissipation of turbulent kinetic energy

ijkε Permutation tensor (= (i � j) (j � k) (k � i) / 2)

xxx

21,ΦΦ Interpolation variables (SST model)

bee ΦΦ , Shape function for element and boundary element

θ
�

Euler angles as a vector (= φ, θ, ψ)

[]θ Transformation between global and normal-tangential frames

κ von Karman constant, law of the wall

λ Second viscosity (µλ
3
2−≥)

Local flow characteristics (Riemann problem)
µ Viscosity

Tµ Eddy viscosity (effective viscosity of turbulence)

ν� Turbulent transport variable; SA variable

iξ Coordinates in local (element) frame

Π , Πρ Production of turbulent kinetic energy

ρ Density

ρ� Mass generation (quasi-combustion)

bρ Density along boundary

ωσσσ ,, k Turbulent Prandtl number(s) for diffusion of ν� , K, and ω

ijτ Viscous stress tensor

ijΤ , ijΤρ Reynolds stress tensor (= jiuu ′′ρ = jiuu ′′′′ρ)

ω Rate of dissipation of turbulent kinetic energy; SST variable

ambω Ambient (freestream) rate of dissipation of turbulent kinetic energy

ω
�

,
iω Rotational rate (vector) of non-inertial frame

Ω Vorticity tensor, magnitude (= ijijΩΩ2)

Rotational rate matrix (= I×ω
�

)

eΩ Element domain (= le, Ae, Ve)

ijΩ Vorticity tensor

∇ Gradient vector

nt∇ Gradient vector in normal-tangential frame

1

CHAPTER I

INTRODUCTION

Air-breathing hypersonic flight vehicles (AHFVs) represent the next generation of high

speed military, civilian, and research aircraft. AHFVs have been proposed as military

fighters, bombers, and transports to quickly move tactical personnel and equipment anywhere

in the world in a matter of hours. Scramjet technology can be used to efficiently accelerate

cruise missiles and piloted aircraft to speeds well beyond current designs. The commercial

market also looks to AHFVs as the next generation of transportation for passengers and

cargo. Cheng (1993) suggests that scramjet technology of the future will propel aircraft to

the other side of the globe in a matter of hours. For NASA, AHFVs offer a promising alter-

native for the next generation of Highly Reliable Reusable Launch Systems (HRRLS). Since

the catastrophic loss of the Space Shuttle Columbia in 2003, NASA and government officials

have been searching for the next safe alternative to return astronauts and researchers to orbit,

the moon, and even Mars.

AHFVs are highly complicated systems, where each subsystem interacts with all of the other

subsystems. The science of hypersonic flows and scramjets, let alone complete AHFV

systems, is slowly coming of age. Experimentalists are beginning to obtain repeatable results

2

and take measurements that can be used to validate analytical and numerical models (Bertin,

2006). Flight tests are also being conducted successfully; but the cost, not to mention time,

to plan a hypersonic or scramjet-driven flight test is very great. Very few flights have been

conducted; and of those tests, little data has been produced to track those flights. Even more

difficult to the researcher �on the outside�, the results from most scramjet ground tests and

flight tests go unpublished for national security and commercial design rights. No company

or country wants to show their hand to anyone else before they have a finished product.

With our limited ability to adequately represent hypersonic flow experimen-

tally, the challenge of hypersonic CFD predictions becomes even more diffi-

cult because substantial experimental data for a variety of flows and flight

conditions are not available. (Bertin and Cummings, 2006, emphasis added)

AHFVs can be broken down into six major subsystems: Aerodynamics, elastics, heat

transfer, propulsion, flight dynamics, and controls. For transition from subsonic to super-

sonic, the propulsion system is broken apart into a turbojet and a scramjet engine, increasing

the complexity. Given all of these sub-systems and their interaction, it is a wonder that the

hypersonic / scramjet community has reached the level of understanding and sophistication

demonstrated by vehicles, such as the X-30 National Aerospace Plane concept and the X-

43A unmanned test vehicle.

AHFVs see very high temperatures created by combustion, skin friction, and very high

speeds. Most scramjets are designed to decelerate the flow to static temperatures of 1000 to

2000K before the flow enters the combustion chamber (Ferri, 1964). The temperature

increases further through the combustion chamber. Temperatures greater than 2000K have

3

been measured at the sharp leading edge of the vehicle, when using passive cooling (Cheng,

1993). The straight passage ahead of the combustor (called the �isolator�) produces a shock-

train. The complicated shock-shock interactions in this region can create very high local

heating rates on the cowl lip, much higher than predicted by theory (Cheng, 1993).

Scramjet propulsion has come a long way in recent years, due to the use of CFD, computa-

tional combustion models, and experiments to verify those numerical models (Curran, 1996).

The knowledge gained through computational means has allowed scramjets to evolve into a

viable means of propulsion. Wind tunnel testing is complex due to the extreme speeds, heat,

and loading, but successful wind tunnel tests have been conducted on scramjets. A handful

of flight tests have been conducted under power, but a flight test vehicle adds more com-

plexity from the coupling of flight-dynamic-propulsion modes.

According to Ferri (1964), a scramjet can operate with a fixed geometry inlet over a wide

range of flight speeds. The properties at the entrance of the burner must vary with freestream

Mach number to obtain reasonable flight performance. Scramjets operate efficiently at high

speeds (Mach 4 or greater). At low supersonic speeds, the flow slows down to subsonic

speeds in the combustion chamber, and the engine is referred to as a ramjet. Ramjets are

designed using different principles, but advances have been made to use scramjets with sub-

sonic combustion. One of these concepts uses thermal choking to accelerate the heated flow

using a �nozzling� effect (Curran, 1996). Figure 1.1 shows the limitations of scramjets and

ramjets, and the application of turbojets at subsonic speeds. Dual-mode engines are proposed

that switch from subsonic turbojet propulsion to scramjet propulsion at supersonic speeds.

Little effort has been made to model the transition between modes because of complexity.

4

Figure 1.1: Specific Impulse vs. Mach Number (taken from Curran, 1996).

AHFVs exhibit many nonlinear characteristics: High skin temperatures are used to preheat

the fuel (usually hydrogen) before being sprayed into the combustor (Ferri, 1964).

Preheating results in higher engine efficiency, greater thrust, and reduced skin temperatures,

but now the temperature of the vehicle directly affects the propulsion system. Oxygen in the

air dissociates at temperatures from 2000-4000K, and nitrogen dissociates between 4000-

9000K. At 9000K, the oxygen and nitrogen molecules begin to ionize (Bertin, 2006). At

elevated temperatures, radiation is also seen within the flow field.

Many researchers say that viscous effects also play an important part in the performance of

AHFVs. Shock-shock interactions on the cowl lip and in the pre-combustion �isolator� are

compounded by boundary layer interaction (Cheng, 1993). Such interactions have also been

shown to produce locally severe heating on dummy ramjets mounted on the X-15 (Bertin,

2006). Shock-shock and shock-boundary layer interactions can only be predicted using time-

accurate viscous analysis. Euler solutions have been coupled with boundary layer models to

model steady solutions for simple geometries, and the Parabolized Navier-Stokes (PNS)

5

equations have been used to model more complex geometries. Time-accurate solutions are

generated by reintroducing the upstream influences. The full Navier-Stokes equations are re-

quired to achieve the greatest space-time accuracy (Cheng, 1993). Hypersonic flow fields

have been successfully modeled using continuum approximations for air (γ = 1.4) and com-

bustion, but the full Burnett equations are necessary to ensure accuracy in rarefied flow fields

at high altitudes.

Hypersonic aerodynamics can be simplified somewhat, with reasonable accuracy. The

performance of wave-riders designed using viscous (boundary layer displacement) methods

varied little from those designed with only inviscid methods (Cheng, 1993). But viscous

methods with heat conduction are required to obtain the highest levels of time-accuracy. Air

chemistry, outside of the combustion chamber, has little effect on the overall aerodynamic

performance of the vehicle. Air chemistry is used to refine the local pressure and temper-

ature distributions, elongated by shocks and rarefactions. At high altitudes (80-120km), the

mean free path of the air particles becomes as large as the surface of the vehicle (Cheng,

1993). The no-slip condition cannot be strictly applied. Instead, the Knudsen number (a

measure of the mean free path) can be used to create a slip velocity boundary condition

instead of using the full Burnett equations.

The factors that limit the use of CFD in the early design phase are, how

quickly the grids can be generated and how quickly �sufficiently� accurate

CFD simulations can be provided. For complex shapes, 10-100 CFD solu-

tions with marginal fidelity but a very fast turn around time, would allow CFD

to be part of this stage. (Papadopoulos, et al., 1999)

6

Advanced Engineering Solutions (AES) and NASA were attempting to develop a multi-

disciplinary, physics based model for AHFVs. Several existing commercial and in-house

codes were investigated for their ability to model AHFVs or their subsystems. AES

approached researchers at Oklahoma State University (OSU) to investigate several in-house

and NASA codes for their validity to the AHFV model. The available codes were found to

have the ability to model one or more of the subsystems, but no code was found to have the

ability to model the entire AHFV system. Stewart (2002) found that off-the-shelf CFD,

structural FEA, and combustion models could be coupled by a user to model a scramjet

system. Stewart found that repetitive gridding of deformed structures required the most time.

NASA asked AES to combine several subsystem models together into a suite capable of the

time-accurate dynamics of the AHFV system. AES desired to build a multi-disciplinary suite

out of in-house codes NASA-STARS, OSU-Euler3D, and NASA-CFDsol. In-house codes

were chosen because the codes can be tailored to improve run time, reduce overhead and data

transfer, and simplify the integration of modules into the suite; and, Euler3D has the unique

capability of modeling deformed structures without remeshing the solution. The suite of

codes AES/MDA is broken down into NASA-STARS, an elastic deformation and heat

conduction model; OSU-Euler3D, an inviscid aerodynamics model with incorporated flight

dynamics and elastics models; and NASA-CFDsol, a viscous aerodynamics code. External

user-defined modules will be integrated into the suite at a later time to act as controls and

combustion models.

AES has asked OSU to update Euler3D and CFDsol in order to fulfill the aerodynamic, flight

dynamic, and propulsion needs of the suite. Both solvers were outfitted with propulsion

models for turbojets, rockets, and scramjets. The boundary conditions in CFDsol were

7

adapted to handle all of the possible flight regimes. Turbulence models, elastic boundary

conditions, and non-inertial motion were also implemented in CFDsol.

Early in this project, the CFD solvers were demonstrated on aero-acoustic problems. This

demonstration became a basis to investigate other needs throughout NASA and the

surrounding industries. Through talking with researchers at NASA and aerospace contacts

around Oklahoma, a need was identified for a comprehensive design tool for aero-acoustic-

elastic analysis, controls, and simulation of tightly coupled aircraft systems. To give OSU

the full capabilities of this work, NS3D was created by expanding Euler3D to include

viscous, heat transfer, and turbulence models.

Examples in the area of aero-acoustics include, but are not limited to: The NASA SOFIA, a

high-altitude telescope platform installed in the tail section of a Boeing 747SP; engine

exhaust noise; bomb bay door design; open-air sensor packages; and instrumentation

platforms. Panaras (1990) found that point vortices could be placed in an Euler solution to

model vortex-acoustic interactions. The Euler solver advected the vortices downstream, but

without some form of dissipation, artificial or natural, the solver could not generate or

dissipation vorticity in the flow. Viscous dissipation allows for vortices to be generated from

separated regions and dissipate naturally in the downstream flow. NS2D (Moffitt, 2004) was

used to check the validity of the CFD solvers to model cavity flows.

NASA Aries design team desired a multidisciplinary tool to model aero-acoustic-elastics and

their interaction with the vehicle motion throughout its launch and separation. Estimation of

payload and crew vibrations is the primary purpose here. The noise from flaps, landing gear,

gaps, and ledges is best predicted using aero-acoustic-elastic analysis. Gai (2000) showed

8

that transonic shocks are often felt further upstream than predicted by Euler solutions

because of the �thickening� effects of the boundary layer. The boundary layer allows

acoustic responses to travel upstream in wholly or locally supersonic flows. Lee (1990)

found acoustic waves traveling from shock to trailing edge via the mean flow and similar

responses traveling upstream through the boundary layer. A viscous solver is desirable for

many aeroelastic cases especially at transonic speeds. Aeroelastics have already been proven

in Euler3D through transpiration, but the concepts of viscous transpiration do not readily

extend to viscous fluid dynamics. Transpiration theory is discussed in Chapter 3 along with

possible research directions for pursuing viscous aeroelastics.

The multidisciplinary suite can be used in various aircraft designs. Conceptual designs can

be tested for validity, and then trade studies can be conducted where analytical methods are

not available. The initial sizing of vehicles can be tested for overall performance and

stability. Structural loads can be estimated using steady or unsteady aerodynamic conditions.

Engines can be integrated with inlet and nozzle designs to estimate their overall thrust and

efficiency. A similar application is demonstrated on a simple hypersonic cross-section using

the codes designed in this work.

Unmanned aerial vehicles (UAVs) are no longer limited by the presence of a pilot. These

designs can be tailored to a particular mission through structural, aerodynamic, or controls

design. Babcock (2004) and O�Neill (2004) showed with Euler3D could be used to produce

linearized aircraft models for complex designs. The linearized models can be used to design

controller and navigation systems. The guidance and control systems can then be tested in a

high-fidelity environment to simulate the �real world� before being installed on the aircraft,

and hybrid controllers can be tested in transition to ensure vehicle stability and orientation.

9

Aircraft modification companies can simulate proposed design changes in a high fidelity

aero-acoustic-elastic environment before costly modifications are made on a vehicle.

Radomes, panels, and protruding sensors can be tested for changes in stall, stability, and

power performance to minimize flight testing expenses.

The non-inertial frame can be used to model wind turbines, which require viscous calcula-

tions to capture power production accurately. The structural efficiency can also be tested.

Some turbine blades are designed to turn at a constant speed and stall at a certain wind speed

so that the structure and electrical generator are not overloaded. Others turbines are designed

to generate power according to their speed. Other non-inertial solvers utilize constant speeds

without acceleration, so these solvers cannot model startup or active controlling.

1.1 State-of-the-Art

This section gives a comparison between Euler3D and CFDsol with the current state-of-the-

art in finite element methods. The chapter is broken down into subsections that describe

popular methods, numerical stability, and other features of the finite element method in fluid

dynamics. The chapter culminates with a survey of four decades of viscous finite element

research and a comparison of the state-of-the-art with the proposed research codes.

1.1.1 Discretization Methods

The finite element discretizations in fluid dynamics resemble those used in structural and

heat conduction FEA. Actually, the fluids methods get their roots from the structural and

heat transfer methods developed years before finite element research moved into fluids.

Baker (1983) wrote a book for those who had previous experience in structural finite

10

elements and wanted to expand to solving fluid dynamics problems. Zienkiewicz (2000) also

gives a good summary of each method.

Galerkin (G): In the Galerkin (or Bubnov-Galerkin) method, the governing equations are

scaled by a weighting function. Traditionally, the Galerkin weighting function is chosen to

be the same as the shape function used to distribute properties throughout the domain. The

scaled equations are then integrated over the entire domain. The property shape function is

defined so that the shape function is non-zero on a given element, and zero everywhere else.

Galerkin methods of various orders and distributions have been demonstrated in the liter-

ature. Variants of the method have used different weighting functions for different equations

or different shape functions to represent the distribution of properties throughout the domain.

Discontinuous-Galerkin (D-G): Discontinuous-Galerkin is derived in a similar form to the

traditional Galerkin method, except each element is allowed to be discontinuous from its

neighbors. In other words, the solution is truly piecewise. The elements are tied together

using inter-element fluxes along their boundaries. Therefore, discontinuous elements are

attractive for higher-order methods and parallel processing because the method is solved

element-by-element with little interaction between the elements.

Petrov-Galerkin (PG): Petrov-Galerkin is a variant of the Galerkin method, where the

weighting function is skewed along the flow direction. The traditional Galerkin method

creates equations that are similar to central differencing in finite difference applications,

whereas Petrov-Galerkin resembles upwind-differencing in the analogy. The �upwind�

calculations give the Galerkin method more stability.

11

Taylor-Galerkin (TG): Taylor-Galerkin is very similar to traditional Galerkin; so much, that

a first-order time approximation results in the same system of equations for the two methods.

In the Taylor-Galerkin method, the governing equations are discretized in time using a

Taylor expansion. The time-expanded equation is discretized in space using the Galerkin

method. (This method is demonstrated in the discussion of the CFDsol formulation.) Higher

order methods can create terms with mixed temporal and spatial derivatives. Variations of

the method discretize the spatial terms first and create a Taylor expansion in a later step, but

the basic concept is the same for all Taylor-Galerkin solvers.

Characteristic-Based-Split (CBS) Algorithm: The CBS algorithm is useful to solve the

incompressible Euler or Navier-Stokes equations by dividing the momentum update into a

two steps, like a predictor-corrector. The momentum equation is used to update the velo-

cities (without pressure terms) and then corrected using pressure, in a way that satisfies the

continuity equation. The Galerkin method is used to discretize the governing equations for

the predictor step. Compressible variants of the CBS algorithm have been created using

artificial compressibility (AC) terms. The artificial compressibility changes the way the

pressure correction is formulated and how the governing equations interact with density.

Penalty Methods (PM): The penalty method is useful for problems where pressure is not a

dominant factor or where pressure is loosely tied to the velocity profile (incompressible

flows). The pressure term is replaced by a penalty function that links pressure to the diver-

gence of velocity. The penalty function is then inserted into the governing equations (usually

Galerkin). The result is a system of momentum equations that are only dependent on

velocity. The pressure is calculated using the penalty function. The penalty scalar, used in

the penalty function, must be determined a priori through experimentation. Once the penalty

12

scalar is determined, the system has been reduced in order by eliminating pressure from the

unknowns. Heinrich (1981) suggests that the method cannot be explicit stepped due to

instabilities.

Least-Squares Method (LSM): Least-squares discretizations are a minimization of a least-

squares function that represents the residual norms of the differential equation. The

boundary conditions are often incorporated into the least-squares function. Great care must

be taken when choosing the norms by which the residuals are measured. Improper norms

result in an ill-posed problem. Some supporters of the least-squares method say that the

method has better stability than the Galerkin method and its variants. For example, de

Sampaio (2005) points out terms in the derivation of the least-squares method that closely

resemble dissipative terms, like those found in SUPG. With these terms, many least-squared

methods do not require as much artificial dissipation, if any at all.

Hybrid Finite Elements: Traditional methods calculate the gradient of properties using the

element shape function so that the resulting gradient is one order less than the shape function.

The viscous stresses and heat fluxes are calculated from the gradients, so the distribution of

viscous fluxes is one order lower than the shape function. The hybrid method also distributes

the viscous quantities using the property shape functions, which increases the viscous distri-

bution by one order. The viscous terms are calculated using supplemental Galerkin equations

constructed using their mathematical definition (i.e., viscous stress of a Newtonian fluid and

Newton�s law of cooling). The resulting viscous contributions are much smoother within the

domain but suffer from increased noise near the boundaries of the computational domain.

13

Other Methods: There are many other discretization methods that have been adapted from

finite difference and finite volume: Marker-and-cell (MAC) is a finite difference technique

that has been expanded to the finite element method and renamed the Generalized and

Simplified Marker-and-Cell (GSMAC) method. Tanahashi (1990) uses edge based velocity

information and cell-centered total energy on quadrilateral elements using the GSMAC

method. Luo (1998) and Arminijon (1999) combine the finite volume and finite element

techniques on the same set of governing equations in what they both call a Mixed Finite

Volume-Finite Element (MFVFE) method. The method applies finite volume principles to

portions of the governing equations and finite element weighting to the other portions. First-

order finite volume methods can be thought of as a subset of the Galerkin method, where the

weighting function is equal to unity everywhere. The generalized minimal residual

(GMRES) method is an iterative algorithm that can be applied to any of the discretization

methods above. GMRES has roots in finite difference and is outlined in nonlinear form

(Bristeau, 1990) for use in finite element methods.

1.1.2 Numerical Dissipation Methods

Every discretization of the governing equations of fluid flow, whether finite difference,

volume, or element, suffers moderate to serious instabilities that result in �wiggles� in the

discretized solution. These perturbations from the desired solution are easily minimized

using an artificial, or numerical, dissipation. Some methods promise �inherent stability�

without using a numerical dissipater. These methods contain a form of numerical dissipation

within the discretization method, such as the two examples below that allow the system of

equations to have enough stability to maintain its own solution. The resulting solutions from

these methods still contain small errors due to the �inherent� dissipaters.

14

Streamline Upwind Petrov-Galerkin (SUPG): SUPG is a numerical stabilizer, whereas

Petrov-Galerkin, where SUPG derives its name, is a discretization method. The difference

being: All of the equations in a Petrov-Galerkin discretization are skewed upwind, whereas

only the momentum equations are skewed by SUPG. SUPG creates a numerical dissipation

term that resembles natural dissipation and then scales that term automatically to achieve

natural curvature in the solution. Supporters suggest that the solution retains its complete

accuracy, but opponents show that the solution is still skewed and has �slight� inaccuracies

due to the skewed distribution.

Two-Level Finite Element Method (TLFEM): TLFEM uses element bubble functions,

considered state-of-the-art by some, to create a dissipative component very similar to SUPG.

The bubble function is evaluated using a second solution on a refined (subdivided) mesh.

Traditional bubble functions require an a priori scalar that is often difficult to calculate, but

TLFEM eliminates the scalar by calculating its stabilization from the two solution levels.

1.1.3 Implicit / Explicit Derivation

The spatial discretization can be written in full spectrum of manners that generate fully

implicit, fully explicit, and partially implicit derivations. Traditionally, implicit (Imp)

derivations are absolutely stable, but the governing equations for fluid flow (Euler or Navier-

Stokes) are non-linear partial differential equations that cannot be inverted when written in

implicit form. Two approaches are possible with implicit derivations: Fixed-point iteration

of the implicit equations, or linearization (L) of the governing equations. Linearization

rewrites the advection term using previous and subsequent velocities so that the governing

equations can be written in matrix form.

15

Explicit (Exp) derivations suffer from greater numerical stability issues, including those

written in implicit form, but explicit solvers are often more accurate once their stability has

been achieved. Partially implicit solvers (I / E) try to combine the stability of implicit

solvers and accuracy of explicit solvers. One very famous partially implicit derivation is the

Crank-Nicolson (C.N.) method, which calculates half of the spatial contributions in terms of

the previous step and half in terms of the next, making the derivation 50-50 implicit-explicit.

Partially implicit scheme suffer numerical stability limits and slight inaccuracies at all

advancement step sizes.

1.1.4 Comparison to State-of-the-Art

Table 1.1, on the following page, shows 34 viscous finite element applications. This list is

not exhaustive of the viscous FEM in the literature, but rather the list is intended to be a

comparison of the development of viscous FEM through time. The list was created from a

survey of viscous literature, leaving out incompressible streamline-vorticity and velocity-

vorticity formulations, which are meant to �model� the full Navier-Stokes equations instead

of actually solving the equations directly. Book references were avoided were possible, since

most book authors compile many different methods into their books. The books that are

included represent one main derivation and give slight variations to that derivation. Journal

articles were selected that represent the initial derivation of the solver. Articles referring

back to a derivation were considered applications of the original solver and were left off the

list. Finally, mathematical literature seeking to investigate stability or error estimation is not

listed in Table 1.1 unless the article showed enough validation to prove that the derivation

was intended to be used in an application instead of as an academic exercise.

16

CFDsol (Gupta, 2007) has been included in this list for comparison. (Euler3D, being an

inviscid code, has been left off of the list.) Many of the codes listed in Table 1.1 were

generated from the �big names� in the finite element fluids community: Zienkiewicz,

Taylor, Oden, Peraire, Baker, Agarwal, Brooks, Hughes, Glowinski, and Periaux. (Many

listed as subsequent authors.) These names appear more frequently in finite element

mathematics, development, and applications literature, and many of these authors have

written books on finite elements in fluids.

The applications listed in Table 1.1 are dominated by implicit (or partially implicit) Galerkin

solvers with first order discretizations in space and time. Most of the solvers are two-

dimensional and use triangles or quadrilateral to break up the solution domain. Seven of the

solvers are three-dimensional, of which, four discretize their domains using tetrahedral. The

list is split evenly between incompressible and compressible solvers, but incompressible

applications are found in far greater frequency in the literature as a whole. Eight of the

solvers, the majority shown, explicitly define SUPG as their method of dissipation. (Over

half of the codes listed in Table 1.1 did not explicitly state a form of numerical dissipation.

Even though none is stated, some inherent or additional dissipation must have been

incorporated into these solvers. Computational fluids researchers are often guarded when

discussing their numerical stability.)

CFDsol, and the proposed NS3D, are both Galerkin methods that are first order in space and

time of the compressible Navier-Stokes equations. (CFDsol is a Taylor-Galerkin method by

derivation, but its first order nature in time results in the same equations as the first order

finite difference equations in Euler3D and NS3D.) Both derivations are partially implicit:

CFDsol uses a Crank-Nicolson approach, whereas NS3D is derived using a fully implicit

17

method and stepped using an explicit predictor-corrector algorithm (Cowan, 2003). Euler3D

is derived in fully nonlinear form, while CFDsol takes advantage of a �linearization� of the

advection terms. Both solvers use unstructured tetrahedral elements to breakup their solution

domains and have some form of artificial dissipation. Artificial dissipation was selected by

both Gupta and Cowan to be a direct and simple method for enhancing numerical stability.

SUPG is popular, but the method indirectly hides the numerical dissipation from the user,

and the amount of solution �skewing� is less easily manipulated. Derivations for Euler3D,

CFDsol, and NS3D are shown in later chapters.

1.2 Comparison of Turbulence Models

Hundreds of turbulence models are available in the literature. Each model is more applicable

to certain flows and less accurate for others. Some models lend themselves to the structured

geometries and finite difference techniques in which most models were developed. Other

models are independent of technique or geometry but suffer from a lack of accuracy for all

cases. Some cases have complicated algebraic or differential equations that would require

more computational power, compared to other models that are over-simplified, computa-

tionally efficient, and do not provide a sufficient model for any specific flow field.

With these concerns in mind, several points are set aside that are required and/or desirable for

implementation in the current work:

• Unstructured Mesh: Minimize references to geometry and orientation / direction.

• Compressible Model: Approaches incompressible model as Mach goes to zero.

• Complete Model: Governing equations are closed with other differential or

 algebraic equations, not left open for interpretation.

• No Adjustable Factors: Minimal user inputs other than freestream conditions.

• Accurate in All Regimes: Laminar, turbulent; subsonic, supersonic, even hypersonic.

• Handles Complex Flows: Boundary layer, wake, shear layer, jet, and separated flows.

18

Table 1.1: State-of-the-Art in Viscous Finite Element Solvers.

Mixing Length Models. Mixing length models specify a length scale for the flow, called a

mixing length. Sometimes the mixing length varies with distance from the wall. Generally,

19

the mixing length is calculated empirically or used in analytical models. Mixing lengths are

not transferrable from one flow region to another. For instance, the mixing length for a

boundary layer is different than that used for a wake, or a jet, or a duct flow. Each mixing

length is tuned to give a particular production/dissipation rate, momentum exchange, or other

experimental quantity. Mixing length models are highly useful for developing analytical

solutions to flow fields. The resulting analytical distribution that falls out from using the

mixing length is used to quantify the flow.

Algebraic Models. Models like Cebecci-Smith, Baldwin-Lomax, and Johnson-King use

algebraic equations to specify the distribution of eddy viscosity or mixing length for a wide

variety of situations. Cebecci-Smith and Baldwin-Lomax are two-layer, composite functions

that model the mixing length near the wall using van Driest�s damping function and outer

regions with a different mixing length function. Johnson-King (1985), often referred to as

the 1/2-Equation model, is a two-layer, composite function with a van Driest damping

function near the wall and an ordinary differential equation for the maximum shear stress for

the remaining field. These models are not as accurate as their differential counterparts,

especially in representing the advection and diffusion of turbulence along the direction of the

flow; but, robust algebraic models, such as Johnson-King, have been much more accurate

than very complicated, modern models in transonic applications. These models suffer from

complicated calculations and IF statements.

One-Equation Models. The most simple differential equation models use a single differential

equation to represent the transport of turbulent kinetic energy or a similar quantity through

the flow. The model contains advection, diffusion, and source terms to represent such

transport. Prandtl developed a k-model that closed the k-equation with a turbulence length.

20

The turbulent length was not directly a mixing length, but the empirical application of two

lengths in the model is very similar. Baldwin-Barth (1990) created a differential equation

representing the variation of turbulence Reynolds number in a field. The differ-ential

equation is supported by three functions and seven coefficients. Baldwin-Barth is a complete

model with no adjustable coefficients.

Spalart-Allmaras (SA) Model. The Spalart-Allmaras (1992) model is another one-equation

model that uses a differential equation in eddy viscosity to represent the transport of

turbulence. The differential equation is supported by ten functions and eight coefficients that

have been tuned for attached, external aerodynamic flows. The model is very reasonable for

fuselages, nacelles, and wings but falls short on separated, internal, and radial jet flows. The

model contains advection, diffusion, and source terms along with a unique dissipation term

for �model stability�. The source terms utilize both the strain in the flow and distance to the

wall, similar to a mixing length. Spalart-Allmaras is a very fast, complete model developed

for aerodynamic drag estimation.

k-ε Models. The k-ε models use two differential equations to represent the transport of

turbulent kinetic energy and its dissipation. These two variables are then combined to

calculate the eddy viscosity on the field. The Standard k-ε Model (Jones and Launder, 1972)

is the most simplified form. Yakhot and Orszag (1986) added small-eddy corrective

functions using renormalization group theory, giving their model the name RNG k-ε. Other

modelers, such as K.Y. Chien (1982), modified the ε-equation with empirical damping

functions in the near-wall (low Reynolds number) regions. k-ε models are robust transport

21

models, but exhibit poor performance in severe and adverse pressure gradients and strong

streamline curvatures.

k-ω Models. Kolmogorov posed the first k-ω model long before it could be realized in

computational applications. Since Kolmogorov, k-ω modelers have not reached a consensus

on what ω officially represents. Wilcox (1988, 2002) has brought much publicity to the k-ω

model and its success. k-ω models are applicable to strong and adverse pressure gradients

including separated flows and can be used to model transitional boundary layers, although

the models tend to be highly sensitive to freestream conditions.

Mentor SST Model. Mentor (1992, 1994) developed a Shear-Stress Transport model, which

combines k-ω and k-ε, has become widely used and respected for many wall bounded flows.

The combination makes the SST model less susceptible to freestream conditions and more

applicable to separated flow.

Other Two-Equation Models. Other two-equation models are also available; most coupling

the turbulent kinetic energy with a second differential variable. Rotta developed a pair of

equations in k and the integral length scale l. Zeierman and Wolfshtein present a k-kτ model,

where the integral time scale τ that represents the time scale its turbulent kinetic energy.

Speziale, Abid, and Anderson separate the variables by reformulating the k-ε model into a k-τ

model with the transport of the integral time scale τ. Each of these two-equation models

couples k with a measure of the rate that turbulent kinetic energy dissipates. These models

have demonstrated their accuracy but never reached the popularity of k-ε and k-ω models.

22

Reynolds Stress Transport (RST) Models. The most complex and computationally expensive

turbulence models avoid the Bousinesq approximation by directly modeling the anisotropic

flow field with differential equations in each Reynolds stress. The differential equations

represent the advection, diffusion, and production of Reynolds stresses in their transport

throughout field. RST models create a unique problem in closing their many complex

equations. Launder, Reece, and Rodi (1975) pose a pressure-strain model using purely

kinematic considerations. Speziale, Sarkar, and Gatski (1991) present a similar but nonlinear

model for pressure-strain, known as SSG in its incompressible form. Each model requires an

additional closure equation, usually the ε- or ω-equation. The Launder-Reece-Rodi model

uses the ε-equation; Wilcox and Rubesin (1980) use the ω-equation for closure. RST models

replace the isotropic k-equation in two-equation models with differential equations represent-

ing the Reynolds stress tensor, adding five differential equations. RST models become more

computationally expensive because of the additional equations, but the directional modeling

of the Reynolds stresses makes RST models more accurate for anisotropic flow fields, like

separated boundary layers, vortical wakes, and other highly-complex classes of flows.

Large Eddy Simulations (LES). Kolmogorov proposed that the large scales of turbulent

flows are dependent on geometry while the smaller scales are almost universal. Large eddy

simulations resolve the �large eddies� with a filtered Navier-Stokes (N-S) equation and

appropriate mesh sizing. �Small eddies� are resolved through a subgrid-scale model. LES

models use the Bousinesq approximation to close the filtered N-S equations, closely

resembling RANS. The differences arise in the �large eddy� filter used on the N-S equations

and �small eddy� subgrid models. Smagorinsky (1963) uses a simple volume-based strain

model to calculate the subgrid-scale (SGS) viscosity. Nicoud and Ducros (1999) propose a

23

wall-adapting local eddy-viscosity (WALE) model that uses a nonlinear strain tensor

function to calculate the eddy viscosity. LES models are very applicable to modeling the

physics of flows while their applications to engineering problems are often brought into

question because LES models require very tight meshes near walls in order to resolve the

flow. LES models are most useful for smooth visualizations of flow fields.

Direct Numerical Simulation (DNS). Direct Numerical Simulation models turbulent fluid

dynamics with highly accurate Navier-Stokes codes. DNS requires that the full range of

turbulent scale be resolved in both time and space. Such refinement requires the spatial mesh

and temporal discretization are smaller than their respective Kolmogorov scales. These

requirements restrict DNS to a subset of applications where high-speed computing is used to

solve specific problems. DNS is generally used in conjunction with experimental data to

gain a better understanding of specific flow fields or comparing to other models.

Direction of Current Research. This research will concentrate on the Spalart-Allmaras (SA)

and Menter�s SST models. Completed compressible models can be found for each. These

models work well on unstructured meshes without the need for adjustable factors. The SST

model uses composite functions to interpolate between the k-ε and k-ω models, but such

interpolation brings the best of both models together. Both models require knowledge of the

geometry through distance to the nearest wall. The Spalart-Allmaras model is suggested for

aerodynamics of attached, external flows without radial jet exhausts. The SST model is

applicable to separated and internal flows in a variety of fluids, regimes, and complexities.

These two models represent a wide range of applications with years of experience in the

literature while minimizing computational requirements and coding complexity.

24

CHAPTER II

PROBLEM STATEMENT

Advanced Engineering Solutions (AES) was contracted by NASA to develop a model for

AHFVs and other advanced aerospace applications. AES has asked OSU to assist in this

effort by developing our inviscid solver Euler3D and a NASA viscous solver CFDsol to be

incorporated into a suite of codes called AES/MDA. The suite will operate in two ways:

The suite will act as a lower order model that can be used to aid in initial design and trade

studies. The suite can also operate as a high-fidelity, coupled system of modules, where each

module represents one subsystem of AHFVs or other aerospace systems.

In the lower order system model, illustrated as a flow diagram in Figure 2.1, the flow solver

generates a steady flow solution using a priori combustion, rocket, and turbojet models. The

temperature along the solid surface of the body is passed to the conduction model, where a

steady state temperature distribution is generated throughout the vehicle. The elastic

properties in the structure are varied according to this temperature distribution, and then

elastic mode shapes and system matrices are passed back to the CFD solver. The mode

shapes and rigid body dynamics are used in unsteady or deformed steady computations. An

external controls routine is optional.

25

In the higher order model, illustrated in Figure 2.2, the process begins similar to the low

order model, where the steady flow and heat transfer solutions create the initial conditions.

These conditions will then be perturbed using a completely coupled system. The CFD model

passes boundary temperatures to the heat conduction routine, which passes back boundary

heat fluxes. (These two conditions have been selected to help couple the two solvers into a

seamless computational domain, where the boundary flux accommodates the flow solution

the best and the boundary temperature simplifies the conduction solution.) The elastics

module uses conduction temperature profile and CFD pressures to calculate deflections and

velocities at all points on the solid surface, which are passed back to the CFD solver. The

CFD solver and propulsion models interact by passing the most recent boundary properties

back and forth. Flight dynamics and controls will interact with the CFD solver in the same

manner as described for the low order model. The higher-order methods can be mixed with

lower-order methods to create the desired solution fidelity to match a given problem. Ideally,

the CFD solvers be used exchanged smoothly for inviscid or viscous flow solutions.

The suite is setup in a modular nature so that the various components can be replaced in the

future to update any subsystem model or to utilize any user specified model. AES and

NASA desire physics-based models with various levels of fidelity to be used in conceptual

sizing, design optimization, and accurate full-system performance estimation. Much of the

current system is already in place and in use. Later sections discuss the necessary steps to

incorporate the current flow models into the desired system models.

2
6

F
ig

u
re

 2
.1

:
 F

lo
w

 D
ia

g
ra

m
 (

L
o

w
er

 O
rd

er
 S

y
st

e
m

 M
o
d

el
).

 26

2
7

F
ig

u
re

 2
.2

:
 F

lo
w

 D
ia

g
ra

m
 (

H
ig

h
e
r

O
rd

er
 S

y
st

e
m

 M
o

d
el

).

 27

28

2.1 Emphasis and Objectives

This section outlines the work done on CFDsol, Euler2D/3D, and NS2D/3D and shows flow

charts for how the final work fits into the MDA environment described above. Finally, a

description of objectives and milestones is given for the project.

2.1.1 Work with NASA-CFDsol (NASA Contract)

The NASA contract was broken down into three areas of focus: (1) Prepare individual

routines for (2) integration in a multi-disciplinary environment and then (3) demonstrate the

capabilities of that environment. The emphasis of the contract was placed on information

passed to CFDsol and how that data was utilized within CFDsol. Although no work was

done in hypersonics, the models were developed to be expanded fully into the hypersonic

regime at a later time. The end results of the contract are illustrated in Figure 2.3.

Figure 2.3: Flow Diagram (NASA-CFDsol).

29

Several features had to be improved in CFDsol before any new features could be added. The

far field outflow was found to be unstable at subsonic speeds, and the energy lost by applying

the wall and symmetry boundary conditions needed to be reconciled. Time accuracy of the

solution was hampered by the update equation and artificial dissipation. Small inconsisten-

cies needed to be removed from the implementation of the viscous terms and Sutherland�s

equation. Finally, the Spalart-Allmaras (SA) turbulence model need to be reformulated in

compressible form and adapted to be applicable to generic flow fields.

Six modules were added to CFDsol: Non-inertial and quasi-combustion source terms; rocket

boundary condition; inviscid wall transpiration; and, modal elastics and rigid body models.

The deliverables of the NASA contract were confined to the new features of CFDsol. These

models were developed in Euler2D and NS2D to minimize time and testing. CFDsol has a

very different nature and dynamic than the OSU codes, so the routines were expanded into

Euler3D and NS3D before being moved to CFDsol. This process allowed the routines to be

proven in three-dimensions before interacting with CFDsol. When the routines were added

to CFDsol, the data structures and names were changed to fit the standards already in place in

CFDsol, and new arrays were created to fit the new features.

The capabilities of CFDsol were then demonstrated on several steady and transient, inviscid

and viscous cases across the subsonic, transonic, and supersonic regimes. Specific cases

were selected to demonstrate the new features of CFDsol, particularly the new propulsion

models, elastic deformations, and non-inertial frame. Euler3D and NS3D were used to

produce one-to-one comparisons on the same mesh. When time constraints limited run time,

Euler2D and NS2D were used to produce quick results for comparison.

30

2.1.2 Work with In-House Codes

Prior to this work, Euler2D and Euler3D were developed by Cowan (2003). Moffitt (2004)

expanded Euler2D to include viscous terms, creating NS2D. Moffitt only tested NS2D in the

inertial frame; Sukraw (2008) tested the non-inertial frame. NS2D was used to investigate

methods for implementing viscous transpiration, but these efforts turned up fruitless. Before

any further work was done with the two-dimensional codes, Euler2D was updated with more

recent efforts in Euler3D, and NS2D was recreated from Euler2D using methods that were

more efficient in development, storage, and run time.

Several development efforts were made in Euler2D and NS2D prior to work on the contract.

Per suggestions from O�Neill (2011), higher-order integration techniques were developed in

Euler2D, including more points for Gauss quadrature and analytical integrals. Brown (2009)

compared these techniques, but artificial dissipation hampered his ability to fairly compare

the methods. The quasi-combustion terms, rocket exhaust, and engine inlets were developed

and tested in Euler2D along with their support software. Heat transfer boundary conditions

were implemented in NS2D without testing. The adiabatic wall is the default condition and

has been used throughout this work. Because of the recent interest in acoustics, acoustic

output files were added to Euler2D and Euler3D to track property histories.

During the contract, Euler2D and NS2D were used to develop new techniques, which were

pushed to Euler3D and NS3D for testing before moving to CFDsol: The quasi-combustion

terms and rocket boundary condition were expanded to Euler3D. The rigid body dynamics

model in Euler3D was also expanded to include a full inertial matrix. The viscous terms

31

from NS2D were added to Euler3D to create NS3D. Finally, an SA turbulence model was

developed in NS2D, pushed to NS3D and then used to adapt the SA model in CFDsol.

After the contract, work continued in Euler2D/3D and NS2D/3D. The turbojet exhaust was

coupled with the inlet boundary in Euler2D. The turbojet boundaries were then expanded

into Euler3D. All propulsion routines were added to NS2D and NS3D. An SST model was

developed in NS2D. NS3D was then recreated using Euler3D, using the relationship

between Euler2D and NS2D as a guide. Finally, testing of viscous non-inertial and

turbulence modeling was completed in NS2D and NS3D.

The final coupling of Euler3D and NS3D with external models is shown in Figure 2.4:

Figure 2.4: Flow Diagram (In-House OSU Codes).

32

2.1.3 Objectives and Milestones

The goals for this research are summarized in the five objectives below. The first three

objectives are broken down further into milestones. The first objective represents the

development of concepts, formulation of the method, and initial testing. The second

objective represents the expansion of the method to three-dimensions. The fourth objective

demonstrates the codes developed in the first two objectives. The third and fifth objectives

encompass the NASA contract: The transfer of routines to CFDsol and their demonstration.

• Objective 1: Enhancement of Euler2D and NS2D

o Implement Quasi-Combustion Terms

o Implement Rocket and Engine Models

o Implement Viscous Terms

o Implement Turbulence Models

• Objective 2: Enhancement of Euler3D and NS3D

o Implement Quasi-Combustion Terms

o Implement Rocket and Engine Models

o Implement Viscous Terms

o Implement Turbulence Models

• Objective 3: Enhancement of NASA-CFDsol

o Implement Quasi-Combustion Terms

o Implement Rocket Model

o Implement Inviscid Transpiration

o Implement Non-Inertial Source Terms

o Implement Modal Elastics and Rigid Body Dynamics

o Improve Viscous Implementation

o Improve Turbulence Models

• Objective 4: Demonstrate Four In-House Codes

• Objective 5: Comparison of Post-Contract CFDsol with In-House Codes

The subsequent sections describe for each objective and its milestones:

33

2.1.3.1 Objective 1: Enhancement of Euler2D and NS2D

Euler2D and NS2D were used as a development and testing platform for all methods investi-

gated in this work. The major areas of development are summed up in four milestones:

Implement Quasi-Combustion Terms. Heat and mass is added to the flow in a scramjet,

ramjet, or afterburner. This additional heat produces the thrust necessary to maintain flight

conditions in a simulated vehicle. To avoid using a full combustion model, mass and heat

source terms, called quasi-combustion terms, were added to the governing equations.

Galerkin�s method was applied to the quasi-combustion terms in a manner that is flexible to

the generation of combustion rates, whether by analytical, experimental, or numerical means.

These terms were tested in Euler2D and then transferred to NS2D.

Implement Rocket and Engine Models. In previous simulations of flight vehicles, such as a

missile, FA-18, and F-22, the thrust to maintain steady flight was created using an

�imaginary string� that pulled the vehicle along at the desired conditions. The inlet and

exhaust of engines were modeled using far field properties because no other boundary

condition was available. Inflow and outflow planes were created to model rocket and

turbojet engines. The rocket exhaust is modeled by specifying properties similar to a

combustion chamber and allowing those properties to expand naturally through a nozzle.

The turbojet is modeled using two boundary planes: The upstream plane represents the

conditions being pulled into the compressor, and the downstream plane represents the turbine

exhaust. The inlet and nozzle are modeled in the domain, but the complexity of the turbo-

machinary is avoided. Force and moment calculation was updated for momentum exchange

through the surfaces. These boundaries were tested in Euler2D and transferred to NS2D.

34

Implement Viscous Terms. Viscous stresses and heat fluxes were added to Euler2D so that

all of the features of Euler2D were also present in NS2D. The terms were developed using

Moffitt�s method (2004) but implemented more efficiently. Viscous terms were also added

to the momentum exchange used to calculate forces and moments.

Implement Turbulence Models. A turbulence model is necessary to efficiently model flows

at higher Reynolds numbers. A simple, efficient, and effective turbulence model was

desired. The Spalart-Allmaras (SA) and Menter�s SST models are well documented in the

literature and broadly used throughout research and industry. These two models were

implemented along with correction terms for non-inertial rotation. Artificial dissipation was

added to each model for stability while retaining as much accuracy as possible.

2.1.3.2 Objective 2: Enhancement of Euler3D and NS3D

The methods developed in Euler2D and NS2D were expanded to the third dimension and

implemented in Euler3D and NS3D. The major areas are summed up in four milestones:

Implement Quasi-Combustion Terms. The quasi-combustion terms were expanded to a

three-dimensional Galerkin integral and implemented in Euler3D. These terms were

developed and tested using the techniques and cases used with Euler2D. The quasi-

combustion terms were added to NS3D during its creation.

Implement Rocket and Engine Models. The rocket and engine boundary conditions were

expanded to three-dimensional boundary integrals and implemented in Euler3D. These terms

were developed and tested using the techniques and cases used with Euler2D. The rocket

and engine boundary conditions were added to NS3D during its creation.

35

Implement Viscous Terms. Viscous stresses and heat fluxes were added to Euler3D so that

all of the features of Euler3D were also present in NS3D. The conversion of Euler2D to

NS2D was used as a pattern for the creation of arrays, controls, and subroutines. Viscous

terms were also added to the momentum exchange used to calculate forces and moments.

Implement Turbulence Models. The SA and SST models implemented in NS2D are

expanded to three-dimensional formulations. The rotation correction and artificial

dissipation models were likewise expanded to include the new dimension.

2.1.3.3 Objective 3: Enhancement of NASA-CFDsol

The methods proven in Euler2D/3D and NS2D/3D were transferred to CFDsol. Adaptations

were made as necessary to integrate into the new data structures and algorithms in CFDsol.

The major areas are summed up in eight milestones:

Implement Quasi-Combustion Terms. The development of quasi-combustion source terms is

the same following the formulations of Cowan (2003) and Gupta (2007), so the routines

implemented in Euler3D to produce the quasi-combustion terms were transferred to CFDsol.

The input file formats and data structures were kept as much as possible.

Implement Rocket Model. CFDsol does not use boundary integrals for inviscid fluxes.

Instead, the boundary conditions are applied explicitly between updates of the governing

equations. The methods applied in Euler3D were adapted to this implementation. The input

file formats and data structures were kept as much as possible.

Implement Inviscid Transpiration. Transpiration is an adaptation of inviscid flow tangency.

The inviscid wall boundary condition in CFDsol was adapted to include the transpired

36

normals and boundary velocities. The normal and boundary velocities were also updated

every iteration in order to prepare for integration with the structural motion.

Implement Non-Inertial Source Terms. The development of non-inertial source terms is the

same following the formulations of Cowan (2003) and Gupta (2007), so the code used in

Euler3D to produce the non-inertial terms was transferred to CFDsol. The terms were

recalculated every iteration in order to prepare for integration with the rigid body motion.

Implement Modal Elastics and Rigid Body Dynamics Models. The modal elastics and rigid

body dynamics models are accomplished using similar techniques, data structures, and

routines. These routines and data structures were transferred directly to CFDsol.

Improve Viscous Implementation. Viscous terms were already implemented in CFDsol

using boundary integrals similar to the method proven by Moffitt (2004). NS3D and its

development were compared with CFDsol to ensure that the viscous stresses, heat fluxes, and

Sutherland�s equation were implemented in CFDsol in the most accurate manner.

Improve Turbulence Models Implementation. An incompressible SA turbulence model was

already implemented in CFDsol. The model could not be used on generic applications

because of its trip transition model, lack of compressibility, and errors in implementation.

The transition model was removed, and a compressible formulation was implemented in the

correct manner, similar to that seen in NS3D. (Direct transfer was not used for this code.)

2.1.3.4 Objective 4: Demonstrate Four In-House Codes

The four OSU in-house codes were demonstrated on subsonic, transonic, supersonic, and

hypersonic flows with inviscid, laminar, and RANS models. These demonstrations were

37

compared to experimental data, where possible, to make a validation effort. When this was

not possible, analytical and numerical comparisons were used to make a verification effort.

The propulsion models are also demonstrated on various simple geometries to illustrate the

fundamental physics that are present in the models, even in their simplification.

2.1.3.5 Objective 5: Comparison of Post-Contract CFDsol with In-House Codes

Some of the cases used in the previous objective were used to demonstrate the capabilities of

CFDsol. Verifications and validations were made where possible, but all cases were com-

pared to one of the four in-house codes. Euler3D and NS3D were used to make comparisons

on the same mesh. Euler2D and NS2D were used when time constraints did not allow.

2.1.4 Additional Work

Time was also spent in three other areas: Higher-order integration, heat transfer, and acoustic

histories. These three areas are fully implemented but need to be tested before extended use.

Higher-Order Integration. Cowan (2003) developed Euler2D with one- and three-point

Gauss quadrature. Cowan�s experiments showed that additional Gauss points did not

improve the accuracy of calculations. O�Neill (2011) worked in higher-order elements and

suggested that higher-order integration improved the accuracy and allowed for larger

elements. This work expanded Cowan�s work to a fourth Gauss point, which should

represent the highest order necessary for the inviscid flux terms, and analytical integration.

Brown (2009) tested subsonic and supersonic convergence using this method. Brown found

that the current artificial dissipation models cause too many inaccuracies to properly evaluate

38

the order of integration. Brown�s study should be revisited with inviscid walls and viscous

dissipation, a new artificial dissipation model, or a different geometry.

Heat Transfer Boundary Conditions. Heat transfer boundary conditions were implemented in

NS2D and NS3D. The boundary conditions are read from a file, per node for temperature

(enthalpy) conditions and per boundary element for normal heat fluxes. The adiabatic wall is

the default condition and has been used throughout this work. The heat conduction terms and

boundary conditions need to be verified and validated before future use.

Acoustic Output Files. Because of the recent interest in acoustics, acoustic files were added

to all four OSU codes. These files can be used to track the history of properties at one or

more locations on the domain. An FFT routine was also prepared for reading, parsing, and

decomposing the acoustics files. The acoustic output in Euler2D and NS2D has been used to

produce profiles and point studies during this work, but the methods used to interpolate data

from Euler3D and NS3D domains still needs to be tested.

39

CHAPTER III

THEORY

This chapter outlines the theory used in this research. The chapter begins by discussing the

Euler and Navier-Stokes equations in their inertial and non-inertial formulations. These

equations represent the basis for all five solvers used in this work. The governing equations

are incomplete without thermodynamic relationships and the equation of state. The Navier-

Stokes equations are then Reynolds-averaged to demonstrate the application of turbulence

models. Two families of turbulence models are discussed along with the specific flavor that

is implemented in this work. All of the governing equations and their properties are then

written in dimensionless form. The governing equations can only be used to solve problems

once their boundaries have been defined. Finally, the chapter closes with the discussion of

rigid body and elastic modeling.

3.1 Euler Equations

The Euler equations represent the transport of continuity, momentum, and energy through an

inviscid continuum. The Euler equations are developed using a first-order Taylor series

expansion of fluxes across an infinitesimal element in a continuum flow. The Euler equa-

tions should be seen as the simplest representation of a compressible, inviscid continuum.

40

Any discretization of the Euler equations will also be limited to continuum flows. The Euler

equations are the basis of any compressible CFD solver, including Euler2D/3D (Cowan,

2003) and CFDsol (Gupta, 2007).

3.1.1 Inertial Formulation

The Euler equations can be written in many forms. The Euler equations in the inertial frame

are written here in conservative form and compact notation:

0=
∂

∂
+

∂

∂

i

i

xt

FU
(3.1)

where

�
�

�
�

�

�
�

�
�

�

=

E

u j

ρ

ρ

ρ

U

() �
�

�
�

�

�
�

�
�

�

+

+=

i

ijji

i

i

upE

puu

u

ρ

δρ

ρ

F (3.2)

3.1.2 Non-Inertial Formulation

Cowan derives the Euler equations in the non-inertial frame. The equations are derived in a

relative frame of motion, where the relative velocities ur,i is related to the velocity in the

stationary frame ui:

()
jtjriji VuBu ,, += (3.3)

where Bij is the rotation of the frame, which will be discussed later for the rigid body model.

Vt,i is the mesh velocity in the non-inertial frame under translation Vo,i and rotation ωj. The

translational velocity is marked �(I)� because it is transformed from the inertial frame.

kbjijkioit xVV ,,, ωε+= ()I

jojiio VBV ,, = (3.4)

41

The total relative energy ρEr in the moving frame is related to the internal energy ρe using

Eq. 3.5. Similarly, the total energy in the stationary frame ρE is related to the internal energy

using Eq. 3.6. Eq. 3.7 falls out from these two equations being linked through the internal

energy and Eq. 3.3 being substituted for the velocity in the stationary frame:

()ititirirr VVuueE ,,,,2

1 −+= ρρρ (3.5)

iiuueE ρρρ
2

1+= (3.6)

itir VuEE ,ρρρ −= (3.7)

Cowan reposes the Euler equations in the non-inertial frame using the relative velocity and

total relative energy in the moving frame:

S
FU

=
∂

∂
+

∂

∂

ib

i

xt ,

(3.8)

where

�
�

�
�

�

�
�

�
�

�

=

r

jr

E

u

ρ

ρ

ρ

,U

() ��

�
�

�

�
�

�
�

�

+

+=

pEu

puu

u

rir

ijjrir

ir

i

ρ

δρ

ρ

,

,,

,

F

�
�

�
�

�

�
�

�
�

�

+⋅

+−=

)(

0

,,,

,,

krktkt

lrkjkljt

uVa

ua ωερS (3.9)

krjijkkbjijkmblklmjijkioit uxxaa ,,,,, ωεωεωεωε +++= �
()I

jojiio aBa ,, = (3.10)

where S is the non-inertial source term and at,j is the relative acceleration (marked �(I)�)

aligned with the inertial frame. Coordinates in the global frame xi are related to the

coordinates in the rotated frame xb,i relative to the center of rotation xo,i:

jbijioi xBxx ,, += (3.11)

Notice that the gradient in Eq. 3.8 has been written in terms of the relative mesh coordinates

xb,i, which remains constant even under translation or rotation.

42

3.2 Navier-Stokes Equations

The Navier-Stokes represent the transport of continuity, momentum, and energy through a

viscous continuum. The Navier-Stokes equations are also developed using a first-order

Taylor series expansion of fluxes across an infinitesimal element in a continuum flow. The

Navier-Stokes equations should be seen as the simplest representation of a compressible,

viscous continuum. Any discretization of the Navier-Stokes equations will also be limited to

continuum flows. The Navier-Stokes equations are the basis for NS2D (Moffitt, 2004) and

CFDsol (Gupta, 2007).

3.2.1 Inertial Formulation

The Navier-Stokes equations add viscous stresses to momentum transport and viscous dissi-

pation with heat conduction to the energy equation. The Navier-Stokes equations in the

inertial frame are written here in conservative form and compact notation:

i

iv

i

i

xxt ∂

∂
=

∂

∂
+

∂

∂ ,FFU
(3.12)

where

�
�

�
�

�

�
�

�
�

�

=

E

u j

ρ

ρ

ρ

U

() �
�

�
�

�

�
�

�
�

�

+

+=

i

ijji

i

i

upE

puu

u

ρ

δρ

ρ

F
()

() �
�

�
�

�

�
�

�
�

�

′′−

=

ij

I

ij

I

ijiv

quτ

τ

0

,F (3.13)

The left side of the governing equations is the same as the Euler equations. The viscous

stresses and heat fluxes in the viscous fluxes Fv,i are represented using Newtonian fluids:

()
ij

k

k

i

j

j

iI

ij
x

u

x

u

x

u
δλµτ

∂

∂
+
�
�

	

�
�

�

∂

∂
+

∂

∂
= (3.14)

43

i

i
x

T
kq

∂

∂
−=′′ (3.15)

where µ is the kinetic viscosity, λ is the second viscosity coefficient, and k is the coefficient

of thermal conductivity. The superscript �(I)� denotes the stress tensor in the inertial frame.

3.2.2 Non-Inertial Formulation

The Navier-Stokes equations can be posed in the non-inertial frame using Cowan�s method.

S
FFU

+
∂

∂
=

∂

∂
+

∂

∂

ib

iv

ib

i

xxt ,

,

,

(3.16)

where the unknowns U, inviscid fluxes Fv,i, and non-inertial source term S are calculated

using Eq. 3.9. The viscous fluxes are calculated:

�
�

�
�

�

�
�

�
�

�

′′−

=

ijrij

ijiv

qu ,

,

0

τ

τF (3.17)

The energy flux is represented by the product of relative velocity and momentum. The

energy flux is shown in the inviscid ur,i p and viscous stress τijur,j flux terms. The relative

velocity is used because the domain element moves with the fluid, so translation and rotation

do not perform work on the element. Instead, energy flux is created by local changes in the

flow field. Vanyo (1993) suggests these equations to solve fluid fields in all frames. The

viscous stress tensor τij can be defined either in terms of relative velocities or total velocity.

To prove this, we start with Eq. 3.14 (written in matrix-vector form, Eq. 3.18) and transform

the gradients between frames using Eq. 3.11 (where [] ∇=∇=∇∂∂=∇ ABT

bb xx
��

/):

44

() ()() IVVV TTTTI
���

∇+∇+∇= λµτ (3.18)

() ()() () IBBB VVV
T

b

TT

b

T

b

I
���

∇+∇+∇= λµτ

Eqs. 3.3 and 3.4 are used to transform the velocity into the non-inertial frame:

() () ()() () ()

() ()() () ()

() ()()() () () IBBBBBB

IBBB

IBBBBBB

b

T

b

TT

bb

T

bb

o

T

b

TT

ob

T

ob

r

T

b

TT

rb

T

rb

I

xxx

VVV

VVV

���

���

���

Ω∇+Ω∇+Ω∇+

∇+�
	

�
�

 ∇+∇+

∇+�
	

�
�

 ∇+∇=

λµ

λµ

λµτ

The matrix transforms are resolved (acknowledging that BT = B-1 = A):

() ()()
()()

()() IABAB

IAAB

IABAB

b

T

b

TT

bb

TT

bb

o

T

b

TT

ob

T

ob

r

T

b

TT

rb

T

rb

I

xxx

VVV

VVV

���

���

���

Ω∇+∇Ω+Ω∇+

∇+∇+∇+

∇+∇+∇=

λµ

λµ

λµτ

Finally, the stress tensor is transformed back into the non-inertial frame:

() ()()
() ()()

()() I

IAAA

IBA

b

T

b

TT

bb

TT

bb

o

T

b

TT

ob

T

ob

r

T

b

TT

rb

T

rb

I

xxx

VVV

VVV

���

���

���

Ω∇+∇Ω+Ω∇+

∇+�
	

�
�

 ∇+∇+

∇+∇+∇==

λµ

λµ

λµττ

which can also be written in indicial notation:

() () () mnpblklp

kb

lbknkl

mb

lbkmkl

nb

mn

pb

kopk

mb

jonj

nb

iomi

mn

pb

pr

mb

nr

nb

mr

jnijmimn

x
x

x
x

x
x

x

VA

x

VA

x

VA

x

u

x

u

x

u
BA

δωελωεωεµ

δλµδλµττ

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

∂

∂
+�
�
	

�
�
�

∂

∂
+

∂

∂
+

∂

∂
+�
�
	

�
�
�

∂

∂
+

∂

∂
+

∂

∂
+�
�
	

�
�
�

∂

∂
+

∂

∂
==

0 0 0

45

The entire domain is translating Vo,i and rotating ωj at the same rate so the gradient of these

terms are identically zero. The translational contributions have been identified as zero in Eq.

3.18. The rotational components are simplified in Eqs. 3.19 and 3.20.

() 0
,

,

,

,

===
∂

∂
=

∂

∂
lklkkplklp

kb

pb

lklppblklp

kb x

x
x

x
ωεδωεωεωε (3.19)

() () () () 0,

,

,

,

=+=+=
∂

∂
+

∂

∂
nkmmknkmlnklnlmklklbknkl

mb

lbkmkl

nb

x
x

x
x

εεωδεδεωωεωε (3.20)

The non-inertial stress tensor can be calculated through relative velocities alone (Eq. 3.21):

mn

pb

pr

mb

nr

nb

mr

jnijmimn
x

u

x

u

x

u
BA δλµττ

,

,

,

,

,

,

∂

∂
+�
�
	

�
�
�

∂

∂
+

∂

∂
== (3.21)

3.3 Thermodynamic Relationships

The governing equations are not enough to represent the fluid dynamics. Thermodynamic

relationships are required to relate different properties. Specifically, an equation of state is

required to relate the pressure to other properties of the fluid. Variable property relationships

are considered where necessary, but constant relationships are used wherever possible.

Sutherland�s equation is given for variable viscosity. These relationships are discussed along

with their effects in simplifying previous equations. Finally, isentropic relationships are

summarized for use in boundary conditions and other relationships.

3.3.1 Thermodynamics

The energy in the flow can be viewed in several forms: Internal energy, enthalpy, temper-

ature, kinetic energy, or total energy. Internal energy e is a quantity that is lumped together

to support continuum analysis. Internal energy is the kinetic energy measured at the mole-

0

0 0

46

cular level, including that creates by molecule translation, rotation, and vibration and even

the chemical bonds holding a molecule together. The quantity on the right side of Eq. 3.22

appears so often in thermodynamic equations that the quantity enthalpy h was created out of

mathematical convenience. Enthalpy represents the combination of internal energy and flow

work, or the work done by pressure on a finite control volume in the flow.

ρ

p
eh += (3.22)

Temperature is another measure of the molecular kinetic energy. Temperature is more

common than the previous measures of energy. Most people are more familiar with the

temperature of a room than the internal energy or enthalpy of the air in that room. The

internal energy and enthalpy can be related to the temperature using specific heats. The ratio

of these specific heats γ can be used to relate enthalpy directly to the internal energy:

Tce v= Tch p= eh γ= (3.23)

Kinetic energy, here, is the measure of the energy in the mean flow of the fluid: uiui / 2. The

kinetic energy is added to the internal energy in Eq. 3.6 to calculate the total energy. A

similar quantity can be created to represent the total enthalpy ρH in the flow (Eq. 3.24). The

definition of enthalpy (Eq. 3.22) can be substituted into this relationship, creating a relation-

ship between total enthalpy, total energy, and flow work that resembles Eq. 3.22:

pEuupeuuhH iiii +=++=+= ρρρρρρ
2
1

2
1 (3.24)

The internal energy was also combined with the kinetic energy in the non-inertial frame to

calculate the total relative energy of the fluid (Eq. 3.5). A similar quantity can be created to

represent the total relative enthalpy ρHr in the flow (Eq. 25). The definition of enthalpy can

47

be substituted into this relationship to create a relationship between total relative enthalpy,

total relative energy, and flow work:

() () pEVVuupeVVuuhH rititirirititirirr +=−++=−+= ρρρρρρ ,,,,2
1

,,,,2
1 (3.25)

3.3.2 Ideal Gas

Moffitt (2004) performed an order of magnitude analysis on the van der Waals equation and

demonstrated that the ideal gas equation is sufficiently accurate for all continuum flows

considered by this research. The ideal gas equation relates the pressure, density, and some

form of energy. Traditionally, the temperature is used in the ideal gas equation, but the

solvers considered here do not track the temperature of the flow. The ideal gas equation has

been written in Eq. 3.26 in terms of internal energy and enthalpy:

h
c

R
e

c

R
RTp

pv

ρρρ === (3.26)

The total enthalpy is tracked in the OSU codes, and the total energy is tracked in CFDsol.

Eqs. 3.6 and 3.24 are substituted into Eq. 3.26 to formulate the ideal gas equation in terms of

total energy and total enthalpy:

�
	

�
�

−=�

	

�
�

−= ii

p

ii

v

uuH
c

R
uuE

c

R
p ρρρρ

2

1

2

1
(3.27)

For the total relative energy and total relative enthalpy, in the non-inertial frame, Eqs. 3.5 and

3.25 are substituted into Eq. 3.26:

() ()�
	

�
�

−−=�

	

�
�

−−= ititirirr

p

ititirirr

v

VVuuH
c

R
VVuuE

c

R
p ,,,,,,,,

2

1

2

1
ρρρρ (3.28)

48

These equations can be simplified further after addressing whether cp and cv should be treated

as constant or calculated as a function of the other thermodynamic properties.

3.3.3 Constant vs Variable Properties

Moffitt (2004) considered the variation of viscosity µ, specific heat cp, ratio of specific heats

γ, and Prandtl number Pr over a full range of flight altitudes in Earth and Martian atmosphere

at speeds up to Mach 3.5. Moffitt found that the specific heat, ratio of specific heats, and

Prandtl number varied by less than 10% and only higher speeds at sea level. Viscosity could

experience changes up to 200% and requires further modeling.

All of the equations presented thus far have not assumed constant or variable properties. If

constant properties are assumed, several relationships can be simplified. To accomplish this,

the two specific heats can be written in terms of the ratio of specific heats (Mattingly, 1996):

1

1

−
=

γR

cv
1−

=
γ

γ

R

cp
(3.29)

Eq. 3.26 can be used to calculate the enthalpy using the pressure and density. Eq. 3.29 is

substituted the relationship to eliminate the need for tracking specific heats:

ργ

γ

ρ

pp

R

c
h

p

1−
== (3.30)

The ideal gas equations in Eqs. 3.27 and 3.28 can also be simplified using Eq. 3.29:

() �
	

�
�

−

−
=�

	

�
�

−−= iiii uuHuuEp ρρ

γ

γ
ρργ

2

11

2

1
1 (3.31)

() () ()�
	

�
�

−−

−
=�

	

�
�

−−−= ititirirrititirirr VVuuHVVuuEp ,,,,,,,,

2

11

2

1
1 ρρ

γ

γ
ρργ (3.32)

49

The Prandtl number Pr, which is considered constant for this research, can be used to relate

the viscosity, thermal conductivity, and specific heat. The Prandtl number will later be used

to remove dimensions from heat conduction term:

k

cpµ
=Pr (3.33)

The variation of kinetic viscosity will be addressed in the next section. The second coeffi-

cient of viscosity is addressed here. Most CFD codes are developed around a constant

relationship between first and second viscosities, where the former is -
2
/3 times the later.

This quantity is often referred to as Stokes� hypothesis. Moffitt (2004) reviews Stokes�

hypothesis and its origination. Stokes developed Eq. 3.34 as a basis for maintaining positive

viscous dissipation, which is required to be physically accurate. Stokes� hypothesis only

creates a lower limit on second viscosity. CFDsol assumes the lower limit in all cases.

NS2D and NS3D are setup to maintain the lower limit while allowing the user to increase λ

as necessary. Additional discussion of Stokes� hypothesis can be found in Appendix A.

µλ
3
2−≥ (3.34)

3.3.4 Sutherland's Equation

The viscosity µ is calculated from the freestream properties and Reynolds number. The local

viscosity can be calculated as a function of temperature (enthalpy) using Sutherland�s law

(Eq. 3.35). Sutherland�s equation is traditionally written in terms of a reference condition

and reference viscosity. Here, the reference conditions have been taken from the freestream

conditions. The temperatures and coefficient S can be scaled by the specific heats cp to

repose Sutherland�s equation in terms of enthalpy instead of temperature:

50

Sch

Sch

h

h

ST

ST

T

T

p

p

+

+
��
	

��
�

=

+

+
��
	

��
�

= ∞

∞

∞

∞∞

2
3

2
3

µ

µ
(3.35)

The thermal conductivity k also distributed using Sutherland�s equation through a constant

Prandtl number (Eq. 3.33). The local and freestream enthalpy h is calculated using Eq. 3.30.

3.3.5 Isentropic Relationships

Assuming an ideal gas with constant specific heats, the total properties of a fluid can be

defined from its static properties. The total properties are created by decelerating a fluid to

zero velocity through an isentropic process. For instance, a fluid with an enthalpy h and

velocity ui decelerated through an isentropic process to a zero velocity has an enthalpy H,

otherwise known as its total enthalpy. The enthalpy at these two conditions is linked through

conservation of energy (Eq. 3.25). The velocity can be written in terms of the local Mach M:

2

,,2

a

uu
M

irir=
ρ

γγ
ρ

γ
p

RT
p

a ==
∂

∂
=2

(3.36)

��
	

��
�

−

−
+=��

	

��
�

−+=

−
+=

2

,,2

2

,,2,,,,

2

1
1

2
1

2
1

a

VV
M

a

VV
M

Tc

RT

h

VVuu

h

H itititit

p

ititirirr γγ
(3.37)

Since the total enthalpy H is also the static enthalpy when the flow has been decelerated

isentropically to zero, Eq. 3.23 can be used to calculate its temperature, or total temperature.

The ratio of total to static enthalpy is used to calculate the ratio of total to static temperature:

T

T

Tc

Tc

h

H t

p

tpr == (3.38)

For an isentropic gas with constant properties, the ratio of any two temperatures can be used

to calculate the corresponding pressure ratio. If the temperature ratio is total to static, then

the pressure ratio will also be total to static:

51

1−

�
	

�
�

=

γ
γ

T

T

p

p tt (3.39)

Viscous dissipation of energy produces entropy. In the presence of viscous dissipation

(boundary layers, vortical flows, etc.), the isentropic relationships are no longer valid. Eqs.

3.36 through 3.39 are used to model rocket properties upstream of the nozzle. Such flow is

upstream of any viscous dissipation so the isentropic relationships are again applicable.

3.4 Turbulence Modeling Theory

Several methods exist for capturing turbulence that is present in high Reynolds number

flows. Direct Numerical Simulation (DNS) uses the Navier-Stokes equations, as presented

above, and very fine meshes to simulate turbulence in the flow. DNS is the most accurate

method but also the most expensive, requiring spatial and temporal discretizations on the

order of the Kolmogorov scales.

Large-Eddy Simulation (LES) reduces some of the expense by filtering out the smallest

eddies and capturing the larger eddies within the filtered Navier-Stokes equations. LES

requires very fine near-wall meshes, which makes the method too expensive for most

applications, but LES makes up for its expense through accurate results well-preserved flow

physical. LES is best for highly separated and vortical flows.

Reynolds-Averaged Navier-Stokes (RANS) is the next step in efficiency and accuracy.

Some RANS models only require the mean properties be appropriately modeled in the near-

wall and high gradient regions in order to achieve accuracy. RANS tracks the bulk properties

of turbulence in the flow, which are more mathematical than physical in nature. RANS

models more turbulent in the flow than either of the previous methods, which puts all of the

52

weight on the shoulders of the model developer. The accuracy of a RANS model is often

tuned on a series of simple or specific cases, on which the developer hopes to use his/her

model. The generality to other flow regimes is lost in the tuning. Further, U-RANS (or

Unsteady-RANS) is the extension of RANS models to unsteady flows. U-RANS is thought

to be the least accurate of the above methods because RANS models are almost never tuned

for unsteady problems. The models that are investigated here are posted in U-RANS form

but only steady tests are incorporated into their verification.

3.4.1 Reynolds-Average Navier-Stokes (RANS)

Reynolds-averaging is a form of time-averaging similar to that used in many experimental

techniques. The properties are averaged at a particular point of interest, assuming that if the

period of the average is much larger than the period of the turbulence then the mean proper-

ties will be constant. If the flow is unsteady, the period T of the mean properties (denoted by

overbar, p) must be much larger than the turbulent fluctuations (denoted by prime, p��).

Consider the velocity vector ui as a decomposition of mean and fluctuating terms (Eq. 3.40).

The velocity can be averaged over a period T to calculate the mean velocity. The fluctuating

component is identically zero when averaged over the period T (Pope, 2000):

iii uuu ′+= (3.40)

�
+

=
Tt

t

ii dtu
T

u
1

 0
1

=′�
+Tt

t

idtu
T

(3.41)

These principles are applied when the Navier-Stokes equations are time-averaged, creating

the Reynolds-averaged Navier-Stokes (RANS) equation. Properties are grouped together

through their multiplication into conservative properties, fluxes, or other constructions.

53

These terms are also time-averaged. Consider the time-average of uiuj as an example. The

mean velocity components (first term) are retained through the time-average. For the mean-

fluctuation components (second and third terms), the constant mean-component can be

factored out of integral, leaving the fluctuations, whose integrals are identically zero. The

final term pairs two fluctuations, which by the definitions in Eq. 3.41 cannot be mathe-

matically eliminated. These and similar terms are preserved in the RANS equations.

jiji

Tt

t

ji

Tt

t

i

j
Tt

t

j
i

Tt

t

ji

Tt

t

ji uuuudtuu
T

dtu
T

u
dtu

T

u
dtuu

T
dtuu

T
′′+=′′+′+′+= �����

+++++
111

(3.42)

Finally, the Navier-Stokes equations are partial differential equations relating the temporal

and spatial derivatives to represent the physics of fluids. These derivatives must also be

time-averaged. Eq. 3.43 and 3.44 illustrate the method for Reynolds-averaging derivatives.

i

Tt

ti

Tt

t i x

p
dtp

Tx
dt

x

p

T ∂

∂
=�

�
	

�
�
�

∂

∂
=

∂

∂
��
++

11
(3.43)

t

p
dtp

Tt
dt

t

p

T

Tt

t

Tt

t
∂

∂
=�

�
	

�
�
�

∂

∂
=

∂

∂
��
++

11
(3.44)

We will start by Reynolds-averaging the incompressible Navier-Stokes equations, which will

be used to develop and discuss RANS turbulence modeling. When compressibility is added,

the RANS equations become very complicated. Favre-averaging (or mass-averaging) will be

used in place of traditional Reynolds-averaging. Favre-averaging allows the CFD developer

to implement RANS turbulence models into a compressible solver. Compressible corrections

will be discussed. Then the SA and SST models will be presented in multiple forms.

0 0

54

3.4.1.1 Incompressible RANS

Turbulence can be conceptualized as properties that are continuously perturbed about a mean

value. For example, the pressure can be represented: ppp ′+= . Using this concept the

incompressible momentum equation (inertial) becomes (Pope, 2000):

() ()()() ()()
ijijij

i

jjii

i

jj pp
x

uuuu
x

uu
t

ττδ
ρ

′++′+−
∂

∂
=′+′+

∂

∂
+′+

∂

∂ 1
(3.45)

where the viscous stresses are split into a component calculated using the mean velocities ijτ

and fluctuating velocities ijτ ′ . (Strictly speaking, ijτ is the time-average of the molecular

stress tensor, and ijτ ′ represents all of the terms that fall-out during time-averaging.)

�
�

	

�
�

�

∂

∂
+

∂

∂
=

i

j

j

i
ij

x

u

x

u

Re

µ
τ �

�

	

�
�

�

∂

′∂
+

∂

′∂
=′

i

j

j

i
ij

x

u

x

u

Re

µ
τ (3.46)

The incompressible momentum equation is time-averaged:

() ()()()

()()�

��
+

++

′++′+−
∂

∂
=

′+′+
∂

∂
+′+

∂

∂

Tt

t

ijijij

i

Tt

t

jjii

i

Tt

t

jj

dtpp
xT

dtuuuu
xT

dtuu
tT

ττδ
ρ

11

11

(3.47)

() ()
ijij

i

jiji

i

j
p

x
uuuu

xt

u
τδ

ρ
+−

∂

∂
=′′+

∂

∂
+

∂

∂ 1
(3.48)

The additional term
jiuu ′′ is called the Reynolds stress tensor:

jiij uu ′′−=Τ . The Reynolds

stress is derived from the advection term but more closely resembles the viscous stresses, so

the Reynolds stress is grouped with the total stress tensor:

55

() ()ijijij

ii

jij
p

xx

uu

t

u
Τ++−

∂

∂
=

∂

∂
+

∂

∂
ρτδ

ρ

1
 (3.49)

In this form, the Reynolds-averaged momentum equations looks very similar to the original

momentum equation. The Reynolds stress tensor will be closed (modeled) later.

Now we seek to Reynolds-average all of the essential equations presented in the previous

sections. In this way, we will Reynolds-average the Navier-Stokes equations in their non-

inertial formulation and their support relationships. (The inertial equations take on a similar

form, where the mesh velocity Vt,i and rotation vector ωj are identically zero, and the relative

subscript �r� is dropped as a reference.) Before applying Reynolds-averaging to the govern-

ing equations, we first focus on the thermodynamic relationships, which will simplify the

later process. The energy, enthalpy, and temperature are related through Eqs. 3.5, 3.7, 3.22

through 3.25, 3.30, 3.32, and 3.36 through 3.38, which are time-averaged here:

()ititiriririrr VVuuuueE ,,,,,,2
1 −′′++= ρρρ (3.50)

itir VuEE ,ρρρ −= (3.51)

ρ

p
eh += (3.52)

Tce v= Tch p= eh γ= (3.53)

() pEVVuuuuhH rititiriririrr +=−′′++= ρρρρ ,,,,,,2
1 (3.54)

ργ

γ p
h

1−
= (3.55)

() ()�
	

�
�

−′′+−−= ititiriririrr VVuuuuEp ,,,,,,

2

1
1 ρργ (3.56)

56

()�
	

�
�

−′′+−

−
= ititiriririrr VVuuuuHp ,,,,,,

2

11
ρρ

γ

γ
(3.57)

2

,,2

a

uu
M

irir=
ρ

γγ
p

TRa ==2
(3.58)

�
�

	

�
�

�

 −′′
+

−
+=

−′′+
+==

2

,,,,2,,,,,,

2

1
1

2
1

a

VVuu
M

h

VVuuuu

h

H

T

T ititirirititiriririrrt γ
(3.59)

The trace of the Reynolds stress tensor appears with the mean kinetic energy (Eqs. 3.50, 3.54,

3.56, and 3.57). This term is also called the turbulent kinetic energy:
irir uuK ,,2

1 ′′= . The

turbulent kinetic energy also appears in Eq. 3.59 in a Mach number form, which will be

referred to as the turbulent Mach number: 22

,,

2 /2/ aKauuM irirT =′′= . These two

relationships are substituted back into the previous equations:

() KVVuueE ititirirr ρρρρ +−+= ,,,,2
1 (3.60)

() pEKVVuuhH rititirirr +=+−+= ρρρρρ ,,,,2
1 (3.61)

() () �
	

�
�

−−−−= KVVuuEp ititirirr ρρργ ,,,,

2

1
1 (3.62)

() �
	

�
�

−−−

−
= KVVuuHp ititirirr ρρρ

γ

γ
,,,,

2

11
(3.63)

��
	

��
�

−+

−
+==

2

,,22

2

1
1

a

VV
MM

h

H

T

T itit

T
rt γ

 (3.64)

Now we return to the governing equations. The non-inertial formulation of the Navier-

Stokes equations is time-averaged:

S
FFU

+
∂

∂
=

∂

∂
+

∂

∂

ib

iv

ib

i

xxt ,

,

,

(3.65)

where

57

�
�

�
�

�

�
�

�
�

�

=

r

jr

E

u

ρ

ρ

ρ

,U

�
�

�
�

�

�
�

�
�

�

′′′+′′+′′+

+′′+=

jrjririrjrirjrrir

ijjrirjrir

ir

i

uuuhuuuuHu

puuuu

u

,,2
1

,,,,,,

,,,,

,

ρρρρ

δρρ

ρ

F (3.66)

�
�

�
�

�

�
�

�
�

�

′′−′′+

=

ijrijjrij

ijiv

quu ,,

,

0

ττ

τF

�
�

�
�

�

�
�

�
�

�

′++⋅

+−=

krktkrktkt

lrkjkljt

uauVa

ua

,,,,,

,,

)(

0

ωερS (3.67)

()
jtjriji VuBu ,, += (3.68)

krjijkkbjijkmblklmjijkioit uxxaa ,,,,, ωεωεωεωε +++= � (3.70)

0,,,, =′′=′
krirjijkirit uuua ωε (3.71)

Notice that the continuity equation does not contain any Reynolds-terms, while the energy

equation contains five such terms. (All three Reynolds-terms in the inviscid energy flux are

derived by expanding Hr using Eq. 3.25 before Reynolds-averaging. Then terms are

collected back together using Eq. 3.61.) Also notice that the energy source term has a

Reynolds-term that is created by Reynolds �averaging the mesh acceleration
kta ,
 dotted with

the relative velocity kru ,
′ , but that term is identically zero (Eq. 3.71).

The Reynolds-stress and turbulent kinetic energy have already been defined. Three more

Reynolds-terms are needed to complete the representation, which will be defined in the next

section. For now the three terms are defined as the turbulent transport of heat hu ir
′′

,ρ ,

molecular diffusion
jriju ,

′′τ , and turbulent transport of turbulent kinetic energy
jrjrir uuu ,,2

1
,

′′′ρ .

3.4.1.2 Closure Terms

The Reynolds stress tensor, turbulent transport of heat, molecular diffusion, and turbulent

transport of turbulent kinetic energy are modeled using closure models, either as algebraic or

58

differential equations. For the simple models used in this work, the Reynolds stress tensor Tij

is modeled using Boussinesq�s approximation:

ijij
T

ij

i

jr

j

ir

Tij KK
x

u

x

u
δρτ

µ

µ
δρµρ

3

2

3

2,, −=−
�
�

	

�
�

�

∂

∂
+

∂

∂
≈Τ (3.72)

where µT is the eddy viscosity. The turbulent kinetic energy is included so that the identity is

maintained
1
:

KKK
x

u
ii

i

ir

Tii ρρδρµρ 2)3(
3

2

3

2
2

, −=−=−
∂

∂
≈Τ (3.73)

The molecular diffusion
ijjru τ ′′

,
and turbulent kinetic energy transport

jrjrir uuu ,,2
1

,
′′′ are

approximated using the gradient of turbulent kinetic energy (Wilcox, 2002):

()
i

Tkjrjririjjr
x

K
uuuu

∂

∂
+≈′′′−′′ µσµρτ ,,2

1
,, (3.74)

where σk is the correlation of the turbulent transport vector and kinetic energy gradients, and

may change depending on the gradient being used. Generally, these quantities are assumed

to be perfectly correlated for all three directions, so σk is constant for the model and only

used to scale the calculation.

The turbulent heat transport Qi is constructed using Reynolds analogy for momentum and

heat transfer, seen in the molecular Prandtl and turbulent Prandtl numbers (Kays, et al, 2005).

From Eq. 3.15, 3.23, and 3.33, the molecular conduction is calculated:

�
������������	�
���	������������������������	�������������	�����������	���	�����	����������	��������������������

����	���	���
����������	���������������	�����������	���	���δ��������

 �

59

jj

p

j

i
x

h

x

Tc

x

T
kq

∂

∂
−=

∂

∂
−=

∂

∂
−=′′

PrPr

µµ
(3.75)

through analogy

iT

T
ii

x

h
huQ

∂

∂
−≈′′=

Pr

µ
ρ (3.76)

where PrT is the turbulent Prandtl number (= 0.9, for air).

When the Reynolds -terms are substituted back into Eqs. 3.65 through 3.67, the non-inertial

RANS equations are rearranged placing Reynolds-terms with the viscous flux terms:

S
FFU

+
∂

∂
=

∂

∂
+

∂

∂

ib

iv

ib

i

xxt ,

*

,

,

*

(3.77)

where

�
�

�
�

�

�
�

�
�

�

+=

rir

ijjrir

ir

i

Hu

puu

u

ρ

δρ

ρ

,

,,

,

*
F

�
�

�
�

�

�
�

�
�

�

+⋅

+−=

)(

0

,,,

,,

krktkt

lrkjkljt

uVa

ua ωερS (3.78)

() () �
�

�
�

�

�
�

�
�

�

∇++−′′−Τ+

Τ+=

KQqu iTkiiijijjr

ijijiv

µσµρτ

ρτ

,

*

,

0

F (3.79)

These equations contain mean flow properties, eddy viscosity µT, and turbulent kinetic

energy K. Simplified models (mixing-length, algebraic, and one-equation model) have no

way to calculate K and neglect the terms containing any form of turbulent kinetic energy.

3.4.1.3 Turbulent Kinetic Energy Equation

Turbulent kinetic energy is defined as:

60

jjuuK ′′=
2
1 (3.80)

A governing equation can be created by time-averaging the dot product of velocity vector

fluctuation with the momentum equation (as a vector) (Wilcox, 2002):

() ()()() ()()�
�

�
�
�

�
′++′+−

∂

∂
′=�

�

�
�
�

�
′+′+

∂

∂
+′+

∂

∂
′

ijijij

i

jjjii

i

jjj pp
x

uuuuu
x

uu
t

u ττδ
ρ

1
(3.81)

After time-averaging and manipulation, the equation becomes:

() ()

()jijjjii

i

i

i

i

j

ij

i

j

ji

i

jj

i

jj

uuuupu
x

x

u
p

x

u

x

u
uu

x

uu
u

t

uu

′′−′′′+′′
∂

∂
−

∂

′∂
′+

∂

′∂
′−

∂

∂
′′−=

∂

′′∂
+

∂

′′∂

τρ
ρ

ρ
τ

ρ

2
1

2
1

2
1

1

11

(3.82)

The second term on the right side is called the dissipation of turbulent kinetic energy:

i

j

ij
x

u

∂

′∂
′= τρε (3.83)

The pressure diffusion term pui
′′ and pressure dilatation)(up ′⋅∇′ are often neglected for

incompressible flows. Substituting in Tij, K, ε, and the closure approximations discussed

above (Eq. 3.74), the equation becomes:

() ��
	

��
�

∂

∂
+

∂

∂
+−

∂

∂
=

∂

∂
+

∂

∂

i

Tk

ii

j

ij

i

i
x

K

xx

u
T

x

K
u

t

K
µσµ

ρ
ε

1
(3.84)

3.4.1.4 Turbulent Dissipation Equation

The previous section defined the turbulent dissipation (Eq. 3.83). An approximation for the

turbulent dissipation rate can be constructed:

61

i

j

i

j

i

j

i

j

j

i

i

j

ij
x

u

x

u

x

u

x

u

x

u

x

u

∂

′∂

∂

′∂
≈

∂

′∂
�
�

	

�
�

�

∂

′∂
+

∂

′∂
=

∂

′∂
′= µµτρε (3.85)

A governing equation can be created by time-averaging viscosity times the dot product of the

gradient of velocity fluctuation with the gradient of the momentum equation (as a vector):

() ()()()

()()�
�

�
�
�

�
′++′+−

∂

∂

∂

∂

∂

′∂
=

�
�

�
�
�

�
′+′+

∂

∂
+′+

∂

∂

∂

∂

∂

′∂

ijijij

iii

j

jjii

i

jj

ii

j

pp
xxx

u

uuuu
x

uu
txx

u

ττδ
ρ

µ

µ

1
(3.86)

After time-averaging and much manipulation, the equation becomes (Shih, 1995):

kj

i

kj

i

j

k

k

i

j

i

kj

i

j

i
k

j

k

i

k

k

j

k

i

i

j

jj

i

k

j

k

j

i

iii

i

xx

u

xx

u

x

u

x

u

x

u

xx

u

x

u
u

x

u

x

u

x

u

x

u

x

u

x

p

x

u

x

u

x

u
u

xxx
u

t

∂∂

′∂

∂∂

′∂
−

∂

′∂

∂

′∂

∂

′∂
−

∂∂

∂

∂

′∂
′−

�
�

	

�
�

�

∂

′∂

∂

′∂
+

∂

′∂

∂

′∂

∂

∂
−

�
�

	

�
�

�

∂

′∂

∂

′∂
−

∂

′∂

∂

′∂
′−

∂

∂

∂

∂
=

∂

∂
+

∂

∂

222

2

22

22

2

ρ

µ
µ

µµ

µµ
ε

µ
ε

ρ
ε

ρ

(3.87)

This equation is very complicated and requires many closure approximations. Modelers

usually choose a more empirical approach to developing a dissipation equation:

()
K

C
xxx

u
T

K
C

x
u

t i

T

ii

j

ij

i

i

2

21

1 εε
µσµ

ρ

εεε
εεε −��

	

��
�

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂
+

∂

∂
(3.88)

3.4.1.5 ω-Equation

Some two equation turbulent models use the kinetic energy equation along with the transport

of a property ω, which model designers describe using different attributes. Wilcox (2002)

simply suggests that ω is proportional to the ratio of dissipation and kinetic energy:

62

KC

ε
ω

µ

1
= or KC ωε µ= (3.89)

The ω-transport equation is generally developed by postulating an equation from the most

common processes and then generating closure coefficients that accurately match basic

flows. The ω-equation can also be created by starting with the ε-equation and the relation-

ship above and replacing the terms with those of K and ω. The chain rule can be applied to

the above relationship, assuming that Cµ is constant:

t

K
C

t
KC

t ∂

∂
+

∂

∂
=

∂

∂
ω

ωε
µµ

iii x

K
C

x
KC

x ∂

∂
+

∂

∂
=

∂

∂
ω

ωε
µµ (3.90)

Substituting these relationships into the empirical form of the ε-equation:

() �
�
	

�
�
�

��
	

��
�

∂

∂
+

∂

∂
+

∂

∂
+

−
∂

∂
=��

	

��
�

∂

∂
+

∂

∂
+��
	

��
�

∂

∂
+

∂

∂

ii

T

i

i

j

ij

i

i

i

i

x

K

x
K

x

KCC
x

u
TC

x

K
u

t

K

x
u

t
K

ω
ω

µσµ
ρ

ωωω
ωω

ε

µεε

1

2

21

(3.91)

Subtracting the K-equation from the previous equation and dividing by K:

() ()
ii

T

i

T

i

i

j

ij

i

i

x

K

xKxx

CC
x

u
T

K
C

x
u

t

∂

∂

∂

∂
++��

	

��
�

∂

∂
+

∂

∂
+

−+
∂

∂
−=

∂

∂
+

∂

∂

ω
µσµ

ρ

ω
µσµ

ρ

ω
ωωω

εε

µεε

21

)1()1(2

21

(3.92)

The last term is referred to as cross-diffusion, where the derivatives of K and ω are both used

in one term. The cross-diffusion term demonstrates a major difference between the k-ε and

k-ω models. Many modelers have attempted to improve their k-ω models by including the

cross-diffusion term, but the physics of the turbulence do not support such a term (Wilcox,

2002). Eliminating this term and combining the coefficients, the ω-equation can be written:

63

() ��
	

��
�

∂

∂
+

∂

∂
++

∂

∂
Τ=

∂

∂
+

∂

∂

i

T

ii

j

ij

i

i
xxx

u

Kx
u

t

ω
µσµ

ρ
βω

ω
α

ωω
ω

12
(3.93)

3.4.1.6 Compressible RANS

Reynolds-averaging the compressible Navier-Stokes equations is much more complex. The

density fluctuation must also be taken into account now: ρρρ ′+= . To illustrate the added

complexity, the compressible momentum equation (inertial) is time-averaged:

()()() ()()()() ()()
ijijij

i

jjii

i

jj pp
x

uuuu
x

uu
t

ττδρρρρ ′++′+−
∂

∂
=′+′+′+

∂

∂
+′+′+

∂

∂
(3.94)

After time averaging:

() () ()
ijij

i

jijijiijji

i

jj p
x

uuuuuuuuuu
x

uu
t

τδρρρρρρρ +−
∂

∂
=′′′+′′+′′+′′+

∂

∂
+′′+

∂

∂
(3.95)

The momentum equation contains many more Reynolds terms, including a term in the time

derivative. The compressible RANS equations have a total of 34 Reynolds terms. These

equations require 34 closure models, compared to the seven used by incompressible RANS.

We will alleviate some of the Reynolds terms by using mass-averaging in the next section.

Before moving on, we should examine the compressible RANS equations (Eqs. 3.96 through

3.104), particularly, Eqs. 3.100 and 3.104 show a non-inertial source created by turbulence.

The first term of Eq. 104 is identically zero, like Eq. 3.71, but the remaining terms contain

iru ,
′′ρ , which will be eliminated by mass-averaging instead of purely time-averaging.

S
FFU

+
∂

∂
=

∂

∂
+

∂

∂

ib

iv

ib

i

xxt ,

,

,

(3.96)

where

64

()��

�
�

�

�
�

�
�

�

′′′+′′+′′+

′′+=

iriririrr

jrjr

uuuueE

uu

,,,,2
1

,,

2 ρρρρ

ρρ

ρ

U (3.97)

() ()
() �

�
�
�

�

��
�
�

�

�

�
�
�
�

�

��
�
�

�

�

′′′′+′′′+′′′+′′+′′+

′′′+′′′+Τ−′′+′′−+

+′′′+Τ−′′+′′+

′′+

=

krkrirkrirkrkrkrkrkrir

irkrkririkkririrrrir

ijjririjjririrjrjrir

irir

i

uuuuuuuuuuhu

huuuuuhuuKHHu

puuuuuuuu

uu

,,2
1

,,,,,,2
1

,,,

,,,,2
1

,,,,

,,,,,,,,

,,

ρρρρρ

ρρρρ

δρρρρρ

ρρ

F (3.98)

�
�

�
�

�

�
�

�
�

�

′′−′′+

=

ijrijjrij

ijiv

quu ,,

,

0

ττ

τF (3.99)

�
�

�
�

�

�
�

�
�

�

+⋅′+′′

′′−
�
�

�
�

�

�
�

�
�

�

+⋅

+−=

)(

2

0

)(

0

,,,,,

,

,,,

,,

krktktkrkt

lrkjkl

krktkt

lrkjkljt

uVaua

u

uVa

ua

ρρ

ρωεωερS (3.100)

() KVVuueE ititirirr ρρρρ +−+= ,,,,2
1 (3.101)

() KVVuuhH ititirirr ρρρρ +−+= ,,,,2
1 (3.102)

krjijkkbjijkmblklmjijkioit uxxaa ,,,,, ωεωεωεωε +++= � (3.103)

() mrkrktlklmkmmrkrlklmkrktkt uuVuuuVa ,,,,,,,,)()(′′++Τ−′′′=+⋅′ ρωερρωερ (3.104)

3.4.2 Favre-Averaged Navier-Stokes (FANS)

The time-averaged momentum equation can be greatly simplified using Favre-Reynolds-

averaging, or mass-averaging. Thermodynamic properties still represented using the

Reynolds notation; velocities and energy terms are now represented using Favre notation:

uuu ′′+= ~ , eee ′′+= ~ , and hhh ′′+=
~

, so that (Wilcox, 2002):

 �

65

�
+

=
Tt

t

jj dtu
T

u ρ
ρ

11~ �
+

=
Tt

t

dte
T

e ρ
ρ

11~ �
+

=
Tt

t

dth
T

h ρ
ρ

11~
(3.105)

Interestingly enough, when the velocity and energy terms are time-averaged without mass,

the velocity fluctuations do not disappear in Favre-averaging:

jj

Tt

t

j uudtu
T

′′+=�
+

~1

0
1

≠′′=′′�
+

j

Tt

t

j udtu
T

(3.106)

The Favre-Reynolds-averaged momentum equation is written:

() () ()ijij

i

jiji

i

j p
x

uuuu
x

u
t

τδρρρ ~~~~ +−
∂

∂
=′′′′+

∂

∂
+

∂

∂
(3.107)

which closely resembles the incompressible equation, including its number of terms to close.

If we assume Bousinesq�s approximation, the Reynolds stresses can be modeled using the

molecular stresses as a pattern. Eddy viscosity is used in place of molecular viscosity:

�
�

	

�
�

�

∂

∂
−

∂

∂
+

∂

∂
= ij

k

k

i

j

j

i
ij

x

u

x

u

x

u
δµτ

~

3

2
~~

~
(3.108)

ijij

k

k

i

j

j

i
Tijji K

x

u

x

u

x

u
uu δρδµρρ

~

3

2~

3

2
~~~

−
�
�

	




�
�

�



∂

∂
−

∂

∂
+

∂

∂
≈Τ=′′′′− (3.109)

The turbulent kinetic energy term is added to the normal stresses so that the trace of the 

Reynolds stress tensor is equal to the turbulent kinetic energy2: 

( ) ( ) ii

k

k

i

i
Tii uuKK

x

u

x

u
′′′′=−=�

	



�
�


−�
�
	



�
�
�


��
	



��
�



∂

∂
−

∂

∂
=Τ ρρρµρ

~
23

~

3

2
3

~

3

2~
2

~
(3.110)

                                                 
!
�"���	�������������	�
���	������������������������	�������������	�����������	���	�����	����������	��������������

����������	���	���
����������	���������������	�����������	���	���δ��������



66 

Notice that Stokes� hypothesis has been specified in the molecular stresses.  When the 

Reynolds stress is patterned after the molecular stress with Stokes� hypothesis, the trace of 

the first term vanishes, so Stoke�s hypothesis is required in Bousinesq�s approximation.   

Also, notice that the mass-average viscous stress was posed in terms of the mass-averaged 

mean velocities.  If this stress is subtracted from the entire viscous stress, the remaining 

stress term is calculated: 

�
�

	




�
�

�



∂

∂
+

∂

∂
+

∂

∂
′+

�
�

	




�
�

�



∂

′′∂
+

∂

′′∂
+

∂

′′∂
=

�
�

	




�
�

�



∂

∂
+

∂

∂
+

∂

∂
−
�
�

	




�
�

�



∂

∂
+

∂

∂
+

∂

∂
=−=′′

ij

k

k

i

j

j

i
ij

k

k

i

j

j

i

ij

k

k

i

j

j

i
ij

k

k

i

j

j

i
ijijij

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

δ
µ

λ
µδ

µ

λ
µ

δ
µ

λ
µδ

µ

λ
µτττ

~~~
~

(3.111)

and

ij

Tt

t

ijdt
T

ττ ~1
=�

+

0
1~1

=′′=− ��
++ Tt

t

ij

Tt

t

ijij dt
T

dt
T

τττ (3.112)

The momentum equation becomes:

() () ()ijijij

i

ji

i

j p
x

uu
x

u
t

Τ++−
∂

∂
=

∂

∂
+

∂

∂ ~~~~~ ρτδρρ (3.113)

The Favre-Reynolds averaged Navier-Stokes equations
3
 (non-inertial) are written:

S
FFU ~
~~~

,

,

,

+
∂

∂
=

∂

∂
+

∂

∂

ib

iv

ib

i

xxt (3.114)

where  

                                                 
�
�#������
�����	��$��	����������%%���
����	�����&������''���	��'�����'��������
����������	������(�����	�

����������
���������	��&����������������������&�����	������	��������	����������	�������������������	��

�	����������
����	������ρε�����	��������	������	������(�����	���)�	����������������������������(������'���

�����*
�	����'�����



67 

�
�

�
�

�

�
�

�
�

�

=

r

jr

E

u
~

~~
,

ρ

ρ

ρ

U      

�
�

�
�

�

�
�

�
�

�

′′′′′′+′′′′+′′′′+

+′′′′+=

jrjririrjrirjrrir

ijjrirjrir

ir

i

uuuhuuuuHu

puuuu

u

,,2
1

,,,,,,

,,,,

,

~~

~~

~

~

ρρρρ

δρρ

ρ

F (3.115)

�
�

�
�

�

�
�

�
�

�

′′−′′′′+

=

ijrijjrij

ijiv

quu ~~~

~
0

~

,,

,

ττ

τF

�
�

�
�

�

�
�

�
�

�

′′++⋅

+−=

krktkrktkt

lrkjkljt

uauVa

ua

,,,,,

,,

)~(~

~~
0

ρρ

ρωερS (3.116)

( )
jtjriji VuBu ,,

~~ ρρρ += (3.117)

( )
krjijkkbjijkmblklmjijkioit uxxaa ,,,,,

~~ ρωεωεωεωερρ +++= � (3.118)

0,,,, =′′′′=′′
krirjijkirit uuua ρωερ (3.119)

( ) KVVuueE ititirirr

~~~~~
,,,,2

1 ρρρρ +−+= (3.120)

() pEKVVuuhH rititirirr +=+−+=
~~~~~~

,,,,2
1 ρρρρρ (3.121)

The turbulent transport of heat is approximated using Reynolds analogy (Kays, 2005): 

i

i
x

h
q

∂

∂
−=′′

~

Pr

~ µ

   iT

T
iir

x

h
Qhu

∂

∂
−≈=′′′′

~

Pr

~
,

µ
ρ (3.122)

where PrT is the turbulent Prandtl number (= 0.9, for air).  The molecular diffusion 
jiju ′′τ and 

transport of turbulent kinetic energy 
jji uuu ′′′′′′

2
1ρ  are approximated using the gradient of K: 

( )
i

Tkjjijij
x

K
uuuu

∂

∂
+≈′′′′′′−′′

~

2
1 µσµρτ  (3.123)

Substituting the Reynolds stresses and other closure terms into Eqs. 3.115 through 3.117, the 

Faver-average Navier-Stokes equations are written: 

S
FFU ~
~~~

,

*

,

,

*

+
∂

∂
=

∂

∂
+

∂

∂

ib

iv

ib

i

xxt
(3.124)

68

where

�
�

�
�

�

�
�

�
�

�

+=

rir

ijjrir

ir

i

Hu

puu

u

~~

~~

~

~

,

,,

,

*

ρ

δρ

ρ

F

�
�

�
�

�

�
�

�
�

�

+⋅

+−=

)~(~

~~
0

~

,,,

,,

krktkt

lrkjkljt

uVa

ua ωερS (3.125)

() () �
�

�
�

�

�
�

�
�

�

∇++−′′−Τ+

Τ+=

KQqu iTkiiijijjr

ijijiv
~~~~~~

~~
0

~

,

*

,

µσµρτ

ρτF (3.126)

These equations must be supported by a number of thermodynamic equations (Eqs. 3.7, 3.22, 

3.23, 3.30, 3.36 through 3.38, and 3.62 through 3.64), which must be written in terms of 

mass-averaged velocity and energy terms: 

itir VuEE ,
~~~

ρρρ −= (3.127)

1

~~

−
==

γ
ρρ

p
Tce v (3.128)

1

~~~~

−
===+=

γ

γ
ργρρρ

p
eTcpeh p (3.129)

( ) ( ) �
	



�
�


−−−−= KVVuuEp ititirirr

~~~

2

1~
1 ,,,, ρρργ (3.130)

() �
	

�
�

−−−

−
= KVVuuHp ititirirr

~~~

2

1~1
,,,, ρρρ

γ

γ
(3.131)

2

,,

2

,,2

~

~~

a

uu

a

uu
M

iriririr ==
ρ

ρ
  pTRaa γργρρ ===

~~ 22
(3.132)

��
	



��
�


−+

−
+=

−
+===

2

,,22,,,,

~2

1
1~

2
1~

~

~

~

~

~

a

VV
MM

h

VVuu

h

H

h

H

T

T itit

T

ititirirrrt γ

ρ

ρρ

ρ

ρ
(3.133)

where the turbulent Mach number is defined as: 22

,,

2 ~/
~

2~/ aKauuM irirT ρρρρ =′′′′= . 



69 

3.4.2.1 Turbulent Kinetic Energy Equation 

Mass-averaged turbulent kinetic energy is defined as: 

iiuuK ′′′′= ρρ 2
1

~
(3.134)

The Favre-Reynolds averaged turbulent kinetic energy equation is written (Rubesin, 1990): 

( )puuuuu
xx

p
u

x

u

x

u
p

x

u

Dt

KD
ijjijij

ii

i

j

i
ij

i

i

j

i
ij

′′′−′′′′′′−′′
∂

∂
+

∂

∂
′′−

∂

′′∂
−

∂

′′∂
′+

∂

∂
Τ=

2
1

~~
~

ρττρ
ρ

(3.135)

The mass-averaged turbulent production and dissipation rates are consolidated: 

j

i
ij

x

u

∂

∂
Τ=Π

~~~
ρρ

j

i
ij

x

u

∂

′′∂
= τερ ~

(3.136)

Substituting Eqs. 3.123 and 3.136, the turbulent kinetic energy equation becomes:

()
i

i

i

i
i

i

Tk

i x

p
u

x

u
ppu

x

K

xDt

KD

∂

∂
′′−

∂

′′∂
′+��

	

��
�

′′′−

∂

∂
+

∂

∂
+−Π=

~
~~

~

µσµερρ
ρ

(3.137)

Three terms containing pressure fluctuations p ′ remain in Eq. 3.137: The pressure diffusion

pui
′′′ , pressure dilatation iiup ′′∇′ , and pressure work pu ii ∇′′ terms. These terms must vanish

in the limit of incompressibility, so the pressure terms are often modeled as a function of the

freestream Mach number, or the turbulent Mach number:

2

22

2

~~~~

~
2

M
uu

uu

a

uu

a

K
M

ii

iiii
T ρ

ρ

ρ

ρ

ρ

ρ ′′′′
=

′′′′
==  (3.138)

In general, the three terms are modeled with ad hoc relationships that help the overall results 

match experimental trends, but these relationships are not physics based.  The dilatation and 

turbulent mass flow iu ′′ are modeled (Sarkar, 1992; Krishnamurthy, 1997; Wilcox, 2002): 



70 

2~2.0
~

15.0 TT

i

i MM
x

u
p ερρ +Π≈

∂

′′∂
′   

j

ij
T

i
x

KM
u

∂

∂
Τ≈′′

ρ

ερ

~
~

~

(3.139)

Rubesin (1990) and Krishnamurthy (1997) offer an alternative form of the production term: 

�
�
	



�
�
�


��
	



��
�



∂

∂
+

∂

∂
−

∂

∂′′
=

∂

′′∂
′

i

i

i

i

i

i

x
u

tx

u
p

x

u
p

22

~

2

1 ββρ

ρ
( )

iiuu

K
M ~~

~
2

1 422

ρ

ρ
γβ −= (3.140)

Finally, the pressure diffusion term pui
′′′  was neglected in the RANS equation but cannot 

rightfully be neglected for compressible flows.  Pressure diffusion should become negligible 

as Mach number approaches zero.  Speziale and Sarkar (1991) write the pressure diffusion 

term in terms of the turbulent heat flux and mass flow: 

�
�
	



�
�
�


′′−

∂

∂
=′′′

i

iT

T
i u

x

h

h
ppu

~

Pr
~
1 µ

(3.141)

3.4.2.2 Turbulent Dissipation and ω-Equations 

The ε- and ω-equations are not developed here using Favre-averaging.  The pattern has been 

developed with the K-equation.  Adjustments are made to both equations to obtain empirical 

trends demonstrated by experimental and DNS data.  These models will be presented in the 

pages that follow. 

3.4.3 Spalart-Allmarus Model (Inertial) 

The Spalart-Allmaras (SA) model is a one-equation model that calculates the transport of 

eddy viscosity µT with a single differential equation (Spalart and Allmaras, 1992; Spalart, 

2000).  The model was developed at Boeing for standard aerodynamic applications (wings, 

fuselages, etc.), where the flow is attached to the surface.  The model can also be applied to 



71 

free shear flows, but free jets should be avoided.  This section will cover the original 

incompressible model and a more modern compressible version used by Deck (2002). 

3.4.3.1 Incompressible Spalart-Allmarus 

The original SA model uses a single differential equation in conjunction with an algebraic 

scaling function to calculate the eddy viscosity everywhere within the flow.  The differential 

equation contains advection and diffusion terms that create a semi-realistic model of these 

advection and diffusion of turbulence.  The model also contains production terms that utilize 

the near-wall region and high strain regions to generate turbulence at appropriate Reynolds 

numbers.  The differential equation calculates a scalar ν�  similar to (but definitely differing 

from) eddy viscosity.  The scalar ν�  is then used to calculate the eddy viscosity: 

νρρνµ �
1vTT f== (3.142)

The differential equation is assembled through inspection following the patterns of the 

turbulent kinetic energy equation shown in previous sections.  The terms on the left side of 

Eq. 3.143 simulate the temporal changes to turbulence and its advection on the field.  The 

terms on the right side are the production, destruction, diffusion, and stability: 

jj

b

jj

wwb

j

j
xx

c

xxd
fcSc

x
u

t ∂

∂

∂

∂
+
�
�

	




�
�

�



∂

∂+

∂

∂
+�

	



�
�


−=

∂

∂
+

∂

∂ νν

σ

ν

σ

ννν
ν

νν �����
����

2

2

11 (3.143)

The production term is proportional to vorticity through S� .  The destruction is inversely 

proportional to the distance to the nearest wall.  Both the production and destruction of 

turbulence are scaled by the level of turbulence ν� .  The diffusion term is an analogy to the 

diffusion of K in Eq. Eq. 3.137, where the SA variable ν�  has been used in place of the eddy 



72 

viscosity.  The final term was added by the developers to enhance the stability of the model, 

but this work has found the term to be unreliable for stabilizing the Galerkin discretization. 

Closure.  The model has nine closure functions that are ultimately vary with the distance to 

the nearest wall d, making the model operate very similarly to a mixing length model: 

3

1

3

3

1

v

v
c

f
+

=
χ

χ
     

χ

χ

1

2
1

1
v

v
f

f
+

−=   
µ

νρ
χ

�
=  (3.144)

6
1

6

3

6

6

3

�

1
� ��

	



��
�



+

+
=

w

w
w

cg

c
gf        ( )rrcrg w −+= 6

2
�   

22�

�

dS
r

κ

ν
= (3.145)

222

��
d

fS v κ

ν
+Ω=           ijijΩΩ=Ω 2     �

�

	




�
�

�



∂

∂
−

∂

∂
=Ω

i

j

j

i
ij

x

u

x

u

2

1
(3.146)

The model also uses eight closure coefficients: 

1355.01 =bc   622.02 =bc   1.71 =vc
3

2=σ (3.147)

σκ
2

2

1
1

1 bb
w

cc
c

+
+=     3.02 =wc      23 =wc 41.0=κ (3.148)

Trip Transition.  Spalart and Allmaras (1992) suggest a transition model created by adding 

functions to the source terms and a trip transition ∆U: 

( ) ( )

jj

b

jj

t
b

twwtb

j

j

xx

c

xx

Uf
d

c
ffcSfc

x
u

t

∂

∂

∂

∂
+�
�

	




�
�

�



∂

∂+

∂

∂
+

∆+�
	



�
�


�
	



�
�


−−−=

∂

∂
+

∂

∂

νν

σ

ν

σ

νν

ν

κ
ν

νν

����

Re
�

Re

1
��1

��

2

2

1

2

2

1
2121

(3.149)

    where 



73 

( )��
	



��
�


+

∆
−= 222

2

2

211 exp tt
t

tttt dgd
U

cgcf
ω

  tVVU
��

−=∆ (3.150)

( )2

432 exp χttt ccf =    ��
	



��
�



∆

∆
=

x

U
MINg

t

t ω
,

10

1
(3.151)

11 =tc   22 =tc   1.13 =tc 24 =tc (3.152)

which are calculated using the velocity Vt and vorticity ωt at the trip location and using the 

distance to the trip location dt.  The specification of the trip location is obscure and difficult 

for arbitrary three-dimensional flow fields. 

Simplifications.  The SA model does not include turbulent kinetic energy K, so these terms 

are neglected in the Reynolds stresses (Eq. 3.72) for simplicity.  Molecular diffusion and 

turbulent transport are generally modeled using the gradient of turbulent kinetic energy (Eq. 

3.74), so these terms are also neglected for simplicity in the SA model. 

Modifications.  Two immediate concerns arise with this model:  (1) The model does not 

predict any decay in eddy viscosity in a uniform field (far from walls).  (2) Implementing trip 

transition on an unstructured domain is difficult.  To avoid the first problem, the initial 

conditions must remain small enough to allow laminar flow at lower Reynolds numbers, but 

the initial conditions must be sufficiently large to allow the production terms to grow 

turbulence.  The transition model is avoided in this work to alleviate the second problem.  

Production in the original SA model was centered around vorticity in near-wall regions.  

Since its conception, turbulence research has expanded this concept to include the effects of 

mean strain throughout a flow field.  Dacles-Mariani, et. al (1995) and Fluent (2006) suggest 

modifying the SA production term: 



74 

( )
222

�
,0�

d
fSMINCS vprod κ

ν
+Ω−+Ω= (3.152)

ijijSSS 2=
             �

�

	




�
�

�



∂

∂
+

∂

∂
=

i

j

j

i
ij

x

u

x

u
S

2

1
(3.153)

and where Cprod = 2.  The original model often over-predicts eddy viscosity because of the 

exclusive emphasis on rotation.  The modification to include both rotation and strain 

decreases the eddy viscosity to more accurate levels. 

Oliver (2008) presents an alternative, which maintains a positive definite S� .  Oliver alters 

the production term when the S  becomes negative to maintain positive definite production: 

222

�

d
fS v κ

ν
=   ( )

( )�
�
�

��
�

�

Ω−<
−Ω−

+ΩΩ
+Ω

Ω−≥+Ω

=

2

23

3

2

2

2

2

�

cSif
Scc

Scc

cSifS

S (3.154)

where c2 = 0.7 and c3 = 0.9.  This method was chosen in hopes of increasing convergence. 

Vorticity.  The Spalart-Allmaras model uses a vorticity term Ω (Eq. 3.146), which represents 

the magnitude of the vorticity tensor.  The vorticity magnitude can be simplified: 

i

j

j

i

j

i

j

i

i

j

j

i

i

j

j

i
ijij

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

∂

∂

∂

∂
−

∂

∂

∂

∂
=

�
�

	




�
�

�



∂

∂
−

∂

∂
�
�

	




�
�

�



∂

∂
−

∂

∂
=ΩΩ=Ω

~~~~~~~~

2

1
22

(3.155)

In two-dimensions, Ω simplifies the magnitude of Ω21:

2

21

2

2
~~~~~~~~~~

Ω=
∂

∂
−

∂

∂
=

∂

∂

∂

∂
−

∂

∂

∂

∂
+

∂

∂

∂

∂
−

∂

∂

∂

∂
=Ω

x

v

y

u

y

u

x

v

x

v

x

v

x

v

y

u

y

u

y

u
(3.156)

In three-dimensions, Ω simplifies the magnitude of ω
�

: 



75 

( )2

32

2

13

2

21

222

2 4
~~~~~~

Ω+Ω+Ω=��
	

��
�

∂

∂
−

∂

∂
+�

	

�
�

∂

∂
−

∂

∂
+��

	

��
�

∂

∂
−

∂

∂
=Ω

y

w

z

v

x

w

z

u

x

v

y

u
(3.157)

3.4.3.2 Compressible Spalart-Allmarus

Deck (2002) suggests a compressible Spalart-Allmaras model as:

jj

b

jj

wwb

j

j

xx

c

xxd
fcSc

x

u

t ∂

∂

∂

∂
+
�
�

	

�
�

�

∂

∂+

∂

∂
+�

	

�
�

−=

∂

∂
+

∂

∂ ννρ

σ

ν

σ

νρµν
ρνρ

νρνρ �����
��

�~�
2

2

11 (3.158)

Deck writes the SA equation in a conservative form, adding density to the source and

diffusion terms. (Deck suggests a symmetric form of the final diffusion term that requires

derivatives of the root of density. This alternative is more computationally intensive and

does not increase the accuracy of the solution because the final term is mainly present to

increase system stability. Catris (2000) presents another alternative.)

Deck does not utilize the �trip transition� model but suggests seeding the domain with a non-

zero initial condition, which is large enough to generate transition (also in Lorin, et al, 2007).

3.4.4 Menter�s SST Model (Inertial)

The k-ε and k-ω models are used throughout the literature, industry, and academia. The

model uses two differential equations (k and ε, or k and ω) to represent the transport of

turbulence through the domain. Both models are useful in a wide variety of flows.

The k-ε model is the most accurate for wall-bounded external flows, where the flow is

attached. The k-ε model works well for small and moderate pressure gradients in wall-bound

and free-shear flows but performs poorly in strong and any adverse pressure gradients. So

76

the k-ε model suffers at internal flows and high curvature. The k-ε model must often be

supplemented with damping functions to encourage convergence near walls.

The k-ω model is accurate for wall-bounded, internal and external flows. The model can be

useful in separated flows, but the magnitude of separation is often over-predicted. The k-ω

model is sensitive to freestream values of ω for transition and shear layer spreading rates.

The k-ω model does not require damping functions, and the governing equations are less stiff

in the near-wall region. k-ω models often suffer from low dissipation in freestream or low

strain regions.

Menter (1992a, 1992b, and 1994) developed a two-equation model that blends a k-ω model

for near-wall accuracy and k-ε model for freestream independence. Menter converted the k-ε

model into a k-ω format (Eq. 3.92 and 3.93) and integrated the converted model with a true

k-ω model using a transition function F1. The k-ε conversion creates a cross-diffusion term
4

not seen in Wilcox�s model. The Shear-Stress Transport (SST) k-ω model works well for

attached and free shear flows without reference to geometry. Eddy viscosity is calculated:

ω

ρ
µ α

K
CT = (3.159)

Transport equations are used in both K and ω :

()
�
�

	

�
�

�

∂

∂
+

∂

∂
+−Π=

∂

∂
+

∂

∂

j

Tk

j

k

i

i
x

K

xx

K
u

t

K
µσµ

ρ
ε

1
(3.160)

+
�,����%%%������������-�������������''����	�������������''���	�����''����	����������	����'������������
�	��	����

77

()
jjj

T

ji

i
xx

KC

xxx
u

t ∂

∂

∂

∂
+
�
�

	

�
�

�

∂

∂
+

∂

∂
+−Π=

∂

∂
+

∂

∂ ω

ω

ω
µσµ

ρ
βω

ωω ω
ωω

12
(3.161)

The model has 20 closure functions. Eqs. 3.162 and 3.163 are used to calculate the eddy

viscosity. Eqs. 3.164 and 3.165 are terms appearing directly within the K- and ω-equations.

The remaining functions are used to interpolate across the boundary layer.

��
	

��
�

=

SF

a
MINC

2

1,1
ω

α ijijSSS 2= �
�

	

�
�

�

∂

∂
+

∂

∂
=

i

j

j

i
ij

x

u

x

u
S

2

1
(3.162)

()2

22 tanh Φ=F �
�
	

�
�
�

=Φ

∞ ωρ

µ

ωβ 2*2

500
,2

dd

K
MAX (3.163)

�
�

	

�
�

�

∂

∂
Τ=Π ∞ ωβ K

x

u
MIN

j

i
ijk

*10, k

T

Π=Π
µ

ρ
αω (3.164)

Kωβε *

∞= () 2112 ωω σFC −= (3.165)

)1(1211 FF kkk −+= σσσ)1(1211 FF −+= ωωω σσσ (3.166)

)1(1211 FF −+= ααα ()1211 1 FF −+= βββ (3.167)

()4

11 tanh Φ=F
�
�

	

�
�

�

�
�
	

�
�
�

=Φ

+
∞

2

2

2*1

4
,

500
,

dD

K

dd

K
MAXMIN

ω

ωσρ

ωρ

µ

ωβ
(3.168)

��
	

��
�

∂

∂

∂

∂
= −+ 102 10,

2

ii xx

K
MAXD

ω

ω

ρσω
ω (3.169)

The 13 closure coefficients are derived from Wilcox (1992) and Jones and Launder (1972)

converted to k-ω form. The interpolated coefficients α, σk, σω, and β have a subscript of 1

from the k-ω model and subscript of 2 from k-ε. For example, the coefficient σω2 appears in

the cross-diffusion term (Eq. 3.165) because cross-diffusion is derived from the k-ε model:

78

9
5

1 =α 85.01 =kσ 5.01 =ωσ 075.01 =β (3.170)

44.02 =α 0.12 =kσ 856.02 =ωσ 0828.02 =β (3.171)

31.01 =a 41.0=κ 09.0* =∞β 0.2* =χ 25.00 =TM (3.172)

Menter�s model uses Wilcox�s k-ω model but adapts the production term Πω. F1 is used to

switch between the k-ω and k-ε models. ω/K in Wilcox�s production term Πω has been

replaced by ρ/µT to utilize Cα. F1 switches from k-ω model in the sublayer and log-layer to

the k-ε model in the outer layer and external flow. The variable Φ1 is calculated using three

terms: The first term (containing the root of K) models the log-layer; the second term

(containing µ) models the sublayer, where F1 = 0; and, the third term safeguards against

freestream dependence by setting F1 = 1 in the external flow (y > δ).

3.4.4.1 Compressible SST Model

The k-ω models presented above are converted to compressible formats by adding density to

all turbulent kinetic energy K and ω terms (Wilcox, 2002; Menter, 1994). Eddy viscosity is:

ωρ

ρ
ρµ α ~

~
K

CT = (3.173)

The transport equations become:

()
�
�

	

�
�

�

∂

∂
+

∂

∂
+−Π=

∂

∂
+

∂

∂

j

Tk

j

k

i

i

x

K

xx

uK

t

K
~

~~~~~

µσµερρ
ρρ

(3.174)

( ) ( )
jjj

T

j

c

i

i

xx

KC

xxx

u

t ∂

∂

∂

∂
+
�
�

	




�
�

�



∂

∂
+

∂

∂
+−Π=

∂

∂
+

∂

∂ ωρρ

ωρ

ω
µσµ

ρ

ωρ
βρ

ωρωρ ω
ωω

~~

~

~~~~~~ 2

(3.175)

The closure functions are also modified to include density:

79

�
�
	

�
�
�

=

SF

a
MINC ~

~
,

2

1ωαα ijijSSS
~~

2
~

= �
�

	

�
�

�

∂

∂
+

∂

∂
=

i

j

j

i
ij

x

u

x

u
S

~~

2

1~
(3.176)

()2

22 tanh Φ=F
�
�

	

�
�

�

=Φ

ωρ

µ

ωβ ~
500

,~

~

2
2*2

dd

K
MAX (3.177)

�
�

	

�
�

�

∂

∂
Τ=Π ωρβρρ ~~

10,
~~~ * K
x

u
MIN

j

i
ijk   k

T

Π=Π
~~

ρ
µ

ρ
αρ ω

(3.178)

K
~~~ * ωρβερ =   ( ) 2112 ωω σFC −= (3.179)

)1(1211 FF kkk −+= σσσ)1(1211 FF −+= ωωω σσσ (3.180)

)1(1211 FF −+= ααα ()1211 1 FF −+= βββ (3.181)

()4

11 tanh Φ=F
�
�

	

�
�

�

�
�

	

�
�

�

=Φ

+ 2

2

2*1

~
4

,~
500

,~

~

dD

K

dd

K
MAXMIN

ω

ωσρ

ωρ

µ

ωβ
(3.182)

��
	

��
�

∂

∂

∂

∂
= −+ 102 10,

~~

~
2

ii xx

K
MAXD

ωρρ

ωρ

σω
ω (3.183)

()Tc MF**

∞−= βχββ ()()TMF*** 1 χββ += ∞ (3.184)

2

2

~

~
2

a

K
MT ρ

ρ
= ()

�
�
�

>−

≤
=

0

2

0

2

00

TTTT

TT

T
MMifMM

MMif
MF (3.185)

Adaptations. Spalart and Rumsey (2007) adapted the destruction terms to maintain ambient

turbulence levels. The destruction term in the K-equation is shifted to take on a zero value

when freestream (ambient) values are present:

()ambamb KK ωωρβερ −= *~ (3.186)

The destruction term in the ω-equation is shifted in a similar fashion:

80

() () ()
jjj

T

j

amb

xx

KC

xxDt

D

∂

∂

∂

∂
+
�
�

	

�
�

�

∂

∂
+

∂

∂
+

−
−Π=

ωρρ

ωρ

ω
µσµ

ρ

ωρωρ
βρ

ωρ ω
ωω

~~

~

~~~
~~ 22

(3.187)

3.4.5 Non-Inertial RC Correction to Turbulence Models 

Experimental results have shown that turbulent production and transport changes in the 

presence of rotation.  Therefore, the turbulence models (and possibly RANS equations) need 

to be adapted to generate such changes.  The Navier-Stokes equations were time- and mass-

averaged in the non-inertial frame in previous sections.  The momentum, energy, K-, ε-, and 

ω-equations are expected to contain Reynolds-terms, representing the interaction of 

turbulence and rotational velocity (or even translation).  Eqs. 3.100 and 3.104 illustrate the 

presence of such terms in the compressible RANS equations, validating the expectation; but, 

the incompressible RANS (Eqs. 3.67 through 3.71) and compressible FANS (Eqs. 3.116 

through 3.119), both of which show the lack of terms after time- or mass-averaging.  The 

latter two equation sets are used in the literature to model rotating fluids, but these equations 

are a gross over-simplification of the effects of turbulence on the mean flow and production 

of turbulence in a rotating flow field.  Additional terms will need to be added to the 

turbulence models to supplement the physics and adapt production.  The new terms should be 

Galilean invariant and physical, but effective ad hoc methods will also be investigated. 

Gorski (1992) uses a channel flow rotated about an off-centered axis to show that non-inertial 

rotation creates an asymmetric velocity profile in the channel.  Without correction to the 

turbulence model, the CFD solution predicts a symmetric velocity profile.  Gorski compares 

eight methods for correcting the Standard k-ε model to include non-inertial effects.  Among 

those corrections are additional terms in both the k- and ε-equations; adjustments to the 



81 

coefficients Cε1, Cε2, and Cµ; and alterations to the Reynolds stress tensor to model 

anisotropy.  All of the methods tested by Gorski add some asymmetry to the profile but not 

enough to match experimental data.  Speziale (1989) suggested adding strains, strain rates, 

and vorticity to the Reynolds stress to simulate the anisotropy created by rotation.  Schiestel 

and Elena (1997) adapted a Reynolds stress model to include the anisotropy created by 

rotation on turbulence production of individual Reynolds stresses. 

Launder and Sharma (1974) have good success with the Standard k-ε model posed in 

cylindrical form (Eqs. 3.188 and 3.189).  Launder and Sharma state:  �[The] Extra source 

terms involving gradients of (Vθ/r) appear in the equations for k and ε.  Their appearance is 

due to the conversion of the Cartesian-tensor form of these equations to the present 

coordinate frame.  They are not ad hoc terms.�  These terms are not readily expandable to 

generic Cartesian problems in the frame. 

( )
�
�
	



�
�
�



∂

∂
��
	



��
�


+

∂

∂
+−

�
�

	




�
�

�



��
	



��
�



∂

∂
+��

	



��
�



∂

∂
=

∂

∂
+

∂

∂

z

K
r

zrz

rV
r

z

V

z

K
V

r

K
V

K

Tr
Tzr σ

µ
µρεµρρ θ 1/

22

(3.188)

( )

�
�
	



�
�
�



∂

∂
��
	



��
�


+

∂

∂
+−

�
�

	




�
�

�



��
	



��
�



∂

∂
+��

	



��
�



∂

∂
=

∂

∂
+

∂

∂

z
r

zrK
C

z

rV
r

z

V

K
C

z
V

r
V

T

r
Tzr

ε

σ

µ
µ

ρε

µ
εε

ρ
ε

ρ

ε
ε

θ
ε

1

/

2

2

22

1

(3.189)

Rotation of frame and wall curvature affect turbulence production in similar ways, and 

isotropic eddy viscosity models generally suffer in both areas.  Spalart and Shur (1997) 

combine the effects of rotation and curvature on the SA model into a single correction factor 

applied to the production of turbulence.  Shur, et al. (2000) expands on the original work and 

plainly presents the final equations.  The presence of curvature is measured by the substantial 



82 

derivative of the strain tensor (Eq. 3.192).  The advection of strain is difficult to calculate on 

a piece-wise linear domain because the strain is piece-wise constant on a linear domain.  The 

rough estimate can be created using a hybrid element to capture the gradient of the strain 

tensor.  Without the advection of strain, the unsteady term is only active in time-accurate 

simulations.  For simplicity, the entire curvature term is not used in this work (Eq. 3.192).  

The rotation term, on the other hand, is based in the cross-product of stain and rotation, 

which is expensive but directly accessible on the piece-wise linear domain.   

The RC correction term fr1 scales up the SA production term in the presence of rotation: 

jj

b

jj

wwbr

j

j

xx

c

xxd
fcScf

x

u

t ∂

∂

∂

∂
+
�
�

	




�
�

�



∂

∂+

∂

∂
+�

	



�
�


−=

∂

∂
+

∂

∂ ννρ

σ

ν

σ

νρµν
ρνρ

νρνρ �����
��

�~
�

2

2

111 (3.190)

where 

( ) ( )( ) 12

1

3*

*

11
~tan1

1

2
1 rrrrr crcc

r

r
cf −−

+
+= − (3.191)

ω

S
r =*   ( ) ��

	



��
�


++

Ω
= minjmnjnimn

ijjkik
SS

Dt

DS

D

S
r ωεε

4

2~
(3.192)

mmji

i

j

j

i
jiij

x

u

x

u
ωε+�

�

	




�
�

�



∂

∂
−

∂

∂
=Ω−=Ω

2

1
   ijijΩΩ=Ω 22

(3.193)

�
�

	




�
�

�



∂

∂
+

∂

∂
==

i

j

j

i
jiij

x

u

x

u
SS

2

1
     ijijSSS 2

2 =          ( )2224

4

1
Ω+= SD (3.194)

Notice that the vorticity tensor Ωij now includes the rotational rate of the frame.  Eq. 192 is 

also used to adapt the other terms in the SA model in the presence of rotation of the frame 

(Eqs. 3.154 through 3.157).  Shur, et al. (2000) shows good results with the RC correction for 

a constant rotational rate.  Mani, et al. (2004) and Rumsey and Nishino (2011) demonstrated 

 �



83 

the improved accuracy of the model for very high curvature and complex flow fields.  Eqs. 

3.193 and 3.194 show the symmetry of Sij or anti-symmetry of Ωij.  The symmetry is used 

here to simplify the RC correction equations.   

For 2D, the correction term uses Eq. 3.156 to calculate Ω.  The remaining terms simplify to: 

( ) 2222 42 xyyyxx SSSS ++= (3.197)

( )( )22

4

21 4
2~

xyyyxx
z SSS

D
r +−

Ω
=

ω
(3.198)

For 3D, the correction term uses Eq. 3.157 to calculate Ω.  The remaining terms simplify to: 

( ) ( )2222222 42 yzxzxyzzyyxx SSSSSSS +++++= (3.195)

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
z

yzxyzzxxyyxz

yyxxyzxzxy

xzxyzzyyxxyz

y

yzxzyyxxzzxy

xzxyzzyyxxyz

zzxxyzxyxz

x

zzyyxzxyyz

yzxyzzyyxxxz

yzxzyyxxzzxy

SSSSSS

SSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSS

SSSSS

SSSSSS

SSSSSS
rD

ω

ω

ω

�
�
�
�

	




�
�
�
�

�



−−−Ω+

−+++Ω+

−−−Ω

+

�
�
�
�

	




�
�
�
�

�



−−−Ω+

−−−Ω+

−+++Ω

+

�
�
�
�

	




�
�
�
�

�



−+++Ω+

−−−Ω+

−−−Ω

=

32

4

32

32

32

4

4

32

32

2

~

32

2222

21

13

32

21

2222

13

2222

32

21

13
4

(3.196)

Hellsten (1997) developed a simple rotation-curvature correction to the SST model: 

( ) ( )
jjj

T

j

c

i

i

xx

KC

xx
F

x

u

t ∂

∂

∂

∂
+
�
�

	




�
�

�



∂

∂
+

∂

∂
+−Π=

∂

∂
+

∂

∂ ωρρ

ωρ

ω
µσµ

ρ

ωρ
βρ

ωρωρ ω
ωω

~~

~

~~~~~~ 2

4 (3.199)

RiC
F

rc+
=

1

1
4 �

	

�
�

−

ΩΩ
= 1

SS
Ri (3.200)

84

The coefficient Crc scales the effects of the Richarson number Ri. The magnitude of this

coefficient is debated in the literature and seems to need tuning for the particular problem

(Mani, et al., 2004; Rumsey and Nishino, 2011). The need for tuning is undesirable.

Swanson and Rumsey (2009) compared the SA model with the Spalart-Shur correction (SA-

RC) with the SST model without any correction. Their results show insensitivity of the SST

model to curvature, but the production in the model is unaffected by rotation of frame. Mani,

et al. (2004) and Rumsey and Nishino (2011) compared SST using Hellsten�s correction

(with tuning) with SA-RC and show comparable results with each other and experiment.

Smirnov and Menter (2009) tested the Spalart-Shur correction on the production of ω (Eq.

3.201). Smirnov and Menter also limit fr1 to reasonable limits shown in Eq. 3.202:

() ()
jjj

T

j

cr

i

i

xx

KC

xx
f

x

u

t ∂

∂

∂

∂
+
�
�

	

�
�

�

∂

∂
+

∂

∂
+−Π=

∂

∂
+

∂

∂ ωρρ

ωρ

ω
µσµ

ρ

ωρ
βρ

ωρωρ ω
ωω

~~

~

~~~~~~ 2

1 (3.201)

( ) ( )( ) 25.1~tan1
1

2
10.0 12

1

3*

*

11 ≤−−
+

+=≤ −
rrrrr crcc

r

r
cf (3.202)

Eq. 3.201 was implemented in this research (termed SST-RC).  The limitations on fr1 (Eq. 

3.202) were used on both SA-RC and SST-RC. 

3.5 Non-Dimensional Equations 

The previous equations were all dimensional, but the solvers investigated in this work are all 

dimensionless.  This section will remove any dimensionality from the governing and support 

equations before the equations are discretized using the Galerkin methods.  The most 

important aspect of this process is the introduction of the freestream Reynolds number into 

the viscous and turbulent components.  The Reynolds- and Favre-averaging is denoted by an 



85 

over-bar and over-tilda.  These marks have been removed for the duration of this document, 

but the variables remain time- or mass-averaged.  

The dimensionality is removed from the Favre-averaged Navier-Stokes equations (Eq. 3.115 

and 3.124 � 3.126) by scaling the system of equations by the matrix: 

[ ]
�
�
�

�

�

�
�
�

�

�

=∆

∞∞

∞∞

∞∞

3

2

U

L

U

L

U
L

ρ

ρ

ρ

(3.203)

The system equation is non-dimensionalized: 

[ ] 0*

*

,

*

,

*

,

*

*

*

,

,

,

=−
∂

∂
−

∂

∂
+

∂

∂
=�

�
	



�
�
�


−

∂

∂
−

∂

∂
+

∂

∂
∆ S

FFU
S

FFU

ib

iv

ib

i

ib

iv

ib

i

xxtxxt
(3.204)

where 

LtUt /*

∞=   Lxx ibib /,

*

, =  (3.205)

The dimensionality is removed from the unknowns vector, flux vectors, and source term: 

[ ]
�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

=∆=

∞∞

∞∞

∞

∞

**

*

,

*

*

2

,

*

/

/

/

r

jr

r

jr

E

u

UE

Uu
L

U

ρ

ρ

ρ

ρρ

ρρ

ρρ

UU (3.206)

[ ]
�
�

�
�

�

�
�

�
�

�

+=
�
�

�
�

�

�
�

�
�

�

+=∆=

∞∞

∞∞∞∞

∞∞

***

,

**

,

*

,

*

*

,

*

3

,

22

,,

,

*

/

)/(/

/
1

rir

ijjrir

ir

rir

ijjrir

ir

ii

Hu

puu

u

UHu

UpUuu

Uu

L
ρ

δρ

ρ

ρρ

δρρρ

ρρ

FF (3.207)



86 

[ ]

�
�
�
�

�

��
�
�

�

�

�
�
�
�

�

��
�
�

�

�

�
�
	



�
�
�



∂

∂+
+

+′′
−�
�
	



�
�
�

 Τ
+

Τ
+=∆=

∞∞∞∞∞∞∞∞∞∞∞

∞∞∞∞

∞∞

2*

,

322

,

22,

*

,

/

0

1

U

K

xLUU

Qq

UUU

u

UUL

ib

kiiijijjr

ijij

iviv

T

µρ

σ

ρρ

ρ

ρ

τ

ρ

ρ

ρ

τ

µ

µ

µ
µ

FF (3.208)

( ) ( ) �
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

∂

∂+
+−′′−Τ+

Τ+=

*

,

***
*****

,

***

,

Re

0

ibL

Tk
iiijijjr

ijijiv

x

K
Qqu

µσµ
ρτ

ρτF  (3.209)

[ ]
�
�

�
�

�

�
�

�
�

�

+⋅

+−=

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

��
	



��
�


+⋅

+−=∆=

∞∞∞

∞∞∞∞
)(

0

0

*

,

*

,

*

,

*

,

**

,

*

,,

2

,

,

2

,*

krktkt

lrkjkljt

krktkt

lrk
jkl

jt

uVa

ua

U

u

U

V

U

La

U

u

U

L

U

La
ωερ

ω
ε

ρ

ρ
SS (3.210)

The properties are non-dimensionalized: 

∞= ρρρ /*
  ∞= Uuu jrjr /,

*

,
  

2* / ∞∞= Upp ρ  (3.211)

2* / ∞= Uhh   
2* / ∞= UEE rr   

2* / ∞= UHH rr
(3.212)

The viscous and turbulent terms are non-dimensionalized: 

2* / ∞∞= Uijij ρττ 2* / ∞∞Τ=Τ Uijij ρρρ (3.213)

( ) 3*
/ ∞∞

′′=′′ Uqq ii ρ   
3*

/ ∞∞= UQQ ii ρ      
2* / ∞= UKK (3.214)

∞= µµµ /*
        µλλ /* =   ∞= µµµ /*

TT   
∞∞∞= µρ /Re LUL

(3.215)

The non-inertial terms are non-dimensionalized: 



87 

∞

=
U

V
V

jt

jt

,*

,   
2

,*

,

∞

=
U

La
a

jt

jt   
∞

=
U

Lj

j

ω
ω *

 (3.216)

Dimensions are removed from the non-inertial mesh coordinate, velocity, and acceleration 

vectors (Eqs. 3.4, 3.11, 3.117, and 3.118): 

*

,

*

,

* / jbijioii xBxLxx +== (3.217)

( )*

,

*

,

* / jtjrijii VuBUuu +== ∞          *

,

**

,

*

, kbjijkioit xVV ωε+= (3.218)

*

,

**

,

**

,

***

,

*

, krjijkkbjijkmblklmjijkioit uxxaa ωεωεωεωε +++= � (3.219)

The viscous and turbulent terms (Eqs. 3.109, 3.111, and 3.122) are non-dimensionalized: 

�
�

	




�
�

�



∂

∂
+

∂

∂
+

∂

∂
=
�
�

	




�
�

�



∂

∂
+

∂

∂
+

∂

∂
=

∞∞

∞
ij

k

k

i

j

j

i

L

ij

k

k

i

j

j

i
ij

x

u

x

u

x

u

x

u

x

u

x

u

LU
δλ

µ
δλ

ρ

µµ
τ

*

*
*

*

*

*

**

*

*
*

*

*

*

**
*

Re
(3.220)

ijij

k

k

i

j

j

i

L

T
ij K

x

u

x

u

x

u
δρδ

µ
ρ **

*

*

*

*

*

**
*

3

2

3

2

Re
−
�
�

	




�
�

�



∂

∂
−

∂

∂
+

∂

∂
≈Τ (3.221)

( ) ( )
*

**

*

2*
*

PrRe

/

Pr iLi

i
x

h

x

Uh

LU
q

∂

∂
−=

∂

∂
−=′′ ∞

∞∞

∞ µ

ρ

µµ

  
*

**
*

PrRe iTL

T
i

x

h
Q

∂

∂
−≈

µ
(3.222)

The thermodynamic relationships (Eqs. 3.35, 3.129, and 3.132) are non-dimensionalized:  

mod

*

mod

*

*

*

*

*

*

*
*

2
3

2

2
2

3

Sh

Sh

h

h

h

h

h

h

U

Sc

U

Sc

p

p

+

+
��
	



��
�


=

+

+

��
	



��
�


= ∞

∞

∞

∞
∞

∞µ (3.223) 

*

*
*

2

22

*

/

/

ρρρ

ρ p
e

Up

U

e

U

h
h +=+==

∞

∞∞

∞∞

*

2

* T
U

Tc
h

p
==

∞

(3.224) 

( ) ( )
*

*
*

22

2
2* 1

ρ

γ
γ

γ p
T

U

Tc

c

R

U

a
a

p

p

=−===
∞∞

(3.225) 

The remaining energy terms are non-dimensionalized:



88 

2

mod / ∞= UScS p   
*2*

/ hUTcT p == ∞ (3.226)

2* / ∞= Uee   
∞

=
U

a
a*

(3.227)

The remaining dimensions are encompassed in the turbulence models.  For the SA model 

(Eqs. 3.142, 3.144, 3.145, 3.154, 3.190, and 3.193):  

**

11

* �
�

νρ
µ

νρ

ρ

ρ

µ

µ
µ vv

T
T ff ===

∞

∞

∞∞

(3.228) 

*

*

*

**

2

*

****

*

2

*

**

1***

11*

***

*

**

��

Re

�

Re

�

�

Re
��

��

jjL

b

jLj

L

ww

br

j

j

xx

c

xx

d

fc
Scf

x

u

t

∂

∂

∂

∂
+
�
�

	




�
�

�



∂

∂+

∂

∂
+

��
	



��
�


−=

∂

∂
+

∂

∂

ννρ

σ

ν

σ

νρµ

νρ
νρ

νρνρ

(3.229) 

*

** �

µ

νρ
χ =   

( ) LdS
r

Re�

�
2*2*

*

κ

ν
=   

( ) L

v

d
fS

Re

�
2*2

*

2

*

κ

ν
= (3.230) 

*

*

*

*

*
*

2

1
mmji

i

j

j

i

ij
x

u

x

u
ωε+

�
�

	




�
�

�



∂

∂
−

∂

∂
=Ω (3.231) 

where 

∞

∞=
µ

νρ
ν

�
�*

  
L

d
d =*

(3.232) 

∞

=
U

LS
S

�
� *

  
∞

=
U

LS
S *

  
∞

Ω
=Ω

U

Lij

ij

*
(3.233)

For the SST model (Eqs. 3.173 through 3.186, and 3.201): 

L
T

T

K
C

LU

UL

UK
C Re

/

/
*

**2

*

ω

ρ

µ

ρ

ω

ρρ

µ

µ
µ αα ===

∞

∞∞

∞

∞∞

∞

(3.234) 



89 

�
�

	




�
�

�



∂

∂+

∂

∂
+−Π=

∂

∂
+

∂

∂
*

***

*

**

*

***

*

**

Re
jL

Tk

j

k

i

i

x

K

xx

uK

t

K µσµ
ρερ

ρρ
(3.235) 

( ) ( )

*

**

*

**

***

***

*

*

2**2**

*

1*

**

Re
jjjL

T

j

amb

cr

xx

KC

xx

f
Dt

D

∂

∂

∂

∂
+
�
�

	




�
�

�



∂

∂+

∂

∂
+

−
−Π=

ωρρ

ωρ

ωµσµ

ρ

ωρωρ
βρ

ωρ

ωω

ω

(3.236) 

��
	



��
�


=

*

2

*

1,
SF

a
MINC

ω
αα             

*** 2 ijij SSS =             
�
�

	




�
�

�



∂

∂
+

∂

∂
=

*

*

*

*
*

2

1

i

j

j

i
ij

x

u

x

u
S (3.237) 

( ) �
�

	




�
�

�


=Φ

Ldd

K
MAX

Re

500
,2

*2**

*

***

*

2

ωρ

µ

ωβ
(3.238) 

�
�

	




�
�

�



∂

∂
Τ=Π ****

*

*
** 10, ωρβρρ K

x

u
MIN

j

i
ijk (3.239) 

Lk

T

Re*

*

*
* Π=Π ρ

µ

ρ
αρ ω (3.240) 

( ) ( ) ( ) �
�

	




�
�

�



�
�

	




�
�

�


=Φ

+ 2**

2

**

*2**

*

***

*

1

4
,

Re

500
,

dD

K

dd

K
MAXMIN

L ω

ωσρ

ωρ

µ

ωβ
(3.241) 

( ) ��
	



��
�



∂

∂

∂

∂
== −

∞∞

+
+ 10

*

**

*

**

**

2

2

2
*

10,
2

ii xx

K
MAX

U

LD
D

ωρρ

ωρ

σ

ρ
ωω

ω (3.242) 

( )2*

*
2 2

a

K
MT = (3.243) 

( )*******

ambambKK ωωρβρε −=  (3.244) 

where 

∞= UL /* ωω    
3* / ∞∞Π=Π ULkk ρρρ   

3* / ∞= ULρερε (3.245) 



90 

22* / ∞∞Π=Π UL ρρρ ωω    ( ) 22*
/ ∞∞

++ = ULDD ρωω
(3.246)

∞= ULSS /*
   ∞= ULSS ijij /

* (3.247)

All of the terms in the RC correction models are already dimensionless ratios, so the above 

non-dimensionalizations can be applied in the same fashion.  The star superscript represent-

ing a dimensionless variable will be dropped for the remainder of the document; all equations 

should be assumed to be dimensionless unless otherwise stated. 

3.6 Boundary Conditions 

A numerical simulation can only include part of the physical world.  Mathematical concepts, 

such as symmetry, periodicity, and limits, help model the otherwise larger physical world; 

however, these constructed conditions are often the most difficult to implement.  Natural 

conditions are always created from real, physical situations that exist in the real world, 

whereas artificial boundaries are a series of simplifications, desirable constraints, or limited 

views of a larger problem. 

Boundary conditions are often grouped into three divisions:  Dirichlet (or essential) condi-

tions specify the properties in terms of known quantities.  Dirichlet conditions are often the 

simplest to implement.  In fact, developing methods are almost always tested on purely 

Dirichlet conditions.  Neumann (or natural) conditions control the gradients or fluxes along 

boundaries. Robin (or mixed) conditions describe a boundary gradient in terms of the proper-

ties and other known conditions.  Robin conditions are the most complex to implement.  

Burnett (1987) breaks boundary conditions down into two groups by their definition: 

Essential and natural conditions.  For a boundary value problem of order 2m, the essential 

conditions relate properties and derivatives (of order m � 1 or less) through an equation.  



91 

Natural boundary conditions relative derivatives of order m through 2m � 1.  Fluids, heat 

conduction, and acoustics are all second order systems (or m = 1). Using Burnett�s system, 

CFD boundaries have the possibility of having one essential and one natural boundary 

condition for each property along a boundary. All of the boundaries can be specified using 

essential conditions, but not all boundaries can be natural. It is crucial, or essential, that one 

condition be classified as essential (thus, their name). Without an essential condition, the 

feasible space is multivalued and likely floats between the possible solutions.  

Well-posed boundary conditions are required to properly represent the domain boundary and 

mesh with the domain equations (and later discretization method) to create a feasible solution 

field.  Ill-posed boundary conditions are the opposite of well-posed conditions and can be 

divided into under- and over-specified conditions. Under-specified boundaries do not 

stipulate enough requirements. Numerical solutions will often float along under-specified 

boundaries. Over-specified boundaries limit too many conditions, which can keep any of the 

conditions from being properly satisfied or make the implementation unstable.  

3.6.1 Far Field 

The far field boundary seeks to represent the freestream conditions, or those conditions far 

from the body of interest, on a finite domain.  The far field boundary is simultaneously an 

inflow and outflow boundary.  The far field boundary must imply conditions that are not 

necessarily seen within the near field and allow the wake and any traveling waves to pass 

through the boundary without impedence.  The impedence of such a boundary (or its ability 

to reflect perturbations) is often the most complex aspect of the far field boundary. 



92 

The far field boundary is the most mathematically complex and diversely approached 

condition.  N�dri (2000), Kallinderis (1994), and Soulaimani (1994) strictly specify the far 

field using prescribed or freestream conditions.  Gulcat (1997) imposes a freestream at the 

inflow and a fully developed wake in the outflow. Zienkiewicz (1991) imposes an upstream 

condition for supersonic flow and suggests using the local characteristics to determine an 

appropriate mixture of subsonic properties. A less popular approach is to extend the 

boundary to the true �far field� by using infinite elements.  Apart from the approach, the 

freestream conditions specify the velocity (magnitude and incidence) and thermodynamic 

properties (density, pressure, and energy).  The turbulent properties along the freestream 

boundary are much more difficult to specify because they represent time-average mathe-

matical concepts.  The most realistic turbulent conditions are related to a physical property. 

SA Model.  The eddy viscosity must be non-zero at all times so that turbulent production and 

destruction terms are non-zero and so that the Reynolds stress dissipates energy in the energy 

equation.  Eddy viscosity is suggested to start with an initial magnitude much smaller than 

molecular viscosity (i.e., µ T,0 < 0.01 µ << µ) so that the total effective viscosity is approxi-

mately equal to molecular viscosity.  In this way, the freestream and laminar regions have 

very little eddy viscosity, while turbulence is allowed to grow freely according to the model.  

To produce a fully turbulent solution, the initial condition is much very larger (µ T,0 = 5 µ).   

SST Model.  The SST model uses turbulent kinetic energy K and its dissipation rate ω to 

represent the transport of turbulence through the field.  Turbulent kinetic energy can be 

related to the amount of turbulence in the freestream.  The turbulent intensity Iturb can be con-

structed from experimental conditions and used to calculate turbulent kinetic energy directly: 



93 

∞= KI
3

2
  2

2

3
IK =∞

(3.248)

ω represents the rate of dissipation of K.  Menter suggests a freestream value limited by: 

4
075.0

09.0

1

*

=≈< ∞
∞ β

β
ω (3.249)

or, the freestream value can be back-calculated (Eq. 3.234) from a non-zero eddy viscosity: 

2

,

5

,

1010Re
−

∞
−

∞

∞∞
∞ <<= T

T

where
K

µ
µ

ρ
αω (3.250)

3.6.2 Inviscid Wall 

The inviscid wall is often misconstrued as a physical condition, but no wall is truly inviscid.  

Instead, the fluid sticks to the wall forming a boundary layer between the wall and external 

flow.  The inviscid wall is a mathematical construct to represent the �inviscid portion� of the 

flow away from the boundary layer � a legacy of potential flow solvers.  The inviscid wall 

can be used in an Euler solver to represent solid wall by restricting the flow to be tangent to 

the wall.  The same condition can be used in Navier-Stokes solvers to represent non-critical 

solid walls:  Stings, aft-body fairings, and other surface used to simplify the geometry.   

Since the inviscid wall represents a streamline in the flow, no restrictions are made to the 

heat transfer or turbulence along the inviscid wall.  This contrasts the viscous wall. 

3.6.3 Viscous Wall 

The viscous wall represents a physical wall, to which the fluid sticks.  The no-slip condition 

restricts the velocity of the fluid at the wall to be equal to the velocity of the wall (structure): 



94 

( )
wallii uu =  (3.251)

The viscous wall also restricts the turbulence levels at the wall.  The no-slip condition says 

that the velocity fluctuations in the Reynolds stress tensor 
jiuu ′′′′ρ  and turbulent kinetic energy 

iiuu ′′′′ρ  must vanish in the limit of the wall.  This restriction creates two boundary conditions:  

The eddy viscosity, and thus Reynolds stresses, goes to zero at the wall; and, the turbulent 

kinetic energy is zero at the wall.  The ω-condition is much more difficult to construct.   

Wilcox (2002) provides a mathematical limit for ω near the wall: 

∞→��
	



��
�


→��
	



��
�


=

→
→
→→ 2

1
0

0
00

6
limRelimlim

d

K

o
d

T
Kd

T

ρβ

µ

µ

ρ
αω

µ

(3.252)

An infinite value is impossible to model in a numerical system.  Menter (1994) suggests 

calculating the ω-value at the first node off of the wall ωoff and estimating the wall value ωwall

as ten times the value off of the wall: 

2

1

6

do

off ρβ

µ
ω =   offwall ωω 10= (3.253)

Menter also suggests placing the first node off the wall within the viscous sublayer: ∆y+ < 3. 

The viscous solid wall is the only boundary condition that represents physical contact 

between the fluid and solid surface.  This contact spawns a series of heat transfer conditions:  

The known temperature condition represents the fluid-solid contact, like the no-slip 

condition.  The alternative condition, known heat flux, represents the heat flowing between 

solid and fluid.  A special heat flux condition is used as a mathematical limit, where no heat 

flux is allowed through the wall � adiabatic wall.  This condition represents a perfectly 



95 

insulated wall.  All walls have a finite thermal impedence, so the adiabatic wall is an ideal 

mathematical construct, often chosen as an alternative to the previous two conditions. 

3.6.4 Symmetry Plane 

The symmetry plane is a purely mathematical construct used to represent symmetry in the 

domain.  Symmetry in the problem allows the solution space to be split in half, possibly 

multiple times.  The new boundary created by dividing the domain is then modeled by the 

symmetry plane.  The symmetry plane is a stream line so the velocity must be parallel to the 

symmetry boundary.  All other property magnitudes are unrestricted along the symmetry 

plane, but those properties must reflect across the boundary.  The gradients of all properties 

must be limited by this reflection so that no gradient exists normal to the boundary. 

3.6.5 Rocket Exhaust 

A rocket engine creates thrust by building a pressure potential that is expanded through a 

nozzle.  The total pressure and temperature generated within the combustion chamber creates 

this potential.  Instead of modeling the combustion within the chamber, this work models the 

total properties along an inflow plane.  An air equivalent is used along the inflow plane in 

place of combustion properties.  This simplifies the analysis to avoid tracking the advection 

of thermodynamic coefficients, like γ, cp, and cv.  The flow then expands through the nozzle, 

which is modeled using solid walls.  The remaining properties along the inflow plane can be 

calculated using the thermodynamic relationships presented earlier in this chapter.  A third 

property is needed for the boundary to be well-posed and complete.  This third property will 

be created in the next chapter to work best with the implementation of the condition. 



96 

3.6.6 Engine Planes 

This work has also created boundary conditions to simulate the flow passing through turbojet 

engines.  A turbojet pulls air in through its inlet, works the flow, adds heat through combus-

tion, and then exhausts the flow through a nozzle.  Like the rocket exhaust properties, an air 

equivalent is used to simplify the engine exhaust.  If the engine is operating properly, the 

engine produces thrust.  The engine pulls air into the inlet by decreasing the pressure down-

stream of the inlet.  The engine can reject excess mass flow by increasing the pressure or 

decrease the mass flow to pull in more mass.  These concepts were used to develop an 

outflow boundary, which represents the turbomachinery pulling flow through the inlet. 

As the air passes through the turbomachinery, mass, momentum, and energy are added to the 

flow.  Mass is added in the form of fuel flow, which is combusted adding energy; and the 

turbomachinery works the fluid creating a momentum exchange � uninstalled thrust 
5
.  The 

net conservation across the turbomachinery was used to link the outflow and inflow planes so 

that the conservation principles are responsible for the local flow and thrust from the turbojet.   

3.6.7 Energy Balance 

Care must be used when applying the previous boundary conditions.  If the kinetic energy is 

altered by the boundary condition, the change in energy must be accounted for within the 

energy balance.  If the total energy is changed by the boundary condition, energy has been 

added or destroyed by the numerical method that seeks to maintain conservation of energy.  

                                                 
.
�����������	
���������������������������������������������	����/����
��������������������	�������	��������

�	��������������������������	������	�����	��	�--���������������������	�	����������������'�����������

�����	�����������������������������&��������������



97 

The imbalance in energy can also create a pressure gradient along or normal to the wall 

through the ideal gas equation.  The flow will be adapted to account for such energy changes. 

3.7 Rigid Body Model 

The non-inertial formulation has coupled with a rigid body dynamic model capable of 

modeling all six degrees-of-freedom (Cowan, 2003).  O�Neill (2005) adapted the orientation 

tracking to utilize quaternions to avoid the singular present in Euler angles.  This work 

refines the rigid body model to use the entire inertial matrix read from its file and introduced 

other research features.  These features are outlined here.  

3.7.1 Rigid Body Dynamics 

The original rigid body system contained mass and inertial matrices with plug-ins for damp-

ing and stiffness matrices.  The inertia matrix Im assumed centerline symmetry (Ixy = Iyz = 0).  

The previous algorithm also contained a matrix inversion routine that assumed that the 

inertial matrix was full.  This research utilizes the entire inertia matrix and added diagonal 

stiffness and damping matrices.  (The diagonal matrices can be used to simulate simple 

springs and dampers attached to the body.  For instance, a drogue chute can be simulated as a 

linearized damper.)  The inverse of the inertia matrix was applied to all moments induced on 

the body (e.g., inertial, damping, stiffness, aerodynamic, and external).  The inertial forces 

omω
�

IΩ  were filled out to include the full inertia matrix Im (Nelson, 1998): 

�
�
�

�
�
� +

=
�
�
�

�
�
�
�
�

�
�
�

�
+

�
�
�

�
�
�
�
�

�
�
�

�

+Ω

+Ω
+

��

�
�
�

��

�
�
�
�
�

�
�
�

�

M

gmFxVmV oxo

m

xo

m

�

��

�

�

�

�

��

��

θωω θθ K

K

CI

C

I

M

0

0

0

0

0

0
(3.254)

where 



98 

�
�
�

�

�

�
�
�

�

�

=

m

m

m

00

00

00

M       

�
�
�

�

�

�
�
�

�

�

=

z

y

x

x

C

C

C

00

00

00

C

�
�
�

�

�

�
�
�

�

�

=

z

y

x

x

K

K

K

00

00

00

K  (3.255)

�
�
�

�

�

�
�
�

�

�

=

zzyzxz

yzyyxy

xzxyxx

m

III

III

III

I       

�
�
�

�

�

�
�
�

�

�

=

ψ

θ

φ

θ

C

C

C

00

00

00

C

�
�
�

�

�

�
�
�

�

�

=

ψ

θ

φ

θ

K

K

K

00

00

00

K (3.256)

�
�
�

�

�

�
�
�

�

�

−

−

−

=×=Ω

0

0

0

xy

xz

yz

ωω

ωω

ωω

ω I
�

(3.257)

where m is the mass of the vehicle, Im is the mass moment of inertia matrix, F is the aero-

dynamic and external forces, and M is the aerodynamic and external moments calculated 

about the center of rotation xo.  The systems equations are presented here in the dimension-

less form used by Cowan (2003). 

Special attention must used taken when applying the translational stiffness matrix.  The 

stiffness matrix has been implemented without the translation B between the frames.  In other 

words, the spring force is based on the position within the global (inertial) frame and not 

relative to the body.  This assumption is reasonable for a body, which is limited to small 

rotations, like those seen in a wind tunnel, so that the inertial and body frames are nearly 

aligned.  In general, an aerospace vehicle is free to rotate and translate over great distances 

and is not constrained by linear stiffness. 

The tracking of the center of rotation xo represents the position of the body in the global 

(inertial) frame.  The velocity has been formulated in the body fixed (non-inertial) frame.  

The rate of change of tracking position can be expressed in terms of the velocity in the body 

frame using the translation matrix: 
oo Vx
�

�� B= .  If the orientation of the vehicle is tracked 



99 

using Euler angles, like in Euler2D and NS2D, the rate of change in orientation can be cal-

culated using the rotational rates: zωθ =� .  The 2D system can be simplified to a 6-degree-of-

freedom system: 

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−

−

−

�
�

�

�
�

�

�

�
�

�

�
�

�

�

+
=

�
�

�

�
�

�

�

�
�

�

�
�

�

�

θ

ω

θ

ω θθ z

o

o

II

xmxm

zI

m

z

o

o

V

x

M

gFV

x

zzz

�

�

��

�

�

��

��

0100

00

00

000

0

0

11

11

1

1

KC

CK

B

(3.258)

Euler angles have a singularity that can lock the pitch orientation.  To avoid this sensitivity, 

O�Neill (2004) implemented quaternions into Euler3D.  The rate of change of quaternions 

can be expressed: qq q

��� Ω−=
2
1 .  Quaternions will be discussed in more detail later in this 

section.  The 3D system can be expressed as a 13-degree-of-freedom system: 

( ) ( )
�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

Ω

+Ω

+Ω

−

−

�
�

�

�
�

�

�

�
�

�

�
�

�

�

−

+
=

�
�

�

�
�

�

�

�
�

�

�
�

�

�

−−

q

V

x

M

gF

q

V

x

o

o

q

mm

xmxm

m

mo

o

�

�

�

�

��

��

��

��

��

��

ωθω θθ

2
1

1

11

1

1

000

000

00

000

0

0

CII

CK

B

KI
(3.259)

Gravity is assumed to always occur in the downward direction in the global (inertial) frame.  

In the non-inertial frame, the gravity vector rotates with the orientation of the body.  This 

relationship between global and body-fixed gravity is expressed in three-dimensions: 

gg

B

B

B

gBBB

BBB

BBB

kgg

g

g

g

z

y

x

�
�

�
�

�

�
�

�
�

� −

=
�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

�
�
�

�

�

�
�
�

�

�

===
�
�

�
�

�

�
�

�
�

�
−

φθ

φθ

θ

coscos

sincos

sin

0

0

�

18

15

12

181716

151413

121110

1
B

�
 (3.260)

or, in two-dimensions: 



100 

g
g

jgg
g

g

y

x

�
�
�

�
�
�

=
�
�
�

�
�
�
�
�

�
�
�

�

−
===

�
�
�

�
�
� −

θ

θ

θθ

θθ

cos

sin0

cossin

sincos
�1

B
�

(3.261)

The freestream velocity has a similar relationship.  In the inertial frame, the freestream 

velocity is expressed in terms of its magnitude and orientation (α and β).  In the non-inertial 

frame, the freestream is aligned with the global x-direction, which is illustrated in Figure 3.1 

for a translating and rotating boundary.  The green vector represents the velocity induced by 

rotation; the blue vector is induced by translation; and, the red velocity is the freestream. 

Figure 3.1:  Relative Velocity at Boundary Node of a Translating / Spinning Domain. 

The orientation of the body is used to rotate the freestream in the non-inertial frame.  Using 

Eq. 3.3, the velocity along the non-inertial freestream boundary is calculated: 

∞

∞

∞
−

∞

∞

∞

∞

�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

�
�
�

�

�

�
�
�

�

�

==+=
�
�

�
�

�

�
�

�
�

�

+

+

+

V

B

B

BV

BBB

BBB

BBB

uVu

Vw

Vv

Vu

tr

ztr

ytr

xtr

16

13

10

181716

151413

121110

1

,

,,

,,

,,

0

0
���

B (3.262)

or, in two-dimensions: 



101 

∞
∞

∞
−

∞
∞

∞

�
�
�

�
�
�

−
=

�
�
�

�
�
�
�
�

�
�
�

�

−
==+=

�
�
�

�
�
�

+

+
V

V
uVu

Vv

Vu
tr

ytr

xtr

θ

θ

θθ

θθ

sin

cos

0cossin

sincos
1

,

,,

,, ���
B (3.263)

The relationship can be used to express a velocity along a non-inertial boundary ur,b in terms 

of its inertial counterpart ub and the translation and rotation of the body: 

bobtbbr xVuVuu
�������

×−−=−= ω, (3.264)

3.7.2 Quaternions 

Some additional attention is necessary to understand quaternions and their relationship to 

Euler angles.  The orientation of the body can be expressed in this work in terms of Euler 

angles (θ, φ, ψ) or quaternions.  Quaternions can be calculated from Euler angles: 

�
�

�

�
�

�

�

�
�

�

�
�

�

�

+

+

=

�
�

�

�
�

�

�

�
�

�

�
�

�

�

ψθφψθφ

ψθφψθφ

ψθφψθφ

ψθφψθφ

osinininosos

inosinosinos

ininosososin

inininososos

q

q

q

q

css-scc

scscsc

ssc-ccs

sssccc

3

2

1

0

(3.265)

Euler angles are easier for the human mind to comprehend the orientation of the vehicle.  The 

initial orientation of the body is expressed in terms of quaternions, so Euler3D and NS3D 

uses Eq. 3.265 to calculate the initial orientation in quaternions.  The Euler angles are written 

to a file after each update.  The Euler angles are calculated from the quaternions using: 

( )
( )

( )�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

−−+

+−

−

+−−

+−

2
3

2
2

2
1

2
0

2130

2
3

2
2

2
1

2
0

3210

)(21

1

)(21

tan

sin

tan

qqqq

qqqq

test

qqqq

qqqq

q

ψ

θ

φ

1)(21 3120 ≤−=≤− qqqqqtest (3.266)

The position of the body in the inertial frame is connected to the velocity in the body fixed 

frame: oVx
�

�� B= .  O�Neill (2005) writes the transformation matrix B in terms of quaternions: 



102 

( ) ( )
( ) ( )
( ) ( ) �

�
�

�

�

�
�
�

�

�

+−−−−

−−+−−

−−−−+

=
2

3

2

2

2

1

2

010322031

1032

2

3

2

2

2

1

2

03021

20313021

2

3

2

2

2

1

2

0

22

22

22

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

B (3.267)

The quaternions change in time according to the quaternion differential equation: 

q

q

q

q

q

q

q

q

q

q q

xyz

xzy

yzx

zyx

�

�

�

�

�

�� Ω−=

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−

−−

−−
−=

�
�

�

�
�

�

�

�
�

�

�
�

�

�

=
2

1

0

0

0

0

2

1

3

2

1

0

3

2

1

0

ωωω

ωωω

ωωω

ωωω

(3.268)

which is a function of the quaternion position and rotational velocity ω.  Finally, it is 

important to note that quaternions are a unit vector: 

( )( )( ) 1CSCSCS
2222222

3

2

2

2

1

2

0

2
=+++=+++= ψψθθφφqqqqq (3.269)

3.8 Structural / Controls Model 

Many fluids solvers model the deflection of solid walls by moving the boundary to the 

deformed location and adjusting (or remeshing) the domain to fit the new boundary position.  

This process is very costly.  Small structural and control deflections can be modeled using 

transpiration (Fisher, 1996; Stephen, 1998; Cowan, 2004), so that the boundary and mesh do 

not need to be deformed at each step.  If the mode shapes of the structure are used to express 

its motion, the structural dynamics can be modeled as a separate routine within the CFD 

process, which is much more efficient than progressing a time-accurate FEA model running 

concurrent with the CFD solver.  The modal elastics are sufficient to model the deformations 

of the structure given enough modes are used to represent the modes that may become active 

during the simulation.   



103 

3.8.1 Transpiration (Inviscid) 

Flow along an inviscid wall is restricted to be parallel to the wall (stationary).  If the wall is 

moving, the relative velocity is used to calculate the flow tangency.  Under any conditions 

the flow tangency is dependent upon the local wall normal to restrict the flow.  As the 

structure deforms, the wall normal rotates.  Figure 3.2 shows the wall normal before and after 

rotation.  If the wall is no deformed but the normal vector is rotated using transpiration, flow 

tangency still aligns the flow with the deformed boundary.  As long as the boundary does not 

displace over large distance or through large rotations (limited to 20 degrees or less), the 

transpired normal and undeformed boundary accurately model the inviscid wall.  Cowan 

(2003) expresses transpiration (flow tangency) in inertial and non-inertial.   

Figure 3.2:  Solid Wall Normals with Elastic Motion. 

3.8.2 Transpiration (Viscous) 

Where the inviscid wall is represented mathematically by flow tangency, the flow senses the 

viscous wall because the fluid sticks to the wall.  The no-slip condition was expressed in Eq. 

3.251 in terms of a moving wall, where the velocity of the fluid is equal to the velocity of the 

wall.  This condition has been modeled in NS2D and NS3D and has presented itself as useful 



104 

for modeling rotational and lateral velocities (Sukraw, 2008), which do not deform the 

boundary but rather slide the wall along the boundary surface.   

Early in this work, much effort was put into finding a method of �viscous transpiration�, but 

no valid method has been found.  A physical fluid, contrasted with a fluid in a numerical 

model, senses the presence of a wall when the molecules in the fluid bounce off the wall.  If 

the wall deforms, the location of the wall moves, and the particles bounce off a different 

boundary to the flow.  Mathematically, the deformation is modeled in the no-slip condition, 

which drives the velocity to zero at the wall.  The fluid just off the wall builds a boundary 

layer that transfers the location of the wall to the external flow.   

In a numerical sense, we have a limited number of variables through which to produce trans-

piration.  The velocity is strictly dictated by the no-slip condition, which is an essential

boundary condition.  The temperature (enthalpy or energy) may also be specified in the 

boundary conditions.  The remaining variables are density and pressure.  The viscous stresses 

and heat fluxes could be added to the unknowns using a hybrid element approach.  The 

hybrid method was thought to give the solver a means of rotating the stress tensor along the 

wall to model deformation of the normal, but the viscous stresses proven to be unsuccessful 

in transmitting wall position to the fluid.  Pressure was thought to have the largest effect on 

the local flow field.  The pressure was calculated on an airfoil rotated to 15-degrees 

incidence.  The airfoil was then returned to zero incidence, and the solver was allowed to 

converge using the wall pressure from the inclined airfoil.  The flow solution off of the wall 

showed minimal effects from pressure.  The pressure and viscous stresses should be left as 

dependent variables because these parameters are used to calculate the forces on the wall. 



105 

Inviscid transpiration can be thought of as the deformation of the top of the boundary layer.  

Concepts were idealized to rotate all of the velocity vectors at the bottom or throughout the 

boundary layer, but such ideas would only destroy any validity of the near-wall solution. 

Viscous walls are more constrained than inviscid walls and therefore lose the ability to apply 

a viscous transpiration.  Inviscid transpiration works because the velocity vector is rotated 

parallel to the deformed wall.  The position of that velocity is much less important than its 

orientation.  In the viscous fluid, the wall velocity is absolutely specified and its position in 

the flow is the only means that can be used to transmit the position of the wall.  From this, 

elastic deformations can only be incorporated into viscous walls by deforming the wall.  This 

work does not allow for viscous wall deformations and leaves that for future researchers. 

3.8.3 Modal Elastics 

In modal elastics, the deformation of the solid surface is decomposed into N modes that are 

represented by mode shapes φn and linear system dynamics.  A linear system of N modes is 

represented using mass M, damping C, and stiffness K matrices and a generalized forcing 

vector F.  The generalized forcing vector is comprised of aerodynamic and external forces:   

[ ] [ ] [ ] FKCM =++ δδδ ��� (3.270)

The systems equation is presented here in the dimensionless form used by Cowan (2003).  

The solid walls are deformed according to the generalized displacements δn and mode shapes 

φn.  If the i
th

 node on the wall is ix
�

, the deformation and velocity of that node are calculated:  

�+=′
N

innii xxx )(
���

φδ   �=
N

innib xV )(,

��
�

φδ (3.271)



106 

CHAPTER IV 

DEVELOPMENT 

The previous chapter discussed the equations and models that are explored in this work.  This 

chapter will discretize those equations using two versions of Galerkin�s method.  The four in-

house OSU codes are discretized using a piece-wise linear Bubnov-Galerkin method, while 

NASA-CFDsol is discretized using a first-order Taylor-Galerkin method.  The in-house 

codes use Gauss�s theorem to create boundary integrals, where boundary conditions used to 

adapt the boundary fluxes.  CFDsol applies the chain rule instead of Gauss�s theorem on the 

inviscid fluxes so the boundary conditions are all explicitly applied between updates of the 

governing equations.  The viscous terms in CFDsol are discretized using Gauss�s theorem 

and its boundary integrals.  The two types of solvers are developed independently to high-

light their differences.  The source terms (non-inertial, quasi-combustion, and turbulence) are 

developed in the same manner for all five solvers, and these terms are developed after the 

other aspects of the solvers.  The chapter closes with the development of forces and moments 

through the integration of momentum and stability enhancement through local time stepping. 



107 

4.1 In-House Codes 

Two in-house Euler codes were developed by Cowan (2003).  These codes were developed 

using a piece-wise linear Bubnov-Galerkin method.  Euler2D is a two-dimensional Euler 

code which was used as an efficient basis for developing understanding before expanding the 

method to Euler3D, the three-dimensional Euler code.  Moffitt (2004) added viscous terms to 

Euler2D, creating the first implementation of NS2D.  These methods, along with alterations 

for efficiency and accuracy, have been used to expand Euler2D/3D into NS2D/3D.  Propul-

sion models were developed in all four codes, starting in the Euler codes and later expanding 

to the viscous codes. 

4.1.1 Shape Function 

A piece-wise linear property distribution is created using linear shape functions as a basis.  

The distribution is created by the linear combination of the shape functions and the properties 

at the nodes.   The shape functions are defined to be equal to unity at one node and zero at all 

other nodes of the element.  A one-dimensional linear element is illustrated in Figure 4.1.  

The shape functions are defined in terms of the local coordinates: Φe = {ξ1 ξ2 }.  ξ1 is the 

local coordinate that starts opposite of node 1 (value of 0) and extends across the element to 

node 1 (value of 1).  ξ2 is the other local coordinate, which starts opposite of node 2 with a 

value of 0 and takes on a value of 1 at node 2.   The direction of the local coordinates may 

seem backwards, but this convention will make more sense in two-dimensions.  The local 

coordinates are related in that their sum is always unity:  ξ1 + ξ2 = 1.  The second coordinate 

can now be written in terms of the first: ξ2 = 1 � ξ1, which allows the element to be defined in 



108 

terms of one degree-of-freedom ξ1.  The properties are linearly distributed using the shape 

functions:  p = Φe pe = p1 ξ1 + p2 ξ2.  This pressure distribution is illustrated in Figure 4.1. 

Figure 4.1:  Linear Shape Function and Property Distribution. 

A two-dimensional linear element is a triangular element defined by its three vertices.  The 

shape function is defined using the local coordinates:  Φe = {ξ1 ξ2 ξ3}.  Each coordinate ori-

ginates from the center of the opposite edge (= 0) and extends back to the node (= 1).  The 

local coordinates and shape functions are illustrated in Figure 4.2.  The local coordinates 

again sum to unity:  ξ1 + ξ2 + ξ3 = 1, so the third coordinate can be written in terms of the 

other two: ξ3 = 1 � ξ1 � ξ2. 

A linear three-dimensional element is a tetrahedral and can be defined by analogy to the pre-

vious elements.  The shape functions are equal to the local coordinates:  Φe = { ξ1  ξ2  ξ3 ξ4 }.  

The local coordinates originate from the center of the opposing face (= 0) and extending back 

to the node (= 1).  The coordinates are related through their unit sum:  ξ1 + ξ2 + ξ3 + ξ4 = 1.  

The fourth coordinate can be written in terms of the other three: ξ4 = 1 � ξ1 � ξ2 � ξ3.   



109 

Figure 4.2: Local Coordinates and Shape Functions for Linear Triangular Element. 

4.1.2 Element Jacobian 

The global position within the element can be written using the shape functions as a basis.  

For the linear one-dimensional element, the global position is written:   

2122212211 )1( ξξξξξ eJxxxxxx +=+−=+= (4.1)

where Je is the Jacobian.  The Jacobian is equal to the length of the element:  Je = le = x2 - x1.   

A similar relationship can be written for the global and local coordinates on the two- and 

three-dimensional elements: 

ξ
ξ

ξ ��� T

ex
yyyy

xxxx

y

x

y

x
x J+=

�
�
�

�
�
�
�
�

	


�

�

−−

−−
+

�
�
�

�
�
�

=
�
�
�

�
�
�

= 3

2

1

3231

3231

3

3
(4.2)

ξ

ξ

ξ

ξ
��� T

ex

zzzzzz

yyyyyy

xxxxxx

z

y

x

z

y

x

x J+=

�


�

�


�


�

�

�
�
�

�

	








�

�

−−−

−−−

−−−

+

�


�

�


�


�

�

=

�


�

�


�


�

�

= 4

3

2

1

434241

434241

434241

4

4

4

(4.3)

The determinants of the Jacobians are related to the area and volume of their elements, 

respectively:  |Je|tri = 2Ae and |Je|tet = 6Ve.  Generically, the coordinates are related: 



110 

ξ
��� T

edxx J+= +1
(4.4)

where d is the number of dimensions in the element.  The Jacobian can be used to convert 

integrals on the element from global to local coordinates: 

��� ==Ω
1

0

11

1

0

11 )()()( ξξξξ dfldfdxf ee

le

J
�

(4.5)

( ) ( )

� �� ��
−−

==Ω
1

0

1

0

21

1

0

1

0

21

22

)(2)()(

ξξ

ξξξξξξ ddfAddfdxf ee

Ae

���
J (4.6)

( )( ) ( )( )

� � �� � ��
− −−− −−

==Ω
1

0

1

0

1

0

321

1

0

1

0

1

0

321

3 323 32

)(6)()(

ξ ξξξ ξξ

ξξξξξξξξ dddfVdddfdxf ee

Ve

���
J (4.7)

Eqs. 4.5 � 4.7 will be used to convert element integrals into local coordinates, where the 

integrals can be simplified for each element before assembly into a global system of 

equations.  Eq. 4.8 is created as a form of shorthand for the previous three relationships: 

���
≤≤≤≤Ω

Ω==Ω
1010

)(!)()(
ξξ

ξξξξ
��

�����
dfddfdxf ee

e

J (4.8)

where Ωe is equal to the length, area, and volume of the element, respectively.  The Jacobian 

can be written generically:  |Je| = d! Ωe. 

4.1.3 Element Gradients 

The Jacobian matrix Je can be used to define the property gradient.  The properties are 

distributed using the shape functions Φe and properties at the nodes (here, pressure) pe.  The 

properties at the nodes are a function of solution progress, whether time accurate or steady-

state; while the shape functions are a spatial distribution that does not change in time.  The 



111 

spatial gradient of the properties can be calculated using the shape functions and the chain 

rule: 

e
e p

x

p

xx

p

ξ

ξ

ξ

ξ
��

�

��

�

�
∂

Φ∂

∂

∂
=

∂

∂

∂

∂
=

∂

∂
(4.9)

From Eq. 4.4, the derivative between coordinates x
��

∂∂ /ξ is related using the Jacobian matrix: 

xx

x
e ���

�

�
∂

∂
=

∂

∂

∂

∂
=

∂

∂
J

ξξ
  

ξξξ

ξ
����

�

�
∂

∂
=

∂

∂
=

∂

∂

∂

∂
=

∂

∂ −
e

e

e
xx

A
J

J
11

(4.10)

The local gradient of the shape function is unity for the first d coordinates and -1 for the last: 

ij

i

j

i

je δ
ξ

ξ

ξ
=

∂

∂
=

∂

Φ∂ ,
  11

,...,1

1, −=�
�
�

�
�
�
�

�
−

∂

∂
=

∂

Φ∂
�
=

+

dj

j

ii

de ξ
ξξ

(4.11)

{ }[ ]1−=
∂

Φ∂
I

ξ
�e

(4.12)

The global-gradient becomes: 

{ }[ ] [ ] edee

e

eee
e pApp

xx

p
1,

1 1
1 +

− =−=
∂

Φ∂

∂

∂
=

∂

∂
A

J
IJ

ξ

ξ
��

�

� (4.13)

where I is the identity matrix (d x d)and {1} is a column vector of ones (d-terms).  The first d

columns are Ae, and the last column is the negative sum of the other d columns: 

( ) �
=

+ −=
d

j

ijdi AA
1

1 (4.14)

 For the one-dimensional element, the gradient is calculated: 

{ }
�
�
�

�
�
�

−==
∂

∂

2

1
11

11

p

p

l
p

x

p

e

ee

e

A
J

(4.15)

For the two-dimensional element, the gradients become: 



112 


�


�

�


�


�

�

�
�

	


�

�

−−

−
==

∂

∂

3

2

1

121323

121323

2

11

p

p

p

xxx

yyy

A
p

x

p

e

ee

e

A
J

� (4.16)

where xij = xi � xj.  For the three-dimensional element, the inverse Jacobian takes on the form: 

�
�
�

�

	








�

�

−−−

−−−

−−−

=−

142424143414143424343424

142424143414143424343424

142424143414143424343424

1

yxyxyxyxyxyx

xzxzxzxzxzxz

zyzyzyzyzyzy

ee JJ (4.17)

Eq. 4.17 represents the first three columns of the 3x4 gradient matrix.  The fourth column is 

calculate using Eq. 4.14. 

4.1.4 Consistent and Lumped Mass Matrices 

A term called the consistent mass matrix will arise several times during the development of 

Galerkin�s method.  The elemental consistent mass matrix Mc,e is calculated: 

( )
[ ]( )

( )
[ ]( )1

!2

!
1

!2
10

, +
+

Ω
=+

+
=ΦΦ=ΩΦΦ= ��

≤≤Ω

II
J

JM
d

d

d
dd ee

e

T

eee

T

eec

e ξ

ξ
�

�
(4.18)

where The consistent mass matrix for the one-, two-, and three-dimensional elements are: 

�
�

	


�

�
=ΩΦΦ= � 21

12

6
,

e

l

e

T

eec

l
d

e

M (4.19)

�
�
�

�

	








�

�

=ΩΦΦ= �
211

121

112

12
,

e

A

e

T

eec

A
d

e

M (4.20)

�
�
�
�

�

	










�

�

=ΩΦΦ= �
2111

1211

1121

1112

20
,

e

V

e

T

eec

V
d

e

M (4.21)



113 

For simplicity, the terms of the consistent mass matrix can be lumped together onto the 

diagonal.  This form of the mass matrix is called the lumped mass matrix: 

( )
( ) IIM

1
2

!2

!
,

+

Ω
=+

+

Ω
=

d
d

d

d ee
eL (4.22)

�
�

	


�

�
=

10

01

2
,

e
eL

l
M (4.23)

�
�
�

�

	








�

�

=

100

010

001

3
,

e
eL

A
M (4.24)

�
�
�
�

�

	










�

�

=

1000

0100

0010

0001

4
,

e
eL

V
M (4.25)

4.1.5 Gauss Quadrature 

Quadrature is used to convert integrals over regular regions into a linear combination of 

values taken evenly from that region.  Gauss quadrature is written (Li, 2006; Jinyun, 1984): 

�� =
≤≤ pN

j

j
f

d

w
df )(

!
)(

10

ξξξ
ξ

���

�
(4.26)

where wk is the weight applied to the k
th

 point in the quadrature, and ξk is the local coordi-

nates of the k
th

 point.  If m
th

 order quadrature is used to integrate an n
th

 order integrand, the 

quadrature result is exactly equal to the analytical integral, if and only if m > n.  In other 

words, if the integrand f is a third order polynomial, then quadrature of third order or higher 

will result in an exact solution.  First and second order quadrature are less expensive and can 

be used to approximate the integral of the third order polynomial.  Table 4.1 shows the 



114 

weights and locations for the lowest three orders of Gauss quadrature on triangle elements.  

Table 4.2 shows the first three orders for tetrahedral elements.   

Table 4.1:  Gauss Quadrature � Triangle Elements. 

Table 4.2:  Gauss Quadrature � Tetrahedra Elements.

Cowan (2003) implemented first and second order Gauss quadrature to integrate the flux 

terms.  In Euler2D, first and second order quadrature requires one and three points, respect-

tively.  In Euler3D, one and four points are required for the same integral orders.  Cowan�s 

analysis showed that higher order quadrature did not improve the accuracy and created 

longer run times.   



115 

Given a piece-wise linear distribution of properties, the inviscid flux is at worst third order on 

each element.  Early in this work, third order integration was implemented in Euler2D in two 

ways:  Gauss quadrature and analytical integration.  (The analytical integrals are demon-

strated in Appendix B.)  These routines were tested by Brown (2009).  Brown�s results 

showed that quadrature order increased run time and that analytical integration was faster 

than third order quadrature.  Brown�s tests were not definitive because artificial dissipation 

dominated the error convergence rather than quadrature order.  Brown�s study should be 

repeated after implemented an artificial dissipation model with less overall impact. 

If viscosity and thermal conductivity are assumed to be piece-wise constant on the domain, 

the viscous momentum fluxes are piece-wise constant and the viscous energy flux is piece-

wise linear because of velocity.  Pair with Cowan and Brown�s results, first order quadrature 

was selected exclusively in the development of NS2D and NS3D.  For first order quadrature, 

the location is defined at the center of the element (ξ1 = 
1
/d+1) with a weight of unity (w1 = 1).  

In other words, the integral is approximated using the average properties on that element.  

Two- and three-dimensional integrals over triangle and tetrahedra are simplified with one 

quadrature point: 

( )

effddf
2

1
),(

!2

1
),( 3

1
3

1

1

0

1

0

2121

2

==� �
−ξ

ξξξξ (4.27)

( )( )

effdddf
6

1
),,(

!3

1
),,( 4

1
4

1
4

1

1

0

1

0

1

0

321321

3 32

==� � �
− −−ξ ξξ

ξξξξξξ (4.28)

4.1.6 Galerkin Formulation 

The governing equations for the time-averaged Navier-Stokes equations (Eqs. 3.204 thru 

3.210), SA model (Eq. 3.229), and SST model (Eq. 3.235 and 3.236) are combined together 



116 

into a single system of equations.  The turbulence model is then selected by using its parti-

cular governing equation(s) and ignoring those from the other model.  A source term SC is 

also included in the governing equations for later inclusion of the quasi-combustion model.  

The combined system is represented in Eqs. 4.29 thru 4.32: 

TCNI

ib

iv

ib

i

xxt
SSS

FFU
+++

∂

∂
=

∂

∂
+

∂

∂

,

,

,

(4.29)






�





�

�






�





�

�

=

ρω

ρ

νρ

ρ

ρ

ρ

K

E

u

r

jr

�

,

U         






�





�

�






�





�

�

+

=

ρω

ρ

νρ

ρ

δρ

ρ

ir

ir

ir

rir

ijjrir

ir

i

u

Ku

u

Hu

puu

u

,

,

,

,

,,

,

�
F      

( )






�





�

�






�





�

�

+⋅

+

−=

0

0

0

0

,,,

,,

krktkt

lrkjkljt

NI

uVa

ua ωε

ρS (4.30)

( ) ( )
( )

( )
( ) 





�





�

�






�





�

�

∇+

∇+

∇+

∇++−′′−Τ+

Τ+

=

ωµσµ

µσµ

ννρµ

µσµρτ

ρτ

ω

σ

iT

iTk

i

iTkiiijijjr

ijij

iv

K

KQqu

Re
1

Re
1

Re
1

Re
1

,

, ��

0

F (4.31)

( )

( ) 




�





�

�






�





�

�

∇∇+−−Π

−Π

∇∇+−
=

ρωρωωρβρ

ρερ

ννρρνρ

ρωω

σ
ν

ω

ii

C

ambcr

k

iidwwbr

T

Kf

fcScf

22

1

Re
12�

1Re
1

11
����

0

0

0

S (4.32)

Eq. 4.29 is integrated used the Galerkin finite element method: 

( ) 0,

,

=Ω�
�
�

�
�
�
�

�
−−−−

∂

∂
+

∂

∂
Φ�

Ω

d
xt

TCNIivi

ib

T SSSFF
U

(4.33)



117 

The viscous flux terms (momentum) are piece-wise constant on the domain.  Their gradient 

is identically zero.  This eliminates the possibility of representing the Navier-Stokes equa-

tions in this form.  If the Gauss�s theorem is applied to the inviscid and viscous flux terms, 

then the gradient is shifted from the fluxes to the shape function: 

( ) ( ) 0�
,,

,

=Γ⋅−Φ+Ω−
∂

Φ∂
−Ω�

�

�
�
�

�
−−−

∂

∂
Φ ���

ΓΩΩ

dnd
x

d
t

iivi

T

ivi

ib

T

TCNI

T FFFFSSS
U

(4.34)

Gauss�s theorem also creates integrals over the boundary Γ, which can be used to imply the 

boundary conditions.  The properties are distributed in a piece-wise linear manner across the 

domain using the shape function Φe, simplifying the domain and boundary into a series of 

domain and boundary element integrals: 

( )

( ) 0�
,

,

,

=Γ⋅−Φ+

Ω−
∂

Φ∂
−Ω�

�

�
�
�

�
−−−

∂

∂
Φ

� �

� �� �

Γ

ΩΩ

be

iivi

T

be

e

ivi

ib

T

e

e

TCNI

T

e

be

ee

dn

d
x

d
t

FF

FFSSS
U

(4.35)

where Γbe is the edge length lbe in two-dimensions and face area Abe in three-dimensions.  

The equations can be used to construct a residual vector: 

( )

( ) ( )� �� �

� �

ΓΩ

Ω

−+

Γ⋅−Φ∆+Ω−
∂

Φ∂
∆−

Ω�
�

�
�
�

�
−−−

∂

∂
Φ∆=

be

iivi

T

ben

e

ivi

ib

T

e
n

e

TCNI

T

ennnn

bee

e

dntd
x

t

d
t

t

�

,,

,,

,

11

FFFF

SSS
U

UUUR

(4.36)

4.1.7 Gauss�s Theorem 

Gauss�s theorem was used to help smooth a piece-wise constant pressure gradient.  The 

resulting distribution was susceptible to numerical errors and degraded near the boundaries.  



118 

Both issues brought into question the validity of Gauss�s theorem on discontinuous functions, 

like the piece-wise constant viscous flux terms: 

( ) ���
ΩΓΩ

Ω
∂

Φ∂
−Γ⋅Φ=Ω

∂

∂
Φ d

x
dnd

x
iv

i

T

e
iiv

T

e

i

ivT

e ,,

, � FF
F

(4.37)

Gauss�s theorem requires that the flux Fv,i be continuous on the domain Ω and its boundary 

Γ.  The viscous flux is constant on each element and discontinuous between elements, 

violating the mathematical requirements of Gauss�s theorem.  Instead of applying Gauss�s 

theorem to Eq. 4.33 and then discretize the result into element and boundary element 

integrals, Eq. 4.33 was first discretized into elements that are discontinuous in viscous fluxes 

Fv,i and then Gauss�s theorem was applied to the integral on each element: 

( ) � �� �� ��
ΩΓΩΩ

Ω
∂

Φ∂
−Γ⋅Φ=Ω

∂

∂
Φ=Ω

∂

∂
Φ

e

iv

i

T

e

f

iv

T

e

e i

ivT

e

i

ivT

e

efe

d
x

dnd
x

d
x

,,

,, � FF
FF

(4.38)

Gauss�s theorem is applied element-wise, which satisfies the requirement that the flux Fv,i be 

continuous on the domain (element) Ωe and its boundary (or face) Γf.  The difference in the 

two methods requires the integrals over the internal interfaces (interfaces between elements) 

to be included in the summation.  If the derivatives were to match, which they seldom do, 

then the interface integrals for two adjacent elements cancel each other.  The interface 

integrals should correct any error from applying Gauss�s theorem to a discontinuous domain.  

The new �Gauss friendly� scheme was found to be more accurate over a finite band of 

element sizes.  For elements outside of this band, the original scheme was much more stable 

and more accurate.  Concerns with Gauss�s theorem creating the instabilities in NS3D and 

CFDsol were disregarded.  The problem is purely a numerical error propagation issue.  The 

numerical errors themselves need to be eliminated.  Viscous local time stepping is developed 



119 

at the end of the chapter to not only stabilize the local flow but minimize the propagation 

(feedback) of numerical errors. 

4.1.8 Unsteady Term 

Cowan (2003) developed the unsteady terms by linearly distributing the unknowns vector U

on the element.  The integration simplifies to the consistent mass matrix Mc,e: 

tt
dd

t

e
ec

e
e

T

e

T

e

ee
∂

∂
=

∂

∂
ΩΦΦ=Ω

∂

∂
Φ ��

ΩΩ

U
M

UU
, (4.39)

The two- and three-dimensional mass matrices are given in Eqs. 4.20 and 4.21, respectively.  

For steady solutions Cowan neglects the unsteady term.  For unsteady solutions, Cowan 

models the temporal derivative using first and second order finite difference approximations, 

respectively: 

tt

nenee

∆

−
=

∂

∂ + ,1, UUU
(4.40)

tt

nenenee

∆

+−
=

∂

∂ −+ 1,,1, 25.1 UUUU
(4.41)

4.1.9 Element Fluxes Terms 

The inviscid and viscous fluxes in the domain element integrals in Eq. 4.36 are integrated 

here using first order Gauss quadrature (one point): 

( ) ( ) ( )ivi

T

ieivi

ib

T

e

ivi

ib

T

e A
d

d
x

d
x

e

,

10

,

,

,

, !

1
FFJFFFF −=−

∂

Φ∂
=Ω−

∂

Φ∂
��

≤≤Ω ξ

ξ
�

�
(4.42)

where Ai is the ith row of the shape function gradient (Eqs. 4.13 and 4.14).  The two-

dimensional flux integrals are represented using the properties on the element: 



120 

( ) ( )ivi

i

i

i

ivi

ib

T

e

A

A

A

d
x

e

,

3

2

1

,

, 2

1
FFFF −


�


�

�


�


�

�

=Ω−
∂

Φ∂
�

Ω

(4.43)

The three-dimensional flux integrals are similarly:

( ) ( )ivi

i

i

i

i

ivi

ib

T

e

A

A

A

A

d
x

e

,

4

3

2

1

,

, 6

1
FFFF −




�




�

�




�




�

�

=Ω−
∂

Φ∂
�

Ω

(4.44)

The inviscid and viscous fluxes are evaluated with Eqs. 4.30 and 4.31 using the properties at 

the center of each element.  The properties at the center of the element are equal to the 

average of the properties at the vertices.   

4.1.10 Boundary Flux Terms 

The inviscid and viscous boundary integrals are simplified using different approaches.  

Cowan (2003) linearly distributes the inviscid fluxes across the boundary element to increase 

stability.  The linearization puts two shape functions inside the integral, which simplifies to 

the consistent mass matrix (Eqs. 4.19 and 4.20).   

( ) ( ) [ ]( )ibeibecibeibe

T

bebeii

T

be nnddn

be

���
,,,

10

⋅=⋅ΓΦΦ=Γ⋅Φ ��
≤≤Γ

FMFJF

ξ
� (4.45)

The two-dimensional inviscid boundary integral is evaluated: 

( )
�
�
�

�
�
�

⋅

⋅
�
�

	


�

�
=Γ⋅Φ�

Γ ii

iibe
ii

T

be
n

nl
dn

be

�

�

21

12

6
�

2,

1,

F

F
F (4.46)

The three-dimensional inviscid boundary integral is modeled: 



121 

( )

�


�

�


�


�

�

⋅

⋅

⋅

�
�
�

�

	








�

�

=Γ⋅Φ�
Γ

ii

ii

ii

be
ii

T

be

n

n

n
A

dn

be �

�

�

211

121

112

12
�

3,

2,

1,

F

F

F

F (4.47)

Moffitt (2004) uses Gauss quadrature on the boundary integral to match the adjacent domain 

integral.  The stresses and heat fluxes in the viscous flux (Eq. 4.31) are evaluated using 

velocity and enthalpy gradients (Eqs. 3.220 and 3.222).  The boundary element does not 

contain enough information to calculate the gradient, so the gradients are taken from the 

adjacent element.   

( ) ( ) { }( )iiv
be

iiv

T

bebeiiv

T

be n
d

dndn

be

�1��
,

10

,, ⋅
Γ

=Γ⋅Φ=Γ⋅Φ ��
≤≤Γ

FFJF

ξ
�

(4.48)

The two-dimensional viscous boundary integral is modeled: 

( ) ( )iiv
be

ii

T

be n
l

dn

be

�
1

1

2
�

, ⋅
�
�
�

�
�
�

=Γ⋅Φ�
Γ

FF (4.49)

The three-dimensional viscous boundary integral is represented: 

( ) ( )iiv
be

ii

T

be n
A

dn

be

�

1

1

1

3
�

, ⋅

�


�

�


�


�

�

=Γ⋅Φ�
Γ

FF (4.50)

4.1.10.1 Riemann Invariants 

Many of the boundary conditions applied in the in-house codes imply properties and fluxes 

on the boundary that do not necessarily match the properties or fluxes on the element just 

inside of the domain.  This discontinuity is demonstrated in Figure 4.3.  Riemann invariants 

are used to calculate an appropriate inviscid normal flux to evaluate the boundary integrals.   



122 

Figure 4.3:  Discontinuity at the Boundary Element.

In seeking a stable and accurate solution along a discontinuous boundary, Givoli�s (1991) 

criteria for a far field boundary can be applied to any discontinuous boundary: 

• Approximate the desired properties outside of the domain on a finite space, 

• Be compatible with the current numerical scheme,  

• Not create spurious reflections on the boundary, and 

• Reach a steady-state or quasi-steady-state rapidly for use in time-accurate solutions. 

Cowan (2003) applied the Riemann invariant to the far field boundaries in Euler2D and 

Euler3D.  Riemann invariants are correct the normal flux in the boundary integrals, and the 

invariant allows the boundary to flex with the internal properties while guiding the residual at 

the boundary toward the desired properties in an error minimization type approach.   

1D Riemann Problem.  The one-dimensional Euler equations are written in conservative 

form: 

( )
02 =


�


�

�


�


�

�

+

+
∂

∂
+


�


�

�


�


�

�

∂

∂

upe

pu

u

x
e

u
t

ρ

ρ

ρ

ρ

ρ

ρ

(4.51)



123 

The governing equations can be written in terms of the primitive variables, ρ, u, and p, using 

the ideal gas equation (Ivings, 1998): 

0

0

10

0

2

=

�


�

�


�


�

�

∂

∂

�
�
�

�

	








�

�

+

�


�

�


�


�

�

∂

∂

p

u
x

ua

u

u

p

u
t

ρ

ρ
ρ

ρρ

(4.52)

or, in short hand notation: 

( )[ ] 0=
∂

∂
+

∂

∂

xt

U
UA

U
(4.53)

The eigenvalues of [A(U)] represent the wave speed of information traveling in the x-

direction: 

( ) ( )( ) 0

0

10

0
22

2

=−−−=

−

−

−

auu

ua

u

u

λλ

λρ
ρλ

ρλ

(4.54)

The eigenvalues are u � a, u, and u + a, which are all real values.  The corresponding 

eigenvectors are: 


�


�

�


�


�

�

−
2a

a

ρ

ρ

 , 


�


�

�


�


�

�

0

0

1

, 


�


�

�


�


�

�

2a

a

ρ

ρ

(4.55)

The eigenvalues and eigenvectors tell us about how information travels through the one-

dimensional Euler system: 

• The first wave travels downstream at a velocity u � a and contains changes to density, 

velocity, and pressure (energy). 



124 

• The second wave travels downstream at a velocity u and contains only information 

about the density changes in the flow. 

• The third wave travels downstream at a velocity u + a and contains information from 

all of the flow properties, like the first wave. 

The three characteristics transfer the information at different speeds and directions depending 

upon the speed of the flow relative to the acoustic speed.  The behavior of the characteristics 

can be broken down by flow regime: 

• Acoustic (u = 0): The first and third characteristics travel left and right (respectively) 

at the acoustic speed, and the other characteristic does not move.   

• Subsonic (u < a):  The first characteristic travels upstream (left), while the other two 

travel downstream (right) at two different speeds. 

• Sonic (u = a):  The first characteristic does not travel at all, while the other two travel 

downstream at two different speeds. 

• Supersonic (u > a):  All three characteristics travel downstream at different speeds. 

The behavior of the three characteristics in the four regimes is illustrated in Figure 4.4.  The 

differences in behavior explain why an entire subsonic flow field is affected by the presence 

of a solid body, whereas a supersonic flow field is only affected downstream of the solid 

body.  Figure 4.5 shows the characteristics in 2D flow field.  A point sound source is travel-

ing at a velocity V.  Acoustic waves emanate in all directions from the source at a velocity a.  

For V < a (subsonic), the wave travels in all direction.  When V = a (sonic), the acoustic 

waves culminate into a normal shock.  For V > a (supersonic), the acoustic waves create two 

oblique shocks.   



125 

Figure 4.4:  Behavior of Characteristic Waves in Different Flow Regimes. 

The inviscid governing equations can be written generically using the Riemann invariant 

matrix A as (Toro, 1997): 

[ ] 0=
∂

∂
+

∂

∂
=

∂

∂
+

∂

∂

xtxt

U
A

UFU
  [ ]

U

F
A

∂

∂
= (4.56)

Figure 4.5:  2D Characteristics:  (a) Acoustic, (b) Subsonic, (c) Sonic, & (d) Supersonic. 

(a) (b) 

(c) (d) 



126 

The invariant matrix A is used to calculate the flux using a first-order Taylor series 

expansion: 

[ ] UAFU
U

F
FF ∆+=∆

∂

∂
+=b (4.57)

The flux is discontinuous across the boundary, as shown in Figure 4.3.  The flux on the 

element side of the boundary (left in Figure 4.3) is calculated from the distribution of 

properties on the element and corrected with the characteristics flowing from the domain to 

the boundary: 

[ ]( )BCeeeb UUAFF −−= +, (4.58)

The flux on the other side of the boundary (right in Figure 4.3) is calculated using the 

boundary conditions and corrected with the characteristics flowing from outside to the 

boundary: 

[ ]( )BCeBCBCb UUAFF −+= −, (4.59)

[A +] and [A -] are generated by using only the positive and negative characteristics, 

respectively, to reconstruct the A-matrix from its eigenvalues and eigenvectors (Toro, 1997): 

[ ] [ ][ ][ ] 1−+
+ ΦΛΦ= AAAA  and         [ ] [ ][ ][ ] 1−−

− ΦΛΦ= AAAA (4.60)

( ) ( )0,iiiA Max λ=Λ+
      and              ( ) ( )0,iiiA Min λ=Λ−

(4.61)

The fluxes can be averaged to approximate the flux along the boundary (LeVeque, 1992): 

[ ] [ ]( )( )BCe
BCeBCbeb

c UUAA
FFFF

F −−−
+

=
+

= −+
2

1

22

,,
(4.62)

[ ]( )BCe
BCe

c UUA
FF

F −−
+

= *

2

1

2
(4.63)



127 

[ ] [ ][ ][ ] 1** −
ΦΛΦ= AAAA      and              ( ) iiiA λ=Λ* (4.64)

2D and 3D Riemann Problems.  Riemann invariants are applied along the boundaries through 

the boundary integrals.  These integrals require the normal flux along the boundary.  The 

invariant matrix will be used as a first-order expansion of the normal flux, converting the 

problem from a two- or three-dimensional problem to a one-dimensional problem.  Riemann 

invariants are most, if not only, appropriate for one-dimensional cases (Godon, 1993).  The 

A-matrix is defined by taking the derivative of the normal flux vector Fn with respect to the 

unknowns vector U: 

( ) 
�


�

�


�


�

�

+=

�


�

�


�


�

�

+

+=⋅=

n

n

rn

jnjr

n

iin

V

npV

pEV

npVu

V

n �

0

��
, UFF

ρ

ρ

ρ

  


�


�

�


�


�

�

=

r

jr

E

u

ρ

ρ

ρ

,U (4.65)

The A-matrix is calculated: 

[ ] [ ]

�


�

�


�


�

�

∂∂

+

�


�

�


�


�

�

∂

∂
+

∂

∂
+=

∂

∂
=

U
UU

UI
U

F
A

nn

n
n

n

V

p

V

n
pV

V 0

0

�

0

(4.66)

From Eq. 3.130, the pressure derivative is evaluated: 

( ) ( )
�
�
�

�
�
�

−−+
−

=
∂

∂
11

2

1
,,,,, γγ

γ
irititirir uVVuu

p

U
(4.67)

The normal velocity can be written in terms of the unknowns: 

ρ

ρ iir

n

nu
V

�
, ⋅

=
   

{ }0�
1

jn
n nV

V
−=

∂

∂

ρU
(4.68)

The A-matrix is written: 



128 

[ ] ( )
( ) �

�
�

�

	








�

�

−+−+

−−++−+=
−

−

nnjrjrnrnktktkrkr

iijrjirijnniriktktkrkr

j

VVunHVHVVVuu

nnunuVVunVVuu

n

γγ

γγδ
γ

γ

,,,,,2

1

,,,,,,,2

1

)1(�

�)1(�)1(��

0�0

A (4.69)

where i indicates the i
th

 momentum flux (rows) and j indicates the j
th

 velocity component 

(columns).  The A-matrix is calculated using the Roe-average properties (Toro, 1997): 

( )

ebc

eeirbcbcirR

ir

uu
u

ρρ

ρρ

+

+
= ,,,,

,   
( )

ebc

eerbcbcrR

r

HH
H

ρρ

ρρ

+

+
= ,,

(4.70)

( )

ebc

eebcbcR
KK

K
ρρ

ρρ

+

+
= (4.71)

The speed of sound is calculated from the Roe-averaged properties: 

( )( ) ( ) ( ) ( ) ( ) ( )
�
�

�
�
�

�
−+−−= R

itit

R

ir

R

ir

R

r

R KVVuuHa ,,,,

2

2

1

2

1
1γ (4.72)

Cowan (2003) uses the following algorithm that follows to reduce the computational time on 

Riemann invariants.  This work adapts Cowan�s algorithm by adding turbulent kinetic energy 

K to the total energy.  The eigenvalues and unknowns step are calculated (Dubois, 1993): 

( ) ( )R

i

R

ir anu +⋅= �
,1λ         

( ) ( )R

i

R

ir anu −⋅= �
,2λ ( )

i

R

ir nu �
,3 ⋅=λ (4.73)


�


�

�


�


�

�

−

−

−

=

�


�

�


�


�

�

∆

∆

∆

=∆ +

erbcr

ejrbcjr

ebc

E

j

EE

uu

,,

,,,,1

1

ρρ

ρρ

ρρ

U

U

U

U (4.74)

ebcK KK ρρ −=∆U (4.75)

The matrix assembly handled quickly by calculating a1, a2, c1, and c2.  a1 represents the 

pressure jump ∆p, and a2 represents the normal velocity jump ∆ρVn:



129 

( ) ( ) ( )( ) ( )
�
�

�
�
�

�
∆−∆+∆−∆+−= + KEj

R

jritit

R

ir

R

ir uVVuua UUUU 1,1,,,,1
2

1
1γ (4.76)

( )( ) 1,12
�� UU ∆⋅−∆= + i

R

irjj nuna  (4.77)

c1 and c2 represent the combination of the eigenvalues in a common and repeating form: 

( )
( )( )

( )
( )RR a

a

a

a
c 221

2

1321
1

2

12

2

1 λλλλλ −
+

−+
= (4.78)

( )
( ) ( ) 2321

121
2 2

2

1

2

1
a

a

a
c

R
λλλ

λλ
−++

−
= (4.79)

These values are used to calculate the corrected normal flux on the boundary: 

( )

( ) ( ) ��
�
�

�

�

��
�
�

�

�


�


�

�


�


�

�

⋅

−

�


�

�


�


�

�

−∆−+=

i

R

ir

j

R

r

R

jrbcninveninvcninv

nu

nc

H

uc

�

�

01

2

1

,

2,13,,,,,, UFFF λ (4.80)

4.1.10.2 Viscous Boundary Fluxes 

Riemann invariants are appropriate for inviscid fluxes, but viscous fluxes must be evaluated 

on the discontinuous boundary using conceptual understanding of the viscous boundary.  

Moffitt (2004) assumed that the viscous fluxes through the far field boundary were zero, 

which is the desired quantity in the far field.  Moffitt found that when viscous fluxes 

(vortices and gradients) attempt to flow through the far field boundary, the equations become 

imbalanced and reflections are imparted into the domain.  Neglecting the viscous fluxes, 

where the boundary condition suggests no viscous flux, creates a boundary with excessive 

impedance.  To allow the viscous fluxes to pass through the boundary (lower impedance), the 

viscous fluxes are taken from the adjacent element within the domain.  Using this method, 

the viscous integrals (domain and boundary) in the Galerkin equations are complete and 



130 

balanced by the current distribution of viscous fluxes.  (The symmetry plane violates this rule 

as defined in the next chapter.) 

4.1.10.3 Turbulent Fluxes 

The turbulent equations have advection and diffusion terms, which are similar to the inviscid 

and viscous flux terms discussed above.  The diffusion terms are modeled using the gradients 

from the adjacent element, like the viscous terms.  The advection terms can be modeled by 

expanding the Riemann problem.  The SA and k-ω equations are added to Eq. 4.52: 

0
�

00000

00000

00000

0000

0000

0000

�

2

1

=






�





�

�






�





�

�

∂

∂

�
�
�
�
�
�
�
�

�

	


















�

�

+






�





�

�






�





�

�

∂

∂

−

ω

ν

ρ

ρ

ρ

ρ

ω

ν

ρ

K

p

u

x

u

u

u

ua

u

u

K

p

u

t
(4.81)

The eigenvalues of A represent the wave speed of the information traveling in the x-

directions: 

0

00000

00000

00000

0000

0000

0000

2

1

=

−

−

−

−

−

−
−

λ

λ

λ

λρ

ρλ

ρλ

u

u

u

ua

u

u

(4.82)

The eigenvalues are u � a, u, u, u, u, and u + a, which adds three new real characteristics to 

the eigenvalues.  The corresponding eigenvectors are: 



131 






�





�

�






�





�

�

−

0

0

0

2a

a

ρ

ρ

,






�





�

�






�





�

�

0

0

0

0

0

1

,






�





�

�






�





�

�

0

0

1

0

0

0

,






�





�

�






�





�

�

0

1

0

0

0

0

,






�





�

�






�





�

�

1

0

0

0

0

0

,






�





�

�






�





�

�

0

0

0

2a

a

ρ

ρ

(4.83)

which shows that the original eigenvalues and eigenvectors of the invariant matrix are 

unchanged by the addition of the turbulent equations.  The turbulent properties advect 

downstream at the local flow velocity u.   Using Eq. 4.80 as a pattern, three new correction 

equations are created to adapt the boundary normal flux of turbulent quantities across a 

discontinuous boundary: 

��
�
�

�

�

��
�
�

�

�

�
�
�

�

�

�
�
�

�

�


�


�

�


�


�

�

−

�


�

�


�


�

�

�
�
�

�

	








�

�

−

�


�

�


�


�

�

+

�


�

�


�


�

�

=

�


�

�


�


�

�

bc

bc

bc

e

e

e

n

bcnbc

bcnbc

bcnbc

ene

ene

ene

cn

cnK

cn

KKV

V

VK

V

V

VK

V

F

F

F

ρω

ρ

νρ

ρω

ρ

νρ

ρω

ρ

νρ

ρω

ρ

νρ

ω

ν ��

100

010

001��

2

1

,

,

,

,

,

,

,,

,,

,,�

(4.84)

The K-correction equation can be rearranged: 

( ) ( )( )nbenbcnenecnK VVKVVKF ++−= ,,,,
2

1
ρρ (4.85)

showing that two conditions exist:  (1) When the fluid is flowing into the domain, the 

turbulent kinetic energy K along the boundary is taken from the boundary condition.  (2) 

When the fluid is flowing out of the domain, the local element distribution is used to define 

K.  The flow direction can be determined by the element side of the discontinuity to avoid 

using Roe-averaging: 

�
�
�

<

≥
=

0

0

,,

,,

,,

enene

enbcnbc

cnK
VifVK

VifVK
F

ρ

ρ
(4.86)

The other two turbulent variables have similar transport: 



132 

�
�
�

<

≥
=

0�

0�

,,

,,

,,�

enene

enbcnbc

cn
VifV

VifV
F

νρ

νρ
ν

�
�
�

<

≥
=

0

0

,,

,,

,,

enene

enbcnbc

cn
VifV

VifV
F

ρω

ρω
ω (4.87)

4.1.11 Boundary Conditions 

Burnett (1987) classifies boundary conditions by their implementation:  Unconstrained 

boundary conditions correspond to boundary terms that appear in the finite element system, 

usually introduced because of the use of integration by parts.  The condition is substituted 

into the governing equations in place of domain variables.  Unconstrained conditions are 

satisfied approximately at best.  Constrained boundary conditions have no boundary terms 

but are applied directly using a constraint equation.  Constraint equations are satisfied 

exactly.  

The use of Gauss�s theorem in the finite element method changes the application of boundary 

conditions.  If integration by parts is not used in a system of order 2m, all of the boundaries 

will require constrained conditions.  If integration by parts is introduced m times into the 

same system, the essential conditions must be constrained while the natural conditions can be 

unconstrained.  If the system is integrated again m times by parts, then all of the boundary 

conditions can be specified using unconstrained methods.  Of course, constrained methods 

can always be used in place of unconstrained, and constraint equations can be reposed in an 

implicit form and integrated into the governing equations.  By the mid-1980s, the majority of 

finite element CFD solvers were using integration by parts once in their development.  This 

trend has carried on into the present, where natural conditions are regularly applied through 

boundary integrals, and essential conditions are applied explicitly to the properties. 



133 

Cowan (2003) applied three conditions through the flux in the boundary integral:  Inviscid 

wall, symmetry plane, and far field.  This work adds four new conditions:  Viscous walls, 

rocket exhaust, turbojet inflow, and turbojet exhaust planes.  The normal flux is calculated: 

( )

( )
( ) ( )

( )
( )
( ) 





�





�

�






�





�

�

∇+

∇+

∇+

∇++−′′−⋅Τ+

⋅Τ+

−






�





�

�






�





�

�

+

=⋅−

ωµσµ

µσµ

ννρµ

µσµρτ

ρτ

ρω

ρ

νρ

ρ

ρ

ρ

ω

σ

nT

nTk

n

nTknniijijjr

iijij

n

n

n

rn

jjrn

n

ibeiVbei

K

KQqnu

n

V

KV

V

HV

npuV

V

n

Re
1

Re
1

Re
1

Re
1

,

,

,,, ��

�

�

0

�

�

�FF (4.88)

where nV  is the normal velocity ( iirn nuV �
, ⋅= ),

n∇ is the normal gradient ( iin n�⋅∇=∇ ), and 
nq ′′

and Qn are the normal heat fluxes ( iin nqq �⋅′′=′′  and iin nQQ �⋅= ). 

4.1.11.1 Far Field 

The far field boundary applies the freestream conditions to the flow, while maintaining an 

appropriate level of fidelity with the local flow.  The local and freestream properties are 

combined using Riemann invariants, which introduce the correct amount of upstream and 

downstream influence to calculate the inviscid normal flux.  The Riemann corrected normal 

flux is applied directly in the boundary integrals.  The viscous heat fluxes are taken from the 

adjacent element.  The normal flux is calculated using Eqs. 4.63, 4.80, 4.86, and 4.87: 

( ) [ ]( ) beieiVe

ninveninv

beibeiVbei nn ,,,

*,,,,

,,,,
�

2

1

2
� ⋅−−−

+
=⋅− ∞

∞
FUUA

FF
FF (4.89)

4.1.11.2 Inviscid Wall 

The inviscid wall boundary condition restricts the flow at each node to be tangent to the wall.  

Unlike the symmetry plane, the solid wall cannot be implied through the boundary integral.  



134 

The integral is not strong enough to force the flow to become tangent to the boundary.  

Instead, flow tangency is used to constrain the normal velocity along the solid wall: 

( ) iiibiiririr nnVnuuu ���
,,,, ⋅−⋅′−′= (4.90)

where iru ,
′ is the velocity along the wall before correction and ibV ,  is the velocity of a moving 

wall.  Flow tangency is not applied on an element-by-element basis.  If the condition was 

applied by elements, the velocity vector would only be tangent to the latest element applied 

to that node.  In fact, a curved boundary is represented by many flat boundary faces so that 

the velocity wound be removed along the entire wall.  The normal component on one face 

wound be removed from that element�s nodes and then its neighbors would remove the 

remaining velocity as velocity normal to their faces.  Instead, the flow tangency condition is 

applied at the nodes using an area-weighted normal vector, shown for two- and three-

dimensions on left and right, respectively: 

�

�
=

be

be

be

bebe

iwl
l

nl

n

�

�   
�

�
=

be

be

be

bebe

iwl
A

nA

n

�

� (4.91)

The boundary integrals along the solid wall are evaluated as the flux (properties) stand, to 

maintain conservation of mass, momentum, and energy.  No assumptions are made to the 

viscous stresses or heat flux along the inviscid wall.  This process allows some flow to leak 

through the wall at the center of the elements due to the linear Interpolation.  The flow is 

forced to match the boundary curvature at the nodes, where the accuracy is most desirable. 

The normals along the trailing edge of an airfoil are shown in Figure 4.6.  The boundary 

element normals are shown in blue, and the normals at the nodes are shown in green.  The 

normal at the trailing edge is averaged from the adjacent elements, which do not necessarily 



135 

have the same area.  The TE normal in Figure 4.6 is inclined slightly due to this imbalance in 

areas.  According to the Kutta condition (Anderson, 2001), the flow should leave smoothly at 

the trailing edge.  Flow tangency trims off all of the velocity, creating a stagnated region in 

the inviscid solution.  Cowan allows for such points through singular points, where the flow 

tangency condition is not applied.   Singular nodes are also applied in the viscous codes.  The 

number of viscous singular nodes is tracked to help parse the data.  The no-slip condition is 

unaffected by the accuracy of the wall normal. 

Figure 4.6:  Normals along Trailing Edge of an Airfoil. 

The kinetic energy is reduced by applying Eq. 4.90, and the loss in energy is reflected in the 

ideal gas equation (Eq. 3.131).  If the other properties are not adapted to this loss in kinetic 

energy, then the pressure will increase along the wall.  We desire to maintain the original 

density, pressure, and temperature along the wall while applying Eq. 4.90.  The internal 

energy e is proportional to the temperature T (Eq. 3.23).  The new kinetic energy (Eq. 4.92) 

must be reflected in the total energy (Eq. 4.93).  The total energy is the sum of energies (Eq. 

3.120), so the total energy and enthalpy are adapted by the change created by Eq. 4.94.   

( )2

,,,,, iiririririr nuuuuu ′−′′=  (4.92)



136 

( ) ( ) KVVuuEKVVuuEeTc ititirirrititirirrv −−′′−′=−−−== ,,,,2
1

,,,,2
1

(4.93)

( )2

,2
1

iirrr nuEE ′−′= ρρρ   ( )2

,2
1

iirrr nuHH ′−′= ρρρ (4.94)

4.1.11.3 Viscous Wall 

The viscous wall creates a solid boundary in the flow.  Like the inviscid wall, the fluid 

cannot pass through the wall, and the fluid sticks to the wall.  The no-slip condition (Eq. 

4.95) is used to constrain the velocity to this essential condition.  

ibir Vu ,, = (4.95)

The total energy and enthalpy must again be adapted to maintain the thermodynamic 

properties.  Eqs. 3.120 and 3.121 are adapted to the new kinetic energy created by the no-slip 

condition: 

irirr uuEE ,,2
1 ′′−′= ρρρ                irirr uuHH ,,2

1 ′′−′= ρρρ (4.96)

Heat transfer conditions along the viscous solid wall are specified by one of three conditions:   

(1) Known temperature, (2) known heat flux, and (3) adiabatic wall.  The adiabatic wall is a 

special case of the second condition, where the specified heat flux is zero.  The temperature 

is not stored in the solution; instead total enthalpy is tracked at the domain nodes.  The static 

enthalpy is specified along the wall (Eq. 4.97) and used to calculate total enthalpy.   

wpw Tch =                ( )ibibw VVhH ,,2
1+= ρρ (4.97)

The heat flux is either specified by the user (types 2 or 3) or calculated on the adjacent 

element (type 1) by combining Eqs. 3.222, 4.16, and 4.17.  The heat flux is implied in 

boundary integrals:  



137 

i

j

ii n
x

h
nqq ⋅

∂

∂
−=⋅′′=′′

RePr

µ
(4.98)

The no-slip condition also drives the turbulent oscillations to zero at the wall.  From this, the 

Reynolds stresses ρTij and turbulent kinetic energy ρK are mathematically zero at the no-slip 

wall.  The Reynolds stresses are calculated using Bousinesq�s approximation (Eq. 3.221).  

The eddy viscosity is driven to zero at the wall to make the Reynolds stresses, turbulent 

transport of heat, and other Reynolds terms identically zero at the wall.  If the normal 

velocity is driven to zero (no-slip) and the turbulent conditions are applied, the boundary 

normal flux is calculated: 

( )






�





�

�






�





�

�

∇

∇

∇

∇+′′−⋅

⋅

−






�





�

�






�





�

�

=⋅−

ωµ

µ

νµ

µτ

τδ

σ

n

n

n

nniijjr

iijij

ibeiVbei

K

Kqnu

np

n

Re
1

Re
1

Re
1

Re
1

,

,,, �

�

�

0

0

0

0

0

0

�FF (4.99)

Boundary condition has already been discussed for w (Eq. 3.253).  The SA variable must be 

driven to zero at the wall because ν�  is proportional to eddy viscosity (Eq. 3.228). 

Constant Density Corner. Problems occur if a single element spans a no-slip corner, such that 

all but one of its sides create the no-slip boundaries.  The density at the corner node becomes 

constant.  The continuity residual is discretized according to Eq. 4.36:  

� �� � Γ⋅Φ∆+Ω
∂

Φ∂
∆−

∂

∂
∆=

be l

ii

T

en

e A

i

i

T

e
n

e
cn

bee

dnutdu
x

t
t

t ρρ
ρ

ρ MR (4.100)

Contributions to the corner node come from the corner nodes of this element alone.  All of 

the nodes exist on the no-slip wall, where the velocities are identically zero, so that the 



138 

velocity on the entire element is zero.  From this, the domain and boundary integrals are zero 

for the corner element.  The unsteady term is neglected in steady solutions so the density 

residual for the corner node is always zero.  For unsteady solutions, the unsteady term 

weakly connects nodes through the mass matrix, and the corner node density is no longer 

time-accurate.  

This issue is not commonly seen in the literature, yet many triangular and tetrahedral 

meshing packages have the option to split corner elements.  The corner element can be split 

into multiple elements so that each has only one no-slip edge. This method requires an extra 

processing step between mesh generation and CFD solution.  

4.1.11.4 Symmetry Plane 

The velocity normal to a symmetry element is assumed to be zero in order to satisfy the 

symmetry condition.  In fact, any fluxes or derivatives normal to the symmetry element are 

assumed to be zero to satisfy the symmetry condition.  The symmetry boundary condition is 

applied implicitly through the boundary integral.  If the normal velocity and normal gradients 

are removed from the flux, the normal flux is calculated using the pressure and stresses: 

( )

( )
( )






�





�

�






�





�

�

⋅Τ+

⋅Τ+

−






�





�

�






�





�

�

=⋅−

0

0

0

�

�

0

0

0

0

0

�

0

� ,

,,,

iijijjr

iijijj

ibeiVbei

nu

nnp

n
ρτ

ρτ

FF (4.101)

The viscous and Reynolds stress must be calculated in the presence of the zero normal 

velocity and zero normal gradient assumptions.  To accomplish this, the velocities and 

gradients are written in the normal-tangential coordinate system: 



139 

[ ] V

w

v

u

bbb

ttt

nnn

wbvbub

wtvtut

wnvnun

V

V

V

V
T

zyx

zyx

zyx

zyx

zyx

zyx

b

t

n

nt

��
θ=


�


�

�


�


�

�

�
�
�

�

	








�

�

=

�


�

�


�


�

�

++

++

++

=

�


�

�


�


�

�

= (4.102)

[ ] ∇=⋅

�


�

�


�


�

�

=

�


�

�


�


�

�

⋅

⋅

⋅

=

�


�

�


�


�

�

=∇ ∂
∂

∂
∂

∂
∂

∂
∂

∂

∂

∂
∂

∂
∂

T

x

x

x

x

b

t

n

nt

b

t

n

b

t

n

θ�

�

�

�

�

�

�

�

�

�

�

�

�

(4.103)

The inverse relationships can also be formulated: 

[ ] [ ] ntnt

T
VVV
���

θθ ==
−

  [ ] [ ] ntnt

T
∇=∇=∇

− θθ (4.104)

The normal velocity and gradient can be removed from the velocity gradient in the normal-

tangential coordinate system and then rotated the tensor back into the global frame using: 

[ ] [ ]( ) [ ] [ ]TT

nn

T

nn

T VVV θθθθ
���

∇=∇=∇ (4.105)

The divergence of velocity is independent of the reference: 

[ ]( ) [ ] [ ] [ ] n

T

nn

TT

nn

T

n

T VVVV
����

∇=∇=∇=∇ θθθθ (4.106)

Combining the previous transformations, the stress in the global frame is calculated the 

velocities and gradients in the normal-tangential frame: 

[ ] ( ) [ ]( ) [ ] ( )( )[ ] [ ]( )II n

T

n

TTT

nn

T

nn

TTTT VVVVVV
�������

∇+∇+∇=∇+∇+∇= λθθ
µ

λ
µ

τ
ReRe

(4.107)

The exchange of momentum through the boundary element is calculated by dotting the stress 

tensor with the normal vector.  Using Eq. 4.102 for the definition of [θ ]T
, the dot product is: 

[ ] [ ] ( )( )
�
�
�

�

�

�
�
�

�

�

∇+

�


�

�


�


�

�

∇+∇= nVVVn n

T

n

TT

nn

T

nn
�

0

0

1

Re
�

����
λθ

µ
τ (4.108)

2D Symmetry Element.  In two-dimensions, the viscous stress simplifies: 



140 

( ) �
�

	


�

�
=

�
�
�

	





�

�

+

+
=∇+∇

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

t

V

t

V

n

V

t

V

n

V

t

V

n

V
TT

nn

T

nn tttn

tnn

VV
����

���

20

00

2

2��
(4.109)

( )( )
�
�
�

�
�
�

=
�
�
�

�
�
�
�
�

	


�

�
=

�
�
�

�
�
�

∇+∇
∂

∂
0

0

0

1

20

00

0

1

�t

V

TT

nn

T

nn t
VV
��

(4.110)

[ ]
�
�
�

�
�
�

∂

∂
=

y

xt

n

n

t

V
n

�Re
� λ

µ
τ
�

   j
t

iij n
t

V
n �

�Re
�

∂

∂
= λ

µ
τ (4.111)

The tangential derivative can be approximated along the boundary edge: 

21

12

� �

ttt VV

t

V −
=

∂

∂
(4.112)

and the tangential velocity can be calculated: 

xyyxt vnunvtutV −=+= (4.113)

3D Symmetry Element.  In three-dimensions, the viscous stress simplifies: 

( )
�
�
�

�

	








�

�

+

+=
�
�
�

�

	








�

�

++

++

++

=∇+∇

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

b

V

t

V

b

V

t

V

b

V

t

V

b

V

t

V

b

V

n

V

b

V

t

V

b

V

t

V

n

V

t

V

n

V

b

V

n

V

t

V

n

V

TT

nn

T

nn

bbt

btt

bbtbn

btttn

bntnn

VV

���

���

�����

�����

�����

20

20

000

2

2

2
��

(4.114)

( )( )

�


�

�


�


�

�

=

�


�

�


�


�

�

�
�
�

�

	








�

�

+

+=

�


�

�


�


�

�

∇+∇

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

0

0

0

0

0

1

20

20

000

0

0

1

���

���

b

V

t

V

b

V

t

V

b

V

t

VTT

nn

T

nn

bbt

bttVV
��

(4.115)

[ ]

�


�

�


�


�

�

�
�

�
�
�

�

∂

∂
+

∂

∂
=

z

y

x

bt

n

n

n

b

V

t

V
n

��Re
� λ

µ
τ
�

  j
bt

iij n
b

V

t

V
n �

��Re
� �

�

�
�
�

�

∂

∂
+

∂

∂
= λ

µ
τ (4.116)

The tangent vector can be calculated using two of the nodes on the boundary element: 



141 

13

13�
�

�

�

�
x

t

t
t ==   

2

13

2

13

2

13131313 zyxxx ���
��

� ++=⋅= (4.117)

The binormal vector is calculated from the cross product of normal and tangent vectors: 


�


�

�


�


�

�

−

−

−

==×=×=

yxxy

xzzx

zyyz

zyx

zyx

nn

nn

nn

nnn

kji
x

ntnb

1313

1313

1313

13

131313

1313

13 1

���
1

����

��

��

��

�
���

��

�

(4.118)

The velocity and position vectors can be written in terms of the tangent-binormal directions, 

where the problem can be simplified to a two-dimensional problem: 


�


�

�


�


�

�

�
�

	


�

�
=

�
�
�

�
�
�

++

++
=

�
�
�

�
�
�

i

i

i

zyx

zyx

ziyixi

ziyixi

ib

it

w

v

u

bbb

ttt

bwbvbu

twtvtu

V

V

,

,
      

�
�
�

�
�
�

⋅

⋅
=

�
�
�

�
�
�

3

3

,

,

�

�

i

i

ib

it

xb

xt

x

x
�

�

(4.119)

�
�
�

�
�
�

=
�


�
�

�


�
�

⋅

⋅
=

�
�
�

�
�
�

0�
13

13

13

1,

1,
13

13 �
�

�
�

�

xb

x

x

x x

b

t
       

�
�
�

�
�
�

⋅

⋅
=

�
�
�

�
�
�

23

23

2,

2,

�

�

xb

xt

x

x

b

t

�

�

  
�
�
�

�
�
�

=
�
�
�

�
�
�

0

0

3,

3,

b

t

x

x
(4.120)

The local gradients are calculated by treating the boundary element (in tangent-binormal 

coordinates) like a two-dimensional element: 

�
�
�

�
�
�

+
�
�
�

�
�
�
�
�

	


�

�
=

�
�
�

�
�
�

+
�
�
�

�
�
�
�
�

	


�

�

−−

−−
=

�
�
�

�
�
�

3,

3,

2

1

2,1,

2,1,

3,

3,

2

1

3,2,3,1,

3,2,3,1,

b

t

bb

tt

b

t

bbbb

tttt

b

t

x

x

xx

xx

x

x

xxxx

xxxx

x

x

ξ

ξ

ξ

ξ
(4.121)

�


�
�

�


�
�
�
�

	


�

�
=

�


�
�

�


�
�

�
�
�

	





�

�
=

�


�
�

�


�
�

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂

∂

∂
∂

∂

∂

∂

∂
∂

∂
∂

b

t

b

t

bt

bt

x

x

bt

bt

x

x

xx

xx

xx

xx

2,2,

1,1,

22

11

2

1

ξξ

ξξ

ξ

ξ
(4.122)

�


�
�

�


�
�
�
�

	


�

�

−

−
=

�


�
�

�


�
�

∂
∂

∂
∂

∂
∂

∂
∂

2

1

1,2,

1,2,1

ξ

ξ

tt

bb

tbx

x

xx

xx

J
b

t (4.123)

( ) 2,132,2,132,1,2,1, 0 btbtbbttb xxxxxxxJ �� =−=−= (4.124)



142 

�


�
�

�


�
�
�
�

	


�

�

−
=

�


�
�

�


�
�

∂
∂

∂
∂

∂
∂

∂
∂

2

1

132,

2,

2,13

01

ξ

ξ

�� t

b

bx

x

x

x

x
b

t (4.125)

13

3,1,

1

2,

2,13

1

� ��

ttt
b

bt

tt
VVV

x
xx

V

t

V −
=

∂

∂
=

∂

∂
=

∂

∂

ξ
(4.126)

��
�

�
��
�

� −
−−=��

�

�
��
�

�

∂

∂
−

∂

∂
=

∂

∂
=

∂

∂

13

3,1,

2,3,2,

2,1

2,

2

13

2,13

11

� �
�

�

bb

tbb

b

b
t

b

bb

bb
VV

xVV
x

V
x

V

xx

V

b

V

ξξ
(4.127)

The divergence of velocity is calculated: 

��
�

�
��
�

� −
−−+

−
=

∂

∂
+

∂

∂

13

3,1,

2,3,2,

2,13

3,1, 1

�� ��

bb

tbb

b

ttbt
VV

xVV
x

VV

b

V

t

V
(4.128)

4.1.11.5 Rocket Exhaust 

The rocket boundary condition defines a total pressure pt and total enthalpy H at the outflow 

plane.  A third piece of information � static pressure p � is necessary to determine all of the 

properties at the outflow plane.  The static pressure is taken from the adjacent element and 

not the boundary condition, which gives the boundary condition adaptability.  As the static 

pressure increases, the velocity decreases to maintain the total pressure.  Isentropic relation-

ships are used to obtain the chamber Mach number and static temperature (internal enthalpy): 

γ
γ 1−

��
�

�
��
�

�
=

p

p

T

T tt

  
TT

H
h

t

= (4.129)

2

,,21
1

2

a

VV
M

T

T
M

itit

T
t +−�

�

�
�
�

�
−

−
=

γ
  

2

2 2

a

K
MT = (4.130)

The remaining properties are calculated using thermodynamic relationships: 

γ

h
e =

  
( )e

p

1−
=

γ
ρ

  ρ
γ

p
a = (4.131)



143 

The local velocity is calculated element by element using the normal and mesh velocities: 

aMVn =   initir nVVu −= ,, (4.132)

The inviscid boundary integrals are assembled using Riemann invariants to ensure that the 

appropriate characteristics are present in the flow along the boundary.  The viscous fluxes are 

calculated using the stress tensor, heat flux, and gradients from the adjacent element: 

( ) [ ]( ) beieiVrckte

rcktninveninv

beibeiVbei nn ,,,

*,,,,

,,,,
�

2

1

2
� ⋅−−−

+
=⋅− FUUA

FF
FF (4.133)

Initial testing showed that the growth of total properties at the rocket boundary needed to be 

limited for solution stability.  A large jump in properties near the wall (from total properties 

to initial conditions) created a traveling wave (shown in the figure below).  The wave travels 

downstream striking the nozzle.  The nozzle returns part of the wave back upstream, and the 

solution diverges within the iteration that the wave strikes the rocket boundary.   

Figure 4.7:  Traveling Waves within Rocket Combustion Chamber.

The method was adapted by increasing the total properties from the initial conditions over a 

series of iterations (Eq. 4.134).  The ramp-up keeps the properties from coalescing into a 

strong traveling wave.  Instead, small traveling waves, seen as chamber noise, bounce around 



144 

inside of the combustion chamber and are dissipated by the artificial viscosity.  The new 

method showed that the total properties could be varied over 3000 iterations to arrive at a 

stable solution or over 10,000 iterations to minimize the acoustic responses in the chamber.  

The later is on the order of the time to converge the entire solution, and the solution 

converges progressively as the engine �starts up�.  Real rockets have a finite time over which 

the pressure and temperature in the combustion chamber increases to its running properties.   

( )
rstp

ICtspectICtt
N

istp
pppp ,,, −+= ( )

rstp

ICspecIC
N

istp
HHHH −+= (4.134)

Figure 4.8 shows the progressive growth of pressure in the combustion chamber.  Figure 4.9 

shows the distribution of pressure and Mach number within and downstream from the nozzle. 

Figure 4.8:  Progressive Growth of Pressure within Rocket Combustion Chamber. 

2,100 iterations 5,400 iterations 

9,000 iterations 13,500 iterations 



145 

Figure 4.9:  Rocket Engine � Pressure (Top) and Mach Number (Bottom) Distributions. 

4.1.11.6 Turbojet Engine Planes 

Engine boundary conditions simulate the plane upstream of the compressor (or fan) and the 

plane downstream of the turbine (or fan).  The two planes remove any rotating mechanisms 

from the aerodynamics model while still adding the essential mass, momentum, and 

enthalpy.  The engine is defined by the fuel flow, uninstalled thrust (without inlet or nozzle), 

and enthalpy production.   

Inflow Plane.  The turbojets are spun up using starter motors, but once running the turbine 

powers the compressor and fan to pull in a given mass flow rate.  This mass flow rate varies 

depending on the altitude and load on the engine, but the mass flow rate does not vary much 

about on-design conditions (Mattingly, 1996) (e.g., perturbation in altitude and speed in 

normal flight).  This mass flow rate is pulled through the engine by the pressure gradient in 

the inlet.   



146 

At the design speed (set by the throttle), the engine pulls a stream of air through the engine 

equivalent in diameter to the engine inlet.  This air path is called the stream tube.  For speeds 

lower than the design speed, the stream tube broadens to pull in more mass.  When the speed 

increases beyond the design speed, the mass flow rate exceeds the capacity of the engine and 

the pressure increases at the inlet.  Some of the flow is forced to divert around the edges of 

the inlet, called spillover.  This decreases the size of the stream tube.  At supersonic speeds 

the pressure is transferred upstream through the boundary layer so that spillover still occurs.     

The mass flow is thus controlled by the pressure.  The turbojet inflow boundary controls the 

mass flow rate through the engine using the pressure, or more accurately the momentum flux:  

ρVn
2

+ p.  The energy flux through the inlet plane will reflect the natural flow.  The initial 

pressure at the inflow plane is calculated by averaging the pressure over the plane from the 

initial conditions or previous solution.  The mass flow is controlled by changing the static 

inflow pressure to adapt the mass flow, as necessary to match the design condition.   

The first pressure controller was constructed using an IF statement on the mass flow rate.  

The rate of change in pressure was constant and a priori, and the stability of the inflow plane 

was governed by the magnitude of the rate.  Figure 4.10 shows the controller phase diagram.  

Figure 4.10 shows that a linear scheme can be used to control the mass flow rate: 

( ) ( )
( )

��
�

�
��
�

�
−+=+ 11

D

i
ii

m

m
kpp

�

�
(4.135)

Subsonic inlets react quite well to the linear controller and inflow boundary condition.  

Supersonic inlets require a normal shock to slow the flow down to subsonic speeds before 

entering the compressor (and fan) section.  The normal shock does not change mass flow 



147 

rate, so two solutions provide the same mass flow rate through the engine:  One case 

corresponding to a subsonic compression and the other a supersonic expansion.  Subsonic 

flow into the turbomachinery is desired in all cases.  Subsonic speeds can be achieved 

through higher boundary pressures, ensuring the normal shock.  To maintain higher 

pressures, the initial control pressure p
(0)

 is set equal to the freestream total pressure, which 

will create a zero mass flow rate.  A gain of 0.0004 provides an appropriate level of damping 

in the system to create a stable solution.  Tests were run in an attempt to find an optimal gain 

k, but unique situations were found that require higher or lower gains for a stable solution.  

The gain has been left for the user to adjust to the situation.    

Figure 4.10:  Phase Plane for Inlet Mass Flow Rate and Static Pressure. 

Figure 4.11 shows the oscillations in mass flow rate and boundary pressure for a subsonic 

inlet with a gain of 0.0004.  At subsonic speeds, the inlet condition creates many high 

frequency oscillations in mass flow rate, attributed to the acoustics of the inlet geometry.   

Figure 4.12 shows similar oscillations for a supersonic inlet.  If the solution starts with 

supersonic flow within the inlet, the gain must be scheduled to allow a normal shock to form 



148 

and advance to the inlet lip.  The static pressure at the boundary plane is not affective at 

changing the mass flow rate while the normal shock exists within the inlet.  The shock 

advances upstream to the inlet lip where mass flow can be relieved by spilling over the lip.  

The gain was scheduled in three steps, where the desired mass flow rate and gain are changed 

at each step:  The first step forms a normal shock in the inlet (k = 0.0004).  The second step 

(k = 0.004) lowers the mass flow rate (0.7%), pushing the shock out of the engine.  The final 

step (k = 0.004) raises the mass flow rate back to design, pulling the shock back onto the inlet 

lip.  The gain during the first step was kept small to create small changes in the pressure 

while the mass flow rate is relatively constant.  The gain was increased for the latter two 

steps to speed up convergence while the shock advances upstream and then pulls back onto 

the lip.  Information travels at a finite rate between the control boundary and normal shock.  

The time lag created by the exchange of information must be taken into account when 

selecting appropriate gain values. 

Figure 4.11:  Oscillating Mass Flow Rate and Boundary Pressure (Subsonic). 



149 

Figure 4.12:  Oscillating Mass Flow Rate and Boundary Pressure (Supersonic). 

The inflow boundary has been tested under various conditions to verify that the appropriate 

flow physics are present in the solution.  The results from these tests are illustrated in Figure 

4.13.  The inlets were designed and compared with the principles outlined by Farokhi (2009): 

• Case A shows a sharp-edged supersonic inlet designed to have a normal shock at the inlet 

at Mach 1.5.  The solution in Figure 4.13 was created using the process described for 

Figure 4.12, which is necessary to push the normal shock out of the inlet. 

• Case B is a subsonic inlet with round leading edges flying at its design speed � Mach 0.6.  

The solution shows that the flow goes transonic at the narrowest point in the inlet.  

Stagnation points can be found on the leading edges of the inlet lips and the spinner.   

• Case C is the same inlet tested in Case B held at an angle of attack.  The asymmetric flow 

field causes the lower lip to see even higher transonic speeds while the upper lip sees 

lower speeds.  The stagnation points on the inlet lips both rotate down to account for the 

angle of attack.  The asymmetry in the flow field exists until very near the inflow plane, 

where the inflow boundary corrects the flow to nearly parallel.  The spinner stagnation 

shows how the flow has turned. 



1
5
0

 

  
  
 

  
  

 
 

F
ig

u
re

 4
.1

3
: 

 E
n

g
in

e 
In

le
ts

 u
n

d
er

 V
a

ri
o

u
s 

C
o

n
d

it
io

n
s.

 

O
u

tl
et

 B
o
u

n
d
ar

y
 C

o
n

d
it

io
n

s.
  

T
h

e 
en

g
in

e 
b

o
u

n
d
ar

y
 c

o
n

d
it

io
n
 d

ef
in

es
 t

h
e 

ad
d

it
io

n
al

 m
as

s,
 m

o
m

en
tu

m
, 

an
d

 e
n

er
g

y
 a

d
d

ed
 t

o
 t

h
e 

fl
o

w
 

b
y
 t

h
e 

en
g
in

e,
 a

ss
u

m
in

g
 t

h
at

 t
h

e 
en

g
in

e 
is

 a
d

ia
b

at
ic

. 
 T

h
e 

b
o

u
n

d
ar

y
 p

la
n

es
 a

re
 a

ss
u

m
ed

 t
o
 b

e 
p

ar
al

le
l,

 o
n
 a

v
er

ag
e.

  
(E

ac
h
 b

o
u

n
d

ar
y
 i

s 

as
su

m
ed

 t
o

 b
e 

a 
re

v
o

lu
ti

o
n
 a

b
o

u
t 

th
e 

sh
af

t 
o

f 
th

e 
en

g
in

e.
  
T

h
e 

av
er

ag
e 

o
f 

th
e 

b
o

u
n
d

ar
y
 n

o
rm

al
 v

ec
to

rs
 f

o
r 

ea
ch

 p
la

n
e 

w
il

l 
th

en
 a

li
g
n
 

w
it

h
 t

h
e 

en
g
in

e 
sh

af
t.

  
T

h
e 

ad
d

it
io

n
al

 m
o

m
en

tu
m

 i
s 

th
u

s 
al

ig
n

ed
 w

it
h

 t
h

e 
en

g
in

e 
sh

af
t 

an
d

 t
h

e 
n

o
rm

al
 v

ec
to

rs
 o

f 
th

e 
b

o
u

n
d

ar
y
 p

la
n

es
.)

  

T
h

e 
in

fl
u

x
 o

f 
m

as
s,

 m
o

m
en

tu
m

, 
an

d
 e

n
er

g
y
 a

re
 i

n
te

g
ra

te
d

 o
v

er
 t

h
e 

in
fl

o
w

 p
la

n
e.

  
T

h
e 

fu
el

 f
lo

w
 

f
m�

, 
u

n
in

st
al

le
d

 t
h

ru
st

 F
, 
an

d
 e

n
th

al
p

y
  

A
 

B
 

C
 

M
ac

h
 0

.6
, 
A

O
A

 =
 0

o
 

M
ac

h
 0

.6
, 

A
O

A
 =

 4
o

M
ac

h
 1

.5
, 

A
O

A
 =

 0
o

       150



151 

production Hm�∆ are added to these values to get the total out flux.  The out flux is evenly 

distributed over the plane and applied to each element.   

The mass, momentum, and energy flowing into the engine is integrated at the inflow plane.  The 

additional flow rates are added to the inflow rate to obtain the total mass, momentum, and energy 

outflow rates.  The outflow rates are divided by the total outflow area to calculate the boundary 

fluxes at the outflow plane and applied using Riemann invariants: 

( )� ⋅=
inA

iiin dAnum �ρ�             outoutnoutfinout AVmmm ,ρ=+= ���
(4.136)

( )( )� +⋅=
inA

jiijinj dAnpnuuP ��
, ρ           

outoutoutnoutinoutj ApVFVmP +=+= 2

,, ρ
�

� (4.137)

( )� ⋅=
inA

iiin dAnuHHm �ρ�            outoutnoutinout AVHHmHmHm ,ρ=∆+= ���
(4.138)

The Riemann invariant matrix A (Eq. 4.69) is constructed using properties and not fluxes, so the 

properties must be reconstructed from the average fluxes along the boundary.  Given the fluxes 

and the ideal gas equation (Eq. 3.131) and normal velocity (Eq. 4.144): 

nVf ρ=1          jnjrj npVuf �
,1 +=+ ρ

  nrVHf ρ=5 (4.139)

( ) �
�

�
�
�

�
+−−

−
= KVVuuHp ititirirr ρρρ

γ

γ
,,,,

2

11
(4.140)

These equations can be combined to solve for static pressure p: 

02 =++ CpBpA (4.141)

2

1+= γ
A jj nfB �−= ( ) ( )( )KVVfffffC ititjj ++−−= ++ ,,2

12

1112
1

511γ  (4.142)



152 

The solution to the quadratic equation above comes in the form of two pressures:  One corre-

sponding to a subsonic property set, and the other a supersonic property set.  The properties 

exiting the outlet plane are almost always subsonic.  The subsonic pressure is:  

A

ACBB
p

2

42 −+−
= (4.143)

The velocity vector can be found using the momentum flux vector fj+1: 

1

1
�

f

npf
u

jj

j

−
= +

  
iin nuV �⋅= (4.144)

The density and total enthalpy are calculated using the mass and enthalpy fluxes f1 and f5: 

nV

f1=ρ
  nV

f
H 5=ρ   pHE −= ρρ (4.145)

Example:  Consider a flow with the properties:  ρ = 0.8, u = 1.25, v = 0, w = 0, p = 2, ρE = 5.625, 

and ρH = 7.625.  For a unit normal (1,0,0), the fluxes are:  f1 = 1, f2 = 3.25,  f3 = f4 = 0, and f5 = 

9.53125.  The properties are reconstructed (Eqs. 4.140 through 4.144): 

2.12
14.1 == +A

  
25.3)0)(0()0)(0()1)(25.3( −=−−−=B

( ) ( )( ) 7.1)0()0()25.3()53125.9)(1(14.1 222

2
1 =++−−=C

2
)2.1(2

)7.1)(2.1(4)25.3()25.3( 2

=
−−+−−

=p

25.1
1

)1)(2(25.3
=

−
=u 0

1

)0)(2(0
=

−
=v 0

1

)0)(2(0
=

−
=w

  

25.1)0)(0()0)(0()1)(25.1( =++=nV



153 

8.0
25.1

1
==ρ 625.7

25.1

53125.9
==Hρ 625.52625.7 =−=Eρ

Improved Performance.  During the startup process, the fluxes and properties through at the 

engine inflow plane contain many perturbations.  These disturbances may arise from the propa-

gating �acoustics� due to the sudden startup or from the iteration of the pressure controller with 

the inlet flow field.  These disturbances are transferred to the outflow plane through the conser-

vation relationships (Eqs. 4.136 through 4.138).  To avoid stability problems caused by these 

disturbances, the static properties at the outflow plane are ramped up from their initial values.  

Eq. 4.146 shows the ramp-up of static pressure, for example: 

( )
rstp

ICspecIC
N

istp
pppp −+= (4.146)

Figure 4.14 shows the relationship between the outflow properties estimated by the engine 

conservation (dashed lines) and ramped properties (solid lines).  The ramped properties are much 

smoother and present a more stable outflow boundary.  These properties are then used to calcu-

late the fluxes through the outflow planes (Eq. 4.88).  The viscous flux is taken directly from the 

adjacent element.  Figure 4.15 shows the fluxes calculated from the estimated (dashed) and 

ramped (solid) properties.  The disturbances are minimized by interpolating between the esti-

mated properties and initial conditions. 

4.1.12 Artificial Dissipation 

Cowan added two artificial dissipation models to the residual (Eq. 4. 36) for stability: 

( ) [ ] ( ) ( ) ( ) ( )111111 ,, ++++−+ −−+−
∂

∂
= nnnncnnn

t
UDUSUBUA

U
MUUUR (4.147)



154 

Figure 4.14: Properties along Turbojet Inflow Boundary over 15k Ramp-up Steps. 

Figure 4.15: Fluxes along Turbojet Inflow Boundary over 15k Ramp-up Steps. 

where A is shorthand for the element flux vectors, B is shorthand for the boundary flux vectors, 

and S represents all of the source terms.  For the lower order model, the artificial dissipation is 

summed over all segments in the domain (Cowan, 2003; Peiro, 1993): 

( ) ( )� ∆∇+∆∇= ++
nsg

ttdn pfafdiss
��

2

*

11
1

1 UUD (4.148)



155 

where diss is the dissipation scaling factor, ∇t is the gradient along the segment (constructed 

using the inverse element Jacobians and boundary area-normal vector), a
*
 is the speed of sound, 

∆U is the difference in properties along the segment, and ∆p is the difference in pressure along 

the segment.  The functions f1 and f2 are calculated based on local Mach: 

1

11,

1
p

u
M

t

rt

γ

ρ

∇

⋅∇
= �

��

  

2

22,

2
p

u
M

t

rt

γ

ρ

∇

⋅∇
= �

��

(4.149)

( )
( )�


�
�

≥+

<+
=+

1

11

2222
1

2

2

24
1

MifMM

MifM
M

( )
( )�


�
�

≥+

<+
=−

1

11

1112
1

1

2

14
1

MifMM

MifM
M (4.150)

−+ += MMM * (4.151)

( )( )
�


�
�

≥

<+
=

1

11

**

*2*

2
1

1
MifM

MifM
f

( )
�


�
�

≥

<−
=

1

13

***

***

2
1

2
MifMM

MifMM
f (4.152)

( ))1()1( 22212
1* fafaa ++−= (4.153)

The lower order model is suggested for supersonic solutions.  The higher order model is 

calculated using the same equations, where the small differences ∆U and ∆p are neglected.  The 

differences are removed so that the model can be used in rotating and subsonic domains.   

Brown (2009) found that artificial dissipation is required to maintain positive entropy growth.  

The stagnation point on a circular cylinder begins to drift for dissipation constants lower than 

0.5, so that a solution with 0.1 dissipation constant resembles a spinning cylinder, where the 

forward and aft stagnation points approach each other on one side of the cylinder.  The govern-

ing equations enforce the conservation of mass, momentum, and energy.  The second law is not 

enforced by a governing equation but rather by artificial dissipation, which skews the solution to 

produce a positive entropy growth. 



156 

4.1.13 Predictor-Corrector and Temporal Discretization 

Cowan (2003) does not solve the governing equations directly, but uses a predictor-corrector 

scheme to minimize the error on the governing equations while progressing the solution with 

inherit stability.  The predictor-corrector algorithm advances the solution using a Taylor series 

expansion of the residual (Eq. 4.147).  If the solution residual is driven to zero at the next step 

then the expansion becomes: 

( ) ( ) ( ) 0,,,, 1

1

1111

1

1 =−
∂

∂
+= +

+
+−+−

+
+

i

n

i

nnn

i

nnn

i

n UU
U

R
UUURUUUR (4.154)

where the superscript indicates the iterations to convergence.  The residual derivative can be 

approximated using the consistent mass matrix, and the consistent mass matrix can be converted 

to a lumped mass matrix to simplify inversion: 

[ ] [ ]LC MM
U

R
≈≈

∂

∂
(4.155)

[ ] ( )11

1

1

1

1 ,, −+

−

+
+
+ −= nn

i

nL

i

n

i

n UUURMUU (4.156)

The steady update is further modified so that the unknowns are only updated from the previous 

iteration:    

[ ] ( )i

nLn

i

n 1

11

1 +

−+
+ −= URMUU (4.157)

In both cases, the residual goes to zero as the governing equations become satisfied, and the 

predictor-corrector does not change the unknowns for a zero residual. 

Meaningful Solutions.  The properties can be written in their most primitive states as: ρ, u, v, w, 

p, and T.  The components of velocity can take on any negative or positive values, even zero.  

The thermodynamic properties must be positive definite:  ρ  > 0, p > 0, T > 0.  These three 



157 

quantities are interrelated through the equation of state (Eq. 3.26).  The internal energy, enthalpy, 

and acoustic speed are also calculated from the thermodynamic quantities (Eq. 3.5, 3.23, 3.25, 

and 3.36), and these properties must be positive definite:  e > 0, h > 0, E > 0, H > 0, and a > 0.   

Only two of these quantities need to be checked for validity (i.e., positive definite values) and the 

thermodynamic relationships will maintain the others.  Density is an obvious choice since den-

sity is updated by the continuity equation and stored in the unknowns vector.  Total energy is 

updated through the energy equation, and total enthalpy is tracked in U.  Neither of these proper-

ties should be checked because positive-definite total properties do not ensure positive-definite 

static properties; although the opposite is true.  Cowan checks pressure over internal energy.   

Changes in density are calculated directly from the continuity residual.  To ensure that the 

density is positive definite, excessively negative changes in density are scaled down: 

( )ρρ

ρ
ρρ

∆+−

∆
+=

1.041
12       if 1.0−<

∆

ρ

ρ
(4.158)

Figure 4.16 shows the effective density change with and without the limitation.  With the limit-

ation, the density change can only approach -0.25 in the limit as the actual change goes to neg-

ative infinity.  In other words, this function limits the size of the effective density drop in one 

iteration to be less than one quarter of the density.  If the density change were held constant, the 

solver could approach a very small density (< 0.01) in only a few iterations (see Figure 4.16).  

With the limiting function, the solver would need at least 17 iterations to approach a very small 

density while the governing equations are predicting a very large negative density change.  This 

function keeps large negative perturbations from destroying a reasonable solution.  The function 

does not hold back unstable solutions, because an unstable solution would persist beyond the 17 

iterations that the function provides protection. 



158 

Figure 4.16:  Effective Density Change (Left) and Number of Iterations to Zero (Right). 

Using this method, the density can only approach a zero value, but never reach zero, ensuring a 

positive definite value.  Changes in pressure are slightly more complicated.  The changes in total 

and turbulent kinetic energy are calculated using their residuals and predictor corrector methods.  

The change in pressure is calculated from the change in total energy and kinetic energy in the 

current and previous iterations.  The pressure is corrected using the same method as density.  The 

new pressure is used to calculate the new total enthalpy to be stored. 

( ) �
�
��

�
� ∆−+−∆−=−=∆ KVVEppp ρρρργ

2

112
1

2

222
1

12 1
��

(4.159)

( )pp

p
pp

∆+−

∆
+=

1.041
12         if 1.0−<

∆

p

p
(4.160)

The turbulent properties are limited so that the turbulent intensity and eddy viscosity are never 

less that their freestream values.  Because this limit occurs much more frequently than Eqs. 4.158 

and 4.165, the residual is corrected before being summed into the RMS tracking calculations.  

The correction is necessary for the residuals to show convergence properly. 



159 

4.1.14 Residual and Boundary Conditions 

The flow tangency condition was described previously in its application to the inviscid solid wall 

boundary condition.  The flow tangency equation is actually applied in three different places:  

Initial conditions, velocity vector at each iteration, and the residual vector at each iteration.  The 

first two applications are made directly to the velocity vector using Eq. 4.91. 

The application to the residual is less obvious.  The flow tangency condition is written in terms 

of the unknowns vector as: 

( ) ( )

�


�

�


�


�

�

�
�
�

�

�

�
�
�

�

�


�


�

�


�


�

�

⋅−= +
+

+
+

+
+

0

�

0

0

�

0
*1

1

*1

1

1

1 nni

n

i

n

i

n UUU (4.161)

where ( )*1

1

+
+

i

nU  is the unknowns calculated using the predictor-corrector, and 
1

1

+
+

i

nU  is the 

unknowns after one complete iteration.  During a single iteration, the previous unknowns are 

used to calculate the residual vector and update to new unknowns.  The flow tangency condition 

is applied to the unknowns vector to arrive at the solution for this iteration.  These two equations 

can be combined into one step: 

[ ] ( ) [ ] ( )( )

�


�

�


�


�

�

�
�
�

�

�

�
�
�

�

�


�


�

�


�


�

�

⋅−−−= +

−

++

−

+
+
+

0

�

0

0

�

0

,, 1

1

11

1

1

1

1 nnn

i

nL

i

nn

i

nL

i

n

i

n UURMUUURMUU (4.162)

Because the initial conditions and each iteration are corrected for flow tangency, the previous 

vector is always tangent to the wall surface.  If the residual vector is also tangent to the wall: 



160 

( ) 0

0

�

0

,1 =

�


�

�


�


�

�

⋅+ nn

i

n UUR (4.163)

The predictor-corrector and tangency iteration resolves to: 

[ ] ( )n

i

nL

i

n

i

n UURMUU ,1

1

1

1

1 +

−

+
+
+ −= (4.164)

which is the same as the original predictor corrector equation.  Therefore, the flow tangency 

condition is applied to the residual before entering the predictor-corrector algorithm to maintain 

flow tangency at that step, and at the end of each iteration to ensure flow tangency between 

iterations: 

( ) ( ) ( )

�


�

�


�


�

�

�
�
�

�

�

�
�
�

�

�


�


�

�


�


�

�

⋅′−′= +++

0

�

0

0

�

0

,,, 111 nnn

i

nn

i

nn

i

n UURUURUUR (4.165)

When the velocity and enthalpy are constrained along the no-slip wall, the residual is not used to 

calculate these properties.  The corresponding contributions are removed before the RMS 

summation so that convergence tracking is true to the solution. 

4.2 CFDsol 

CFDsol was developed by Dr. Gupta (2000) at NASA.  CFDsol was originally written as a 

supersonic, inviscid FEM code with vision to expand the solver to viscous and aeroelastic cases.  

Several groups have worked on CFDsol under the guidance of Dr. Gupta.  One group has added 

viscous terms and a Spalart-Allmaras turbulence model to the solver, although the SA model 

does not operate accurately.  This research alleviated several problems with time accuracy, 

subsonic boundaries, and turbulence model.  Routines were added to give the CFDsol the ability 

to model aeroelastics, rigid body dynamics, and propulsion cases.  



161 

4.2.1 Taylor Formulation 

CFDsol was originally developed with the inertial Navier-Stokes equations (Gupta, 2000).  This 

work extended that derivation to include all of the terms in Eqs. 4.29 through 4.32, excluding the 

SST model.  These equations are discretized here using the Taylor-Galerkin method.  A first-

order Taylor series expansion can be written on the unknown vector U: 

...
!3!2!1 3

33

2

22

1 +
∂

∂∆
+

∂

∂∆
+

∂

∂∆
+=+

t

t

t

t

t

t
nn

UUU
UU (4.166)

where the subscripts n and n +1 represent the values at the previous and current (to be calculated) 

time steps.  The expansion can be truncated after the first derivative, making the approximation 

first order accurate in time.  Eq. 4.29 is substituted back into this equation: 

t
tnn

∂

∂
∆+=+

U
UU 1 (4.167)

�
�

�

�
�
�

�

�
+++

∂

∂
+

∂

∂
−∆+=+ TCNI

ib

iv

ib

i
nn

xx
t SSS

FF
UU

,

,

,

1 (4.168)

Gupta expands the inviscid term using the chain rule so that Gauss�s theorem is no longer needed 

for the inviscid flux. (The SST model has been dropped in the rest of the derivation.) 

( )
�
�
�
�
�

�

�

�
�
�
�
�

�

�




�




�

�




�




�

�

+
∂

∂
=




�




�

�




�




�

�

+

+

∂

∂
=

∂

∂

0

0

�
,

,

,

,

,

,,

,

,, ir

ij

ir

ib

ir

rir

ijjrir

ir

ibib

i

u
pu

x

u

pEu

puu

u

xx

δ

νρ

ρ

δρ

ρ

U
F

(4.169)




�




�

�




�




�

�

∂

∂
+




�




�

�




�




�

�

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂

0

0

0

0

0

,

,

,,,

,

,

,

,
px

u

ux

p

x
u

x

u

x ib

ir

ir

ij

ibib

ir

ib

ir

ib

i
δU

U
F

(4.170)



162 

4.2.2 Galerkin Formulation 

Eqs. 4.170 is substituted into Eq. 4.168 and integrated using Galerkin�s method: 

( )

�

��

Ω�
�

�

�
�
�

�

�
+++

∂

∂
∆Φ+

Ω

�
�
�
�
�

�

�

�
�
�
�
�

�

�




�




�

�




�




�

�

∂

∂
+




�




�

�




�




�

�

∂

∂
+

∂

∂
+

∂

∂
∆Φ−=Ω−Φ +

V

TCNI

ib

ivT

e

V ib

ir

ir

ij

ibib

ir

ib

irT

e

V

nn

T

e

d
x

t

d
px

u

ux

p

x
u

x

u
td

SSS
F

U
UUU

,

,

,

,

,,,

,

,

,

1

0

0

0

0

0

δ

(4.171)

The viscous term requires Gauss�s theorem to reduce the order of derivatives: 

( )

( ) ( )���

��

Γ⋅∆Φ+Ω∆
∂

Φ∂
−Ω++∆Φ+

Ω

�
�
�
�
�

�

�

�
�
�
�
�

�

�




�




�

�




�




�

�

∂

∂
+




�




�

�




�




�

�

∂

∂
+

∂

∂
+

∂

∂
∆Φ−=Ω∆Φ

S

iiv

T

e

V

iv

ib

T

e

V

TCNI

T

e

V ib

ir

ir

ij

ibib

ir

ib

irT

e

V

T

e

dntdt
x

dt

d
px

u

ux

p

x
u

x

u
td

�

0

0

0

0

0

,,

,

,

,

,,,

,

,

,

FFSSS

U
UU

δ

(4.172)

Gupta uses the shape functions Φe to create as many mass matrices as possible.  The remaining 

properties are averaged on each element: 

( )

( ) ( )���

��

Γ⋅∆Φ+Ω∆
∂

Φ∂
−Ω++∆Φ+

Ω

�
�
�
�
�

�

�

�
�
�
�
�

�

�




�




�

�




�




�

�

∂

∂
+




�




�

�




�




�

�

∂

∂
+

∂

∂
+Φ

∂

∂
∆Φ−=Ω∆ΦΦ

S

iiv

T

e

V

iv

ib

T

e

V

TCNI

T

e

V ib

ir

ir

ij

ibib

iree

ib

irT

e

V

ee

T

e

dntdt
x

dt

d
px

u

ux

p

x
u

x

u
td

�

0

0

0

0

0

,,

,

,

,

,,,

,

,

,

FFSSS

U
UU

δ

(4.173)

Gupta collects common terms into matrices and vectors: 



163 

( ) σσ fKSffUKMUM ++++∆−�
�

�

�

�
�

�

�
+

∂

∂
∆−=∆ ���

e

ee

e

eeec

ib

ir

e

eec t
x

u
t ,2,1,

,

,

, (4.174)

� ΩΦΦ=
eV

e

T

eec d,M          � Ω
∂

Φ∂
Φ=

eV ib

e
ir

T

ee d
x

u
,

,K (4.175)

� Ω




�




�

�




�




�

�

∂

∂
Φ=

eV ir

ij

ib

T

ee d
ux

p

0

0

,,

,1

δ
f         � Ω




�




�

�




�




�

�

∂

∂
Φ=

eV ib

irT

ee d
px

u

0

0

0

,

,

,2f (4.176)

( )� Ω++∆Φ=
V

TCNI

T

e dt SSSS (4.177)

� Ω∆
∂

Φ∂
−=

V

iv

ib

T

e dt
x

,

,

FKσ   ( )� Γ⋅∆Φ=
S

iiv

T

e dnt �
,Ffσ (4.178)

The mass matrix Mc,e has already been developed in Eq. 4.21.  The viscous terms have been 

derived using the same method applied to the OSU in-house codes (Eqs. 4.36 and 4.55).  The 

source terms are the same for all five codes and will be developed near the end of the chapter.  

The stiffness matrix Ke and pressure vectors f1,e and f2,e need to be develop here. 

4.2.2.1 Stiffness Matrix 

The stiffness matrix Ke is integrated, using the gradient of the basis function.  The last term of 

the integrand in Eq. 4.175 is defined using the inverse Jacobian matrix Ae for the element (Eqs. 

4.13 and 4.17).  Dotting Ae with the velocity yields a constant vector Te: 

{ }
�
�
�

�

	








�

�

=
∂

Φ∂
=

34333231

24232221

14131211

,

,

1

AAAA

AAAA

AAAA

wvu
x

u
e

rrr

ib

e
ire

J
T (4.179)



164 




�




�

�




�




�

�

=




�




�

�




�




�

�

++

++

++

++

=

4

3

2

1

342414

332313

322212

312111

1

T

T

T

T

wAvAuA

wAvAuA

wAvAuA

wAvAuA

nnn

nnn

nnn

nnn

e

T

e
J

T (4.180)

Eq. 4.180 is substituted into Eq. 4.175.  Te is pulled out of the integral because it is constant: 

�
�
�
�

�

	










�

�

=




�




�

�




�




�

�

=Φ= �
≤≤

4321

4321

4321

4321

10
4

1

1

1

1

4

TTTT

TTTT

TTTT

TTTT

VV
dJ e

e
e

ee

T

ee TTK

ξ

ξ
�

�
(4.181)

Gupta takes advantage of the similarity in the Mc,e and Ke matrices.  Mc,e only contains two 

terms, one for the diagonal and one for the off-diagonal; and the columns of Ke are constant.  

Gupta stores two values for each column, one for the diagonal and one for the off-diagonal.   

4.2.2.2 Pressure Vector 

Starting with Eq. 4.176 and using the stiffness matrix as a guide, f1,e is shown in Eq. 4.182.  

Gupta distributes the pressure in Eq. 4.176 using the shape function so that f2,e becomes Eq. 

4.183.  The momentum terms of Eq. 4.182 can be dotted with the velocity vector to calculate 

contributions to the energy equation.  Eq. 4.183 only contributes to the energy equation. 

e

e

ee

ibir

ij

V

T

ee p
V

x

p

u
d

e




�




�

�




�




�

�




�




�

�




�




�

�

=
∂

∂




�




�

�




�




�

�

ΩΦ= �
0

0

1

1

1

1

4

0

0

,,

,1
T

A
f

δ
(4.182)




�




�

�




�




�

�

∂

∂
=




�




�

�




�




�

�

ΩΦΦ
∂

∂
= �

0

1

0

0

0

1

0

0

,

,

,

,

,

,2 eec

ib

ir

e

V

e

T

e

ib

ir

e p
x

u
pd

x

u

e

Mf (4.183)



165 

4.2.3 Boundary Conditions 

Without boundary integrals, the boundary conditions in CFDsol must be applied by constraining 

the properties along the boundaries.  This method sounds simple, but this section will demon-

strate how the rigid nature of a constrained boundary condition is often unforgiving, unstable, 

and inaccurate.  The essential conditions are the exception. 

4.2.3.1 Far Field 

The far field boundary is broken down into inflow and outflow regions.  The two are distinguish-

ed from each other by the sign of the velocity normal.  If the normal velocity is greater than zero, 

the boundary is considered to be outflow.  Originally, the properties are not changed on the out-

flow boundary.  The properties on the rest of the far field boundary (normal velocity less than or 

equal to zero) are set to the freestream properties. 

Floating Outflow.  The original implementation of CFDsol exhibited several boundary insta-

bilities.  The boundary conditions are constrained at the nodes after updating the governing 

equations.  Strong boundary conditions constrain the inflow properties to match the freestream 

properties exactly.  At subsonic speeds, the outflow properties are unrestricted and �float� to 

lower pressures without limit (Figure 4.17).  The outflow pressure decreases with each iteration 

of the solution.   The other properties follow pressure. 

The velocity distribution (Figure 4.18) shows that the flow accelerates along the length of the 

domain and exits at an oblique angle with respect to the freestream.  The outflow boundary 

allows the flow to rotate without restraint.  The rotated flow converts some of the outflow to 

inflow.  The reduced area of the outflow accelerates the flow like a nozzle.   



166 

Figure 4.17:  Pressure Distribution around NACA 0012 Airfoil (Mach 0.5, 5
o
, CFDsol). 

Figure 4.18:  Velocity Distribution around NACA 0012 Airfoil (Mach 0.5, 5
o
, CFDsol). 

Figure 4.19 shows the CFDsol solution compared to a potential flow solution.  The CFDsol solu-

tion has the appropriate shape, but the entire pressure distribution is shifted by approximately �1 

Cp (shown upward because the vertical axis has been flipped).  The pressure distribution near the 

airfoil is lower than normal because of a pressure gradient across the domain.   

The pressure gradient in the CFDsol solution can be seen in Figure 4.20.  The CFDsol solution 

sustains the freestream pressure (Cp = 0) over what normal velocity defines as the inflow boun-

dary, approx. 80% of the boundary.  The outflow boundary, on the other hand, has a much lower 

pressure, which creates the pressure gradient shown by the red line.  The pressure gradient is so 

strong and influential that it creates a jump in pressure from the inflow boundary to the neigh-



167 

boring nodes.  The airfoil disturbance in pressure can be seen in Figure 4.20 as a perturbation to 

the pressure gradient.  The shift (∆Cp ≈ �1) in Figure 4.19 can be clearly seen in the pressure 

gradient in Figure 4.20.  Similar gradients are found in the density and velocity (Figure 4.21). 

Figure 4.19:  Coefficient of Pressure from CFDsol and Potential Flow Solution.   

To isolate the problem on the boundary, several other factors were tested:  The dissipation scalar 

factor was varied from 0.025 to 0.5, which showed no change in the outflow boundary.  

Additional dissipation smoothed out the pressure gradient, which realigned the flow; but, the 

misalignment had already occurred, reducing the area of the outflow boundary and in turn 

accelerating the flow.  Dissipation could not alleviate the boundary problem.  The relaxation 

factor tau was varied from 0.1 to 2.0 and did not help to control the solution.  Changing tau only 

affected the progress of the solution, not its stability.  The freestream Mach number was found to 

be the most influential.  Supersonic solutions had a stable outflow boundary because the 

boundary models the appropriate characteristics.   

The shape of the far field boundary was also tested.  Figure 4.22 shows an airfoil rotated at 5 

degrees angle of attack with respect to a rectangular domain.  The rectangular domain was 



168 

modeled as a far field boundary.  The rotation of the flow due to the presence of the airfoil 

creates an asymmetric pressure load on the outflow boundary.  The solution exhibits the same 

accelerated boundary phenomenon as the elliptical boundary.  The velocity vectors are angled 

toward the corner.   

Figure 4.20:  Domain Pressure through NACA 0012 Solution (Mach 0.5, 5
o
, CFDsol). 

Figure 4.21:  Density (Left) and Velocity (Right) from NACA 0012 (Mach 0.5, CFDsol). 

Intermediate Solution.  The two-part far field boundary was replaced by a �reflective� boundary 

condition, which applied the freestream conditions along the entire far field boundary.  The 

condition was much more stable that the composite boundary, but changes in properties could 



169 

not propagate through the boundary.  The vortices and acoustic waves generated by the structure 

were reflected from both the inflow and outflow boundaries.  The energy change (positive or 

negative) could not leave the domain because of the impedance of the far field boundary.  This 

boundary is not appropriate for elastic or rigid body motion.   

Figure 4.22:  Velocity Distribution for NACA 0012 in Rectangular Domain (Mach 0.5). 

Improved Far Field.  The far field boundary must consider the characteristics of the flow because 

the governing equations couple all of the properties together in a very specific manner.  The 

characteristics were demonstrated when developing the 1D Riemann problem (between Eqs. 4.55 

and 4.56).  The far field boundary was adjusted to take these characteristics into account and 

utilize a mixture of freestream and domain properties. 

According to the Riemann invariants of the flow, three characteristics transfer information 

throughout the field.  At subsonic speeds, at least one characteristic transfers information in each 

direction.  At supersonic speeds, information is only transferred downstream and laterally in the 

flow.  The difference in behavior explains why the suggested original boundary worked well at 

supersonic speeds where all three characteristics point downstream and that the boundary is 



170 

missing the upstream component at subsonic speeds.  The loss in characteristic keeps pressure 

information from moving into the domain, allowing the pressure to float.   

In other words, at supersonic speeds the far field boundary should only consider the upstream 

properties.  Ideally, a subsonic far field would consider a mixture of both the upstream and 

downstream.  The alternative is to choose the freestream properties for subsonic far fields, 

neglecting the characteristic traveling from the domain because its properties should be close to 

the freestream properties.  This approach is summed up: 

�
�
� ⋅<

=
∞ otherwise

nuandMfor iire

FF
U

U
U

�0 ,
(4.184)

When these criteria are applied to the far field boundary, the subsonic far field maintains its 

pressure for the airfoil case.  Compare Figure 4.23 (after correction) with Figure 4.19 and Figure 

4.20 (before).  The CFDsol solution now matches the potential flow solution. 

Figure 4.23:  Surface (Left) and Domain Pressure (Right) for NACA 0012 (Improved). 

4.2.3.2 Inviscid Wall 

The inviscid wall boundary is maintained using flow tangency at the wall nodes.  Eqs. 4.90 and 

4.94 are applied to each node along the inviscid wall, using the area-weighted wall normals (Eq. 



171 

4.91).  Flow tangency is lifted at singular nodes, which were added during this work by AES 

engineers.  The singular nodes were modeled after the OSU in-house codes and alleviated 

problems along start leading and trailing edges. 

4.2.3.3 Viscous Wall 

Heat transfer is not included in CFDsol.  The no-slip condition is the only boundary condition 

applied along the viscous solid wall.  The no-slip condition (Eq. 4.95) is applied explicitly along 

with the correction to total energy (Eq. 4.96). 

4.2.3.4 Symmetry Plane 

The symmetry plane has to be applied explicitly in CFDsol.  The presence of the symmetry plane 

implies a zero normal velocity and a zero normal derivative.  The velocity can be constrained to 

have no normal velocity using flow tangency (Eq. 4.90).  Like the solid walls, the total energy 

must corrected using Eq. 4.94 to avoid inducing a pressure gradient normal to the boundary.  The 

gradient condition is unconstrained; flow tangency is assumed to be sufficient to create a sym-

metry field. 

CFDsol assumes that the symmetry plane is planar so that flow tangency is applied to each 

boundary element individually.  Velocity is removed from all three nodes using the element�s 

normal vector.  If the symmetry plane is facetted (not planar), two neighboring elements will 

remove all of the velocity normal to their surface.  This process may take several iterations to 

occur to take full effect, but eventually the facetted boundary will remove all of the velocity.   

The explicit symmetry boundary also has advantages.  If inviscid walls are used to model two 

surfaces that come together at a 90
o
 angle, the normal within the junction are averaged between 



172 

the two surfaces.  (The normal is area-weighted using Eq. 4.91.)  The symmetry plane can be 

used to create a planar wall, like a wind tunnel wall or flat ground, that applies flow tangency.  

The nodes in the corner feel flow tangency from the symmetry plane (elemental) and wall 

(nodal) so that the flow is properly constrained.  (In the OSU in-house codes, the symmetry  

plane implies no normal velocity and should not be used in place of a wall.) 

4.2.3.5 Rocket Exhaust 

The rocket boundary condition was designed and implemented in Euler2D and expanded to 

Euler3D.  The rocket boundary is created by calculating the boundary normal flux using the 

rocket properties.  The routines were then transferred to CFDsol, where the rocket properties are 

used to constrain the rocket boundary between iterations.  A third property is needed to close the 

isentropic and thermodynamic equations (Eqs. 4.129 through 4.132).  The OSU codes use the 

static pressure from the element side of the discontinuity.  Static pressure was not an appropriate 

choice for CFDsol.  If the static pressure is taken from the element and then used to constrain the 

pressure on that element, then the pressure has not really been constraint.  Like the badly 

constrained far field, the pressure along the rocket boundary floats.   

Instead the exhaust Mach number is used to close the isentropic relationships.  CFDsol requires 

the user to specify the exhaust Mach number for the duration of the run.  The isentropic relation-

ships are used to calculate the static properties from their totals: 

2

2

1
1 M

T

Tt −
+=

γ

  

1−

�
�

�
�
�

�
=

γ
γ

T

T

p

p tt (4.185)

TT

H
h

t

=
  

pp

p
p

t

t= (4.186)

The other properties are calculated using Eq. 4.131 and the following: 



173 

aMVn =   inir nVu −=,   pHE −= ρρ (4.187)

To maintain solution stability, the total properties along the inflow plane are increased linearly 

over Nrstp iterations using Eq. 4.134.  This work found that 1000 to 5000 iterations were found to 

be sufficient to step up the total properties, depending on the pressure rise and element size.  

Smaller Nrstp can be used with care.  Figure 4.24 shows the static properties at the rocket boun-

dary as the total properties are increased over 2000 iterations.  The plot on the left shows the 

properties calculated by CFDsol.  Since all three values are specified by the user, the properties 

are known a priori, even during the ramp-up period.  The right plot illustrates the pressure feed-

back in Euler3D through the boundary properties.  The constraint boundary specifies the proper-

ties precisely at the boundary, whereas the implied boundary has lower impedance at the cost of 

the domain affecting the boundary properties indirectly.  Surprisingly, the implied boundary is 

more stable and less susceptible to perturbations traveling back through the boundary.   

Figure 4.25 shows the static pressure throughout the chamber and nozzle as the total properties 

are ramped up from freestream to off-design conditions.  The consecutive slices show the 

pressure at the initial conditions, choke condition, and as the normal shock forms in the 

diverging section of the nozzle. 

Figure 4.24: Static Properties at Rocket Boundary (left � CFDsol, right � Euler3D). 



174 

Figure 4.25:  Development of Static Pressure Downstream of Rocket Inflow Plane. 

4.2.4 Stability 

Several instabilities arose in CFDsol during the course of this work.  The outflow boundary was 

already demonstrated with the boundary conditions.  Coupling between the explicit solid wall, 

symmetry planes, and other boundaries can deplete the velocity at intersections.  Unique 

situations can arise where the domain solution is locally or absolutely unstable. 

Solid Wall and Far Field.  The rectangular domain in Figure 4.22 was modified to have solid 

walls on the top and bottom to simulate a wind tunnel.  The velocity along the walls was then 

constrained to be parallel with freestream, leaving only one direction in which the outflow 

boundary can travel.  The results from the wind tunnel simulation are shown in Figure 4.26.  The 

iteration numbers are shown in the corner in white.  The velocity at the limits of the outflow 

boundary perturbs slightly, and the solid walls eliminate all normal velocity.  The perturbations 

continue until all of the velocity in the corners is reduced to zero.  The conservation of 

momentum forms a �boundary layer� upstream of the outflow corners, even though the flow is 

inviscid.  The slowed flow creates a nozzle around the airfoil.  After 3000 iterations, the slowed 



175 

flow extends to the inflow boundary, which reacts with a checkerboard of properties.  The 

checkerboard slowly propagates downstream, destroying the rest of the field.   

Figure 4.26:  Velocity around NACA 0012 in �Wind Tunnel� (CFDsol). 

Instabilities.  Local instabilities were also found within the domain.  These instabilities appear as 

small flutters in properties that appear and disappear like �dust floating in the air shown by 

sunlight through a window�.  An example of these instabilities is shown in Figure 4.27.  The 

relaxation factor tau can be used to increase the local stability.  An �appropriately small tau� is 

difficult to determine for all geometries.  For most meshes, a tau of 0.5 is appropriate.  Some 

100 1000 

2000 

7500 10,000 

5000 

1.4 

0 

∞VV /



176 

meshes have an undesirable coupling between flow characteristics and mesh spacing, which 

requires values of 0.1 to 0.01.  This instability slows progress to a crawl.   

The global time step dtfix can be used to relax unsteady solutions.  Several cases were generated 

by scaling down dtfix until a stable solution occurred.  Three meshes on different geometries 

were found that could not be stabilized.  The domain had to be remeshed in a very different 

manner to achieve stability.  For one two-dimensional case, the domain was one element wide, 

and the solution was only contained by the explicit symmetry planes. 

4.2.5 Boundary Integrals 

The majority of fluids research in finite element utilizes Gauss�s theorem to shift the derivative 

off the flux term and create boundary integrals (Baker, 1983; Brenner, 2002; Thomasset, 1981; 

Thomee, 2006; Zienkiewicz, 2000).  This method is utilized in the OSU codes, which shows 

enhanced stability over CFDsol.  The differences between the two methods can be seen in Eqs. 

4.188 and 4.189, which bring together the developments above: 

Figure 4.27:  Oscillations in Pressure Distribution from CFDsol. 



177 

[ ]( ) SfKFMFUM ++=⋅∆+
∆

−∆ �� σσ
be

ibeibec

e

i

T

i

e

e
ec ntA

J

tV
�

,, (4.188)

( ) SfKffUKUM ++=+∆++∆ � σσ
e

eeeec t ,2,1 (4.189)

Gupta�s derivation (2007) produces a matrix-vector formulation that can be inverted using sparse 

storage and inversion techniques.  Gauss�s theorem can be applied to the governing equations 

(Eq. 4.188)  and still arrive at an invertible matrix-vector formulation.  The unsteady, viscous 

flux, and source terms are identical in CFDsol and the first-order temporal NS3D.  The 

difference is in the inviscid flux terms.  Gupta�s derivation used the chain rule to split the 

inviscid flux into velocity, unknowns, and pressure terms.  The inviscid flux can be similarly 

decomposed using Eq. 4.169.  The average and normal fluxes are represented: 




�




�

�




�




�

�

+=

0

0

,

,

ir

ij

iri
u

pu
δ

UF           ( )




�




�

�




�




�

�

⋅
+⋅=⋅

0

�

�

0

��
,,

,,,

ibeir

j

bebeibeiribei
nu

n
pnun UF (4.190)

If a Riemann invariant is used to bridge a discontinuous boundary, the inviscid flux needs to be 

written in terms of the invariant matrix A, using Eq. 4.89 as an example: 

( ) [ ]( )

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−+




�




�

�




�




�

�

⋅
+⋅= ∞∞ UUAFUF beninv

ibeir

j

bebeibeircn
nu

n
pnu *

,,

,,

,,,

0

�

�

0

�
2

1
(4.191)

The inviscid terms in Eqs. 4.188 and 4.189 are equated, where K
*
 and f

*
 are created using 

Gauss�s theorem instead of the derivative chain rule.  Substituting Eqs. 4.190 and 4.191 and 

separating the unknowns U and pressure terms, the inviscid flux terms are written: 



178 

SfKfUKUM ++=∆+∆+∆ σσ
** tt eec

(4.192)

[ ]( ) [ ]��� +⋅+−=+

RI
be

cnbec

RIno
be

ibeibec

e

i

T

i

e

e
e nA

J

V
,,,,

** � FMFMFfUK
(4.193)

{ } [ ] ( )

[ ] ( )[ ] [ ]( )�

��

−⋅+

⋅+−=

RI
be

beibeirbec

be

RIno
be

ibeirbece

e

T

ir

T

i

e

e
e

nu

nuuA
J

V

UAIM

UMUUK

*

,,,

,,,,

*

�
2

1

�1
4

1

(4.194)

{ } [ ]

[ ] [ ]�

��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

++




�




�

�




�




�

�

⋅
+




�




�

�




�




�

�

⋅
+




�




�

�




�




�

�

−=

RI
be

BCBCninv

ibeir

j

bebec

RIno
be iir

j

ebec

e ir

ij

e

TT

i

e

e

nu

n
p

nu

n
p

u
pA

J

V

UAFM

Mf

*

,,

,,

,

,

,

,

*

0

�

�

0

2

1

0

�

�

0

0

0

1
4

1 δ

(4.195)

Using as much of the original derivation as possible, the new stiffness matrix and pressure vector 

can be written in terms of the inverse Jacobian A and its dot product with velocity Te: 

[ ] ( )

[ ] ( )[ ] [ ]( )�

��

−⋅+

⋅+−=

RI
be

beibeirbec

be

RIno
be

ibeirbec

e

T

e

nu

nu

UAIM

UMKK

*

,,,

,,,

*

�
2

1

�

(4.196)

Eq. 4.196 contains the negative transpose of Ke matrix (Eq. 4.181).  The term constructed from 

the divergence of velocity and mass matrix (Eq. 4.174) has been replaced by boundary integrals 

terms.  To incorporate smoothly into Gupta�s original purpose, the boundary integrals have been 

developed as matrices, both with and without Riemann invariants.   



179 

[ ]

[ ] [ ]�

��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

++




�




�

�




�




�

�

⋅
+




�




�

�




�




�

�

⋅
+




�




�

�




�




�

�

−=

RI
be

BCBCninv

ibeir

j

bebec

RIno
be iir

j

ebec

e
T

e

T

j

e

e

nu

n
p

nu

n
pp

A

J

V

UAFM

M
T

f

*

,,

,,

,

,

,

*

0

�

�

0

2

1

0

�

�

0

0

0

(4.197)

The first term in Eq. 4.197 resembles f1,e (Eq. 4.182).  f2,e has been replaced by the boundary 

integral terms.  The pressure terms in Eq. 4.197 can be implemented in a similar manner to f1,e.  

The energy contributions can be assembled as the dot product of the momentum terms and the 

velocity vector.  And for Riemann boundaries, the boundary condition flux and properties are 

constant (after the rocket is ramped up).   

Eqs. 4.196 and 4.197 have kept the matrix-vector form of the original CFDsol formulation  while 

shifting the derivative from the properties to the shape function.  The result is a constant gradient 

on the shape function, which has an increased stability over the property derivatives in the orig-

inal derivation.  Property derivatives suffer from numerical errors, as discussed in Section 4.5.3.  

Eq. 4.35 was implemented in CFDsol during testing, and the adapted implementation showed 

enhanced stability.  (Eq. 4.35 was used to derive Eq. 4.196 and 4.197.)  Eqs. 4.196 and 4.197 

could not be fully implemented in CFDsol because of the limitations of the NASA contract.  This 

section has been left as a record for anyone revisiting the numerical stability of CFDsol.  For 

now, artificial dissipation is used to control any local instability.  This artificial dissipation model 

is overly diffuse in order to control the perturbations and provide traditional algorithm stability. 

The boundary integrals also incorporate the boundary conditions implicitly into the governing 

equations so that both the governing equations and boundary conditions are balanced in the same 



180 

system.  The current implementation applies the boundary conditions between iterations of the 

governing equations to constrain the properties along the boundaries.  The resulting residuals do 

not converge to machine precision.  Experiments have shown that CFDsol only converges to 10-6

while the boundary integral implementation in Euler3D produces residuals on the order of 10
-15

.  

(Both CFDsol and Euler3D are double precision codes.)  Boundary integrals, although implied, 

produce a better convergence on the final solution, and Riemann invariants can be implemented 

to incorporate the natural characteristics into the boundary discontinuity, instead of simplified 

characteristic assumptions. 

4.2.6 Artificial Dissipation 

CFDsol uses a simple algebraic artificial dissipation model (Nithiarasu, 1998) to increase 

algorithm stability:  

( ) RSfKffUKUM �
,2,1 tt

e

eeeec ∆+++=+∆++∆ � σσ (4.198)

( )� −
∆

−= −

e

nLcL

e

es

t

SC
UMMMR

1� τ
  

maxmax

min

aV

l
te

+
=∆ (4.199)

where Cs is the dissipation scalar, τ is the relaxation factor, and ∆t is the local time step.  lmin is 

the minimum characteristic length of the element calculate using the ratio of element volume Ve

to face area Af.  When ∆t is replaced by element lmin and speed, then the artificial dissipation 

resembles the spatial-flux terms (i.e. Vi ∂U/∂xi) more closely than diffusion.  Se is the average 

pressure switch on the element, where the pressure switch Si at the nodes is:

( )

�

�

−

−

=

e

ki

e

ki

i
pp

pp

S (4.200)



181 

pi is the pressure at the node of interest, and pk is the pressure at nodes attached by segments. 

4.2.6.1 Time Accuracy 

The artificial dissipation model was derived around a local time step (1/∆te).  The model was 

implemented correctly for steady solutions, but time accurate solutions use a global time step.  If 

the global time step is used in Eqs. 4.198 and 4.199, then they cancel each other and the 

contributions are independent of time step size, which brackets performance of the solver.  The 

solver is limited by numerical stability at large time steps and the artificial dissipation model 

dominates the solver at small time steps.  Figure 4.28 shows the lift history for the same 

geometry with different time steps ∆t and dissipation scalars Cs.  The dissipation scalar Cs has 

the same effect on the solution as the inverse time step 1/∆t.   

Figure 4.28:  Unsteady Solution Accuracy vs. Time Step ∆∆∆∆t and Dissipation CS. 

The implementation was adapted so that the time step in Eq. 4.199 is the elemental time step, and 

the global time step is used for Eq. 4.198.  The proper applied of time steps allows the artificial 

dissipation R�  to form as posed and then be scaled by the global time step.  This was accom-

plished by retasking an unused array DELTE to store the element time steps.  The nodal time step 



182 

∆tn (local time step for steady and global time step for unsteady) is stored in DELTP.  CFDsol 

averages the time step at the nodes to calculate the elemental time step ∆te.  The local time step 

(average over the element) is now stored in DELTE for both steady and unsteady schemes.  The 

artificial dissipation routine uses DELTE for its time step.  For smaller global time steps, the 

contributions from artificial dissipation to the residual are scaled down, just like the inviscid, 

viscous, and source terms.  The steady solution is unchanged, and the unsteady solution can now 

be time accurate with artificial dissipation. 

4.2.7 Solution Updates 

Gupta�s (2007) original formulation was intended to be solved through sparse matrix storage and 

inversion techniques.  For the time being, the system is iterated.  This section will discuss the 

time accuracy of the original implementation and the method for adapting the algorithm to 

Cowan�s (2003) predictor-corrector to simulate time accurate solutions. 

4.2.7.1 Consolidated Form 

After simplifying all of the terms, Gupta (2007) collects similar terms and applies a Crank-

Nicolson approach to the flux terms.  Starting with Eq. 4.174, the unsteady matrices assemble 

into the global mass matrix Mc, the inviscid flux matrices combine into a global stiffness matrix 

K, and the remaining terms are lumped together into a single vector R:   

( )RRUKUM �+∆+−=∆ tec
(4.201)

�=
e

ecc ,MM   � �
�
�

�
�
�
�

�
+

∂

∂
∆=

e

eec

ib

ir

x

u
t KMK ,

,

,
(4.202)

( )� +∆−++=∆
e

eett ,2,1 fffKSR σσ (4.203)



183 

The jump condition ∆Ue is replaced with Un+1 � Un .  The unknowns vector is averaged using the 

Crank-Nicolson method:  Ue = ( Un+1 + Un ) / 2.  The system simplifies:  

( ) ( ) ( )RRUUKUUM �
12

1
1 +∆++−=− ++ tnnnnc

(4.204)

Eq. 4.204 is rearranged so that the previous unknowns Un appear on the right side of the equation 

and the most current unknowns Un+1 are on the left side: 

( ) ( ) ( )RRUKMUKM �
2
1

12
1 +∆+−=+ + tncnc

(4.205)

Gupta then renames the grouped matrices: 

( )RRUMUM �
1 +∆+= −++ tnn

(4.206)

KMM
2
1+=+ c

  KMM
2
1−=− c (4.207)

Gupta desired to invert the M+ matrix in the future using efficient methods for storing and 

inverting very sparse matrices.  For the time being, the system is iterated until convergence.  The 

M+ matrix is split into its diagonal D+ and off-diagonal M��+: 

( ) ( )RRUMUMD �
1 +∆+=′+ −+++ tnn

(4.208)

( )RRUMUMUD �
11 +∆+′−= ++−++ tnnn

(4.209)

( )( )RRUMUMDU �
1

11

1 +∆+′−= ++−
−

+
+
+ ti

nn

i

n   nn UU =+
0

1
(4.210)

The equations are then iterated using Gauss iteration.  In practice, Eq. 4.210 is unstable for most 

solutions.  Gupta has used the solver to explicitly step to steady solutions.   

4.2.7.2 Addition of Predictor-Corrector 

Explicitly stepping steady solutions with Eq. 4.210 is accurate and stable for most meshes.  For 

unsteady solutions, the explicit stepping of Eq. 4.210 is stable but not time accurate.  Figure 4.29 



184 

shows the startup vortex traveling downstream from a suddenly accelerated airfoil.  Figure 4.29 

shows three time slices calculated by explicitly stepping Eq. 4.210.  The vortex travels 

downstream at 2.55 times the freestream velocity.  The increased speed of the vortex is due to a 

loss in effective �mass� in the governing equations, which allows the same �forces� to over 

accelerate that �mass�.  Here, �force� refers to the advection and pressure terms, while �mass� 

refers to the volume weighted nature of the Galerkin equation.   

Figure 4.29:  Inaccurate Motion of Wagner Vortex. 

The over-acceleration can be illustrated using the mathematics of the governing FEM equations.  

To simplify the M+ and M � equations, we neglect advection so that only the unsteady and 

pressure terms are present in Eq. 4.210.  M+ and M � are both simplified to MC.  Further, we 

assume explicit iteration used so that Un+1 = Un on the right side of Eq. 4.210: 

∞

∞

==
∆

∆
U

UL

L

t

x
55.2

/44.0

12.1

∞

∞

==
∆

∆
U

UL

L

t

x
55.2

/88.0

24.2



185 

( )( ) ( )( )RRUDDRRUMUMDU �� 11

1 +∆+=+∆+′−≈ −−
+ tt nCCnCnCCn

(4.211)

( )RRDUU �1

1 +∆+≈ −
+ Cnn t (4.212)

where Dc and M�c are used to represent the diagonal and off-diagonal terms of the consistent 

mass matrix Mc.  The consistent mass matrix is shown in Eq. 4.21.  The diagonal terms Dc can 

be written in terms of the lumped mass matrix ML (Eq. 4.25): 

L
ee

c

VV
MD

5

2

1000

0100

0010

0001

45

2

2000

0200

0020

0002

20
=

�
�
�
�

�

	










�

�

=

�
�
�
�

�

	










�

�

= (4.213)

The diagonal terms Dc carry 2/5 of the mass of the equivalent lumped mass matrix, which would 

give the flow roughly 40% of its effective mass. The changes created by pressure and dissipation 

would then create 2.5 times the acceleration on a given mass of air.  This analysis only works 

well far from the airfoil, but the reduced mass exists closer to the airfoil.  The diagonal terms of 

M+ contain Dc and advection terms, which would change this estimate according to the mesh and 

advection properties.   

Cowan (2003) uses a predictor-corrector algorithm to maintain the correct mass and apply the 

governing equations in implicit format.  The FEM equations in CFDsol are reformulated: 

( ) ( )RRUMUMUUR �, 11 +∆−−= −+++ tnnnns
(4.214)

The methodology outlined in Section 4.1.13.  The residual is minimized using Eqs. 4.156:  

( )n

i

nsL

i

n

i

n UURMUU ,1

1

1

1

1 +
−

+
+
+ −= (4.215)

The predictor-corrector method can be used in explicit or iterated for implicit form.  Both forms 

utilize the complete system mass so that forcing is time-accurate.  Explicit iteration is demon-



186 

strated in Figure 4.30 for the Wagner problem, where the trailing vortex advects downstream at 

the freestream velocity. 

4.3 Source Terms 

Three source terms have been lumped together into S for all five solvers.  These source terms are 

addressed here for both CFDsol and the in-house codes at the same time.  The non-inertial source 

term SNI is used to model the acceleration due to rotation and translation.  The quasi-combustion 

source terms SC are used to model mass and heat generation due to combustion without modeling 

the chemistry or species relations.  Finally, the turbulence models have been included in the 

previous equations, but only the advection and diffusion terms have been simplified.  The 

remaining turbulent source terms ST are simplified here. 

Figure 4.30:  Corrected Motion of Wagner Vortex. 

∞

∞

==
∆

∆
U

UL

L

t

x

/44.0

44.0

∞

∞

==
∆

∆
U

UL

L

t

x

/88.0

88.0



187 

4.3.1 Non-Inertial Terms 

The non-inertial source term Eqs. 4.30 and 4.36 is integrated using the techniques applied to the 

flux terms.  Multiple Gauss points can be used in the quadrature using Eq. 4.26.  If one Gauss 

point is used to integrate the source term, the integral simplifies: 

{ }�� �� � +

Ω∆
−=Φ∆=ΩΦ∆

≤≤Ω e

NI
en

e

eNI

T

en

e

NI

T

en
d

t
dtdt

e

SJSS 1
1

10 ξ

ξ
�

�

(4.216)

where NIS  is the source term evaluated using average properties, accelerations, and velocities on 

the element. 

Moffitt (2004) implemented these equations in NS2D.  Sukraw (2008) experimented with 

translating and spinning cylinders using the non-inertial frame.  Figure 4.31 shows a cylinder 

translating at a 45
o
 angle with respect to the horizontal.  Figure 4.31 was created using the non-

inertial frame, moving at equal velocities in the x- and y-directions.  The Reynolds number of the 

flow was changed by varying the velocity of the cylinder or the velocity of the reference frame.  

Figure 4.31 shows the drag coefficient calculated using the non-inertial frame in NS2D 

compared to empirical trends and experimental data.  The drag coefficient matches very well for 

all Reynolds numbers shown.   

Sukraw had less success with spinning cylinders in the non-inertial frame.  The solutions had 

spurious oscillations in velocity (see Figure 4.32).  Sukraw experimented with the type of 

artificial dissipation, diss, CFL, and Reynolds number Re all changed the oscillations, but the 

magnitude and frequencies did not scale with any of these factors.  Sukraw proposed investi-

gating the governing equations for development or implementation problems.   



188 

Figure 4.31:  Cylinder Translating at 45
o
 (left) and CD vs. Re (right) (Sukraw, 2008). 

Figure 4.32:  Oscillations in Velocity Profile around Spinning Cylinder (Sukraw, 2008). 

The spinning cylinder was repeated in this research.  Sukraw�s mesh utilized a fine boundary 

layer mesh near the surface of the cylinder � a remnant of the mesh used on the translating 

cylinder.  The domain was remeshed with a more coarse spacing.  The mesh size was 0.04D

normal to the cylinder surface and increased linearly with the radius, maintaining a constant 



189 

(inviscid) local time step.  The global time step was selected to create viscous stability at the 

cylinder surface: ∆t = 2.2x10
-3

 for Vwall = 1.  The time step was scaled by 0.1 for the higher 

velocity (Vwall = 10). 

Figure 4.33 shows the velocity profiles created at the two different rotational speeds.  At the 

slower speed, the velocity profiles converge to the theoretical solution in 3 million iterations.   At 

the faster speed, the velocity profile progresses more slowly and diverges after 290 thousand 

iterations.  Just before the solution diverges, the profile begins oscillating like Sukraw�s solution.  

The high speed case and Sukraw�s test were run using local time steps greater than the viscous 

local time stepping limit. 

Figure 4.33:  Circumferential Velocity Profile around Spinning Cylinder. 

4.3.2 Turbulent Source Terms 

The turbulent source term Eqs. 4.32 and 4.36 is integrated using quadrature with one Gauss 

point.   is used to integrate the source term, the integral simplifies: 

{ }�� �� � +

Ω∆
−=Φ∆=ΩΦ∆

≤≤Ω e

T
en

e

eT

T

en

e

T

T

en
d

t
dtdt

e

SJSS 1
1

10 ξ

ξ
�

�

(4.217)

Increasing time Increasing time 

1== RVwall ω 10== RVwall ω



190 

where TS  is the source term evaluated using average properties on the element.  The turbulent 

destruction terms in the SA and ω-equations have been rearranged so that conservative 

unknowns can be average where possible (Eq. 4.29).  The primitive unknowns ν�  and ω are 

calculated from the conservative unknowns using the average density.  The second term in Eq. 

4.218 contains the stability and cross-diffusion terms, which are calculated on each element 

using derivatives from Eq. 4.13: 

( ) 




�





�

�






�





�

�

∇∇

∇∇
+






�





�

�






�





�

�

−−Π

−Π

�
�
��

�
� −

=

ρωρ

ννρ

ωρρωωβρ

ρερ

νρ

ρω

σ

ω

ν

ω

ii

C

ii

ambcr

k

d

fc

br
T

Kf

Scf ww

0

��

0

0

0

��

0

0

0

Re
1

2

1

Re

�

11 2

1
S  (4.218)

4.3.3 Quasi-Combustion Terms 

In general, combustion is modeled by tracking the transfer of constituents from one species to 

another, calculating the energy produced in the process, and changing the properties to reflect the 

new constituents.  The net effects of combustion increase the temperature and pressure.  These 

effects are accomplished by adding mass, in the form of fuel, and enthalpy to the flow.  Often 

momentum is transferred to the flow when fuel is added, but this momentum is small compared 

to the momentum change due to pressure and temperature effects.  The model used here, termed 

�quasi-combustion�, only models the net effects of combustion on propulsion through the 

transfer of mass (density generation) and energy (total enthalpy generation) to the flow.  

A scramjet engine cannot be designed using heat generation alone because the heat generation 

must be known a priori (Curran, 1996).  But the heat generation is not known until the com-



191 

bustion, which depends on the constituents in the flow field, is known.  The �quasi-combustion� 

terms can be used to initially size the net energy exchange across the combustor and select a 

reasonable scramjet for testing.  The scramjet would presumably be designed separate from the 

aircraft and then installed later in the design.  Off-design characteristics (i.e., perturbed flight, 

acceleration, gust response, etc.) are tested with the entire vehicle. 

A source term is added to the Euler equation to track the density and enthalpy generation in the 

combustor (Eq. 4.36).  The source term takes on the form shown in Eq. 4.219: 






�





�

�






�





�

�

′′′
=

0

0

0

0

c

c

c

q�

�ρ

S   � �� �
≤≤Ω

Φ∆=ΩΦ∆
e

eC

T

en

e

C

T

en dtdt

e 10 ξ

ξ
�

�
JSS (4.219)

The combustion source term is simplified in two ways, to accommodate different combustion 

models.  The first method assumes that the source term is known at the nodes in the domain.  

The source term is piecewise linearly distributed on the domain using Φe: 

ec

e

ecnec

e

e

T

en

e

C

T

en tdtdt

ee

,,, SMSS �� �� � ∆=ΩΦΦ∆=ΩΦ∆
ΩΩ

(4.220)

For two- and three-dimensions, Eq. 4.220 becomes: 

ec

e

en

e A

ece

T

en

At
dt

e

,,

211

121

112

12
SS �� �
�
�
�

�

	








�

�
∆

=ΩΦΦ∆  (4.221)



192 

ec

e

en

e V

ece

T

en

Vt
dt

e

,,

2111

1211

1121

1112

20
SS �� �
�
�
�
�

�

	










�

�

∆
=ΩΦΦ∆ (4.222)

The second method assumes that the source term is known at the center of each element in the 

domain.  The source term is considered piecewise constant on the domain: 

{ } C

e

en

e

C

T

en

e

C

T

en
d

t
dtdt

ee

SSS �� �� � +

Ω∆
=ΩΦ∆=ΩΦ∆

ΩΩ

1
1

(4.223)

For two- and three-dimensions, Eq. 4.223 becomes: 

�� �

�


�

�


�


�

�
∆

=ΩΦ∆
e

c
en

e A

C

T

en

At
dt

e

SS

1

1

1

3
 (4.224)

�� �



�




�

�




�




�

�

∆
=ΩΦ∆

e

c
en

e V

C

T

en

Vt
dt

e

SS

1

1

1

1

4
(4.225)

This model has been tested in a quasi-one-dimensional afterburner simulation.  The pressure, 

density, and Mach number distribution through the afterburner domain can be seen in the figures 

below.  The first case, shown in Figure 4.34, represents a step distribution in both combustion 

values.  The second case, shown in Figure 4.35, generates mass in the same step-wise manner, 

but rounds the sharp transition using cosine distributions.  Both distributions calculate the correct 

outflow properties.  In other words, the distribution does not affect the overall conservation, but 

sharp transitions cause the solver to apply artificial dissipation to smooth out the solution.  The 

cosine transitions help reduce the amount of dissipation used by all of the solvers in this work. 



193 

Figure 4.34:  Afterburner Properties Simulated with a �Step� Generation.   

Figure 4.35:  Afterburner Properties Simulated with a �Cosine� Generation.   

The method uses the �air standard� for flow through and downstream of the combustion.  The 

�air standard� says that the flow can be modeled using the properties of air, ignoring the changes 

in properties due to combustion.  For example, the ratio of specific heats for air       (γ = 1.4) is 

used to calculate the properties upstream of the combustor.  If the �air standard� is maintained 

downstream of the combustor, the pressure on the aft section of a generic scramjet vehicle is 



194 

10.04 ∞p .  If the properties change during combustion (γ = 1.33), then the pressure on the aft 

section of the same vehicle is 10.81 ∞p .  The pressure has increased 7.6%.  The �air standard� 

predicts a lower thrust on the vehicle, so the �air standard� can be used to makes conservative 

design estimates, if used early in the design process.   

4.4 Integration of Momentum 

The aerodynamics and propulsive forces on an arbitrary body are formulated using the 

momentum exchange on a control volume.  Figure 4.36 shows an engine, representing an 

arbitrary body with surface traction and momentum exchange through inlet and outlet.  The 

aerodynamic and propulsive forces are summed together in the body force Fbody.  The engine is 

held in place by a support strut and creates a reaction force Freact at its attachment to the floor.  

The summation of aerodynamic and propulsive forces on the body Fbody is equal and opposite to 

the reaction force Freact at the base of the support strut: 

0=+ reactbody FF
��

        reactbody FF
��

−= (4.226)

Figure 4.36:  Body and Reaction Forces. 



195 

Figure 4.37 shows the engine and strut, surrounded by a control volume.  The pressures and 

velocities are defined around the boundary of the control volume, and the reaction force Freact is 

shown at the base of the support strut.  The velocity along the surface is assumed to be tangent to 

the surface in inviscid flow and zero at the bottom of a viscous boundary layer.   

Figure 4.37:  Control Volume around Body. 

The momentum exchange on the control volume is calculated using Newton�s second law 

(Munson, 1998): 

�=�
�
�

�
�
�
�

�
F

Dt

VmD

sys

�
�
)(

(4.227)

Applying Reynolds transport theorem and assuming quasi-steady flow: 

��� Γ+=Γ⋅+Ω
∂

∂

S

react

SV

dTFdVVdV
t

�����
)�( νρρ (4.228)

�� Γ−Γ⋅=
SS

react dTdVVF
����

)�( νρ (4.229)

The traction is calculated from the surface stresses using Cauchy�s equations (Allen, 1985): 

0 



196 

[ ]νσ

νσνσνσ

νσνσνσ

νσνσνσ

�

���

���

���

=

�


�

�


�


�

�

++

++

++

=

�


�

�


�


�

�

=

zzzyyzxxz

zzyyyyxxy

zzxyyxxxx

z

y

x

T

T

T

T
�

(4.230)

where ν�  is the unit normal pointing out of the solid surface.  The stress tensor for a fluid is 

composed of the pressure and viscous stresses: 

[ ] [ ] [ ]
�
�
�

�

	








�

�

−

−

−

=−=

p

p

p

p

zzyzxz

yzyyxy

xzxyxx

τττ

τττ

τττ

τσ I (4.231)

Notice that the viscous stress tensor is symmetric, so the overall stress tensor is also symmetric.  

The traction created by a viscous fluid on a solid surface is calculated: 

[ ] [ ]( )

�


�

�


�


�

�

−++

+−+

++−

=−=

zzzyyzxxz

zyzyyyxxy

zxzyxyxxx

p

p

p

pT

ντντντ

ντντντ

ντντντ

ντ

�)(��

��)(�

���)(

�I
�

(4.232)

These variables are substituted into Eq. 4.229: 

[ ] [ ]( )�� Γ−−Γ⋅=
SS

react dpdVVF ντνρ �)�( I
���

(4.233)

The force on the body is equal and opposite the reaction at the base.  Taking into account the 

normals on the CFD domain are opposite the normals on the surface: 

[ ] [ ]( )�� Γ−−Γ⋅=
SS

body dnpdnVVF �)�( Iτρ
���

(4.234)

The moment on the body is created by integrating the force crossed with the distance to the 

center of mass: 

[ ] [ ]( )�� Γ−×−Γ⋅×=
SS

body dnprdnVVrM �)�( Iτρ
����

(4.235)



197 

The generalized forces used in the aeroelastic calculations are calculated by integrating the force 

times the generalized displacement: 

[ ] [ ]( )�� Γ−⋅Φ−Γ⋅⋅Φ=
S

i

S

iiA dnpdnVVF �)�(, Iτρ
����

(4.236)

Dimensionless Form.  All unknown properties are specified in non-dimensional form, so the 

force calculations should also be dimensionless.  For the three-dimensional solvers, Eqs. 4.234 

through 4.241 become: 

[ ] [ ]( )�� Γ−−Γ⋅==
∞∞ **

�2)�(2 *****

22

2
1

*

SSref

body

body dnpdnVV
LU

F
F Iτρ

ρ

��
�

�
(4.237)

[ ] [ ]( )�� Γ−×−Γ⋅×==
∞∞ **

�2)�(2 *******

32

2
1

*

SSref

body

body dnprdnVVr
LU

M
M Iτρ

ρ

����
�

�
(4.238)

[ ] [ ]( )�� Γ−⋅Φ−Γ⋅⋅Φ==
∞∞ **

�2)�(2 *******

32

2
1

,*

,

S

i

S

i

ref

iA

iA dnpdnVV
LU

F
F Iτρ

ρ

����
(4.239)

The domain volume of the two-dimensional solvers is strictly equal the area of integration times 

a unit thickness: V = (A)(1).  The boundary area is similarly the total length of boundary times a 

unit thickness: S = (l) (1).  The quantity S is replaced by l in Eqs. 4.237 through 4.239.  One of 

the length dimensions Lref is likewise removed from the denominator: 

[ ] [ ]( )�� Γ−−Γ⋅==
∞∞ **

�2)�(2 *****

2

2
1

*

llref

body

body dnpdnVV
LU

F
F Iτρ

ρ

��
�

�
(4.240)

[ ] [ ]( )�� Γ−×−Γ⋅×==
∞∞ **

�2)�(2 *******

22

2
1

*

llref

body

body dnprdnVVr
LU

M
M Iτρ

ρ

����
�

�
(4.241)

[ ] [ ]( )�� Γ−⋅Φ−Γ⋅⋅Φ==
∞∞ **

�2)�(2 *******

22

2
1

,*

,

l

i

l

i

ref

iA

iA dnpdnVV
LU

F
F Iτρ

ρ

����
(4.242)



198 

Three-Dimensional FEM Form.  The integrals above are reposed as a piece-wise element-by-

element integral over the boundaries.  (The star notation is dropped here, but all terms are 

presented in dimensionless form.)  Eqs. 4.237 and 4.238 are discretized into the summation of 

forces and moments on each boundary element, using the average properties on each: 

�

�


�

�


�


�

�

=

�


�

�


�


�

�

be

z

y

x

zbody

ybody

xbody

F

F

F

F

F

F

,

,

,

  �

�


�

�


�


�

�

−

−

−

=

�


�

�


�


�

�

be

xyyx

zxxz

yzzy

zbody

ybody

xbody

FrFr

FrFr

FrFr

M

M

M

,

,

,

(4.243)

( )xnbex TVuAF −= ρ2   zxzyxyxxxx nnnpT ���)( τττ ++−= (4.244)

( )ynbey TVvAF −= ρ2   zyzyyyxxyy nnpnT ��)(� τττ +−+=  (4.245)

( )znbew TVwAF −= ρ2
zzzyyzxxzz npnnT �)(�� −++= τττ (4.246)

Similarly, the generalized force (Eq. 4.239) for elastic deflections is calculated: 

( )� Φ+Φ+Φ=
be

zizyiyxixiA FFFF ,,,, (4.247)

Two-Dimensional FEM Form.  Eqs. 4.240 and 4.241 are similarly discretized on the boundary 

edges and rewritten in terms of average properties on each boundary edge: 

�
�


�
�

�


�
�

=
�
�
�

�
�
�

be y

x

ybody

xbody

F

F

F

F

,

,
  ( )� −=

be

xyyxbody FrFrM (4.248)

( )xnbex TVulF −= ρ2   yxyxxxx nnpT ��)( ττ +−= (4.249)

( )ynbey TVvlF −= ρ2   yyyxxyy npnT �)(� −+= ττ (4.250)

( )� Φ+Φ=
be

yiyxixiA FFF ,,, (4.251)



199 

Flat Plate Example:  The first example is a flat plate with chord 2, span 1, and negligible 

thickness.  The pressure on the top and bottom surfaces of the plate are 1 and 2, respectively.  

The velocity along the plate is parallel to the plate.  The surface normals are represented: 

{ }010� −=T

topn   { }010� =T

botn

With a Reynolds number 10, the flow has a viscosity of 0.1.  The velocity gradients and shear 

stress at the wall are calculated: 

�
�
�

<−

>
=

∂

∂

01

01
*

*

*

*

yfor

yfor

y

u
  

�
�
�

<−

>
=

∂

∂
=

01.0

01.0

Re

1
*

*

*

*
*

yfor

yfor

y

u

L

xyτ

The pressure and shear stress creates the load (Eq. 4.237): 

[ ] [ ]( )�� Γ−−Γ⋅=
**

�2)�(2 ******

SS

body dnpdnVVF Iτρ
���

� Γ

�
�
�

�

	








�

�

−

−

−

−=
*

�

00

0

0

2
*

**

**

*

S

xy

xy

body dn

p

p

p

F τ

τ
�

cb

p

p

p

cb

p

p

p

F

bot

botbotxy

botxybot

top

toptopxy

topxytop

body


�


�

�


�


�

�

�
�
�

�

	








�

�

−

−

−

−

�


�

�


�


�

�

−

�
�
�

�

	








�

�

−

−

−

−=

0

1

0

00

0

0

2

0

1

0

00

0

0

2
*

**

,

*

,

*

*

**

,

*

,

*

* τ

τ

τ

τ
�


�


�

�


�


�

�

=

�


�

�


�


�

�

−

−−

=

�


�

�


�


�

�

−

−

=

0

4

8.0

)1)(2(

0

12

)1.0(1.0

2

0

2 **

*

,

*

,

* cbppF topbot

botxytopxy

body

ττ
�

The viscous terms create a non-zero drag while the difference in pressure creates lift.   

0 



200 

If the center of rotation is placed at the port side of the leading edge of the plate, the moment is 

calculated (Eq. 4.238): 

[ ] [ ]( )
12

�2)�(2

*

*********

*** x

F
drdnprdnVVrM

body

SSS

body

�
������

×Γ=Γ−×−Γ⋅×= ��� Iτρ


�


�

�


�


�

�

−=

�


�

�


�


�

�

×

�


�

�


�


�

�

−

=×

�


�

�


�


�

�

= � �
− 4

4.0

2

0

4

8.0

1

0

2

12
0

2

1

*0

*

0

*

*

*

*

x

F
dzdx

z

x

M
body

b

c

body

�
�

The plate generates a rolling, pitching, and yawing moment about its port corner.  The yaw 

moment is created by the viscous shear stress while the pitch and roll moments come from the 

difference in pressure across the plate (inviscid).

This case was tested in Euler3D using a plate of negligible thickness (0.01), chord 2, and unit 

span.  The center of rotation (origin) was specified at the centerline, port side of the leading edge.  

All surfaces of the plate were specified as inviscid walls.  The pressure domain was specified as 

initial conditions:  The pressure above and below the centerline of the domain (plate) were 

specified as 1 and 2, respectively.  All other properties were specified using freestream 

conditions.  Euler3D predicted a lift and pitching moment of 4, roll moment of 2, and zero 

yawing moment, matching the pressure portion of the results above.  (The sides of the plate 

create errors in force on the order of 10-3 and in the moment on the order of 10-2.)   

This case was also tested in NS3D using the same geometry and center of rotation (origin).  The 

top and bottom surfaces of the plate were specified as viscous walls; the other surfaces were 

specified as inviscid walls to minimize numerical errors.  The pressure and velocity domains 

were specified as initial conditions:  The pressure above and below the centerline of the domain 

0 



201 

(plate) were specified as 1 and 2, respectively.  The velocity above and below the centerline were 

specified as u = 1 + y and u = 1 � y, respectively.  All other properties were specified using 

freestream conditions.  NS3D predicted a lift and pitching moment of 4, drag due to viscous 

shear of 0.8, roll moment of 2, and yaw moment of -0.4, matching the results above.  (The sides 

of the plate create errors in force on the order of 10
-3

 and in the moment on the order of 10
-2

.  

Making the inviscid walls into viscous walls skews all of the results.) 

Engine Example:  The second example is a rectangular engine with 1x1 cross-section and length 

2.  The pressure on the inlet, outlet, and solid surfaces of the engine are freestream pressure so 

that the pressure on either side of the engine cancels out the effects from the opposing side.  The 

inflow velocity is unity, and the outflow velocity is 4.  The inlet and outlet normals are 

represented: 

{ }001� =T

inn   { }001� −=T

outn

The force on the engine is calculated (Eq. 4.237): 

�� Γ+Γ⋅=
**

�2)�(2 *****

SS

body dnpdnVVF
���

ρ

********* )�(2)�(2 outoutoutoutoutinininininbody AnVVAnVVF ⋅+⋅=
�����

ρρ


�


�

�


�


�

�−

=
�
�
�

�

�

�
�
�

�

�


�


�

�


�


�

�−

⋅

�


�

�


�


�

�


�


�

�


�


�

�

+
�
�
�

�

�

�
�
�

�

�


�


�

�


�


�

�

⋅

�


�

�


�


�

�


�


�

�


�


�

�

=

0

0

30

)11(

0

0

1

0

0

4

0

0

4

)1(2)11(

0

0

1

0

0

1

0

0

1

)1(2* xxFbody

�

The engine generates a negative drag (or thrust).  If the center of rotation is placed at the lower-

port corner of the leading edge of the engine, the moment is calculated (Eq. 4.238): 

0 



202 

11
�2)�(2

*

********

*** x

F
drdnprdnVVrM

body

SSS

body

�
������

×Γ−=Γ×+Γ⋅×= ��� ρ


�


�

�


�


�

�

=

�


�

�


�


�

�−

×

�


�

�


�


�

�

−

=×

�


�

�


�


�

�

= � �
− 15

15

0

0

0

300

11

0

2

1

2

1

*0

1

*

1

0

*

*

**

x

F
dzdy

z

yM
body

body

�
�

The engine generates a pitching and yawing moment about its lower-port corner. 

This case was tested in Euler3D using an engine with 1x1 inlet/outlet and length 2.  The center of 

rotation (origin) was specified at the lower, port, leading corner.  The inlet and outlet were 

specified using engine BCs, and the nacelle skins were specified as inviscid walls.  The velocity 

domain was specified as initial conditions:  The velocity forward and aft of the mid-length were 

specified as u = 1 and u = 4, respectively.  All other properties were specified using freestream 

conditions.  Euler3D predicted a drag of -30 (or thrust of 30), pitching and yawing moments of 

15, matching the results above. 

4.5 Local Time Stepping 

The residual in Eq. 4.36 has been scaled by the time step.  If an appropriate local time step is 

chosen in place of the global time step, the preconditioned residual can be used to accelerate the 

convergence of steady solutions � called local time stepping.  Cowan (2003) uses the local time 

step to speed up convergence where possible and relax convergence where needed.  The 

unsteady term in Eq. 4.36 includes the ratio of local time step over global time step: ttn ∆∆ / .  

The ratio acts like a relaxation factor.  In fact, Cowan restricts the local time step to be less than 

or equal the global time step so that the ratio always acts like a relaxation factor.  This idea of 

local time stepping will be extended here to viscous flows to enhance stability. 

0 



203 

4.5.1 Inviscid Local Time Step 

The inviscid local time step is selected to be the time required for the local flow to cross a fluid 

element.  The question often arises as to which portion of the element the fluid is crossing.  

Many locations can be chosen.  If the fluid velocity vector crosses along the edge of a side, then 

the distance across the element is the length of that edge.  If the fluid crosses at the opposing 

vertex with the same vector, then the distance is mathematically zero.   

Cowan implemented a local time stepping routine that calculates the local velocity in the 

direction of each segment and then calculates the time for the local flow to cross that segment.  

The maximum velocity in the local flow is calculated using the fastest characteristic.  From the 

Riemann problem (Eq. 4.54), the fastest characteristic is V+a.  Cowan�s routine is based in the 

weighted segments used in the artificial dissipation model (Eq. 4.148).  The algorithm is 

presented in its conceptual form here: 

�
�

�

�

�
�

�

�

+⋅−

−
=∆

jjrji

ji

i
aVxx

xxCFL
MINt

,)(
���

��

(4.252)

where the subscript i denotes the node of interest and the subscript j denotes the nodes attached 

to node i through segments.  The velocity and acoustic speed are taken from the attached node to 

calculate the time taken to transmit information from the attached node to the node of interest.  

The use of weighted segments allows Cowan to construct the local time step in a much more 

continuous manner than the minimum function in Eq. 4.252.  (The weighted segments have been 

avoided here because they obscure the concept.)  Cowan scales the local time step by CFL (or 

the Courant-Fredrick-Lewis, originators of the concept of local time stepping) number CFL to 

relax the local time step.  For inviscid solutions, CFL number less than 0.7 are suggested, 



204 

although some cases have proven to be stable up to a CFL of 0.8.  A nominal value of 0.5 is 

generally used as a safety cushion. 

4.5.2 Inviscid vs. Viscous Stability 

Test data from NS2D and CFDsol have shown that there are strict inviscid and viscous stability 

limits.  The inviscid stability limit is more stringent for element Reynolds numbers greater than 

half: 5.0/Re/Re <∆=∆= ∞∞∞∆ Lxxu Lx µρ .  The viscous stability is more stringent for element 

Reynolds numbers less than half.  These limits are illustrated in Figure 4.38 for both NS2D and 

CFDsol.  CFL in Figure 4.38 represents the ratio of maximum stable time step to local inviscid 

time step: CFL = ∆tmax / ∆tinv.  NS2D was tested on flat plate, cylinder, and other simple 

geometries.  Figure 4.38 shows that NS2D is limited by inviscid stability for Re∆x > 0.5 and 

viscous stability below, and the viscous stability decreases proportional to the element Reynolds 

number.  CFDsol was tested on a isotropic mesh on a rectangular domain.  The same trends are 

seen in Figure 4.38 for CFDsol where the viscous stability limit occurs at Re∆x = 200.   

Figure 4.38:  Stable CFL Values vs. Element Reynolds Number Rex                                         

(left � Moffitt, 2004; right � CFDsol). 

A rectangular isotropic domain was used to qualitatively explore the stability of NS2D, 

NS3D,and CFDsol under various conditions.  The 3D solvers were found to be less stable than 

94.0Re4133.0 xCFL =



205 

NS2D, likely caused by the added degree-of-freedom.  The SA model was found to be more 

stable than the RANS equations, where the velocity distribution diverged before the turbulence 

model.  Conduction was tested on the same mesh with zero velocity between viscous walls.  The 

heat transfer boundary conditions were shown to have little effect on stability, but the magnitude 

of Prandtl number Pr was shown to directly affect the stability of the conduction problem.  Using 

air properties, the conduction problem was less stable than RANS or SA with a freestream. 

4.5.3 Numerical Error in Derivatives 

Similar instabilities were found in both NS3D and CFDsol when modeling a laminar boundary 

layer along the plate.  The boundary layer was modeled in the xy-plane, and the instability was 

tracked to the viscous stresses τyz and τzz.  (The solver becomes stable when these derivatives are 

neglected in NS3D.)  These stresses were generated by numerical errors in the cross flow 

velocity w.  The three z-stresses are shown below (assuming 0=⋅∇ V
�

): 

�
�

�
�
�

�

∂

∂
+

∂

∂
=

x

w

z

u
xz

Re

µ
τ

          

��
�

�
��
�

�

∂

∂
+

∂

∂
=

y

w

z

v
yz

Re

µ
τ �

�

�
�
�

�

∂

∂
=

z

w
zz 2

Re

µ
τ (4.253)

If the flow is truly two-dimensional, then the z-derivatives should vanish, leaving the derivatives 

containing w.  If w is modeled as a zero mean with random numerical perturbations on the order 

of machine precision (w ~ δw), then the z-stresses can be modeled: 

�
�

�
�
�

�

∂

∂
≈

x

w
xz

δµ
τ

Re ��
�

�
��
�

�

∂

∂
≈

y

w
yz

δµ
τ

Re
�
�

�
�
�

�

∂

∂
≈

z

w
zz

δµ
τ 2

Re
(4.254)

Under the best of conditions, random perturbations would cancel each other so that all three 

stresses become zero.  In the worst case scenario in this example, two perturbations have equal 



206 

magnitude δw with opposite sign, and these two perturbations are used to evaluate the derivative 

and therefore the flux.  Considering the worst case as the upper limit, Eq. 4.254 becomes: 

��
�

�
��
�

�
≤

x

w
xz

�

δµ
τ

2

Re �
�

�

�

�
�

�

�
≤

y

w
yz

�

δµ
τ

2

Re ��
�

�
��
�

�
≤

z

w
zz

�

δµ
τ

4

Re
(4.255)

where x� , y� , and z�  are the characteristic lengths of the element used to evaluate their 

respective derivatives.  Eq. 4.255 shows that problems with numerical errors are greatest on the 

smallest elements in the domain, which is supported by the observations in NS3D and CFDsol.  

The large elements far from the body experience the least problems from numerical errors in 

derivatives. 

Returning to the two-dimensional boundary layer case that began this discussion, Eq. 4.255 

shows that fluctuations in δw feedback into the three momentum equations and energy equation.  

The effects on the x- and y-momentum are minimized because the streamwise contributions are 

much larger than the terms seen in Eq. 4.255.  The z-momentum is altogether susceptible to the 

numerical error in the z-derivatives, and the w-velocity is adapted to balance the z-momentum 

equation.  The w-velocity resulting from this balance is not promised to be smooth because the z-

derivatives are not smooth.  Instead, the feedback of w-velocity into the stresses in Eq. 4.253 

often aggravates the problem.  Locking the w-velocity to a zero value eliminates the problem in 

the two-dimensional case (and not in general) and allows a similar error to be seen in the energy 

equations.  The viscous dissipation created by the z-stresses is estimated in Eq. 4.256 with 

fluctuations in the w-velocity δw. The terms in Eq. 4.256 keep the energy residual from 

converging to a desirable level.  The energy residual is used to measure convergence on a time 

step and overall. 



207 

�
�

�

�

�
�

�

�
++≤++=Φ

z

w

y

wr

x

wr
zzryzrxzrz

vu
wvu

���

2
2

Re

2 δδδµ
τττ (4.256)

All of these problems can be eliminated if derivatives can be grouped into realistic estimates and 

numerical errors.  A gradient filter has been created in grad_filter.f but not tested as an 

appropriate means of limiting gradients in NS3D.  The gradient limiter uses Eq. 4.257 to create a 

lower limit for the gradient of a property p on an element with characteristic length 
i� : 

i

p

ix

p

�

δ2
≥

∂

∂
(4.257)

The method has not been tested in NS3D because appropriate values for 
i�  and δp have not yet 

been determined.  A characteristic length could be the minimum distance across an element, and 

δp might be estimated using 10
-15

 times the freestream property.  For example, an enthalpy 

derivative on an element with minimum size 10
-5

 would be limited by ∞
− hx 10102 .  Derivatives 

below this limit would be eliminated.  These ideas need testing before full implementation. 

The application of the Gauss�s theorem was thought to create or magnify the sensitivity of the 

algorithm to numerical derivatives.  This idea is explored in the next section.  The problem is 

thought to be contained at present through the use of viscous local time stepping, which is 

developed in the final sections of this chapter as a means of increasing the local stability.   

4.5.4 Viscous Local Time Step 

The derivation of local viscous time stepping is much more complex.  The residual (Eq. 4.36) is 

rewritten in a stability format, where all of the unknowns have been pulled out of matrices: 

( ) [ ] [ ] [ ] DSUKUKUMUUR tttt nvisninvCnn ∆−∆−∆+∆+∆= +++ 111, (4.258)



208 

[ ] ( ) � �� �
ΩΓ

+ ΩΦ∇−Γ⋅Φ=
e

i

T

ei

be

ii

T

be

ki

einv

ebe

ddn FFUK �,1

(4.259)

[ ] ( ) � �� �� �
ΩΓΩ

+ ΩΦ−Γ⋅Φ−ΩΦ∇=
e

v

T

e

be

iiv

T

be

e

iv

T

ei

ki

evis

ebee

ddnd SFFUK �
,,

,1

(4.260)

Notice that the source terms have been split into two parts:  The source terms that contain 

derivatives and act like diffusion terms Sv, and all other source terms S.  The diffusion-like 

source terms Sv are included in the viscous stiffness matrix Kvis.   

( )
( )






�





�

�






�





�

�

−Π

−Π

−
+






�





�

�






�





�

�

+⋅

×+

−






�





�

�






�





�

�

′′′
=

2

Re

�

1

~

~~
��

0

0

0

0

0

0

0

0

0

0

0

2

1

βρωρ

ερρ

νρ

ω

ρ

ρ

ω

ν

k

d

fc

b

tt

t

c

c

wwSc

VV

V

q
��

��

�

�

a

a

S         






�





�

�






�





�

�

∇∇

∇∇
=

ρωρ

νρν

ρω

σ

ω

ii

C

ii

cv

K

b

0

��

0

0

0

Re
2

S (4.261)

The invisicd local time step can be through of as the largest time step for that node according to 

the characteristics from Kinv.  The viscous local time step could be calculated in a similar manner 

from the eigenvalues of Kvis, but this process would be very expensive.  Alternative methods are 

available for diagonal-dominant matrices solved through iteration.   

The viscous matrix Kvis can be used to calculate local time steps appropriate for viscous stability.  

Neglecting the inviscid terms Kinv, �non-viscous� portion of the source term S, and artificial 

dissipation D, the remaining system represents the finite element equations when the element 

Reynolds number is very low.   

[ ]( ) [ ] 01

1

1 =∆+− +
+
+

i

nvisn

i

nC t UKUUM (4.262) 

[ ] [ ] i

nvisLn

i

n t 1

11

1 +

−+
+ ∆−≈ UKMUU       nn UU =+

0

1
(4.263) 



209 

[ ] [ ] [ ] [ ]( ) [ ] [ ]�
+

=
+

+

+
+
+ =++++=+=

1

0

0

1

1

1

1

1

i

j

n

j

n

i

n

ii

nn

i

n UAUAUAAIUAUU � (4.264) 

The system converges when [A]
k
 << [I], or the k+1

th
 term can be neglected.  The quickest 

convergence occurs for systems where the smallest value of k can be used to approximate the 

final value.  Convergence can be assured for a diagonally dominant system if the system matrix 

is less than unity:  Aii < 1.   

The viscous stiffness matrix Kvis is diagonal dominant.  Scaling by the inverse lumped mass 

matrix, which is primary diagonal, does not change the diagonal dominance.  A different ∆t can 

be applied to each row of the matrix so that the diagonal is less than unity:  Aii = ∆ti Kii / ML,ii < 1 

or ∆ti < ML,ii / Kii.   

The previous definition of the stiffness matrix can be simplified: 

[ ]
( )

( ) ���
++

+


�


�

�


�


�

�

+

Ω
−⋅


�


�

�


�


�

�
Γ

−

�


�

�


�


�

�

=
e

v

d

e

be

iiv

d

be

e

iv

T

im

di

i

i

nvis
d

n
d

A

A

A

d
SFFUK

1

,,

1

1

1

1

1

1
�

1

1

!

1
��� (4.264) 

where the subscript on the vector of 1�s designates the size of the vector.  The domain integrals 

contributed to d+1 unknowns equations while the boundary integrals contributed to d unknowns 

equations.   

Stability of Momentum Equations.  The momentum equations are differential equations of a 

vector space, whereas the other differential equations represent the transport of scalar properties.  

The momentum equations (designated by j) is discussed first: 



210 

( )( )

( )

( ) ( )�� ⋅Τ+

�


�

�


�


�

�
Γ

−Τ+

�


�

�


�


�

�

=

+

be

iijij

d

be

e

ijij

di

i

e

j n
d

A

A

d
u �

~

1

1
~

!

1

1

1

ρτρτρ α
α

��K (4.265)

( )

( )
( )

( )
( )

( )�� ⋅Τ+
∂

∂


�


�

�


�


�

�
Γ

−Τ+
∂

∂


�


�

�


�


�

�

=

+

be

iijij

e

d

be

e

ijij

e

di

i

j n
udu

A

A

d
�

~

1

1
~

!

1

1

1

ρτ
ρ

ρτ
ρ αα

α
��K (4.266)

The velocity gradients can be rewritten in terms of the conservative properties: 

( ) ( ) ( )
njn

A

Jn

u

inJ

u

iji uAu i

e

j

e

j ρρρ

ρ

ρ

ρ 11 ==∇=∇ (4.267) 

The velocity gradients are used to calculate the stress terms: 

( ) ( ) ( ) ijnk

n

k

eL

T

ni

n

j

nj

n

i

eL

T
ijij u

A

J
u

A
u

A

J
δρ

ρ

µµλ
ρ

ρ
ρ

ρ

µµ
ρτ ��

�

�
��
�

�−
+
�
�

�

�

�
�

�

�
��
�

�
��
�

�
+��

�

�
��
�

�+
=Τ+

ReRe

~ 3
2

(4.268)

( )
( ) ijk

n

k

eL

T
i

n

j

j

n

i

eL

T
ijij

e

A

J

AA

Ju
δδ

ρ

µµλ
δ

ρ
δ

ρ

µµ
ρτ

ρ ααα
α

��
�

�
��
�

�−
+�
�

�

�

�
�

�

�
��
�

�
��
�

�
+��

�

�
��
�

�+
=Τ+

∂

∂

ReRe

~ 3
2

(4.269)

which, in turn, are used to calculate the viscous fluxes.  The stiffness matrix K
(jα)

 represents the 

relationship between the jth momentum equation and αth velocity: 

( ) ( ) ( )�� −=
be

j

bemn

e

j

emn

j KK ααα
,,K (4.270)

( )

( )

�
�

�

�

�
�

�

�
��
�

�
��
�

�−
+�
�

�

�

�
�

�

�
��
�

�
��
�

�
+��

�

�
��
�

�+


�


�

�


�


�

�

=

+

ij

neL

T
i

n

j

j

n

i

eL

T

di

i

j

emn

A

J

AA

J
A

A

d
K δ

ρ

µµλ
δ

ρ
δ

ρ

µµ α
αα

α

ReRe!

1 3
2

1

1

, � (4.271)

( )
iij

neL

T
i

n

j

j

n

i

eL

T

d

bej

bemn n
A

J

AA

Jd
K �

ReRe
1

1
3
2

, ⋅
�
�

�

�

�
�

�

�
��
�

�
��
�

�−
+�
�

�

�

�
�

�

�
��
�

�
��
�

�
+��

�

�
��
�

�+


�


�

�


�


�

�
Γ

= δ
ρ

µµλ
δ

ρ
δ

ρ

µµ α
αα

α
�  (4.272)

Contributions from the element matrices (Kmn,e) and boundary elements (Kmn,be) are summed for 

all terms on the diagonal Kii.  These terms are then used to calculate the local ∆t necessary to 



211 

stabilize the u-, v-, and w-equations independently.  The minimum of these time steps is the local 

stability of the momentum equations. The other equations have similar stiffness matrices and 

thus similar stability.   

Stability of the Energy Equation.  The energy equation represents the transport of total energy ρE

and contains diffusion in the form of conduction.  Conduction is calculated using Newton�s law 

of cooling, which has been formulated with enthalpy h.  The enthalpy gradient is reformulated 

here in terms of the total energy: 

n

jj

e

injj

iii

K
uuE

J

A
K

uuE

xx

e

x

h
��
�

�
��
�

�
−−=��

�

�
��
�

�
−−

∂

∂
=

∂

∂
=

∂

∂

22 ρ

ρ
γ

ρ

ρ
γγ (4.273) 

�+��
�

�
��
�

�
��
�

�
��
�

�
+−=

∂

∂
��
�

�
��
�

�
+−=′′+′′ n

n

i

eT

T

LiT

T

L

ii E
A

Jx

h
Qq ρ

ρ

µµγµµ 1

PrPrRePrPrRe

1~
(4.274) 

The stiffness equation associated with the energy equation and total energy diffusion is: 

( )

( )

( ) ( )�� ⋅+′′−′′−

�


�

�


�


�

�
Γ

−+′′−′′−

�


�

�


�


�

�

=

+

be

iii

d

be

e

ii

di

i

e

ht nQq
d

Qq

A

A

d
E �

~

1

1
~

!

1

1

1

������ρK (4.275) 

( )

( )

( ) ( )�� ⋅′′+′′
∂

∂


�


�

�


�


�

�
Γ

+′′+′′
∂

∂


�


�

�


�


�

�

−=

+

be

iii

e

d

be

e

ii

e

di

i

ht nQq
Ed

Qq
E

A

A

d
�

~

1

1
~

!

1

1

1

ρρ
��K (4.276) 

( )
n

i

eT

T

L

ii

e

A

J
Qq

E ��
�

�
��
�

�
��
�

�
��
�

�
+−=′′+′′

∂

∂

ρ

µµγ

ρ

1

PrPrRe

~
(4.277) 

The stiffness matrix K(ht) represents the relationship between the energy equation and nodal total 

energy: 

( ) ( ) ( )�� −=
be

ht

bemn

e

ht

emn

ht KK ,,K (4.278) 



212 

( )

( )

( )

�
�
�

�
�
�


�


�

�


�


�

�

��
�

�
��
�

�
+=

+

+

+
1

1

1

1

1

1

,

1

PrPrRe!

1

d

dii

di

i

eT

T

L

ht

emn

AA

A

A

Jd ρρ

µµγ
��K (4.279) 

( ) ( )
i

d

dii

d

eT

T

L

beht

bemn n
AA

Jd
�

1

1
1

PrPrRe 1

1

1

1
, ⋅

�
�
�

�
�
�


�


�

�


�


�

�

��
�

�
��
�

�
+

Γ
=

+

+

ρρ

µµγ
��K  (4.280) 

where Kmn,e and Kmn,be represent the Laplacian 2∇  and gradient normal to the boundary n�⋅∇ .   

Stability of Turbulent Equations.  The turbulent transport equations contain diffusion and 

turbulent source terms (SA stability and k-ω cross-diffusion), which are calculated using 

gradients of the turbulent properties: 

( ) ( ) nn

A

JninJii
i

ee
A νρν ρρ

νρ
ρ
νρ �� 1�1� ==∇=∇ (4.281) 

( ) ( ) nn

A

Jn

K

inJ

K

ii KAK i

ee
ρρρ

ρ
ρ

ρ 11 ==∇=∇ (4.282) 

( ) ( ) nn

A

JninJii
i

ee
A ρωω ρρ

ρω
ρ

ρω 11 ==∇=∇ (4.283) 

The turbulent diffusion and source terms can be written generically: 

n

n

i

e

F

i

Fiv

A

J

C

x
C U

U
F ��

�

�
��
�

�
=��

�

�
��
�

�

∂

∂
=

ρρ,
          nin

e

iS

i

iSv A
J

C

x
C U

U
S

,

, =
∂

∂
= (4.284) 

( )
( )
( )

�


�

�

=+

=+

=+

=

ρωµσµ

ρµσµ

νρνρµ

ω

σ

U

U

U

for

Kfor

for

C

T

TkF

Re
1

Re
1

Re
1 ��

        


�


�

�

=∇

=

=∇

=

ρωρ

ρ

νρν

ρω

σ

ω U

U

U

forK

Kfor

for

C

i

C

i

c

iS

b

0

��
Re

,

2

(4.285) 

From this, the stiffness matrices are written generically: 

( ) ( ) ( )�� −=
be

turb

bemn

e

turb

emn

turb KK ,,K (4.286) 



213 

( )

( )

( )
( ){ }11

1

,

1

1

1

1

1

1

1
,

1

1

1!

1
+

+

+

+

+

�


�

�


�


�

�

+

Ω
−

�
�
�

�
�
�


�


�

�


�


�

�

= dii

d

e

iSe

d

dii

di

i

e

Fturb

emn AA
J

C

d

AA

A

A

J

C

d
K ����

ρρ
(4.287)

( ) ( )
i

d

dii

d

e

Fbeturb

bemn n
AA

J

C

d
K �

1

1

1

1

1

11
, ⋅

�
�
�

�
�
�


�


�

�


�


�

�
Γ

=
+

+

ρρ
��  (4.288) 

The turbulent stiffness matrices resemble the heat transfer and momentum matrices, in that they 

have element and boundary element matrices that represent Laplacian and normal-gradients.  

The turbulent stiffness also contains a source term matrix with considerations from an alternative 

gradient in CS,i.   

Generic Viscous Stability.  All of the finite element equations are scaled by the inverse lumped 

mass matrix ML
-1

 in the predictor-corrector: 

[ ] [ ]

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )�
�
�
�
�
�
�
�
�
�
�

�

	
























�

�

= −

ω
K

K

K

K

KKK

KKK

KKK

MA

0000000

0000000

0000000

0000000

00000

00000

00000

00000000

1

k

sa

ht

wwwvwu

vwvvvu

uwuvuu

L (4.289) 

The system matrix A is diagonal dominant under normal operating conditions.  The diagonal can 

now be used to determine the stability of the system.  The viscous local time step is calculated by 

inverting the terms on the diagonal: 

( )
( )k

ii

k

vis

CFL
t

A2
=∆ (4.290) 



214 

where k = 1 is density, k = 2, 3, and 4 are momentum; and etc.  The 2 in the denominator was 

selected through experimentation.  The minimum of the global, local inviscid, and local viscous 

time steps is chosen as the most stable local time step: 

( ) ( ) ( )( )821 ,...,,,, visvisvisinvloc ttttdtMINt ∆∆∆∆=∆ (4.291) 

With reasonable numbers for the viscosity ratio, eddy viscosity, Prandtl number, and other model 

properties, the heat transfer stability is generally the most sensitive, followed by the momentum 

equations and then the turbulence models.  For this reason, the viscous stability has been broken 

apart into four options: 

• itime = -1, uses the one-dimension simplification demonstrated below 

• itime = 0, only assesses the stability of the energy equation (heat transfer only) 

• itime = 1, assesses the momentum and heat transfer 

• itime = 2, assesses the momentum, heat transfer, and turbulence 

The method is more assured of stability and convergence for higher values of itime because more 

equations are checked.  Remember, the method developed here decoupled by the viscous 

equations by only considering the diagonal matrices, so the method is not unconditionally stable.  

The viscous stability is now controllable using CFL, like the inviscid stability, where CFL can be 

lowered to relax the solution.  So that the user can see how the stability is being affected by the 

equations, a ratio is written out for each of four successive comparisons: 

• htime, ratio of inviscid to heat transfer time;  

• vtime, ratio of momentum time to previous; 

• stime, ratio of turbulent (ω or ν) time to previous; and, 

• utime, ratio of local to global time steps. 

Each value represents the minimum ratio at any node in the domain.  utime is always checked, so 

it is written out in the first column.  If utime = 1, then the global time step is smaller than any of 



215 

the local time steps on the domain, and the global time step dt can be increased for efficiency.  

The remaining three values are tested with increasing levels of itime and are added in successive 

columns.  If any of the later columns are consistently listing unity, then the value of itime can be 

lowered to exclude those equation from the tests. 

A simple one-dimensional analogy was discussed for itime = -1.  This analogy will first be 

developed by considering a simple one-dimensional test case with equal sized elements.  Then 

the one-dimensional case will be expanded to multiple dimensions, using the minimum distance 

across the element.  This method is popular in the literature, but this research found that it�s 

application is limited. 

One-Dimensional Stability.  Consider a one-dimensional domain with two equal size elements of 

length le far from any boundary.  The density and other properties are constant on the domain.  

Ignoring the Cs-term, the stability matrix is 3x3 and derived: 

( ) ( )

�
�
�

�

	








�

�

−

−−

−

=
�
�
�

�
�
�

�
�
�

�
�
�++

=�
110

121

011

Re

2

2

12

1

11

12

113
4

ρρρ

µµλ

e

F

e eL

Tuu

l

CAA

A

A

l
K  (4.292)

[ ]
�
�
�

�

	








�

�

=�
�

	


�

�
=�

100

020

001

210

01

2

e

e

e
L

ll
M (4.293)

[ ] [ ] ( )[ ]
�
�
�

�

	








�

�

−

−−

−

=

�
�
�

�

	








�

�

−

−−

−

�
�
�

�

	








�

�

== −

110

1

011
2

110

121

011

100

00

001
2

2
1

2
1

22
11

ρρ e

F

e

F

e

uu

L
l

C

l

C

l
KMA (4.294)

Similar equations can be developed for the other equations so that an appropriate local time step 

for the center node would be: 



216 

                     
( ) ( )( ) ( )

T

eTTe

e

u
F ll

l

Cu

vist µµ
ρµµλµµρ

ρ

ρ ρ

+

−−+
−

≤+==∆ Re
1

ReRe4

1
2

2
1

2
3
22

2
1 375.02

( ) ( )( ) ( )( )
T

e

T

Te

e

E
F

T

e ll

l

CE

vis

l
t µµ

ρµµγρ

ρ

ρ
µµ

ρ ρ

+

−−

+ ≤+==∆≤ Re1

PrPrRe4

1
2

2
1Re 22

2
1

2

161.0125.0

( ) ( )( ) ( )( ) 1

Re
1

4

1
2

2
1�Re �166.0

2

2

�
1

2 −−

+ +==∆≤ νρµσ
ρ

ρ

νρ
µµ

ρ νρ
e

e

F

T

e l

l

C

vis

l
t

( ) ( )( ) ( )( )
T

ee

e

K
F

T

e l

TK

l

l

CK

vis

l
t µµ

ρρ

ρ

ρ
µµ

ρ µσµ
ρ

+

−−

+ ≤+==∆≤ Re1

Re
1

4

1
2

2
1Re 22

2
1

2

250.0212.0

( ) ( )( ) ( )( )
T

ee

e

F

T

e l

T

l

l

C

vis

l
t µµ

ρ
ω

ρ

ρ

ρω
µµ

ρ µσµ
ρω

+

−−

+ ≤+==∆≤ Re1

Re
1

4

1
2

2
1Re 22

2
1

2

500.0250.0

Notice that for air (λ* = -2/3; γ = 1.4, Pr = 0.7, PrT = 0.9) and given turbulence models (ρν < µT, 

σ = 2/3; σω = 2), the heat transfer is always smallest: 

( ) ( ) ( ) ( ) ( )ρωρρνρρ
µµ

ρ
vis

u

vis

K

visvis

E

vis

l
ttttt

T

e ∆≤∆≤∆≤∆≤∆≤+

�Re2

125.0  (4.295) 

The heat transfer equation can be used to assemble a quick stability check on orthogonal grids.  

For two- and three-dimensional domains, the minimum distance across an element is used in 

place of the element length.  The minimum distance across an element is found using the 

�volume� of the element and maximum �area� of one of its faces: 

),,(

2

23,13,12,

2min,

fff

e
D

lllMAX

A
h = (4.296) 

),,,(

3

234,134,124,123,

3min,

ffff

e
D

AAAAMAX

V
h = (4.297) 

The one-dimensional analogy has been adequate for orthogonal grids, whether mathematically 

generated on the entire domain or just in the near-wall region.  If the viscous gradients are strong 

outside of the orthogonal regions of the mesh, a more robust (itime > 0) method should be used. 

Generic Form.  A generic form was implemented in NS2D and NS3D.   

( ) ( ) ( )�� −=
be

a

bemn

e

a

emn

a KK ,,K (4.298) 



217 

( ) { } inied

n

n
jme

n

jn

mj

n

in
imeemn A

A
A

A
A

A
AK ,1

*

, 1 σ
ρ

φ
ρ

εδ
ρ

ψ α
αα +−+��

�

�
��
�

�
+= (4.299) 

( ) { } �
�
�

�
�
�
�

�
+��
�

�
��
�

�
+= j

n

n
be

n

jn

ji

n

in
bedbemn n

A
n

A
n

A
K ���1*

, ρ
ζ

ρ
εδ

ρ
θ α

αα (4.300) 

e

F
e

Jd

C

!

1=ψ      
e

F
e

Jd

C

!

2=φ         
e

iSe
ie

J

C

d

,

,
1+

Ω
=σ (4.301) 

e

Fbe
be

J

C

d

1Γ
=θ

e

Fbe
be

J

C

d

2Γ
=ζ (4.302) 

( )
( )
( )

( )
( )




�




�

�

=+

=+

=+

=+

=+

=

ρωµσµ

ρµσµ

νρνρµ

ρ

ρµµ

ω

σ

µµγ

U

U

U

U

U

for

Kfor

for

Efor

ufor

C

T

Tk

jT

F

T

T

Re
1

Re
1

Re
1

PrPrRe

Re
1

1
��        





�




�

�

=∇

=

=∇

=

=

=

ρωρ

ρ

νρν

ρ

ρ

ρω

σ

ω U

U

U

U

U

forK

Kfor

for

Efor

ufor

C

i

C

i

c

j

iS
b

0

��

0

0

Re,
2

 (4.303) 

( )

�
�
� =−

=
otherwise

ufor
C

jT

F
0

3
2

Re
1

2

ρµµλ U
  

�
�
� =

=
otherwise

ufor j

0

1 ρ
ε

U
(4.304) 

The subscripts j and α are equal and correspond to the component of momentum (u, v, w).  For 

heat transfer or turbulence stability, j and α have no special meaning, but j equals α creates the 

Jacobian and normal gradient that represents the diffusion terms. 

Two-Dimensional Stability.  Now consider a two-dimensional domain with an arbitrary 

geometry (element distribution) and a progressing solution.  The viscous stability matrix is 

assessed: 



218 

( )

��

��

��

��

��

�
�
�

	





�

�
−

�
�
�

	





�

�
−

�
�
�

	





�

�
−

�
�
�

	





�

�
−

�
�
�

�

	








�

�

−

�
�
�

�

	








�

�

−

�
�
�

�

	








�

�

+
�
�
�

�

	








�

�

+

�
�
�

�

	








�

�

+

�
�
�

�

	








�

�

=

be
ebe

AAA

AAA

e

jFbe

ebe
be

AAA

AAA

e

Fbe

be
ebe

AAA

AAA

e

jyFbe

ebe
be

AAA

AAA

e

jxFbe

e

e

S

e

e

S

e

e

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

e

F

e

e

AAA

AAA

AAA

e

F

e

e

AAA

AAA

AAA

e

jF

e

e

AAA

AAA

AAA

e

jF

A

nCl

A

nCl

A

nCl

A

nCl

AAA

AAA

AAA
C

AAA

AAA

AAA
C

AAA

AAA

AAA

A

C

AAA

AAA

AAA

A

C

AAA

AAA

AAA

A

C

AAA

AAA

AAA

A

C

jjj

jjj

jjj

jjj

jjj

,

2

,

1

,

1

,

1

232221

232221

232221

2,

131211

131211

131211

1,

333

222

111

2

333

222

111

1

232323

222222

212121

1

131313

121212

111111

1*

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

23

2

22

1

21

3

23

2

22

1

21

3

13

2

12

1

11

3

13

2

12

1

11

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

23

2

22

1

21

3

23

2

22

1

21

3

23

2

22

1

21

3

13

2

12

1

11

3

13

2

12

1

11

3

13

2

12

1

11

4

�

4

�

4

�

4

�

66

44

44

ρρρ

ρρρ

ρρρ

ρρρα

ρρρ

ρρρα

ρρρ

ρρρα

ρρρ

ρρρ

ρρρ

ραραρα

ραραρα

ραραρα

ρρρ

ρρρ

ρρρ
α

ρρρ

ρρρ

ρρρ
α

ααα

ααα

ααα

ααα

ααα

ε

δδ

ε

δδ
K

(4.305) 

[ ] �
�
�
�

�

	








�

�

=
e

e

e
L

A

100

010

001

3
M   

( )
( ) ( )k

iivis

iiL

k

iivis

k

vist
,

,

, 22

1

K

M

A
==∆ (4.306) 

For efficiency, only the diagonal terms (i = j) are added to the global matrix.  Stability is tested 

on the heat transfer (k = 4), momentum (k = 2, 3; j = α = 1, 2), and turbulence model (k = 5 or 7).  

The values of CF1, CF2, and CS,i change with the test.  The four tests have been listed in order of 

likelihood of instability and the order of implementation in itime.   

Three-Dimensional Stability.  Now consider a three-dimensional domain with an arbitrary 

geometry (element distribution) and a progressing solution.  The viscous stability matrix is 

assessed: 



2
1
9

 

(
)

(
)

(
)

*
*

*

b
e

e
K

K
K

−
=

(4
.3

0
7
)

(
)

e

e

S

e

e

S

e

e

S

e

e

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

A

j

e

F

e

e

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

e

F

e

e

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

ej
F

e

e

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

ej
F

e

e

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

ej
F

e

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

V

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

V

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

V

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

V

C

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

V

C

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

�
�

�
�

�
�

�
�

���� �	





 ��

−

���� �	





 ��

−

���� �	





 ��

−

����� �	






 ��

+

����� �	






 ��

+

����� �	






 ��

+

����� �	






 ��

+

����� �	






 ��

=

3
4

3
3

3
2

3
1

3
4

3
3

3
2

3
1

3
4

3
3

3
2

3
1

3
4

3
3

3
2

3
1

3,

2
4

2
3

2
2

2
1

2
4

2
3

2
2

2
1

2
4

2
3

2
2

2
1

2
4

2
3

2
2

2
1

2,

1
4

1
3

1
2

1
1

1
4

1
3

1
2

1
1

1
4

1
3

1
2

1
1

1
4

1
3

1
2

1
1

1,

4
4

4
4

3
3

3
3

2
2

2
2

1
1

1
1

2

4
4

4
4

3
3

3
3

2
2

2
2

1
1

1
1

1

3
4

3
4

3
4

3
4

3
3

3
3

3
3

3
3

3
2

3
2

3
2

3
2

3
1

3
1

3
1

3
1

1

2
4

2
4

2
4

2
4

2
3

2
3

2
3

2
3

2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

1

1
4

1
4

1
4

1
4

1
3

1
3

1
3

1
3

1
2

1
2

1
2

1
2

1
1

1
1

1
1

1
1

1
*

2
4

2
4

2
4

3
6

3
6

3
6

3
6

3
6

44

33

22

11

44

33

22

11

44

33

22

11

44

33

22

11

44

33

22

11

44

33

22

11

44

33

22

11

44

33

22

11

43
4

33
3

23
2

13
1

43
4

33
3

23
2

13
1

43
4

33
3

23
2

13
1

43
4

33
3

23
2

13
1

42
4

32
3

22
2

12
1

42
4

32
3

22
2

12
1

42
4

32
3

22
2

12
1

42
4

32
3

22
2

12
1

41
4

31
3

21
2

11
1

41
4

31
3

21
2

11
1

41
4

31
3

21
2

11
1

41
4

31
3

21
2

11
1

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
α

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

α

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

α

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

ε
δ

δ
δ

K

(4
.3

0
8
)

       219



220 

( )

�

��

��

�
�
�

�

	








�

�

+

�
�
�

�

	








�

�

+

�
�
�

�

	








�

�

+

�
�
�

�

	








�

�

+

�
�
�

�

	








�

�

=

be

ebe

AAAA

AAAA

AAAA

e

jFbe

be

ebe

AAAA

AAAA

AAAA

e

Fbe

be

ebe

AAAA

AAAA

AAAA

e

jzFbe

be

ebe

AAAA

AAAA

AAAA

e

jyFbe

be

ebe

AAAA

AAAA

AAAA

e

jxFbe

be

V

nCA

V

nCA

V

nCA

V

nCA

V

nCA

jjjj

jjjj

jjjj

,

2

,

1

,

1

,

1

,

1*

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

4

34

3

33

2

32

1

31

4

34

3

33

2

32

1

31

4

34

3

33

2

32

1

31

4

24

3

23

2

22

1

21

4

24

3

23

2

22

1

21

4

24

3

23

2

22

1

21

4

14

3

13

2

12

1

11

4

14

3

13

2

12

1

11

4

14

3

13

2

12

1

11

18

�

18

�

18

�

18

�

18

�

ρρρρ

ρρρρ

ρρρρ

ρρρρ

ρρρρ

ρρρρ

α

ρρρρ

ρρρρ

ρρρρ
α

ρρρρ

ρρρρ

ρρρρ
α

ρρρρ

ρρρρ

ρρρρ
α

αααα

αααα

αααα

εδ

δδ
K

(4.309)

[ ] �
�
�
�
�

�

	










�

�

=
e

e

e
L

V

1000

0100

0010

0001

4
M   

( )
( ) ( )k

iivis

iiL

k

iivis

k

vist
,

,

, 22

1

K

M

A
==∆ (4.310) 

For efficiency, only the diagonal terms (i = j) are added to the global matrix.  The stability is 

tested on the heat transfer (k = 5), momentum (k = 2, 3, 4; j = α = 1, 2, 3), and turbulence 

model (k = 6 or 8).  The values of CF1, CF2,  and CS,i change with the test.  The five tests have 

been listed in order of likelihood of instability and the order of implementation in itime.   

Testing.  Local viscous time stepping was used to stabilize several of the cases demonstrated 

in later chapters of this work.  Without viscous time stepping, the solution could only be 

stabilized with very small CFL numbers (on the order of 10
-4

) or global time steps.  NS3D 

was also tested with only two-dimensional stability.  The resulting solution was stable in the 

2D plane but still unstable in the cross-flow direction.  When three-dimensional stability was 

implemented, the entire solution was stabilized.  The 1D stability equations (Eqs. 4.295 

through 4.297) were shown to be stable to orthogonal meshes (Cartesian aligned) over a flat 

plate.  The 1D equations need to be tested for a generic mesh with viscous wall packing. 



221 

CHAPTER V 

IMPLEMENTATION 

The previous chapter developed the discretized equations necessary for this work.  This 

chapter discusses how those equations were implemented in this work and the implications of 

those equations.  The development is expanded here when necessary.  This chapter outlines 

the development of the in-house codes and CFDsol during this work.  The implementation of 

propulsion and turbulence models is discussed.  Memory requirements and run time compari-

sons are discussed along with the support software developed and used during this work.  

5.1 In-House Codes 

Much work was done in the in-house OSU codes during the course of this work.  This work 

was done in parallel with Sukraw (2008), Brown (2009), Walters (2009), Pinkerman (2010), 

O�Neill (2011), Hassett, and others.  To begin, Euler2D and Euler3D were adapted to be 

more user-friendly when editing the code and reusing the routines that already existed in the 

codes.  Euler2D was updated with Euler3D, since the work after Cowan (2003) had only 

occurred in Euler3D.  Propulsion models and acoustic outputs were added to Euler2D and 

Euler3D.  The rigid body model in Euler3D was upgraded to include all of the terms read 

from its input files.  Viscous terms were added to Euler2D and Euler3D to create NS2D and 



222 

NS3D, respectively.  The viscous terms were added simultaneously with propulsion and 

acoustic testing.  As routines were upgraded in the inviscid codes, these routines were 

mirrored into their viscous counterparts.  Finally, SA and SST turbulence models were 

implemented and tested, first in NS2D and then in NS3D.  Artificial dissipation needed to be 

added to both models, and the routines already used in the codes were adapted to handle 

turbulence variables.  Other problems arose along the way, like energy balance, plotting, and 

initial conditions.  Viscous local time stepping was developed and implemented.  All of these 

topics will be discussed in brief.  The input and output file formats for the most current 

versions of the codes are shown in Appendix C (Euler2D), D (NS2D), E (Euler3D), and F 

(NS3D). 

5.1.1 General Changes 

Many changes were made to Euler2D and Euler3D before the bulk of this work occurred.  

Euler2D was updated with Euler3D.  This included pushing back features, such as run time 

print outs to the screen, residual studies, restart options and files, etc.  Convergence and 

divergence checking were added to both Euler2D and Euler3D using rsdtol and  rsdmax.  

These features are available to exit the cycles and iterations early.  The solvers also exit early 

if the residual becomes equal to NAN or INFINITY (test_NAN and test_infinity in utils).   

The constants were updated to be double precision.  Rational numbers were left in place, 

while the irrational numbers were turned into parameters.  For example, the number 1/3 was 

stored as the parameter �c13� so that the compiler calculates 1/3 in double precision and 

compiles it in place in the code like the rational numbers.   



223 

Cowan implemented the lumped mass matrix scaled by all of the constants seen in all contri-

butions to the residual vector.  Cowan did this to minimize computations, but this left the 

code ambiguous to those adapting the residual.  The lumped mass matrix is now stored in its 

true form and the constants are applied to the appropriate components of the residual.  

Locations where the constants could not be applied to match the development are marked 

with comments. 

Cowan created a single routine (solve2d_1pt and solve3d_1pt) in each solver to assemble the 

residual vectors and update the unknowns during each iteration.  This same routine also 

calculated the local time steps and called for artificial dissipation.  These routines were split 

into 8 subroutine calls: 

• dt_calc   :: local time step calculations 
• flux_src_1pt :: unsteady, flux integrals, and source terms 
• inv_wall_1pt :: inviscid wall boundary integrals 
• sym_plane_1pt :: symmetry plane boundary integrals 
• far_field_1pt :: far field boundary integrals 
• rhs_flow_tang :: flow tangency applied to RHS vector 
• pc_update  :: predictor-correction update of unknowns 
• rsd_calc  :: RMS of residuals 

Further, the correction of boundary fluxes using Riemann invariants was also moved from 

far_field_1pt to riem_inv, which would be used to construct later boundary integrals.  The 

previous list of subroutines were used to pull apart solve2d_3pt and solve2d_4pt.  Only the 

flux integrals and source terms were integrated using second order quadrature.  In Euler2D, 

higher order quadrature was adapted into solve2d_npt that is capable of integrating with one, 

three, or four Gauss points.  The domain integrals, source terms, and inviscid boundary 

integrals are adapted to the number of Gauss points:  flux_src_npt and inv_wall_npt.  The 

other boundary integrals are evaluated using the single point routines.  solve2d_cont was also 



224 

created with analytical integrals that are developed in Appendix B and implemented in 

flux_src_cont and inv_wall_cont.  Analytical integrals are used when ipnt = 0. 

Time step tracking was added in two forms:  The number of cycles required to converge the 

energy residual to rsdtol is written to case.cyc.  The ratio of local time steps is written to 

case.time.  For the inviscid codes, the ratio of local to global time steps is written to the file.  

This ratio utime can be used by the user along with the number of cycles in case.cyc to 

determine an appropriate global time step and number of cycles per step.  Later the ratio of 

different viscous local time steps to the previous local time step is written so that the user can 

determine an appropriate viscous time stepping scheme. 

5.1.2 Upgrade to Rigid Body Dynamics Model 

Cowan (2003) developed the original rigid body model, and O�Neill (2005) adapted that 

model to use quaternions instead of Euler angles.  The rigid body model read mass, stiffness, 

and damping matrices from the case.dyn.  The mass matrix included the mass of the body 

along the diagonal of the translational DOFs and inertial matrix for the rotational DOFs.  The 

mass matrix was not checked for consistency in body mass and assumed y-symmetry in the 

inertial matrix, although the matrix was inverted as though fully populated.  The inverted 

matrix was only applied to part of the rotational motion equation.   

The current implementation  

• checks the mass matrix for consistency in vehicle mass;  

• reads, inverts, and applies the entire inertial matrix without assumptions;  

• reads the entire damping and stiffness matrices but applies only the diagonal when 

updating the rotational DOF; and, 

• corrected the nonlinear rotation terms to include the full inertial matrix. 



225 

The stiffness and damping matrices are limited in their use.  The two matrices use the global 

position and velocity to contribute to the forces and moments on the body.  These terms are 

not appropriate for free flying vehicles.  The damping matrix has been used to model a 

drogue chute on a reentry vehicle.  The stiffness and damping terms are most useful in 

modeling semi-stationary cases, like wind tunnel models. 

All of the components discussed here have been verified using analytical means.  These new 

features need to be tested on complex (asymmetric) vehicles and motion. 

5.1.3 Creation of NS2D/3D 

Viscous terms were added to Euler2D and Euler3D to create NS2D and NS3D.  Several new 

controls, sizes, and arrays were added, and some of the existing arrays were enlarged to 

contain necessary information.  The viscous wall boundary conditions and viscous flux 

integrals are added to the existing routines.  Viscous and propulsion momentum were added 

to get_force.  One new routine was added:  read_temp_bc, which reads and stores the heat 

transfer boundary conditions.  The viscous terms utilize many common factors in their 

denominators.  Special care was used to minimize the number of divisions in the final 

implementation.  Finally, viscous local time stepping was added to the model.  All of these 

features are described here. 

Six viscous controls were added and one control was removed in the conversion.  The 

obvious controls are Reynolds number Re and Prandtl number Pr, which are included in all 

of the viscous equations in Chapters 3 and 4.  The Reynolds number is calculated using free-

stream properties and the reference length refdim:  ∞∞∞= µρ /Re LV .  The viscosity is 

controlled through two values:  Smod and lamb.  Smod is the modified Sutherland�s 



226 

coefficient, which is used to control how viscosity varies with temperature (described in 

Section 5.1.6).  lamb is the ratio of second to first viscosity, which must be greater than -2/3.  

The lower limit is generally assumed in other CFD solvers, but lamb has been left for the 

user to control for further research into how lamb can be used in shock capturing.  The zero 

dissipation length dislen is used to scale down the artificial dissipation near solid walls.  

dislen is discussed in Section 5.1.5.  itime was expanded to include viscous local time 

stepping, which is discussed later in this section.  The temperature boundary conditions are 

read from the case.tbc file when itempbc is set to true.  Finally, NS2D and NS3D are 

evaluated using one point quadrature so ipnt is removed (more precisely restricted to 1). 

Two new geometry arrays were added, and two original arrays were amended to handle the 

additional geometry required for viscous analysis.  IBEL originally contained the nodes 

defining each boundary element and the surface index to which that surface belongs.  The 

stress on the adjacent element is used to evaluate the stresses along the boundary; this index 

is stored as the last entry in IBEL as read from the case.g2d or case.g3d.  Moffitt (2004) used 

the element index to calculate the gradients while evaluating the boundary element.  A faster 

method is to evaluate the boundary elements attached to a domain element, just after the 

domain element has been evaluated.  To accomplish this, IELM was expanded to include two 

pointers to possible boundary elements for NS2D and three pointers for NS3D.  The 

minimum distance to the wall was needed for turbulence modeling.  The wall distance 

DWALL was calculated as the shortest distance between the node of interest and a wall node.  

A characteristic length for each element was needed for viscous stability.  The minimum 

distance between the face of an element and its opposing vertex was stored in XLE.  This 



227 

distance was calculated using Eqs. 4.296 and 4.297 for NS2D and NS3D, respectively.  All 

of this occurs in geom2d and geom3d. 

Several viscous and propulsion pointers were stored to minimize the calculations during each 

step.  The number of viscous wall nodes nwlv and number of viscous singular nodes nsdv are 

stored in the case.g2d and case.g3d along with the limits for the viscous wall elements 

LBE(7:8).  The limits for propulsion boundary elements were calculated within the routine 

and stored as LBEpr1 for the lower limit and LBEpr2 for the upper limit, using the number of 

rocket and engine boundary elements.  (These propulsion limits will be explained later.) 

1)6(1 += LBELBEpr  (5.1)

( )( ) ( )( )::12 NENGOsumNRKTsumLBEprLBEpr ++=  (5.2)

These limits are used to define the ranges for applying the no-slip condition and viscous 

contributions to wall elements.  The nodes and boundary elements in the geometry files were 

organized by Cowan to minimized searching and pointers.  Figure 5.1 shows the organization 

of nodes in the geometry files, and Figure 5.2 shows the organization of boundary elements.  

Cowan stacked the wall nodes at the beginning of the COOR array.  This work moved the 

viscous wall nodes to the middle of that array.  The wall nodes are organized so that viscous 

geometry files can be used in inviscid simulations without any adaptation.  The number of 

singular viscous wall nodes is important only as a pointer to track the beginning of the 

viscous nodes.  The limits on flow tangency and no-slip are given in Eqs. 5.3 and 5.4.  These 

two conditions are applied using Eqs. 4.90 and 4.95, and then the total enthalpy is corrected 

using Eqs. 4.94 and 4.96.  Similarly, the residual is reset to zero when Eq. 4.95 is applied: 

nwlvnsdvnsdnwlindinv −+−≤≤1 (5.3)



228 

nsdvnsdnwlindnwlvnsdvnsdnwl vis +−≤≤+−+− 1 (5.4)

Figure 5.1:  Organization of Nodes in case.g2d and case.g3d. 

Figure 5.2:  Organization of Boundary Elements in case.g2d and case.g3d. 

After the contributions from a domain element have been added to the residual vector RHS in 

flux_src_1pt, the contributions along any viscous boundary elements attached to that domain 

element are also added to the residual.  The pointers at the end of IELM are used to determine 

what boundary elements (if any) are attached to each element.  If the pointer(s) are non-zero, 



229 

then the boundary element is identified with walls LBE(1:2), far field LBE(5:6), or 

propulsion planes LBEpr1 to LBEpr2.  These elements are all handled by using the stresses 

and heat fluxes from the adjacent element to calculate the boundary normal fluxes (Eqs. 4.88, 

4.89, 4.99, and 4.133).  For symmetry planes LBE(3:4), the normal velocity and normal 

derivatives are removed from the stresses and heat fluxes using Eq. 4.101 along with Eqs. 

4.111 through 4.113 in NS2D and Eqs. 4.116, 4.119, and 4.128 in NS3D.   

Heat Transfer Boundary Conditions.  Heat transfer conditions have been applied in NS2D 

and NS3D, although the conditions in NS2D have only been loosely verified.  Three 

boundary conditions are available:   

• Adiabatic wall :: the heat flux is assumed to be zero for boundary integrals 

• Specified heat flux :: the user specifies the heat flux by boundary element 

• Specified temperature :: the user specifies the enthalpy as wall nodes 

Adiabatic walls are the default condition and are assumed even if the other two conditions 

are assigned.  The user can override the heat flux on nbeq specific elements through their 

entry in the case.tbc file.  The user can override both of these conditions by specifying the 

enthalpy at nwlt wall nodes using the case.tbc file.  This enthalpy was originally ramped over 

ntemp iterations; but, after the application of viscous local time stepping, the wall enthalpy is 

applied in the first iteration.  If the temperature boundary conditions flag itempbc is set to 

true in the case.con, then the boundary conditions file case.tbc is read within read_temp_bc.  

The heat flux for all boundary elements is stored in QWALL, which is initialized to zero and 

replaced as specified in case.tbc.  The treatment of wall nodes is stored TWALL with pointers 

in ITWL.  The heat fluxes are applied to wall elements in flux_src_1pt, and the enthalpy is 



230 

constrained at specified wall nodes in set_bound using Eq. 4.97.  Because testing is required, 

a warning is issue to the screen when these conditions are being applied. 

Minimization of Division.  Division is very costly so efforts have been taken to reduce the 

occurrence of division while maintaining readability and accuracy of the codes.  Irrational 

numbers like 1/3, 1/6, 1/12, and 1/24 have been assigned to parameters, which are inserted 

into the code during compile.  Several controls are repeated as division:  Cowan converted 

1/dt to dt1 and gam-1 to gm1.  Similarly, this work has converted gam/gm1 to gg1.  Similarly 

the viscous controls Re, Pr, PrT, and dislen have inverses Re_1, Pr_1, PrT_1, and dislen_1.  

Any repetition a particular division is stored as its inverse in denom and then applied through 

multiplication.  The original code has been kept as a comment above the adapted version.   

Viscous Local Time Stepping.  Viscous local time stepping has been applied in a series of 

similar subroutines using the equations in Section 4.5.4.  If 1−=itime  (or the default is used), 

then the path diverts to dt_calc_visc_le, which assembles the viscous local time steps using 

the minimum of Eq. 4.295.  If 0≥itime , then Eq. 4.290 is used to evaluate the time steps 

through the viscous stiffness matrix.  For 0≥itime , the heat transfer matrix is assembled in 

dt_calc_visc_heat using Eqs. 4.298 through 4.304, where j = α = 1.  For 1≥itime , the 

momentum matrices are assembled in dt_calc_visc_mom using the same equations, where j = 

α is the component of momentum being tested.  For 2=itime , the appropriate turbulence 

matrix is assembled in dt_calc_visc_SA or dt_calc_visc_SST, using the same equations and j

= α = 1.  The nodal local time step is calculated using Eq. 4.291.  As the different tests are 

made, the minimum ratio of time steps is evaluated and written to the case.time.  The 

organization of this file is described in Appendix D and F. 



231 

5.1.4 Proper Tracking of Total Energy / Pressure 

The velocity along symmetry and solid wall boundaries is often reduced to maintain the 

appropriate conditions along the boundary.  If the total energy and enthalpy is not maintained 

properly, pressure and temperature gradients are artificially created along these boundaries.  

Eqs. 4.94 and 4.96 are used to adapt the total properties and maintain consistent static 

properties as velocity constraints are applied to walls and symmetry planes.

5.1.5 Zero Dissipation Length 

Artificial dissipation affects the solution in a similar manner to viscous dissipation.  This 

effect is most noticeable near the wall, where the shear stress is changed by the presence of 

artificial dissipation.  Figure 5.3 shows the velocity profiles from a laminar boundary layer 

(M = 0.3, 800 < Rex < 3200) with and without artificial dissipation for the same mesh.  The 

solution without artificial dissipation matches the theoretical velocity profile, skin friction, 

and thickness very well.  Artificial dissipation attempts to reduce gradients in the flow, 

including those near the wall.  The result is a reduced shear stress and velocity throughout the 

boundary layer.  The thickness of the boundary layer also increases.   

Figure 5.3:  Laminar Velocity Profiles from NS2D with diss = 1.0 (Left) and 0.0 (Right). 



232 

The artificial dissipation is necessary in the external 

flow for capturing shocks and other flow features.  

Within the boundary layer, the opposite is true.  

Artificial dissipation reduces the skin friction, thickens 

the boundary layer, and adds error to the near wall 

solution.  We desire to have artificial dissipation in the 

external flow but no extra dissipation in the boundary 

layer, especially near the wall.   

The artificial dissipation in NS2D and NS3D was scaled 

by the function shown in Figure 5.4.  The effective 

dissipation disseff is zero over a distance dislen near the wall.  A cosine function is used to 

spline to the external flow over four dislen�s.  The scaled model does not provide the neces-

sary stability at the onset of a new solution, so the function is ramped down from unity to that 

shown in Figure 5.4 over 100 iterations.  disseff  is calculated in the routine diss_scalar. 

The new model works well in NS2D for dislen equal to half of the maximum boundary layer 

thickness, giving results similar to Figure 5.3 without any artificial dissipation.  dislen is 

always active as a control, but the effect can be removed by setting dislen equal to 10-20. 

5.1.6 Sutherland's  

The viscosity µ is calculated from the freestream Reynolds number and scaled according to 

Sutherland�s law (Eq. 3.223).  Sutherland�s coefficient S has been modified to remove its 

dimensions (Eq. 3.226).  Smod can be set to zero to avoid the use to Sutherland�s equation.  

The viscosity ratio is set to unity when Smod is zero.  If Smod is positive, then Sutherland�s 

Fig. 5.4:  Effective Dissipation. 



233 

equation is applied in suther, using Eq. 3.30 to calculate the local and freestream enthalpy.  

The thermal conductivity k is scaled from viscosity using the Prandtl number (Pr = µ cp / k), 

which is constant for a given problem.   

5.1.7 Acoustic Output Files 

The acoustic output files report density, velocity, and pressure data at a series of points 

defined by points and lines in space.  The points exist in an element in the domain and are 

therefore interpolated from its points.  The lines cross one or more elements in the domain 

and are interpolated where the line enters and leaves each element, along the segments 

between its nodes.  The mathematics for calculating the acoustic points and lines in 2D and 

3D can be found in Appendix G and H, respectively.  The mathematics are setup in 

read_acoustics and utilized between iterations in write_acoustics.   

The acoustic data is stored in four new arrays and two new sizes:  The number of acoustic 

points is tracked in nacp, and the number of lines is kept in nacl.  The maximum number of 

pointers per acoustic line is stored in mxac, which is hard coded just become the acoustic 

arrays are sized.  The files to be written out are stored in the array IOUT, which corresponds 

to the files: case.rac, case.pac, case.uac, case.vac, and (for the 3D codes) case.wac.  These 

files store data for density, pressure, and velocity, respectively, at all locations specified in 

the acoustics input file case.acst.  The data is written to the output files after every iteration.  

The number of points in each acoustic line is stored in NLN.  IACST holds all of the element 

indices for nacp acoustic points followed the elements crossing the acoustic line.  RACST

gives the local coordinates that are used to interpolate within the element specified by IACST.  



234 

5.2 NASA-CFDsol 

Several adaptations were made to CFDsol during the NASA contract.  Changes to the far 

field boundary, artificial dissipation, and update equation were discussed in Sections 4.2.3.1, 

4.2.6.1, and 4.2.7.2 of Chapter 4, respectively.  The other adaptations are discussed here.  As 

the kinetic energy along solid walls and symmetry planes is adapted to constrain the velocity, 

the total energy has been adapted to maintain constant pressure.  Rigid body and elastic 

deformations were added to the solver using routines from Euler3D.  The viscous contribu-

tions, Sutherland�s equation, and artificial dissipation were adapted to increase the accuracy 

of viscous simulations.  Propulsion models were also added, and the SA turbulence model 

was corrected.  These features are discussed in later sections. 

5.2.1 Proper Tracking of Total Energy / Pressure 

Similar to the OSU in-house codes, the total energy along solid walls and symmetry planes 

must be adapted as flow tangency (Eq. 4.90) and the no-slip (Eq. 4.95) conditions are 

applied.  The total energy is stored in CFDsol and used to calculate the pressure at specific 

times.  If the total energy is corrected to exclude the lost kinetic energy, then the pressure 

will not change.  The total energy is corrected using Eqs. 4.94 and 4.96. 

5.2.2 Non-Inertial Frame and Rigid Body Dynamics Model 

The source terms applied with one Gauss point (Eq. 4.216) can be found in flux_src_1pt in 

the OSU in-house codes.  Likewise, the rigid body model (Eqs. 3.254 through 3.268) 

comprises half of asedrv.  The other half of the routine is the modal elastics model.  These 

routines were transferred from Euler3D into CFDsol and then adapted to the different array 

structures used in CFDsol.  The model was then verified by two simple test cases. 



235 

Steady Conditions over Airfoil.  The non-inertial source terms were divided into three 

categories for testing:   (1) Rotation of the frame; (2) constant velocity on the frame with 

freestream velocity; and  (3) constant velocity of the frame alone.  The NACA 0012 airfoil 

was tested at Mach 0.3, 5-degrees angle-of-attack as a baseline case.  Each of the three cases 

was tested to generate a motion at the far field equivalent to the baseline.   

In the first case, the freestream velocity was applied using ifree and then the frame was 

rotated by 5 degrees, simulating the angle of attack.  (The mesh is shown in Figure 6.1 in the 

Chapter 6.)  The results of the rotated frame (as �Non-Inertial, 5 deg�) are shown in Figure 

5.5 in comparison to the baseline case (as �Inertial�).  The two distributions compare very 

well, as expected since the far field velocity in the non-inertial frame has been rotated using 

B to have the same effects as applying an angle-of-attack in the inertial frame. 

In the second case, the freestream velocity was applied using ifree and the frame was given a 

vertical velocity to create an equivalent angle-of-attack.  The vertical velocity was calculated: 

087489.05tan −≈−= ∞
o

t Vw

This mesh velocity creates a far field with an equivalent angle-of-attack but larger velocity 

magnitude (approx. 0.4%).  The magnitude change is small so that its effects will be 

negligible.  The results of the vertical mesh velocity (as �Non-Inertial, vel w/ free�) are 

shown in Figure 5.5.  The distribution compares well to the baseline as expected since the far 

field velocity has an equivalent angle of incidence and only a slight change in magnitude. 

In the final case, the freestream velocity was not used (ifree was turned off).  Instead the 

velocity was created using the mesh velocity alone:   



236 

�
�

�
�

�

�
�

�
�

�

−

−

≈
�
�

�
�

�

�
�

�
�

�

−=
�
�

�
�

�

�
�

�
�

�

= ∞

087489.0

0

1

5tan

0

1

0
o

t

t

t V

w

u

V
�

The far field velocity is equivalent to the previous case.  The results of the total mesh 

velocity (as �Non-Inertial, vel no free�) are shown in Figure 5.5.  The distribution compares 

well to the baseline as expected since the far field velocity has an equivalent angle of 

incidence and only a slight change in magnitude.  The solution is approaching the baseline 

solution but takes longer to converge.  Stability is a particular concern because of the 

convergence rate of the solution, seen in the noise in the final solution.  These three cases 

demonstrate the effectiveness of the non-inertial source terms and show that the 

implementation is correct. 

Figure 5.5:  Pressure over NACA 0012 Airfoil (CFDsol, Inviscid, Non-Inertial). 

Translating and Rotating Domain.  The non-inertial source terms were also tested under 

constant velocity, acceleration, and system dynamic scenarios.  The non-inertial solution was 



237 

shown to be stable under translation and rotation.  Figure 5.6 shows a snapshot of the 

velocity solution for an empty spherical domain under translation and rotation.  Time 

accuracy was also tested.  The system model was tested by isolating the terms:  Mass 

inversion, stiffness, and damping.  The translational and rotational terms were tested 

separately and in conjunction.  Particular attention was paid to the inversion of the inertial 

matrix.  Exact analytical solutions were used for comparison.  

          

Figure 5.6:  Empty Domain under Non-Inertial Translation (Left) and Rotation (Right). 

5.2.3 Structural Dynamics Model 

Transpiration (Eq. 4.90) are applied in set_bound in Euler3D using the rotated normal vector 

(as in Figure 3.2).  The boundary velocity BVEL is calculated in transpir3d.  The modal 

elastics model is the second half of asedrv.  asedrv was transferred into CFDsol along with 

the rigid body model.  The boundary velocity and transpired flow tangency were applied in 

CFDsol, using Euler3D as the standard.  The airfoil model was then repeated for verification. 



238 

The NACA 0012 airfoil at Mach 0.3 was tested at 5 degree angle-of-attack.  The results were 

then compared to the same mesh at zero angle-of-attack with a mode shape deflection repre-

senting a 5-degree rotation of the airfoil.  The surface pressure for the 5-degree AOA is 

shown as black dots in Figure 5.7 (as �Inertial, AOA�); the surface pressure for the transpired 

rotation is shown as red dots (as �Transpired Angle�).  The two distributions compare very 

well.  The transpired rotation models the actual displacement very well. 

The results were then compared to the same mesh at zero angle-of-attack with a mode shape 

velocity representing an airfoil plunging at an equivalent 5-degrees AOA.  In other words, 

the velocity everywhere on the airfoil was specified to be: 

( )
�
�

�
�

�

�
�

�
�

�

−≈
�
�

�
�

�

�
�

�
�

�

−= ∞

1

0

0

087489.0

1

0

0

5tan o

ib VV
�

The surface pressure for the plunging airfoil is shown in Figure 5.7 (as �Transpired Vel�).  

The distribution is similar to the stationary airfoil and contains the differences expected since 

the airfoil is plunging instead of pitched.  The two cases demonstrate the effectiveness of the 

transpired boundary condition to model structural or controls deflections and wall velocities. 

5.2.4 Viscous Terms 

The viscous contributions defined by Eqs. 4.44, 4.50, and 4.178 were already present in 

CFDsol.  The viscous equations were checked for accuracy.  The boundary integrals fσ were 

applied using one-quarter the element volume Ve, like the domain integrals.  This was 

changed to one-third of the boundary element area Abe.  This change does not affect the 

velocity along no-slip walls or any property along far field boundaries because these 



239 

properties are reset each iteration according to the boundary conditions.  The boundary 

contributions are now correct for all other properties, especially along symmetry plane. 

Figure 5.7:  Pressure over NACA 0012 Airfoil (CFDsol, Inviscid, Transpiration). 

5.2.5 Sutherland's Equation 

CFDsol uses Sutherland�s equation (Eq. 3.35) to model the variation of viscosity with respect 

to temperature.  The other properties are setup to handle air (S = 198.6 oR).  Eq. 3.35 is non-

dimensionalized in a different manner in CFDsol than in the OSU in-house codes: 

2
*

21

5.1

1

*
5.1

*

Ch

CC

C

h

Sch

ScTc

Tc

h

p

pp

p +

+
��
	



��
�


=

+

+
�
�

	




�
�

�


= ∞

∞

µ (5.5)

( ) 22

2

22

*
1 1

1

1

11

1 ∞∞

∞

∞

∞

∞

∞

∞
−

=
−

=
−

===
MU

a

U

RT

U

Tc
hC

p

γγγ

γ
 (5.6)

( ) 222

*
2 1

6.198

∞∞∞∞

∞

∞ −
====

MTT

S

U

Tc

U

Sc
SC

pp

γ
 (5.7)



240 

The freestream temperature ∞T  is specified through TINF in the case.data file in degrees 

Rankine (oR).  TINF was later overwritten with freestream enthalpy (Eq. 5.6) and used to 

update the far field boundary conditions.  To correct this problem, TTINF was assigned the 

freestream enthalpy in the far field calculations, so that TINF retains its assigned value. 

A new option IVIS was added to the solver so that constant viscosity solutions can be calcu-

lated.  If IVIS is set to 1, then the viscosity throughout the domain is equal to the freestream 

viscosity, set through the freestream Reynolds number RE.  For any other values of IVIS, 

viscosity is calculated according to Sutherland�s law, as shown in Eqs. 5.5 through 5.7. 

5.2.6 Zero Dissipation Length � Instabilty 

The artificial dissipation in CFDsol decreases the effective Reynolds number near the wall, 

beyond acceptable levels.  The zero dissipation length dislen was implemented in CFDsol in 

the same manner as NS3D.  This lead to the detection of many modes of instability. 

5.2.6.1 Crossflow Instability 

The cross-flow instability in CFDsol was first discovered with the laminar boundary layer 

cases.  These cases are very thin cross-sections bound by two symmetry planes.  Figure 5.8 

shows this geometry looking down from above, where the cross-flow velocity vectors 

become very apparent.  (The vectors are best seen with the color spectrum off on a black 

background.)  The symmetry planes are very well behaved in this situation; CFDsol removes 

any normal velocity along the symmetry planes.  The velocity vectors protruding through the 

symmetry planes in Figure 5.8 all originate within the domain.   



241 

Figure 5.8:  Cross-Flow Velocity Vectors (Looking Down on Plate, Sym on Top & Btm). 

Figure 5.8 shows four cases that demonstrate the cross-flow instability and the effectiveness 

of artificial dissipation in controlling the cross-flow velocities.  The cross-flow velocities 

perturb early in the solution (400 iterations).  Many more iterations are required for artificial 

dissipation to bring the velocity back under control (16k iterations).  If no artificial dissipa-

tion is used, then the cross-flow velocity diverges everywhere, much earlier in the run (106 

iterations).  The problem is not limited to the higher velocity flow at the top of the boundary 

layer.  When artificial dissipation was removed from the bottom quarter of the boundary 

streamwise 
cross-flow 

LE 

400 Iterations, FACTOR = 0.03 

16k Iterations, FACTOR = 0.03 

106 Iterations, FACTOR = 0 

400 Iterations, FACTOR = 0.03 (no art. diss. in bottom 1/4 of boundary 



242 

layer using dislen, the near-wall velocities still diverged.  The boundary layer case was also 

tested in several different orientations (xy-, xz-, and yz-planes and their obliques) to ensure 

that the instability was not a coding error.  The problem is invariant to the orientation angle. 

Eight nodes were selected for the speed and magnitude of their cross-flow instability.  The 

contributions from the inviscid, viscous, and artificial dissipation terms in the update equa-

tion were tracked in time.  A plot of one of these nodes is shown in Figure 5.9.  The left 

potion of the figure illustrates how the inviscid, viscous, and artificial dissipation terms 

contribute to the cross-flow velocity as the three terms balance each other out.  The right 

portion highlights the first 100 iterations.  The inviscid contributions jump across the first 

iteration and continue to strongly influence the velocity.  The viscous and artificial dissipa-

tion terms grow to balance the inviscid contributions, keeping the solution from diverging 

completely.  Artificial dissipation is much more powerful in the demonstrated case, explain-

ing why the solution diverged much more quickly when no artificial dissipation was used in 

the solution.   The cross-flow velocity takes on a very similar shape to the inviscid contribu-

tions, which shows that the inviscid terms are contributing to the cross-flow instability. 

The inviscid contributions can be decomposed into the unsteady, momentum flux, and 

pressure terms: 

( ) ( ) ( ) ( ) RfKRvvKMvvM �~~~~ 1
2
11 ttttRSD ii

cx

uii

c
i

i ∆−+∆−∆+++∆+−= +

∂

∂+
σσ (5.8)

The contributions to the cross-flow velocity from the unsteady, momentum flux, and pressure 

terms are plotted in Figure 5.10.  Pressure contributes the largest contributions to the velocity 

inviscid 
terms 

viscous 
terms 

artificial 
dissipation 

unsteady 
term 

momentum 
flux term 

pressure 
term 



243 

and abruptly changes in the first iteration.  The pressure contributions represent the velocity 

changes seen in Figure 5.9. 

Figure 5.9:  Contributions and Cross-Flow Velocity at Single Node. 

Figure 5.10:  Inviscid Contributions to Crossflow Velocity at Single Node. 

Several attempts were made to correct the pressure problem.  First, the cross-flow velocity 

was set equal to zero for all iterations, and artificial dissipation was removed from the 



244 

solution.  The solution diverged in plane with the boundary layer gradients.  The divergence 

now moved to the vertical direction (normal to the plate).  Velocity vectors from this solution 

are shown in Figure 5.11.  The pressure gradients affect all three momentum equations, and 

the instability has now been demonstrated in more than the cross-flow direction.   

Figure 5.11:  Large Vertical Oscillation near Bottom of Boundary Layer. 

A similar attempt was made to neglect changes in density, cross-flow velocity, and total 

energy, desiring to minimize changes in pressure.  The pressure changes were then propor-

tional to the kinetic energy with no density or total energy feedback.  The solution diverged 

slowly.  Next, the pressure terms were neglected in the update equation, retaining freedom in 

cross-flow and other properties.  The solution converged slowly.  Artificial dissipation was 

removed, and the solution slowly diverged.  Pressure is a necessary feedback for stability.   

The pressure is calculated from a nonlinear equation:  p = (γ -1)(ρE � ρ uj uj / 2).  The 

pressure is represented in CFDsol using the same piecewise linear representation as the other 

properties.  A correction factor was formulated in hopes of stabilizing the solution through a 

more accurate pressure gradient:

ipjij

i

pA
x

p
,ε+=

∂

∂

   

( )
jkkkkjjkjkjijip uuuuuuA ρρρε γ 2

2

1
, −−= −

(5.9)

streamwise 
normal 



245 

The higher order pressure gradient did not add any stability nor, for that matter, change the 

solution at all.  A solution similar to Figure 5.10 was created using the higher order gradient. 

5.2.6.2 Stability Window 

The discussion above results in a mesh stability window.  If the mesh is too coarse, the 

discretization is either inaccurate or unstable.  If the mesh is too fine, the numerical error 

propagates through the derivatives that are used to estimate the fluxes on the domain.  The 

result is often a mesh that requires such a small time step (or relaxation factor) that the 

problem becomes inefficient to solve.  Sometimes, the mesh is unconditionally unstable and 

much time is wasted trying to find a means of stabilizing the solution.  Instead the mesh must 

be regenerated from scratch.  The search for mesh convergence often settles on a solution or 

mesh that is �close enough� and never as good as the user desires. 

Examples.  CFDsol uses explicit property derivatives that are susceptible to numerical errors, 

and this susceptibility grows inversely with the size of the elements.  The problem was first 

identified with inviscid cases that could not be mesh converged.  The problem reoccurred for 

an empty rectangular domain that was being used to verify the advection of turbulent 

quantities.  The domain was filled with tetrahedra of equal size.  The turbulence model was 

decoupled from the Navier-Stokes equations so the velocity profile was laminar.  The case 

should have been inherently stable for small enough time steps.  The opposite was true.  The 

case was unconditionally unstable.  The mesh was tested in NS2D and NS3D under laminar 

conditions; both were found to be stable.   

The instability greatly affected the five transonic cases, which were examined in CFDsol.  

Pave3D was created to implement tetrahedral meshes, where the span between the symmetry 



246 

planes was only spanned by two elements.  Pave3D wraps airfoil domain in a U-shape, 

discretizing the domain into hexahedron specified by the x-, y-, and z-spacings (or θ-spacing 

around the leading edge).  Each hexahedron is then broken apart into five tetrahedral 

elements.  The mesh is reported to the CFD solvers in unstructured format.  The transonic 

meshes from Pave3D were stable for all spacings, even through the transonic shocks.   

The stability problem became even more noticeable when small elements were tested in the 

near wall region of a laminar boundary layer.  The stability of these elements was only 

maintained by artificial dissipation, which decreases the effective Reynolds number by at 

least one order of magnitude.  The viscous routines in CFDsol were verified in NS3Dsol, or 

NS3D with the viscous routines from CFDsol.  This problem gets worse for the turbulent 

boundary layer where the smallest element is on the order of 0.0015δ, compared to 0.1 for a 

laminar boundary layers.   

Stability tests have been ran in Euler2D, Euler3D, and CFDsol for an empty domain, circular 

cylinder, and other cases.  Euler2D and Euler3D were found to be unconditionally stable in 

the freestream case, whereas CFDsol exhibits a perfect Courant�Friedrichs�Lewy (CFL) 

condition (∆t proportional to ∆x) for a thin domain and unconditionally unstable when 

multiple elements span each direction.  Euler2D and Euler3D exhibit a CFL condition for 

subsonic and supersonic solid wall geometries.  The instabilities in CFDsol are nonlinear and 

relax at supersonic speeds.   

Ellipse.  Persistent problems were found with simple cases, like the circular cylinder and 

ellipse.  For one mesh, the inviscid ellipse diverged at a relaxed iteration of niter x tau = 958, 

where niter is the number of iterations and tau is the relaxation factor.  The mesh was scaled 



247 

by 0.01, 0.1, 10, and 100 and diverged at the same relaxed iteration.  A picture of the 

divergence is shown in Figure 5.12.  The problem was circumvented by starting a fresh mesh 

convergence.   

Figure 5.12:  Divergence in Pressure on Surface of Inviscid Ellipse (niter x tau = 958).   

The stable mesh was then refined to model a boundary layer and wake region with Reynolds 

number of 4000 (based on ellipse length).  As the boundary layer began to form, the density 

and pressure along the ellipse began to oscillate at one node.  The oscillations were confined 

to one symmetry plane, so the other symmetry plane was used in the verification.  The 

density and velocity oscillations (shown in Figure 5.14) were self-perpetuating and had a 

wave number equal to the inverse of 12 ∆x.   

Bottom of Ellipse (Looking 

Top of Ellipse (Looking 

-5



248 

Figure 5.13:  Oscillations in Density along Wall of Ellipse (Re = 4000). 

Figure 5.14:  Oscillations in Velocity along Wall of Ellipse (Re = 4000). 

Several problems were encountered with a circular cylinder.  During inviscid mesh 

convergence, the solution on the finest mesh oscillates repetitively, as shown in Figure 5.15.  

The oscillations are best seen in the minimum pressure, top center of distribution.  The figure 

is color coded so that the reader can see the oscillations more easily.   

The circular cylinder was tested under several viscous conditions.  Problems persisted for 

two particular Reynolds numbers:  26 and 41.  A time step study for Re = 41 is shown in 

1.25 

0.75 

1.3 

0



249 

Figure 5.16.  The plot on the left shows the number of iterations before divergence, and the 

right plot shows the total CFD time (iterations times ∆t) before the crash.  For ∆t > 5x10-6, 

the number of iterations increases for smaller time steps but the CFD time decreases.  The 

decreasing CFD time can be discouraging.  Below ∆t < 5x10-6, stability increases and the 

CFD time increases quickly.  At ∆t = 10-6, the solution showed early signs of divergence at 

40k iterations (2.3 days).  The solution used in the verification required a time step of 10-7

(3.3M iterations, 20.6 days). 

Figure 5.15:  Oscillations in Pressure Distribution around Inviscid Cylinder. 

The Re = 26 case is more interesting.  Figure 5.17 shows a dual-failure mode in the time step 

study for Re = 26.  For time steps below 6x10-7, the velocity diverges in the near-wall region, 

shown in the upper left of Figure 5.17.  Around ∆t = 5.5x10-7, the failure switches erratically 

between the two modes.  For ∆t < 5x10-7, stability begins increasing again and divergence 

occurs in pressure on the wall.  The CFD time for both failure modes is constant; the time 

step triggers the stability of one mode over the other.  The divergence locations are weakly 

related.  The initial conditions (scratch or inviscid solution) had no effect on the problem.  At  



25
0 

∆
t 

=
 1

0-8
, t

he
 s

ol
ve

r 
di

ve
rg

ed
 a

t 
23

0k
 i

te
ra

ti
on

s 
(3

6 
hr

s)
.  

T
he

 p
ro

bl
em

 w
as

 s
ol

ve
d 

by
 s

ta
rt

in
g 

fr
om

 s
cr

at
ch

.  
T

he
 g

eo
m

et
ry

 w
as

 

re
dr

aw
n,

 m
es

he
d,

 a
nd

 r
ef

in
ed

 w
it

ho
ut

 t
ak

in
g 

pr
ev

io
us

 �
le

ss
on

s�
 i

nt
o 

ac
co

un
t.

 

F
ig

u
re

 5
.1

6
: 

 T
im

e 
S

te
p

 S
tu

d
y
 f

o
r 

C
ir

cu
la

r 
C

y
li

n
d

er
 (
R
e 

=
 4

1
.0

).

       250



25
1 

F
ig

u
re

 5
.1

7
: 

 T
im

e 
S

te
p

 S
tu

d
y
 f

o
r 

C
ir

cu
la

r 
C

y
li

n
d

er
 (
R
e 

=
 2

6
.0

).
 

       251



252 

Explanation.  Explicit derivatives create a numerical error that feeds back into the properties.  

The problem is mainly concentrated in the velocity components but spreads throughout the 

properties.  Reorienting the solution so that all three velocity components are non-zero does 

not affect stability.  The equations below show the inviscid residual equation for CFDsol.  

Property gradients are present six times in those equations (emphasized by red and green 

boxes).  The red box is updated every iteration of a given step forward.  The effects of this 

term might be improved by inverting M+ for each solution step.  The green boxes are still 

present when inverting the matrix. 

FRSD nnCFDsol

�
+−= −++ UMUM 1

[ ]( )
1

4

1

1

1

1

1

422
1 +++ �

�
�
�
�
�

�

�

�
�
�
�
�

�

�

∂

Φ∂

�
�

�

�
�

�

�

�
�

�

�
�

�

�

∆
+��

	



��
�



∂

∂∆
+= n

e i

e
i

ee

eC

i

ie
n

x
u

Vt

x

ut
UMUM

[ ]( )
n

e i

e
i

ee

eC

i

ie
n

x
u

Vt

x

ut
UMUM �

�
�
�
�
�

�

�

�
�
�
�
�

�

�

∂

Φ∂

�
�

�

�
�

�

�

�
�

�

�
�

�

�

∆
−��

	



��
�



∂

∂∆
−=−

1

1

1

1

422
1 4

[ ]( )�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

∂

∂
+

∂

∂

�
�

�

�
�

�

�

�
�

�

�
�

�

�

∆=
e

eeC

i

ik

i

i

e
e p

x

u
e

x

pV
tF ξ4

1

1

1

1

4
M

�

Cowan (2003) built inherent stability into Euler3D by shifting the derivative from the flux to 

the shape function using Gauss� theorem.  The residual equation for Euler3D (first-order in 

time) is shown below.  The Euler3D residual is broken into three parts:  The unsteady and 



253 

boundary integral B terms are averaged over their respective elements using the mass matrix.  

The element flux term A is averaged using one-point Gauss quadrature.  The effects of num-

erical errors are minimized by averaging the properties applied in the residual.   

( ) ( )�
	



�
�


+−

∆

−
∆= ++

+� 11
1

,3 nn

be

nn
ecnDEuler

t
tRSD UBUA

UU
M

( ) ( )� +++ +
∂

Φ∂
=

e

inni

i

T

e
en epu

x
V 111 UUA

( ) �
�
�
�

	




�
�
�

�



�
�

�
�

�

�
�

�
�

�

+= +++
be

n

jnnnecn

V

npV �

0

11,1 UMUB

5.3 Propulsion Models 

Three modes of propulsion have been implemented in the OSU in-house codes:  Rocket, 

turbojet, and scramjet (quasi-combustion) engines.  The first two modes are applied through 

boundary integrals; the quasi-combustion terms are modeled through source terms.  The 

propulsion models add two files, six new routines, and nine new arrays.  Only the rocket and 

quasi-combustion terms were added to CFDsol because of time constraints on the contract. 

5.3.1 Quasi-Combustion Terms 

The quasi-combustion conditions are read from the case.cmb file and constructed in 

read_combustion using Eqs. 4.222 and 4.225.  The type of distribution used to construct the 

quasi-combustion terms is specified through icomb, which is found in the case.con file.  If 

0=icomb , the combustion terms are not used.  If 1=icomb , the data in case.cmb is treated 

as nodal and constructed from a piece-wise linear source distribution.  If 2=icomb , the data 



254 

in case.cmb is treated as elemental and constructed from a piece-wise constant source distri-

bution.  The size of the combustion arrays ncmb depends on the type of model used.  For 

1=icomb , ncmb is the number of nodes.  For 2=icomb , the data is read into the arrays as 

elemental data and converted to nodal contributions to the residuals, which is stored back in 

the combustion arrays.  These contributions are added to the residual in solve2d_1pt and 

solve3d_1pt.  The combustion arrays MDOT and MDOTE are defined: 

• MDOT ( : )    :: Contributions to residual from mass generation term 
• MDOTE ( : )  :: Contributions to residual from heat generation term 

5.3.2 Rocket and Engine BCs 

Rocket BCs.  The rocket boundary conditions were implemented in rocket_bc_1pt using Eqs. 

4.129 through 4.134.  The rocket outflow routine calls riem_inv for the Riemann correction 

to the boundary fluxes.  The properties and controls for all rockets are read from case.eng 

using read_engine.  The initial total properties across the rocket planes are calculated in 

init_engine_press and then recalled later during ramp up.   

The number of iterations to ramp-up the properties at the outflow plane is specified through 

nrstp, which is read from case.eng. The file also contains the number of rocket boundaries 

nrbc.  The number of boundary elements npbc used to model the rocket and engine boundary 

types is used to size the propulsion arrays.  The number of boundary elements is calculated 

from the upper limit on the wall, symmetry, and far field boundary elements: 

( ))6(),4(),2( LBELBELBEMAXnbenpbc −=  (5.10)



255 

The number of boundary elements on each rocket boundary is tracked in NRKT.  IRKT

contains the pointers for each rocket boundary element.  ARKT contains the four properties 

that define each rocket boundary plane: 

• ARKT( : ,1) :: User-specified total pressure at rocket boundary 
• ARKT( : ,2) :: User-specified total entahlpy at rocket boundary 
• ARKT( : ,3) :: Initial total pressure at rocket boundary, used for ramp up 
• ARKT( : ,4) :: Initial total entahlpy at rocket boundary, used for ramp up 

Coupled Turbojet Engine BCs.  The turbojet engine inflow and outflow conditions were 

constructed and coupled in engine_bc_1pt using Eqs. 4.135 through 4.138.  The flux to 

properties conversion (Eqs. 4.142 through 4.145) was implemented in flux_props and called 

by the engine outflow boundary.  The engine outflow routine calls riem_inv for the Riemann 

correction to the boundary fluxes.  The properties and controls for all turbojet engines are 

read from case.eng using read_engine.  In the case of a scratch start, the static pressure along 

the engine inflow planes is set equal to the freestream total pressure.  For a restart, the most 

current pressure distribution is used.  The initial properties across the engine planes are cal-

culated in init_engine_press and then recalled later during ramp up.   

The number of iterations to ramp-up the properties at the outflow plane is specified through 

nrstp.  The gain k in the mass flow rate controller is specified through gain.  These controls 

are read from case.eng. The file also contains the number of coupled engine boundaries nebc. 

The coupled engine boundaries are similarly defined by the number of boundary elements on 

the inflow plane NENGI and total boundary elements used by the engine.  For convenience, 

the number of elements on the outflow plane is calculated as NENGO � NENGI, so that 

NENGI + 1 and NENGO become the lower and upper limits to their loops.  IENG contains 



256 

the pointers for each engine boundary element.  AENG contains the four properties that 

define each rocket boundary plane: 

• AENG( : ,1)   :: User-defined mass flow rate at inflow plane 
• AENG( : ,2)   :: Static pressure at inflow plane, from previous iteration 
• AENG( : ,3)   :: User-defined mass flow rate of fuel 
• AENG( : ,4)   :: User-defined uninstalled thrust 
• AENG( : ,5)   :: User-defined enthalpy flow rate 
• AENG( : ,6)   :: Area of inflow plane 
• AENG( : ,7)   :: Area of outflow plane 
• AENG( : ,8: ) :: Area-weighted normal at outflow plane 

5.4 Turbulence Modeling 

Two turbulence models were implemented in NS2D and NS3D:  SA and SST.  CFDsol 

already contained a form of the SA model, although badly realized; this model was adapted 

to be similar to the implementation in NS3D.  The SA model was added into the OSU codes 

in six routines; the SST model was added through five routines:   

• spalart2d_1pt or spalart3d_1pt  :: SA differential and closure equations 
• set_bound_SA                       :: Applies wall boundary condition to SA variable 
• dt_calc_visc_SA                      :: Viscous time stepping with SA stiffness matrix 
• smooth1_SA_turb                       :: Lower order dissipation model for SA variable
• smooth2_SA_turb                       :: Higher order dissipation model for SA variable 
• calc_rnu                                      :: Conversion between ρν and µT

• sst2d_1pt or sst3d_1pt  :: SA differential and closure equations 
• set_bound_SST :: Applies wall boundary condition to SST variables 
• dt_calc_visc_SST             :: Viscous time stepping with SA stiffness matrix 
• smooth1_2var_turb         :: Lower order dissipation model for SA variable
• smooth2_2var_turb         :: Higher order dissipation model for SA variable 

The subroutines set_bound_SA and set_bound_SST are included with their base models 

spalart2d_1pt and sst2d_1pt (or spalart3d_1pt and sst3d_1pt).  These routines are applied 



257 

between interations in the base models and to the initial conditions in set_init_2d and 

set_init_3d and when restarting in convert_unt.   

Turbulent contributions were added to the momentum and energy equations in flux_src_1pt.  

Reynolds stresses ρTij (Eq. 3.221) and turbulent transport of heat Qj (Eq. 3.222) were con-

structed using the strain tensor to mirror their molecular counterparts, viscous stress τij and 

conduction jq ′′ .  The Reynolds stresses were dotted with velocity to create the turbulent dissi-

pation terms ρTijuj (Eq. 4.31), which are constructed to mirror viscous dissipation τijuj.  When 

turbulent kinetic energy K is present from the SST model, the gradient of K is calculated and 

applied to the energy equation (Eq. 4.31).  The Reynolds terms were calculated on each 

element and applied to its nodes (Eqs. 4.43 and 4.44) and any boundary elements attached to 

the element (Eqs. 4.49 and 4.50) just like their molecular counterparts.  No Reynolds stresses 

and turbulent transport of heat are applied to boundary integrals along walls because the eddy 

viscosity is identically zero along solid walls.  Symmetry planes are treated in the same man-

ner as molecular stresses, where gradients are calculated in terms of tangential and binormal 

velocities and gradients.  The turbulent transport of heat and normal gradient of K are 

assumed to be zero along symmetry planes.   

5.4.1 Turbulent properties 

Six new arrays were created to hold the turbulent properties, residuals, and dissipation.  The 

nodal strain is calculated in the SST model and used to calculate Cα (Eq. 3.237): 

• UNT1 ( : ,1)    :: Most current eddy viscosity µT

• UNT1 ( : ,2)    :: Most current turbulent kinetic energy ρK

• UNT1 ( : ,3)    :: Most current dissipation turbulent energy ρε
• UNT1 ( : ,4)   :: Most current value of model variable:  ρν  or ρω



258 

• UNT ( : ,1:4)    :: Turbulent unknowns from previous step 
• UNTO ( : ,1:4)    :: Turbulent unknowns from two previous steps 
• RHST ( : ,1:2)    :: Residual or RHS vector for turbulent differential equations 
• RDIST ( : ,1:2)    :: Artificial dissipation vectors for turbulent differential equations 
• STRN ( : )  :: Nodal strain (calculated with hybrid element or area-weighting) 

For the SA model, only the first and last values are stored in UNT1.  For the SST model, all 

four properties are stored at once.  These properties are written to the case.un# file for track-

ing in write_unk.  The properties are also written to caset.un# for plotting (write_unt).  The 

turbulent properties are plotted in Glplot2D and Glplot3D through different property names: 

• Eddy viscosity µT is stored and plotted as density 
• Turbulent kinetic energy ρK is stored in u and plotted as velocity magnitude 
• Dissipation turbulent energy ρε is stored and plotted as total energy 
• The model variable (ρν  or ρω) is stored in pressure and plotted as Cp

The caset.un# file cannot be used to restart the solution.  Instead, the case.un# file contains 

all flow properties, including the turbulent properties.  The case.un# file can be renamed 

case.unk and used to restart a solution.  The turbulent properties are also written to the safe 

mode restart files (case.rst and case.rs2) for smooth restart.  When the solver is restarted 

using initial conditions, those conditions are tested for model consistency.  If the SST model 

(iturb = 2) was used to produce the case.unk, then the turbulent properties are converted to 

the new model format, including laminar (iturb = 0).  If the SA model (iturb = 1) is used to 

produce the case.unk, the model can be converted to a laminar solution, but the SST model 

has more unknowns, which cannot be pieced together from the SA variables.  When convert-

ing from SA to SST solutions, the turbulent properties are reset to laminar to start the SST 

solution.  All turbulent property conversions occur in convert_unt (found along with 

read_unk).  Scratch starts are calculated using the freestream conditions in the case.con. 



259 

Turbulent residuals are collected into RMS values and written to case.rsd and case.rsd2. 

The turbulent freestream conditions are defined in the case.con as: 

• PrT    :: Turbulent Prandtl number, used for turbulent transport of heat 

• muTinf  :: Freestream eddy viscosity µT

• turbI      :: Turbulent intensity in freestream I

• rnuinf  ::Freestream ρν for SA model, calculated using calc_rnu if zero 
• rhoKinf  ::Freestream ρK for SST model, calculated from Eq. 3.248 if zero 
• rhoWinf  :: Freestream ρω for SST model, calculated from Eq. 3.250 if zero 

muTinf and turbI are included for user convenience.  rnuinf , rhoKinf, and rhoWinf are used 

throughout the code.  If any of rnuinf , rhoKinf, and rhoWinf is zero in the controls file, then 

that value is calculated from muTinf and/or turbI.  The new values have been added to the 

freestream properties array cinf.  The last value of cinf represents the model variable, either 

rnuinf or rhoWinf.  The next to the last value of cinf  is assigned the rhoKinf  if an SST model 

is present.  For laminar solutions, the last two values of cinf are zero.   

5.4.2 Energy Balances 

The addition of turbulent kinetic energy K from the SST model must be tracked in the total 

energy and enthalpy (Eqs. 3.120 and 3.121).  The total energy or enthalpy are used to calcu-

late pressure (Eqs. 3.130 and 3.131), ratio of total to static temperature (Eq. 3.133), and other 

areas.  Any instant addressing total energy or enthalpy must also correct that calculation with 

K when present in the solution.  The energy balance was adjusted in the following routines: 

• flux_props :: Corrected total enthalpy term in pressure (Eq. 3.131) 
• flux_src_1pt :: Corrected static pressure with turb KE (Eq. 3.130) 
• init_engine_press :: Corrected ratio of total to static temperature(Eq. 3.133) 
• pc_update :: Corrected ∆p with RHST(1) and total enthalpy (Eq. 3.131) 
• read_unk :: Corrected total enthalpy when recalculated (Eq. 3.131) 



260 

• riem_inv :: Corrected acoustic speed and al1x (∆p)  
• rocket_bc_1pt :: Corrected ratio of total to static temperature (Eq. 3.133) 
• set_init2d & set_init3d :: Corrected ratio of total to static temperature(Eq. 3.133) 

5.4.3 SA Model 

The Spalart-Allmarus SA model was presented in compressible form in Chapter 3 (Deck, 

2002) along with its rotation-curvature correction (Shur, 2000) and Oliver�s (2008) adapta-

tion to S� .  (Note that the DSij/Dt term was not included in the rotation-curvature correction 

because the unsteady term is very costly to track and the advection term requires second 

derivatives.)  These methods were assembled into a single model and discretized according to 

Chapter 4.  A series of splines are used to construct an approximate interpolation of νρ � as a 

function of eddy viscosity Tµ in the subroutine calc_rnu.  So that the freestream conditions 

can be calculated from an eddy viscosity. 

The majority of the SA model is housed in spalart2d_1pt and spalart3d_1pt, which is 

organized like solve2d_1pt and solve3d_1pt without the use of additional subroutines.  

Domain integral contributions are created and boundary integrals are calculated per their 

attachment to the domain elements.  The far field boundary condition restricts the flow to 

∞νρ �  when the characteristic points into the domain.  A predictor-corrector was setup similar 

to the RANS equations, but νρ �  was limited to ∞νρ �  as a lower limit, except along solid 

walls.  The solid wall boundary condition ( 0� =νρ ) is applied within set_bound_SA.  The 

components were assembled in order unsteady plus advection, diffusion, artificial dissi-

pation, and source terms.   



261 

Artificial dissipation was created using the RANS dissipation models as a basis.  The new 

models were called smooth1_SA_turb and smooth2_SA_turb to show their heritage.  These 

models can be used to add artificial dissipation to any further one-equation turbulence 

models.  The SA artificial dissipation is scaled by disst*diss, where both values are read from 

the case.con file.  The value of disst can be used to scale up or back the artificial dissipation 

in the turbulence model without adversely affecting the RANS. 

Previous Implementation in CFDsol.  CFDsol initially contained a model resembling an 

incompressible Spalart-Allmaras model with a �trip transition� model.  Four of the terms in 

the model were either implemented incorrectly or did not correspond to any terms in the 

actual SA model.  The equations were reformulated in compressible form, and the trip 

transition model was eliminated to simplify the model.   

Initial Conditions.  An initial non-zero value of νρ �  allows the source terms to produce 

turbulence in the near-wall region.  Higher values will create turbulence faster, so the magni-

tude of the initial condition is important.  Dissipation will attempt to minimize the turbulent 

viscosity in the solution, so a minimum value must be maintained, here equal to the initial 

condition.  Four initial conditions were tested on a flat plate boundary layer: ∞νρ � = 10-1, 10-2, 

10-4, and 10-6.  For CFDsol, the first value was found to be too large, creating excessive 

turbulence in the laminar region; and, the latter two values were too small, taking too long to 

generate turbulence throughout the domain.  The initial condition is suggested: ∞νρ � = 10-2.  

Cebecci (2005) suggests using ∞νρ �  = 5 to create a fully turbulent boundary layer when the 

transition location is unimportant. 



262 

Component Testing.  The governing equations were implemented and tested in components 

(unsteady, advection, diffusion, source, and artificial dissipation) so that each component 

could be isolated.  A discontinuity in a straight tube was used to test the unsteady and 

advection terms.  The domain was initially seeded with a high value (0.2), while the inflow 

boundary was set to a lower value (0.1).  The side boundaries maintained these values as the 

wave front moved down the tube at the bulk velocity of the fluid.  Figure 5.18 shows six 

snapshots of the ρν-wave advecting through the straight tube.  The wave in the straight tube 

showed the advection terms to be accurate and stable.   

Figure 5.18:  Six Snapshots of Turbulent Advection in a Straight Domain. 

NS2D Turbulent Bubble.  A second test was completed to be a bit more complicated.  A 

bubble of turbulence ( νρ � = 0.2) was generated on the upstream side of a large freestream 

domain ( ∞νρ � = 0.1).  The bubble was allowed to naturally advect downstream.  Figure 5.24 

shows the initial and advected bubble.  As the bubble advects downstream, striations appear 

within the bubble and upstream of the bubble.  These striations are not natural but numerical.  

The initial discontinuity in the solution creates a gradient in the properties.  For a non-zero 

velocity, the property gradient creates a non-zero residual that changes the shape of the 



263 

profile.  The bubble advects downstream according to the bulk velocity of the flow, leaving 

the effects of the gradient as a shadow.  The shadow advects with the bubble, creating 

additional shadows.  Figure 5.25 shows centerline slices as the bubble advects downstream. 

Figure 5.19:  Turbulent Bubble Initial Conditions (left)                                                  

and Advected Downstream (right). 

Figure 5.20:  Slices of Turbulent Bubble being Advected Downstream. 



264 

The model shows added stability when the viscous diffusion terms are added to the model, 

but only at lower Reynolds numbers.  Figure 5.21 shows the effects of Reynolds number on 

the bubble.  Larger Reynolds numbers (Re > 104, refdim = 1) show little difference from the 

advection only solution.  Smaller Reynolds numbers (Re < 103) increase numerical stability 

and diffuse the bubble.  The source terms were added to the model with no change.  The 

source terms showed to be stable in the absence of strains or walls. 

Figure 5.21:  Slices of Turbulent Bubble with Different Levels of Viscous Diffusion. 

NS2D & NS3D Artificial Dissipation.  Cowan�s artificial dissipation routines were used as a 

pattern to add dissipation to the SA model: 

( )( )nTLnn t νρνρνρ ��� 1
1 DRHSM +∆−= −

+  (5.11)

( ) ( )� ∆∇=
nsg

tT afdiss νρνρ ��
13

1
�

D (5.12)



265 

where dissT is the dissipation scaling factor (= disst*diss in case.con), 
t∇

�
is the gradient along 

the segment, a is the local speed of sound, and νρ �∆  is the difference in the SA variable 

along the segment.  The function f1 is calculated based on the local Mach number: 

( )
�
�
�

≥

<+
=

1

11 2
2
1

1
MifM

MifM
f (5.13)

The lower order model is suggested for supersonic solutions.  The higher order model is 

calculated using the same equations, where the small differences ∆ρν  are neglected.  The 

differences are removed so that the model can be used in rotating and subsonic domains. 

The dissipation scalar was tested to find an appropriate level of artificial dissipation.  Figure 

5.22 shows a bubble of turbulence at various levels of viscous and artificial dissipation.  At 

Re = 300, the bubble shows little diffusion near the edges and no numerical oscillations.  At 

Re = 105, diffusion has little effect, and numerical oscillations persist in the flow.  The solu-

tion is also shown at the higher Reynolds number with various levels of artificial dissipation.  

The scalar diss used in the Navier-Stokes equations is also appropriate for the SA model and 

shows an equivalent diffusion to Re = 300.  (The SA model is stable for dissT up to 10.)  

Figure 5.23 shows the performance of the complete model for some of the Reynolds numbers 

shown in Figure 5.21. 

The model was extended one dimension and incorporated into NS3D.  Neither component or 

artificial dissipation testing was performed in NS3D. 



266 

Figure 5.22:  Advected Bubble at Various Levels of Molecular & Artificial Dissipation. 

Figure 5.23:  Slices of Turbulent Bubble Solution from NS2D-SA (Various Re). 

CFDsol Turbulent Bubble.  The turbulent bubble test was repeated in CFDsol to test its 

components and tune artificial dissipation.  Figure 5.24 shows the initial and advected 

bubble.  The advected bubble looks different because of the different numerics in CFDsol.   



267 

Figure 5.24:  Turbulent Bubble Initial Conditions (left)                                                  

and Advected Downstream (right). 

Figure 5.25 shows centerline slices of the domain as the bubble advects downstream.  The 

model shows added stability when the viscous diffusion terms are added, but only at lower 

Reynolds numbers.  Figure 5.26 shows the effects of Reynolds number on the bubble.   

Figure 5.25:  Slices of Turbulent Bubble being Advected Downstream. 



268 

Figure 5.26:  Slices of Turbulent Bubble with Different Levels of Viscous Diffusion. 

CFDsol Artificial Dissipation.  The SA model showed a need for artificial dissipation, 

especially at high Reynolds numbers.  The artificial dissipation used by the other governing 

equations in CFDsol was adapted to the SA variable and implemented in the model: 

( )νννσνσν νρνρνρ RSfKKM ����
,,

1
1 ++++∆+= −

+ kLkk t (5.14)

( ) kLcL
s

t

C
νρ

τ
ν

�� 1 MMMR −
∆

= − (5.15)

The pressure switch Se was removed from the SA dissipation model so that dissipation is 

applied to the SA model throughout the domain.  The model was tested with only the 

advection and artificial dissipation terms in effect.  The dissipation scalar was tested to find 

an appropriate level of artificial dissipation.  Figure 5.27 shows a bubble of turbulence at 

various levels of viscous and artificial dissipation.  The scalar FACTOR used in the RANS 

equations is also appropriate for the SA model and shows an equivalent diffusion to Re = 103.  



269 

(The SA model is unstable for Cs larger than 1.2 FACTOR.)  Figure 5.28 shows the 

performance of the complete model for the Reynolds numbers shown in Figure 5.26. 

Figure 5.27:  Advected Bubble at Various Levels of Molecular & Artificial Dissipation. 

Figure 5.28:  Slices of Turbulent Bubble from Complete SA Model (Various Re). 

5.4.4 SST Model 

Menter�s SST model was presented in compressible form in Chapter 3 (Rumsey, 2009) along 

with its rotation-curvature correction (Shur, 2000) and Spalart & Rumsey�s (2007) method of 

maintaining the freestream values in the external flow.  These methods were assembled into a 

single model and discretized according to Chapter 4.  The rotation-curvature correction was 

copied directly from the SA model.   



270 

The majority of the SST model is housed in sst2d_1pt and sst3d_1pt, which is organized like 

solve2d_1pt and solve3d_1pt without the use of additional subroutines.  Domain integral 

contributions are created and boundary integrals are calculated per their attachment to the 

domain elements.  The far field boundary condition restricts the flow to ∞Kρ  and ∞ρω  when 

the characteristic points into the domain.  A predictor-corrector was setup similar to the 

RANS equations, but Kρ  and ρω  were limited to ∞Kρ  and ∞ρω  as a lower limit, except 

along solid walls.  ρε is calculated and stored in UNT when the other properties are updated 

(Eq. 3.244).  The solid wall boundary condition ( 0=Kρ ; Eq. 3.253) is applied within 

set_bound_SST.  The components were assembled in order unsteady plus advection, 

diffusion, artificial dissipation, and source terms.   

Artificial dissipation was created using the RANS dissipation models as a basis.  The new 

models were called smooth1_2var_turb and smooth2_2var_turb to show their heritage.  

These models can be used to add artificial dissipation to any further two-equation turbulence 

models.  The two-variable dissipation models point to two locations in UNT.  One location is 

assumed to contain K and the other is specified by a pointer ivar.  The SST artificial dissipa-

tion is scaled by disst*diss like the SA model; both disst and diss are read from the case.con 

file.  The value of disst can be used to scale up or back the artificial dissipation in the turbu-

lence model without adversely affecting the RANS equations. 

Nodal Strain.  The calculation of eddy viscosity in the update subsection requires the magni-

tude of the strain tensor at all nodes in the field (Eq. 3.237).  The nodal strain is calculated 

and stored in STRN.  Such strain tensor is known in a piece-wise constant manner.  The strain 

tensor is pushed to the nodes using a hybrid element technique: 



271 

( ) 0=Ω−ΦΦ� �
Ωe

ene

T

e

e

dSS (5.16)

{ } e

e

e

e

ee

T

e

e

e

T

enC S
d

dJSdSS

e

�� �� � +

Ω
=Φ=ΩΦ=

≤≤Ω

1
1

10 ξ

ξ
�

�
M (5.17)

{ } { } e

e

e
Le

e

e
Cn S

d
S

d
S ��

+

Ω
≈

+

Ω
= −− 1

1
1

1
11

MM (5.18)

where 
eS is the strain on the element, Sn is the strain at the nodes (piece-wise linear on 

elements).  The lumped mass matrix is used as an approximate and efficient means of 

inverting the mass matrix.  For NS2D and NS3D, the hybrid equations are written: 

e

e

e
Ln S

A
S �

�
�

�
�

�

�
�

�
�

�

≈ −

1

1

1

3
1

M (5.19)

e

e

e
Ln S

V
S �

�
�

�

�
�

�

�

�
�

�

�
�

�

�

≈ −

1

1

1

1

4
1

M (5.20)

Artificial Dissipation.  Cowan�s artificial dissipation routines were used as a pattern to add 

dissipation to the SST model: 

( )( )nTTLnTnT t ,
1

,1, UDRHSMUU +∆−= −
+ (5.21)

( ) ( )� ∆∇=
nsg

TtTT cfdiss UUD
�

13
1

(5.22)

Experiments were run on components and artificial dissipation as with the SA model.  These 

tests showed similar results to the NS2D-SA results shown above.  The same limits and 

effectiveness can be assumed on dissT. 



272 

5.5 Memory 

Before this work began, Euler2D required the following integer and real allocations: 

( )nrnrnbensgnelINT DE 121323032 ++++=−

( )nwlnrnrnwlnbensgnelnndREAL DE 2226432537032 +++++++=−

After adding propulsion models and acoustic outputs, Euler2D requires: 

( ) ( ) 20210322 ++++++= − npbcnebcnpbcnrbcnndINTINT DEDEuler

nebcnrbcnndREALREAL DEDEuler 9440322 +++= −

After viscous terms and turbulence models to Euler2D, NS2D requires: 

nbenelINTINT DEulerDNS ++= 222

nbeqnwltnelnndREALREAL DEulerDNS ++++= 21822

Before this work began, Euler3D required the following integer and real allocations: 

nrnbensgnelINT DE +++=− 424033

( )nwlnrnrnwlnbensgnelnndREAL DE 33486431051033 +++++++=−

After adding propulsion models and acoustic outputs, Euler3D requires: 

( ) ( ) 20210333 +++++++= − npbcnebcnpbcnrbcnbenndINTINT DEDEuler

nebcnrbcnndREALREAL DEDEuler 10460333 +++= −



273 

After viscous terms and turbulence models to Euler3D, NS3D requires: 

nelINTINT DEulerDNS 333 +=

nbeqnwltnelnndREALREAL DEulerDNS ++++= 21833

5.6 Run Times 

Time comparisons were ran to break down the operational cost of each component of the 

OSU in-house codes.  Figure 5.29 compares the run times for inertial solutions in Euler2D 

and NS2D.  The first two columns illustrate how costly the artificial dissipation models are in 

Euler2D.  These same models are used in NS2D.  If the viscous dissipation is sufficient for 

stability (Re < 500), then artificial dissipation should be avoided for efficiency.  The viscous 

terms were added to Euler2D to create NS2D; these terms add approximately 50% to the 

base level run time.  Incorporating the SA and SST models adds roughly 60 to 100% more to 

the run time, without including the artificial dissipation and local time stepping required to 

stabilize the coupled models.  Figure 5.29 also shows that the most complex viscous model 

(NS2D � SST � High Diss) requires twice the resources compared to the baseline inviscid 

model (Euler2D � High Diss).  Figure 5.30 shows similar comparisons for Euler3D and 

NS3D. 



274 

Figure 5.29:  Comparison of Run Times for Euler2D and NS2D. 

Figure 5.31 and Figure 5.32 shows comparisons between non-inertial solutions from the 2D 

and 3D codes, respectively.  Inertial run times have been presented alongside each non-

inertial solution.  The non-inertial source terms require a small fraction of the overall run 

time for any of the given model combinations in 2D or 3D.  The non-inertial source terms are 

more expensive in 3D because there are more vectors, cross products, and components to 

evaluate.   



275 

Figure 5.30:  Comparison of Run Times for Euler3D and NS3D. 



276 

Figure 5.31:  Comparison of Run Times in 2D Inertial and Non-Inertial Frames. 

5.7 Support Software 

Several support codes have been written by various developers in the CASElab.  This section 

outlines the support software used in this research and gives credit where it is known to the 

original author.  Additions and uses (current or future) are outlined. 

5.7.1 Geometry Codes 

Several codes were written to create, adapt, or adjust the geometry and mesh.   



277 

Figure 5.32:  Comparison of Run Times in 3D Inertial and Non-Inertial Frames. 

Surface and SurfaceOld.  SurfaceOld was part of the FELISA software (Peiro, 1993).  

SurfaceOld defines all of the surfaces and their cutting curves in the case.sur.  A background 

mesh is defined in case.bac along with sources to refine the spacing.  SurfaceOld uses a 

Delauney marching front method to generate a triangulation over all surfaces in case.sur.  

The final triangulation is written to the case.fro.  SurfaceOld uses a water-tight tolerance 

when checking surfaces and curves and their intersections.  Surface is a revised version of 

SurfaceOld with a tighter tolerance.  2D meshes are generated with SurfaceOld. 



278 

Volume and VolumeOld.  VolumeOld was part of the FELISA software (Peiro, 1993).  

VolumeOld starts with the discretized surfaces in the case.fro.  A background mesh is 

defined in case.bac along with sources to refine the spacing.  VolumeOld uses a Delauney 

marching front method to generate a tetrahedral mesh between all surfaces in case.fro.  The 

final mesh is written to the case.gri.  VolumeOld uses a water-tight tolerance when checking 

surfaces and their intersections.  Volume is a revised version of VolumeOld with a tighter 

tolerance.  3D meshes are generated using VolumeOld. 

Pave2D and Pave3D.  Pave2D were written as an alternative to generating specific cases with 

SurfaceOld.  Pave2D create mathematically regular meshes over many domains and 

distributions: rectangular; radial around a central surface; H- and U-meshes around airfoils; 

laminar and generic (transitioning) boundary layer meshes over flat plates; turbulent sections 

(far downstream from leading edge) over flat plate.  Pave3D were written as an alternative to 

generating specific cases with VolumeOld and creates 3D extrusions of the previous cases 

described for Pave2D. 

Convert_Plate and Convert_Bump.  Convert_Plate and Convert_Bump are used to convert 

the geometry files from NASA Langley Turbulence Modeling Resource website (Rumsey, 

2012).  Convert_Plate converts structured grids over flat plate into case.g2d files, and 

Convert_Bump converts 2D bump geometries to case.g2d format.  The geometries can be 

converted using rising, falling, or alternating diagonals.  Rising or falling are suggested. 

MakeG2D.  MakeG2D was written by Cowan (2003) and adapted to include viscous infor-

mation.  MakeG2D converts the mesh in case.fro and boundary conditions in case.bco into 

the 2D geometry file case.g2d.  The geometry is sorted according to Figure 5.1 and Figure 



279 

5.2.  The case.g2d defines the geometry in Euler2D and NS2D.  If the case.g2d is viscous, a 

connectivity is created between boundary elements and adjacent elements.  The nodes and 

elements along viscous walls are written to the case.vwl in preparation for temperature 

boundary conditions. 

MakeG3D and MakeNC3D.  MakeG3D was written by Cowan (2003) and adapted to include 

viscous information.  MakeG3D converts the surface mesh in case.fro, volume mesh in 

case.gri, and boundary conditions in case.bco into the 3D geometry file case.g3d (binary).  

The geometry is sorted according to Figure 5.1 and Figure 5.2.  The case.g3d defines the 

geometry in Euler3D and NS3D.  If the case.g3d is viscous, a connectivity is created between 

boundary elements and adjacent elements.  The nodes and elements along viscous walls are 

written to the case.vwl in preparation for temperature boundary conditions.  Since the 

case.g3d file is a binary file, an ASCII version (ascii.g3d) is written if the file is already 

present upon run time.  MakeNC3D was adapted from MakeG3D by O�Neill (2011).  

MakeNC3D writes a case.nc3d file in the NetCDF format.  (See Appendix E for specifics.) 

MakeCFS.  MakeCFS was written by Gupta (2007) and adapted by AES to include singular 

nodes.  MakeCFS converts the surface mesh in case.fro and volume mesh in case.gri into the 

3D geometry file case.cfs.  MakeCFS does not sort the nodes or boundary elements.  The 

case.cfs defines the geometry in CFDsol.   

g3d2cfs and cfs2g3d.  These are converters between case.g3d and case.cfs files.  Since the 

case.g3d is sorted in a particular order, a case.cfs cannot be converted to case.g3d and used in 

Euler3D or NS3D.  A converted case.g3d (using cfs2g3d) can be viewed using Glplot3D, 



280 

which is the method of choice for viewing the geometry mesh and CFDsol solution.  g3d2cfs 

can be used to create a quick ASCII version of a case.g3d. 

g3d2nc3d and nc3d2g3d.  These are converters between case.g3d and case.nc3d files.  Both 

formats contain the same information and sorting, so the mesh is equivalent and conserved in 

the processing.  Both files are binary files, but the case.nc3d is written in the NetCFD format. 

Remesh3D.  Remesh3D was created by O�Neill (2011) by converting Remesh to read 

case.g3d files.  Remesh3D is used to analyze the solution for a given case.g3d.  The first or 

second derivative of the solution is used to define a new distribution of nodes.  A caseR.bac 

file is written containing all of the elements and nodes in the case.g3d.  A spacing and ortho-

gonal vector set is defined at each nodes in the domain.  The caseR.bac can be renamed to 

case.bac and used to mesh the solution using SurfaceOld and VolumeOld.   

If first derivatives are used, the gradient vector is used to determine the spacing at each node, 

and the direction vectors are equal to the Cartesian basis ( kji �,�,� ).  If second derivatives are 

used, the Hessian matrix is estimated at each node in the domain.  The eigenvalues of the 

Hessian are used to estimate a new spacing at each node, and the eigenvectors of the Hessian 

are used to define the orthogonal direction vectors.   

The new mesh spacing is controlled though five parameters:  S_max is the maximum spacing 

(ratio of spacing between directions) on an element.  F_spa determines whether to keep the 

current spacing, new spacing, or mixture of the two (0 < F_spa < 1).  D_min and D_max are 

the minimum and maximum spacing on the new mesh.  D_ref is the reference spacing used 

to relate the old and new meshes. 



281 

Remesh3D has been used in conjunction with SurfaceOld, VolumeOld, MakeG3D, and 

Euler3D to create the meshes shown in Figure 5.33 and Figure 5.34 

Figure 5.33:  Remeshed Solutions for Supersonic Wedge. 

   

Figure 5.34:  Remeshed Solutions for Supersonic Cones. 

2.0 

-0.3 

Cp

-0.2 

1.8 

Cp



282 

5.7.2 File Preparation Codes 

Several codes have been written to prepare files for the OSU codes. 

EditCon.  EditCon was created to edit the case.con and case.data controls files from the 

prompt or within batch files.  EditCon writes a table to the screen for the user to see what the 

current control scheme means and allows the user to change entries before writing back to 

the file.  A controls file can be read in the formats of any of the five solvers used in this 

work, edited, and written back to the same or to a different format.  EditCon can also be used 

to create a case.con full of default values by inserting the first �&control� and last �/� lines 

into the case.con.  EditCon can be used to read the empty file and immediately write the 

default controls back to the same file.  If a default case.data is desired, the empty case.con is 

created, converted to defaults, and then converted to case.data format.   

SetInit2D and SetInit3D.  SetInit2D and SetInit3D were created by Cowan (2003) to see 

domains with desired distributions for testing.  The following initial conditions can be 

created using SetInit2D and SetInit3D: 

• Double-shock shock tube (not available in SetInit3D) 
• Single-shock shock tube 
• Steady shock 
• Centrifuge 
• Constant gradient or constant curvature 
• Sine functions 
• Random perturbations, nodal (random) 
• Random perturbations, elemental (all nodes of any element are different) 
• Blasius or generic boundary layer solutions 
• Velocity reduction by number of nodes off wall, generic boundary layer that is not a 

boundary layer solution (not available in SetInit3D) 
• Rocket or afterburner region (like ABPrep2D) 
• Cavity, no-flow region (CavPrep2D) 
• Bluff body regions (no-flow downstream of body) 
• Flat plate and engine solutions for moment integral testing 



283 

UnkDist.  UnkDist is a generic and more user-friendly version of SetInit3D.  UnkDist must 

be hard-coded with a distribution, but the programmer can define any distribution using any 

property(s) in user_dist. 

UnkCorrect3D.  UnkCorrect3D reads a case.unk and assumes either pressure, total energy, or 

total enthalpy is correct.  The other two properties are calculated for consistency and written 

back to the case.unk. 

ABPrep2D.  ABPrep2D was adapted from SetInit2D to create a stable initial condition for 

rocket and/or afterburner problems.  ABPrep2D creates linear ramps between high and low 

pressure regions to create a smooth startup.  This program was made obsolete by SetInit2D 

and the ramp-up iterations for rocket and engine outflow boundaries.   

CavPrep2D.  CavPrep2D was adapted from SetInit2D to create a more accurate initial 

condition for open cavities.  CavPrep2D creates a no-flow region within the bounds of the 

cavity.  This eliminates acoustic waves created by the freestream slamming into the 

downstream wall just after startup.  This program was made obsolete by SetInit2D.   

Frstrm2D.  Frstrm2D reads a case.unk file and resets the properties within a rectangular 

region to freestream properties, as defined in case.con.  The new properties are written to the 

case.unk.new.  This program assumes inviscid case.unk file.  A viscous case.unk can be 

converted to inviscid using UnkAdapt2D and vice versa. 

Combust2D and Combust3D.  Combust2D and Combust3D define the combustion case.cmb 

file from user inputs.  The user defines a series of Cartesian rectangular regions with mass 

and heat production.  The transitions can be discontinuous or cosine splined, and the transi-

tions can be different in each direction (discontinuous at wall and smooth transition in flow).  



284 

A case.unc is written plotting like a case.unk in GlPlot2D/3D, where mass generation is plot-

ted as density and heat generation is plotted as Cp.  Viewing is direct for nodal distributions.  

Elemental distributions are pushed to the nodes using area- or volume-weighted averages.  

The data can also be written to case.txt file with format: coordinates, mass gen, heat gen. 

MakeVec2D.  MakeVec2D used to create 2D case.vec file.  MakeVec2D can be used to 

create rigid body rotations or translations of solid walls and/or produces flap deflections by 

rotating a section of a solid wall. 

MakeVec3D.  MakeVec3D uses mode shape vectors and frequencies from STARS 

case.arrays file to create a 3D case.vec file.  Rigid body and controls deflections can also be 

created. 

5.7.3 Solution / Geometry Conversion Codes 

Several codes have been written to convert between solutions and their geometries. 

2Dto3D.  2Dto3D converts a case.g2d to case.g3d for plotting.  The case.g3d created with 

2Dto3D cannot be used in Euler3D or NS3D.  Each triangle in the 2D mesh is converted to a 

tetrahedral with one node off of the 2D plane.  When viewing in Glplot3D, the case.g3d must 

be loaded alone and then reload with the case.unk or multiple case.un# files.  If the two 

operations are done in one step or with steps between them, Glplot3D will fault and 

terminate.  This program was made obsolete by 2Dextrude. 

2Dextrude.  2Dextrude converts every triangle into a prism and then subdivides that prism 

into tetrahedral.  The 3D mesh is only one prism thick.  2Dextrude can convert geometry 

alone, with a case.unk, or with case.un# files.  The original 2D plane becomes a symmetry 



285 

plane.  Another symmetry is created to mirror the first, one unit away.  Nodes are created in 

the middle of each prism and each prism face.  An ASCII file of geometry is written for 

debugging. 

Geom2Dto3D.  Geom2Dto3D converts the case.sur, case.bac, and case.bco files designed for 

a 2D mesh into corresponding files meant for a 3D mesh. 

Rotate2D and Rotate3D.  Rotate2D and Rotate3D rotates geometry and velocity vectors 

through Euler rotations of an original case.g3d and case.unk.  All rotations are made in fixed 

frame of original x,y,z, in the order z, y, and then x.  Rotate2D and Rotate3d can read 

inviscid and viscous versions of case.g2d and caselg3d and inviscid, laminar, and turbulent 

versions of case.unk or case.un# files. 

UnkASCII.  UnkASCII was created from UnkAdapt2D and later incorporated back into 

UnkAdapt2D.  UnkASCII converts a 2D case.unk file from binary to ASCII format.  This 

program was made obsolete by UnkAdapt2D. 

Unk2Out.  Unk2Out converts a case.unk (OSU restart file) to a case.out (CFDsol restart file). 

UnkAdapt2D and UnkAdapt3D.  UnkAdapt2D and UnkAdapt3D were created from 

UnkAdapt.  UnkAdapt2D and UnkAdapt3D read the case.unk file in inviscid, laminar, or 

turbulent formats.  The user is allowed to view and adapt the header.  The adapted file is 

written to case.unkA and an optional ASCII format (case.unk.ascii) for debugging and/or 

post-processing.  UnkAdapt2D and UnkAdapt3D can be used to add Re to inviscid files or 

iturb to laminar files.  UnkAdapt3D can handle case.g3d or case.nc3d. 



286 

UnkInterp2D and UnkInterp3D.  UnkInterp2D and UnkInterp3D interpolates a case.unk from 

one mesh (�name1�, case.g2d or case.g3d) to another mesh (�name2�, case.g2d or case.g3d).  

Values outside of the domain are extrapolated to nearest boundary element.  The geometry 

must be the same.  The user is prompted to adapt header before writing the unknowns file.  

The case.unk is assumed to already contain iturb.  For older unknowns files, the turbulent 

flag can be added by running through UnkAdapt2D or UnkAdapt3D. 

5.7.4 Solution Analysis 

Several codes were written to parse or interpret data files. 

MakeCut2D.  MakeCut2D extracts data from the case.g2d and case.unk files.  Properties can 

be extracted along lines or boundary curves.  This is similar to acoustic lines but limited to 

post-processing a case.unk file that has already been written.   MakeCut2D does not 

recognize viscous or turbulent controls or turbulent unknowns. 

MakeCut3D.  MakeCut3D extracts data from the case.g3d and case.unk files.  Properties can 

be extracted along lines or averaged over boundary surfaces.  All of the properties along a 

specific surface can also be written.  The properties or forces along an intersection of a plane 

and boundary surface can also be exported.  MakeCut3D does not recognize viscous or 

turbulent controls or turbulent unknowns. 

ParseDat.  ParseDat parses the xd.dat, xn.dat, or case.lds files to  pull plottable data.  The 

minimum time step returns the original data.  The maximum time step returns data points for 

each case.un# file.  The data can also be parsed at discrete intervals between these two limits. 



287 

Acst_FFT.  Acst_FFT reads the acoustic output files (case.rac, case.uac, case.vac, case.wac, 

and case.pac) and calculates a probability spectral density using FFT. 

Lift_Hist.  List_Hist calculates the forces and moments for a set of case.un# files.  This 

program was been made obsolete when the case.lds was added to outputs of CFDsol. 

Slices.  Slices produces property cuts along specified plane and rotations for each case.un# 

file in a solution (similar to MakeCuts3D). 

5.7.5 Validation Codes 

SmHess.  SmHess is a Smith-Hess panel method code written by Dr. Arena. 

PrepBlasius2D and PrepBlasius3D.  PrepBlasius2D and PrepBlasius3D pull profiles near the 

wall and compares to Blasius solution. 

Turb2D.  Turb2D pulls profiles near the wall and compares to turbulent boundary layer 

profiles.  Turb2D was used to extract meaningful data from Rumsey�s (2012) flat plate, and 

2D bump cases.  Turb2D was also used for grid convergence. 



288 

CHAPTER VI 

DEMONSTRATION OF IN-HOUSE CODES 

Verification is the process of comparing solutions from a method with those produced by 

other analytical or numerical methods.  Validation is a similar process, where experimental 

data is used as a means of comparison (Roache, 1998a and 1998b).  All verifications and 

validations are demonstrations of capability, but demonstrations are not verifications or 

validations without comparison.  Verification proves that the simulation is properly 

representing the desired physics model, and the CFD solution is verified when the solution 

matches the desired physics model (analytical or numerical) within a reasonable limit or in 

the limit as the mesh approaches a continuous discretization.  Validation is performed on a 

verified model to demonstrate how valid (accurate) that model is for a particular purpose, 

which the validation data encompasses.   

The OSU solvers used in this research have been demonstrated on various test cases across 

multiple regimes.  The physics within the solvers are first verified with theoretical and 

numerical predictions and then validated with experimental and empirical data.  The cases 

presented here do not represent an exhaustive verification or validation but rather demon-

strate the capabilities of the OSU in-house codes.  The test cases are separated into three 



289 

main divisions:  Inviscid aerodynamics (Euler2D and Euler3D), propulsion modeling 

(Euler2D and Euler3D), and viscous aerodynamics (NS2D and NS3D).   

6.1 Inviscid Aerodynamics 

Inviscid aerodynamics tests are used to compare theoretical, numerical, and experimental 

data to those created from Euler2D and Euler3D.  Some tests are created as a baseline 

comparison and will later be expanded to include viscous effects using NS2D and NS3D; 

other tests were generated as a parallel comparison with CFDsol, using the same mesh 

spacing and distributions.  The inviscid tests have been divided into subsonic, transonic, 

supersonic, and time-accurate.  The first three divisions test the steady-state accuracy of 

Euler2D and Euler3D operating throughout the compressible regimes.  The time-accuracy 

was compared with CFDsol. 

6.1.1 Subsonic 

Six geometries were tested at subsonic speeds.  An NACA 0012 airfoil was tested at two 

speeds.  The lower speed Mach 0.3 case is compared to a numerical solution produced using 

a Smith-Hess panel method.  The higher speed Mach 0.5 case is compared to experimental 

data.  An RAE 2822 airfoil was also tested at Mach 0.6 and represents one of the most 

accuracy comparisons.  Four simple shapes were tested:  A double-arc airfoil, ellipse, circular 

cylinder, and sphere.   

6.1.1.1 NACA 0012 Airfoil (Mach 0.3, 5 deg) 

The NACA 0012 airfoil is a simple subsonic case that can be compared to a numerical 

solution using a Smith-Hess panel method (Katz, 2001).  The airfoil was held at 5 degrees 



290 

angle of attack at Mach 0.3, to create different pressure distributions on the top and bottom 

surfaces.  The Smith-Hess solution (Arena, unpublished) breaks the surfaces of the airfoil 

into a series of vortex-panels and predicts the velocity and pressure distributions on the top 

and bottom surfaces.  These pressures are converted to Cp for easier comparison and 

corrected for compressibility using the Prandtl-Glauert (Anderson, 2001): 

( ) 2

0
1 ∞=

−= MCC
Mpp

The distribution of pressure over the airfoil is shown in the 2D test case description and used 

to calculate lift and moment (LE) coefficients:  cl = 0.6217 and cm,LE = -0.1567.  The pressure 

drag should be zero.   

The mesh was generated with a constant background spacing on an elliptical far field.  

Regions around the leading and trailing edges were refined to capture the curvature of the 

nose radius and trailing edge flow.  The wake was refined for the steady and later unsteady 

solutions.  The final mesh is shown in Figure 6.1. 

The Euler3D solution converged after 3000 iterations, with 4 inner cycles per iteration and a 

CFL of 0.5.  Higher order dissipation was used with a dissipation constant diss of 0.6.  The 

distributions of four of the properties are plotted in Figure 6.2 and again in Figure 6.3 in 

reference to their far field distributions.  The pressure distribution shows the highest pressure 

at the stagnation point, just under the leading edge.  The highest velocity corresponds to the 

lowest pressure, located over the top of the forward section of the airfoil.  Entropy production 

is confined to the airfoil because no shocks or viscous stresses are present.  The most entropy 

is generated along the nose of the airfoil, signifying a possible need to refine the mesh. 



291 

Figure 6.1:  NACA 0012 Airfoil Mesh, Elliptical Far Field. 

Figure 6.2:  Pressure, Density, Mach, and Entropy Distrib. for NACA 0012 (Mach 0.3). 

Pressure Density

Mach Entropy

1 

-2

1.1 

0.9 

.47 

0 

.02 

0 



292 

Figure 6.3:  Pressure, Density, Mach, and Entropy Distrib. for NACA 0012 (Mach 0.3). 

The Euler2D and Euler3D solutions are shown in comparison with the Smith-Hess solution 

in Figure 6.4 and Figure 6.5, respectively.  The pressure distribution found using Euler2D 

and Euler3D matches the Smith-Hess solution very well.  Euler3D predicts less suction than 

desired at the leading edge.  Small errors are present near the leading edge, so any mesh 

Pressure Density

Mach Entropy



293 

refinement would be necessary at the LE, where the greatest changes in geometry and the 

flow field occur.   

Figure 6.4:  Coefficient of Pressure from Euler2D Compared to Smith-Hess Solution.   

Figure 6.5:  Coefficient of Pressure from Euler3D Compared to Smith-Hess Solution.   



294 

The pressure everywhere in the Euler3D solution is plotted versus the x′ -distance (see Figure 

6.6).  x′ is a measure of the distance downstream of the airfoil leading edge.  The airfoil 

perturbs the flow about a freestream value:  Cp = 0.  The pressure begins to change upstream 

of the airfoil and returns to the freestream pressure downstream.  The pressure over the top 

and bottom surface of the airfoil in Figure 6.6 is equal to that in Figure 6.4, where the 

pressure coefficient has been inverted in Figure 6.4.  Looking more closely at Figure 6.6, the 

pressure on the �far field� within the bounds of the airfoil (0 < x′ < 1) is not equal to that at 

the up and downstream far fields.  The coefficient of pressure has been perturbed away from 

the freestream value because of the presence of the airfoil.   

Figure 6.6:  Coefficient of Pressure through Euler3D Solution Domain. 



295 

Anderson (2001) shows that the pressure above and below an airfoil experiences a change 

due to the presence of the airfoil.  As the distance away from the airfoil grows, the properties 

become more like the freestream because the influence of the airfoil is spread out over a 

larger area.   Any �far field� put in proximity of the airfoil should show a perturbation from 

the freestream values.  Similar distributions are shown for density and velocity in Figure 6.7.   

Figure 6.7:  Distribution of Density (Left) and Velocity (Right) from Euler3D Solution. 

6.1.1.2 NACA 0012 Airfoil (Mach 0.502, 1.77 deg) 

An NACA 0012 airfoil was repeated in Euler3D at Mach 0.502 and 1.77-degrees angle of 

attack.  The CFD solution is compared below with data from Barche (1979).  The mesh is 

shown in Figure 6.8.  The meshes were generated using Pave2D and Pave3D instead of the 

Delaunay method used in Surface and Volume.  Pave3D was used to produce a mathematical 

mesh for CFDsol, where the three-dimensional mesh was only one element thick. 

Figure 6.9 shows the pressure and Mach distributions predicted by Euler3D, and Figure 6.10 

compares the surface pressure from Euler2D and Euler3D to experimental data from Barche 



296 

(1979).  The mesh spacing is the same, so Euler2D and Euler3D predict the same pressure 

distributions.  The pressure on the lower surfaces matches very well, but the pressure on the 

top surface differs at the leading edge.  The loss in suction was thought to come from a lack 

of refinement near the leading edge but testing in Euler2D points elsewhere.  Further testing 

was done by Hassett (not yet published), who improve the solution over the top of the airfoil. 

Figure 6.8:  Mesh for NACA 0012 Airfoil (Mach 0.502, 1.77
o
 AOA). 



297 

Figure 6.9:  Pressure and Mach around NACA 0012 Airfoil (Mach 0.502, 1.77
o
 AOA). 

Figure 6.10:  Surface Pressure over NACA 0012 Airfoil (Mach 0.502, 1.77
o
 AOA). 

.68 

0 

1.0 

-.85 

Pressure

Mach



298 

6.1.1.3 RAE 2822 Airfoil (Mach 0.6, 2.57 deg) 

An RAE 2822 airfoil was modeled in Euler2D and Euler3D at Mach 0.6 and 2.57-degrees 

angle of attack and compared below with data from Barche (1979).  The mesh produced 

using Pave2D and Pave3D is shown in Figure 6.11:   

Figure 6.11:  Mesh for RAE 2822 Airfoil (Mach 0.6, 2.57
o
 AOA). 



299 

Results are shown in Figure 6.12 and Figure 6.13.  Figure 6.12 shows the pressure, density, 

Mach, and entropy distributions predicted by Euler3D, and Figure 6.13 compares the surface 

pressure from Euler2D and Euler3D to experimental data from Barche (1979).  The pressure 

on both surfaces matches very well with the experiment; the largest variations occur near the 

leading (top) and trailing edge (bottom).  The two CFD solutions match up, except near the 

leading edge along the bottom surface. 

Figure 6.12:  Pressure and Mach around RAE 2822 Airfoil (Mach 0.6, 2.57
o
 AOA). 

1 

-.87 

.81 

0 

Pressure Mach 



300 

Figure 6.13:  Surface Pressure over RAE 2822 Airfoil (Mach 0.6, 2.57
o
 AOA). 

6.1.1.4 Double-Arc Airfoil 

A double-arc airfoil was demonstrated at Mach 0.3.  The pressure, Mach, and entropy distri-

butions are shown in Figure 6.14 along with the mesh used in Euler2D. 

Figure 6.14:  Pressure, Mach Number, and Entropy Distrib. near Cat�s Eye (Mach 0.3). 



301 

6.1.1.5 Ellipse (Mach 0.3) 

An ellipse with 6:1 ratio was tested under inviscid conditions, in preparation for a viscous 

boundary layer and in comparison to CFDsol.  The inviscid pressure and velocity distribu-

tions are shown in Figure 6.16 for the mesh shown in Figure 6.15.  The mesh was generated 

using three mesh sources so that the spacing was finer at the leading and trailing edges.  The 

spacing was chosen to resemble the radius of curvature of the ellipse surface.  (A viscous 

mesh was added to the near-wall region in preparation for viscous testing.)  The inviscid 

surface pressure distribution from Euler3D for the ellipse is shown in Figure 6.17. 

  

Figure 6.15:  Mesh for 6:1 Ellipse (Mach 0.3). 



302 

Figure 6.16:  Pressure and Mach Distributions around Ellipse (Mach 0.3). 

Figure 6.17:  Surface Pressure over Ellipse (Mach 0.3). 

1 

-.38 

.35 

0 

Pressure

Mach



303 

6.1.1.6 Cylinder 

A circular cylinder was tested under inviscid conditions to demonstrate a simple, symmetric 

two-dimensional body.  (If only half of the cylinder was modeled, the run time and effects of 

artificial dissipation would have been reduced.  Brown (2009) found that the Second Law is 

no longer satisfied when modeling a circular cylinder with minimal artificial dissipation.  The 

symmetry plane enforces a flow pattern.  This solution was found in preparation for viscous 

solutions, which require the full cylinder.)  The mesh was generated so that the spacing on 

the cylinder surface is 6% of the radius of the cylinder, doubling at 3.75 radii from the center 

of cylinder.  The pressure and Mach distributions around the cylinder are shown in Figure 

6.19.  The mesh used to produce that solution is shown in Figure 6.18.   

Figure 6.18:  Mesh for Circular Cylinder (Mach 0.3). 



304 

Figure 6.19:  Pressure, Mach Number, and Entropy Distrib. near Cylinder (Mach 0.3). 

The surface pressure distributions from Euler2D and Euler3D are shown in Figure 6.20 (and 

corresponding surface velocity in Figure 6.21) compared with potential theory corrected for 

compressibility.  The pressure distribution is asymmetric across the centerline because arti-

ficial dissipation is an a priori means of enforcing the Second Law.  The artificial dissipation 

produces positive entropy production on the field, but the stagnation point is still allowed to 

float.  Otherwise the distribution matches theory very well.  Distributions predicted using 

Euler3D are compared with those modeled in Euler2D.  Euler2D shows the rotated stagna-

tion point more clearly for low amounts of artificial dissipation (low entropy production).  

Without enough artificial dissipation to produce positive entropy production, the CFD model 

cannot lock in on one solution.  The Eule2D solution was repeated with a symmetry plane 

and with more dissipation.  The symmetry plane improves the solution greatly.  Adding 

dissipation causes the flow to �separate� at the trailing edge, but the solution over 90% of the 

cylinder surface is very accurate. 



305 

Figure 6.20:  Surface Pressure Distributions over Circular Cylinder (Mach 0.3). 

Figure 6.21:  Velocity Distributions over Surface of Circular Cylinder (Mach 0.3). 



306 

6.1.1.7 Sphere 

A sphere was tested under inviscid conditions to demonstrate a simple three-dimensional 

body.  Only one quarter of the sphere was modeled to minimize the run time.  The mesh was 

generated so that the spacing at the sphere surface is 6% of its radius, doubling at 3.75 radii 

from the center of sphere.  The final mesh is shown in Figure 6.22.  

Figure 6.22:  Mesh for Sphere (Mach 0.3). 



307 

The pressure and Mach distributions around the sphere are shown in Figure 6.23.  The 

surface pressure distribution is shown in Figure 6.24 compared with potential theory with and 

without correction for compressibility.  The Euler3D solution matches the incompressible 

theory very well.  The compressible correction lowers the pressure by 5%, so the solution is 

5% off at the mid-plane, decreasing to the stagnation points.  The pressure distribution is 

asymmetric across the centerline because artificial dissipation causes the inviscid field to 

separate off of the wall near the aft stagnation point.   

Figure 6.23:  Pressure and Mach around Sphere (Mach 0.3). 

1.0 

-1.3 

.46 

0 

Pressure

Mach



308 

Figure 6.24:  Surface Pressure over Sphere (Mach 0.3). 

6.1.2 Transonic 

Four airfoils are demonstrated at five transonic conditions and compared to experimental 

data.  The airfoils were tested at freestream Mach numbers from 0.73 to 0.835 and angles of 

attack from -0.13 to 2.8 degrees.  The NACA 0012 airfoil was tested in an asymmetric flow 

condition, and the RAE 2822 is repeated here in a lifting condition.  The CAST 7 airfoil and 

NASA 10% supercritical airfoil add variety to the geometries tested. 

6.1.2.1 NACA 0012 Airfoil (Mach 0.835, -0.13 deg) 

The NACA 0012 airfoil is repeated here at transonic conditions.  The symmetric airfoil was 

held at -0.13 degrees to create different distributions on the two surfaces.  The shock lower 

surface should occur further aft on the airfoil because of the negative angle of attack.   Figure 

6.25 shows the location of both transonic shocks in pressure and Mach number.  Figure 6.26 



309 

shows the mesh used to generate those solutions.  The mesh was refined near the transonic 

shocks by iterating the CFD solution with tighter meshes. 

Figure 6.25:  Pressure and Mach around NACA 0012 Airfoil (Mach 0. 835, -0.13
o
). 

Figure 6.27 shows the pressure distribution on both surfaces compared with data from Barche 

(1979).  The CFD solution shows the location of both shocks to be further aft than seen in the 

experimental data.  The location of the shocks is thought to be affected by the boundary layer 

thickness, not present in the Euler2D or Euler3D solution.  (These solutions were not repeaed 

in NS2D or NS3D because of time.  This should be revisited in the future.)  The CFD solu-

tions in Figure 6.27 also shows oscillations near the leading edge that should be eliminated 

by a tighter leading edge mesh.  Hassett (not yet published ) has improved the leading edge 

accuracy but were unable to improve the shock locations in the inviscid solvers. 

1.0 

-1.0 

1.4 

0 

Pressure Mach



310 

      

Figure 6.26:  Mesh for NACA 0012 Airfoil (Mach 0.835, -0.13
o
 AOA). 



311 

Figure 6.27:  Surface Pressure over NACA 0012 Airfoil (Mach 0. 835, -0.13
o
 AOA). 

6.1.2.2 RAE 2822 Airfoil (Mach 0.73, 2.8 deg) 

The RAE 2822 airfoil was tested at a freestream Mach number of 0.73 and angle of attack of 

2.8 degrees.  The mesh used by Euler2D and Euler3D was produced in Pave2D and Pave3D, 

respectively (shown in  

Figure 6.29).  The pressure and Mach distributions are shown in Figure 6.28.  The pressure 

distribution on the airfoil is shown in Figure 6.30 compared to data from AGARD (1988).  

The experimental data shows a large pressure bubble near the leading edge.  The CFD 

solutions do not predict as much suction near the leading edge.  Both CFD solutions shock 

just aft of the experimental data.  Euler2D predicts a very sharp shock, while the 



312 

experimental data (while sparse in data across the shock region) shows a longer shock region.  

The rest of the pressure distribution is very similar between the CFD and experimental data.   

Figure 6.28:  Pressure and Mach around RAE 2822 Airfoil (Mach 0.73, 2.8
o
 AOA). 

1.0 

-1.2 

1.2 

0 

0.037 

0 

1.3 

0.6 

Entropy Density 



313 

  

Figure 6.29:  Mesh for RAE 2822 Airfoil (Mach 0.73, 2.8
o
 AOA). 



314 

Figure 6.30:  Surface Pressure over RAE 2822 Airfoil (Mach 0.73, 2.8
o
 AOA). 



315 

6.1.2.3 CAST 7 Airfoil (Mach 0.765, 2.52 deg) 

The CAST 7 airfoil was tested at two different transonic speeds and the same angle of attack:  

Mach 0.765 and Mach 0.785 at an angle of attack of 2.52 degrees.  The two flight speeds 

create two different transonic regions over the top surface.  The shock shifts aft for the higher 

speed case.  The meshes used for the Mach 0.765 and 0.785 cases are shown in Figure 6.31 

and Figure 6.34, respectively.  The meshes were generated in Pave2D and Pave3D and 

refined through successive iterations through Euler2D.  The shock refinements were placed 

using the first iteration, and the refined region was much broader than seen in the final 

meshes.  The solution was updated, and the refined region was narrowed on the updated 

shock location.  The mesh spacing was also decreased to sharpen the shock response.   

Figure 6.32 and Figure 6.35 show the pressure distributions in the near field of each case.  

Figure 6.33 and Figure 6.36 compare the predicted pressure distributions on the airfoil at 

each condition to experimental data from Barche (1979).  The solution from Euler2D and 

Euler3D shock 30 to 35% of the chord aft of the experimental data.  The region between the 

CFD shock location and that measured in experiments represents the largest differences seen.  

The remaining pressure distribution matches the experimental data very well.  Possible 

explanations include boundary layer thickness (not modeled in the inviscid codes), mesh 

refinement upstream of the shock region, or experimental uncertainties. Further tests are 

required to determine the cause of the discrepancies.   



316 

Figure 6.31:  Cast 7 Airfoil Mesh (Mach 0.765, 2.52
o
 AOA). 



317 

Figure 6.32:  Pressure and Mach Distrib. around CAST 7 (Mach 0.765, 2.52
o
 AOA). 

Figure 6.33:  Surface Pressure Distrib. over CAST 7 Airfoil (Mach 0.765, 2.52
o
 AOA). 

1.0 

-1.6 

1.8 

0 

Pressure Mach



318 

Figure 6.34:  Cast 7 Airfoil Mesh (Mach 0.785, 2.52
o
 AOA). 



319 

Figure 6.35:  Pressure and Mach Distributions around CAST 7 (Mach 0.785, 2.52
o
). 

Figure 6.36:  Surface Pressure Distribution over CAST 7 Airfoil (Mach 0.785, 2.52
o
). 

1.0 

-1.6 

1.9 

0 

Pressure Mach



320 

6.1.2.4 NASA 10% Supersonic Airfoil (Mach 0.79, 2 deg) 

The NASA 10% supercritical airfoil is a strongly cusped airfoil with a large region with 

nearly constant thickness.  The NASA airfoil was tested at Mach 0.79 and compared to 

experimental data from Barche (1979).  The mesh used for this comparison is shown in 

Figure 6.38.  The pressure and Mach distributions are shown in Figure 6.37.  The CFD 

solution predicts the shock very near the trailing edge.  The experimental data predicts a 

shock near 75% of the chord.  Figure 6.39 shows a comparison between the CFD and 

experimental distributions.   

Figure 6.37:  Pressure and Mach around NASA 10% Supercritical (Mach 0.79, 2
o
). 

1.0 

-2.0 

1.8 

0 

Pressure Mach



321 

       

Figure 6.38:  Mesh for NASA 10% Supercritical Airfoil (Mach 0.79, 2
o
 AOA). 



322 

Figure 6.39:  Surface Pressure over NASA 10% Supercritical Airfoil (Mach 0.79, 2
o
). 

Euler2D has matched the distribution on many of the transonic cases except between the two 

shock locations.  Hassett (not yet published) tested the uncertainty in angle of attack and has 

ruled this out as an explanation.  This idea is still explored here to alert the reader to the 

effects of angle of attack on shock location and the rest of the pressure distribution. 

Figure 6.40 and Figure 6.41 show pressure distributions creating by varying the angle of 

attack.  Both figures show the advancement of the transonic region across the top surface of 

the airfoil as the angle grows.  The pressure on the bottom surface of the airfoil does not 

change appreciably, and the pressure on the top surface changes due to the transonic shock 

and its location alone.  The pressure distribution varies by approximately 5% upstream and 

downstream of the shock region. 



323 

Figure 6.40:  Pressure Distribution over NASA 10% Supercritical Airfoil (Mach 0.7). 

Figure 6.41:  Pressure Distribution over NASA 10% Supercritical Airfoil (Mach 0.7) 

6.1.3 Supersonic 

The supersonic regime is represented here by four test cases with various conditions on each 

of those cases.  A shock tube was modeled with a three-part initial condition.  Two traveling 

waves of equal magnitude move across the shock tube in opposite directions.  Pressure, 

density, and velocity distributions are given as time slices.  All cases tested matched shock 

expansion theory with less than 0.2% error far downstream.  Tighter meshes improved the 

transition through shocks and expansions.  A series of compression and expansion corners 

2.5o AOA 2o AOA 3o AOA 



324 

were investigated meshing guidelines for oblique shock waves and expansion fans and also 

worked as verification cases.  When the appropriate mesh spacing is used, the error across 

the shock or expansion is reduced.  Finally, a double wedge airfoil was tested at an angle of 

attack, creating four unique shocks and two expansions. 

6.1.3.1 Double Shock Tube 

A shock tube with two membrane partitions was modeled in Euler2D.  The shock tube was 

divided into three regions of equal length L.  The pressure and density in the outer regions 

was set to unity, and the pressure and density in the inner region was set to one tenth.  The 

velocity everywhere is zero.  These properties are the initial conditions for the solution to 

model the membrane being broken at t = 0.  Pave2D was used to mesh the domain into equal 

steps in the horizontal and vertical dimensions: ∆x = 0.002 L and ∆y = 0.005 L (300,000 

elements total).  The boundaries of the domain were all modeled as solid walls.  The three 

full-page figures that follow illustrate the progression of the solution through 45,000 steps at 

a time step of ∆t = 4.75 x 10-5.  A slice is shown every 3000 steps. 

Figure 6.42:  Shock Tube Geometry 

Figure 6.43below shows 16 pressure slices taken at regular intervals.  You can see the 

compression waves (crisp normal shocks, white lines) moving inward while the expansion 

waves (fuzzy transitions bound by dashed white lines) move out toward the ends.  The 

compression waves cross in the center and keep moving toward the opposing walls.  At the 



325 

instance the two compression waves cross, they cancel each other making a homogeneous 

center.  But the waves continue on, releasing double-traveling shock waves.  The trailing 

wave in each doublet is faster, overtaking its counterpart.  The compression waves coalesce 

back into one traveling wave on each half of the domain.  The slices show the compression 

waves until just after they reflect off of the end plates.  As the compression waves pass 

through the expansion region (bound by dashed lines), the compression waves slow down 

because of the change in properties.   

Figure 6.44 shows 16 density slices at the same intervals.  The progression of compression 

and expansion waves in density is very similar to those in pressure.  The trailing wave is 

faster than the leading.  The pressure and density waves coalesce at the same time.  The 

density solution also leaves an artifact within the inner region.  The artifact is created when 

the trailing waves contact the leading waves from the opposite membrane.  The result is a 

standing wave artifact, which is thought to be numerical in nature, not real to the physics. 

Figure 6.45 shows 16 slices of the velocity magnitude, non-dimensionalized to the initial 

compression wave speed.  The pattern of compression and expansion waves is very similar to 

pressure and density.  Trailing compression waves are created along the centerline and 

coalesce with their leading counterparts.  The velocity between the compression and 

expansion waves is the highest and nearly constant; the velocity is lower and changes 

continuously across the expansion region (bounded by dashed lines).  The other regions have 

no velocity until they are visited by one of the shocks or expansion fronts. 



326 

Figure 6.43:  Pressure Slices through Shock Tube at Regular Intervals. 



327 

Figure 6.44:  Density Slices through Shock Tube at Regular Intervals 



328 

Figure 6.45:  Velocity Slices through Shock Tube at Regular Intervals.  



329 

6.1.3.2 Supersonic Compression Corner 

When supersonic flow passes a compression corner, shown in Figure 6.46, an oblique shock 

wave forms that slows down the flow behind the wave.  The slower flow also turns to align 

with the downstream geometry.  Figure 6.46 shows such a shock wave and binary solution 

from upstream to downstream.  Theoretically, the transition from upstream to downstream 

occurs over an infinitesimally thin distance.  Realistically, losses due to viscous dissipation 

and heating increase this distance to the cover of millimeters.  In CFD models, the viscous 

and heating effects are often second to the artificial dissipation required to capture the shock 

discontinuity.  The effects of artificial dissipation are explored here.   

Figure 6.46: Mesh (left) and Pressure (right) for a 30
o
 Compression Corner at M = 10. 

Figure 6.47 shows the pressure distribution along the wall of the 30o compression corner 

(shown in Figure 6.46).  This solution is typical for a compression corner.  The region 

upstream of the corner is constant at freestream conditions.  At the corner, possibly one 

element upstream, the properties change quickly.  Downstream of the corner, the artificial 

dissipation smoothes out the sharp transition.  Hopefully, any violation of the Second Law is 

Cp

0.63

0



330 

avoided, and the flow transitions quickly to the downstream �jump-condition� properties.  

The �jump-condition� represents the analytical solution to the Euler equations for a particular 

shock case (John, 1984).  The numerical solution to the Euler equations also arrives at this 

same solution, far downstream from the shock.  (In all cases, the solution matches within 

0.1% error, far downstream.)  The word �far� is used because artificial dissipation smears the 

solution near the shock.  If this region is appropriately meshed and a low dissipation is used, 

this distance can be minimized and the solution seems to �jump� across the shock.  

Figure 6.47: Pressure along Wall of 30
o
 Compression Corner, M = 10, ∆∆∆∆x = 0.032 L. 

Figure 6.48 shows the smeared region just downstream of the shock wave for several mesh 

spacings ranging from 0.0004 to 0.1 times the length of the downstream plate, which has a 

length of unity.  The curves on the left of Figure 6.48 can be collapsed into the curves on the 

right of Figure 6.48 by scaling the distance along the plate by the inverse of the mesh 

spacing.  In other words, this artificial dissipation model requires a set number of elements to 

�smear� the solution from upstream to downstream �jump� conditions.  The number of 



331 

elements is changed by the upstream Mach number, corner angle (shock strength), and 

amount of artificial dissipation.  These effects are further explored. 

Figure 6.48: Uncollapsed (Left) and Collapsed (Right) Pressure Profiles Downstream             

of a 15
o
 Compression Corner (M = 10) versus Mesh Spacing. 

Figure 6.49 shows region just downstream of the shock for various amounts of dissipation 

(0.8 < diss < 2).  More dissipation smears the solution further downstream, no matter how 

many elements are used, so less dissipation is more desirable.  This trend, of course, has a 

lower limit, where the solution becomes unstable.  The curves on the left of Figure 6.49 for 

various dissipation coefficients are collapsed into the curve on the right of Figure 6.49 by 

dividing by the dissipation scalar diss.  This shows the number of elements can be scaled by 

the amount of dissipation used. 



332 

Figure 6.49: Uncollapsed (Left) and Collapsed (Right) Pressure Profiles Downstream of 

a 15
o
 Compression Corner (M = 2) versus Artificial Dissipation Scalar. 

Meshes from 0.004 to 0.1 times the downstream plate length were tested in the region of the 

shock wave for compression corners ranging from 5 to 40 degrees at Mach numbers of 2, 3, 

5, and 10.  The results were collapsed using the method shown in Figure 6.48 and Figure 

6.49.  The results (diss = 1.0) are shown in Table 6.1 and graphically in Figure 6.50.  Figure 

6.50 plots the number of elements versus the measure of the corner angle over the maximum 

angle δmax, or angle at which the shock detaches into a bow shock.  The table and plots show 

that the number of elements is most highly affected by the upstream Mach number and then 

by the angle turner (or strength of the compression).  The number of elements increases with 

Mach number, which is intuitive.  The number of elements increases for smaller angles, 

which is counter-intuitive.   



333 

Table 6.1: Number of Elements (N) versus Compression Angle and Mach Number. 

The error downstream of a compression corner (shock wave) can be minimized by placing an 

appropriate number of elements in that region, as suggested by Table 6.1 and Figure 6.50.  

For instance, if one wishes for the solution to approach the jump properties within 5% of the 

downstream plate length (reasonable for engineering estimates), then N elements (as shown 

in the Table 6.1 or Figure 6.50) show be placed downstream of the shock over 5% of the 

plate length.  Another example would be an incident shock near another surface.  A reflected 

shock in the inflow plane of the combustion would necessitate matching the downstream 

jump condition.  If the distance between the shock and point of interest (other wall, inflow 

plane, combustor, etc) is expressed as x, then at least N elements should be placed down-

stream of the shock over the distance x so that the solution can properly transition to the 

correct downstream properties.  This gives a spacing of x / N along the shock center.  More 

elements will improve the accuracy but also slow down the solution speed.  If, for some 

unforeseen reason, the artificial dissipation is increased (stability) or decreased (accuracy), 

the number of elements within the �smeared� region needs to be adapted:  x / N / diss



334 

Figure 6.50: Number of Elements (N) versus Compression Angle and Mach Number. 

6.1.3.3 Supersonic Expansion Corner 

Similar to the compression corner, the expansion corner produces different conditions up and 

downstream of the corner, but the expansion occurs over an intentionally wider region � the 

expansion fan.  Figure 6.51 shows this region on a very fine mesh.  Figure 6.52 shows the 

pressure distribution along the wall up and downstream of the corner.  This solution is 

typical:  Upstream properties are constant, and the downstream properties transition to the 

desired theoretical values (within 0.1% of theory over far enough distances).  The transition 

region is smoothed out by artificial dissipation.  The smoothed (or smeared) region just 

downstream of the corner is enlarged by larger elements, higher Mach number, and larger 

dissipation scalars.   



335 

Figure 6.51: Mesh (left) and Density (right) for 10
o
 Expansion Corner at M = 5. 

Figure 6.52: Pressure along Wall of 10
o
 Expansion Corner, M = 3, ∆∆∆∆x = 0.016 L. 

Curves similar to Figure 6.48 and Figure 6.49 were produced for the expansion corner, where 

the solutions from different mesh spacings or dissipation scalars can be collapsed on top of 

each other by dividing by the mesh spacing or dissipation scalar.  The expansion corners (2 

to 30 degrees) were tested at Mach 2, 3, 5, and 10 along with the effects of higher and lower 

ρ / ρinf 
1.0

0.47



336 

dissipation scalars.  The results (diss = 1.0) are shown in Table 6.2 and graphically in Figure 

6.53.  Figure 6.53 (left) plots the number of elements versus the measure of the corner angle. 

The expansion angle seems to have a minimal influence on the number of elements required 

to model the expansion process.  Figure 6.53 (right) shows the number of elements versus the 

upstream Mach number M.    

Table 6.2:  Number of Elements (N) versus Expansion Angle and Mach Number. 

The error downstream of an expansion corner (expansion fan) can be minimized by placing 

an appropriate number of elements in that region, as suggested by Table 6.2 and Figure 6.53 

(right).  This process is similar to that described for the compression corner, but the number 

of elements does not depend on the angle of the corner. 

Figure 6.53:  Number of Elements (N) versus Expansion Angle and Mach Number. 



337 

6.1.3.4 Supersonic Double Wedge (5 deg) Airfoil (Mach 2, 2 deg) 

The supersonic double-wedge airfoil is a simple supersonic case that can be compared to a 

reliable analytical solution.  The airfoil geometry is defined to be symmetric both top-to-

bottom and front-to-back with half-wedge angle of 5 degrees.  The airfoil was held at 2 

degrees at Mach 2, to create four different oblique shocks and two different expansion fans 

for comparison to theory.   

Figure 6.54:  Double-Wedge Airfoil Geometry (to scale). 

The analytical solution used here comes from shock-expansion theory (John, 1984).  Shock-

expansion (SE) analysis predicts the pressure and Mach number on each of the four surfaces 

with shock angles.  The pressure coefficients are used to calculate the lift, wave drag, and 

moment (LE) coefficients.  The shock angles are shown with respect to the centerline of the 

airfoil. 

The mesh was generated in three sessions:  The initial mesh was generated to refine the area 

around the airfoil with no refinement for the shocks or expansions.  The solution from 

Euler2D was used to locate the shocks and expansions, instead of using analytical angles.  

The regions around the shocks and expansions were refined to capture the property changes 

in these areas.  Euler2D was used to refine the solution, which showed a further need for 



338 

refinement at the corners of the airfoil.  The final mesh contained 2.4M elements and can be 

seen in Figure 6.57.  Each image in the Figure 6.57 represents one level of refinement, and 

the areas of refinement are illustrated with the darkest clusters of elements.  The 2D sources 

and domain were extruded to create the 3D sources and domain.  Such an extrusion can be 

done before meshing with Geom2Dto3D or after meshing with 2DExtrude. 

Euler3D converged on a solution for the double-wedge airfoil in 1,100 iterations, with 4 

inner cycles per iteration and CFL of 0.5.   Lower order dissipation was used with a dissi-

pation factor diss of 1.0.  The distributions of four of the properties are plotted in Figure 6.58.  

Pressure, density, and local Mach number all show the presents of shocks and expansion.  

The shocks are crisp, abrupt changes in flow properties, while the expansions are �fanned� 

changes in properties around the corner.  The pressure and Mach number distributions over 

the top and bottom surfaces of the airfoil are shown in Figure 6.55 for Euler2D and Figure 

6.56 for Euler3D.    

Figure 6.55:  Pressure and Mach Distributions for Double-Wedge Airfoil (Euler2D). 



339 

Figure 6.56:  Pressure and Mach Distributions for Double-Wedge Airfoil (Euler3D). 

Figure 6.57:  Double-Wedge Airfoil Mesh (Euler3D). 

Table 6.3 and Table 6.4 shows the results from Euler2D and Euler3D in comparison with the 

shock-expansion theory.  The CFD values for zones 1 and 2 (forward half) were averaged 

between 30 and 40% chord.  Values for zones 3 and 4 (aft half) were averaged between 80 



340 

and 90% chord.  These two locations were chosen because the Mach number approaches a 

zero derivative in the CFD plots in Figure 6.56.   

The percent differences shown in Table 6.4 are very low for the pressure, Mach number, and 

shock angles.  Shock angles were estimated using rough �eye-balled� lines and a protractor.  

This process is not always that reliable for the CFD results.  The lift and wave drag coeffi-

cients were very reliable, but the coefficient of moment was 22% higher than that predicted 

by SE theory.  Figure 6.56 shows the pressure behind both shocks and expansions lags due to 

artificial dissipation.  The lag pushes the center of pressure further aft creating a larger 

moment.  (This case was created before the meshing standards in Figure 6.50 and Figure 6.53 

were defined.  This case could be repeated with the standards to reduce the error in moment 

coefficient and possibly lift and wave drag.) 

Table 6.3:  Results from Euler2D Compared with Shock-Expansion Theory. 

Table 6.4:  Results from Euler3D Compared with Shock-Expansion Theory. 



341 

Figure 6.58:  Pressure, Density, Mach, and Entropy Distrib. for Double-Wedge Airfoil. 

Mesh convergence was shown by comparing the pressure coefficients, local Mach numbers, 

and aerodynamic coefficients, as seen in Table 6.4, for the three mesh refinements.  The last 

mesh refinement changes the pressure coefficients less than 1%, Mach numbers 4%, and 

aerodynamic coefficients 2%.  (Shock angles were not compared for their relative.) 

The double-wedge airfoil was also tested at Mach 5 and 10.  The meshes were generated 

using the same three-step process as the previous Mach 2 case.  The Mach distributions for 

these two flight speeds are shown in Figure 6.59.  The figure shows the shock angles 

decrease with flight speed, so that the shocks begin to encroach on the airfoil surface itself.  

The solution is also slurred over airfoil surface due to artificial dissipation.  The results from 

Euler3D were again compared to SE theory.  The results are shown in Table 6.5 and Table 

Pressure Density

Mach Entropy



342 

6.6 for Mach 5 and 10, respectively.  The Mach 5 solution compared reasonable well (within 

5-7%) to theory, while the Mach 10 solution (within 11-16%) needs some further mesh 

refinement.  These results show that Euler3D produces reasonable accuracy at supersonic and 

hypersonic speeds.   

Figure 6.59:  Mach Distrib. for Double-Wedge Airfoil at Mach 5 and 10 (Euler3D). 

Table 6.5:  Comparison of Mach 5 Solutions to SE Theory. 

Table 6.6:  Comparison of Mach 10 Solutions to SE Theory. 

Mach 10 Mach 5 



343 

Figure 6.60 shows the convergence of the RMS error in the energy equation (or energy 

residual) from Euler3D.  The residual converges with the inverse of the relaxation factor 

CFL; cutting the relaxation factor in half doubles the run time.  The plot also shows that 

steady state solutions in Euler3D converge to a residual of 10-16 or smaller, given a long 

enough run time. 

Figure 6.60:  Convergence of Energy Residual vs. CFL. 

6.1.4 Time-Accurate 

The Wagner airfoil was selected as a simple unsteady case that can show time-accuracy on 

load calculations.  Wagner releases acoustic waves when the flow suddenly sees the wall 

surfaces.  These acoustic waves were also tracked to show accurate propagation of waves. 

6.1.4.1 Wagner Airfoil (NACA 0012, Mach 0.3, 5 deg) 

In 1925, Wagner analytically investigated the flow over a suddenly accelerated airfoil.  

Wagner suggested the problem of an airfoil held at a specified angle of attack in still air.  The 



344 

air is accelerated to a desired speed so abruptly that the velocity was modeled using a step 

impulse.  Wagner (1925) found that the lift on the airfoil started at half of its steady state lift 

and asymptotically approached the steady lift as time progressed.  The flow is dominated by 

a startup vortex that produces downwash on the airfoil.  The downwash reduces the lift that 

the airfoil produces.  As the flow progresses, the startup vortex moves further downstream, 

decreasing its influence on the airfoil.  

Jones (1940) found a simplified equation that represents the lift history of a suddenly acceler-

ated airfoil.  Jones used Wagner�s equations and assumed a shape for the lift history.  Jones 

approximated the coefficients for his lift history:

( )( )ss

Lll eecc 3.0045.0
0 335.0165.01 −−

= −−−= ααα

where cl,α is the lift slope, αL=0 is the zero lift angle, and s is the clearing-time, or time for the 

freestream to move one half-chord downstream:  s = 2 ∞V t / c.     

The Wagner problem was modeled in Euler3D using a NACA 0012 airfoil at Mach 0.3 and 

5-degrees angle of attack.  The solution was compared to that of Jones, which was corrected 

for compressibility at Mach 0.3 using Prandtl-Glauert (Anderson, 2001).  Euler2D and 

Euler3D were both shown to match theory very well (see Figure 6.61 and Figure 6.62).  The 

CFD lift approaches infinity as time goes to zero because the CFD solution requires a finite 

amount of time to grow the startup vortex and then release it into the wake, whereas Wagner 

assumes that the startup vortex appears and is released instantaneously into the flow.   

Figure 6.63 and Figure 6.64 show snapshots of the unsteady pressure and velocity distribu-

tions near the airfoil.  The snapshots show the growth of the startup vortex at the trailing edge 



345 

of the airfoil.  The release of the vortex from the trailing edge coincides with the minimum 

lift at approximately t* = 0.5, shown in Figure 6.61 and Figure 6.62.  The vortex drifts 

downstream in the airfoil�s wake, decreasing the downwash on the airfoil, increasing the lift 

created by the airfoil.  The vortex drifts downstream at 95% of the freestream velocity.  

Figure 6.64 shows acoustic waves that emanate from the airfoil surface.  These acoustic 

waves are created when the flow solution instantaneously �feels� the presence of the airfoil.     

Figure 6.61:  Wagner Solution from Euler2D Compared to Jones� Approximation. 

Figure 6.65 shows the pressure distribution upstream and downstream of the airfoil (shown in 

black) at eight time steps.  The eight steps correspond to later pictures shown in Figure 6.64.  

The data between the LE and TE of the airfoil has been omitted to emphasize the waves 

traveling away from the airfoil.   



346 

Figure 6.62:  Wagner Solution from Euler3D Compared to Jones� Approximation. 

Figure 6.63:  Snapshots of the Unsteady Velocity Distribution for Wagner Solution. 

t
* = Vinf t/c = 0 t

* = 0.5 

t* = 1.5 t
* = 3 

t* = 4.5 
t
* = 5 

0

1.5 

4.2c 4.8c

1.4c 3c

1.2



347 

Figure 6.64:  Snapshots of the Unsteady Pressure Distrib. (Cp) for Wagner Solution. 

t* = Vinf t/c = 0 t* = 0.05 

t
* = 0.1 t

* = 0.23 

t
* = 0.4 t

* = 0.5 

t
* = 0.85 t

* = 1.2 

t
* = 1.5 t

* = 3 

2.0 

-1.6 



348 

Figure 6.66 shows the position of both waves versus time. The forward traveling (LE) wave 

is shown at the first six time steps.  The LE acoustic wave is very strong at the onset and 

drops (in theory) with 2/1 r .  The LE wave is a large overshoot in pressure followed by a 

small undershoot in pressure.  The pressure behind the LE wave returns to approximately 

freestream (with influence from the airfoil local flow).   

The aft traveling (TE) wave is also very strong at the onset and drops (in theory) with 2/1 r .  

The TE wave is an undershoot in pressure (smaller than the LE wave) followed by a smaller 

overshoot in pressure.  The pressure behind the TE wave is slightly higher than freestream 

for much of the domain because of the presents of the airfoil local flow.  The shape of the TE 

waves is much clearer than the LE waves because the mesh is tighter in the wake region than 

upstream of the airfoil. 

Figure 6.65:  Wagner Pressure Slices Up and Downstream of Airfoil. 



349 

Figure 6.66 shows that the LE wave travels upstream at a velocity of 2.2037 and the TE wave 

travels downstream at a velocity of 4.3571.  The average of these two speeds (as a vector) is 

1.0767, which corresponds to the mean propagation speed (freestream velocity).  The differ-

ence between the wave speeds and their mean gives an estimate of the acoustic speed in the 

flow:  3.2804.  This acoustic speed is 1.6% lower than the user defined acoustic speed 

(dim�less: ainf / Vinf = M 
-1 = 1 / 0.3 = 3.33), and the mean propagation speed is 7.7% higher 

than the freestream velocity (dim�less: 1.0).  The differences in predicted and actual speeds 

are due to compressibility, which changes the local acoustic speeds within the wave. 

Figure 6.66:  LE and TE Wave Position as a Function of Time. 

6.2 Propulsion Modeling 

The quasi-combustion terms and propulsion boundary conditions were tested in Euler2D and 

Euler3D using a linear combustor, GHV, converging-diverging rocket nozzle, and several 

turbojet engines.  The quasi-combustion terms were tested in a linear afterburner with mass 

and enthalpy addition at subsonic, supersonic, and hypersonic speeds.  A GHV was used to 



350 

demonstrate how the quasi-combustion terms can be applied to hypersonic (scramjet) 

vehicles.  Stability derivatives and performance trade-offs are also estimated for the cross-

section as an examples of quasi-combustion as an early design tool.  The CD nozzle was 

tested at three total pressures at and below design pressure.  One subsonic inlet and two 

supersonic inlets were demonstrated at on-design, off-design, and angles of attack. 

6.2.1 Quasi-Combustion Terms 

The quasi-combustion terms have been tested using enthalpy and mass generation.  Three 

different Mach numbers were tested, representing subsonic, supersonic, and hypersonic 

regimes.  The first set of tests adds enthalpy to the flow without mass addition.  Two differ-

ent amounts of energy were added to the supersonic and hypersonic cases.  Two different 

distributions were tested in each situation:  A constant hat-function and a cosine-smoothed 

function.  The solutions from Euler2D and Euler3D were checked with Rayleigh line flow 

(John, 1984).  Mass was then added to the subsonic and supersonic cases, followed by the 

combination of mass and enthalpy addition.  The properties predicted by adding mass and 

enthalpy to the flow in Euler2D and Euler3D were compared to theoretical values created by 

modifying Rayleigh�s theory to include mass flow (Bathie, 1996; Mattingly, 1996).  These 

cases show that the quasi-combustion terms work properly and within reasonable accuracy 

for subsonic, supersonic, and hypersonic speeds. 

6.2.1.1 Subsonic Linear Afterburner (Mach 0.4) 

Heat was added to the flow in a subsonic combustor to simulate the effects of combustion.  

Figure 6.67 and Figure 6.68 were produced by modifying the outflow boundary.  The 

boundary integrals along the far field BC in Euler3D were modified with the following code: 



351 

    xc = ( COOR(n1,1) + COOR(n2,1) + COOR(n3,1) ) / 3.0d0 ! element midpoint 

    if ( xc .GT. 10.0d0 ) then   ! midpoint btwn inflow & outflow 

        rr = cinf(1) * 0.491d0   ! rho2 / rho1 = 0.491 

        ur = cinf(2) * 2.037d0   ! u2 / u1 = 2.037 

        vr = cinf(3) * 0.0d0  

        wr = cinf(4) * 0.0d0  

        pr = cinf(5) * 0.768d0   ! p2 / p1 = 0.768 

        hr = cinf(6) * 0.491d0 * 1.6439d0 ! rH2 / rH1 = 0.491 * 1.6439 

    endif 

Mass was added to the flow in a subsonic duct to demonstrate the mass addition terms.  

Figure 6.69 and Figure 6.70 were produced by modifying the outflow boundary condition.  

The boundary integrals along the far field BC in Euler3D were modified with the following: 

    xc = ( COOR(n1,1) + COOR(n2,1) + COOR(n3,1) ) / 3.0d0 ! element midpoint 

    if ( xc .GT. 10.0d0 ) then   ! midpoint btwn inflow & outflow 

        rr = cinf(1) * 1.038d0   ! rho2 / rho1 = 1.038 

        ur = cinf(2) * 1.012d0   ! u2 / u1 = 1.012 

        vr = cinf(3) * 0.0d0  

        wr = cinf(4) * 0.0d0  

        pr = cinf(5) * 0.986d0   ! p2 / p1 = 0.986 

        hr = cinf(6) * 1.038d0 * 0.952d0 ! rH2 / rH1 = 1.038 * 0.952 

    endif 

Mass and enthalpy were added to the flow in a subsonic afterburner as a final test of the 

subsonic capabilities of the quasi-combustion terms in Euler2D and Euler3D.  Figure 6.71 

and Figure 6.72 were also produced by modifying the outflow boundary condition.  The 

boundary integrals along the far field BC in Euler3D were modified with the following code: 

    xc = ( COOR(n1,1) + COOR(n2,1) + COOR(n3,1) ) / 3.0d0 ! element midpoint 

    if ( xc .GT. 10.0d0 ) then   ! midpoint btwn inflow & outflow 

        rr = cinf(1) * 0.534d0   ! rho2 / rho1 = 0.534 

        ur = cinf(2) * 1.966d0   ! u2 / u1 = 1.966 

        vr = cinf(3) * 0.0d0  

        wr = cinf(4) * 0.0d0  

        pr = cinf(5) * 0.761d0   ! p2 / p1 = 0.761 

        hr = cinf(6) * 0.534d0 * 1.502d0 ! rH2 / rH1 = 0.534 * 1.502 

    endif 

This modification was required because the Riemann conditions at both the inflow and 

outflow boundaries allow the solution to �float� slightly while gradients are created to 

balance the governing equations.  The final solution does not match at the inflow or outflow 

boundaries, but the ratio of their properties is correct.  The absolute properties are used to 



352 

calculate the local Mach, which is different at both planes.  To match the solution, the 

outflow condition is modified to resemble the desired properties, trapping the solution where 

desired.  The maximum error for the Mach 0.4 cases is 0.03%.   

The ratio of mass, momentum, and energy flow rates have been calculated for these six cases 

below.  Each ratio uses the ratio of properties represented graphically: 

1

2

1

2

1

2

u

u

m

m

ρ

ρ
=

�

�
                

2
1

2
2

1

2

1
2
11

2
2
22

1

2

1

1

)(

)(

M

M

p

p

Apu

Apu

P

P

γ

γ

ρ

ρ

+

+
=

+

+
=                 

1

2

1

2

11

22

u

u

H

H

Hm

Hm

ρ

ρ
=

�

�

The maximum error for the Mach 0.4 cases is 0.17%.  The ratio of all three flow rates 

matches theory very well, with only numerical errors to account for the differences. 

6.2.1.2 Supersonic Linear Afterburner (Mach 2) 

Heat was added to the flow in a supersonic combustor to simulate the effects of combustion.  

The outflow boundary conditions do not need to be modified because the characteristics are 

taken from upstream (domain elements).  The maximum error for the Mach 2 cases is 0.13%.   

Mass (and enthalpy) was added to the flow in a supersonic duct.  The ratio of mass, momen-

tum, and energy flow rates were calculated using the equations in the previous section.  The 

maximum error for the Mach 2 cases is 0.35%.  The ratio of all three flow rates matches 

theory very well, with only numerical errors to account for the differences. 

6.2.1.3 Hypersonic Linear Afterburner (Mach 7) 

Heat was added to the flow in a hypersonic combustor to simulate the effects of combustion.  

The outflow boundary conditions do not need to be modified because the characteristics are 

taken from upstream (domain elements).  The maximum error for the Mach 7 cases is 0.08%.  



353 

The cosine (smoothed transitions) work better at hypersonic speeds than sharp functions.  

Density fluctuations occur for sharp transitions (sudden changes in heat generation).  The 

heat generation creates changes in enthalpy through the energy equation, which in turn 

creates changes in velocity through the momentum equation, which finally create changes in 

density through the continuity equation.  Pressure is updated along with any change in 

properties through the equation of state.  Density is the last to be updated and reflects all of 

the slight variations in the other properties.  Smooth transitions should be used at high 

supersonic and hypersonic speeds. 



354 

Figure 6.67:  Subsonic (Mach 0.4) Constant Heat Generation. 



355 

Figure 6.68:  Subsonic (Mach 0.4) Cosine Heat Generation. 



356 

Figure 6.69:  Subsonic (Mach 0.4) Constant Mass Generation. 



357 

Figure 6.70:  Subsonic (Mach 0.4) Cosine Mass Generation. 



358 

Figure 6.71:  Subsonic (Mach 0.4) Constant Mass and Heat Generation. 



359 

Figure 6.72:  Subsonic (Mach 0.4) Cosine Mass and Heat Generation. 



360 

Figure 6.73:  Supersonic (Mach 2.0) Constant Heat Generation. 



361 

Figure 6.74:  Supersonic (Mach 2.0) Cosine Heat Generation. 



362 

Figure 6.75:  Supersonic (Mach 2.0) Constant Heat Generation. 



363 

Figure 6.76:  Supersonic (Mach 2.0) Cosine Heat Generation. 



364 

Figure 6.77:  Supersonic (Mach 2.0) Constant Mass Generation. 



365 

Figure 6.78:  Supersonic (Mach 2.0) Cosine Mass Generation. 



366 

Figure 6.79:  Supersonic (Mach 2.0) Constant Mass and Heat Generation. 



367 

Figure 6.80:  Supersonic (Mach 2.0) Cosine Mass and Heat Generation. 



368 

Figure 6.81:  Supersonic (Mach 7.0) Constant Heat Generation. 



369 

Figure 6.82:  Supersonic (Mach 7.0) Cosine Heat Generation. 



370 

Figure 6.83:  Supersonic (Mach 7.0) Constant Heat Generation. 



371 

Figure 6.84:  Supersonic (Mach 7.0) Cosine Heat Generation 



372 

6.2.1.4 GHV Cross-Section (Mach 11) 

The capabilities of the combustion model are demonstrated on a generic hypersonic vehicle.  

The cross-section in Figure 6.85 represents the centerline of the hypersonic vehicle designed 

to operate at Mach 11.  The flow used for propulsion passes through two oblique shocks, 

through the combustor, and then expands over the aft underbody of the vehicle.  The vehicle 

is designed to produce a positive lift at design speeds.   

Figure 6.85 shows the solution for both the combustor on and off.  The amount of heat 

generation was increased in the on-condition until steady level operating conditions were 

reached (i.e. thrust equals drag).  When the engine is on, the pressure in the combustion 

chamber increases significantly and the Mach number decreases, as expected.  An initial 

estimate of the total heat generation along with temperatures and pressures along the surface 

of the vehicle have now been generated.  If this model was being used to refine the early 

stages of a design, several concepts could be quickly tested at on- and off-design conditions, 

the stability of the system can be checked, and the combustion model can be refined as the 

combustor and its effects on the flow become more accurately accessed. 



373 

Figure 6.85: Flow around Generic Hypersonic Vehicle and Exit of Combustor.  

a) Local Mach Number, Engine Off; b) Chamber Pressure, Engine Off;  

c) Local Mach Number, Engine On; and d) Chamber Pressure, Engine On. 

Table 6.7 compares the solution from Euler3D to shock-expansion theory (John, 1984).  

Zone 1 corresponds to the LE underbody, and zone 2 represents the properties in the 

combustion chamber.  The solution compares very well with theory, within 10% on the 

pressure, Mach number, and angles.   

Table 6.7:  Comparison of GHV Solution to SE Theory. 

Walters (2009) used the new GHV to further demonstrate the capabilities of the combustion 

model.  Walters added fuel and �heat� through perfect combustion distributed evenly through 

the chamber.  The hydrogen was used to estimate the heat to mass ratio of the fuel.  Fuel was 

added to the system to find the theoretical �net zero�, where the thrust balances the drag in 

steady flight.  Walters was able to plot the net force in the x-direction versus the fuel flow 



374 

rate and determine an appropriate estimate to generate �net zero�.  Walters also tested the 

engine-on GHV for Mach number and angle of attack stability.  The GHV was rotated 

through angles from -2 to 2 degrees AOA and speeds from Mach 9.5 to 11.5.  The drag 

coefficient increases with Mach number, showing that the configuration has speed conver-

gence.  The lift coefficient decreases with approximately the inverse of Mach number, which 

matches theory for very high speeds.  The lift is nearly linear with the angle of attack.   

Stability and Performance Estimates.  The GHV was adapted to include two new traits:  

Extended nozzle and variable nozzle lip length.  The capabilities of the quasi-combustion 

model were demonstrated on a generic hypersonic vehicle (GHV).  This geometry is shown 

in Figure 6.86.  The flow used for propulsion passes through two oblique shocks, through the 

combustor, and then expands over the aft underbody of the vehicle. Figure 6.87shows the 

local Mach number around the vehicle at Mach 11 and zero angle of attack.  Two trade 

studies were performed on the geometry:  The length of the nozzle varied from 100 to 150% 

of the inlet length, and the length of the lower lip surface of the nozzle was varied from 25 to 

75% of the length of the upper surface.  Figure 6.88 and Figure 6.89 show the forces and 

moments created by the GHV under variations of nozzle length, lower lip length, and engine 

throttle (shown as heat generation qc).  The required amount of energy qc is shown for each 

geometry tested along with the lift and moment created by the section at that throttle setting.  

Elongating the nozzle increases the height and drag of the vehicle so that a shorter nozzle is 

more desirable.  A longer lower surface increases the thrust in the nozzle, but also increases 

the down force and nose-up moment.  The thrust, drag, lift, and moment coefficients are: 

body

DT
lV

DT
CC

2
2
1 ρ

−
=−           

body

L
lV

L
C

2
2
1 ρ

=           
22

2
1

body

M
lV

M
C

ρ
=



375 

Figure 6.86: GHV Geometry and Mesh. 

Babcock (2004) used CFD to estimate stability derivatives by isolating each parameter.  This 

method has been used here to estimate the effects of flight speed, angle of attack, and pitch 

rate to produce their stability derivatives.  Stability derivatives were estimated for a vehicle 

with 125% nozzle length and 50% lower surface.  The data, shown in Figures 6.90, 6.91, and 

6.92 shows the variation about the nominal flight conditions.  The data was curve fit to 

second order polynomials and then analytically differentiated to calculate the derivatives 

shown in the figures.  

Figure 6.87: Local Mach Number around GHV at Mach 11 and 0
o
 AOA. 

11

5.4

11



376 

Figure 6.88: Variation of Force and Moment Coefficients                                                  

with Nozzle Length (as Percent of Inlet Length). 

Figure 6.89: Variation of Force and Moment Coefficients                                              

with Lower Lip Length (as Percent of Upper Surface). 



377 

Figure 6.90: Variation of Force and Moment Coefficients                                                  

with Mach Number with their Stability Derivatives. 

Figure 6.91: Variation of Force and Moment Coefficients                                                      

with Angle of Attack with their Stability Derivatives. 



378 

Figure 6.92: Variation Force and Moment Coefficients                                                     

with Pitching Rate with their Stability Derivatives. 

6.2.2 Rocket BC 

A simple nozzle was designed using the method of characteristics (Emmons, 1958) to have a 

design Mach number of 2.2.  The nozzle geometry can be seen in Figure 6.94.  A sharp 

corner at the throat forms an expansion fan to help maintain isentropic flow at the design 

condition.  The nozzle was tested at three back pressures: 84, 90, and 100% of the design 

pressure.  Below the design condition, a normal shock appears in the diverging section.  The 

position of the normal shock in Figure 6.93 is upstream of that predicted by theory.  Figure 

6.95 shows that the shocks take on a curved shape, where the shock is perpendicular to the 

wall and the centerline.  The curvature of the shock enlarges the area where the shock occurs.  

The CFD data in Figure 6.93 shocks at the same Mach number as the theory line because the 

two-dimensional flow curves the effective cross-section, increasing their area.  As the shock 



379 

moves through the nozzle, the effective cross-sectional area approaches the actual cross-

sectional area.   

Figure 6.93:  Local Mach along Centerline and Wall Surface of Rocket Nozzle. 



380 

Figure 6.94:  Rocket Nozzle Mesh. 



381 

Figure 6.95:  Local Mach Number within Rocket Nozzle:                                                        

a) pt = 1.67 pinf, b) pt = 1.78 pinf, and c) pt = 2 pinf. 

pt = 1.67 pinf 

pt = 1.78 pinf 

pt = 2 pinf 

a)

b)

c)



382 

6.2.3 Engine BC 

Three engine inlets are used to demonstrate how the engine inflow boundary conditions 

operate.  A subsonic inlet is designed with smooth leading edges and operated at on- and off-

design conditions.  The off-design conditions show changes in the incoming stream tube due 

to freestream velocity and movement of the stagnation points with angle of incidence.  Two 

supersonic inlets are demonstrated:  The first inlet uses a normal shock to slow the flow to 

subsonic speeds before entering the engine.  The other inlet creates an oblique shock and 

normal shock in combination to slow the flow.  Spillover was tested for both supersonic 

inlets and is illustrated for the oblique shock inlet.  A coupled engine is assembled from the 

subsonic inlet and rocket nozzle.  The coupled engine was use to demonstrate proper 

coupling.  Two engines in the same simulation were used to show that the coupling 

connections were not crossed for multiple engines. 

6.2.3.1 Subsonic Engine Inflow 

A two-dimensional engine inlet was designed with a smooth leading edge to encourage 

subsonic operations.  The inlet was designed to allow a stream tube the size of the inlet 

leading edges at a freestream Mach number of 0.6.  The mass flow rate generated by this 

stream tube is designated as the design mass flow.  The engine was demonstrated at on- and 

off-design conditions, including at an angle of attack.  Figure 6.96 shows the mesh used to 

model all cases.  The pressure, Mach number, and internal energy (temperature) distributions 

are also shown in Figure 6.96.  From the local Mach number distribution, the flow stagnates 

on the leading edge of the inlet and then accelerates over the inner lip.  The area past the lip 



383 

increases so the flow slows down inside of the inlet.  A second stagnation point occurs on the 

tip of the spinner.   

The mass flow rate was held at the design mass flow, and the freestream Mach number (and 

hence velocity) was varied.  Figure 6.97 shows the local Mach number distributions around 

the inlet at freestream Mach 0.5, 0.6, and 0.7.  An approximate stream tube is also drawn on 

each picture.  The stream tubes narrow at higher speeds and widen at lower speeds as 

expected to maintain the mass flow rate.  The stagnation point also shifts to accommodate the 

approach angle of the stream tube. 

Figure 6.96:  Pressure (Cp), Mach, and Internal Energy for Subsonic Inlet at Mach 0.6. 



384 

Figure 6.97:  Local Mach Number at Various Freestream Velocities. 

Figure 6.98 shows the subsonic inlet, pulling in the design mass flow, at 0 and 4-degrees of 

incidence.  The stagnation points both shift downward because of the rotation of the flow.  

The velocity along the lower lip accelerates well into the transonic region exhibiting a shock; 

a transonic shock also appears on the top surface of the cowl.  The flow normalizes near the 

engine inflow plane.   

6.2.3.2 Supersonic Engine Inflow (Normal Shock) 

Another two-dimensional inlet was designed with a sharp leading edge to encourage a 

normal shock at supersonic operations.  The inlet was designed to allow a stream tube the 

size of the inlet leading edges at a freestream Mach number of 1.5; the mass flow rate 

generated by this stream tube is designated as the design mass flow.  The engine was 

demonstrated at on- (Mach 1.5) and off-design (Mach 0.7) conditions, shown in Figure 6.99.  

Spillover at supersonic speeds occurs by pushing the normal shock in front of the inlet lips, 

allowing some of the mass flow to move around the inlet instead of through it.  Spillover was 



385 

demonstrated in this research, but pictures of the case are not shown here.  Spillover is more 

clearly seen on the next inlet. 

Figure 6.98:  Local Mach Number at 0 and 4-Degrees Angle-of-Attack. 

Figure 6.99:  Supersonic Normal Shock Inlet at Mach 1.5 (top) and Mach 0.7 (bottom). 

1.8 

0 

Mach 0.6, 0o AOA Mach 0.6, 4o AOA

1.5 



386 

6.2.3.3 Supersonic Engine Inflow (Oblique Shock) 

A third two-dimensional inlet was designed with a protruding spinner that generates oblique 

shocks at supersonic speeds.  At Mach 2, the inlet is designed so that the oblique shock 

strikes the inlet lip.  A normal shock at the inlet lip slows the flow before entering the inlet.  

The mass flow rate generated by this stream tube between the inlet lips is designated as the 

design mass flow.  Figure 6.100 shows the mesh used for the oblique shock inlet.  Figure 

6.101 shows the inlet operating at Mach 2 at both the design mass flow rate and 98% of that 

mass flow.  A dashed box is marked on the pictures, designating where the zoomed view was 

taken.  The flow near the inlet lip shows that the oblique shock and normal shock coalesce at 

the design conditions.  At a lower mass flow rate, spillover occurs by shifting the normal 

shock forward.  The spillover shows that the mass flow rate is maintained by the inflow 

boundary condition, even at supersonic speeds. 

Figure 6.100:  Mesh for Supersonic Oblique Shock Inlet. 



387 

6.2.3.4 Engine Outflow Cases 

The subsonic inlet was coupled together with the rocket nozzle to create the turbojet model 

shown in Figure 6.102.  Figure 6.103 shows the converged pressure and local Mach distribu-

tions around the coupled turbojet.  The distributions within inlet resemble Figure 6.96 at the 

same conditions, and the nozzle is similar to the rocket nozzle shown in Figure 6.95.  The 

conditions upstream of the nozzle are not exactly the same as created by the rocket boundary 

condition, so the exhaust flow contains shocks showing that the flow is under-expanded.  

Figure 6.101:  Local Mach Number for Oblique Shock Inlet at 100% (top) and 98% 

(bottom) Design Mass Flow Rates (Mach 2.0). 

100% Design Mass Flow 

98% Design Mass Flow 

2.2 

0.47 



388 

Figure 6.102: Mesh for Coupled Turbojet. 

Figure 6.103: Local Mach (top) and Pressure (bottom) around Coupled Turbojet. 

6.2.3.5 Multiple Engines 

The engine geometry in Figure 6.102 was duplicated, creating two coupled engines in one 

solution domain.  The two engines were given the same mass flow rate and conversation 

values.  The converged solution showed two engines like that shown in Figure 6.103.  The 

2.5

0

Mach

Pressure Cp 

6.3

-3



389 

properties on the lower engine were throttled up.  Figure 6.104 shows the conditions for both 

engines, and the converged pressure distribution created by those properties.  The lower 

engine creates more thrust.  This creates a nose up moment of 546.94.   

Figure 6.104:  Two Coupled Engines in one Domain. 

6.3 Viscous Aerodynamics 

The viscous test cases are divided into laminar, turbulent, and non-inertial demonstrations.  

The flat plate boundary layer is used to verify that the viscous terms and Spalart-Allmaras 

model represent their portions of the physics appropriately.  A circular cylinder and ellipse 

are used to demonstrate simple bodies.  Various cavities and fences are presented as the most 

complicated cases that have been tested using NS2D.

Cp 

6.4

-3.5

15.3,6603.2,2375.0;7504.4 ==== HmFmm fin
���

0.10,4453.8,7539.0;7504.4 ==== HmFmm fin
���



390 

6.3.1 Laminar  

The viscous terms are verified with flat plate boundary layer, and then the laminar boundary 

layer is used to determine an appropriate meshing scheme for laminar flows.  Circular 

cylinder and ellipse flow fields are presented for comparison with CFDsol.  Three inclined 

fences demonstrate the ability of NS2D to model complex flows with application to design.  

Finally, four cavities represent the most complicated viscous geometries represented with 

NS2D.  Flow fields and acoustic responses are show for each cavity as a research and design 

comparison. 

6.3.1.1 Laminar (Incomp) Boundary Layer 

The flat plate boundary layer was tested to verify the viscous terms in NS2D and NS3D.  Six 

meshes were tested to converge the mesh before accessing the solution.  Four of those 

meshes are shown in Figure 6.105 and Figure 6.106.  Blasius� profile is shown on each mesh 

to give an idea of the relative size of the elements to the boundary layer thickness.  The 

meshes in Figure 6.105 and Figure 6.106 represent spacings of 30%, 23%, 15%, and 11.4% 

of the boundary layer thickness at the wall.  Each mesh was tested with a nominal and 

reduced amounts of dissipation (diss = 1.0, 0.1, and 0.01).   

NS2D.  The velocity profile is also shown for each mesh in Figure 6.105 and Figure 6.106.  

The velocity profiles are plotted against its similarity variable η.  The black line represents 

Blasius� solution (White, 1991); the solution from NS2D is plotted as red dots.  The forward-

most and aft-most 10% of the plate is removed from the velocity profile because Blasius� 

solution is not a fair comparison as the boundary layer begins to form near the leading edge 

nor where the flow shows influences from the end of the plate, wake, and far field outlet.  



391 

The profile matches very well for all four meshes shown here, and the solution tightens up on 

the Blasius� solution as the spacing is decreased.   

Figure 6.105:  Laminar Velocity Profile and Shear Stress for Coarse Meshes (NS2D). 

Figure 6.105 and Figure 6.106 also show the wall skin friction distributions for each of the 

four meshes.  Again, the black line represents Blasius� solution.  The skin friction from 

NS2D is shown with blue points and shows artifacts near the discontinuities in mesh spacing.  

Mesh 6 Mesh 5 



392 

The mesh spacing needs to smoothly vary along the length of the domain.  The skin friction 

from NS3D is not as sensitive to mesh spacing, but other factors plague the 3D stresses.   

Figure 6.106:  Laminar Velocity Profile and Shear Stress for Fine Meshes (NS2D). 

Figure 6.107 uses Mesh 3 as a guideline to create an appropriate meshing scheme for laminar 

flows.  At least four elements should be used to span the lower 60% of the boundary layer.  

The bottom 30% of the boundary layer is nearly linear, so few (but more than one) elements 

are needed to model this region.  The spacing is then increased so that at least two elements 

Mesh 3 Mesh 1 



393 

are used in the upper 40% of the boundary layer.  Pave2D was used to explore the stream-

wise spacing, finding a spacing on the order of half the boundary thickness (δ/2) to be 

appropriate for the streamwise direction. 

Figure 6.107:  Suggested Meshing Scheme for Laminar Flows. 

Figure 6.108 shows the boundary layer δ, displacement δ*, and momentum θ thicknesses 

along the length of the plate calculated using Mesh 3.  The shape factor H is also shown for 

Mesh 3.  All four plots in Figure 6.108 show the effects of the external velocity.  The profile 

properties match the theoretical solution (shown as black lines) very well over the length of 

the plate.   

This process was repeated for plate Reynolds numbers of 800 and 20k.  Multiple meshes 

were created for each Reynolds number.  The results for the meshes were similar to that 

shown in Figure 6.105 and Figure 6.106, and the profile properties were also similar to that 

seen in Figure 6.108.  These results showed that the laminar boundary layer accuracy in 

NS2D is independent of Reynolds number (below transition, Rex < 2x105). 



394 

Figure 6.108:  Boundary Layer Thickness δδδδ, Displacement Thickness δδδδ *
,         

Momentum Thickness θθθθ, and Shape Factor H for Mesh 3. 

NS3D.  These experiments were repeated in NS3D.  Figure 6.109 and Figure 6.110 the 

meshes, velocity profiles, and wall skin friction distributions for each of the four meshes.  

Again, the black line represents Blasius� solution.  The NS3D (red and blue points) solutions 

are much noisier than their NS2D counterparts, but the NS3D solution does not show arti-

facts of the mesh.  The noise and reduced influence by changes in the mesh seems to come 

from the third dimension in NS3D.   

Mesh 3 shows to be the best mixture of run time and accuracy.  The laminar meshing guide-

lines shown for NS2D can also be used for three-dimensional meshes in NS3D.  Figure 6.111 

shows the boundary layer profile properties along the length of the plate calculated using 



395 

Mesh 3.  The profile properties match the theoretical solution (shown as black lines) very 

well over the length of the plate.   

Figure 6.109:  Laminar Velocity Profile and Shear Stress for Coarse Meshes (NS3D). 

Mesh 6 Mesh 5 



396 

Figure 6.110:  Laminar Velocity Profile and Shear Stress for Fine Meshes (NS3D). 

Mesh 3 Mesh 2 



397 

Figure 6.111:  Boundary Layer Thickness δδδδ, Displacement Thickness δδδδ *
, Momentum 

Thickness θθθθ, and Shape Factor H for Mesh 3. 

Artificial dissipation is necessary in the external flow for capturing shocks and other flow 

features.  Within the boundary layer, artificial dissipation reduces the skin friction, thickens 

the boundary layer, and adds error to the near wall solution.  To demonstrate that the viscous 

equations are modeling the boundary layer correctly, aside from the influences of artificial 

dissipation, an effective Reynolds number Reeff was calculated for the mesh and dissipation 

diss.  Blasius� solution is plotted according to the similarity distance η from the wall.  This 

distance can be scaled, creating an effective velocity profile: 

Re

Reeff

eff ηη =



398 

The effective Reynolds number Reeff represents the velocity profile given in the CFD data, 

chosen to best fit the velocities near the wall.  Data from NS3D was compared for three 

meshes and various dissipation scalars.  The results are shown in Figure 6.112.  The effective 

Reynolds number decreases with the amount of artificial dissipation used; and, as the 

artificial dissipation approaches zero, the effective Reynolds number approaches the actual 

Reynolds number used in the solution.  For this reason, the least amount of artificial 

dissipation should be used for any viscous solution.   

Figure 6.112:  Effective Reynolds Number vs. Artificial Dissipation Scalar in NS3D. 

The flat plate boundary layer was tested in three different orientations, where the freestream 

velocity was oriented along with the geometry using α and β:   

(1) The flow aligned with u, stresses in x & y, extruded axis in z

(2) The flow aligned with v, stresses in y & z, extruded axis in x

(3) The flow aligned with w, stresses in x & z, extruded axis in y



399 

All three configurations returned the same solution, showing that NS3D has been imple-

mented correctly in all three axis and derivatives.

6.3.1.2 Ellipse 

Figure 6.113 shows the flow over an ellipse with 6:1 length-to-thickness ratio.  The solution 

was created using the mesh in Figure 6.114.  The freestream flow is defined by Mach 0.3 and 

a Reynolds number of 4000; higher-order dissipation is used with a scalar diss of 0.6.  The 

entropy in the wake shows periodic oscillations forming a vortex street.  The dimensionless 

frequency of the vortices is  f *= f c / Vinf = 1.44.   

Figure 6.113:  Oscillating Wake behind Ellipse (Entropy, Rec = 4000, diss = 0.6).   

Figure 6.115 shows the inviscid and viscous pressure distributions over the ellipse.  The 

viscous pressure distribution is shown at intervals over the period T*= T Vinf / c = 0.693.  The 

viscous pressure matches the inviscid distribution over the forward 40% of the chord.  The 

viscous pressure distribution changes with the release of vortices, but the changes are very 

small (4% of the overall pressure drop from freestream).  Figure 6.116 shows the unsteady 

lift and drag histories for the ellipse.  The lift oscillates at the same frequency as the vortex 

release.  The lift shows an amplitude of 0.17 about a non-zero average of 0.002.  The drag 



400 

history has a much more diverse frequency spectrum, but the drag shows a definite repetition.  

The average drag is 0.05384 with only a 0.07% variation. 

Figure 6.114:  Mesh for Ellipse (Rec = 4000). 

Figure 6.115:  Surface Pressure at Various Times over Ellipse (Rec = 4000, diss = 0.6). 



401 

6.3.1.3 Cylinder 

The next six figures show the velocity and entropy distribution around a circular cylinder at 

Reynolds numbers of 1.54, 9.6, 26, 41, 105, and 200.  The lowest three Reynolds numbers 

create a steady (non-oscillating) flow field.  Laminar cylinder flows above a Reynolds 

number of 40 showing oscillations in the separation points and wake.  The two highest 

Reynolds numbers (105 and 200) produce a definite vortex street.   

Figure 6.116:  Lift and Drag Histories for Ellipse (Rec = 4000, diss = 0.6). 



402 

Figure 6.117:  Velocity Distribution near Circular Cylinder at Re = 1.54 (NS2D). 

Figure 6.118:  Velocity Distribution near Circular Cylinder at Re = 9.6 (NS2D). 

1.2 

0 

1.2 

0 

1.2 



403 

Figure 6.119:  Velocity Distribution near Circular Cylinder at Re = 26 (NS2D). 

Figure 6.120:  Cylinder at Re = 41:  Velocity (top) and Entropy (bottom) (NS2D).

1.2 

0 

1.2 

0 

1.2 



404 

Figure 6.121:  Oscillating Wake Behind Circular Cylinder (Entropy, Re = 105) (NS2D). 

Figure 6.122:  Oscillating Wake Behind Circular Cylinder (Entropy, Re = 200) (NS2D). 

The Reynolds number 41 and 105 cases were tested in NS2D in the non-inertial frame using 

translational velocities equivalent to the freestream applied to the cylinder in the inertial 

frame.  The Re = 41 case did not oscillate in the inertial frame but showed the clear oscilla-

tions seen in Figure 6.120 when tested in the non-inertial frame. The Re = 105 case was 



405 

tested with the translational velocity in vx.  The domain was rotated to align with the y-axis 

and the flow was induced with vy.  The same solution was obtained in both orientations. 

The Reynolds number 105 case was tested in NS3D in three different orientations:   

(1) The flow aligned with vx, stresses in x & y, cylinder axis in z

(2) The flow aligned with vy, stresses in y & z, cylinder axis in x

(3) The flow aligned with vz, stresses in x & z, cylinder axis in y

All three configurations returned the same solution.  This was another check that NS3D has 

been implemented correctly in all three axis, derivatives, and non-inertial motion. 

6.3.1.4 Inclined Fence 

Three inclined fences are demonstrated here.  The fences were investigated in cooperation 

with another research project and are included here because of their complex flow fields.  

The first fence (shown in Figure 6.123 through Figure 6.125) is solid inclined at a 30-degree 

angle, and the height of the fence is approximately 6 times the thickness of the boundary 

layer at its location.  The solid fence produces a strong startup vortex and then releases 

vortices as bursts into the wake.  The flow under the fence stagnates and adds to the vortex. 

The percentage value to the right shows an approximate swing in density in the wake, with 

an estimated uncertainty value.  The uncertainty was estimated using the error in the limits of 

the scale and a worst case error in the �eye-balled� range.  The wake of the solid fence starts 

off by ripping two very solid vortices (shown below).  After the vortices drift downstream, 

the wake converges on the solution shown on this and the previous page.  The shear layer and 

acoustics suffer from the stagnation-vortex dominated flow. 



406 

6.3.1.5 Inclined Fence with Holes 

 The solid fence was improved by cutting holes to allow flow to pass through the fence, 

eliminating the stagnation under the fence.  The holes are evenly spaced and equal sized.  

Figure 6.126 through Figure 6.128 show the flow downstream of the porous fence.  The holes 

in the fence produce small jets of higher speed flow, bounded by highly vertical flow.  The 

downstream region resembles a turbulent flow field even though no turbulence model was 

used to produce this solution. The percentage swing in density in the wake is again shown 

with an estimated uncertainty value.  The startup for the porous fence is very interesting:  

Each slot develops oscillating vortices (shown in Figure 6.128), when the vortices interact 

they wash each other out into a thick well-mixed wake (seen in Figure 6.126).  The porous 

fence decreases the downstream noise and eliminates the stagnation just under the fence, 

spreading out the shear layer between the external flow and wall. 

Incremented Porous Fence.  A second fence was tested with a different hole pattern.  The size 

of the holes was incremented so that more mass passed through the upper portion of the fence 

and less through the lower portion.  The flow field behind both fences can be seen in Figure 

6.129 and Figure 6.130.  White dashed lines are shown on the figures, representing locations 

where instantaneous velocity profiles were measured.   

The figures below show the velocity deficit behind the two fences compared to a laminar 

velocity profile, representing the natural shear thickness.  The equally sized holes produce a 

large velocity defect at the top of the fence, created by the solid section at the top of the 

fence.  The incremented holes produce a much more linear velocity distribution with a profile 

at the wall that resembles a separating boundary layer. 



40
7 

F
ig

u
re

 6
.1

2
3

: 
 E

n
tr

o
p

y
 D

is
tr

ib
u

ti
o
n

 D
o

w
n

st
re

a
m

 o
f 

S
o
li

d
 F

e
n

ce
. 

       407



40
8 

F
ig

u
re

 6
.1

2
4

: 
 D

e
n

si
ty

 F
lu

ct
u

a
ti

o
n

s 
D

o
w

n
st

r
ea

m
 o

f 
S

o
li

d
 F

e
n

ce
. 

F
ig

u
re

 6
.1

2
5

: 
 E

n
tr

o
p

y
 S

h
o

w
in

g
 V

o
r
ti

ce
s 

D
o

w
n

st
re

a
m

 o
f 

S
o
li

d
 F

e
n

ce
. 

4%
 

+
 0

.5
%

 

       408



40
9 

F
ig

u
re

 6
.1

2
6

: 
 E

n
tr

o
p

y
 D

is
tr

ib
u

ti
o

n
 D

o
w

n
st

re
a

m
 o

f 
P

o
ro

u
s 

F
e
n

c
e.

 

       409



41
0 

F
ig

u
re

 6
.1

2
7

: 
 D

e
n

si
ty

 F
lu

ct
u

a
ti

o
n

s 
D

o
w

n
st

r
ea

m
 o

f 
P

o
ro

u
s 

F
e
n

ce
. 

F
ig

u
re

 6
.1

2
8

: 
 E

n
tr

o
p

y
 S

h
o

w
in

g
 V

o
r
ti

ce
s 

P
ro

d
u

ce
d

 b
y
 H

o
le

s 
in

 P
o

ro
u

s 
F

en
c
e.

  

0.
8%

 

+
 0

.7
%

 

       410



41
1 

F
ig

u
re

 6
.1

2
9

: 
 V

el
o

ci
ty

 D
is

tr
ib

u
ti

o
n

 a
ro

u
n

d
 E

q
u

a
ll

y
 S

iz
e
d

 H
o

le
s 

F
ig

u
re

 6
.1

3
0

: 
 V

el
o

ci
ty

 D
is

tr
ib

u
ti

o
n

 a
ro

u
n

d
 I

n
c
re

m
e
n

te
d

 H
o
le

s

       411



41
2 

F
ig

u
re

 6
.1

3
1

: 
 I

n
st

a
n

ta
n

eo
u

s 
V

el
o

ci
ty

 P
ro

fi
le

 O
n

e 
(l

ef
t)

 a
n

d
 T

w
o

 (
ri

g
h

t)
 F

en
ce

 H
ei

g
h

ts
 D

o
w

n
st

r
ea

m
.

   
   

   
 F

en
ce

 w
/ E

qu
al

 S
iz

ed
 H

ol
es

 

   
   

   
 F

en
ce

 w
/ 

In
cr

em
en

te
d 

H
ol

es
 

       412



413 

6.3.1.6 Square Cavity 

NS2D was used to model the viscous aerodynamics of a rigid walled cavity at transonic 

conditions.  A square cavity was simulated at Mach 0.9 and an altitude of 30,000 ft for a 

Reynolds number of 3.13x106.  The no-slip condition was applied to the wall one length 

upstream and downstream of the cavity to build and maintain a boundary layer outside of the 

cavity.  The far field was created cavity lengths upstream, downstream, and above the cavity.  

The four pictures in Figure 6.132 show the physics of cavity flows.  The vortices ripping off 

the upwind corner strike the downwind corner (left pictures), which create acoustic waves in 

the form of pressure and density variations (right).   The acoustic waves travel upstream, 

striking the upwind corner.  The shear layer generates the vortices in the flow, and the 

acoustic waves striking the corner, increasing the strength of the subsequent vortex.  The 

flow inside of the cavity circulates, driven by the external flow through the shear layer.  The 

flow exhibits a �chugging� behavior, in and out of the cavity.  The vortices and acoustic 

waves drive each other and, in turn, drive the chugging behavior.   

Three cavities of different depths were tested for their acoustic response at Mach 0.281 and a 

Reynolds number of 6.15x106.  The first cavity is a square cavity (L = D); the second cavity 

is one-quarter that depth (L = 4 D); and, the final cavity is the twice the depth (L = D/2).  The 

mesh at the top of each cavity was the same (shown in Figure 6.133).  The mesh is refined in 

the shear layer to increase the accuracy of the acoustic waves and vortices traveling between 

the corners.  The mesh size throughout the cavity itself is constant (shown at the bottom of 

Figure 6.133).  The shallow cavity was modeled with 129k elements; the square cavity 

needed 198k elements; and, the deep cavity required 221k elements.   



414 

Figure 6.132:  Square Cavity Simulation (NS2D).   

Each cavity was initialized with freestream conditions above the cavity and zero velocity 

within the cavity.  The external flow was required to spin-up the cavity.  The shallow, square, 

and deep cavities required 1.5M, 1.3M, and 4.2M iterations, respectively, to produce the 

solutions shown below.  A time step of 1.67x10-6 s was allow for frequencies up to 75k. 

Flow in the square cavity shows a one-to-one circulation with a slight chugging effect 

(shown in Figure 6.134).  The shallow cavity circulates in the downstream 1/3 of the cavity, 

while the forward 2/3 of the cavity acts like a backward facing step (shown in Figure 6.135).  

The deep cavity should spin-up counter-rotating circulations (shown in Figure 6.136), but the 

solution was abandoned before the lower circulation could begin to spin-up.  The lower half 

of the deep cavity has only spun 1/3 of a rotation and would require an estimated 2 to 4 times 

longer to converge the lower section.  Figure 6.137 shows the frequency spectrum at 17 



415 

locations around and above the square cavity.  Figure 6.138 shows a similar plot for the 

shallow cavity.  The deep cavity was not converged, so spectra are not given for this cavity. 

Figure 6.133:  Mesh for Top of Cavities (L:D = 1:1, 1:2, and 4:1). 

Figure 6.134:  Entropy (left) and Velocity (right) in Square Cavity (L:D = 1:1). 

Same mesh spacing 

throughout cavity



416 

Figure 6.135:  Entropy (top) and Velocity (bottom) in Shallow Cavity (L:D = 4:1). 

Figure 6.136:  Entropy (left) and Velocity (right) in Deep Cavity (L:D = 1:2). 



417 

Figure 6.137:  Pressure Frequency Spectra for 17 Locations around Square Cavity. 



418 

Figure 6.138:  Pressure Frequency Spectra for 17 Locations around Shallow Cavity. 

6.3.1.7 Lipped Cavity 

Cavities are often fitted with passive flow control.  These devices are used to offset the shear 

layer and contain the main vortex in the cavity.  Sharp and round lips have been used to 

accomplish both of these tasks.  A cavity with sharp lips was tested in NS2D at Mach 0.75.  

The cavity is 10.6-ft long (with the flow) and 13.6-ft deep, giving the cavity a 1.28 aspect 

ratio.  Based on the stream wise length, the Reynolds number is 1.225x107.  The cavity has 

sharp edges that protrude 6� to 9� into the cavity along the shear flow.  The sharp edges were 



419 

designed to eliminate some of the problems with the shear layer and cavity acoustics.  The 

entropy distribution shown in Figure 6.139 shows the primary vortex within the cavity and 

shear layer.  At the instant shown in Fig, the shear layer contains three vortices, which form 

on the upstream lip and break on the downstream lip.   Distinct acoustic waves are released 

when the vortex breaks over the downstream lip.  Figure 6.140 shows the acoustic waves 

leaving through the mouth of the cavity.  The acoustic waves are emanating from the down-

stream corner into the freestream.  The acoustic waves do travel upstream, as seen by the 

steep incline of the wave over the mouth of the cavity. 

Figure 6.139:  Lipped Cavity (Entropy, NS2D). 



420 

Figure 6.140:  Acoustic Waves above Lipped Cavity (Density, NS2D). 

Figure 6.141:  Vorticity in Lipped Cavity Flow. 



421 

6.3.2 Turbulent 

The SA turbulence model has been tested on two geometries.  A flat plate was used to 

develop guidelines for modeling a turbulent boundary layer using the SA model in NS2D.  

Rumsey (2012) presents CFD data for the flat plate and a similar bump-plate, which were 

used to demonstrate the capabilities and problems with the SA model. 

6.3.2.1 SA Mesh Convergence 

A guideline has already been created for laminar profiles.  The guideline specifies four 

element across the lower 60% of the boundary layer and larger elements at the top and above 

the boundary layer.  We would like to refine this guideline for turbulent boundary layers 

modeled using the SA model.  Comparing the theoretical velocity profile, the highest grad-

ients and curvatures occur in three regions nearest the wall:  The viscous sublayer (y+ < 5), 

buffer region (5 < y+ < 30), and log-law regions (30 < y+ < 0.1δ+).  Theory can also be used 

to predict the eddy viscosity profile.  The eddy viscosity is most active in the log-law region 

and upper boundary layer, which will be modeled using the laminar spacing guideline.  The 

three near-wall regions will be modeled by a set number of elements across each region (Nvis, 

Nbuf, Nlog).  Fourteen combinations were tested, as shown in Table 6.8.  The spacing outside 

of the log-law region begins at 0.1δ and decreases to keep the spacing less than three times 

the spacing in the log-law region.  Ideally, the spacing was kept at twice the spacing of the 

region nearer the wall.  The mesh convergence was tested on a flat plate with a freestream 

Mach number of 0.3 and Reynolds number Re of 5x105 for reference dimension refdim of 1.  

The SA variable ∞ν� was initialized to a freestream value of 3.  Artificial dissipation was 

minimized in the boundary layer using a zero dissipation length of dislen of 0.1. 



422 

Figure 6.142 shows the velocity and eddy viscosity profiles within the turbulent boundary 

layer.  The velocity profile outside of the buffer region (y+ > 30) for a spacing at the wall of 

y+ = 2.5 (Nvis = 2, Nbuf = 4, and Nlog = 12).  The finest mesh converges to the theoretical 

velocity profile across the viscous sublayer and log-law region, shown in Figure 6.142 as 

dashed lines.  The eddy viscosity profiles are more sensitive to the number of elements in the 

log-law region and converge for eight elements across the log-law region.  The theoretical 

eddy viscosity profile is also shown in Figure 6.142.  The mesh converged distribution 

matches the theoretical distribution well.  The magnitude of the two distributions differs, but 

the theoretical profile is only a loose estimate of the eddy viscosity. 

Table 6.8:  Profiles Tested for SA Grid Convergence. 

Figure 6.143 shows the convergence of skin friction at four locations across the plate (x = 3, 

4, 6, and 7, corresponding to Rex = 1.5M, 2M, 3M, and 3.5M).  The skin friction at all four 

locations shows a convergence to 5% of the finest mesh for a spacing near the wall of y + = 5 

(un# = 2, Nvis = 1, Nbuf = 3, Nlog = 8).  The skin friction along the plate is also shown in Figure 

6.143 compared to the theoretical laminar profile and empirical turbulent skin friction from 



423 

Bertin and Smith (1998).  (The transitional skin friction is a spline created to match the 

values and slopes at 2x105 and 3x106.)  The skin friction shows the freestream value ∞ν� of 3 

has created a wholly �turbulent� boundary layer.  The skin friction matches the empirical 

trend beyond x = 5 (Rex = 2.5M).   

Figure 6.142:  Grid Convergence of SA Velocity and Eddy Viscosity Profiles at x = 7. 

Figure 6.143:  Convergence of SA Skin Friction with Near-Wall Spacing. 

Finally, the profile properties δ +, θ, H, and µT,max are shown in Figure 6.144.  The shape 

factor H is the least sensitive to near-wall spacing.  The displacement thickness δ + and 

momentum thickness θ converge for a wall spacing of y + = 5 (Nvis = 1).  The maximum eddy 



424 

viscosity µT,max is sensitive to the number of elements across the log-law region.  The 

maximum eddy viscosity converged for 5 elements across the log-law region (Nlog = 5). 

Figure 6.144:  Grid Convergence of Profile Properties with SA Turbulence Model. 

Taking all of these comparisons into account, a guidelines is created to use the laminar 

spacing outside the log-law region (y > 0.1δ).  At minimum one element should span the 

viscous sublayer (Nvis), at least three elements for the buffer region (Nbuf), and at least five 

elements (preferred eight elements) across the log-law region (Nlog).  For efficient meshing, a 

y+ of 5 should be used at the wall (Nvis = 1, Nbuf = 3, Nlog = 8).  For greater accuracy in the 

velocity profile, a y+ of 2.5 should be used (Nvis = 2, Nbuf = 4, Nlog = 12). 



425 

6.3.2.2 Rumsey Flat Plate (SA) 

The NASA Langley Turbulence Modeling Resource site (Rumsey, 2012) has collected vari-

ations of several turbulence models and data from several cases.  These cases can be used to 

verify the accuracy of a given turbulence model implementation.  Rumsey presents data for a 

zero pressure gradient flat plate from two compressible finite volume codes FUN3D and 

CFL3D with the SA model.  Rumsey has made a family of five structures grids available.  

These meshes are used to demonstrate mesh convergence and then compare solutions one-to-

one on the same grid.  These grids are named here according to their relative spacing:  Mesh 

0, Mesh 1, �, Mesh4, with Mesh 4 being the coarsest grid.  Rumsey�s grids have been 

converted to unstructured triangular meshes (Mesh#.g2d) using Convert_Plate.   

(Convert_Plate subdivides each quad using either rising, falling or alternating diagonals.  For 

alternating diagonals, NS2D was unstable.  The alternating diagonal creates two types of 

nodes:  Those connected to 4 segments, and those connected to 8 segments.  The stability of 

these nodes are very different.  Rising and falling diagonals are stable in NS2D and give 

similar solutions.  These diagonal produce similar nodes, which connect to 6 segments.) 

Figure 6.145 shows the converted Mesh 4.  A black trapezoid is used to illustrate the exist-

ence of the plate along the bottom boundary.  The plate measures 2 units in length with a 

Reynolds number ReL of 107.  The coarsest mesh (Mesh 4) has a minimum spacing at the 

wall of approximately y+ = 1.7, which is finer than the spacing suggestions in the previous 

section.  The subsequent meshes are nested by cutting each element edge in half, so that the 

elements in Mesh 0 are one-eighth the dimension of the elements in Mesh 4.  The minimum 



426 

spacing at the wall is approximately y+ = 0.1.  Rumsey specifies the following freestream 

conditions:  mach = 0.2, Re = 5x106, refdim = 1, and ∞ν�  = 3. 

A solution was converged on Mesh 4 (800k iterations, ncyc = 4) and Mesh 3 (1.6M 

iterations, ncyc = 4).  The Mesh 3 solution was used as an initial starting point for the other 

three meshes (Mesh 2 � 2.4M iterations; Mesh 1 � 1.6M iterations; Mesh 0 � 1.2M 

iterations).  The solution for Mesh 0 was the only solution that did not present convergence 

over 400k iterations or more.  Mesh 0 was converging but needed 400 to 800k more iter-

ations.  The convergence of Mesh 0 only proved to be a problem for the downstream profiles 

shown in Figure 6.148. 

Figure 6.145:  Geometry for Rumsey�s Flat Plate Grids (Mesh 4). 

Figure 6.146 shows the mesh convergence of skin friction along the plate.  The results from 

NS2D are compared with results from FUN3D on a similar triangular mesh.  The skin 

friction is erratic for Mesh 4 and Mesh3, which have not been refined enough in the stream-

wise direction.  Mesh 2 begins to show convergence.  Mesh 1 and Mesh 0 begin to resemble 

the FUN3D solution.   



427 

Two cuts are taken at x = 0.97 and 1.83.  The velocity and eddy viscosity profiles at these 

cuts are shown in Figure 6.147 and Figure 6.148, respectively, compared to FUN3D and 

CFL3D.  The profiles at x = 0.97 match very well with the other CFD results.  At x = 1.83, 

the NS2D profiles converge for Mesh 1.  (Mesh 0 showing a lacking of convergence.)  The 

NS2D results compare well with the profile from FUN3D in the buffer and external regions 

of the plot.  u+ and y+ will only match in the external flow when the same wall skin friction is 

sued for both profiles.  Strangely, the wall gradients are similar, but the log-law regions of 

the two profiles are very different.  FUN3D predicts a higher velocity in the log-law region 

than NS2D.  The downstream profiles are much more sensitive to mesh spacing in NS2D. 

Figure 6.146:  Skin Friction along Rumsey Plate for 5 Meshes in Family. 



428 

Figure 6.147:  Convergence of Velocity and Eddy Viscosity Profiles at x = 0.97. 

Figure 6.149 compares the maximum eddy viscosity predicted by NS2D for each of the five 

meshes to that predicted by FUN3D on the finest grid.  The NS2D distribution begins to 

resemble that from FUN3D when the streamwise spacing has converged beyond Mesh 2.  

The comparison with Rumsey�s data verifies the implementation of the SA model in NS2D. 

Figure 6.148:  Convergence of Velocity and Eddy Viscosity Profiles at x = 1.83. 



429 

Figure 6.149:  Maximum Eddy Viscosity as a Function of Distance along Plate. 

6.3.2.3 Rumsey Bump Plate (SA) 

Rumsey (2012) also presents data for a bump on a second plate.  The bump is small and 

smooth but presents a problem to NS2D.  The bump geometry is shown in Figure 6.150 on 

the coarsest mesh converted from Rumsey�s grids using Convert_Bump.  The bump meshes 

show the same nesting as the previous case.  The bump was tested with freestream condi-

tions:  mach = 0.2, Re = 3x106, refdim = 1, and ∞ν�  = 3.  The plate has a length of 1.5 units 

with the bump (0.05 units high, 0.9 units long).  This gives the plate a Reynolds number ReL

of 4.5x106.  Figure 6.151 shows the convergence of pressure for the bump case.  Only the 

coarsest mesh cannot produce the desired pressure distribution.   



430 

Figure 6.150:  Rumsey�s Coarsest Grid for Bump Plate Case. 

Figure 6.151:  Pressure Distribution over Bump Plate for Four NS2D Solutions. 

NS2D struggles to produce a reasonable skin friction over Rumsey�s bump (seen in Figure 

6.152).  Figure 6.153 shows the pressure, velocity, and eddy viscosity distributions around 

the bump and plate.  The solutions are smooth and do not help explain the discontinuities in 

the skin friction distribution.  Figure 6.154 shows the velocity vectors around the bump.  The 



431 

velocity vectors show the boundary layers and downstream separation.  The velocities 

vectors show some perturbations normal to the bump but the solution still looks relatively 

smooth and reasonable.  Rumsey presents a velocity and eddy viscosity profile at the top 

center of the bump.  These profiles are compared to the solutions calculated with NS2D on 

the four meshes, shown in Figure 6.155.  On the finest mesh (Mesh 1), NS2D predicts a 

velocity profile that resembles Rumsey�s profile.  NS2D under-predicts the velocity through 

the log-law region.  (The velocity distributions can be collapsed into a single profile if the 

skin friction convergence in Figure 6.152 are taken into account.)  The eddy viscosity pre-

dicted using NS2D shows a similar distribution to Rumsey�s profile, but NS2D predicts 

magnitudes twice that seen in Rumsey�s profile.  Figure 6.156 shows the maximum eddy 

viscosity along the length of the plate.  NS2D matches Rumsey�s profile over the flat region 

upstream of the bump.  NS2D does not predict the decrease in eddy viscosity over the bump, 

like that seen in Rumsey�s profile.  NS2D either over predicts turbulent production or under 

predicts the destruction of turbulence. 

Figure 6.152:  Skin Friction along Bump Plate for Four NS2D Solutions.   



432 

Figure 6.153:  Pressure, Velocity, and Eddy Viscosity Distribution around Bump Plate. 

Figure 6.154:  Velocity Vectors around Bump Plate. 

300 

0 

Eddy Viscosity µT

1.3 

0 

0.2 

-0.7 

Velocity | V | 

Pressure Cp



433 

Figure 6.155:  Velocity and Eddy Viscosity Profiles at Top of Bump (x = 0.75). 

Figure 6.156:  Maximum Eddy Viscosity along Bump Plate for Four NS2D Solutions. 

The destruction of turbulence is calculated using a series of scalar functions.  The production 

term is calculated using the vorticity, which is derived from the velocity derivatives.  What if the 

vorticity is artificially increased over the bump because of an error in the finite element discrete-

zation, mesh, or combination?  Orthogonal elements show a decoupling of the gradient, which 

could artificially increase the vorticity over a curved surface.  Take the elements shown in Figure 

6.157.  The two elements share two nodes x2 and x3: 



434 

Figure 6.157:  Orthogonal Elements. 

From Eq. 4.16, the gradient of a property p on the lower triangular element is calculated: 

013 =x   yy ∆−=13 xx ∆−=12 012 =y (6.1)

xxxx ∆=−= 121323   yyyy ∆−=−= 121323 (6.2)

( )
( )�

�
�

�
�
�

−

−
=

�
�

�
�

�

�
�

�
�

�

�
	



�
�



∆∆−

∆∆−

∆∆
=�

�

�
�
�

�

∂

∂

∆

∆

13
1

12
1

3

2

1

123 0

01
pp

pp

p

p

p

xx

yy

yxx

p

y

x

� (6.3)

The gradient of p on the upper triangular element is calculated: 

024 =x yy ∆−=24 xx ∆=34 034 =y (6.4)

xxxx ∆−=−= 342423   yyyy ∆−=−= 342423 (6.5)

( )
( )�

�
�

�
�
�

−

−
=

�
�

�
�

�

�
�

�
�

�

�
	



�
�



∆∆−

∆−∆

∆∆
=�

�

�
�
�

�

∂

∂

∆

∆

24
1

43
1

4

3

2

234 0

01
pp

pp

p

p

p

xx

yy

yxx

p

y

x

� (6.6)

If the properties are components of velocity, then the shear stress on each element becomes: 

( ) ��
�

�
��
�

�

∆

−
+

∆

−
=��

�

�
��
�

�

∂

∂
+

∂

∂
=

x

vv

y

uu

x

v

y

u
xy

1213

123
123 ReRe

µµ
τ (6.7)



435 

( ) ��
�

�
��
�

�

∆

−
+

∆

−
=��

�

�
��
�

�

∂

∂
+

∂

∂
=

x

vv

y

uu

x

v

y

u
xy

4324

234
234 ReRe

µµ
τ (6.8)

Similarly the vorticity on each element is calculated: 

x

vv

y

uu

x

v

y

u

∆

−
−

∆

−
=

∂

∂
−

∂

∂
=Ω 1213

123

123 (6.9)

x

vv

y

uu

x

v

y

u

∆

−
−

∆

−
=

∂

∂
−

∂

∂
=Ω 4324

234

234 (6.10)

If nodes 1 and 2 exist on a no-slip wall, then u1 = u2 = v1 = v2 = 0; and, if the velocity off of 

the wall is perturbed in the wall normal direction, then u3 = u4 = U and v3 = -v4 = ∆v.  The 

shear stresses and vorticity on the neighboring elements become: 

( )
y

U

xy

U
xy

∆
=��

�

�
��
�

�

∆

−
+

∆

−
=

Re

000

Re123

µµ
τ (6.11)

( ) ( )
��
�

�
��
�

�

∆

∆
+

∆
=��

�

�
��
�

�

∆

∆−−∆
+

∆

−
=

x

v

y

U

x

vv

y

U
xy

2

Re

0

Re234

µµ
τ (6.12)

y

U

∆
=Ω123   

x

v

y

U

∆

∆
−

∆
=Ω

2
234 (6.13)

The vorticity should be the same on the two elements to predict a consistent turbulent source 

term.  The inconsistencies seen in Eq. 6.13 could reflect badly through Oliver�s (2008) 

adaptation to S� (Eq. 3.154).  This becomes coupled with Eqs. 6.11 and 6.12 when the eddy 

viscosity is used to calculate the Reynolds stress applied in the momentum equation.  The 

Reynolds stresses are also different based on the upper or lower element in the pair.  The 

highly stretched elements in Rumsey�s bump grids would create orthogonal elements.  The 

explanation is incomplete; otherwise a solution would be found, and the code corrected.  This 

problem needs further investigation. 



436 

CHAPTER VII 

COMPARISION WITH NASA-CFDSOL 

CFDsol was demonstrated for several cases representing its final capability.  The cases 

encompassed steady and unsteady subsonic, transonic, and supersonic fields.  Various 

geometries were used to demonstrate the usefulness of the code for inviscid and viscous 

solutions.  The new additions were also demonstrated:  Quasi-combustion, rocket BC, 

transpiration, and non-inertial frame.  CFDsol was verified with analytical and numerical 

solutions.  As part of the NASA contract, the four in-house OSU codes were also compared 

to CFDsol as an evaluation of the accuracy and efficiency of CFDsol. 

7.1 Inviscid Aerodynamics 

The inviscid test cases are divided into groups according to flow regime:  Subsonic, tran-

sonic, and supersonic.  Several subsonic airfoils were used to demonstrate the low speed 

capabilities.  Two airfoils were tested at low subsonic speeds and used to demonstrate time-

accuracy.  A cylinder, ellipse, and sphere were generated for comparison with their viscous 

counterparts.  Five airfoils were tested at transonic speeds.  Simple compression and 



437 

expansion corners were verified at supersonic speeds, followed by a supersonic double-

wedge airfoil.   

7.1.1 Subsonic 

Six subsonic cases were used to demonstrate the capabilities of CFDsol under inviscid 

conditions at Mach numbers from 0.3 to 0.6.  A circular cylinder, ellipse, and sphere were 

demonstrated at inviscid conditions in preparation for later viscous solutions.  An NACA 

0012 airfoil was demonstrated in comparison to theory and experimental data, and an RAE 

2822 airfoil was compared to additional experimental data.  Finally, the discussion is closed 

with a time-accurate solution of the Wagner airfoil. 

7.1.1.1 NACA 0012 Airfoil (Mach 0.3, 5 deg) 

An NACA 0012 airfoil was tested under two steady conditions:  A low subsonic case was 

compared to a theoretical solution, and a high subsonic case was compared to experimental 

data.  The airfoil was tested at a low subsonic speed and an angle of attack to create two 

distinct pressure distributions in comparison to an analytical solution.  The airfoil was tested 

at Mach 0.3 at 2-degrees angle of attack using the mesh shown in Figure 7.1 and compared 

with a Smith-Hess panel method (Arena, unpublished; Katz, 2001), corrected for compressi-

bility using Prandtl-Glauert (Anderson, 2001).  The pressure matches very well over the 

entire airfoil. 



438 

Figure 7.1:  NACA 0012 Airfoil Mesh (Mach 0.3, 2-degrees AOA). 

Figure 7.2:  Pressure Distribution around NACA 0012 Airfoil at Mach 0.3 and 2
o
 AOA. 



439 

  

Figure 7.3:  Pressure Distribution around NACA 0012 Airfoil at Mach 0.3 and 2
o
 AOA. 

7.1.1.2 NACA 0012 Airfoil (Mach 0.502, 1.77 deg) 

The NACA 0012 was also demonstrated at a high subsonic speed and compared to experi-

mental data:  Mach 0.502 at 1.77 degrees angle-of-attack.  The mesh is shown in Figure 7.4.  

Results are shown in Figure 7.5 and Figure 7.6.  Figure 7.5 shows the pressure and Mach 

distributions predicted by CFDsol, and Figure 7.6 compares the surface pressure from 

CFDsol and Euler2D to experimental data from Barche (1979).  The pressure on the lower 

surfaces matches very well, but the pressure on the top surface differs near the leading edge.  

CFDsol and Euler3D predict the same distribution, so the loss in suction must be due to a 

lack of refinement near the leading edge.  



440 

Figure 7.4:  Mesh for NACA 0012 Airfoil (Mach 0.502, 1.77
o
 AOA). 

Figure 7.5:  Pressure and Mach Distributions around NACA 0012 Airfoil (Mach 0.502). 



441 

Figure 7.6:  Pressure Distribution over NACA 0012 Airfoil at Mach 0.502, 1.77
o 

AOA. 

7.1.1.3 RAE 2822 Airfoil (Mach 0.6, 2.57 deg) 

An RAE 2822 airfoil was also demonstrated at a high subsonic condition (Mach 0.6, 2.57o 

AOA) and compared to experimental data.  The mesh for this condition is shown in Figure 

7.7.  The pressure and Mach distributions predicted by CFDsol are shown in Figure 7.8 and 

Figure 7.9.  The surface pressure predicted by CFDsol is compared to that from Euler2D and 

experimental data from Barche (1979) in Figure 7.10.  The largest differences are seen near 

the trailing edge on the lower surface.  The pressure from CFDsol matches that from 

Euler2D, even near the trailing edge. 



442 

Figure 7.7:  Mesh for RAE 2822 Airfoil (Mach 0.6, 2.57
o 

AOA). 

Figure 7.8:  Pressure Distribution around RAE 2822 Airfoil (Mach 0.6). 



443 

Figure 7.9:  Mach Distribution around RAE 2822 Airfoil (Mach 0.6). 

Figure 7.10:  Pressure Distribution over RAE 2822 Airfoil (Mach 0.6, 2.57
o 

AOA). 



444 

7.1.1.4 Ellipse 

An ellipse with 6:1 ratio was tested under inviscid conditions, in preparation for a viscous 

boundary layer.  The inviscid pressure and velocity distributions are shown in Figure 7.11 for 

the mesh shown in Figure 7.12.  The mesh was generated using three mesh sources so that 

the mesh was finer at the leading and trailing edges.  The spacing was chosen to resemble the 

radius of curvature of the ellipse surface.  (A viscous mesh was added to the near-wall region 

in preparation for viscous testing.)  The inviscid surface pressure distribution for the ellipse is 

shown in Figure 7.13. 

Figure 7.11:  Pressure (top) and Velocity (bottom) around Inviscid Ellipse (Mach 0.3). 



445 

Figure 7.12:  Ellipse Mesh. 

Figure 7.13:  Pressure over Inviscid Ellipses (Mach 0.3). 



446 

7.1.1.5 Cylinder 

A circular cylinder was tested under inviscid conditions to demonstrate a simple, symmetric 

two-dimensional body.  Only half of the cylinder was modeled to minimize the run time.  

The mesh was generated so that the spacing at the cylinder surface is 6% of the radius of the 

cylinder, doubling at 3.75 radii from the center of cylinder.  The pressure and velocity distri-

butions around the cylinder are shown in Figure 7.15 for the mesh shown in Figure 7.14.  The 

surface pressure distribution is shown in Figure 7.16 compared with potential theory 

corrected for compressibility.  The pressure distribution is asymmetric across the centerline 

because artificial dissipation triggers the flow to separate near the aft stagnation point.  

Otherwise the distribution matches theory very well. 

Figure 7.14:  Inviscid Cylinder Mesh. 



447 

Figure 7.15:  Pressure (top) and Velocity (bottom) Distrib. around Inviscid Cylinder. 

Pressure (Cp) 

Velocity 



448 

Figure 7.16:  Pressure Distribution over Cylinder. 

7.1.1.6 Sphere 

A sphere was tested under inviscid conditions to demonstrate a simple, axisymmetric (three-

dimensional) body.  One quarter of the sphere was modeled for inviscid testing.  The mesh 

was generated using a similar method to the inviscid cylinder.  The surface mesh is 8.4% of 

the radius, and the spacing doubles at five times the radius.  The pressure and velocity distri-

butions along a symmetry plane are shown in Figure 7.17 for the mesh shown in Figure 7.18.  

The surface pressure distribution is shown in Figure 7.19 compared with potential theory.  

The pressure distribution is asymmetric across the centerline because artificial dissipation 

triggers the flow to separate near the aft stagnation point.  Otherwise the distribution matches 

theory reasonably well. 



449 

Figure 7.17:  Pressure (top) and Velocity (bottom) Distributions                                 

along Symmetry Plane around Inviscid Sphere (Mach 0.3). 

Pressure (Cp) 

Velocity 



450 

Figure 7.18:  Inviscid Sphere Mesh. 

Figure 7.19:  Pressure Distribution over Sphere. 

7.1.2 Transonic 

The complexity of flow solutions is greatly increased by demonstrating transonic flow fields.  

Four air-foils are investigated at different speeds and orientations.  The CAST 7 airfoil is 



451 

demonstrated at Mach 0.765 and 0.785, which create two distinct transonic conditions.  The 

NACA 0012 airfoil is revisited at a low angle-of-attack and Mach 0.835, generating shocks 

on both upper and lower surfaces.  The NASA 10% thick airfoil is tested at Mach 0.79, and 

the RAE 2822 airfoil is revisited at Mach 0.73.  Each transonic case is compared to an exp-

erimental data set.  Analytical solutions are not available for these transonic cases, so each 

case is also compared to Euler2D.  When discrepancies arise between the CFD solution and 

the experimental data, the solutions from Euler2D can be used to show that the discrepancies 

are due to mesh spacing, model completeness, or accuracy of the geometry. 

7.1.2.1 NACA 0012 Airfoil (Mach 835, -0.13 deg) 

An additional case was demonstrated for the NACA 0012.  Previously, the NACA 0012 was 

tested at a low subsonic Mach.  This case was selected to demonstrate the capabilities of the 

solver and compare to experimental data:  Mach 0.835 at -0.13 degrees angle-of-attack.  The 

resulting flow shows two transonic shocks, differing in location and strength.  The mesh 

shown in Figure 7.20 was used to model the transonic case.   

This case is the only test that has a shock on both the top and bottom surfaces at the same 

time.  The airfoil is symmetric, and at low angles of attack, the potential for different shocks 

exists.   The airfoil is held at a slight negative incidence (creating a down force) so we expect 

the bottom surface to shock later.  This shock pattern is shown in the experimental data from 

Barche (1979).  Figure 7.21 shows two very distinct supersonic regions, with staggered 

shocks.  The shock on the lower surface is aft of that on the upper surface, as expected.  

CFDsol predicts the shock further aft than that shown in the experimental data (Figure 7.22).  

The locations only differ by about 8% of the chord length, which could easily change with 



452 

the addition of a boundary layer.  The CFDsol profile is very similar to that generated with 

Euler2D. 

Figure 7.20:  Mesh for NACA 0012 Airfoil (Mach 0.835, -0.13
o 

AOA). 



453 

Figure 7.21:  Pressure and Mach Distrib. around NACA 0012 Airfoil (Mach 0.835). 

Figure 7.22:  Pressure Distribution over NACA 0012 Airfoil (Mach 0. 835, -0.13
o 

AOA). 

Pressure Mach 



454 

7.1.2.2 RAE 2822 Airfoil (Mach 0.73, 2.8 deg) 

The next transonic demonstration case matches its experimental data the best of those shown 

in this section.  The RAE 2822 airfoil was revisited at a transonic condition (Mach 0.73, 2.8o

AOA), using the mesh shown in Figure 7.24.  The predicted pressure and Mach distributions 

from CFDsol are shown in Figure 7.23.  The surface pressure predicted by CFDsol is com-

pared to that from Euler2D and experimental data from AGARD (1988) in Figure 7.25.  The 

experimental data seems to have an elongated shock region, which can only be explained by 

viscous interactions.  The inviscid analysis of both CFDsol and Euler2D, which track very 

closely together, predict a very sharp shock region.  Both CFD solvers under predict the 

suction near the leading edge, most likely due to mesh refinement near the stagnation point. 

Figure 7.23:  Pressure and Mach Distributions around RAE 2822 Airfoil (Mach 0.73). 

Pressure Mach 



455 

Figure 7.24:  Mesh for RAE 2822 Airfoil (Mach 0.73, 2.8
o 

AOA). 



456 

Figure 7.25:  Pressure Distribution over RAE 2822 Airfoil (Mach 0.73, 2.8
o 

AOA). 

7.1.2.3 CAST 7 Airfoil (Mach 0.765, 2.52 deg) 

Another transonic airfoil to be demonstrated is the CAST 7 airfoil.  Two different meshes 

were generated for two specific transonic cases:  Mach 0.765 and 0.785, both at 2.52 degrees 

angle-of-attack.  Each case has a transonic shock on the top of the airfoil.  Coarse meshes 

were ran to determine a general location for the shocks (estimated by CFDsol, not using the 

experimental data).  The mesh near the shock was then refined to converge the solution.  The 

final meshes are shown in Figure 7.26 and Figure 7.30.  The two meshes contain 1.4 and 1.6 

million elements, respectively.  Each mesh was mathematically wrapped in a U-shape around 

the airfoil instead of using the normal Delaunay approach.  The wrapping approach allowed 

the spacing to be specified in each of the three component directions without depending on 



457 

the others.  The result is a mesh that is exactly two elements wide across the entire domain, 

limiting any cross-flow influences. 

Figure 7.26:  Mesh for CAST 7 Airfoil (Mach 0.765, 2.52
o 

AOA). 

The results for the lower speed case (Mach 0.765) are shown in Figure 7.27 and Figure 7.28.  

Figure 7.27 shows the distribution of pressure and local Mach number calculated using 

CFDsol.  Figure 7.28 compares the pressure distribution on the surface of the airfoil calcu-

lated using CFDsol with results from Euler2D and experimental data taken from Barche 

(1979).  Both CFD solvers predict a shock further back on the top surface than that seen in 



458 

the experimental data, which is most likely due to the inviscid analysis.  The addition of a 

boundary layer would effectively thicken the section, making the flow shock sooner.  (Vis-

cous solutions were not demonstrated due to time.)  The pressure on the shock-free lower 

surface follows the experimental data well, as does the pressure near the leading and trailing 

edges on the top.   

Figure 7.27:  Pressure and Mach Distributions around CAST 7 Airfoil (Mach 0.765). 

Figure 7.28:  Pressure Distribution over CAST 7 Airfoil (Mach 0.765, 2.52
o 

AOA). 

Pressure Mach 



459 

7.1.2.4 CAST 7 Airfoil (Mach 0.785, 2.52 deg) 

Similar results are shown for the higher speed case (Mach 0.785) in Figure 7.31 and Figure 

7.29.  Figure 7.31 again shows the pressure and local Mach number distributions predicted 

by CFDsol, and Figure 7.29 shows a comparison of CFDsol, Euler2D, and data from Barche 

(1979).  The experimental data shows the shock location moves back 10% of the chord, due 

to the increase freestream Mach number.  The two CFD solvers show the shock to move aft 

5% of the chord and still predict the transonic shock much later on the top surface.  The lead-

ing, trailing, and lower surfaces follow the experimental data well.   

Figure 7.29:  Pressure Distribution over CAST 7 Airfoil (Mach 0.785, 2.52
o 

AOA). 



460 

Figure 7.30:  Mesh for CAST 7 Airfoil (Mach 0.785, 2.52
o 

AOA). 

Figure 7.31:  Pressure and Mach Distributions around CAST 7 Airfoil (Mach 0.785). 

Pressure Mach 



461 

7.1.2.5 NASA 10% Supersonic Airfoil (Mach 0.79, 2 deg) 

The next case represents somewhat subtle difference between the two CFD solvers.  The 

mesh used to analyze flow around the NASA 10% supercritical airfoil is shown in Figure 

7.32.  Both CFDsol and Euler2D predict a strong transonic shock near the trailing edge of the 

airfoil, so this region is strongly refined.  The transonic bubble forms from waves originating 

from the leading and trailing edges simultaneously.   

In Euler2D, once the two waves have passed over the length of the chord, the transonic 

bubble is formed and nearly converged.  In CFDsol, these waves pass over the length of the 

chord and the bubble is partially formed.  Another set of waves then form and travel across 

the airfoil, refining the bubble.  If the solution is allowed to continue, an intermediate shock 

forms near the mid-chord (shown in Figure 7.33 and Figure 7.34).  This shock is very weak, 

but changes the pressure over the entire top surface.  The pressure distributions generated by 

the two solvers are shown in Figure 7.33 and Figure 7.35 for comparison, and the surface 

pressure is plotted in Figure 7.37 with experimental data from Barche (1979).  Pressure over 

the lower surface matches very well.  Again the CFD results from both CFDsol and Euler2D 

predict a more aft shock location and a much stronger transonic shock.   



462 

Figure 7.32:  Mesh for NASA 10% Thick Supercritical Airfoil (Mach 0.79, 2
o
 AOA). 



463 

Figure 7.33:  Pressure Distribution around NASA 10% Supercritical Airfoil (CFDsol). 

Figure 7.34:  Mach Distribution around NASA 10% Supercritical Airfoil (CFDsol). 



464 

Figure 7.35:  Pressure Distribution around NASA 10% Supercritical Airfoil (Euler2D). 

Figure 7.36:  Mach Distribution around NASA 10% Supercritical Airfoil (Euler2D). 



465 

Figure 7.37:  Pressure Distribution over NASA 10% Supercritical Airfoil (Mach 0.79). 

7.1.3 Supersonic 

A double-wedge airfoil was tested to create four distinct shocks and two expansion fans.  The 

airfoil is symmetric both along and across its chord line with a 5-degree half-wedge angle.  

At a 2-degree angle-of-attack, the leading edge creates a 3- and 7-degree angle with the free-

stream flow, creating different flow fields over the top and bottom surfaces, shown in Figure 

7.39.  The flow is divided into four regions of concern, shown in Figure 7.41.  The solution at 

Mach 2 was compared with shock-expansion (SE) theory, a reliable analytical method for 

predicting Mach number and pressure along the airfoil surface and the angle of shock waves 

(John, 1984).  The mesh shown in Figure 7.38 was used to generate a solution in CFDsol 

shown in Figure 7.40.  The CFDsol solution is compared with SE theory in Table 7.1.   



466 

Figure 7.38:  Double-Wedge Airfoil Mesh (Mach 2, 2-degrees AOA). 

  

Figure 7.39:  Flow around a Supersonic Double-Wedge Airfoil at Mach 2.                  

(Left to Right, Top to Bottom:  Pressure, Velocity, Total Energy, Internal Energy.) 

Pressure Velocity 

Total Energy Internal Energy 



467 

Figure 7.40:  Pressure Coefficient (left) and Mach Number (right)                           

around Double Wedge Airfoil at Mach 2 and 2-deg AOA. 

Table 7.1:  Comparison of Local Mach, Pressure, and Shock Angles                                         

to Theory for Double-Wedge Airfoil (Mach 2, 2-deg AOA). 

The convergence rates in CFDsol were tested at various relaxation factor tau.  A tau value of 

0.1 represents one tenth of the ideal Courant-Fredrick-Lewis (CFL) condition.  The ideal 

condition represents an element time step equal to the minimum distance across an element 

divided by the maximum propagation velocity on that element.  The supersonic field is very 

stable in CFDsol, so under-relaxation (tau > 1) was also tested up to twice the ideal CFL 

condition.  The results are shown in Figure 7.42.  



468 

Figure 7.41:  Four Flow Regions around Double-Wedge Airfoil. 

Three interesting conclusions can be drawn from the comparison:  First, smaller relaxation 

factors tau increase the run time proportional to the ratio of relaxation factor (i.e., from tau   

= 1 to 0.5, the convergence time doubles).  Second, the minimum residual (representing con-

vergence on particular solution) is lower for smaller relaxation factors.  Finally, the final 

convergence of the energy equation by CFDsol is on the order of 10-6 RMS change (or 

residual).  After the solution converges, the residual begins to rise due to numerical hunting. 

Figure 7.42:  Convergence Rate of Energy Residual vs. tau. 



469 

7.1.4 Time-Accurate (Acoustic) 

The NACA 0012 airfoil was also used to demonstrate unsteady, time-accurate flow condi-

tions:  The Wagner problem.  The steady, low subsonic mesh (Figure 7.1) was reused here.  

The airfoil was held at an angle-of-attack of 5 degrees in a Mach 0.3 flow field.  The initial 

conditions for the solution are seeded with the freestream properties, ignoring the presence of 

the airfoil.  Time-accurate cases are often seeded with a steady solution about which the 

unsteady solution is perturbed.  The Wagner problem is seeded with freestream properties so 

that the field reacts to the presence of the airfoil at the beginning of the solution.   

When the Wagner simulation begins, acoustic waves are released from the surface of the 

airfoil.  The acoustic waves radiate outward transmitting the presence of the airfoil to the 

surrounding airflow.  (The acoustic waves can be seen in Figure 7.44.)  The airfoil is held at 

an angle of attack, so the flow over the top and bottom surfaces are different.  The velocity 

difference develops vorticity at the trailing edge.  As the solution progresses, the vortex 

builds to a point that it can no longer be maintained at the trailing edge and releases down-

stream.  The vortex drifts away from the trailing edge at nearly the freestream velocity.  The 

presence of the vortex induces a downwash on the airfoil and decreases its lift.  As the vortex 

moves downstream, downwash is diminished so that the lift approaches its steady-state value.   

The lift history predicted by CFDsol is plotted in Figure 7.43 in comparison to Jones� (1940) 

approximation to the Wagner solution.  The initial lift reflects the acoustic response of the 

freestream properties.  The lift quickly drops from its initial value to its minimum at t*= ½ 

because of the release of the acoustic waves.  The discrete time over which the lift drops is 

due to the compressibility of the solution.  (An incompressible solution would show a much 



470 

faster, if not instant, response.)  The lift then begins to increase because the trailing vortex is 

drifting further downstream.  As the vortex passes out of the domain, the solution approaches 

its steady-state value.  The lift history predicted by CFDsol after t*= ½ matches Jones� 

approximation very well. 

Figure 7.43:  Wagner Solution for NACA 0012 Airfoil (Mach 0.3, 2
o
 AOA). 

Figure 7.44:  Snapshots of Unsteady Pressure Distribution (Cp) for Wagner Solution. 



471 

7.1.4.1 Theodorsen Pitching Airfoil (Non-Inertial) 

The NACA 0012 airfoil was pitched about its quarter chord in the non-inertial frame.  Initial 

conditions were created by rotating the freestream in the non-inertial frame by 5-degrees and 

holding the frame in place until a steady solution developed.  The airfoil was then released to 

pivot about the quarter chord at a frequency ω = 0.8 rad/s.  The motion was forced using the 

mass and stiffness of the system.  A time step of 10-5 was used to obtain a stable solution and 

produce the velocity and entropy distributions seen in Figure 7.45 and Figure 7.46, respect-

tively.  Both distributions show the wake as a dashed white line.  Figure 7.47 shows the lift 

and drag histories, and Figure 7.48 shows the moment history for the pitching airfoil.  

Several cycles are required to converge the period nature of the flow. 

Figure 7.45:  Velocity Distribution around Pitching Airfoil (Non-Inertial). 



472 

Figure 7.46:  Entropy Distribution around Pitching Airfoil (Non-Inertial). 

Figure 7.47:  Lift and Drag History for Pitching Airfoil (Non-Inertial). 



473 

Figure 7.48:  Moment History for Pitching Airfoil (Non-Inertial). 

7.1.4.2 Theodorsen Plunging Airfoil (Non-Inertial) 

The airfoil was then plunged with a maximum displacement of 0.1094 units.  The sinusoidal 

plunging motion creates a maximum velocity of 0.0875 units per second, which is equivalent 

to rotating the angle of the flow by 5-degrees.  The initial conditions were created by plung-

ing the airfoil at a constant 0.0875 units per second.  The plunge rate was held until a steady 

solu-tion developed, and then the airfoil was released.  The mass and stiffness of the system 

was again used to force the airfoil through a frequency ω = 0.8 rad/s.  A time step of 10-5 was 

used again to obtain a stable solution.  The velocity and entropy distributions are shown in 

Figure 7.49, where a dashed line signifies the vortex wake.  The lift and drag histories are 

shown in Figure 7.50, and the moment about the quarter chord is shown in Figure 7.51.  

Several cycles are required to converge the period flow field. 



474 

Figure 7.49:  Velocity (top) & Entropy (bottom) around Plunging Airfoil (Non-Inertial). 



475 

Figure 7.50:  Lift and Drag History for Pitching Airfoil (Non-Inertial). 

Figure 7.51:  Moment History for Pitching Airfoil (Non-Inertial). 



476 

7.1.4.3 Theodorsen Pitching Airfoil (Transpiration).   

The pitching airfoil was repeated in the inertial frame by transpiring the geometry about the 

quarter chord to represent pitching motion.  Initial conditions were created by transpiring the 

airfoil to represent a 5-degree rotation.  The deflection was held until a steady solution deve-

loped.  The mode shape was then released to �pivot about the quarter chord�; motion was 

forced using the mass and stiffness.  A time step of 10-5 was again used for stability.  Velo-

city and entropy distributions are shown in Figure 7.53, with a dashed white line representing 

the vortex wake.  Figure 7.52 shows the generalized force for the pitching mode.  The flow 

field converges much more quickly with transpiration than for the non-inertial cases. 

Figure 7.52:  Generalized Force for Pitching Mode (Transpiration). 



477 

Figure 7.53:  Velocity (top) & Entropy (bottom) around Pitching Airfoil (Transp.). 

7.1.4.4 Theodorsen Plunging Airfoil (Transpiration).   

The plunging airfoil was also repeated in the inertial frame with transpiration.  Initial condi-

tions were created by transpiring a velocity across the airfoil at 0.0875 units per second.  The 

deflection was held until a steady solution developed.  The mode shape was then released to 

�plunge�; motion was forced using the mass and stiffness.  A time step of 10-5 was again 

used for stability.  Velocity and entropy distributions are shown in Figure 7.54 and Figure 



478 

7.55, respectively, with a dashed white line representing the vortex wake.  Figure 7.56 shows 

the generalized force for the pitching mode.  The flow field converges much more quickly 

with transpiration than for the non-inertial cases.

Figure 7.54:  Velocity Distribution around Plunging Airfoil (Transpiration). 

Figure 7.55:  Entropy Distribution around Plunging Airfoil (Transpiration). 



479 

Figure 7.56:  Generalized Force for Plunging Mode (Transpiration). 

7.2 Propulsion Modeling 

The quasi-combustion terms and rocket boundary conditions were tested in CFDsol using a 

linear combustor and converging-diverging rocket nozzle.  The quasi-combustion terms were 

tested with mass and enthalpy addition at subsonic, supersonic, and hypersonic speeds.  The 

CD nozzle was tested at three total pressures at and below design pressure. 

7.2.1 Quasi-Combustion Terms 

The quasi-combustion terms have been tested using enthalpy and mass generation.  Three 

different Mach numbers were tested, representing subsonic, supersonic, and hypersonic 

regimes.  The first set of tests adds enthalpy to the flow without mass addition.  Two diff-

erent amounts of energy were added to the supersonic and hypersonic cases.  Two different 

distributions were tested in each situation:  A constant hat-function and a cosine-smoothed 



480 

function.  The solutions from CFDsol were checked versus Rayleigh line flow (John, 1984).  

Mass was then added to the subsonic and supersonic cases, followed by the combination of 

mass and enthalpy addition.  The properties predicted by adding mass and enthalpy to the 

flow in CFDsol were compared to theoretical values created by modifying Rayleigh�s theory 

to include mass flow (Bathie, 1996; Mattingly, 1996).  These cases show that the quasi-com-

bustion terms work properly and within reasonable accuracy for subsonic, supersonic, and 

hypersonic speeds. 

7.2.1.1 Subsonic Linear Afterburner (Mach 0.4) 

Heat was added to the flow in a subsonic combustor to simulate the effects of combustion.  

Figure 7.57 and Figure 7.58 were produced by modifying the outflow boundary.  The 

boundary integrals along the far field BC were modified with the following code: 

    IF((VNOR .LE. 0.00D0) .OR. (AMloc .LT. 1.0d0)) THEN 

        … 

    else 

        ENER1 = TTINF/GAMMA        

        ENER2 = 0.5D0*(UNKNO(2,IP)**2+UNKNO(3,IP)**2 

   &                                 +UNKNO(4,IP)**2)/(UNKNO(1,IP)**2) 

        rhoE  = (ENER1+ENER2)*UNKNO(1,IP) 

        pres  = PINF * 0.768d0     ! p2 / p1 = 0.768 

        rhoH  = (rhoE + PINF) * 0.8071549d0     ! rH2 / rH1 = 0.491 * 1.6439 

        UNKNO(1,IP) = RHOINF * 0.491d0    ! rho2 / rho1 = 0.491 

        UNKNO(2,IP) = RHOUZ1 * 2.037d0    ! u2 / u1 = 2.037 

        UNKNO(3,IP) = RHOUZ2 * 0.0d0 

        UNKNO(4,IP) = RHOUZ3 * 0.0d0 

        UNKNO(5,IP) = rhoH - pres 

    END IF 

This modification was required because the Riemann conditions at both the inflow and 

outflow boundaries allow the solution to �float� slightly while gradients are created to 

balance the governing equations.  The final solution does not match at the inflow or outflow 

boundaries, but the ratio of their properties is correct.  The absolute properties are used to 

calculate the local Mach number, which is different at both planes.  To match the solution, 



481 

the outflow condition is modified to resemble the desired properties, trapping the solution 

where desired.   

The results were compared with Rayleigh line theory.  The maximum error for the Mach 0.4 

cases is 38%.  The subsonic results do not match as well as desired.  The changes due to the 

presents of heat addition do not reflect the boundary conditions as much as the initial 

conditions.  Further testing should be completed with the quasi-combustion terms in subsonic 

flow, but these tests will not occur during the term of this research project. 

Mass was added to the flow in a subsonic duct to demonstrate the mass addition terms.  

Figure 7.59 and Figure 7.60 were produced by modifying the outflow boundary condition.  

The boundary integrals along the far field BC were modified with the following code: 

    IF((VNOR .LE. 0.00D0) .OR. (AMloc .LT. 1.0d0)) THEN 

        … 

    else 

        ENER1 = TTINF/GAMMA        

        ENER2 = 0.5D0*(UNKNO(2,IP)**2+UNKNO(3,IP)**2 

   &                                 +UNKNO(4,IP)**2)/(UNKNO(1,IP)**2) 

        rhoE  = (ENER1+ENER2)*UNKNO(1,IP) 

        pres  = PINF * 0.986d0     ! p2 / p1 = 0.986 

        rhoH  = (rhoE + PINF) * 0.988176d0     ! rH2 / rH1 = 1.038 * 0.952 

        UNKNO(1,IP) = RHOINF * 1.038d0    ! rho2 / rho1 = 1.038 

        UNKNO(2,IP) = RHOUZ1 * 1.012d0    ! u2 / u1 = 1.012 

        UNKNO(3,IP) = RHOUZ2 * 0.0d0 

        UNKNO(4,IP) = RHOUZ3 * 0.0d0 

        UNKNO(5,IP) = rhoH - pres 

    END IF 

Mass and enthalpy were added to the flow in a subsonic afterburner as a final test of the 

subsonic capabilities of the quasi-combustion terms in CFDsol.  Figure 7.61 and Figure 7.62 

were also produced by modifying the outflow boundary condition.  The boundary integrals 

along the far field BC were modified with the following code: 



482 

    IF((VNOR .LE. 0.00D0) .OR. (AMloc .LT. 1.0d0)) THEN 

        … 

    else 

        ENER1 = TTINF/GAMMA        

        ENER2 = 0.5D0*(UNKNO(2,IP)**2+UNKNO(3,IP)**2 

  &                                  +UNKNO(4,IP)**2)/(UNKNO(1,IP)**2) 

        rhoE  = (ENER1+ENER2)*UNKNO(1,IP) 

        pres  = PINF * 0.761d0     ! p2 / p1 = 0.761 

        rhoH  = (rhoE + PINF) * 0.802068d0     ! rH2 / rH1 = 0.534 * 1.502 

        UNKNO(1,IP) = RHOINF * 0.534d0    ! rho2 / rho1 = 0.534 

        UNKNO(2,IP) = RHOUZ1 * 1.966d0    ! u2 / u1 = 1.966 

        UNKNO(3,IP) = RHOUZ2 * 0.0d0 

        UNKNO(4,IP) = RHOUZ3 * 0.0d0 

        UNKNO(5,IP) = rhoH - pres 

    END IF 

This modifications were required because the Riemann conditions at both the inflow and 

outflow boundaries allow the solution to �float� slightly while gradients are created to 

balance the governing equations.  The final solution does not match at the inflow or outflow 

boundaries, but the ratio of their properties is correct.  The absolute properties are used to 

calculate the local Mach number, which is different at both planes.  To match the solution, 

the outflow condition is modified to resemble the desired properties, trapping the solution 

where desired.  The ratio of mass, momentum, and energy flow rates have been calculated for 

these eight cases below.  Each ratio uses the ratio of properties represented graphically: 

1

2

1

2

1

2

u

u

m

m

ρ

ρ
=

�

�
                

2
1

2
2

1

2

1
2
11

2
2
22

1

2

1

1

)(

)(

M

M

p

p

Apu

Apu

P

P

γ

γ

ρ

ρ

+

+
=

+

+
=                 

1

2

1

2

11

22

u

u

H

H

Hm

Hm

ρ

ρ
=

�

�

The results are grouped by generation and Mach number.  The maximum error for the Mach 

0.4 cases is 19.6%.  The ratio of all three flow rates shows a loss in mass and energy flow 

rates for all cases where mass or heat are added to the flow.  When a conservation equation is 

not affected by generation, the corresponding mass, momentum, and energy flow rates are 

properly conserved.  When mass is added to CFDsol, the change in mass flow rate was off by 

as much as 1.2% of the added mass flow; and when heat is added to CFDsol, the change in 

energy flow rate was up to 1.6% off of the enthalpy flow rate added to the flow. 



483 

Figure 7.57:  Subsonic (Mach 0.4) Constant Heat Generation. 



484 

Figure 7.58:  Subsonic (Mach 0.4) Cosine Heat Generation. 



485 

Figure 7.59:  Subsonic (Mach 0.4) Constant Mass Generation. 



486 

Figure 7.60:  Subsonic (Mach 0.4) Cosine Mass Generation. 



487 

Figure 7.61:  Subsonic (Mach 0.4) Constant Mass and Heat Generation. 



488 

Figure 7.62:  Subsonic (Mach 0.4) Cosine Mass and Heat Generation. 



489 

7.2.1.2 Supersonic Linear Afterburner (Mach 2) 

Heat was added to the flow in a supersonic combustor to simulate the effects of combustion.  

The outflow boundary conditions do not need to be modified because the characteristics are 

taken from upstream (domain elements).  The maximum error for the Mach 2 cases is 12%.   

Mass (and enthalpy) was added to the flow in a supersonic duct to demonstrate the quasi-

combustion terms in supersonic flows.  The outflow boundary conditions do not need to be 

modified because the characteristics are taken from upstream (domain elements).  The super-

sonic cases were built using the baseline CFDsol solver.  The ratio of mass, momentum, and 

energy flow rates have been calculated for these eight cases below.  Each ratio uses the ratio 

of properties represented graphically: 

1

2

1

2

1

2

u

u

m

m

ρ

ρ
=

�

�
                

2
1

2
2

1

2

1
2
11

2
2
22

1

2

1

1

)(

)(

M

M

p

p

Apu

Apu

P

P

γ

γ

ρ

ρ

+

+
=

+

+
=                 

1

2

1

2

11

22

u

u

H

H

Hm

Hm

ρ

ρ
=

�

�

The results are grouped by generation and Mach number.  The maximum error for the Mach 

2 cases is 11.0%.  The ratio of all three flow rates shows a loss in mass and energy flow rates 

for all cases where mass or heat are added to the flow.  When a conservation equation is not 

affected by generation, the corresponding mass, momentum, and energy flow rates are pro-

perly conserved.  When mass is added to CFDsol, the change in mass flow rate was off by as 

much as 0.8% of the added mass flow; and when heat is added to CFDsol, the change in 

energy flow rate was up to 2.5% off of the enthalpy flow rate added to the flow. 



490 

Figure 7.63:  Supersonic (Mach 2.0) Constant Heat Generation. 



491 

Figure 7.64:  Supersonic (Mach 2.0) Cosine Heat Generation. 



492 

Figure 7.65:  Supersonic (Mach 2.0) Constant Heat Generation. 



493 

Figure 7.66:  Supersonic (Mach 2.0) Cosine Heat Generation. 



494 

Figure 7.67:  Supersonic (Mach 2.0) Constant Mass Generation. 



495 

Figure 7.68:  Supersonic (Mach 2.0) Cosine Mass Generation. 



496 

Figure 7.69:  Supersonic (Mach 2.0) Constant Mass and Heat Generation. 



497 

Figure 7.70:  Supersonic (Mach 2.0) Cosine Mass and Heat Generation. 



498 

7.2.1.3 Hypersonic Linear Afterburner (Mach 7) 

Heat was added to the flow in a supersonic combustor to simulate the effects of combustion.  

The outflow boundary conditions do not need to be modified because the characteristics are 

taken from upstream (domain elements).  The hypersonic cases were built using the baseline 

CFDsol solver.  The maximum error for the Mach 7 cases is 3.7%.  Density fluctuations 

become excessive at hypersonic speeds.   



499 

Figure 7.71:  Supersonic (Mach 7.0) Constant Heat Generation. 



500 

Figure 7.72:  Supersonic (Mach 7.0) Cosine Heat Generation. 



501 

Figure 7.73:  Supersonic (Mach 7.0) Constant Heat Generation. 



502 

Figure 7.74:  Supersonic (Mach 7.0) Cosine Heat Generation. 



503 

7.2.2 Rocket BC 

A simple nozzle was designed using the method of characteristics (Emmons, 1958) to have a 

design Mach number of 2.2.  The nozzle geometry can be seen in Figure 7.75.  A sharp 

corner at the throat forms an expansion fan to help maintain isentropic flow at the design 

condition.  The nozzle was tested at three back pressures: 84, 90, and 100% of the design 

pressure.  Below the design condition, a normal shock appears in the diverging section.  The 

position of the normal shock in Figure 7.76 is upstream of that predicted by theory because 

the solution has not fully converged.  Shortly after the cuts shown in Figure 7.76 were made, 

the solution diverges along the shock plane.  The properties in Figure 7.76 just upstream of 

the shock plane become unstable; the Mach number jumps up before dropping through the 

shock.  Increasing the artificial dissipation FACTOR and decreasing the relaxation factor tau

(or time step dtfix) did not help the problem.  Refining the mesh within this problem region 

only exacerbated the divergence.  These are inherent instability problems with the imple-

mentation of CFDsol. 

Figure 7.75:  Local Mach Number within Rocket Nozzle at pt = 1.67 pinf = 0.84 pdesign. 



504 

Figure 7.76:  Local Mach Number along Centerline and Wall Surface of Rocket Nozzle. 

7.3 Viscous Aerodynamics 

Viscous flows are divided into two groups here:  Laminar and turbulent.  An incompressible 

boundary layer, circular cylinder, and ellipse are demonstrated for the laminar flows.  The 

incompressible boundary layer was used to validate the viscous terms in CFDsol before 

moving forward.  An incompressible turbulent boundary layer is demonstrated for higher 

Reynolds number flows, showing the capabilities of the new Spalart-Allmaras model. 

7.3.1 Laminar  

Four cases are presented here to demonstrate how well CFDsol represents laminar flows.  An 

incompressible laminar boundary layer was used as an initial validation of the viscous terms.  

Because the artificial dissipation plays such a dominant role in near-wall flows modeled in 

CFDsol, the viscous terms were first verified by showing that the effective Reynolds number 



505 

of the boundary layer approaches the actual Reynolds number as artificial dissipation is 

removed from the solution.  The viscous terms were then substituted into NS3D for a final 

check.    

7.3.1.1 Laminar (Incomp) Boundary Layer 

A flat plate boundary layer is demonstrated at a moderate (laminar) Reynolds number (Re = 

3600, Mach 0.3).  A mesh with medium-refinement is shown in Figure 7.77 for the laminar 

boundary layer case:  The bottom half of the boundary layer is spanned by three elements; 

the outer mesh grows sparser in the external flow.  Large elements are purposefully used in 

the external flow so that the boundary layer is not dependent on the external flow, which is 

near the free-stream velocity.  The element spacing varies along the length of the plate 

according to the theoretical boundary layer thickness.   

Figure 7.78 shows the results from CFDsol for the laminar flat plate boundary layer.  The 

dimensionless velocity profile (Figure 7.78a) compares the velocity profiles at 100 locations 

along the plate to Blasius� solution.  The profile shows a near linear section near the wall and 

curvature transitioning to the external flow.  The gradient near the wall is lessened due to the 

presence of artificial dissipation, which tries to eliminate high gradients in the field.  The 

lower wall gradient results in a lower skin friction along the length of the plate.  Figure 7.78b 

shows the skin friction to be approximately 50% of that predicted by theory.  The lower 

gradient also thickens the boundary layer (Figure 7.78c).  The total percent error for each of 

the 100 cuts is shown along the length of the plate in Figure 7.78d (6 to 20%).   



506 

Figure 7.77:  Moderate Mesh for Laminar Boundary Layer (Re = 3600). 

Figure 7.78:  Laminar Boundary Layer Results from CFDsol:                                                   

(a) Dimensionless Boundary Layer Profile; (b) Skin Friction along Plate;                             

(c) Boundary Layer Thickness along Plate; (d) Percent Error in Profile along Plate. 



507 

Several meshes were used in attempts to approach the analytical solution.  Figure 7.79 shows 

a coarse and fine mesh.  The coarse mesh has half as many elements in the lower 50% of the 

boundary layer.  In both meshes the elements increase in size in the external flow.  The velo-

city profiles for these two meshes are also shown in Figure 7.79.  Compared to the moderate 

mesh in Figure 7.78, the course mesh has up to 30% error while the fine mesh has less than 

18% error.  The skin friction and boundary layer thickness predicted by the finer mesh is also 

improved.   

Figure 7.79:  Course (Left) and Fine (Right) Meshes and Dim�less Velocity Profiles. 

The artificial dissipation is necessary in the external flow for capturing shocks and other flow 

features.  Within the boundary layer, the opposite is true.  Artificial dissipation reduces the 

skin friction, thickens the boundary layer, and adds error to the near wall solution.  We desire 

to have artificial dissipation in the external flow but no extra dissipation in the boundary 



508 

layer, especially near the wall.  To demonstrate that the viscous equations are modeling the 

boundary layer correctly, aside from the influences of artificial dissipation, an effective 

Reynolds number Reeff was calculated for the mesh and dissipation FACTOR.     

Blasius� solution is plotted according to the similarity distance η from the wall: 

x
y

2

Re
=η

This distance can be scaled, creating an effective velocity profile: 

Re

Re

Re

Re

2

Re

2

Re effeffeff

eff
x

y
x

y ηη ===

The effective Reynolds number Reeff represents the velocity profile given in the CFD data, 

chosen to best fit the velocities near the wall.  Data from CFDsol and NS3D was compared 

for the three meshes and various dissipation scalars.  CFDsol utilizes the dissipation model 

scaled by FACTOR outlined in previous sections, while NS3D applies a segment-weighted 

dissipation model scaled by diss.  The results are shown in Figure 7.80.  The two dissipation 

models create different magnitudes in the effective Reynolds number with similar trends:  

The effective Reynolds number decreases with the amount of artificial dissipation used, by 

diminishing amounts; and, as the artificial dissipation approaches zero, the effective 

Reynolds number approaches the actual Reynolds number used in the solution. 

As a repetition, the viscous terms from CFDsol were transferred to NS3D, using the inviscid 

terms and artificial dissipation model in NS3D.  The effective Reynolds number matches that 

created by the original terms (shown as triangles in Figure 7.80).  The repetition shows that 

the viscous terms in CFDsol are modeling the laminar boundary layer with good accuracy 



509 

while the artificial dissipation in either solver increases Reeff at the bottom of the boundary 

layer.  For this reason, the least amount of artificial dissipation should be used for any 

viscous solution.  The results also show that as Reeff approaches the actual Re, the error is 

minimized if three or more elements are used to discretize the lower half of the boundary 

layer.  Four elements in the lower 60% is suggested as a precaution. 

Figure 7.80:  Effective Reynolds Number vs. Artificial Dissipation Scalar. 

7.3.1.2 Ellipse 

An ellipse with 6:1 ratio was tested under viscous conditions, representing a more complex 

geometry resembling the leading edge of airfoils.  The inviscid mesh was generated using 

three mesh sources so that the mesh was finer at the leading and trailing edges.  The spacing 

was chosen to resemble the radius of curvature of the ellipse surface.  The viscous mesh in 

Figure 7.12 was generated by adding a boundary layer refinement to the inviscid mesh, using 

the laminar guidelines.  The pressure and velocity near the viscous ellipse (Re = 4000) are 



510 

shown in Figure 7.81.  The surface pressure distributions for both the inviscid and viscous 

ellipses are shown in Figure 7.13.  The two pressure distributions are similar, on average, but 

the viscous pressure distribution is much noisier.  The noise is created by variations in 

velocity (kinetic energy) that feeds back into the pressure distribution.   

Figure 7.81:  Pressure (top) and Velocity (bottom) around Viscous Ellipse (Re = 4000). 



511 

Figure 7.82:  Ellipse Mesh. 

Figure 7.83:  Pressure over Inviscid (left) & Viscous (right) Ellipse (Mach 0.3). 



512 

7.3.1.3 Cylinder 

The cylinder was tested at two low Reynolds numbers:  ReD = 9.6 and 41.  The velocity and 

pressure distributions are shown in Figure 7.85 and Figure 7.86 for Reynolds numbers of 9.6 

and 41, respectively.  These distributions were calculated using the meshes shown in Figure 

7.84 and Figure 7.87.  Each mesh was generated, starting with the inviscid mesh and adding 

viscous refinement.  For ReD = 41, the boundary layer thickness was estimated using a crude 

mesh.  Four elements were spaced evenly across the lower 60% of the boundary layer.  The 

mesh spacing was allowed to double at the top of the boundary layer.  For ReD = 9.6, the 

inviscid mesh was refined progressing until the viscous solution converged. 

Figure 7.84:  Viscous Cylinder Mesh (ReD = 9.6). 



513 

Figure 7.85:  Pressure (top) and Velocity (bottom) around Viscous Cylinder (ReD = 9.6). 

Pressure (Cp) 

Velocity 



514 

Figure 7.86:  Pressure (top) and Velocity (bottom) around Viscous Cylinder (ReD = 41). 

Pressure (Cp) 

Velocity 



515 

Figure 7.87:  Viscous Cylinder Mesh (ReD = 41). 

7.3.2 Turbulent 

Two turbulent cases are demonstrated here.  The first case was used to demonstrate the 

effectiveness of the Spalart-Allmaras model to model a turbulent boundary layer in a fully 

developed turbulent section.  The second case models a boundary layer from leading edge 

(laminar) through transition to fully developed turbulence.  The growth of turbulence is 

demonstrated over the length of the plate. 

7.3.2.1 Turbulent Section 

The first case demonstrates how well the SA model works for a fully developed turbulent 

boundary layer.  A section of length 7 units was tested 15 units from the leading edge of the 

plate.  The Reynolds number Rex ranged from 3.45x106 to 5.06x106 across the section, repre-

senting a fully developed boundary layer at the inflow plane.  The inflow and outflow planes 

were specified using the velocity and eddy viscosity profiles outlined in the two-dimensional 

viscous solutions.  The resulting solution, shown in Figure 7.88 and Figure 7.89, demon-



516 

strates that the SA model is stable for a fully developed turbulent boundary layer.  Figure 

7.89 shows the eddy viscosity profile at three locations evenly spaced across the section, 

which compare well with the inflow and outflow profiles. 

Figure 7.88:  Velocity (top) and Eddy Viscosity (bottom) for Turbulent Section. 

Figure 7.89:  Eddy Viscosity Profiles at Quarter Locations across Turbulent Section. 



517 

7.3.2.2 Incompressible Turbulent Boundary Layer 

The second case demonstrates how turbulence, in the form of µT, grows along a transitional 

boundary layer.  A plate of length 1605 units was tested from leading to trailing edges, where 

Rex = 6.4x106 at the trailing edge of the plate.  (To minimize run time, the laminar and turbu-

lent sections were started from theoretical profiles, and the transitional section was Interpol-

ated using a laminar profile.)  The solution was expected to grow a laminar boundary layer 

over the upstream 3% of the plate.  The remaining solution should begin to transition to 

turbulence, growing from near-zero to a substantial amount of turbulence.  Figure 7.90 shows 

the velocity and eddy viscosity distributions along the plate.  The eddy viscosity grows along 

the length of the plate, driven strongly by the advection properties near the wall, not purely 

by the source terms.  The eddy viscosity profile grows in parallel with the velocity profile, as 

expected, since the SA source term is a function of the strain in the flow, which is established 

by the velocity profile.   



518 

Figure 7.90:  Velocity (Top) and Eddy Viscosity (Bottom) for Trans. Boundary Layer. 

Five velocity profiles along the plate are shown in Figure 7.91.  The boundary layer shows 

transition from laminar to fully turbulent across the length of the plate.  The distribution of 

eddy viscosity across the boundary layer is shown at the same five locations (also in Figure 

7.91).  The fully-developed eddy viscosity profile takes on the shape of the theoretical profile 

illustrated in the two-dimensional viscous solutions.  The maximum value of eddy viscosity 

µT,max in the profile grows along the length of the plate, as shown in Figure 7.92. 



519 

Figure 7.91:  Velocity (top) and Eddy Viscosity (bottom) Profiles                                  

along a Flat Plate Boundary Layer. 

Figure 7.92:  Growth of Turbulence (Eddy Viscosity) along Length of Plate. 



520 

CHAPTER VIII 

CONCLUSIONS 

8.1 Conclusions 

The conclusions of this work are given in five parts:  The objectives from Chapter 2 are 

revisited and their completion addressed.  The five solvers are evaluated using the test data 

presented in the previous two chapters.  Many pitfalls were encountered during the course of 

this work.  The most important (and most memorable) of these pitfalls are discussed here as a 

warning to future users.  Standard practices are also discussed to guide future users through 

the difficult decisions of mesh spacing, time step size, and selection of other controls.  Five 

different solvers were used during this work.  Converting between those solvers is often 

confusing and requires several support codes to handle the process. 

8.1.1 Objectives 

Five objectives were outlined in Chapter 2.  These objectives are revisited here along with 

their progress and completion: 

Objective 1.  The two-dimensional OSU codes Euler2D and NS2D were enhanced to include 

propulsion models, viscous terms, and turbulence models.  Mass and heat generation were 



521 

added to the governing equations in Euler2D to create quasi-combustion terms.  A rocket 

exhaust model and coupled turbojet boundaries were implemented in Euler2D.  Acoustic 

output files were also created in Euler2D to study the properties at specified locations in the 

field.  Viscous terms were added to Euler2D, which was renamed NS2D.  Viscous local time 

stepping was implemented in NS2D to increase stability with the added viscous terms.  

Compressible Spalart-Allmarus (SA) and Menter�s SST models were implemented in NS2D 

along with rotation correction terms to adapt the production of turbulence in the presence of 

non-inertial rotation.  Heat transfer boundary conditions were also implemented in NS2D. 

Objective 2.  The three-dimensional OSU codes Euler3D and NS3D were enhanced using 

Euler2D and NS2D as a proof of concept and fundamental basis.  Quasi-combustion terms 

were added through mass and heat source terms.  The rocket and turbojet boundary condi-

tions were applied to inflow and outflow boundaries.  Acoustic output files were created in 

Euler3D using similar interpolations found in Euler2D.  Viscous terms were added to 

Euler3D, which was renamed NS3D.  The viscous local time steps were expanded to 3D 

using NS2D as a pattern.  Compressible SA and SST models were implemented in NS3D by 

expanding the two-dimensional models to include the additional terms and indices of the 

three-dimensional code.  Heat transfer conditions were implemented in NS3D to mirror those 

in NS2D.  All four codes were implemented using similar variable and array names to reduce 

the workload of future researchers and facilitate transfer of models between the OSU solvers.   

Objective 3.  CFDsol was enhanced during a NASA contract.  The quasi-combustion terms 

and rocket boundary conditions from Euler3D were adapted to work in CFDsol.  To give 

CFDsol the ability to model elastic deformation (inviscid) and non-inertial motion, the 

inviscid transpiration, non-inertial source terms, modal elastics and rigid body dynamics 



522 

models were also adapted from Euler3D into CFDsol.  The viscous terms in CFDsol were 

corrected to match its derivation and equations implementation in NS3D.  The SA turbulence 

model in NS3D was transferred to CFDsol, and the arrays and variables were adapted to 

interconnect with those already present in CFDsol.   

Objective 4.  The capabilities of the four in-house OSU codes were demonstrated on a variety 

of cases and regimes:  Subsonic, transonic, supersonic, and hypersonic; inviscid and viscous.  

Some of those demonstrations were used as verification (comparison with analytical or 

numerical models) or validation (comparison with experimental data).  The demonstrations 

showed that the inviscid codes are accurately modeling subsonic, supersonic, and hypersonic 

fields.  Questionable results arose from several transonic airfoil comparisons.  The geometry 

representation and meshes have been improved by another OSU researcher.  These enhance-

ments in turn improved the transonic solutions.  The SA model has been verified with a 

handful of tests. This verification needs to be continued.  Concerns have been raised for 

modeling turbulence over curved walls, and derivatives were shown to be decoupled when 

using orthogonal elements.  The SST and heat transfer models have not yet been verified. 

Objective 5.  Prior to the completion of the NASA contract, several cases from Objective 4 

were repeated using CFDsol.  These cases were used to compare and improve the perform-

ance of CFDsol.  In the end, the accuracy of CFDsol is comparable with the OSU codes and 

other numerical solutions.  The use of explicit derivatives in CFDsol often limits the applica-

tions or mesh convergence.  The stability is supplemented through an overly aggressive 

shock capturing (artificial dissipation) routine and inviscid local time stepping.  Viscous local 

time stepping was implemented using the one-dimensional model shown in this work, which 

is not sufficient to stabilize general unstructured meshes.  This author would encourage those 



523 

working with CFDsol to implement stiffness matrix to calculate viscous time steps and a new 

artificial dissipation model as a means of enhancing stability.  CFDsol should also be adapted 

to either avoid the use of explicit property derivatives in the inviscid terms or by including 

the explicit derivatives in the stiffness matrix for local time steps. 

8.1.2 Evaluation 

The five solvers were demonstrated in Chapters 6 and 7 on inviscid, propulsion, viscous, and 

time accurate test cases.  This evaluation has been broken down into similar sections: 

Inviscid Solutions.  The inviscid verifications were performed by comparing solutions with 

analytical solutions, numerical models, and the other solvers.  Validations were also perform-

ed by comparing the inviscid solutions with experimental data.  These comparisons showed 

that the inviscid solutions in Euler2D, Euler3D and CFDsol are accurate within the limits of 

the discretization.  The accuracy of subsonic and supersonic solutions in all three solvers im-

proves with mesh convergence.  Transonic solutions are the most difficult because transonic 

meshes must converge the subsonic regions to one standard and locally supersonic regions to 

a different standard.  Transonic solutions are highly dependent upon the definition of the 

geometry and convergence of the mesh in all regimes.  

NS2D and NS3D were built from Euler2D and Euler3D.  The inviscid boundary conditions 

were retained during this process.  Inviscid walls can be used with Navier-Stokes to con-

strain the flow without requiring boundary layer modeling.  For example, a wind tunnel wall 

or streamlined close-out can be modeled with an inviscid wall.  The inviscid wall can also be 

used to model an inviscid solution with viscous dissipation in place of artificial dissipation. 

Viscous dissipation is sufficient for a Re of 100 or less, but the viscous terms may increase 



524 

run times over artificial dissipation because of the local viscous time step.  This has been 

done at various stages in this research.  NS2D and NS3D could be used to model inviscid and 

viscous solutions as all encompassing solvers.  This is discouraged in general because the 

viscous terms will increase computational costs with decreased stability.  The viscous terms 

in NS2D and NS3D could be used to stabilize inviscid solutions more efficiently with vis-

cous dissipation over artificial dissipation (diss = -1).  Viscous solutions have been generated 

without artificial dissipation for Reynolds numbers less than 100, and the artificial dissipa-

tion in the SA and SST models was scaled to be equivalent to a Reynolds number of 300.  

These numbers can be used as a guide for setting Re for inviscid solution stability. 

Inviscid Stability.  All three solvers are stabilized with artificial dissipation and local time 

stepping.  Local time stepping is well known throughout the literature and has been imple-

mented in all three solvers as a means of local relaxation.  Inviscid local time step is calcu-

lated using the maxi-mum local velocity (V + a) and characteristic length.  The OSU codes 

use segments between nodes to define this local velocity and length.  CFDsol performs this 

calculation on each element and uses the minimum distance between a vertex and its oppos-

ing face as the characteristic length.  The velocity vector and characteristic length are often 

uncoupled in CFDsol.  The vectored-coupling in the OSU codes creates a much more stable 

influence on the local flow field.   

The artificial dissipation routines in all three solvers are sufficient to control many disturb-

ances at their nominal levels (diss = 1.0 and FACTOR = 10/∞M ).  Artificial dissipation is 

also a source of error for all three solvers since its contributions are artificial in nature.  Arti-

ficial dissipation is a necessary evil in that its effects on stability are necessary but changes to 

the overall solution are undesirable.  CFDsol contains explicit derivatives in its inviscid 



525 

terms, which create numerical instabilities similar to viscous terms.  CFDsol does not attempt 

to handle these instabilities in its local time stepping. 

Viscous Solutions.  Laminar solutions were verified against analytical and numerical solu-

tions for simple geometries.  The viscous terms in NS2D and NS3D are accurate for all cases 

investigated when appropriate mesh spacings are used (normal and streamwise) and when the 

artificial dissipation is minimized in the solution.  Many solutions were generated with arti-

ficial dissipation to stabilize the initial startup and then artificial dissipation was removed 

from the solution.  When this method was not appropriate, the zero dissipation length dislen

was used to remove artificial dissipation from the near-wall region while keeping artificial 

dissipation during startup and within the regions of the flow dominated by inviscid physics.   

CFDsol was much more difficult to verify.  Artificial dissipation is essential in the current 

implementation of CFDsol so its viscous routine was transferred to NS3D and named 

NS3Dsol.  NS3Dsol did not have the same requirements for artificial dissipation and showed 

the viscous terms were accurate for laminar solutions in the limit as artificial dissipation was 

removed from the solution.   

Viscous Error Sources.  Several sources of error exist in all three viscous solvers:  Artificial 

dissipation, viscous stability, and the accuracy of stresses.  Artificial dissipation attempts to 

smooth out the velo-city profile normal to the wall.  This decreases the skin friction and 

thickens the boundary layer.  A zero dissipation length dislen has been implemented in all 

three solvers and shown to be an effective means of improving solutions from NS2D and 

NS3D.  An appropriate size for dislen is often hard to determine for the entire field, espec-

ially when the thickness of the boundary layer varies drastically across the body.   



526 

Alternative artificial dissipation models, like Nithiarasu (1998), were investigated in this work.  

These models are scaled by the gradient or Laplacian of one or more properties.  Gradients are 

sensitive to numerical errors and scaling the artificial dissipation model by such errors makes the 

model equally sensitive to numerical errors.  The Laplacian is calculated using second deriva-

tives, which are even more sensitive to numerical errors and less accurate on a piece-wise linear 

field.  Finally, the greatest sensitivity and instability in the gradients was found near boundaries, 

which kept the artificial dissipation on near boundaries.  The entire exploration into artificial 

dissipation models was searching for less dissipation near walls.   

Viscous stability was also an issue in all three solvers, especially in cross flow velocities in the 

3D solvers.  The cross flow velocity is more susceptible because the magnitude is very small and 

does not wash out the numerical errors that feedback into the viscous stresses.  NS2D showed 

signs of viscous instability for very small meshes used to test the turbulence models.  The 

number of degrees-of-freedom is increased for 3D meshes, which heightens their sensitivity.  The 

viscous stiffness matrices were used to calculate the viscous local time steps in NS2D and NS3D.  

The viscous local time steps were shown to stabilize the viscous terms.  In fact, tests were per-

formed on a cylinder in NS3D using local time steps calculated using the x- and y-derivatives 

(2D model).  When the cross flow velocity was aligned with x or y, the solution showed much 

greater stability.  When the cross flow aligned with z, numerical instabilities were dominated w.  

The accuracy of stresses and heat fluxes is affected by the accuracy of the gradients used to 

calculate them.  The properties are piecewise linear, so the gradients are piecewise constant.  This 

means the viscous fluxes are piecewise constant and apply a different influence depending on the 

element.  Orthogonal elements decouple their derivatives, which is good for a flat plate but 

problematic for flows along curved boundaries.  The accuracy of stresses and heat fluxes would 

be greatly increased by smoothing out the derivatives.  Hybrid elements (linearly distributing the 



527 

derivative) were investigated and found to apply appropriate smoothing to the derivatives near 

the center of the domain, but the elements near the boundary showed even more degradation in 

derivative accuracy.  O�Neill (2011) shows that the mass matrix is singular in the hybrid system 

and applies a plate stiffness term to smooth any additional problems.  The plate stiffness acts like 

an artificial dissipation for derivatives.  Plate stiffness was applied to the derivatives in NS2D 

and showed to be ineffective until the stiffness began to dissipate all of the derivatives. 

Heat Transfer.  The heat flux terms have been implemented in all three viscous solvers, and heat 

transfer boundary conditions have been implemented in the OSU solvers along with input files.  

These conditions have been tested for stability and to show that the solution changes based on the 

boundary condition.  These conditions need to be verified (and validated) before being used in 

any application. 

Turbulence Modeling.  A compressible Spalart-Allmarus (SA) model was implemented in all 

three solvers.  That model has been tested on simple test cases and verified using a flat plate 

boundary layer.  Problems were demonstrated in the presence of wall curvature using Rumsey�s 

bump case.  The SA model needs further exploration and validation.  Menter�s SST model was 

also implemented in the OSU codes.  The SST model is relatively untested.  The advection, 

diffusion, and artificial dissipation terms have been tested on a simple advection problem.  The 

source terms require the presence of a wall to be tested.  The ω boundary condition is hard to 

satisfy and is very sensitive to wall normal spacing.  A simple flat plate boundary layer should be 

used first and tested with various wall normal spacings to verify that the ω boundary condition is 

working properly for small spacing.  For rotation in the non-inertial frame, the Spalart-Shur 

rotation-curvature correction has been applied to both the SA and SST models.  The curvature 

term has been neglected for simplicity, leaving the rotation correction, which has not been tested. 



528 

Time Accuracy.  Time accuracy was improved for CFDsol using the Cowan�s (2003) predictor-

corrector method applied in the OSU codes.  The time accuracy of this method was demonstrated 

on the Wagner and Theodorsen cases in CFDsol.  For the OSU codes, unsteady demonstrations 

were performed using the Wagner airfoil, double shock tube, and laminar cylinder with trailing 

vortex street.  For reasonable time steps, the predictor-correct retained its time accuracy even 

when viscous terms are added to the model.  A reasonable time step for advection is upper 

bounded by the macro flow scales (period of T):  ∆t < T / N, where N is the number of steps per 

flow period.  The smallest period in the flow should dictate the time step and 20 to 100 steps 

should be used per period.  These numbers come from experience.  The very small velocities near 

the wall do not advect information as quickly as the external flow, and little investigation has 

been done in this research to determine the effects of time step near the wall.  For now, the time 

step can be controlled by the external, macro flow features.  URANS could add another compli-

cation if the SA or SST models are used in time accurate solutions.  URANS assumes that the 

properties are time-averaged over some period T, which is assumed to be much larger the period 

of fluctuations in the flow.  The time-averaged properties are then considered to change �slowly� 

in time.  How this will affect the time step in NS2D or NS3D is not yet known.  If the turbulence 

models are treated as differential models supplementing the RANS equations (as this author 

intended), then the time accuracy of the solution is still governed by the macro scales in the flow.  

When the turbulence models are verified, the time accuracy of the models should be investigated.  

If the URANS models are found to be less than time-accurate, LES or DES models should be 

added to the suite.  LES models are based on spatial averaging rather than time-averaging.  DES 

models are a combination of URANS near the wall and LES away from the wall. 

Propulsion Modeling.  Propulsions models were created in all five solvers.  The models were 

created to be simple, physics-based means of representing the near-field around propulsion sys-



529 

tems while generating thrust.  Before this work, turbojets and rockets were modeled as far field 

(freestream) boundaries and vehicles were pulled along with �magic strings�.  Scramjets were 

modeled in the engine off condition.  Three models were implied in the OSU codes through the 

boundary fluxes:  Rocket exhaust, turbojet inflow, and turbojet exhaust boundaries.  The rocket 

exhaust was modeled using total properties, as an equivalent to a combustion chamber.  The 

turbojet inflow applied a pressure at the inflow to induce a specified mass flow into the turbojet.  

The other properties were pulled into the engine naturally by the mass flow.  The outflow turbojet 

boundary was coupled to its inflow using conservation principles.  Quasi-combustion, or mass 

and heat generation terms, were added to the model to simulate ramjet, scramjet, or afterburner 

combustion.  The rocket and quasi-combustion terms were added to CFDsol and implemented 

through explicit boundary conditions. 

Several sources of error could be produced during propulsion modeling.  All three of the models 

were created to be simple and easy to apply.  The rocket boundary condition assumes that all 

combustion occurs upstream of the exhaust boundary, which may not be the case in reality.  The 

turbojet boundary conditions do not model the swirling flow induced up and downstream of the 

rotating turbomachinery.  The rocket and turbojet exhausts also apply a constant flux to all boun-

dary elements in the inertial frame.  The real exhaust profile contains a boundary layer along the 

nozzle walls and wakes from upstream components (turbine blades).  The propulsion models 

were implemented in all five models but only tested in inviscid fields to avoid the complex 

modeling of boundary layers in inlets and nozzles.  This author would advise future users to 

utilize the inviscid wall boundaries to simplify inlets and nozzles and only use viscous walls 

where necessary to build boundary layers around the inlet leading edge and nozzle lip. 

MDA Readiness.  The original intent of this research was to create a multi-disciplinary analysis 

(MDA) suite using the OSU codes and/or CFDsol.  The stability problems limit the use of 



530 

CFDsol, so this research was focused on the OSU codes.  The available connections with CFDsol 

(post-contract) can be seen in Figure 2.3.  The in-house codes are much closer to implemented in 

such as MDA environment.  Figure 2.4 shows the current connections available with the OSU 

codes.  This section outlines that readiness.  The accuracy of the solvers has been addressed in 

the previous evaluation sub-sections.  The next step is to evaluate the ability of the solvers to 

model the various interfaces necessary to incorporate the models into a MDA environment 

(Figure 2.1 and 2.2).  Those connections can later be made more efficient. 

The lower order system model represents the simplest connections between the CFD solvers and 

external modules.  Euler2D/3D and CFDsol can handle modal elastics, which are preprocessed in 

a structural FEA such as STARS.  Elastic deformations are modeled through inviscid transpira-

tion.  NS2D/3D contain similar connections but only velocity transpiration is available for the 

no-slip wall.  Elastic boundaries can only be incorporated into the viscous solutions by moving 

the boundaries and deforming / remeshing the internal mesh.  This topic is a complex research 

area in and of itself and has been left for future researchers.  These mode shapes can be calcu-

lated using the solid temperature distribution created using the CFD boundaries as inputs to the 

thermal FEA.  This temperature distribution is readily available between iterations in the safe 

mode restart case.rst file.  The lower order propulsion models have been implemented in the CFD 

solvers.  (Turbojet boundaries still need to be implemented in CFDsol.)  These models are taken 

from user inputs, which can be constructed using the current CFD solution in the case.rst.  The 

rigid body dynamics model has been incorporated in the five codes in full non-linear form.  A 

subroutine has been set aside in the OSU codes to hard-code controls routines directly into the 

CFD solution.  (A similar routine can be added to CFDsol.)  The lower order systems model can 

be readily created using any of the five CFD solvers, FEA, and propulsion models through inter-

connecting modules to transfer information between the routines. 



531 

The higher order systems model can be created by passing CFD boundaries temperatures 

(case.rst) to the thermal FEA, which returns boundary heat fluxes to the CFD solver (case.tbc).  

(Different boundary conditions must be passed between the two codes.  If the heat flux is passed 

to the structure, then the problem is actually singular.  One essential condition (temperature) is 

required to correctly specify the problem.  If heat flux is pass to the CFD solution, the far field 

acts as the essential condition.)  The temperature distribution in the structure can be passed to the 

structural FEA along with the surface traction Eq. 4.237 from the CFD solution (case.rst).  The 

viscous stresses are calculated from the velocity gradients, which requires knowledge of the mesh 

(case.g2d, case.g3d, or case.cfs).  This process could be simplified by including the stress compo-

nents of the traction in the restart file (case.rst) or another file that is over-written between itera-

tions.  The structural deformations can be processed using the temperature and traction distribu-

tions and passed back to the CFD solutions using the modal format in the case.vec.  The higher 

order combustor is modeled similar to the higher order turbojet, and the higher order rocket 

boundary is the same as the turbojet exhaust boundary.  The higher order turbojet can be created 

by passing properties for entire boundary between the CFD solvers used in this work and external 

CFD models.  The inflow plane can be modeled by passing the flux and properties on the central 

CFD solution to the external module, which returns the pressure distribution across the inflow 

plane.  The exhaust plane can be modeled using the opposite process.  The central CFD gets 

fluxes and properties from the external solver and passes back the pressure along the boundary.  

If the external routine only passes fluxes, flux_props can be used to calculate the properties to 

construct the Riemann invariant matrix.  Again, the rigid body and controls routines are fully 

implemented as non-linear models with the central CFD code. 



532 

8.1.3 Precaution against Pitfalls 

The tests in this research were performed with unit values to keep the tests simple where 

possible.  Common Mach and Reynolds numbers were also used.  Simple cases were 

repeated for different Reynolds numbers to ensure the independence of results.  More tests 

should be run with dimensional numbers to properly prove that those numbers are being 

applied properly and their dimensions are removed properly.    

Non-Dimensional Numbers.  Following Cowan�s (2003) implementation as a standard, all 

input files are dimensional except for the controls file.  The controls file contains three values 

used to non-dimensionalize all input values:  refdim contains the length dimension, ainf

contains the length and time dimensions, and rhoinf contains the mass and length (volume) 

dimensions.  The length dimensions should be consistent in all three values.  For instance, if 

the length dimension is in meters (SI), then the mass and time dimensions should be in kilo-

grams and seconds.  The use of gc should be avoided altogether.  In other words, slugs are 

used as the English mass unit for feet, and slinches are used as the English mass unit for 

inches.  Dimensionless values are specified in the controls file for Mach number mach, 

Reynolds number Re, and time step dt so that ainf and rhoinf can be ignored for unsteady 

simulations.  Finally, a dimensional value for gravity has been included in the controls file 

instead of the dynamics input file (case.dyn) to facilitate later expansion of its use as a body 

force in the CFD solution.   

Care must be taken when applying the freestream Mach and Reynolds numbers.  Non-inertial 

solutions can be specified using the velocity of the non-inertial frame instead of a freestream 

(ifree = .true.).  The �freestream velocity� is still used to non-dimensionalize all inputs from 



533 

files.  The �freestream velocity� is calculated in the same manner as when a freestream is 

actually present:  uinf = mach ainf.   

The Reynolds number can be tricky to specify if precautions are not taken.  For instance, a 

wing of a UAV has a dimensional chord of 3 in and will be modeled at a Reynolds number of 

3.5x105.  The mesh should be generated in units of inches, where the wing chord has a length 

of 3 mesh units.  If refdim is specified to be 3 mesh units (3 inches), Re should be 3.5x105

because refdim is equal to the chord length.  refdim is often specified as 1 mesh unit (in this 

case, 1 inch).  In this case, Re should be set to 1.166x105 so that the Reynolds number based 

on the 3-inch chord is appropriately 3.498x105.  Finally, someone else generates the mesh in 

millimeters (3 in = 76.2 mm).  If the simulation is steady or unsteady without the presence of 

other models, the mesh can be left in terms of millimeters (refdim = 76.2, Re = 3.5x105 or 

refdim = 1, Re = 4.593x103 so that Reynolds number based on chord is 3.4999x105).  If 

additional models are being used, the mesh can be scaled by 0.03937 to put the mesh units in 

terms of inches, or the mesh can be redrawn.

Demonstration vs. Verification vs. Validation.  Verification is the process of comparing 

solutions from a method with those produced by other analytical or numerical methods.  

Validation is a similar process, where experimental data is used as a means of comparison 

(Roache, 1998a and 1998b).  All verifications and validations are demonstrations of capa-

bility, but demonstrations are not verifications or validations without comparison.  Verifi-

cation proves that the simulation is properly representing the desired physics model.  The 

CFD solution is verified when the solution matches the desired physics model (analytical or 

numerical distribution that has been verified) within a reasonable limit or in the limit as the 

mesh approaches a continuous discretization.  Validation is performed on a verified model to 



534 

demonstrate how valid (accurate) that model is for a particular purpose, which the validation 

data encompasses.   

The temperature boundary conditions and SST model (particularly the accuracy of the ω

boundary condition) have not yet been verified.  This is the first step in verifying that all of 

the equations have been implemented in the CFD codes correctly.  Acoustics have been also 

been seen in the demonstrations.  An acoustic verification can be constructed using the quasi-

combustion terms to oscillate mass production on a single element (very small) to simulate a 

single monopole source.  The resulting distribution of density should resemble radiating 

waves with magnitude decreasing according to r -2 in 2D and r -3 in 3D. The acoustics output 

file can be used to track the position and strength of the waves.  Several new features have 

been added to the rigid body model:  Fully inertia matrix I, stiffness K, and damping C

matrices.  These later two matrices can be verified simple linear and rotational motion 

compared with analytical models or the modal elastics model.  The inertial matrix can be 

verified using an asymmetric vehicle compared to an analytical or numerical systems model.  

Finally, the heat transfer, SA, SST, and acoustics need to validated before their use.  In fact, 

the solver(s) should be validated using experimental data within the regime on a similar 

geometry before assuming that the CFD solution is extendable to any generic cases.

8.1.4 Standards and Good Practices 

Several standards or good practices have been created by this research, Cowan (2003), 

Brown (2009), O�Neill (2011), and other OSU researchers.  These best practices will help 

future modelers and researchers to create appropriate meshes, time steps, stability, etc. 



535 

Meshing Practices.  Brown (2009) and others have found an appropriate inviscid spacing is 

less than 8% of the radius of curvature or less than 5% rotation of the boundary element nor-

mals.  This work has found similarity trends for the number of elements necessary to model 

shocks and expansion fans with a given accuracy:  Figure 6.50 and 6.53.  The number of 

elements increases with diss and mach and decreases with the displacement angle for shocks.  

The artificial dissipation model smears the shock or expansion over a given number of 

elements, found in the figures.  Viscous spacing is defined by the boundary layer thickness.  

Laminar boundary layers can be represented using six elements at a minimum, where the 

normal spacing at the wall should be at most 15% of the boundary layer thickness δ.  The 

lateral spacing along the wall can be as large at 0.5 δ.  The turbulent boundary layer can be 

modeled using the laminar guidelines as a basis.  The spacing nearest the wall is refined 

across three y+ regions:  at least 1 element are used across the viscous sublayer (y+ < 5), at 

least 3 elements across the buffer layer (5 < y+ < 30), and at least 8 elements across the log-

law region (30 < y+ < δ+).  Of course, more elements can be used. 

Time Stepping and Solution Stability.  The time accuracy and stability are both tightly 

controlled by the time step size dt.  A reasonable time step for advection is upper bounded by 

the macro flow scales (period of T):  ∆t < T / N, where N is 20 to 100.  For example, a vortex 

street is created downstream of a body, and the vortex street is the dominant frequency in the 

flow.  The frequency of the vortex shedding is 1000 Hz (or period T = 1 ms).  An appropriate 

time step would be 0.01 ms.  For refdim = 3 in, ainf = 13,400 in/s, and mach = 0.2, the 

dimensions are removed from the time step:  dt* = dt mach ainf / refdim = 8.93x10-3.  The 

inviscid local time step is calculated using the spacing in the wake: 



536 

L

x

M

M

L

U

aV

x
CFL

L

Ut
dt wakewake ∆

+
≤

+

∆
=

∆
=

∞

∞∞∞

1
8.0*

(8.1)

where CFL = 0.8 is an empirical upper limit for inviscid solutions in Euler2D/3D.  CFL = 0.5 

is suggested as a general guideline for steady and unsteady flows.  For a freesteam Mach 

number mach of 0.2 and wake spacing that is 2% of the reference length ∆xwake / L = 0.02, the 

time step is limited to 2.67x10-3, which is the limiting case here.  Stability requires the time 

step to be 30% smaller or 333 steps per flow period.   

The previous discussion does not include the viscous local time step, which is more difficult 

to calculate in general.  Viscous local time stepping is specified through itime.  If the mesh is 

an orthogonal grid, then itime = -1 can be used to quickly calculate the viscous local time 

step.  For unstructured triangular and tetrahedral meshes, itime = 0, 1, and 2 are used to 

specify three levels of fidelity:  Heat transfer, momentum, and turbulence model stability.  

Each level performs an additional stiffness matrix check.  The levels are specified so that the 

first is the most frequently used, and last is least frequent.  irsds can be set to .true. to create 

several files that can help tune the local and global time steps.  The case.time file gives the 

ratio of local to global time (first column) and ratio of local times across the different fidelity 

levels.  The first column will always be smaller than unity because the upper bound of the 

local time step is the global, keeping the solver in a relaxed state.  The remaining columns 

are less than unity when that level of fidelity is being used.  If a column is equal to unity 

(after a short startup), then itime can be reduced to remove this matrix from the local time 

stepping calculation.  itime = 0 should always be kept at a minimum for unstructured meshes. 

The first column of the case.time relates the local to global time steps.  If this column is equal 

to 0.1, then at least 10 inner cycles ncyc should be used to give the solution enough �local 



537 

time� to converge a given time step.  This does not mean all of these cycles need to be used.  

rsdtol can be used to cause check the residual convergence and exit the inner cycles for the 

time step.  Different levels of rsdtol are appropriate for different applications:  rsdtol < 10-6

for class projects, < 10-8 for thesis research, and < 10-10 for published research, as general 

guides.  These limits can be increased to reduce run times to meet delivery schedules.  

(rsdmax can be used to early terminate the program in case of divergence:  rsdmax = 102 is 

typical.)  Using rsdtol, the number of cycles can be set large (ncyc = 100) and exit before all 

of those cycles are used.  When irsds = .true., the number of cycles for each time step is 

written to the case.cyc, which can be used to ensure that enough inner cycles are being used.  

A general rule of thumb for efficiency is to use 5 to 20 cycles per step (after a reasonable 

startup period).  If less than 5 cycles are being used, then the time step is too small and the 

solution will eat up time stepping forward (nearly explicit).  If the cycles are greater than 20, 

then the time step is too large and the time will be spent converging the given solution before 

stepping.  The residual at the end of each time step is written to case.rsd.  When irsds = .true., 

the residual at the end of each cycle is written to case.rsd2, which shows how quickly the 

residual converges on each time step.  The energy residual is generally the largest so the 

energy residual is tested against rsdtol and rsdmax.   

Beyond local and global time step size, stability is augmented with artificial dissipation.  If 

the Reynolds number is less than 100, the artificial dissipation can become optional.  The 

artificial dissipation model can be turned off for idiss = -1, which is much more efficient.  

Otherwise, dissipation must be added to the solution to stabilize the inviscid flux terms.  A 

nominal value of unity is appropriate for all dissipation diss in the OSU codes, and one tenth 

the freestream Mach number can be used for dissipation FACTOR in CFDsol.  For 



538 

supersonic solutions, the lower order model (idiss = 0) is appropriate in the OSU codes.  For 

subsonic or rotating fields, the higher order model (idiss = 1) introduces a minimum gradient 

detection, which allows the non-inertial and vortex rotations to persist in the solution.  For 

viscous solutions, artificial dissipation changes the boundary layer region of the flow.  The 

zero dissipation length dislen can be used to minimize dissipation over a set thickness.  dislen

works best when it is set equal to half of the boundary layer thickness, but the boundary layer 

grows over the length of the surface.  The boundary layer thickness at 70% of the body 

length (chord, etc.) can be used as a single measurement.  Artificial dissipation is also applied 

in the turbulence models and can be scaled down using disst, where the artificial dissipation 

applied in the turbulence models is scaled by diss*disst.  A nominal value of unity is appro-

priate for the turbulent scalar disst.  If the turbulence model is more or less stable for a given 

situation, disst can be changed without affecting dissipation in the RANS equations. 

Solution Modes.  Several different solution modes can be used in the OSU codes.  isol = 0 

uses the steady solution, which assumes no time accuracy.  isol = 1 and 2 produces time 

accurate solutions (with reasonably small time steps) that are first and second order accurate 

in time.  The first order scheme can be restarted using a case.unk file (irstrt = .true.).  The 

second order scheme requires two previous solution steps, the later of which is not recorded 

in the case.un#.  All data needed for a smooth restart is recorded in the safe mode (isafe) 

restart file (case.rst).  Safe mode should be used, at the cost of efficiency, for second order 

solutions.  The restart file cannot be used for plotting like the unknowns file case.un# or 

case.unk, but the restart file allows for smooth and efficient restart of a solution of any order.   

The number of Gauss points used for numerical integration ipnt can be increased in 

Euler2D/3D, but Cowan (2003) and Brown (2009) have shown that ipnt is sufficient for the 



539 

current implementation.  If alternative dissipation models are implemented in Euler2D/3D, 

the number of Gauss points should be retested, particularly the analytical integration 

(Appendix B), which perfectly represents an integral in a more efficient manner than third 

order Gauss quadrature.  NS2D/3D are restricted to ipnt = 1 at all times.   

Finally, �incompressible� solutions can be created using mach = 0.2 or less. Incompressible 

flow is defined by an infinite acoustic speed, which is not possible in any of the codes tested 

in this research.  In the limit as Mach number approaches zero, the density fluctuations 

become very small and the compressible implementation of the continuity equation becomes 

ineffective, limiting convergence.  This does not create a limit on capability but rather 

presents a change in efficient calculations � longer run times. 

8.1.5 Converting between Solvers 

Five different solvers have been used during this research.  The solvers are very similar, 

especially the OSU solvers, but the files used by each differ, if only in number of properties.  

Several support codes have been written just to convert between solutions and solvers. 

Converting between Modes.  The inviscid solvers Euler2D/3D are Reynolds number depend-

ent.  When converting to the viscous solvers NS2D/3D, the Reynolds number must be added 

to the restart file case.unk.  Reynolds number and several other values should simultaneously 

be specified in the controls file.  Inviscid solutions can be used to quickly converge the 

pressure and external velocity before slowing the velocity near the wall in a viscous solution.  

The conversion between viscous to inviscid solutions has not been used in this research. 

The viscous solvers can be used to model laminar, SA, or SST based solutions.  Conversion 

between these solutions is detected by the iturb flag in the case.unk file and  happens auto-



540 

matically upon restart.  Laminar properties are retained when moving from laminar to 

turbulent or SA to SST models.  The SST properties k and ω can be used to calculate the 

eddy viscosity and distribution of SA variable ν� , so the turbulent properties are retained 

during this conversion.   

The conversion between inertial and non-inertial frames can be deceivingly tricky, especially 

if the freestream velocity uinf in the inertial frame is replaced by the mesh velocity (vx, vy, vz) 

in the non-inertial frame.  For example, the solution field is converged in the inertial frame 

using a freestream Mach number of 0.5.  The solution is used as the initial conditions for a 

non-inertial solution, where the velocity is induced by the motion of the frame.  The motion 

of the frame is equal in magnitude and opposite in direction of the velocity induced on the 

flow:  vx = - uinf.  To ensure that the initial conditions match the desired non-inertial solution, 

the mesh velocity must be specified in terms of mach and ainf.  If ainf = 1116 ft/s, then a 

mesh velocity of -558 ft/s is required for smooth conversion.  If an angle of attack is present 

in the inertial solution, then the incidence should be reflected in the initial pitch angle θ. 

Tools Useful in Conversion.  Several support codes have been created to facilitate the 

conversion of files and their values.  EditCon reads a controls file (case.con or case.data), 

edits the control data, and writes that data back to a controls file (original or different for-

mat).  EditCon was originally created to allow the controls file to be edited during batch 

processing.  EditCon can also be used to produce a default controls file using the case.con 

with �&control� on the first line and �/� on a following line.  EditCon produces a table of 

values with short descriptions and prompts to assist the user in setting up the given controls 

file.  The user is prompted for the solver to be used before the file is written, and only the 

appropriate controls are written to the file.   



541 

Geometry and unknowns files can be converted from 2D to 3D solvers using 2DExtrude.  

(Several other support codes are available to convert between 2D and 3D, but 2DExtrude is 

the most comprehensive.)  2DExtrude can be used to convert the geometry file alone 

(case.g2d to case.g3d), a single restart file (case.unk), or multiple solution files (case.un#) for 

plotting in Glplot3D.  The later is used when the additional features are needed that are only 

available in Glplot3D:  Velocity magnitude, total energy, internal energy, or vorticity.  Total 

energy and velocity magnitude are necessary to plot the SST distributions in the caset.un#.  

After extrusion, the mesh and velocity can be aligned with different axes using Rotate3D.  

This process can also be used to make a 2D solution available to Remesh3D. 

Remesh3D can be used to refine the unstructured mesh using the gradient or Hessian of 

various properties.  Remesh3D creates a new caseR.bac file which defines the spacing as 

direction vectors at all nodes in the original mesh.  The spacing and direction is linearly 

interpolated during the meshing process.  Surface and Volume are used to create the new 

mesh.  The original geometry definitions case.sur can be used in the 2D or 3D domain. 

The original solution can be interpolated onto a remeshed or different user-defined mesh to 

decrease convergence time.  UnkInterp2D/3D linearly interpolates the properties on each 

element using the shape function as a basis.  In the infrequent case that the new node lies 

outside of the original mesh, the distribution along the boundary element is extrapolated 

normal to the boundary element.  At the end of the interpolation, the user is given the ability 

to adapt the header of the new case.unk file.  The header can also be quickly changed using 

UnkAdapt2D/3D.  The Mach number, Reynolds number, solution time, orientation angles or 

ratio of specific heats can be adapted in the header.  The other values are purposefully 

untouchable.  UnkAdapt2D/3D can also be used to write out an ASCII copy of the case.unk. 



542 

Interfacing CFDsol with In-House Codes.  After the NASA contract, switching between 

CFDsol and the OSU in-house codes is purely a matter of file format.  The geometry files can 

be converted using g3d2cfs or cfs2g3d.  g3d2cfs can be used to convert a OSU geometry to 

CFDsol geometry, which stores less information.  The reverse process in cfs2g3d is not a 

complete process and should only be used for viewing case.un# files in Glplot3D.   

The controls files can be converted using EditCon, similar to that described above.  The only 

other conversion involves the restart file.  CFDsol works best for explicit solutions although 

implicit cycling can be used in certain cases.  The surfaces must be specified for the calcula-

tions of loads.  EditCon reads the case.bco file for solid walls and includes these surfaces in 

the case.data file.  EditCon presents the surfaces in tabular format to be included or excluded.  

Finally, two output file formats are available in CFDsol; only itrans = 1 produces case.un# 

files that can be plotted in Glplot3D.   

CFDsol uses a case.out file, which is over written after each iteration.  Unk2Out can be used 

to convert a OSU case.unk file or CFDsol output file case.un# to the restart format case.out.  

The case.unk should always be retained after conversion because CFDsol over writes the 

case.out.  If the restart does not happen properly, CFDsol has already changed the restart file.  

The case.unk is necessary to recreate the file. 

8.2 Recommendations 

Several recommendations have been given in the previous descriptions.  Some of these 

recommendations are repeated here with more detail.  The recommendations given in this 

section are listed in order from most to least importance, in the opinion of this author. 



543 

Improve Mesh Generation.  Mesh generation has been a constant problem throughout this 

work.  Many of the cases in this document were generated in the 2D plane and extruded to 

3D, if necessary.  Meshes were also generated using Pave2D/3D.  Both processes were used 

to avoid meshing 3D domains using Volume, which shows weird quirks.  The run time error 

reporting is difficult to interpret and often misleading.  Volume can fail to generate a mesh 

because the surfaces do not intersect within a given tolerance, the routine decides to remove 

and replace the same element repeatedly, or the mesh fails any of various qualifications.  

Surface can fail for the same reasons, but working with Surface is much more tolerable. 

Many of the features in Surface and Volume are desirable.  Both codes use Delauney�s 

marching front method to produce a smooth, nearly isotropic mesh distribution.  Surface can 

be used to produce 2D meshes or the boundaries for 3D meshes.  The boundary mesh can be 

view and evaluated before Volume is used to fill in the internal mesh.  The spacing through-

out the domain is specified using the background mesh spacing and three types of source 

distributions.  The background mesh is used by Remesh3D in its mesh refinement.  Switch-

ing to a very new process could also keep future users from utilizing Remesh3D, although 

generating a mesh with Remesh3D is often much easier than producing the original mesh.  

(This is most likely due to the eradication of bugs during the creation of the original mesh.) 

The new meshing software should use a robust and repeatable method, like Delauney�s 

marching front method, to generate isotropic meshes within the domain.  Anisotropic, or 

stretched, meshes are also nice for efficiency when dealing with shocks and boundary layers.  

The new software should incorporate different methods of refining the mesh that can utilize 

the meshing practices outlined earlier in this chapter:  Surface curvature, refinement along 

shocks and expansions, and viscous wall-normal spacing.   The later requires the presence of 



544 

rectangular elements along boundaries and prismatic elements normal to 3D walls.  Triangle 

and tetrahedral elements are the only options available in Euler2D/3D, NS2D/3D, or CFDsol.  

Rectangles can be split into triangles, and prisms can be split into tetrahedra to convert effi-

cient meshes into their least complicated denominator.  Later, the 2D codes can be amended 

to include quadrilateral elements, and the prisms can be added to the 3D codes by adding a 

shape function to interpolate between two linear triangles.   

Ideally, the new meshing software should be robust and efficient, open source and free, and 

include separate surface and volume meshing into a single GUI.  The surface meshing 

routine could be used to produce 2D meshes, while the combination could be used to produce 

3D domains.  Ideally, the source, background, and surface definitions used in the case.bac 

and case.sur could be extended into the new input files so that the new and old software are 

interchangeable.  This would also allow the user to use Remesh3D to refine meshes. 

Improved Wall Elements.  After near-wall meshing has been introduced into the mesh, the 

next logical step is to utilize those elements instead of breaking the elements down into 

triangle and tetrahedra.  The 2D domain would utilize quadrilateral elements to represent the 

boundary layer mesh, and the 3D domain would apply a shape function normal to a linear 

triangle element to create prisms.  (Pyramids would also be needed in 3D to connect the quad 

faces of prisms together with tetrahedra.)  Since the elements are new, different wall normal 

distributions should be tested for efficiency and stability.  Some of the lessons learned by 

O�Neill (2011) should be applied during this process.  Higher order distributions (second or 

third order) could be used normal to the wall minimizing the number of elements required to 

model the boundary layer.  A quadrilateral element can be constructed with a linear 



545 

streamwise and higher order normal distribution.  The higher order distribution (0 < η < 1) 

can be used to interpolate the coefficient used by the linear shape functions (0 < ξ < 1): 

( ) ( ) 4561231, pp ξξξη +−=Φ (8.2)

( )( ) ( ) ( )1214112 321123 −+−+−−= ηηηηηη pppp (8.3)

( )( ) ( ) ( )1214112 654456 −+−+−−= ηηηηηη pppp (8.4)

Similarly, the prism elements can be created by distributing the element along the surface of 

the wall using the linear element.  The higher order function is used to extrude the triangle 

away from the wall.  Using the same conventions, the prism element is created using Eqs. 8.3 

and 8.4 for two vertices of the triangle: 

( ) ( ) 789214562123121 1,, ppp ξξξξξξη −−++=Φ (8.5)

( )( ) ( ) ( )1214112 987789 −+−+−−= ηηηηηη pppp (8.6)

Parallel Processing.  The OSU codes and CFDsol have been setup to accommodate a future 

switch from single core to parallel processing.  The mathematics can be broken apart into 

loops over the domain elements, boundary elements, and segments.  Parallel processing can 

be created in two ways:  Multiple platforms across network, or multiple cores on a platform.  

The later can be accomplished using OpenMP with minor adjustments to the source code.  

Each loop that will be parallel processed using OpenMP is bounded by �$OMP �� and 

�$OMP END ��.  The OpenMP statements contain the loop construct, variables to be 

shared across all threads, variables to be isolated between threads, and variables to be 

assembled commonly between the threads.  All variables used in the loop must be subdivided 

properly into these three groups so that steady and time-accurate solutions are possible.  If 



546 

the variables are over written by one core before being used by another, or if residual contri-

butions depend on the order of assembly, then the accuracy of solutions is no longer ensured.   

Several of the cases from this body of work should be used to represent subsonic, transonic, 

supersonic, and time accurate solutions for the inviscid and viscous solvers.  OpenMP can be 

applied to Euler2D and checked versus the single core solution.  If OpenMP is applied cor-

rectly, the solutions should be exactly the same.  The OpenMP statements can be expanded to 

include viscous variables and transferred to NS2D, then all OpenMP statements can be ex-

panded to include the third dimension (z, w, etc.) and transferred to Euler3D and NS3D.  

Similar procedures could be performed in CFDsol.  Each solver should be checked against 

itself with and without OpenMP.   

Visualization.  Pinkerman (2010) extended the capabilities of the OSU codes for plotting 3D 

meshes and solutions.  Pinkerman added four new plotting variables to Glplot3D and created 

a new visualization suite that utilizes the netCDF file formats.  Additional variables need to 

be added to both codes for plotting turbulent properties.  This will greatly enhance turbulent 

debugging and support later use of the turbulence models.  Pinkerman�s new implementation 

has the capability to model streamlines, streamtubes, and crinkle plots.  These feature and 

other enhanced visualization needs to be implemented in a manner that can applied to any 

geometry (case.nc3d) or solution files (single case.unk or multiple case.un#).   

Inertial and Non-Inertial Turbulence Modeling.  The SA model has been verified in the 

inertial frame using Rumsey�s flat plate case.  This process should be repeated for the SST 

model.  More complex inertial cases should be modeled using the SA and SST models.  Then 

both turbulence models should be tested in the non-inertial frame.  Schiestel and Elena 



547 

(1997) present a simple cavity with rotating walls to test turbulence in rotating conditions.  

One wall can be modeled using rotation in the non-inertial frame, and the opposing wall and 

boundary can be modeled as �stationary� using the velocity transpiration condition. 

Verify Heat Transfer Model.  The temperature boundary conditions and heat conduction 

terms need to be verified using simple conduction cases.  Simple analytical solutions for 

planar walls can be found in Incropera and DeWitt (2002).  The three boundary conditions 

(known temperature, known heat flux, and adiabatic wall) can be applied in different com-

binations and combined with the heat generation (quasi-combustion) terms to verify the heat 

transfer model in the presence of no fluid flow.  The model can then be tested for external 

forced convection over a flat plate.  This will fully verify the heat transfer model. 

Improved Artificial Dissipation.  A better artificial dissipation model needs to be found.  The 

current dissipation model in the OSU codes is sufficient for invisicid solutions but overly 

diffuse in the near-wall region.  The result is a stable solution with a thickened boundary 

layer and reduced skin friction.  Neither of these influences is acceptable.  A zero dissipation 

length has been applied to NS2D/3D to keep the current model until a new model is found.  

CFDsol applies a shock-capturing model that is overly diffuse everywhere within the flow, 

and the zero dissipation length cannot be applied to CFDsol because artificial dissipation is 

required to stabilize the solution, even in the near-wall region.   

Both artificial dissipation models are ad hoc attempts at creating positive entropy growth 

everywhere in the solution.  A more appropriate model would incorporate the Second Law of 

Thermodynamics to ensure a positive entropy growth, using entropy.  Guermond (2011) 

develops an entropy-base artificial viscosity model for general conservation laws.  Olson 



548 

(2012) uses the bulk viscosity to increase the second coefficient of viscosity in a direction 

fashion.  Olson is able to accurately capture oblique shocks without causing excess dissipa-

tion within the boundary layer.  Appendix I combines the concepts seen in Guermond and 

Olson into an efficient artificial dissipation scheme, where entropy production is assembled 

as a combination of the Navier-Stokes equations and artificial dissipation is added to cancel 

any entropy destruction calculated.  After this or similar dissipation model has been 

implemented in the solvers, Brown�s (2009) tests should be repeated to evaluate the effects 

of the new model on solution convergence. 

Expand Turbulence Modeling Pallet.  The turbulence modeling pallet should be enlarged to 

include Wilcox�s k-w model (Wilcox, 1998 and 2002) and several k-e models (Jones and 

Launder, 1972 and 1973; Yakhot and Orszag, 1986 and 1992; Zhang and Orszag, 1998; Shih, 

et al., 1994 and 1995; KY-Chien, 1982).  For improved time accuracy, DDES models are 

suggested (Mocket, 2009; Spalart, 2009).  DDES often builds off of existing RANS models 

near the wall, such as SA or SST.  DDES uses LES in the external flow, which requires a 

small change to the existing RANS model and an additional interpolation function. 

Coupling between Structural, Rigid Body, and Propulsion.  The current implementation of 

the structural (model elastic), rigid body, and propulsion models are isolated from each 

other, except through the fluid flow.  The structure should feel the influence of inertial 

motion and propulsion system.  For instance, the thrust created by turbojets and rockets 

should create bending and torsional deformations in the structure, and the vertical oscilla-

tions of the vehicle, say short period oscillations, should induce bending deformations.  The 

structural connections can be created in the modal elastics by summing the engine and 

rocket momentum into the generalized forces (get_force) and creating mass matrices to 



549 

couple the elastic and rigid body dynamic systems.  The introduction of mass matrices also 

couples the inertia of the structural deformations back into the rigid body dynamics.  The 

forces and moments created by the propulsion models already feed into the rigid body.   

The propulsion boundaries need to feel the structural deflections and velocities and rigid 

body motion.  The mesh velocity has already been used to correct the propulsion boundaries 

on a per-element basis.  The overall properties and fluxes are calculated with taking the 

relative motion of the vehicle into account.  The mesh velocity and kinetic energy should be 

taken into account on average, integrating the overall property exchange over the entire 

boundary.  This includes applying the average kinetic energy due to mesh velocity in the 

flux to properties conversion flux_props.  Finally, the deformations and velocities induced 

by structural motion can be applied along the propulsion boundaries similar to the adaptions 

to the flow tangency equation.  The mode shapes can be interpolated across the propulsion 

boundary to determine deformations at all nodes on the boundary.  The normal velocity at 

the boundary can be corrected similar to flow tangency, and the boundary normals can be 

rotated locally and applied without actually deforming the boundary surface.   

More Sophisticated Modeling.  Improvements were discussed along with the assessment of 

the readiness of a MDA integration.  The lower order MDA environment can be created after 

the following upgrades have been completed: 

• Elastic boundaries need to be incorporated into the viscous solvers by moving the 

boundaries and deforming / remeshing the internal mesh.   

• The structural and thermal were interconnected during the NASA contract, but the 

connections need to be made to complete the loop with the CFD solvers.  The temper-



550 

ature distribution is readily available between iterations in the safe mode restart case.rst 

file, and the modal displacement can be returned through the case.vec file for now.   

• Turbojet boundaries still need to be implemented in CFDsol. 

• A subroutine needs to be set aside in CFDsol to hard-code controls routines directly into 

the CFD solution.   

The first bullet being the largest hurdle.   

The higher order MDA environment will require much more work.  The following requirements 

need to be met before assembling the higher order environment: 

• The CFD temperatures (case.rst) were passed to the thermal FEA in the lower order 

model, but the FEA needs to return boundary heat fluxes to the CFD solver (case.tbc).   

• A module needs to be implemented in the CFD solvers or externally to calculate the 

surface traction (viscous stresses and pressure) to pass to the structural FEA.  The 

case.vec can still be used to pass back structural deformation as a single mode. 

• The higher order turbojet can be created by passing properties for entire boundary 

between the CFD solvers used in this work and external CFD models.  The inflow plane 

can be modeled by passing the flux and properties on the central CFD solution to the 

external module, which returns the pressure distribution across the inflow plane.  For the 

exhaust plane, the central CFD gets fluxes and properties from the external solver and 

passes back the pressure along its boundary.  If the external routine only passes fluxes, 

flux_props can be used to calculate the properties to construct the Riemann matrix.   

• Higher order scramjet and rocket exhaust models can be integrated together using the 

above turbojet model as a guide.   



551 

• Hypersonic accuracy can be increased by adding variable specific heats, pressure dilation 

(turbulence), and real gas equations.  Specific heats can be calculated on regions that 

advect downstream from boundaries, each corresponding to different temperature tables.   

Improved Gradients.  Only piece-wise constant gradients were tested in this work.  Other 

gradients are also available but their accuracy needs to be tested.  O�Neill (2011) suggests 

using a hybrid element approach to calculate a piece-wise linear gradient distribution.  

O�Neill uses a �plate stiffness� term to remove oscillations created by the near singular 

nature of the system.  Edge-based gradients are used in smooth1 and smooth2.  These 

gradients are constructed using the weighting function for each segment.  The weighted 

segments are constructed from the element inverse Jacobians and boundary normals in a 

similar manner to the hybrid method, so edge-based gradients may suffer from similar 

oscillations near the boundaries.   

Many of the other methods require additional storage to pre-calculate, store, and track the 

gradients throughout the solution.  Such storage would reduce the overall run time (eliminate 

repetitive calculation of stresses and heat flux) at the cost of additional memory requirement.  

If something is stored, this author suggests stored the strain tensor and divergence of velocity 

to reassemble into viscous stresses, while the entire heat flux and turbulent kinetic energy 

terms are stored in their final form.  The strain tensor could then be used to assemble the 

curvature correction term in the Spalart-Shur correction in the turbulence models.  The curva-

ture term is currently neglected because the unsteady term is expensive and the derivative of 

piece-wise constant strain is zero on the current implementation.  Storing the strain tensor 

(like the unknowns) would allow for its gradient to be calculated on each element and the 

unsteady terms to be quickly assembled.   



552 

REFERENCES 

Abbott, I.H.; A.E. von Doenhoff.  Theory of Wing Sections.  Dover Publications.  New York.  
1959. 

AGARD.  �Validation of Computational Fluid Dynamics.�  Lisbon, Portugal, May 2-5, 1988.  
NATO Advisory Group for Aeronautical Research and Development.  AGARD-CP-

437.  Vol. I.  December 1988. 

Allen, D.H.; W.E. Heisler.  Introduction to Aerospace Structural Analysis.  John Wiley and 
Sons, Inc.  1985. 

Anderson, J.D.  Fundamentals of Aerodynamics.  3rd Ed.  McGraw-Hill.  Boston.  2001. 

Arena, A.S.  Unpublished Email Transmission.  Smith-Hess Panel Code.  March 2012. 

Arminjon, P.; A. Madrane. �Staggered Mixed Finite Volume/Finite Element Method for the 
Navier-Stokes Equations.� AIAA Journal. Vol. 37. No. 12. Dec 1999. pp. 1558-1571. 

Babcock, D.; A.S. Arena. �Estimating Aircraft Stability Derivatives Through Finite Element 
Analysis.� AIAA Paper 2004-5174. AIAA Atmospheric Flight Mechanics Conference 
and Exhibit, Providence, RI. 2004. 

Baker, A.J. Finite Element Computational Fluid Mechanics. Hemisphere Publishing 
Company. New York. 1983. 

Baldwin, B.S.; T.J. Barth.  �A One-Equation Turbulence Transport Model for High Reynolds 
Number Wall-Bounded Flows.�  NASA-TM-102847.  1990. 

Barche, J.  (Chair)  �Experimental Data Base for Computer Program Assessment.�  AGARD-

AR-138.  Report of the Fluid Dynamics Panel, Work Group 04.  Specialized Printing 
Services Limited.  Loughton, Essex.  May 1979. 

Barsoum, M.E.; A.N. Alexandrou. �Stable Finite Element Solutions for Fully Viscous 
Compressible Flows.� Finite Elements in Analysis and Design. Vol. 19. 1995.  pp. 
69-87. 



553 

Bathie, W.W.  Fundamentals of Gas Turbines.  2nd Ed.  John Wiley and Sons, Inc.  New 
York.  1996.   

Baumann, C.E.; J.T. Oden.  �A Discontinuous hp-Finite Element Method for the Euler and 
Navier-Stokes Equations.�  International Journal for Numerical Methods in Fluids.  
Vol. 31.  1999.  pp. 79-95. 

Bercovier, M.; M. Engelman.  �A Finite Element for the Numerical Solution of Viscous 
Incompressible Flows.�  Journal of Computational Physics.  Vol. 30.  1979.  pp. 181-
201. 

Bers, L.  �On the Circulatory Subsonic Flow of a Compressible Fluid Past a Circular 
Cylinder.�  NACA TN 970.  1945. 

Bertin, J.J.; R.M. Cummings.  �Critical Hypersonic Aerothermodynamic Phenomena.�  
Annual Review of Fluid Mechanics.  Vol. 38.  2006.  pp. 129-157. 

Bertin, J.J.; M.L. Smith.  Aerodynamics for Engineers.  3rd Ed.  Prentice-Hall.  Upper Saddle 
River, NJ.  1998. 

Bonhaus, D.L.  �A Higher Order Accurate Finite Element Method for Viscous Compressible 
Flow.�  Ph.D. Dissertation.  Virginia Polytechnic Institute and State University.  Nov. 
1998. 

Bristeau, M.O.; R. Glowinski; L. Dutto; J. Periaux; G. Roge. �Compressible Viscous Flow 
Calculations Using Compatible Finite Element Approximations.�  International 

Journal for Numerical Methods in Fluids. Vol. 11. 1990. pp. 719-749.  

Brenner, S.C.; L.R. Scott.  The Mathematical Theory of Finite Element Methods.  2nd Ed.  
Springer-Verlag.  New York.  2002. 

Brooks, A.N.; T.J.R. Hughes.  �Streamline Upwind/Petrov-Galerkin Formulations for 
Convection Dominated Flows with Particular Emphasis on the Incompressible 
Navier-Stokes Equations.�  Computer Methods in Applied Mechanics and 

Engineering.  Vol. 32.  1982.  pp. 199-259. 

Brown, C.W.  �Evaluating Integration Methods and Examining Sensitivity to Temporal and 
Spatial Variations in Euler2D.�  Masters� Creative Component.  Oklahoma State 
University.  2009. 

Burbeau, A.; P. Sagaut.  �Simulation of a Viscous Compressible Flow Past a Circular 
Cylinder with High-Order Discontinuous Galerkin Methods.�  Computers & Fluids.  
Vol. 31.  2002.  pp. 867-889. 



554 

Burnsnall, W.J.; L.K. Loftin.  �Experimental Investigation of the Pressure Distribution about 
a Yawed Circular Cylinder in the Critical Reynolds Number Range.�  NACA TN 

2463.  1951. 

Burnett, D.S. Finite Element Analysis: From Concepts to Applications. Addison-Wesley 
Publishing Company. Reading, Massachusetts. 1987. 

Catris, S.; B. Aupoix.  �Density Corrections for Turbulence Models.�  Aerospace Science 

and Technology.  Vol. 4.  2000.  pp. 1-11. 

Cebeci, T.; J.P. Shao; F. Kafyeke; E. Laurendeau.  Computational Fluid Dynamics for 

Engineers.  Horizons Publishing, Inc.  Long Beach, CA.  2005. 

Cheng, H.K.  �Perspectives on Hypersonic Viscous Flow Research.�  Annual Review of Fluid 

Mechanics.  Vol. 25.  1993.  pp. 445-84. 

Cheng, L.; R.D. White; K. Grosh.  �Three-Dimensional Viscous Finite Element Formulation 
for Acoustic Fluid-Structure Interaction.�  Computer Methods in Applied Mechanics 

and Engineering.  Vol. 197.  2008.  pp. 4160-4172. 

Chien, K.Y.  �Predictions of Channel and Boundary Layer Flows with a Low-Reynolds-
Number Turbulence Models.�  AIAA Journal.  Vol. 20.  No. 1.  1982.  pp. 33-38. 

Cowan, T.  �Finite Element CFD Analysis of Super-Maneuvering and Spinning Structures.�  
Ph.D. Dissertation.  Oklahoma State University.  2003. 

Cowan, T.J.; C.R. O�Neill; A.S. Arena.  �Transpiration Boundary Condition for 
Computational Fluid Dynamics Solutions in a Non-Inertial Reference Frame.�  
Journal of Aircraft.  Vol. 41, No. 5.  Sept 2004.  pp. 1252-1255. 

Curran, E.T.; W.H. Heiser; D.T. Pratt.  �Fluid Phenomena in Scramjet Combustion 
Systems.�  Annual Review of Fluid Mechanics.  Vol. 28.  1996.  pp. 323-60. 

Dacles-Mariani, J.; G.G. Zilliac; J.S. Chow; P. Bradshaw.  �Numerical/Experimental Study 
of a Wingtip Vortex in the Near Field.�  AIAA Journal.  Vol. 33.  No. 9.  1995.  pp. 
1561-1568. 

de Sampaio, P.A.B.  �A Finite Element Formulation for Transient Incompressible Viscous 
Flows Stabilized by Local Time-Steps.�  Computer Methods in Applied Mechanics 

and Engineeering.  Vol. 194.  2005.  pp. 2095-2108. 

Deck, S.; P. Duveau; P. d�Espiney; P. Guillen, �Development and Application of Spalart-
Allmaras One Equation Turbulence Model to Three-Dimensional Supersonic 
Complex Configurations,� Aerospace Science and Technology.  Vol. 6.  2002.  pp. 
171-183. 



555 

Dolejsi, V.  �On the Discontinuous Galerkin Method for the Numerical Solution of the 
Navier-Stokes Equations.�  International Journal for Numerical Methods in Fluids.  
Vol. 45.  2004.  pp. 1083-1106. 

Drela, M.  �XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils.�  
Low Reynolds Number Airfoils.  Lectures Notes in Engineering.  Vol. 54.  Springer-
Verlag.  1989. 

Drela, M.  XFOIL:  Subsonic Airfoil Development System.  
http://web.mit.edu/drela/Public/web/xfoil/.  April 7, 2008. 

Dubois, F.; G. Mehlamn.  �Nonparameterized �Entropy Fix� for Roes Method.�  AIAA 

Journal.  Vol 31.  No. 1.  1993.  p.199-200. 

Elmiligui, A.; K.S. Abdol-Hamid; S.J. Massey; S.P. Pao.  �Numerical Study of Flow Past a 
Circular Cylinder using RANS, Hybrid RANS/LES, and PANS Formulations.�  AIAA 

Paper 2004-4959.  2004. 

Emmons, H. W.  Fundamentals of Gas Dynamics.  Princeton University Press. 1958. 

Fan, S.; B. Lakshminarayana; M. Barnett.  �A Low Reynolds Number k-ε Model for 
Unsteady Turbulent Boundary Layer Flows.�  AIAA Journal.  Vol. 31.  No. 10.  1993.  
pp. 1777-1784. 

Farokhi, S.  Aircraft Propulsion.  John Wiley & Sons, Inc.  New Jersey. 2009. 

Fernandez, G.; M. Hafez. �Finite Element Solution of Compressible Navier-Stokes 
Equations.� Advances in Finite Element Analysis in Fluid Dynamics.  FED-Vol. 123. 
ASME. 1991. 

Ferri, A.; A. Libby; V. Zakkay.  �Theoretical and Experimental Investigation of Supersonic 
Combustors.�  High Temperatures in Aeronautics.  Editor: C. Ferrari.  Pergamon 
Press, Oxford.  1964. 

Fisher, C.C.; A. S. Arena.  "On The Transpiration Method for Efficient Aeroelastic Analysis 
Using an Euler Solver." AIAA Paper 96-3436.  AIAA Atmospheric Flight Mechanics 
Conference, San Diego, CA.  July 1996. 

Fluent 6.3 User Guide.  �Chapter 12:  Modeling Turbulence.�  Fluent, Inc.  2006. 

Gai, S.L.; The, S.L.  �Interaction Between a Conical Shock Wave and a Plane Turbulent 
Boundary Layer.�  AIAA Journal.  Vol. 38, No. 5.  2000.  pp. 804-811. 

Givoli, D.  �Non-Reflecting Boundary Conditions.�  Review Article.  Journal of 

Computational Physics.  Vol. 94.  1991.  pp. 1-29. 



556 

Godon, P.; S. Giora.  �A Two-Dimensional Time Dependent Chebyshev Method of 
Collocation for the Study of Astrophysical Flows.�  Computer Methods in Applied 

Mechanics and Engineering.  Vol. 110.  1993.  pp. 171-194. 

Gorski, J.J.  �Application of the David Taylor Navier-Stokes (DTNS) Code in Non-Inertial 
Reference Frames.�  CDNSWC-SHD-1362-01.  1992. 

Gowan, F.E.; E.W. Perkins.  �Drag of Circular Cylinders for a Wide Range of Reynolds 
Numbers and Mach Numbers.�  NACA TN 2960.  1953. 

Guermond, J.; R. Pasquetti; B. Popov.  �Entropy Viscosity Method for Nonlinear 
Conservation Laws.�  Journal of Computational Physics.  Vol. 230.  No. 11.  May 
2011.  pp. 4248-4267. 

Gulcat, U.; A.R. Aslan. �Accurate 3D Viscous Incompressible Flow Calculations with the 
FEM.� International Journal for Numerical Methods in Fluids. Vol. 25. 1997. pp. 
985-1001. 

Gupta, K.K.; C. Bach.  �Computational Fluid Dynamics-Based Aeroservoelastic Analysis 
with Hyper-X Applications.�  AIAA Journal.  Vol. 45.  No. 7.  2007.  pp. 1459-1471. 

Hassett, A.  Thesis.  Oklahoma State University.  Not yet published. 

Heinrich, J.C.; R.S. Marshall.  �Viscous Incompressible Flow by a Penalty Function Finite 
Element Method.�  Computers and Fluids.  Vol. 9.  1981.  pp. 73-83. 

Hellsten, A.  �Some Improvements in Menter�s k-w SST Turbulence Model.�  AIAA-98-

2554.  29th AIAA Fluid Dynamics Conference, Albuquerque, NM.  June 1997 

Hoffman, G.H.  �Improved Form of the Low Reynolds Number k-ε Turbulence Model.�  
Physics of Fluids.  Vol. 18.  1975.  pp. 309-312. 

Incropera, F.P.; D.P. DeWitt.  Introduction to Heat Transfer.  4th Ed.  John Wiley and Sons.  
New York.  2002. 

Ivings, M.J.; D.M. Causon; E.F. Toro.  �On Riemann Solvers for Compressible Liquids.�  
International Journal for Numerical Methods in Fluids.  Vol. 28.  1998.  pp. 395-418. 

Jakobsen, L.A.; H. Moller; E. Lund.  �Sensitivity Analysis of Convection Dominated Steady 
2D Fluid Flow Using SUPG FEM.�  AIAA-2000-4822.  8th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and 
Optimization.  Long Beach, Ca.  2000. 

Jiang, B.-N.; L.A. Povinelli. �Least-Squares Finite Element Method for Fluid Dynamics.� 
Computer Methods in Applied Mechanics and Engineering.  Vol. 81.  1990.  pp. 13-
37. 



557 

Jinyun, Yu.  �Symmetric Gaussian Quadrature Formulae for Tetrahedronal Regions.�  
Computer Methods in Applied Mechanics and Engineering.  Vol. 43.  1984.  pp. 349-
353. 

John, J.E.A.  Gas Dynamics.  2nd Ed.  Prentice Hall.  Englewood Cliffs, New Jersey.  1984. 

Johnson, D.A.; L.S. King.  �A Mathematically Simple Turbulence Closure Model for 
Attached and Separated Turbulent Boundary Layers.�  AIAA Journal.  Vol 23.  1985.  
pp. 1684-1692. 

Jones, G.W.; J.J. Cincotta; R.W. Walker.  �Aerodynamic Forces on a Stationary and 
Oscillating Circular Cylinder at High Reynolds Numbers.�  NASA TR R-300.  1969. 

Jones, R.T.  �The Unsteady Lift of a Wing of Finite Aspect Ratio.�  NACA Report 681.  
1940. 

Jones, W.P.; B.E. Launder.  "The Prediction of Laminarization with a Two-Equation Model 
of Turbulence."  International Journal of Heat and Mass Transfer.  Vol. 15.  1972.  
pp. 301-314. 

Jones, W.P.; Launder, B.E.  �The Calculation of Low-Reynolds-Number Phenomena with a 
Two-Equation Model of Turbulence.�  International Journal of Heat and Mass 

Transfer.  Vol. 16.  1973.  pp. 1119-1130. 

Kallinderis, Y.; K. Nakajima. �Finite Element Method for Incompressible Viscous Flows 
with Adaptive Hybrid Grids.�  AIAA Journal.  Vol. 32.  No. 8.  1994.  pp.1617-1625. 

Kashiyama, K.; T. Tamai; W. Inomata; S. Yamaguchi.  �A Parallel Finite Element Method 
for Incompressible Navier-Stokes Flow Based on Unstructured Grids.�  Computer 

Methods in Applied Mechanics and Engineering.  Vol. 190.  2000.  pp. 333-344. 

Katz, J.; A. Plotkin.  Low-Speed Aerodynamics:  From Wing Theory to Panel Methods.  
McGraw-Hill.  New York.  2001. 

Kays, W.; M. Crawford; B. Weigand.  Convective Heat and Mass Transfer.  4th Ed.  
McGraw-Hill.  Boston.  2005. 

Kim, S.D.; D.J. Song.  �Modified Shear-Stress Transport Turbulence Model for Supersonic 
Flows.�  Journal of Aircraft.  Vol. 42, No. 5.  Sept-Oct 2005.  pp. 1118-1125. 

Kinsler, L.E.; A.R. Frey; A.B. Coppens; J.V. Sanders.  Fundamentals of Acoustics.  4th Ed.  
John Wiley & Sons, Inc.  New York.  2000. 

Kok, J.C.  �Resolving the Dependence on Freestream Values for the k-ω Turbulence Model.�  
NLR-TP-99295.  1999. 



558 

Krishnamurthy, V.S.; W. Shyy.  �Study of Compressibility Modifications to the k-ε
Turbulence Model.�  Physics of Fluids.  Vol 9.  No. 9.  1997.  pp. 2769-2788. 

Kuhn, G.D.  �Calculation of Compressible Nonadiabatic Boundary Layers in Laminar, 
Transitional, and Turbulent Flow by the Method of Integral Relations.�  NASA CR 

1797.  1971. 

Lam, C.K.G.; K. Bremhorst.  �Modified Form of k-ε Model for Predicting Wall Turbulence.�  
Journal of Fluids Engineering.  Vol. 103.  1981.  pp. 456-460. 

Launder, B.E.; G.J. Reece; W. Rodi.  �Progress in the Development of a Reynolds-Stress 
Turbulence Closure.� Journal of Fluid Mechanics.  Vol. 68.  Pt. 3.  1975.  pp. 527-
566. 

Launder, B.E.; B.I. Sharma.  "Application of the Energy Dissipation Model of Turbulence to 
the Calculation of Flow near a Spinning Disc."  Letters in Heat and Mass Transfer.  
Vol. 1.  No. 2.  1974.  pp. 131-138. 

Lee, B.H.K.  �Oscillatory Shock Motion Caused by Transonic Shock Boundary-Layer 
Interaction.�  AIAA Journal.  Vol. 28.  No. 5.  1990.  pp. 942-944. 

LeVeque, R.J.  Numerical Methods for Conservation Laws.  2nd Ed.  Birkhauser Verlag, 
Basel, Germany.  1992. 

Li, B.Q.  Discontinuous Finite Element Fluid Dynamics and Heat Transfer.  Springer.  
London.  2006. 

Lorin, E.; A.B.H. Ali; A. Soulaimani.  �A Positivity Preserving Finite Element � Finite 
Volume Solver for the Spalart-Allmaras Turbulence Model.�  Computational 

Methods in Applied Mechanical Engineering.  Vol. 196.  2007.  pp. 2097-2116. 

Luo, H.; J.D. Baum; R. Lohner. �A Fast, Matrix-free Implicit Method for Compressible 
Flows on Unstructured Grids.�  Journal of Computational Physics.  Vol. 146.  1998.  
pp. 664-690. 

Mani, M.; J.A. Ladd; W. Bower.  �Rotation and Curvature Correction Assessment for One- 
and Two-Equation Turbulence Models.�  Journal of Aircraft.  Vol. 41, No. 2.  March-
April 2004.  pp. 268-273. 

Marcum, D.L.; R.K. Agarwal. �Finite Element Navier-Stokes Solver for Unstructured 
Grids.� AIAA Journal.  Vol. 30.  No. 3.  1992.  pp. 648-654. 

Massarotti, N.; P. Nithiarasu; O.C. Zienkiewicz.  �Characteristic-Based-Split (CBS) 
Algorithm for Incompressible Flow Problems with Heat Transfer.�  International 



559 

Journal of Numerical Methods for Heat & Fluid Flow.  Vol. 8.  No. 8.  1998.  pp. 
969-990. 

Masud, A.; T.J.R. Hughes. �A Space-Time Galerkin Least-Squares Finite Element 
Formulation of the Navier-Stokes Equations for Moving Domain Problems.�  
Computational Methods in Applied Mechanics and Engineering.  Vol. 146. 1997.  pp. 
91-126. 

Mattingly, J.D.  Elements of Gas Turbine Propulsion.  McGraw-Hill, Inc.  New York.  1996. 

McCormick, B.W.  Aerodynamics, Aeronautics, and Flight Mechanics.  John Wiley & Sons.  
New York.  1994. 

Menter, F.R.  �Improved Two-Equation k-ω Turbulence Models for Aerodynamics Flows.�  
NASA-TM-103975.  1992. 

Menter, F.R.  �Influence of Freestream Values on k-ω Turbulence Model Predictions.�  AIAA 

Journal.  Vol 30.  No. 6.  1992.  pp. 1657-1659. 

Menter, F.R.  �Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows.�  AIAA 

Paper 93-2906.  July 1993. 

Menter, F.R.  �Two-Equation Eddy-Viscosity Turbulence Models for Engineering 
Applications.�  AIAA Journal.  Vol. 32.  No. 8.  1994.  pp. 1598-1605. 

Menter, F.R.; M. Kuntz; R. Langtry.  �Ten Years of Industrial Experience with the SST 
Turbulence Model.�  Turbulence, Heat, and Mass Transfer.  Vol. 4.  2003.  pp. 625-
632. 

Mittal, S.  �Finite Element Computation of Unsteady Viscous Compressible Flows.�  
Computer Methods in Applied Mechanics and Engineering.  Vol. 157. 1996.  pp. 151-
175. 

Mocket, C.  A Comprehensive Study of Detached-Eddy Simulation.  Univerlagtuberlin.  2009.

Moffitt, N.J.  �First Stages of a Viscous Finite Element Solver for Non-Inertial and 
Aeroelastic Problems.�  Masters� Thesis.  Oklahoma State University.  2004. 

Mohr, G.A.  �Finite Element Analysis of Viscous Flows.�  Computational Techniques & 

Applications:  CTAC-83.  (J. Noye & C. Fletcher, Eds.)  Elsevier Science Publishers.  
North-Holland.  1984. 

Moran, M.J.; H.N. Shapiro.  Fundamentals of Engineering Thermodynamics.  4th Ed.  John 
Wiley and Sons, Inc.  New York.  2000. 



560 

Munson, B.R.; D.F. Young; T.H. Okiishi.  Fundamentals of Fluid Mechanics.  3rd Ed.  John 
Wiley & Sons, Inc.  New York.  1998. 

N�dri, D.; A. Garon; A. Fortin.  �Stable Space-Time Formulation for the Navier-Stokes 
Equations.� AIAA-2000-0394.  38th AIAA Aerospace Sciences Meeting and Exhibit.  
2000. 

Nelson, R.C.  Flight Stability and Automatic Control.  2nd Ed. McGraw-Hill Companies, Inc.  
Boston.  1998. 

Nesliturk, A.I.; S.H. Aydin; M. Tezer-Sezgin.  �Two-Level Finite Element Method with a 
Stabilizing Subgrid for the Incompressible Navier-Stokes Equations.�  International 

Journal for Numerical Methods in Fluids.  Vol. 58.  2008.  pp. 551-572. 

Nicoud, F.; F. Ducros.  "Subgrid-Scale Modeling Based on the Square of the Velocity 
Gradient Tensor."  Flow, Turbulence and Combustion.  Vol 62.  1999.  pp. 183-200. 

Nithiarasu, P.; O.C. Zienkiewicz; B.V.K. Satya Sai; K. Morgan; R. Codina; M. Vazquez.  
�Shock Capturing Viscosity for the General Fluid Mechanics Algorithm.�  
International Journal for Numerical Methods in Fluids.  Vol 28.  1998.  pp. 1325-
1353. 

Oliver, T.A.  �A High-Order, Adaptive Discontinuous Galerkin Finite Element Method for 
the Reynolds-Averaged Navier-Stokes Equations.�  Ph.D. Thesis.  Massachusetts 
Institute of Technology.  Sept. 2008.   

Olson, B.J.; S.K. Lele.  �Directional Artificial Bulk Viscosity for Shock Capturing on High 
Aspect Ratio Grids.�  Computational Science and Discovery.  Vol. 5.  July 2012. 

O'Neill, C.R.  "Higher Order and Dynamic CFD for Aeroelastic Simulations."  Dissertation.  
Oklahoma State University.  2011. 

O'Neill, C.R.; A.S. Arena.  "Comparison of Time Domain Training Signals for CFD Based 
Aerodynamic Identification."  AIAA Paper 04-0209.  AIAA 42th Aerospace Sciences 
Meeting and Exhibit.  Reno, NV.  January 2004. 

O'Neill, C.R.; A.S. Arena. "Aircraft Flight Dynamics with a Non-Inertial CFD Code." AIAA 

Paper 2005-0230. AIAA 43th Aerospace Sciences Meeting and Exhibit.  Reno, NV.  
January 2005. 

Ou, Y.-R.; J.A. Burns.  �Optimal Control of Lift/Drag Ratio on a Rotating Cylinder.�  NASA 

CR 187586 (or ICASE Report 91-49).  1991. 

Panaras, A.G.  �Shear-Layer-Edge Interaction:  Simulation by Finite-Area Vortices.�  AIAA 

Journal.  Vol. 28.  No. 8.  1990.  pp. 1557-1564. 



561 

Papadopoulos, P.; E. Venkatapathy; D. Prabhu; M.P. Loomis; D. Olynick.  �Current Grid-
Generation Strategies and Future Requirements in Hypersonic Vehicle Design, 
Analysis and Testing.�  Applied Mathematical Modeling.  Vol. 23.  1999.  pp. 705-
735. 

Peiro, J.; J. Peraire; K. Morgan.  FELISA System Reference Manual:  Basic Theory.  
December 3, 1993. 

Pier, B.  �Finite-Amplitude Crossflow Vortices, Secondary Instability and Transition in the 
Rotating-Disk Boundary Layer.�  Journal of Fluid Mechanics.  Vol. 287.  2003.  pp. 
315-343. 

Pinkerman, C.W.  �Advancement of Computational Fluid Dynamics Visualization for Finite 
Element Applications.�  Thesis.  Oklahoma State University.  2010. 

Pontaza, J.P.; J.N. Reddy.  �Least-Squares Finite Element Formulations for Viscous 
Incompressible and Compressible Fluid Flows.�  Computer Methods in Applied 

Mechanics and Engineering.  Vol. 195.  2006.  pp. 2454-2494.   

Pope, S.B.  Turbulent Flows.  Cambridge University Press.  2000. 

Reid, E.G.  �Tests on Rotating Cylinders.�  NACA TN 209.  1924. 

Roache, P.J.  Verification and Validation in Computational Science and Engineering.  
Hermosa Publishers, Albuquerque, New Mexico.  1998.   

Roache, P.J.  �Verification of Codes and Calculations.�  AIAA Journal.   Vol. 36, No. 5.  
May 1998.  pp. 696-702.

Rubesin, M.W.  �Extra Compressibility Terms for Favre-Averaged Two-Equation Models of 
Inhomogeneous Turbulent Flows.�  NASA-CR-177556.  1990. 

Rumsey, C.L.  �Compressibility Considerations for k-ω Turbulence Models in Hypersonic 
Boundary Layer Applications.�  NASA-TM-215705.  Apr 2009. 

Rumsey, C.  http://turbmodels.larc.nasa.gov  NASA Langley Research Center: Turbulence 
Modeling Resource.  January 2012. 

Rumsey, C.L.; T. Nishino.  �Numerical Study Comparing RANS and LES Approaches on a 
Circulation Control Airfoil.�  International Journal of Heat and Fluid Flow.  Vol. 32.  
2011.  pp.847-864. 

Sadeh, W.Z.; H.J. Brauer.  �A Visual Investigation of Turbulence in Stagnation Flow about a 
Circular Cylinder.�  NASA CR 3019.  1978. 



562 

Sarkar, S.; G. Erlebacher; M.Y. Hussaini; H.O. Kreiss.  �The Analysis and Modeling of 
Dialatational Terms in Compressible Turbulence.�  Journal of Fluid Mechanics.  Vol 
227.  1991.  p. 473. 

Sarkar, S.  �The Pressure Dilatation Correlation in Compressible Flows.�  Physics of Fluids 

A.  Vol. 4.  1992.  pp. 2674-2682.   

Schiestel, R.; L. Elena.  �Modeling of Anisotropic Turbulence in Rapid Rotation.�  
Aerospace Science and Technology.  No. 7.  1997.  pp. 441-451. 

Selig, M. UIUC Airfoil Data Site. http://www.aae.uiuc.edu/m-selig/ads.html. March 16, 
2004. 

Schlichting, H.  Boundary Layer Theory.  7th Ed.  McGraw-Hill.  New York.  1987. 

Shih, T.-H.; W.W. Liou; A. Shabbir; Z. Yang; J. Zhu.  �A New k-ε Eddy-Viscosity Model 
for High Reynolds Number Turbulent Flows: Model Development and Validation.�  
Computers & Fluids.  Vol. 24.  No. 3.  1995.  p. 227-238. 

Shih, T.-H.; J. Zhu; J.L. Lumley.  �A New Reynolds Stress Algebraic Equation Model.�  
NASA-TM-106644.  1994. 

Shur, M.L.; M.K. Strelets; A.K. Travin; P.R. Spalart.  �Turbulence Modeling in Rotating and 
Curved Channels: Assessing the Spalart-Shur Correction.�  AIAA Journal.  Vol. 38, 
No. 5.  2000.  pp. 784-792. 

Smagorinsky, J. "General Circulation Experiments with the Primitive Equations: I. The Basic 
Experiment.�  Monthly Weather Review.  Vol. 91.  1963.  pp. 99-164.   

Smirnov, P.E.; F.R. Menter.  �Sensitization of the SST Turbulence Model to Rotation and 
Curvature by Applying the Spalart-Shur Correction Term.�  Journal of Turbo-

machinery.  Vol. 131.  Oct 2009.  pp. 1-9. 

Soulaimani, A.; M. Fortin. �Finite Element Solution of Compressible Viscous Flows Using 
Conservative Variables.� Computer Methods in Applied Mechanics and Engineering.  
Vol. 118.  1994.  pp. 319-350. 

Spalart, P.R. �Detached-Eddy Simulation.�  Annual Review of Fluid Mechanics.  Vol. 41.  
2009.  pp. 181-202. 

Spalart, P.R.  �Trends in Turbulence Treatments.�  AIAA 2000-2306.  June 2000. 

Spalart, P.R.; S.R. Allmaras.  �A One-Equation Turbulence Model for Aerodynamic Flows.�  
AIAA Paper 92-0439.  30th AIAA Aerospace Sciences Meeting.  Reno, NV.  1992.



563 

Spalart, P.R.; C.L. Rumsey.  �Effective Inflow Conditions for Turbulence Models in 
Aerodynamic Calculations.�  AIAA Journal.  Vol. 45.  No. 10.  2007.  pp. 2544-2553. 

Spalart, P.R.; M. Shur.  �On the Sensitization of Turbulence Models to Rotation and 
Curvature.�  Aerospace Science and Technology.  No. 5.  1997.  pp. 297-302. 

Speziale, C.G.; S. Sarkar; T.B. Gatski.  "Modeling the Pressure-Strain Correlation of 
Turbulence: An Invariant Dynamical Systems Approach."  Journal of Fluid 

Mechanics.  Vol. 227.  1991.  pp. 245-272. 

Speziale, C.G.  �Turbulence Modeling in Non-Inertial Frames of Reference.�  Theoretical 

and Computational Fluid Dynamics.  Vol. 1.  1989.  pp. 3-19. 

Stephens, C.H.; A.S. Arena.  �Application of the Transpiration Method for Aeroservoelastic 
Prediction using CFD.�  AIAA Paper 98-2071.  39th AIAA/ ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference, Long Beach, CA.  April 
1998.   

Stewart, M.E.M.; A. Suresh; M.S. Liou; A.K. Owen; D.G. Messitt.  �Multidisciplinary 
Analysis of a Hypersonic Engine.�  NASA TM-2002-211971 or AIAA-2002-5127.  
2002. 

Sukraw, M.R.  �Validation of NS2D.�  Masters� Creative Component.  Oklahoma State 
University.  2008. 

Swanson, R.C.; C.L. Rumsey.  �Computation of Circulation Control Airfoil Flows.�  
Computers & Fluids.  Vol. 38.  2009.  pp. 1925-1942. 

Tanahashi, T.; H. Okanaga; T. Saito.  �GSMAC Finite Element Method for Unsteady 
Incompressible Navier-Stokes Equations at High Reynolds Numbers.�  International 

Journal of Numerical Methods in Fluids.  Vol. 11.  1990.  pp. 479-499. 

Tay, A.O.; G.D. Davis. �Application of the Finite Element Method to Convection Heat 
Transfer Between Parallel Planes.�  International Journal of Heat and Mass Transfer.  
Vo. 14.  1971.  pp. 1057-1069. 

Theodorsen, T.; A. Regier.  �Experiments on Drag of Revolving Disks, Cylinders, and 
Streamlined Rods at High Speeds.�  NACA Report 793.  1944. 

Thomasset, F.  Implementation of Finite Element Method for Navier-Stokes Equations.  
Springer-Verlag.  New York.  1981. 

Thomee, V.  Galerkin Finite Element Methods for Parabolic Problems.  Springer-Verlag.  
Berlin.  2006. 



564 

Toro, E.F.  Riemann Solvers and Numerical Methods for Fluid Dynamics:  A Practical 

Introduction.  Springer-Verlag, Berlin.  1997. 

Tworzydlo, W.W.; J.T. Oden; E.A. Thornton.  �Adaptive Implicit/Explicit Finite Element 
Method for Compressible Viscous Flow.�  Computer Methods in Applied Mechanics 

and Engineering.  Vol. 95.  1992.  pp. 397-440. 

Vanyo, J.P.  Rotating Fluids in Engineering and Science.  Butterworth-Heinemann.  Boston.  
1993. 

Wagner, H.  �Uber die Entstenhung des Dynamischen Auftriebes von Tragflugeln.�  ZAMM.  
Vol. 5.  1925.  pp. 17-35. 

Walters, B.  �2D and 3D CFD Cases:  A Test of 2D and 3D CFD Codes at Hypersonic Mach 
Numbers.�  Independent Study.  (A.S. Arena.)  Oklahoma State University.  Spring 
2009. 

Weick, F.E.  Aircraft Propeller Design.  McGraw-Hill Book Company, Inc.  New York.  
1930. 

White, F.M.  Viscous Fluid Flow.  2nd Ed.  McGraw-Hill.  Boston.  1991. 

Whiting, C.H.  �Stabilized Finite Element Methods for Fluid Dynamics using a Hierarchical 
Basis.�  Ph.D. Dissertation.  Rensselaer Polytechnic University.  Troy, New York. 
1999. 

Wieselsberger, C.  �New Data on the Laws of Fluid Resistance.�  NACA TN-84.  March 
1922.  (Republished from:  "Neuere Feststellungen Über die Gesetze des Flüssigkeits 
Luftwiderstands." Phys. Z.  Vol. 22.  1921.  pp. 321-328.) 

Wilcox, D.C.; M.W. Rubesin.  �Progress in Turbulence Modeling for Complex Flow Fields 
including Effects of Compressibility.�  NASA-TP-1517.  1980. 

Wilcox, D.C.  �Dilatation Dissipation Corrections for Advanced Turbulence Models.�  AIAA 

Journal.  Vol. 30.  No. 11.  1992.  pp. 2639-2646. 

Wilcox, D.C.  �Simulation of Transition with a Two Equation Turbulence Model.�  AIAA 

Journal.  Vol. 32.  No. 2.  1994.  pp. 247-255. 

Wilcox, D.C. �Reassessment of the Scale Determining Equation for Advanced Turbulence 
Models.�  AIAA Journal.  Vol. 26.  No. 11.  1988.  pp. 1299-1310. 

Wilcox, D.C.  Turbulence Modeling for CFD.  2nd Ed.  DCW Industries, Inc., 5354 Palm 
Drive, La Canada, CA.  2002. 



565 

Williamson, C.H.K.  �Vortex Dynamics in the Cylinder Wake.�  Annual Review of Fluid 

Dynamics.  Vol. 28.  1996.  pp. 477-539. 

Wood, B.; W. Loth; P. Geubelle; S. McIlwain. �A Numerical Methodology for an 
Aeroelastic SBLI Flow.� AIAA-2000-0552. 38th Aerospace Sciences Meeting and 
Exhibit. Reno, Nevada. 2000. 

Yakhot, V.; Orszag, S.A.  �Renormalization Group Analysis of Turbulence: 1. Basic 
Theory.�  Journal of Scientific Computing.  Vol. 1.  1986.  pp. 3-51. 

Yakhot, V.; S.A. Orszag; S. Thangam; T.B. Gatski; C.G. Speziale. "Development of 
Turbulence Models for Shear Flows by a Double Expansion Technique."  Physics of 

Fluids A.  Vol. 4.  No. 7.  1992.  pp. 1510-1520. 

Zhang, H.S.; R.M.C. So; C.G. Speziale; Y.G. Lai.  �Near Wall Two-Equation Model for 
Compressible Turbulent Flows.�  AIAA Journal.  Vol. 31.  1993.  pp. 196-199. 

Zhang, Y.; S.A. Orszag.  �Two-Equation RNG Transport Modeling of High Reynolds 
Number Pipe Flow.�  Journal of Scientific Computing.  Vol. 13.  No. 4.  1998.  pp. 
471-483. 

Zienkiewicz, O.C.; R.L. Taylor.  The Finite Element Method:  Volume 3, Fluid Dynamics.  
5th Ed.  Butterworth-Heinemann, Oxford.  2000.



566 

APPENDIX A 

STOKES� HYPOTHESIS 

The dissipation term in the energy equation represents the energy dissipated by viscous 

effects.  Since viscous effects cannot create energy, but instead can only dissipate energy, 

then the viscous dissipation term must be positive semi-definite.  This term is given by: 

( ) ( ) ( )[ ] ( )2222222 222 zyxyzxzyxzyx wvuwvwuuvwvu +++++++++++=Φ λµ

Stokes� hypothesis says that second viscosity can be represented as a direction function of 

kinetic viscosity: µλ
3
2−= .  Recent findings of Karim and Rosenhear

1
 include values of 

bulk viscosity greater than zero and some even greater than their corresponding kinetic 

viscosity.  These experiments are a matter of controversy themselves (Truesdell
2
), but they 

seem to suggest than Stokes hypothesis should be µλ
3
2−≥ .  This can be shown to satisfy 

Stokes hypothesis by proving that viscous dissipation is non-negative ( 0≥Φ ) when: 

0≥µ     and  023 ≥+ µλ

                                                 
1
 Karim, S. M., and L. Rosenhead (1952), �The Second Coefficient of Viscosity of Liquids and Gases,� Rev. 

Modern Phys., vol. 24, pp. 108-116. 
2
 Truesdell, C. (1954), �The Present Status of the Controversy Regarding the Bulk Viscosity of Liquids,� Proc. 

Roy. Soc. London Ser. A, vol. 226, pp. 1-69. 



567 

Note:  This investigation stems from a discussion by White
3
 on the topic and a rough proof on the web 

by Steve Baum
4
.  Further background should be sought on the dependency of bulk viscosity on 

the frequencies occurring in the flow.  Landau and Lifshitz
5
 also give a discussion of the 

subject of second viscosity.  

Investigation: 

( ) ( ) ( )( ) ( ) 0222
2222222 ≥+++++++++++=Φ zyxyzxzyxzyx wvuwvwuuvwvu λµ   

The fourth through sixth terms can be positive or negative (or zero for that matter).  But after 

squaring the terms, all three terms are assured to be non-negative, as long as the kinetic 

viscosity is positive.  This is a safe physical assumption to make.  Therefore, considering 

0≥µ , the previous viscous dissipation term reduces to:

[ ] ( ) 0222
2222 ≥+++++ zyxzyx wvuwvu λµ

or 

( ) ( ) ( ) 0222222 222 ≥++++++++ zyzxyxzyx wvwuvuwvu λλλλµλµλµ

This suggests the following as a general form: 

( )[ ] [ ] 0222 ≥+++++ zzyzyx CwwvBwvuA βα

The first two terms in brackets and the final term (without the square) can again take on any 

value: positive, negative, or zero.  But once the terms are squared, none of the three terms 

can be non-negative.  Therefore, this general form is ensured to be non-negative, for any 

                                                 
3
 White, F. M. (1991), Viscous Fluid Flow, McGraw-Hill, Boston, pp 67-68. 

4
 http://stommel.tamu.edu/~baum/reid/book1/book/node102.html#SECTION00630000000000000000 

5
 Landau, L. D., and E. M. Lifschitz (1959), Fluid Mechanics, Pergamon, London, sec. 78. 



568 

values of ux, vy, and wz when A, B, and C are all non-negative.  Expanding the general form to 

one similar to the modified viscous dissipation: 

02

222

222222

2222

≥+++++

++++

zzzyyz

zyyzxyxx

CwwBwvBBvwA

wvAvAwuAvuAAu

ββα

αααα

or 

( ) ( ) ( ) 02222 2222222 ≥+++++++++ zyzxyxzyx wvBAwuAvuAwCBAvBAAu βαααβαα

Associating the general terms with those specific to the modified viscous dissipation: 

λµ += 2A   λµα +=+ 22 BA   λµβα +=++ 222 CBA

λα 22 =A    λβα 222 2 =+ BA

Using these five equations to solve for the five coefficients:  

λµ += 2A   
λµ

λλ
α

+
==

2A

( )
λµ

λµµ
αλµ

+

+
=−+=

2

4
2 2AB   

( )λµ

λ
α

λ
β

+
=−=

2

2

B

A

B

( )
λµ

λµµ
βαλµ

+

+
=−−+=

32
2 22 BAC

In order for 0≥A , then 02 ≥+ λµ , which also makes the denominator of B non-negative.  

Therefore 0≥B , when 0≥+ λµ , which, in turn, makes the denominator of C non-negative.  

Therefore 0≥C , for 032 ≥+ λµ .  These three inequalities must all be true in order for the 

coefficients A, B, and C to be non-negative, and the viscous dissipation term ensured to be 



569 

non-negative.  (The other two coefficients are not important because they exist within the 

squared terms of the general form of the equation.  Being in the squared term, these two 

coefficients can take on any form and not affect the positive nature of the viscous dissipation 

term.)  Solving all three inequalities for bulk viscosity, in terms of kinetic viscosity, the 

following three inequalities emerge: 

µλ 2−≥   µλ −≥   µλ
3

2
−≥

The third inequality is the most restrictive.  Therefore, if the third condition is met, both of 

the remaining conditions will also be met:  Stokes� hypothesis.  Stokes chose the lower limit 

of the possible values for his bulk viscosity.  In conclusion, the viscous dissipation is positive 

semi-definite when kinetic viscosity is positive semi-definite and the second coefficient is 

greater than -
2
/3 times the first coefficient.  Mathematically, 

( ) ( ) ( )[ ] ( ) 0222
2222222 ≥+++++++++++=Φ zyxyzxzyxzyx wvuwvwuuvwvu λµ

if and only if  0≥µ      and  µλ
3

2
−≥



570 

APPENDIX B 

ANALYTICAL INTEGRALS 

Fourth order Gauss quadrature should provide a perfect solution of the flux integrals, since 

the flux integrals are at most fourth order polynomials of the shape function vectors (in the 

boundary integrals).  Instead of utilizing a fourth order Gauss quadrature, the FEM equations 

are evaluated here using exact, analytical integration methods
1
. 

For the triangle elements, the integral is written in terms of factorials of powers: 

( )
( )

( )!2

!!!
1

0

1

0

21321

2

+++
=� �

−

pnm

pnm
ddpnm

ξ

ξξξξξ (B.1)

For the line elements, the integral can similarly be written: 

( )
( )!1

!!
1

0

121
++

=� nm

nm
dnm ξξξ (B.2)

Now, the flux integrals need to be written in a manner that utilizes Eqs. B.1 and B.2.  The 

flux vectors F  and G  are represented as a combination of first, second, and third order 

terms.  In other words, the mass and enthalpy fluxes are a series of second order values, 

                                                 
1
 Baker, A.J.  Finite Element Computational Fluid Mechanics.  Hemisphere Publishing Company.  1983. 



571 

while the momentum fluxes is a third order terms, with a first order pressure term at the 

appropriate location.  The flux terms are represented in a shorthand notation: 

( ) 321211 θθθββαφ eeeeee ΦΦΦ+ΦΦ+Φ=F (B.3)

where iα , iβ , and iθ  represent different primitive variables (i.e., ( )eρ , ( )eu , ( )ev , ( )
e

p , and 

( )eeρ ).  Now, the flux integrals are calculated using the shorthand notation, and the correct 

primitive variables are then substituted back into the equations.  The element flux integrals 

can be written: 

( )
( )

( )
( )

� � ��� �� �
−−

�
�

�
�

�

�
�

�
�

	

=


�

�

�

�

∂

Φ∂
=Ω



�

�

�

�

∂

Φ∂

ee

e

T

e

e A

T

e dd

A

A

A

ddA
x

d
x

e

1

0

1

0

21

13

12

111

0

1

0

21

22

2

ξξ

ξξφξξ FFF (B.4)

( )
( )

( )
( )

� � ��� �� �
−−

�
�

�
�

�

�
�

�
�

	

=


�

�

�

�

∂

Φ∂
=Ω



�

�

�

�

∂

Φ∂

ee

e

T

e

e A

T

e dd

A

A

A

ddA
y

d
y

e

1

0

1

0

21

23

22

211

0

1

0

21

22

2

ξξ

ξξφξξ GGG (B.5)

Because the inverse Jacobian matrix ijA is constant across a given element, these terms can 

be moved outside of the element integrals, so that only the flux term remains in the integral.  

Eq. B.3 is substituted into the integrals: 

( )
( )

( )
( )

� �� �
−−

ΦΦΦ+ΦΦ+Φ=
1

0

1

0

21321211

1

0

1

0

21

22 ξξ

ξξθθθββαξξφ dddd eeeeeeF (B.6)

The first order term is easily integrated using the factorial-power method: 

( )
( ) ( )

111

1

0

1

0

21

3

2

11

0

1

0

211
2

1

1

1

1

6

122

αααξξ

ξ

ξ

ξ

ξξα
ξξ

=
�
�

�
�

�

�
�

�
�

	

=










�

�






�

�

�
�

�
�

�

�
�

�
�

	

=Φ � �� �
−−

TT

e dddd (B.7)



572 

where the over bar represents the average property.  The second order term requires some 

manipulation: ( ) 2121 ββββ e

TT

e

T

ee ΦΦ=ΦΦ .  The transpose of a scalar is the same scalar, so 

that 2121 ββββ e

T

e

T

ee ΦΦ=ΦΦ .  Substituting this notation into the integral: 

( )
( ) ( )

2

1

0

1

0

21

2

33231

32

2

221

3121

2

1

1

1

0

1

0

2121

22

βξξ

ξξξξξ

ξξξξξ

ξξξξξ

βξξββ
ξξ









�

�





�

�

�
�
�

�

�

�
�
�

�

�

=ΦΦ � �� �
−−

dddd T

ee (B.8)

( )
( )

24

9

211

121

112

24

1 2121
21

1

0

1

0

2121

2 ββββ
ββξξββ

ξ
⋅+

=

�
�
�

�

�

�
�
�

�

�

=ΦΦ� �
−

T

ee dd (B.9)

The third order term requires similar manipulation.  The transpose of the scalar remains the 

scalar, so that ( ) 321321321 θθθθθθθθθ ee

T

e

T

ee

TT

e

T

eee ΦΦΦ=ΦΦΦ=ΦΦΦ .  The transpose 

identity does not help any further, so a compact notation must be created: 

[ ]( ) 3231321 θθθθθθ e

T

ee

T

e

T Φ=ΦΦΦ (B.10)

[ ] ( )
�
�
�

�

�

�
�
�

�

�

ΦΦΦ

ΦΦΦ

ΦΦΦ

=ΦΦΦ=Φ

eee

eee

eee

ee

T

ee

2

33231

32

2

221

3121

2

1

3

ξξξξξ

ξξξξξ

ξξξξξ

(B.11)

Each term of the matrix is then a vector in itself � a third-order tensor.  The notation repre-

sents the multiplication of 3θ  times every inner vector, and then pre-multiplying the matrix 

by 1θ  and post-multi-plying by 2θ .  The compact notation is written in expanded form: 

[ ]( ) 2

3

2

3332331

3323

2

2321

3313213

2

1

13231 θ

θξθξξθξξ

θξξθξθξξ

θξξθξξθξ

θθθθ
�
�
�

�

�

�
�
�

�

�

ΦΦΦ

ΦΦΦ

ΦΦΦ

=Φ

eee

eee

eee

T

e

T
(B.12)

The third order integral term is evaluated: 



573 

( )
( )

[ ]
( )

( ) 32

1

0

1

0

2131

1

0

1

0

21321

22

θθξξθξξθθθ
ξξ






�

�




�

�
Φ=ΦΦΦ � �� �

−−

dddd e

T

eee (B.13)

where the integral of [ ]3eΦ  is expanded below to show every term. 

[ ]
( )

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

=Φ� �
−

TTT

TTT

TTT

e dd

3

3

2

32

2

31

2

31

3

2

2

321

2

31

321

3

2

1

2

31

3

2

2

321

3

2

2

3

2

2

21

321

2

21

2

2

1

2

31

321

3

2

1

321

2

21

2

2

1

3

2

1

2

2

1

3

1

1

0

1

0

213

2

ξ

ξξ

ξξ

ξξ

ξξ

ξξξ

ξξ

ξξξ

ξξ

ξξ

ξξ

ξξξ

ξξ

ξ

ξξ

ξξξ

ξξ

ξξ

ξξ

ξξξ

ξξ

ξξξ

ξξ

ξξ

ξξ

ξξ

ξ

ξξ
ξ

(B.14)

[ ]
( )

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

�
�

�
�

�

�
�

�
�

	

=Φ� �
−

TTT

TTT

TTT

e dd

6

2

2

2

2

1

2

1

2

2

2

1

2

6

2

1

2

2

2

1

2

1

2

2

2

2

6

120

1
1

0

1

0

213

2ξ

ξξ (B.15)

The tensor (matrix of vectors) above is introduced back into equation: 

( )
( )

( ) ( ) ( ) 

�

�

�

�
+⋅+⋅+⋅+=

ΦΦΦ

�

� �
−

3

,3,2,1213312321321

1

0

1

0

21321

233327
120

1

2

iii

eee dd

θθθθθθθθθθθθθθθ

ξξθθθ
ξ

(B.16)

Using the shorthand integrals above, the two element integrals containing the flux vectors F

and G  are written: 



574 

( )

( )( )

( )

�� � �� �
�
�

�

�
�

�

�

�
�

�

�
�

�

	

�
�

�
�

�

�
�

�
�

	

=

�
�

�

�
�

�

�

�
�

�

�
�

�

	

ΦΦ+Φ

ΦΦΦ

Φ+ΦΦ

ΦΦ

�
�

�
�

�

�
�

�
�

	

=


�

�

�

�

∂

Φ∂
−

ee

eeeeee

eeeeee

eeeeee

eeee

e A

T

e

F

F

F

F

A

A

A

dd

upe

vu

pu

u

A

A

A

Vd
x

e

4

3

2

1

13

12

111

0

1

0

21

2

13

12

11
2ξ

ξξ

ρ

ρ

ρ

ρ

F (B.17)

( )
( )( )

( )

�� � �� �
�
�

�

�
�

�

�

�
�

�

�
�

�

	

�
�

�
�

�

�
�

�
�

	

=

�
�

�

�
�

�

�

�
�

�

�
�

�

	

ΦΦ+Φ

Φ+ΦΦ

ΦΦΦ

ΦΦ

�
�

�
�

�

�
�

�
�

	

=


�

�

�

�

∂

Φ∂
−

ee

eeeeee

eeeeee

eeeeee

eeee

e A

T

e

G

G

G

G

A

A

A

dd

vpe

pv

vu

v

A

A

A

Vd
y

e

4

3

2

1

23

22

211

0

1

0

212

23

22

21
2ξ

ξξ

ρ

ρ

ρ

ρ

G (B.18)

 where 

24

9
1

ee uu
F

⋅+
=

ρρ
  

( ) ( )( )
24

9
4

eee upeupe
F

⋅+++
=

ρρ
(B.19)

24

9
1

ee vv
G

⋅+
=

ρρ
  

( ) ( )( )
24

9
4

eee vpevpe
G

⋅+++
=

ρρ
(B.20)

( ) puuuuuuF iiee
2

1
218327

120

1

3

22

2 +

�

�

�

�
++⋅+= �ρρρρ (B.21)

( ) pvvvvvvG iiee
2

1
218327

120

1

3

22

3 +

�

�

�

�
++⋅+= �ρρρρ (B.22)

( ) 

�

�

�

�
+++⋅+== �

3

23 299327
120

1
iiiee vuuvvuvuvuGF ρρρρρ (B.23)

The boundary integral equations can be evaluated in one pass because the flux terms are 

combined into a single normal flux term.  The boundary integrals do not simply follow the 

pattern shown above because their integrands include one more shape function vector making 

each term one order higher: 

( ) ( )� �� � Φ=ΓΦ
be

ben

T

bebe

be l

ben

T

be dld

be

1

0

1ξφφ FF (B.24)

where 



575 

( )

( )( ) �
�

�

�
�

�

�

�
�

�

�
�

�

	

Φ+ΦΦ

Φ+ΦΦΦ

Φ+ΦΦΦ

ΦΦ

=

bebebebebenbe

beybebebenbebebebebe

bexbebebenbebebebebe

benbebebe

ben

peV

npVv

npVu

V

ρ

ρ

ρ

ρ

φ

,

,,

,,

,

�

�
F (B.25)

ybexbeben nvnuV ��
, += (B.26)

Like the element integrals above, the boundary flux is rewritten using shorthand: 

( ) 321211 θθθββαφ bebebebebebeben ΦΦΦ+ΦΦ+Φ=F (B.27)

The boundary integrals are evaluated using the shorthand: 

( ) ( )�� ΦΦΦ+ΦΦ+ΦΦ=Φ
1

0

1321211

1

0

1 ξθθθββαξφ dd bebebebebebe

T

beben

T

beF (B.28)

The second order term is evaluated: 

( ) 11

1

0

12

221

21

2

1

1

0

11
21

12

6

1
ααξ

ξξξ

ξξξ
ξα �

�

�
�
�

�
=






�

�




�

�
�
�

�
�
�

�
=ΦΦ �� ddbe

T

be (B.29)

The third order term is evaluated, using the 3
rd

-order compact notation: 

( ) [ ]( )( ) [ ] ( ) 21

1

0

1

0

131213

1

0

121 ββξξββξββ � �� Φ=Φ=ΦΦΦ ddd bebebebe

T

be (B.30)

[ ] ( ) �
�

�
�
�

�

ΦΦ

ΦΦ
=ΦΦΦ=Φ

bebe

bebe

bebe

T

bebe 2

221

21

2

1

3
ξξξ

ξξξ
(B.31)

The notation represents the multiplication of 2β  times every inner vector, and then post-

multiplying the matrix by 1β .  The compact notation is written in expanded form: 

[ ]( ) 1

2

2

2221

2212

2

1

213 β
βξβξξ

βξξβξ
ββ �

�

�
�
�

�

ΦΦ

ΦΦ
=Φ

bebe

bebe

be (B.32)

The remaining integral becomes: 



576 

[ ]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�
�
	

�
�
�

�
�
	

�
�
�

�
�
	

�
�
�

�
�
	

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�

�
�
	

�
�
�

�
�
	

�
�
�

�
�
	

�
�
�

�
�
	

=Φ ��
3

1

1

1

1

1

1

3

12

1
1

0

1

3

2

2

21

2

21

2

2

1

2

21

2

2

1

2

2

1

3

1

1

0

13 ξ

ξ

ξξ

ξξ

ξξ

ξξ

ξξ

ξξ

ξ

ξ ddbe (B.33)

Again, the tensor above is introduced back into the integral, and written in a much simpler 

manner: 

( ) 21

2,22,1

1,21,1
1

0

121
1

1

3

1

6

1
ββ

ββ

ββ
ξββ

�
�
�

�
�
	

+
�
�
�

�
�
	

=ΦΦΦ� dbebe

T

be (B.34)

The fourth order term is evaluated, first by applying the transpose identity and then by 

creating a 4
th

- order compact notation: 

[ ]( )( ) 3214321321 θθθθθθθθθ T

bebe

T

be

T

be

T

bebebebe

T

be Φ=ΦΦΦΦ=ΦΦΦΦ (B.35)

[ ] ( )( ) �
�

�
�
�

�

ΦΦΦΦ

ΦΦΦΦ
=ΦΦΦΦ=Φ

be

T

bebe

T

be

be

T

bebe

T

be

be

T

bebe

T

bebe 2

221

21

2

1

4
ξξξ

ξξξ
(B.36)

Here, each term of the matrix is a matrix in itself � fourth-order tensor.  The notation repre-

sents the pre-multiplication of T

2θ  and post-multiplication of 3θ  times every inner matrix, 

and then post-multiplying the matrix by 1θ .  The compact notation is expanded: 

[ ]( )( ) 1

32

2

23221

322132

2

1

3214 θ
θθξθθξξ

θθξξθθξ
θθθ �

�

�
�
�

�

ΦΦΦΦ

ΦΦΦΦ
=Φ

be

T

be

T

be

T

be

T

be

T

be

T

be

T

be

T

T

be (B.37)

The fourth order term is evaluated: 

( ) [ ] ( )( ) 321

1

0

14

1

0

1321 θθθξξθθθ T

bebebebe

T

be dd 



�

�


�

�
Φ=ΦΦΦΦ �� (B.38)

The remaining integral becomes: 



577 

[ ] �� �
�

�
�
�

�

ΦΦΦΦ

ΦΦΦΦ
=Φ

1

0

12

221

21

2

1

1

0

14 ξ
ξξξ

ξξξ
ξ dd

be

T

bebe

T

be

be

T

bebe

T

be

be (B.39)

[ ] ��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�

�
�
�

�
�
�

�
�
�

�

=Φ
1

0

1

4

2

3

21

3

21

2

2

2

1

3

21

2

2

2

1

2

2

2

12

3

1

3

21

2

2

2

1

2

2

2

12

3

1

2

2

2

12

3

1

2

3

1

4

1

1

0

14 ξ

ξξξ

ξξξξ

ξξξξ

ξξξξ

ξξξξ

ξξξξ

ξξξξ

ξξξ

ξ ddbe (B.40)

[ ]
�
�
�
�

�

�

�
�
�
�

�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�

�
�
�

�
�
�

�
�
�

�

=Φ�
123

32

32

23

32

23

23

312

60

1
1

0

14 ξdbe (B.41)

The tensor is introduced back into the integral, and written in a much simpler manner: 

( )

( ) 




�

�




�

�

�
�
�

�
�
	

+⋅
�
�
�

�
�
	

+
�
�
�

�
�
	

+
�
�
�

�
�
	

+
�
�
�

�
�
	

=

ΦΦΦΦ�

1

1
16228

60

1
32132

1,1

2,1

2,32,1

1,31,1

2

2,22,1

1,21,1

3

2,32,22,1

1,31,21,1

1

0

1321

θθθθθ
θ

θ

θθ

θθ
θ

θθ

θθ
θ

θθθ

θθθ

ξθθθ dbebebe

T

be

(B.42)

Using the shorthand integrals above, the boundary integral containing the normal flux vector 

nF  is written: 

( ) �� �
�
�

�

�
�

�

�

�
�

�

�
�

�

	

=ΓΦ
be

n

n

n

n

be

be A

ben

T

be

F

F

F

F

ld

be

4,

3,

2,

1,

φF (B.43)

where 

n

benbe

benbe

n V
V

V
F ρ

ρ

ρ

�
�
�

�
�
	

+
�
�
�

�
�
	

=
1

1

3

1

6

1

2,,2,

1,,1,

1, (B.44) 

( )( )
( )( ) ( ) n

benbebe

benbebe

n Vpe
Vpe

Vpe
F +

�
�
�

�
�
	

+
�
�
�

�
�
	

+

+
= ρ

ρ

ρ

1

1

3

1

6

1

2,,2,2,

1,,1,1,

4, (B.45) 



578 

( )
bexbe

nbenbe

be

be

benbe

benbe

bebe

bebe

n

benbebe

benbebe

n np

VuVu

V

V
u

u

u
V

Vu

Vu

F ,

,

1,

2,

2,,2,

1,,1,

2,2,

1,1,

2,,2,2,

1,,1,1,

2,
�

21

12

6

1

1

1
16

228

60

1
�
�

�
�
�

�
+












�

�







�

�

�
�
�

�
�
	

+⋅
�
�
�

�
�
	

+

�
�
�

�
�
	

+
�
�
�

�
�
	

+
�
�
�

�
�
	

=

ρ
ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

(B.46) 

( )
beybe

nbenbe

be

be

benbe

benbe

bebe

bebe

n

benbebe

benbebe

n np

VvVv

V

V
v

v

v
V

Vv

Vv

F ,

,

1,

2,

2,,2,

1,,1,

2,2,

1,1,

2,,2,2,

1,,1,1,

3,
�

21

12

6

1

1

1
16

228

60

1
�
�

�
�
�

�
+












�

�







�

�

�
�
�

�
�
	

+⋅
�
�
�

�
�
	

+

�
�
�

�
�
	

+
�
�
�

�
�
	

+
�
�
�

�
�
	

=

ρ
ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

(B.47) 

For the far field condition uses Riemann invariants to correct the local flow to include 

necessary freestream components, and then the corrected fluxes are input directly into the 

boundary integrals.  In this way, the boundary integrals differ from those demonstrated 

above.  The boundary integrals are calculated using a linear distribution of Riemann flux 

across the boundary element: 

( ) �� �� � �
�

�
�
�

�
=






�

�




�

�
�
�

�
�
�

�
=ΓΦΦ

be

ben
be

be

benbe

be l

benbe

T

be

l
dld

be

,,

1

0

12

221

21

2

1

,
21

12

6
FFF ξ

ξξξ

ξξξ
(B.48)

The FEM governing equations is written in terms of the exact integrals using the shorthand 

flux notation: 

[ ] 0
21

12

6
,

4,

3,

2,

1,

4

3

2

1

23

22

21

4

3

2

1

13

12

11

=�
�

�
�
�

�
+

�
�

�

�
�

�

�

�
�

�

�
�

�

	

+












�

�







�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

	

�
�

�
�

�

�
�

�
�

	

+

�
�

�

�
�

�

�

�
�

�

�
�

�

	

�
�

�
�

�

�
�

�
�

	

−
∂

∂
� ��

IWS FFbe be

ben
be

n

n

n

n

be

e

c

l

F

F

F

F

l

G

G

G

G

A

A

A

F

F

F

F

A

A

A

t
F

U
M (B.49)

where IWSbe  represents the Inviscid Wall and Symmetry plane boundary elements and FFbe

represents the Far Field boundary elements.   



579 

Non-Inertial Source Term.  For continuous integration, the non-inertial source integrals can 

be represented: 

( )
( )

( )

( )��� ΩΦΦ+ΦΦΦ=Ω

�
�

�

�
�

�

�

�
�

�

�
�

�

	

+Φ⋅Φ

+Φ

−Φ
ΦΦ=ΩΦ−

eee A

eeeee

T

e

A

ereteete

ereyte

erexte

ee

T

e

A

T

e dd

VVa

ua

va
d 211

,,,

,,,

,,,

0

ββαρ
ω

ω
ρ

��

S (B.50)

[ ]( ) [ ]( )( )��� ΩΦ+ΩΦ=ΩΦ−
eee A

T

ee

A

ee

A

T

e ddd 21413 ββραρS
(B.51)

[ ] ( ) [ ] ( )( ) 21413 ββραρ T

e

A

ee

A

e

A

T

e

eee

ddd ��� ΩΦ+ΩΦ=ΩΦ− S
(B.52)

    where 

[ ]
�
�
�

�

�

�
�
�

�

�

ΦΦΦ

ΦΦΦ

ΦΦΦ

=Φ

eee

eee

eee

e

2

33231

32

2

221

3121

2

1

3

ξξξξξ

ξξξξξ

ξξξξξ

(B.53)

[ ]
�
�
�

�

�

�
�
�

�

�

ΦΦΦΦΦΦ

ΦΦΦΦΦΦ

ΦΦΦΦΦΦ

=Φ

e

T

ee

T

ee

T

e

e

T

ee

T

ee

T

e

e

T

ee

T

ee

T

e

e

2

33231

32

2

221

3121

2

1

4

ξξξξξ

ξξξξξ

ξξξξξ

(B.54)

�
�
�

�

�

�
�
�

�

�

=ΦΦ
2

33231

32

2

221

3121

2

1

ξξξξξ

ξξξξξ

ξξξξξ
T

e (B.55)

  



5
8
0

 

T
h

e 
fi

rs
t 

te
rm

 i
s 

si
m

p
li

fi
ed

: 

[
]

������������� ��

������������� ��

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

=

�������������� ��

�������������� ��

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

� �� ��

� �� �	

=
Ω

Φ
�
�

�
−

T
T

T

T
T

T

T
T

T

e
e

T
T

T

T
T

T

T
T

T

A

e

A
d

d
A

d

e

622

221

212

221

262

122

212

122

226

6
0

2

1 0

1

0

2
1

3 3

2 3
2

2 3
1

2 3
2

3

2 2

3
2

1

2 3
1

3
2

1

3

2 1

2 3
2

3

2 2

3
2

1

3

2 2

3 2

2 2
1

3
2

1

2 2
1

2

2 1

2 3
1

3
2

1

3

2 1

3
2

1

2 2
1

2

2 1

3

2 1

2

2 1

3 1

3

2
ξ

ξ
ξ

ξξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξξξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξξ

(B
.5

6
) 

[
]

(
)

� �� ��

� �� �	

+
−

−

−
+

−

−
−

+

=
Ω

Φ
�

3,
1

3
1,

1
2

2,
1

1
1

1,
1

3
2,

1
2

3,
1

1
1

2,
1

3
3,

1
2

1,
1

1
1

1
3

4
2

4
2

4
2

6
0

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

α
ρ

e

e

A

e

A
d

e

(B
.5

7
) 

T
h

e 
fi

rs
t 

te
rm

 i
s 

u
se

d
 t

o
 d

ef
in

e 
th

e 
in

te
g
ra

ls
 f

o
r 

th
e 

x
- 

an
d
 y

-m
o

m
en

tu
m

 s
o

u
rc

e 
te

rm
: 

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

�
� �� ��

� �� �	

−
+

−
−

−
−

−

−
−

−
+

−
−

−

−
−

−
−

−
+

−

=
Ω

−
′

Φ
Φ

Φ
e

A

r
x

t
r

x
t

r
x

t
r

x
t

r
x

t
r

x
t

r
x

t
r

x
t

r
x

t
r

x
t

r
x

t
r

x
t

e
e

r
e

x
t

e
e

e

T e

v
a

v
a

v
a

v
a

v
a

v
a

v
a

v
a

v
a

v
a

v
a

v
a

A
d

v
a

3,
3,

,
3

1,
1,

,
2

2,
2,

,
1

,

1,
1,

,
3

2,
2,

,
2

3,
3,

,
1

,

2,
2,

,
3

3,
3,

,
2

1,
1,

,
1

,

,
,

,

4
2

4
2

4
2

6
0

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

(B
.5

8
) 

       580



5
8
1

 

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

(
)

�
� �� ��

� �� �	

+
+

+
−

+
−

+
′

+
−

+
+

+
−

+
′

+
−

+
−

+
+

+
′

=
Ω

+
′

Φ
Φ

Φ
e

A

r
y

t
r

y
t

r
y

t
r

y
t

r
y

t
r

y
t

r
y

t
r

y
t

r
y

t
r

y
t

r
y

t
r

y
t

e
e

r
e

y
t

e
e

e

T e

u
a

u
a

u
a

u
a

u
a

u
a

u
a

u
a

u
a

u
a

u
a

u
a

A
d

u
a

3,
3,

,
3

1,
1,

,
2

2,
2,

,
1

,

1,
1,

,
3

2,
2,

,
2

3,
3,

,
1

,

2,
2,

,
3

3,
3,

,
2

1,
1,

,
1

,

,
,

,

4
2

4
2

4
2

6
0

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

ω
ρ

(B
.5

9
) 

T
h

e 
se

co
n
d

 t
er

m
 i

s 
si

m
p

li
fi

ed
: 

[
]

�
�

�
−

������������� ��

������������� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

=
Ω

Φ
1 0

1

0

2
1

4 3

3 3
2

3 3
1

3 3
2

2 3

2 2

2 3
2

1

3 3
1

2 3
2

1

2 3

2 1

3 3
2

2 3

2 2

2 3
2

1

2 3

2 2
3

3 2
3

2 2
1

2 3
2

1
3

2 2
1

3
2

2 1

3 3
1

2 3
2

1

2 3

2 1

2 3
2

1
3

2 2
1

3
2

2 1

2 3

2 1
3

2

2 1
3

3 1

3 3
2

2 3

2 2

2 3
2

1

2 3

2 2
3

3 2
3

2 2
1

2 3
2

1
3

2 2
1

3
2

2 1

2 3

2 2
3

3 2
3

2 2
1

3

3 2

4 2

3 2
1

3

2 2
1

3 2
1

2 2

2 1

2 3
2

1
3

2 2
1

3
2

2 1

3

2 2
1

3 2
1

2 2

2 1

3
2

2 1

2 2

2 1
2

3 1

3 3
1

2 3
2

1

2 3

2 1

2 3
2

1
3

2 2
1

3
2

2 1

2 3

2 1
3

2

2 1
3

3 1

2 3
2

1
3

2 2
1

3
2

2 1

3

2 2
1

3 2
1

2 2

2 1

3
2

2 1

2 2

2 1
2

1

2 1

2 3

2 1
3

2

2 1
3

3 1

3
2

2 1

2 2

2 1
2

3 1

3

3 1
2

3 1

4 1

4

2

2

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ

ξ
ξ

ξ
ξ

ξ

d
d

A
d

e

A

e

e

(B
.6

0
)

[
]

������������ ��

������������ ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

=
Ω

Φ
�

1
2

3
3

3
2

1

3
1

2

3
2

1

2
3

1

1
1

1

3
1

2

1
1

1

2
1

3

3
2

1

2
3

1

1
1

1

2
3

1

3
1

2
3

1
3

2

1
1

1

1
3

2

1
2

3

3
1

2

1
1

1

2
1

3

1
1

1

1
3

2

1
2

1

2
1

3

1
2

3

3
3

1
2

1
8

0
4

e

A

e

A
d

e

(B
.6

1
) 

       581



582 

[ ] ( )( )
( ) ( )

( ) ( )
( ) ( ) �

�

�
�

�

�
�

�
�

	

⋅−+++

⋅−+++

⋅−+++

=ΩΦ�
213,133,213,13

212,122,212,12

211,111,211,11

214

36

36

36

180
ββρβρββρβρ

ββρβρββρβρ

ββρβρββρβρ

ββρ

e

e

e

eT

e

A

e

K

K

K
A

d

e

(B.62)

( ) ( )212121 βρβββρββρ ⋅+⋅+= eK (B.63)

The second term is used to define the integrals for the energy source term: 

( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( ) �

�

�
�

�

�
�

�
�

	

+−−+++

−+−+++

−−+++

+

�
�

�
�

�

�
�

�
�

	

+−−+++

−+−+++

−−+++

=

=Ω+Φ⋅ΦΦΦ�

vaaavaaK

vaaavaaK

vaaavaaK
A

uaaauaaK

uaaauaaK

uaaauaaK
A

dVVa

ytytytytyty

ytytytytyty

ytytytytyty

e

xtxtxtxtxtx

xtxtxtxtxtx

xtxtxtxtxtx

e

A

ereteeteee

T

e

e

~2~6

~2~6

~2~6

180

~2~6

~2~6

~2~6

180

3,,33,,22,,13,3,,3

1,,32,,23,,12,2,,2

2,,33,,21,,11,1,,1

3,,33,,22,,13,3,,3

1,,32,,23,,12,2,,2

2,,33,,21,,11,1,,1

,,,

ρρρρρ

ρρρρρ

ρρρρρ

ρρρρρ

ρρρρρ

ρρρρρ

ρ
���

(B.64)

where 

( ) ( )uauauaK extxtxtx
~~~

,,, ⋅+⋅+= ρρρ irixti uVu ,,,
~ += (B.65)

() ()vavavaK eytytyty
~~~

,,, ⋅+⋅+= ρρρ   iriyti vVv ,,,
~ +=  (B.66)

Using the shorthand integrals above, the source term is written: 

( )
( )

( )

{ }
{ }
{ }

�� �� �
�
�

�

�
�

�

�

�
�

�

�
�

�

	

=Ω

�
�

�

�
�

�

�

�
�

�

�
�

�

	

+ΦΦ

+Φ

−Φ
ΦΦ=ΩΦ−

e

T

T

T

e A

ereteete

ereyte

erexte

ee

T

e

e A

T

e

SSS

SSS

SSS
d

VVa

ua

va
d

ee

434241

333231

232221

,,,

,,,

,,,

00

��
ω

ω
ρS (B.67)

where 

( ) ( ) ( )( )2,2,,33,3,,21,1,,121 4
60

rxtrxtrxtxm
e vavavaK

A
S ωρωρωρ −−−−−+= (B.68)



583 

( ) ( ) ( )( )1,1,,32,2,,23,3,,122 4
60

rxtrxtrxtxm
e vavavaK

A
S ωρωρωρ −−−+−−= (B.69)

( ) ( ) ( )( )3,3,,31,1,,22,2,,123 4
60

rxtrxtrxtxm
e vavavaK

A
S ωρωρωρ −+−−−−= (B.70)

( ) ( ) ( )( )
2,2,,33,3,,21,1,,131 4

60
rytrytrytym

e uauauaK
A

S ωρωρωρ +−+−++= (B.71)

( ) ( ) ( )( )
1,1,,32,2,,23,3,,132 4

60
rytrytrytym

e uauauaK
A

S ωρωρωρ +−+++−= (B.72)

( ) ( ) ( )( )
3,3,,31,1,,22,2,,133 4

60
rytrytrytym

e uauauaK
A

S ωρωρωρ +++−+−= (B.73)

( ) ( )( )

( ) ( )( )vaaavaaK
A

uaaauaaK
A

S

ytytytytytye
e

xtxtxtxtxtxe
e

~2~6
180

~2~6
180

2,,33,,21,,11,1,,1

2,,33,,21,,11,1,,141

ρρρρρ

ρρρρρ

−−++++

−−+++=

(B.74)

( ) ( )( )

( ) ( )( )vaaavaaK
A

uaaauaaK
A

S

ytytytytytye
e

xtxtxtxtxtxe
e

~2~6
180

~2~6
180

1,,32,,23,,12,2,,2

1,,32,,23,,12,2,,242

ρρρρρ

ρρρρρ

−+−++++

−+−+++=

(B.75)

( ) ( )( )

( ) ( )( )vaaavaaK
A

uaaauaaK
A

S

ytytytytytye
e

xtxtxtxtxtxe
e

~2~6
180

~2~6
180

3,,33,,22,,13,3,,3

3,,33,,22,,13,3,,343

ρρρρρ

ρρρρρ

+−−++++

+−−+++=

(B.76)

( )rxtxm vaK ωρ −= ,2   irixti uVu ,,,
~ += (B.77)

( ) ( )uauauaK extxtxtxe
~~~

,,, ⋅+⋅′+= ρρρ (B.78)

()
rytym uaK ωρ += ,2

iriyti vVv ,,,
~ += (B.79)

() ()vavavaK eytytytye
~~~

,,, ⋅+⋅+= ρρρ (B.80)



584 

APPENDIX C 

EULER2D FILE FORMATS 

The file formats included in this section are used to create the input files required to operate 

Euler2D and interpret the files that are written by Euler2D. 



585 

Euler2D 

Summary of File Formats 

Input Files: 

• case.g2d (required) contains the geometry data structures representing the 

computational mesh as required by the flow solver (ASCII) 

• case.con (required) contains values for the solver control parameters and flow 

conditions (ASCII) 

• case.unk (optional) contains the values of the primitive flow variables (density, 

velocity, pressure, and total enthalpy) for each node of the computa-tional mesh to 

be used as the initial conditions for the flow solution (Binary) 

• case.dyn (optional) contains the non-inertial matrices and initial conditions as 

required for a non-inertial solution (ASCII) 

• case.vec (optional) contains the elastic mode matrices, initial conditions, and 

mode shape vectors for the solid wall surfaces as required for an aero-elastic 

solution (ASCII) 

• case.frc (optional) contains external forces to be applied to each solution step 

in a dynamic or aeroelastic solution (ASCII) 

• case.cmb (optional) contains information to represent the influence of 

combustion on the flow solution (ASCII) 

• case.eng (optional) contains the properties needed to represent rocket and 

engine boundary conditions (ASCII) 

• case.acst (optional) contains the acoustic output data (ASCII) 

Output Files: 

• case.un# contains the values of the primitive flow variables (density, velocity, 

pressure, and total enthalpy) for each node of the computational mesh; # is 

iterated as more files are produced so the progress of the solution can be followed 

(Binary) 

• case.rsd contains a history of the solution residuals for the conservation 

variables (density, momentum (2), and total energy) (ASCII) 



586 

• case.rsd2 contains a history of the solution residuals for the conservation 

variables for each inner cycle (ASCII) 

• case.cyc contains a history of the number of inner cycles used to converge 

each iteration (ASCII) 

• case.time contains a history of the local time step ratios (ASCII) 

• case.lds contains a history of the dimensionless aerodynamic forces acting on 

the solid walls of the geometry (ASCII) 

• xd.dat contains a history of the non-inertial displacements, velocities, and 
accelerations for a dynamic solution (ASCII) 

• xn.dat contains a history of the generalized displacements, velocities, and 
forces for an unsteady, aeroelastic solution (ASCII) 

• case.rst and case.rs2 contain information on up to two sets of unknowns 
data, elastic system data, and dynamic motion data (binary) 

• case.pac contains a history of pressure data at prescribed nodes (ASCII) 

• case.rac contains a history of density data at prescribed nodes (ASCII) 

• case.uac contains a history of u-velocity data at prescribed nodes (ASCII) 

• case.vac contains a history of v-velocity data at prescribed nodes (ASCII) 



587 

Geometry Input File (case.g2d) 

Basic File Format 

Line of Text 

  nnd nel nsg nbe nbp nwl nsd 

Line of Text 

  (LBE(i), i = 1, 8) 

Line of Text 

  (COOR(i,j), j = 1,2)  (i = 1,nnd) 

Line of Text 

  (IELM(i,j), j = 1,3)  (i = 1,nel) 

Line of Text 

  (ISEG(i,j), j = 1,2)  (i = 1,nsg) 

Line of Text 

  (IBEL(i,j), j = 1,3)  (i = 1,nbe) 

Definition of Terms 

nnd: int number of nodes 

nel: int number of elements 

nsg: int number of segments 

nbe: int number of boundary elements 

nbp: int number of boundary points 

nwl: int number of wall nodes 

nsd: int number of singular nodes 

LBE(i): int start/ stop index for 4 BC types 

COOR(i,1): real x-coordinate for node i

COOR(i,2): real y-coordinate for node i

IELM(i,1): int node 1 for element i

IELM(i,2): int node 2 for element i

IELM(i,3): int node 3 for element i

ISEG(i,1): int node 1 for segment i

ISEG(i,2): int node 2 for segment i

IBEL(i,1): int node 1 for boundary elem. i

IBEL(i,2): int node 2 for boundary elem. i

IBEL(i,3): int surface index in case.sur

Comments  

• This is a plain text (ASCII) file. 

• The nodal coordinates in this file are treated as dimensional values and are non-

dimensionalized using the reference dimension refdim specified in the control file.   

• The element connectivity data IELM  and IBEL  define clockwise oriented elements. 

• The program makeg2d is used to convert a standard STARS surface triangulation file 

case.fro and modified boundary conditions file case.bco into an appropriately 

sorted two-dimensional geometry file. 

• Nodal data COOR  is sorted such that the first nwl nodes are defined as solid wall 

nodes.  Out of the first nwl nodes, the last nsd  nodes are defined as singular nodes.  

The viscous nodes are placed in the middle (nwlv and nsdv), according to the 

following diagram: 



588 

• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 

LBE(3) through LBE(4) are symmetry elements, LBE(5) through LBE(6) are far-field 

elements, and LBE(7) through LBE(8) are viscous solid wall elements, where the two 

solid wall elements are restricted to LBE(1) < LBE(7) < LBE(8) < LBE(2).  (In 

other words, the viscous solid walls must exist within the limits of the viscous walls.) 



589 

Sample File  

$  nnd,  nel,  nsg,  nbe,  nbp,  nwl,  nsd 
     8     6    13     8     8     3     0 
$ LBE(8) 
     1     2     3     2     3     8     1     2 
$ Nodal coordinates 
 -.100000E+01 -.100000E+01 
 0.100000E+01 -.100000E+01 
 0.000000E+00 -.100000E+01 
 0.100000E+01 0.100000E+01 
 -.100000E+01 0.100000E+01 
 0.100000E+01 0.000000E+00 
 0.000000E+00 0.100000E+01 
 -.100000E+01 0.000000E+00 
$ Element connectivity 
     1     3     8 
     3     2     6 
     5     8     7 
     6     4     7 
     8     3     6 
     6     7     8 
$ Segment connectivity 
     1     3 
     1     8 
     2     3 
     2     6 
     3     8 
     3     6 
     4     6 
     4     7 
     5     8 
     5     7 
     6     7 
     6     8 
     7     8 
$ Boundary edge data 
     1     3 1  
     3     2 1  
     2     6 2  
     6     4 2  
     4     7 3  
     7     5 3  
     5     8 4  
     8     1 4  



590 

Solver Control Input File (case.con) 

Basic File Format 

&control 
dt   = 0.1d0, 
gamma  = 1.4d0, 
diss   = 1.0d0, 
cfl   = 0.5d0, 

mach   = 0.6d0, 
alpha  = 0.0d0, 
refdim  = 1.0d0, 

nstp   = 100, 
nout   = 50, 
ncyc   = 4, 

rsdtol = 1.0d-20, 
rsdmax  = 10.0d0, 

isol   = 0, 
ipnt   = 1, 
idiss  = 0, 
icomb  = 0,  

istrt  = .false., 
iaero  = .true., 
idynm  = .false., 
ielast  = .false., 
iprop  = .false., 
ifree  = .true., 
iforce  = .false., 
isafe  = .false., 
irsds  = .false., 
iacoust  = .false., 

nr   = 0, 
ainf   = 1.0d0, 
rhoinf  = 1.0d0, 
gravity  = 0.0d0, 

/ 

Definition of Terms 

dt: real dimensionless global time step 

gamma: real ratio of specific heats 

diss: real dissipation factor 

cfl: real local time step stability factor 

mach: real freestream Mach number 

alpha: real freestream angle of attack (deg) 

refdim: real reference length (dim�l) 

nstp: int total solution steps 

nout: int output frequency, steps/output 

ncyc: int iterative cycles per solution step 

rsdtol: real energy residual converg tolerance 

rsdmax: real energy residual divergence criteria 

isol: int CFD solution type 

ipnt: int number of Gauss points  

idiss: int dissipation type 

icomb: int combustion model type 

istrt: log restart flag 

iaero: log aerodynamic forces flag 

idynm: log dynamic/non-inertial flag 

ielast: log elastic flag 

iprop: log propulsion flag 

ifree: log free-stream velocity flag 

iforce: log external forces flag 

isafe: log safe-mode flag 

irsds: log residual watching flag 

iacoust: log acoustics output flag 

nr: int number of elastic modes 

ainf: real free-stream sonic speed (dim�l) 

rhoinf: real free-stream density (dim�l) 

gravity: real gravity (dim�l) 

Comments  

• This is a plain text (ASCII) file formatted as a Fortran namelist.   

• The namelist must begin with the line �&control� and end with the line �/�.   

• The remaining lines can be listed in any order or omitted, if desired.   

• The intermediate lines work like variable assignments with the loose format:  

variable_name = value, followed by a comma.   

• Integers (int) are listed as whole numbers. 

• Real numbers (real) are listed in double precision, scientific notation:  #.##d+##. 

• Logical variables (log) are listed as either �.true.� or �.false.�. 



591 

• Lines can be commented out by including an exclamation point �!� prior to any 

other information on the line.   

• The default values, shown above, are used for variables omitted or commented 

out of the namelist. 

• Any information listed after the last line of the namelist �/� are not read by the 

program and can be used to store notes and other calculations. 

• The global time step dt is only used for unsteady solutions.  dt is a dimensionless 

value calculated:  dt = ∆t U / L, where ∆t is the dimensional time step, U is the free-

stream velocity ( = mach ainf ), and L is the reference length refdim.   
• Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.  Some 

dissipation is required to stabilize the solution, but too much dissipation will corrupt 

the solution and possibly be a destabilizing influence. 

• The local time step stability factor is a safety factor used to compute local time steps 

for each solution step. For steady solutions, a stability factor of 0.8 is typical for most 

problems. For unsteady solutions, the stability factor is typically 0.3 < cfl < 0.8. 

• The values of refdim, mach, ainf, and rhoinf are used to non-dimensionalize all 

values read into the flow solver. 

• The free-stream angle of attack is ignored for dynamic (non-inertial) problems. 

• The number of iterative cycles should be set to 4 for steady solutions. For unsteady 

solutions, use a sufficient number of cycles to allow for an appropriate level of con-

vergence at each step.  A sufficient number can be estimated as N = dt / ∆tloc,min. 

• The following is a good practice for finding a sufficient number of iterations for 

unsteady solutions:   

1. Select initial values for dt, ncyc, and rsdtol.   

2. Step the solution forward 20-50 iterations.   

3. Check the *.cyc file for the number of cycles required per iteration.  The 

number of cycles should level off after 10 iterations.  If not, run enough 

iterations for the number of required cycles to level off. 

4. If the last 10 iterations require more than 20 cycles, lower the time step.   

5. If the last 10 iterations require less than 8 iterations, increase the time step.   

6. The sweet spot is 10-15 iterations. 

• The residual tolerance can be used to exit the iterative cycles if the energy 

residual meets a specified criteria rsdtol.  (The energy residual is used because 

the other residuals normally converge faster than energy.)  This feature can be 

used to set the number of iterations to a very large number with a residual 

tolerance rsdtol.  When the residual drops below the tolerance, the solution will 

progress to the next time step.  Lower rsdtol values require more iterations. 

• The divergence tolerance rsdmax creates an upper tolerance on the energy 

residual.  If the solution is diverging, the energy residual will grow larger than 

rsdmax and terminate the run.  The solution also terminates if the residuals 

become NAN or INFINITY.  Larger rsdmax values will allow the solution to 

diverge further and ensure that the solution is in fact diverging.   



592 

• There are four available CFD solution types defined as follows: 

• isol = 0 is a steady solution (not time accurate) 

• isol = 1 is a first-order unsteady solution 

• isol = 2 is a second-order unsteady solution 

• isol = 3 is a supersonic piston perturbation solution 

• There are four types of integration defined as follows: 

• ipnt = 0 uses analytical equations (no Gauss quadrature) 

• ipnt = 1 uses a one-point Gauss quadrature 

• ipnt = 3 uses a three-point symmetric Gauss quadrature

• ipnt = 4 uses a four-point symmetric Gauss quadrature

• There are three available dissipation types defined as follows: 

• idiss = 0 is a low order dissipation 

• idiss = 1 is a high order dissipation with gradient limiters 

• The lower order dissipation is typically overly diffuse and should be used in 

conjunction with low values of the dissipation factor. Low-order dissipation works 

best for problems without strong vortices and for supersonic/hypersonic flows. 

• The higher order dissipation is more CPU intensive than the low-order dissipation and 

less stable. Larger values for the dissipation factor are typically required for 

stabilization. The high-order dissipation works best for subsonic to transonic flows 

with strong gradients or vortices. Rotating domains will typically require high-order 

dissipation to resolve the circulating pattern of the relative flow velocities. 

• Combustion properties are specified in the case.cmb file.  The mass and heat 
generation are distributed throughout the domain using the following distributions: 

• icomb = 0, no combustion (case.cmb not read) 

• icomb = 1, combustion properties are piece-wise linear (specified at the nodes) 

• icomb = 2, combustion properties are constant (specified) on the elements 

• When the restart flag istrt is set to .true., the solver will read one set of solution 

unknowns from the case.unk file and apply this set of unknowns as the initial 

conditions for the new iterative solution.

• A restarted solution assumes that the time gradient of the initial state is zero, i.e. the 

solution stored in the case.unk file is a converged, steady state solution.  This has a 

significant impact on the second-order unsteady solution since it relies on two sets of 

solution unknowns for advancement to the next time step, i.e. a second-order 

unsteady solution should not be restarted from the last time step of a similar unsteady 

solution that was stopped because both sets of unsteady data from the last solution 

step are not available for accurate evaluation of the time gradients in the flow.

• If the aerodynamics flag iaero is set to .true., the aerodynamic forces are applied 

to the dynamic and elastic motion.  If the flag is set to .false., the dynamic and 

elastic motion must forced externally or occur as free-response vibrations.   

• The non-inertial dynamics routine is turned on when idynm is set to .true.  Euler2D 

will then read in the case.dyn file for dynamic inputs and write out dynamic motion 

to the xd.dat.   

• If the free-stream velocity flag ifree is set to .false., the free-stream velocity 

is set to zero, and relative flow velocities must be generated through dynamic 

rotation or translation of the non-inertial coordinate system.



593 

• If ifree = .true. , the freestream starts aligned with the global fixed x-direction 

(i.e., alpha = beta = 0) but can be rotated using the initial orientation of the body 

in case.dyn. 

• The elastic deflection routine is turned on when ielast is set to .true.  Euler2D 

will read in the case.vec file for modal elastic inputs and write out modal 

deformations and forces to the xn.dat.  The number of modes nr must match that 

shown in the elastic file case.vec. 

• For steady solutions (isol = 0), the dynamics flags for each degree of freedom in the 

case.dyn and case.vec should be set to 1 (clamped condition). 

• The propulsion boundary conditions are turned on when iprop is set to .true.  

Euler2D will read in the case.eng file for rocket and engine inputs.   

• If the external forces flag is set to .true., the solver will read the user defined 

external force vector for each global time step from the input file case.frc.  If the 

solver reaches the end of the input file before completing the solution, the last force 

vector in the file carries over to each of the remaining time steps if it was non-zero.

• If the safe-mode flag is set to .true., Euler2D writes two files per step that are used 

to restart the solution:  case.rst and case.rs2.  Two files are used so while one 

file is being over-written, the other file is still preserved.  Each file stores the previous 

two values of all unknowns, elastic mode shapes, and generalized elastic forces.  

Safe-mode can be used for fast restarts for very long runs that are not time sensitive.

• When the safe-mode flag is set to .true., Euler2D checks for both restart files.  If 

the case.rst exists, but has an error, the error is reported to the user.  The case.rst 

can be moved, renamed, or deleted.  The solution will then be restarted from the 

case.rs2 file.  (Euler2D does not skip between files to avoid overwriting files that 

contain correctable errors.) 

• If the residual watching flag is set to .true., residuals are written out at each inner 

iteration to the case.rsd2 file.  This option can be used to check the residual 

convergence within steps.  The number of inner cycles used at each iteration is 

written to the case.cyc file for plotting and comparison of convergence.

• If the acoustic output flag is set to .true., the acoustic input file case.acst is read 

for controls, and one or more of the acoustic output files (pressure � case.pac; 

density � case.rac; u-velocity � case.uac; v-velocity � case.vac) are written.

• Gravity is assumed to act on the vehicle along the inertial y-axis.  In the non-inertial 

reference frame, the body force vector rotates so that gravity is always pointed down 

in the positive y-direction.  The value gravity is non-dimensionalized using refdim

(L), mach (M), and ainf, so the dimensions of these variables should be consistent:

22

*

∞

=
aM

Lg
g



594 

Unknowns (Initial Conditions) Input File (case.unk) 

Basic File Format 

np gam xmi alp ref t 

((UN(i,j), i = 1,nnd ), j = 1,5) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

ref: real reference dimension 

t: real dimensionless time 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real pressure for node i

UN(i,5): real total enthalpy for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system. 

• The quantities nnd must match the values in the geometry file case.g2d as nnd. 

• The quantities gam and xmi must match the values in the control file case.con as 

gamma and mach. 

• When restarting a solution, the most recent unknowns output file case.un# can be 

renamed as the initial conditions file case.unk.



595 

Dynamic Mesh Input File (case.dyn) 

Basic File Format 

Line of Text 

 (R0(i), i = 1, 2) 

Line of Text 

 ((RM1(i,j), j = 1,3), i = 1,3) 

Line of Text 

 ((RC1(i,j), j = 1,3), i = 1,3) 

Line of Text 

 ((RK1(i,j), j = 1,3), i = 1,3) 

Line of Text 

 x, y, q, vx, vy, vq, ax, ay, aq 

Line of Text 

 (IBXD(i), i = 1,3) 

Definition of Terms 

R0(1): real x-coord. for origin of rotation 

R0(2): real y-coord. for origin of rotation 

RM1(i,j): real dimensional mass matrix 

RC1(i,j): real dimensional damping matrix 

RK1(i,j): real dimensional stiffness matrix 

x: real initial x-position of system 

y: real initial y-position of system 

q: real initial orientation of system (deg) 

vx: real initial x-velocity of system 

vy: real initial y-velocity of system 

vq: real initial angular velocity (deg/s) 

ax: real initial x-acceleration of system 

ay: real initial y-acceleration of system 

aq: real initial angular acceleration (deg/s
2
) 

IBXD(1): int dynamics flag for x-DOF 

IBXD(2): int dynamics flag for y-DOF 

IBXD(3): int dynamics flag for rotational DOF

  

Comments  

• This is a plain text (ASCII) file. 

• All values entered into this file should be dimensional.  The solver will automatically 

non-dimensionalize the values using the reference conditions specified in the solver 

control file.  The units of mass, length, and time in this file should match those in the 

controls file case.con. 

• The vector defining the origin of rotation R0 is subtracted directly from the nodal 

coordinates defined in the geometry input file case.g2d after it is non-dimension-

alized by the reference dimension. 

• The mass matrix RM1 defined in this file cannot be singular. 

• Initial conditions for the two translational degrees of freedom are specified relative to 

the inertial coordinate system, i.e. as seen by a stationary observer on the ground. 

• The dynamics of each degree of freedom is controlled separately using the following 

values for IBXD: 

o IBXD = 0 is a free / forced response calculation, i.e. uses mass, stiffness, and 

damping to compute position , velocity, and acceleration of system. 

o IBXD = 1 is a clamped condition, i.e. hold at initial position and velocity with zero 

acceleration. 

o IBXD = 2 is a constant acceleration, uncoupled response, i.e. integrates 

acceleration and velocity to compute new position. 

o IBXD = 3 is a forced mulistep response used for system identification purposes. 



596 

• The acceleration of gravity is scaled by gravity so that: 

jgravitygag
�−==

��

where j points in the positive y-direction in the inertial frame. 

• To convert from xd.dat to ICs: 

XD(1) x refdim  x

XD(2) x refdim  y

XD(3) x 180/π   q

XD(4) x mach x ainf   vx

XD(5) x mach x ainf   vy

XD(6) x 180/π x mach x ainf  / refdim  vq

The accelerations ax, ay, and aq are not used to restart the system and do not need to 

be converted from the xd.dat file. 



597 

Sample File  

$ Position vector to origin of non-inertial frame (rx, ry) 
  0.0d0  0.0d0 
$ Mass matrix for non-inertial frame (3 x 3) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ Damping matrix for non-inertial frame (3 x 3) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ Stiffness matrix for non-inertial frame (3 x 3) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ IC’s for non-inertial frame (x, y, q, vx, vy, vq, ax, ay, aq) 
  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0 
$ IBXD for non-inertial frame (3) 
  1    1    1 



598 

Elastic Vectors Input File (case.vec) 

Basic File Format 

Line of Text 

 nr 

Line of Text 

 ((RM(i,j), j = 1,nr), i = 1,nr) 

Line of Text 

 ((RC(i,j), j = 1,nr), i = 1,nr) 

Line of Text 

 ((RK(i,j), j = 1,nr), i = 1,nr) 

Line of Text 

 (XN(i), i = 1,nr*2) 

Line of Text 

 (IBXN(i), i = 1,nr) 

Line of Text 

 ((PHIA(i,j), i = 1,nwl*2), j = 1,nr) 

Definition of Terms 

nr: int number of elastic modes 

RM(i,j): real dimensional mass matrix 

RC(i,j): real dimensional damping matrix 

RK(i,j): real dimensional stiffness matrix 

XN(i): real initial gen. displ. for mode i

XN(i+nr): real initial gen. vel. for mode i

IBXD(i): int dynamics flag for i
th

 mode 

PHIA(i*2-1,j): real x-displacement vector 

for mode j at node i

PHIA(i*2,j): real y-displacement vector 

for mode j at node i

  

Comments  

• This is a plain text (ASCII) file. 

• All values entered into this file should be dimensional.  The solver will automatically 

non-dimensionalize the values using the reference conditions specified in the solver 

control file.  The units of mass, length, and time in this file should match those in the 

controls file case.con. 

• The number of modes nr listed in this file must match the number listed in the 

controls file case.con. 

• The mass matrix RM defined in this file cannot be singular. 

• The dynamics of each degree of freedom is controlled separately using the following 

values for IBXN: 

o IBXN = 0 is a free / forced response calculation, i.e. uses mass, stiffness, and 

damping to compute position , velocity, and acceleration of system. 

o IBXN = 1 is a clamped condition, i.e. hold at initial position with zero velocity and 

acceleration. 

o IBXN = 2 is a constant velocity, uncoupled response, i.e. integrates velocity to 

compute new displacement. 

o IBXN = 3 is a forced mulistep response used for system identification purposes. 

• Do not combined zero IBXN values with non-zero values for different modes if there 

are coupling or off-diagonal terms in the mass, damping, or stiffness matrices. 

• A limited set of simple model vectors representing standard rigid-body degrees of 

freedom can be generated using the program makevec2d.   



599 

Sample File  

$ Number of elastic modes 
  3 
$ Mass matrix for elastic modes (nr x nr) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ Damping matrix for elastic modes (nr x nr) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ Stiffness matrix for elastic modes (nr x nr) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ IC’s for elastic modes (x1...xn, vx1...vxn) 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
$ IBXN for elastic modes (nr) 
  1    1    1 
$ Elastic modes vectors ((nwl*2) x nr) 
  0.0d0  1.0d0 
  0.0d0  1.0d0 
  0.0d0  1.0d0 
  0.0d0  1.0d0 
  0.0d0  1.0d0 
  0.0d0  1.0d0 
  0.0d0  1.0d0 

    �     �



600 

External Forces File (case.frc) 

Basic File Format 

  0 (FD(i), i = 1, 3)  

   (FA(i), i = 1,nr) 

  �  �      �  �

istp (FD(i), i = 1, 3)  

        (FA(i), i = 1,nr) 

  �  �      �  �

nstp (FD(i), i = 1, 3)  

        (FA(i), i = 1,nr) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

FD(1): real x-force applied at istp

FD(2): real y-force applied at istp

FD(3): real pitch moment applied at istp

FA(i): real gen. force applied to mode i

Comments  

• This is a plain text (ASCII) file. 

• All values entered into this file should be dimensional.  The solver will automatically 

non-dimensionalize the values using the reference conditions specified in the solver 

control file.  The units of mass, length, and time in this file should match those in the 

controls file case.con. 

• The forces applied to the three translational degrees of freedom are specified relative 

to the inertial coordinate system, i.e. as seen by a stationary observer on the ground. 

• The specified forces are read one line at a time following each solution step. 

• Up to nstp forces may be specified, but are not required.  The last force read in by 

the solver will be applied for all remaining solution steps. 

• The force coefficients FD and generalized forces FA in this input file are non-dimen-

sionalized using the reference conditions specified in the control file case.con: 

LaM

F
FD X

22

2
1

)1(
∞∞

′
=

ρ
   

LaM

F
FD Y

22

2
1

)2(
∞∞

′
=

ρ

222

2
1

0)3(
LaM

M
FD

∞∞

′
=

ρ 222

2
1

)(
LaM

F
iFA i

∞∞

=
ρ

 where M is the free-stream Mach number and L is the reference dimension, both 

appearing in case.con. 



601 

Sample File  (nr = 3) 

  0   0.00d+00  0.00d+00  0.00d+00  0.00d+00  0.00d+00  0.00d+00  
  1   0.00d+00 
  2   0.00d+00 
  3   0.00d+00 
  4   0.00d+00 
  5   0.00d+00 
  6   0.00d+00 
  7   0.00d+00 
  8   0.00d+00 
  9   0.00d+00 
 10   0.00d+00 
 11   0.00d+00 
 12   0.00d+00 
 13   0.00d+00 
 14   0.00d+00 
 15   0.00d+00 
 16   0.00d+00 
 17   0.00d+00 
 18   0.00d+00 
 19   0.00d+00 
 20   0.00d+00  

  �          �                     �                �           �                     �                �



602 

Combustion Input File (case.cmb) 

Basic File Format 

Line of Text 

  nn  

Line of Text 

  (AMDOT(i), AMDOTE(i))    (i = 1,nn) 

Definition of Terms 

nn: int number of nodes or elements 

AMDOT(i): real mass generation at node or 

element i (dim�l) 

AMDOTE(i): real enthalpy generation at 

node or element i (dim�l) 

Comments  

• This is a plain text (ASCII) file. 

• The value of nn must match either the number of nodes (icomb = 1) or the number of 

element (icomb = 2), specified by the combustion option.  Values for mass and heat 

generation must be specified at all nodes or elements in the domain.  Nodes or 

elements that do not contain influences from combustion should be written as zeros. 

• The mass and heat generations are non-dimensionalized using refdim (L), mach (M), 

and ainf, so the dimensions of these variables should be consistent: 

∞∞

=
aM

L

ρ

ρ
ρ

�
� *

  
33

*

∞∞

=
aM

LH
H

ρ

ρ
ρ

�
�



603 

Sample File  

$  Combustion input file:  nn 
     30 
$ Nodal combustion values 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0130507508 0.2871165176 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0130507508 0.2871165176 
 0.0130507508 0.2871165176 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0130507508 0.2871165176 
 0.0130507508 0.2871165176 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0130507508 0.2871165176 
 0.0130507508 0.2871165176 
 0.0000000000 0.0000000000 
 0.0130507508 0.2871165176 
 0.0000000000 0.0000000000 
 0.0130507508 0.2871165176 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 
 0.0000000000 0.0000000000 



604 

Engine Condtions Input File (case.eng) 

Basic File Format 

Line of Text 

  nrbc nebc  

Line of Text 

  nrstp gain  

Line of Text 

  (i  isrf  ptin  Hin)  (i = 1,nrbc) 

Line of Text 

  (i  nis  nos 

isrf(1) isrf(2) … isrf(nis) 

jsrf(1) jsrf(2) … jsrf(nos) 

mdotin 

mdotf   thrust  mdotHf     ) 

 (i = 1,nebc) 

Definition of Terms 

nrbc: int number of rocket conditions 

nebc: int number of engine conditions 

nrstp: int number of iterations to converge 

the rocket total pressure / enthalpy 

gain: real gain for engine controllers 

isrf: int surface index in case.sur 

ptin: real total press. at inflow plane 

Hin: real total enthalpy at inflow plane 

nis: int number of inflow surfaces 

nos: int number of outflow surfaces 

isrf(i): real inflow surface indices (*.sur) 

jsrf(i): real outflow surface indices (*.sur) 

mdotin: real design mass flow rate (inflow) 

mdotf: real fuel flow rate 

thrust: real uninstalled thrust 

mdotHf: real fuel heat generation rate 

Comments  

• This is a plain text (ASCII) file. 

• Rocket boundary conditions:  nrbc is the number of surfaces that will be used to 

generate rocket outflow boundary conditions.   

• Each rocket BC corresponds to a surface (isrf) in case.sur.   

• Each rocket BC is specified using three values:  Total pressure, total entahlpy, and 

number of iterations.  The Mach number is calculated using the specified total 

pressure and downstream static pressure.  The total properties are increased 

linearly from freestream total properties to the specified totals in Nter iterations. 

• The total pressure and enthalpy in this file are dimensional quantities.  The flow 

solver non-dimensionalizes these values using mach (M) and ainf, so the 

dimensions of these variables should be consistent:

   

22

*

∞∞

=
aM

p
p t

t
ρ

  
2222

*

∞∞

==
aM

Tc

aM

H
H

tpt
t

• The total pressure and enthalpy along the rocket boundary is increased linearly 

over the course of nrstp iterations.  After nrstp iterations, the total properties are 

held at their specified values.  The properties are held constant for the entirety of 



605 

restarted solutions (istrt = .true. then nrstp = 0).  The following guidelines 

are given for nrstp:  5,000 < nrstp < 10,000. 

• Engine boundary conditions:  nebc is the number of combinations of inflow and 

outflow engine surfaces.  For example, one combination may be the inflow and 

outflow plane of the core of a turbofan engine, while a second combination is the 

inflow and outflow planes of the bypass flow.  Or, a combination can be used to 

model a dual inlet that exhausts through a single nozzle. 

• Each engine combination corresponds to a number of inflow surfaces (nis, isrf) 

and outflow surfaces (nos, jsrf) in case.sur.   

• The inflow condition is specified using a design mass flow rate and static 

pressure.  The mass flow rate is calculated by integrating the normal mass flux 

over the inflow plane.  If the mass flow rate is lower than the design value, the 

static pressure is lowered.  If the mass flow rate is too high, the static pressure at 

the inflow plane is increased. 

• The outflow condition is specified using the fuel flow rate, uninstalled thrust, and 

fuel heat generation rate.  The inflow mass flow rate and fuel flow rate are added 

together to obtain the outflow mass flow rate.  Likewise, the uninstalled thrust and 

fuel heat generation rate are added to the momentum and energy fluxes, 

respectively to obtain properties at the outflow plane.    

• The uninstalled thrust is calculated between the two specified planes, not 

including any inlets or nozzles upstream or downstream of the engine boundaries. 

• The mass flow rate, pressures, uninstalled thrusts, and heat generation rates in this 

file are dimensional quantities.  The flow solver non-dimensionalizes these values 

using refdim (L), mach (M), and ainf, so the dimensions of these variables 

should be consistent: 

   

2

,*

,
LaM

m
m

Din

Din

∞∞

=
ρ

�
�   

22

*

∞∞

=
aM

p
p o

o
ρ

LaM

m
m

f

f

∞∞

=
ρ

�
� *

  
LaM

F
F

22

*

∞∞

=
ρ

  
LaM

Hm
Hm

f

f 33

*

∞∞

=
ρ

�
�

• The mass flow rate entering an engine inflow plane is controlled by adjusting the 

pressure along the inflow boundary.  The pressure is adjusted according to the 

control scheme: 

( ) ( )
( )

�
�

�

�

�
�

�

�
−+=+ 1

,

1

Din

n

innn

m

m
kpp

�

�

where k is the controller gain (gain).  The following guidelines are given for 

gain:  0.0003 < gain < 0.001.   

  



606 

• Each surface in case.sur should only be connected to one rocket boundary condition 

or one engine combination.  Surfaces connected to a rocket or engine BC should be 

indicated by a 5, 6, 7 or 8 in case.bco so not to be confused with the other boundary 

conditions.  Euler2D checks to see that all boundary elements listed in the geometry 

file (case.g2d) are used in either the LBE (wall, symmetry, or far field) or propulsion 

boundaries (rocket or engine planes).  The program terminates if the element count 

used does not match that predicted by the numbers in the case.g2d and case.eng. 

Sample File  

$  Engine conditions input file 
     2 2 
$  Overall engine controls (nrstp, gain) 
     10000 0.0004 
$ Rocket conditions 
   1  4 792816.51701    1302510.0375 
   2  6 792816.51701    1302510.0375 
$ Engine conditions 
   1   2   1 
       8   9 
       2 
       193.53073  
       0.1562459 122326.09  3.4374098 
   1   2   1 
       18   19 
       12 
       580.59219 
       0.0000000 48930.436  0.0000000 



607 

Acoustic Input File (case.acst) 

Basic File Format 

Line of Text 

  ipres idens iuvel ivvel 

Line of Text 

  nacp nacl 

Line of Text 

  x(1)    y(1) 

   �      �

  x(nacp) y(nacp) 

Line of Text 

  x1(1)    y1(1)    x2(1)    y2(1) 

   �       �    �  �

  x1(nacl) y1(nacl) x2(nacl) y2(nacl) 

Definition of Terms 

ipres: int pressure output flag 

idens: int density output flag 

iuvel: int u-velocity output flag 

ivvel: int v-velocity output flag 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

x(:): real x-coordinate of acoustic point 

y(:): real y- coordinate of acoustic point 

x1(:): real x-coord - starting point of line 

y1(:): real y-coord - starting point of line 

x2(:): real x-coord - ending point of line 

y2(:): real y-coord - ending point of line 

Comments  

• This is a plain text (ASCII) file. 

• One of the four acoustics flags must be on, in order for the output files to be created 

and data written out.   

• If ipres = 1, then coefficient of pressure data is written to the case.pac file.   

• If idens = 1, then density data is written to the case.rac file.   

• If iuvel = 1, then u-velocity data is written to the case.uac file.   

• If ivvel = 1, then v-velocity data is written to the case.vac file.   

• If none of the four flags are on, ipres is set to 1 (on). 

• The header lines must still be written, even if no data is given in the corresponding 

section.  For instance, if nacp = 0, the point header must still exist in the file at the 5
th

line.  If nacl = 0, the line header must still exist at the end of the file.  The header 

lines exist as place holders, so anything can be written on these lines, but the lines 

themselves must exist. 

• Acoustic points can exist anywhere inside of the domain.  These points are described 

by (x,y) coordinates.  If the coordinates do not exist within the field, the first node of 

the first element is used to calculate properties written to the file(s).  A warning is 

written in the header of these files, and the (x,y) coordinates of this point will not 

match those in the input file.  This data should not be used but treated as a place 

holder. 

• The acoustic lines are represented by drawing a line from a starting point (x1,y1) to 

an ending point (x2,y2).  Any segment in the solution domain that crosses this line is 

used to calculate properties at the intersection (of the acoustic line and segment).  

Intersections along a particular line are listed in order from starting to ending points. 



608 

Sample File  

$ Acoustic output file flags 

  1  0  1  0 

$ Number of points and lines 

  4  2 

$ Coordinates of acoustic points 

  0.3  0.0 

  0.7  0.1 

  0.1  0.0 

  0.8  0.8 

$ Coordinates of acoustic lines 

  0.5  0.0  0.5  1.0 

  0.0  0.0  1.0  0.0 



609 

Unknowns Output File (case.un#) 

Basic File Format 

np gam xmi alp ref t 

((UN(i,j), i = 1,nnd ), j = 1,5) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

ref: real reference dimension 

t: real dimensionless time 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real pressure for node i

UN(i,5): real total enthalpy for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system.



610 

Residuals Output File (case.rsd) 

Basic File Format 

  1 (RSD(i), i = 1,4) 

  �      �

istp (RSD(i), i = 1,4) 

  �      �

nstp (RSD(i), i = 1,4) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real energy solution residual 

Comments  

• This is a plain text (ASCII) file. 

• For steady problems, the solution residuals indicate the degree of convergence to the 

final steady state solution.  All four solution residuals should converge to 

approximately the same order of magnitude. 

• For unsteady problems, the solution residuals indicate the degree of convergence for 

each global step of the solution, or the degree of convergence for the steady solution 

that is solved at each step. 



6
1
1

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
 
 
 
3
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
 
 
 
4
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
 
 
 
5
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
 
 
 
6
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
 
 
 
7
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
 
 
 
8
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
 
 
 
9
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
 
 
 
1
0
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
 
 
 
1
1
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
 
 
 
1
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
 
 
 
1
3
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
 
 
 
1
4
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
 
 
 
1
5
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
 
 
 
1
6
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
 
 
 
1
7
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
 
 
 
1
8
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
 
 
 
1
9
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5
 

 
 
 
 
2
0
 
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
2
8
9
0
1
E
-
0
5
 

 
 
 
 
 
�
 

  
  
  

  
  
�
 

 
  
�
 

 
  

  
  
�
 

 
  

  
  

  
  
�

       611



612 

Residuals Output File (case.rsd2) 

Basic File Format 

  1 (RSD(i), i = 1,4)     1 

  1 (RSD(i), i = 1,4)     2 

  �      �           �

  1 (RSD(i), i = 1,4)   icyc 

  �      �           �

istp (RSD(i), i = 1,4)     1 

  �      �           �

nstp (RSD(i), i = 1,4)     1 

  �      �           �

Definition of Terms 

istp: int current solution step 

icyc: int iteration of current residual 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real energy solution residual 

Comments  

• This is a plain text (ASCII) file. 

• This file is output when irsds = .true. in the controls case.con file.  The 

residuals shown in this file represent the RMS changes at all nodes in the domain for 

this inner cycle.  The convergence of residuals within any iteration can be seen in the 

trend in the residuals through the cycles used. 



6
1
3

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 

 
 
1
 

 
 
 
 
 
1
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
2
 

 
 
 
 
 
1
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
3
 

 
 
 
 
 
1
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
4
 

 
 
 
 
 
1
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
5
 

 
 
 
 
 
1
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
6
 

 
 
 
 
 
1
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
7
 

 
 
 
 
 
1
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
8
 

 
 
 
 
 
2
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
 
1
 

 
 
 
 
 
2
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
 
2
 

 
 
 
 
 
2
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
 
3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
 
4
 

 
 
 
 
 
2
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
 
5
 

 
 
 
 
 
2
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
 
6
 

 
 
 
 
 
2
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
 
7
 

 
 
 
 
 
2
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
 
8
 

 
 
 
 
 
3
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
 
1
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
 
2
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5
 

 
 
3
 

 
 
 
 
 
3
 
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
2
8
9
0
1
E
-
0
5
 

 
 
4
 

 
 
 
 
 
�
 

  
  
  

 �
 

 
 

�
 

 
  

  
  
�
 

 
  

  
  

  
  
�

       613



614 

Cycles Output File (case.cyc) 

Basic File Format 

  1   icyc(1) 

  �     �

istp icyc(istp) 

  �     �

nstp icyc(nstp) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

icyc( ): int number of cycles used to 

converge this iteration 

Comments  

• This is a plain text (ASCII) file. 

• When the energy residual becomes lower than the residual tolerance rsdtol, then 

the iteration is said to be converged.  The number of cycles to converge the solution is 

written to this file.   

• The number of cycles can be used to rate the effectiveness of the unsteady time step 

dt.  If too many cycles are being required, the time step can be lowered, decreasing 

the changes to the field.  (This assumes that an appropriate residual tolerance has 

been chosen.) 

• The following is a good practice for finding a sufficient number of iterations for 

unsteady solutions:   

• Select initial values for dt, ncyc, and rsdtol.   

• Step the solution forward 20-50 iterations.   

• Check the *.cyc file for the number of cycles required per iteration.  The number 

of cycles should level off after 10 iterations.  If not, run enough iterations for the 

number of required cycles to level off. 

• If the last 10 iterations require more than 20 cycles, lower the time step.   

• If the last 10 iterations require less than 8 iterations, increase the time step.   

• The sweet spot is 10-15 iterations. 



615 

Sample File  

     1    20 
     2    20 
     3    20 
     4    20 
     5    19 
     6    19 
     7    20 
     8    19 
     9    19 
    10    19 
    11    19 
    12    19 
    13    18 
    14    19 
    15    18 
    16    18 
    17    18 
    18    19 
    19    18 
    20    18 

     �          �



616 

Time Step Output File (case.time) 

Basic File Format 

 utime 

   �

Definition of Terms 

utime: real unsteady time step ratio 

Comments  

• This is a plain text (ASCII) file. 

• The time step file case.time is written out when the residuals watching flag is 

turned on (irsds = .true.).  

• The ratio is calculated using the following equation: 

( )
��
�

�
��
�

� ∆
= 1,

dt

t
MINutime ninv

 where (∆tinv)n is the inviscid local time step on node n and dt is the global time step. 

• The first column should be less than unity (1).  The ratio of local to global time step 

acts like a relaxation factor in the solver.  The solver limits this ratio to a maximum of 

unity, so unity in the first column shows that the global time step is smaller than all of 

the local time steps on the domain.  The global time step should be increased until a 

value less than unity is reached somewhere on the domain.   

• The number of cycles ncyc can also be gauged using the first column.  The number 

of cycles should be greater than dt / ∆tmin to maintain a reasonable assumption of time 

accuracy.  Column represents the minimum of ∆tmin / dt on the domain, or the maxi-

mum cycles needed on the domain. 



617 

Sample File  

    0.85620E+00 
    0.87930E+00 
    0.78200E+00 
    0.79380E+00 
    0.79380E+00 
    0.79381E+00 
    0.79380E+00 
    0.79380E+00 
    0.79379E+00 
    0.79380E+00 
    0.79380E+00 
    0.79380E+00 
    0.79378E+00 
    0.79380E+00 
    0.79380E+00 
    0.79381E+00 
    0.79380E+00 
    0.79380E+00 
    0.79382E+00 
    0.79382E+00 

       �



618 

Aerodynamic Loads Output File (case.lds) 

Basic File Format 

  0 0.0 (FD(i), i = 1,3) 

  �  �     �

istp tistp (FD(i), i = 1,3) 

  �  �     �

nstp t
nstp

 (FD(i), i = 1,3) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

t: real dimensionaless time at step i

FD(1): real x-force coefficient 

FD(2): real y-force coefficient 

FD(3): real moment coefficient 

Comments  

• This is a plain text (ASCII) file. 

• The force coefficients FD in this output file are dimensionless values based on the 

reference conditions specified in the solver control file case.con: 

LaM

F
FD X

22

2
1

)1(
∞∞

′
=

ρ
   

LaM

F
FD Y

22

2
1

)2(
∞∞

′
=

ρ 222

2
1

0)3(
LaM

M
FD

∞∞

′
=

ρ

 where M is the free-stream Mach number and L is the reference dimension, both 

appearing in case.con. 

• The moment coefficient is calculated in reference to the origin of the mesh. 

• For dynamic (non-inertial) problems, the force coefficients stored in this file are 

referenced to the body-fixed coordinate system. 



619 

Sample File  

      0    0.00000E+00    0.00000E+00    0.00000E+00    0.00000E+00 
      1    0.10000E+00    0.29186E+01    0.40893E-04    0.20386E-04 
      2    0.20000E+00    0.53878E+01    0.74036E-04    0.36920E-04 
      3    0.30000E+00    0.73426E+01    0.10798E-03    0.53867E-04 
      4    0.40000E+00    0.87754E+01    0.14611E-03    0.72920E-04 
      5    0.50000E+00    0.97221E+01    0.18835E-03    0.94033E-04 
      6    0.60000E+00    0.10250E+02    0.23574E-03    0.11772E-03 
      7    0.70000E+00    0.10444E+02    0.26257E-03    0.13112E-03 
      8    0.80000E+00    0.10391E+02    0.25348E-03    0.12657E-03 
      9    0.90000E+00    0.10173E+02    0.25302E-03    0.12632E-03 
     10    0.10000E+01    0.98630E+01    0.23377E-03    0.11668E-03 
     11    0.11000E+01    0.95136E+01    0.20482E-03    0.10219E-03 
     12    0.12000E+01    0.91543E+01    0.19370E-03    0.96640E-04 
     13    0.13000E+01    0.88118E+01    0.23365E-03    0.11662E-03 
     14    0.14000E+01    0.85116E+01    0.28553E-03    0.14256E-03 
     15    0.15000E+01    0.82553E+01    0.37539E-03    0.18747E-03 
     16    0.16000E+01    0.80367E+01    0.55544E-03    0.27749E-03 
     17    0.17000E+01    0.78461E+01    0.76662E-03    0.38306E-03 
     18    0.18000E+01    0.76747E+01    0.10095E-02    0.50449E-03 
     19    0.19000E+01    0.75147E+01    0.12664E-02    0.63292E-03 
     20    0.20000E+01    0.73607E+01    0.15058E-02    0.75262E-03 

      �           �        �             �        �



620 

Dynamic Output File (xd.dat) 

Basic File Format 

  0 0.0 (XD(i), i = 1,6)  

 (FD(i), i = 1,3) 

  �  �      �  �

istp tistp (XD(i), i = 1,6)  

 (FD(i), i = 1,3) 

  �  �      �  �

nstp tnstp (XD(i), i = 1,6)  

 (FD(i), i = 1,3) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

t: real dimensionless time at step i

XD(1): real x- position 

XD(2): real y- position 

XD(3): real pitch angle (rad) 

XD(4): real x- velocity 

XD(5): real y- velocity 

XD(6): real pitch rate (rad/s) 

FD(1): real x- force 

FD(2): real y- force 

FD(3): real pitch moment 

Comments  

• This is a plain text (ASCII) file. 

• The dynamic data in this output file is dimensionless based on the reference 

conditions specified in the solver control file case.con: 

L

x
XD 0)1( =   

L

y
XD 0)2( =   )()3( 0 radXD θ=

∞

=
aM

V
XD X)4(

∞

=
aM

V
XD Y)5( )/()6( 0 sradq

aM

L
XD

∞

=

LaM

F
FD X

22

2
1

)1(
∞∞

′
=

ρ
  

LaM

F
FD Y

22

2
1

)2(
∞∞

′
=

ρ 222

2
1

0)3(
LaM

M
FD

∞∞

′
=

ρ

 where M is the Mach number and L is the reference dimension in case.con. 

• The position, velocity, and acceleration vectors in this file are defined relative to the 

global coordinate system, while the rotational quantities are defined as rotations about 

the local or body-fixed coordinate system.



6
2
1

 

S
a

m
p

le
 F

il
e 

 

 
 
1
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 

 
 
2
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
3
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
4
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
5
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
6
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
7
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
8
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
9
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
1
0
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
1
1
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
1
2
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
1
3
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
1
4
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
1
5
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
1
6
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
1
7
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
1
8
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
1
9
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
0
.
2
9
2
7
9
E
-
0
5
 

 
2
0
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
0
.
2
8
9
0
1
E
-
0
5
 

 
 
�

 
  
  
  

  
�

 
 

  
  
�

 
  
  
  

  
  

  
  
  
  
�

 
  
  
  

  
  

  
�

 
 

  
  
  

  
�

 
 

  
 �

 
  
  
  

  
  

  
  
  
�

 
  
  
  

  
  

 �
 

 
  
  
  
�

 
 

 �

       621



622 

Dynamic Output File (xn.dat) 

Basic File Format 

  0 0.0 (XN(i), i = 1,nr)  

(VN(i), i = 1,nr) 

(FA(i), i = 1,nr) 

  �  �      �  �

istp t
istp

 (XN(i), i = 1,nr)  

(VN(i), i = 1,nr)  

(FA(i), i = 1,nr) 

  �  �      �  �

nstp tnstp (XN(i), i = 1,nr)  

(VN(i), i = 1,nr)  

(FA(i), i = 1,nr) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

t: real dimensionaless time at step i

XN(i): real generalized displ. on mode i

VN(i): real generalized velocity on mode i

FA(i): real generalized force on mode i

Comments  

• This is a plain text (ASCII) file. 

• The number of modes nr is given in the control file case.con. 

• The elastic data in this output file is dimensionless based on the reference conditions 

specified in the solver control file case.con: 

inxiXN ,)( =   
inx

aM

L
iVN ,)( �

∞

=   
222

,
)(

LaM

F
iFA

in

∞∞

=
ρ

 where M is the Mach number and L is the reference dimension in case.con. 

• To reassemble the elastic displacements at all points along the surface of the model, 
use the modal deflections (mode shapes) PHIA in the elastics file (case.vec) and xn,i.  

The displacement vector at the k th node is: 

( )
( )
( )�

= �
	



�
�
 −

=
N

i

in
ikPHIA

ikPHIA
xk

1

,
,2

,12
δ
�

where N is the number of mode shapes in the elastic system.  The boundary velocity 

at the k
 th

 node is: 

( )
( )
( )�

= �
	



�
�
 −

=
N

i

inb
ikPHIA

ikPHIA
xkV

1

,
,2

,12
�

�



6
2
3

 

S
a

m
p

le
 F

il
e 

 (
n
r
 =

 3
) 

 
 
1
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 

 
 
2
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
3
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
4
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
5
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
6
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
7
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
8
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
9
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
1
0
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
1
1
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
1
2
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
1
3
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
1
4
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
1
5
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
1
6
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
1
7
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
1
8
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
1
9
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
0
.
2
9
2
7
9
E
-
0
5
 

 
2
0
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
0
.
2
8
9
0
1
E
-
0
5
 

 
 
�

 
  
  
  

  
�

 
 

  
  
�

 
  
  
  

  
  

  
  
  
  
�

 
  
  
  

  
  

  
�

 
 

  
  
  

  
�

 
 

  
 �

 
  
  
  

  
  

  
  
  
�

 
  
  
  

  
  

 �
 

 
  
  
  
�

 
 

 �

       623



624 

Restart Files (case.rst  and case.rs2) 

Basic File Format 

istp nnd gam xmi ref dt 

((UN(i,j), i = 1,nnd), j = 1,5) 

((UNO(i,j), i = 1,nnd), j = 1,5) 

(XN(i,j), i = 1,2*nr),  

(XN1(i), i = 1,2*nr) 

(FA(i,j), i = 1,nr),  

(FA2(i), i = 1,nr) 

(XD(i,j), i = 1,6),  

(XD1(i), i = 1,6) 

(FD(i,j), i = 1,3),  

(FD2(i), i = 1,3) 

Definition of Terms 

istp: int step in global solution 

nnd: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

ref: real reference dimension 

dt: real global time step 

UN: real unknowns at previous step 

UNO: real unknowns at two steps prior 

XN: real elastic deflect / velocity 

XN1: real prev. elastic deflect / velocity 

FA: real generalized aero. forces  

FA2: real external forcing on modes 

XD: real rigid body position / velocity 

XD1: real prev. rigid body pos. / vel. 

FD: real aero. forces on vehicle 

FD2: real external forcing on vehicle 

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns, deflections, and forces stored in this file are dimensionless 

quantities. 

• Unknowns properties vector UNO is only read/written for 2
nd

 order unsteady solutions 

(isol = 2).   

• Elastic properties XN, XN1, FA, and FA2 is only read/written when the elastics flag 

ielast is set to .true.   

• Non-inertial properties XD, XD1, FD, and FD2 is only read/written when the non-

inertial flag idynm is set to .true.  



625 

Acoustic Pressure Output File (case.pac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “Cp1”“Cp2”|| “Cp3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

t: real solution time 

Cp#: real coefficient of pressure at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first two rows give the (x,y) coordinate of the node or intersection.  

The rows under the dashed divider line are the coefficient of pressure at the node or 

intersection point at the solution time designated in the first column.   

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   



626 

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



6
2
7

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
 
�
 

  
  
  

  
  
  

  
  
  

  
�
 

 
 

  
�
 

 
  

  
  

  
  
  

  
�
 

 
  

  
  

  
�
 

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  
�

       627



628 

Acoustic Density Output File (case.rac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “rh1”“rh2”|| “rh3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

t: real solution time 

rh#: real dimensionless density at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first two rows give the (x,y) coordinate of the node or intersection.  

The rows under the dashed divider line are the dimensionless density at the node or 

intersection point at the solution time designated in the first column.   

• Density data is presented in dimensionless form: 



629 

∞

=
ρ

ρ
#rh

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



6
3
0

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
 
�
 

  
  
  

  
  
  

  
  
  

  
�
 

 
 

  
�
 

 
  

  
  

  
  
  

  
�
 

 
  

  
  

  
�
 

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  
�

       630



631 

Acoustic u-Velocity Output File (case.uac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “uu1”“uu2”|| “uu3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

t: real solution time 

uu#: real dimensionless u-velocity at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first two rows give the (x,y) coordinate of the node or intersection.  

The rows under the dashed divider line are the dimensionless u-velocity at the node or 

intersection point at the solution time designated in the first column.   

• u-Velocity data is presented in dimensionless form:



632 

∞

=
U

u
uu#

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



6
3
3

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
 
�
 

  
  
  

  
  
  

  
  
  

  
�
 

 
 

  
�
 

 
  

  
  

  
  
  

  
�
 

 
  

  
  

  
�
 

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  
�

       633



634 

Acoustic v-Velocity Output File (case.vac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “vv1”“vv2”|| “vv3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

t: real solution time 

vv#: real dimensionless v-velocity at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first two rows give the (x,y) coordinate of the node or intersection.  

The rows under the dashed divider line are the dimensionless v-velocity at the node or 

intersection point at the solution time designated in the first column.   

• v-Velocity data is presented in dimensionless form:



635 

∞

=
U

v
vv#

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



6
3
6

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|

       636



637 

APPENDIX D 

NS2D FILE FORMATS 

The file formats included in this section are used to create the input files required to operate 

NS2D and interpret the files that are written by NS2D.  In order to make this appendix more 

compact, file formats that are already outlined in Appendix C are not repeated here.  If 

additional terms or options are added to model viscous or turbulent effects, the file formats 

are called out in full detail here to show the differences.  



638 

NS2D 

Summary of File Formats 

Input Files: 

• case.g2d (required) contains the geometry data structures representing the 

computational mesh as required by the flow solver (ASCII) 

• case.con (required) contains values for the solver control parameters and flow 

conditions (ASCII) 

• case.unk (optional) contains the values of the primitive flow variables (density, 

velocity, pressure, and total enthalpy) and the turbulent flow variables (turbulent 

viscosity, turbulent kinetic energy, turbulent dissipation, and model variables) for 

each node of the computa-tional mesh to be used as the initial conditions for the 

flow solution (Binary) 

• case.dyn (optional) contains the non-inertial matrices and initial conditions as 

required for a non-inertial solution (ASCII)  [see Appendix C] 

• case.vec (optional) contains the elastic mode matrices, initial conditions, and 

mode shape vectors for the solid wall surfaces as required for an aero-elastic 

solution (ASCII)  [see Appendix C] 

• case.frc (optional) contains external forces to be applied to each solution step 

in a dynamic or aeroelastic solution (ASCII)  [see Appendix C] 

• case.cmb (optional) contains information to represent the influence of 

combustion on the flow solution (ASCII)  [see Appendix C] 

• case.eng (optional) contains the properties needed to represent rocket and 

engine boundary conditions (ASCII)  [see Appendix C] 

• case.acst (optional) contains the acoustic output data (ASCII)  [see Appendix 

C] 

• case.tbc (optional) contains temperature boundary condition data (ASCII) 

Output Files: 

• case.un# contains the values of the primitive flow variables (density, velocity, 

pressure, and total enthalpy) and the turbulent flow variables (turbulent viscosity, 

turbulent kinetic energy, turbulent dissipation, and model variables) for each node 



639 

of the computational mesh; # is iterated as more files are produced so the progress 

of the solution can be followed (Binary) 

• caset.un# contains the values of the turbulent flow variables (turbulent 

viscosity, turbulent kinetic energy, turbulent dissipation, and model variables) for 

each node of the computational mesh; # is iterated as more files are produced so 

the progress of the solution can be followed (Binary) 

• case.rsd contains a history of the solution residuals for the conservation 

variables (density, momentum (2), and total energy) (ASCII) 

• case.rsd2 contains a history of the solution residuals for the conservation 
variables at each inner cycle (ASCII) 

• case.cyc contains a history of the inner cycles used to converge each iteration 

(ASCII)  [see Appendix C] 

• case.time contains a history of the local time step ratios (ASCII) 

• case.lds contains a history of the dimensionless aerodynamic forces acting on 

the solid walls of the geometry (ASCII)  [see Appendix C] 

• xd.dat contains a history of the non-inertial displacements, velocities, and 

accelerations for a dynamic solution (ASCII)  [see Appendix C] 

• xn.dat contains a history of the generalized displacements, velocities, and 

forces for an unsteady, aeroelastic solution (ASCII)  [see Appendix C] 

• case.rst and case.rs2 contains information on up to two sets of unknowns 

data, elastic system data, and dynamic motion data (ASCII) 

• case.pac contains a history of pressure data at prescribed nodes (ASCII)  [see 

Appendix C] 

• case.rac contains a history of density data at prescribed nodes (ASCII)  [see 

Appendix C] 

• case.uac contains a history of u-velocity data at prescribed nodes (ASCII)  

[see Appendix C] 

• case.vac contains a history of v-velocity data at prescribed nodes (ASCII)  

[see Appendix C] 



640 

Geometry Input File (case.g2d) 

Basic File Format 

Line of Text 

nnd nel nsg nbe nbp nwl nsd nwlv nsdv  

Line of Text 

  (LBE(i), i = 1, 8) 

Line of Text 

  (COOR(i,j), j = 1,2)  (i = 1,nnd) 

Line of Text 

  (IELM(i,j), j = 1,3)  (i = 1,nel) 

Line of Text 

  (ISEG(i,j), j = 1,2)  (i = 1,nsg) 

Line of Text 

  (IBEL(i,j), j = 1,4)  (i = 1,nbe) 

Definition of Terms 

nnd: int number of nodes 

nel: int number of elements 

nsg: int number of segments 

nbe: int number of boundary elements 

nbp: int number of boundary points 

nwl: int number of wall nodes 

nsd: int number of singular nodes 

nwlv: int number of viscous wall nodes 

nsdv: int number of singular viscous nodes 

LBE(i): int start/ stop index for 4 BC types 

COOR(i,1): real x-coordinate for node i

COOR(i,2): real y-coordinate for node i

IELM(i,1): int node 1 for element i

IELM(i,2): int node 2 for element i

IELM(i,3): int node 3 for element i

ISEG(i,1): int node 1 for segment i

ISEG(i,2): int node 2 for segment i

IBEL(i,1): int node 1 for boundary elem. i

IBEL(i,2): int node 2 for boundary elem. i

IBEL(i,3): int surface index in case.sur

IBEL(i,4): int domain elem. attached to 

boundary elem. i

Comments  

• This is a plain text (ASCII) file. 

• The nodal coordinates in this file are treated as dimensional values and are non-

dimensionalized using the reference dimension refdim specified in the control file.   

• The element connectivity data IELM  and IBEL  define clockwise oriented elements. 

• The program makeg2d is used to convert a standard STARS surface triangulation file 

case.fro and modified boundary conditions file case.bco into an appropriately 

sorted two-dimensional geometry file. 

• Nodal data COOR  is sorted such that the first nwl nodes are defined as solid wall 

nodes.  Out of the first nwl nodes, the last nsd  nodes are defined as singular nodes.  

The viscous nodes are placed in the middle (nwlv and nsdv), according to the 

following diagram: 



641 

• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 

LBE(3) through LBE(4) are symmetry elements, LBE(5) through LBE(6) are far-field 

elements, and LBE(7) through LBE(8) are viscous solid wall elements, where the two 

solid wall elements are restricted to LBE(1) < LBE(7) < LBE(8) < LBE(2).  (In 

other words, the viscous solid walls must exist within the limits of the viscous walls.) 



642 

Sample File  

$  nnd,  nel,  nsg,  nbe,  nbp,  nwl,  nsd, nwlv, nsdv 
     8     6    13     8     8     3     0     2     0  
$ LBE(8) 
     1     2     3     2     3     8     1     2 
$ Nodal coordinates 
 -.100000E+01 -.100000E+01 
 0.100000E+01 -.100000E+01 
 0.000000E+00 -.100000E+01 
 0.100000E+01 0.100000E+01 
 -.100000E+01 0.100000E+01 
 0.100000E+01 0.000000E+00 
 0.000000E+00 0.100000E+01 
 -.100000E+01 0.000000E+00 
$ Element connectivity 
     1     3     8 
     3     2     6 
     5     8     7 
     6     4     7 
     8     3     6 
     6     7     8 
$ Segment connectivity 
     1     3 
     1     8 
     2     3 
     2     6 
     3     8 
     3     6 
     4     6 
     4     7 
     5     8 
     5     7 
     6     7 
     6     8 
     7     8 
$ Boundary edge data 
     1     3 1 1 
     3     2 1 2 
     2     6 2 2 
     6     4 2 4 
     4     7 3 4 
     7     5 3 3 
     5     8 4 3 
     8     1 4 1 



643 

Solver Control Input File (case.con) 

Basic File Format 

&control 
dt   = 0.1d0, 
gamma  = 1.4d0, 
diss   = 1.0d0, 
cfl   = 0.5d0, 
lamb        = -0.666d0, 
Smod        = 0.0d0,  
dislen      = 1.0d-20, 

mach   = 0.6d0, 
Re          = 2.0d5, 
Pr          = 0.7d0, 
alpha  = 0.0d0, 
refdim  = 1.0d0, 

iturb       = 0, 
turbI       = 0.01d0, 
muTinf      = 0.01d0, 
rnuinf      = 0.0d0, 
rhoKinf     = 0.0d0, 
rhoWinf     = 0.0d0, 
PrT         = 0.9d0, 
disst       = 1.0d0, 

nstp   = 100, 
nout   = 50, 
ncyc   = 4, 

rsdtol = 1.0d-20, 
rsdmax  = 10.0d0, 

isol   = 0, 
idiss  = 0, 
icomb  = 0, 
itime       = 0, 

istrt  = .false., 
iaero  = .true., 
idynm  = .false., 
ielast  = .false., 
iprop  = .false., 
ifree  = .true., 
iforce  = .false., 
isafe  = .false., 
irsds  = .false., 
iacoust     = .false., 
itempbc     = .false., 

Definition of Terms 

dt: real dimensionless global time step 

gamma: real ratio of specific heats 

diss: real dissipation factor 

cfl: real local time step stability factor 

lamb: real ratio of 2
nd

 over 1
st
 viscosity (λ/µ) 

Smod: real modified Sutherland�s constant 

dislen: real distance from wall where no 

artificial dissipation is used 

mach: real freestream Mach number 

Re: real freesteam Reynolds number 

Pr: real Prandtl number 

alpha: real free-stream angle of attack (deg) 

refdim: real reference length (dim�l) 

iturb: int turbulence model flag 

turbI: real freestream turbulence intensity 

muTinf: real freestream eddy viscosity 

rnuinf: real turbulence IC and FF BC for ρν
rhoKinf: real turbulence IC and FF BC for ρK

rhoWinf: real turbulence IC and FF BC for ρω
PrT: real turbulent Prandtl number 

disst: real turbulent dissipation factor 

nstp: int total solution steps 

nout: int output frequency, steps/output 

ncyc: int iterative cycles per solution step 

rsdtol: real energy residual converg tolerance 

rsdmax: real energy residual divergence criteria 

isol: int CFD solution type 

idiss: int dissipation type 

icomb: int combustion model type 

itime: int viscous local time stepping flag 

istrt: log restart flag 

iaero: log aerodynamic forces flag 

idynm: log dynamic/non-inertial flag 

ielast: log elastic flag 

iprop: log propulsion flag 

ifree: log free-stream velocity flag 

iforce: log external forces flag 

isafe: log safe-mode flag 

irsds: log residual watching flag 

iacoust: log acoustics output flag 

itempbc: log temperature BC flag 

nr   = 0, 



644 

ainf   = 1.0d0, 
rhoinf  = 1.0d0, 
gravity  = 0.0d0, 

/ 

  

nr: int number of elastic modes 

ainf: real free-stream sonic speed (dim�l) 

rhoinf: real free-stream density (dim�l) 

gravity: real gravity (dim�l) 

Comments  

• This is a plain text (ASCII) file formatted as a Fortran namelist.   

• The namelist must begin with the line �&control� and end with the line �/�.   

• The remaining lines can be listed in any order or omitted, if desired.   

• The intermediate lines work like variable assignments with the loose format:  

variable_name = value, followed by a comma.   

• Integers (int) are listed as whole numbers. 

• Real numbers (real) are listed in double precision, scientific notation:  #.##d+##. 

• Logical variables (log) are listed as either �.true.� or �.false.�. 

• Lines can be commented out by including an exclamation point �!� prior to any 
other information on the line.   

• The default values, shown above, are used for variables omitted or commented 

out of the namelist. 

• Any information listed after the last line of the namelist �/� are not read by the 

program and can be used to store notes and other calculations. 

• The global time step dt is only used for unsteady solutions.  dt is a dimensionless 

value calculated:  dt = ∆t U / L, where ∆t is the dimensional time step, U is the free-

stream velocity ( = mach ainf ), and L is the reference length refdim.   
• Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.  Some 

dissipation is required to stabilize the solution, but too much dissipation will corrupt 

the solution and possibly be a destabilizing influence. 

• The local time step stability factor is a safety factor used to compute local time steps 

for each solution step. For steady solutions, a stability factor of 0.8 is typical for most 

problems. For unsteady solutions, the stability factor is typically 0.3 < cfl < 0.8. 

• The coefficient lamb is the ratio of second to first viscosity λ/µ, which is considered 

constant across the domain.  lamb is restricted to be greater than or equal to -2/3 to 

maintain positive viscous dissipation in the energy equation (Stoke�s hypothesis). 

• The coefficient Smod is the modified Sutherland�s coefficient:  Smod = cp S / Uinf
2
, 

where cp is the specific heat at constant pressure, S is Sutherland�s constant, and Uinf

is the freestream velocity (= mach ainf).  If Smod is set to zero, the viscosity is 

constant, equal to the freestream viscosity throughout the domain.  If Smod > 0, 

Sutherland�s equation is used to vary viscosity with temperature (enthalpy). 

• The values of refdim, mach, ainf, and rhoinf are used to non-dimensionalize all 

values read into the flow solver. 

• Prandtl number Pr is used to relate viscosity and thermal conductivity k.  The 

freestream Reynolds number Re is used to relate the density and velocity in the 

freestream to the viscosity in the freestream, using L as refdim: 



645 

k

c p µ
=Pr   

∞

∞∞=
µ

ρ LU
Re   ∞∞∞ = aMU

• The free-stream angle of attack is ignored for dynamic (non-inertial) problems. 

• Turbulence is represented by the addition of differential equations.  The order and 

accuracy differs by turbulence model: 

• iturb = 0, no turbulence model (N-S only) 

• iturb = 1, Spalart-Allmarus model (one-equation; good for streamlined bodies) 

• iturb = 2, Menter�s SST model (two-equation; good for more complex flows) 

• Initial conditions, far field (freestream), and lowest allowable values for turbulence 

are set through rnuinf, rhoKinf, rhoWinf, turbI, and muTinf.  The first three 

variables are used to set turbulent quantities directly, while the other two variables 

can be used to back-calculate the turbulent quantities from more user-friendly values: 

• For the SA model (iturb = 1), rnuinf represents the SA variable ρν, which is 

used to directly calculate the local eddy viscosity.  The amount of turbulence in 

the freestream affects the laminar performance and growth rate of turbulence 

along the wall.  rnuinf = 10
-4

 is suggested to create �natural transition�, and 

rnuinf = 3 is suggested to create a wholly turbulent solution.  If rnuinf < 0, then 

ρν is calculated from the eddy viscosity muTinf, using: 

*

1

*

,
�

∞∞ = νρµ vT f      or 
( )

( ) 33*

3*

1

1.7�

�

+
=

∞

∞

νρ

νρ
vf

• For the SST model (iturb = 2), rhoKinf represents the turbulent kinetic energy 

ρK, and rhoWinf represents the rate of dissipation of turbulent kinetic energy ρω.  

The amount of turbulence in the freestream affects the laminar performance and 

growth rate of turbulence along the wall.  If rhoKinf < 0, then ρK is calculated 

from turbulent intensity turbI, shown as T�: 

23

2

∞

∞
∞ =′

U

K
T     or ( )2** 5.1 ∞∞∞

′= TK ρρ

If rhoWinf < 0, then ρω is calculated from eddy viscosity muTinf, shown as µT: 

LT

K
Re

*

*
**

,

∞

∞
∞∞ =

ρω

ρ
ρµ    or 

L

T

K
Re

*

,

*
**

∞

∞
∞∞ =

µ

ρ
ρρω

muTinf and turbI are more user-friendly and therefore the suggested means of 
specifying ICs for the SST model.   Turbulent intensity has a physical meaning: 

• For internal flows, turbI is 1% to 5%. 

• For external (quiescent) flows and high-quality wind tunnel, turbI < 1%. 

Freestream eddy viscosity muTinf represents additional diffusion throughout the 

solution.  To minimize additional diffusion with a non-zero value:  

muTinf %1*

, ≈==
∞

∞ µ

µ
µ T

T



646 

• The turbulent Prandtl number PrT is used to model the transport of heat through 

turbulence, using Reynolds analogy.  The turbulent Prandtl number for air is 0.9. 

• Artificial dissipation is added to each turbulence model using the same algorithms 

applied to the N.S. equations.  The N.S. dissipation factor has been combined with 

another scalar to allow the user to adapt the dissipation used in the turbulence models.  

The artificial dissipation in the turbulence models is scaled by (disst*diss). 

• The number of iterative cycles should be set to 4 for steady solutions. For unsteady 

solutions, use a sufficient number of cycles to allow for an appropriate level of 

convergence at each step.  A sufficient number can be estimated as N = dt / ∆tloc,min. 

• The following is a good practice for finding a sufficient number of iterations for 

unsteady solutions:   

1. Select initial values for dt, ncyc, and rsdtol.   

2. Step the solution forward 20-50 iterations.   

3. Check the *.cyc file for the number of cycles required per iteration.  The 

number of cycles should level off after 10 iterations.  If not, run enough 

iterations for the number of required cycles to level off. 

4. If the last 10 iterations require more than 20 cycles, lower the time step.   

5. If the last 10 iterations require less than 8 iterations, increase the time step.   

6. The sweet spot is 10-15 iterations. 

• The residual tolerance can be used to exit the iterative cycles if the energy 

residual meets a specified criteria rsdtol.  (The energy residual is used because 

the other residuals normally converge faster than energy.)  This feature can be 

used to set the number of iterations to a very large number with a residual 

tolerance rsdtol.  When the residual drops below the tolerance, the solution will 

progress to the next time step.  Lower rsdtol values require more iterations. 

• The divergence tolerance rsdmax creates an upper tolerance on the energy 

residual.  If the solution is diverging, the energy residual will grow larger than 

rsdmax and terminate the run.  The solution also terminates if the residuals 

become NAN or INFINITY.  Larger rsdmax values will allow the solution to 

diverge further and ensure that the solution is in fact diverging.   

• There are four available CFD solution types defined as follows: 

• isol = 0 is a steady solution (not time accurate) 

• isol = 1 is a first-order unsteady solution 

• isol = 2 is a second-order unsteady solution 

• isol = 3 is a supersonic piston perturbation solution 

• There are three available options for viscous local time stepping: 

• itime = -1 uses the minimum distance across each element (algebraic) 

• itime = 0 uses diagonals of the stiffness matrix (heat transfer only) 

• itime = 1 uses diagonals of the stiffness matrices (momentum & heat transfer) 

• itime = 2 uses diagonals of the stiffness matrices (mom, heat trans & turb model) 

• Euler2D uses various orders of numerical integration, specified by ipnt.  NS2D only 

uses single point (or first order) Gauss quadrature (ipnt = 1), which is hard-coded 

into the controls.  If a file from Euler2D is used to create the NS2D file case.con, 

then the integration order ipnt must be removed or commented out (�!�). 

• There are three available dissipation types defined as follows: 



647 

• idiss = �1 is no artificial dissipation (only viscous dissipation) 

• idiss = 0 is a low order dissipation 

• idiss = 1 is a high order dissipation with gradient limiters 

• The lower order dissipation is typically overly diffuse and should be used in 

conjunction with low values of the dissipation factor. Low-order dissipation works 

best for problems without strong vortices and for supersonic/hypersonic flows. 

• The higher order dissipation is more CPU intensive than the low-order dissipation and 

less stable. Larger values for the dissipation factor are typically required for 

stabilization. The high-order dissipation works best for subsonic to transonic flows 

with strong gradients or vortices. Rotating domains will typically require high-order 

dissipation to resolve the circulating pattern of the relative flow velocities. 

• dislen is the distance, near walls, where no artificial dissipation is used.  The arti-

ficial dissipation model is scaled by f (d), where d is the distance to the nearest wall: 

( )
( )( )( )�

�

�
�

�

−−

≥

≤

=

otherwise

dislendif

dislendif

df

dislen
d 1cos1

21

0

2
1 π

• Combustion properties are specified in the case.cmb file.  The mass and heat 

generation are distributed throughout the domain using the following distributions: 

• icomb = 0, no combustion (case.cmb not read) 

• icomb = 1, combustion properties are piece-wise linear (specified at the nodes) 

• icomb = 2, combustion properties are constant (specified) on the elements 

• When the restart flag istrt is set to .true., the solver will read one set of solution 

unknowns from the case.unk file and apply this set of unknowns as the initial 

conditions for the new iterative solution.

• A restarted solution assumes that the time gradient of the initial state is zero, i.e. the 

solution stored in the case.unk file is a converged, steady state solution.  This has a 

significant impact on the second-order unsteady solution since it relies on two sets of 

solution unknowns for advancement to the next time step, i.e. a second-order 

unsteady solution should not be restarted from the last time step of a similar unsteady 

solution that was stopped because both sets of unsteady data from the last solution 

step are not available for accurate evaluation of the time gradients in the flow.

• If the aerodynamics flag iaero is set to .true., the aerodynamic forces are applied 

to the dynamic and elastic motion.  If the flag is set to .false., the dynamic and 

elastic motion must forced externally or occur as free-response vibrations.   

• The non-inertial dynamics routine is turned on when idynm is set to .true.  NS2D 

will then read in the case.dyn file for dynamic inputs and write out dynamic motion 

to the xd.dat.   

• If the free-stream velocity flag ifree is set to .false., the free-stream velocity 

is set to zero, and relative flow velocities must be generated through dynamic 

rotation or translation of the non-inertial coordinate system.

• If ifree = .true. , the freestream starts aligned with the global fixed x-direction 

(i.e., alpha = beta = 0) but can be rotated using the initial orientation of the body 

in case.dyn. 



648 

• The elastic deflection routine is turned on when ielast is set to .true.  NS2D will 

then read in the case.vec file for modal elastic inputs and write out modal 

deformations and forces to the xn.dat.  The number of modes nr must match that 

shown in the elastic file case.vec. 

• For steady solutions (isol = 0), the dynamics flags for each degree of freedom in the 

case.dyn and case.vec should be set to 1 (clamped condition). 

• The propulsion boundary conditions are turned on when iprop is set to .true.  

NS2D will read in the case.eng file for rocket and engine inputs.   

• If the external forces flag is set to .true., the solver will read the user defined 

external force vector for each global time step from the input file case.frc.  If the 

solver reaches the end of the input file before completing the solution, the last force 

vector in the file carries over to each of the remaining time steps if it was non-zero.

• If the safe-mode flag is set to .true., NS2D writes two files per step that are used to 

restart the solution:  case.rst and case.rs2.  Two files are used so while one file is 

being over-written, the other file is still preserved.  Each file stores the previous two 

values of all unknowns, elastic mode shapes, and generalized elastic forces.  Safe-

mode can be used for fast restarts for very long runs that are not time sensitive.

• When the safe-mode flag is set to .true., NS2D checks for both restart files.  If the 

case.rst exists, but has an error, the error is reported to the user.  The case.rst 

can be moved, renamed, or deleted.  The solution will then be restarted from the 

case.rs2 file.  (NS2D does not skip between files to avoid overwriting files that 

contain correctable errors.) 

• If the residual watching flag is set to .true., residuals are written out at each inner 

iteration to the case.rsd2 file.  This option can be used to check the residual 

convergence within steps.  The number of inner cycles used at each iteration is 

written to the case.cyc file for plotting and comparison of convergence.

• If the acoustic output flag is set to .true., the acoustic input file case.acst is read 

for controls, and one or more of the acoustic output files (pressure � case.pac; 

density � case.rac; u-velocity � case.uac; v-velocity � case.vac) are written.

• If the temperature boundary conditions flag is set to .true., then the temperature 

boundary conditions are read in through the case.tbc file.  The temperature 

boundary conditions have not yet been verified.

• Gravity is assumed to act on the vehicle along the inertial y-axis.  In the non-inertial 

reference frame, the body force vector rotates so that gravity is always pointed down 

in the positive y-direction.  The value gravity is non-dimensionalized using refdim

(L), mach (M), and ainf, so the dimensions of these variables should be consistent:

22

*

∞

=
aM

Lg
g



649 

Unknowns (Initial Conditions) Input File (case.unk) 

Basic File Format 

np gam xmi alp ref t Re iturb 

((UN(i,j), i = 1,nnd ), j = 1,5) 

((UNT(i,j), i = 1,nnd ), j = 1,4) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

ref: real reference dimension 

t: real dimensionless time 

Re: real free-stream Reynolds number 

iturb: int turbulence model type 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real pressure for node i

UN(i,5): real total enthalpy for node i

UNT(i,1): real eddy viscosity for node i

UNT(i,2): real turb. KE for node i

UNT(i,3): real turb. diss. for node i

UNT(i,4): real model variable for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system. 

• The quantities nnd must match the values in the geometry file case.g2d as nnd. 

• The quantities gam, xmi, and Re must match the values in the control file case.con
as gamma, mach, and Re. 

• The turbulent variables UNT are only read if a turbulence model (iturb > 0) has been 

used to construct the initial conditions file.  The turbulence variables are then used to 

construct the variables needed for the turbulence model specified in the case.con

file.  The turbulence model used to specify the initial conditions and to step the 

solution after the initial conditions can be different. 

• When restarting a solution, the most recent unknowns output file case.un# can be 

renamed as the initial conditions file case.unk.



650 

Temperature Boundary Conditions Input File (case.tbc) 

Basic File Format 

Line of Text 

  nwlt nbeq ntemp 

Line of Text 

  ITWL(1)    TWALL(1) 

   �         �

  ITWL(nwlt) TWALL(nwlt) 

Line of Text 

  IQWL(1)    QWALL(1) 

   �         �

  IQWL(nbeq) QWALL(nbeq) 

Definition of Terms 

nwlt: int number of nodes with specified 

temperatures 

nbeq: int number of boundary elements 

with specified heat fluxes 

ntemp: int number of iterations to ramp up 

boundary conditions 

ITWL: int node index for temperature BC 

TWALL: real internal enthalpy at node (dim�l) 

IQWL: int boundary element index for heat 

flux BC 

QWALL: real heat normal flux through 

boundary element (dim�l) 

Comments  

• This is a plain text (ASCII) file. 

• The temperature boundary conditions are specified at nwlt wall nodes, listed in ITWL.  

Each node index ITWL is matched with a dimensional enthalpy value TWALL repre-

senting the temperature at that wall node.  The temperature boundary conditions are 

strictly applied at each node between iterations. 

• The temperature conditions TWALL are linearly increased from freestream conditions 

over ntemp iterations. 

• The number of temperature boundary conditions nwlt must be less than the number 

of viscous wall nodes nwlv specified in the geometry file case.g2d, and the indices 

ITWL must point to viscous wall nodes:   

nwl – nsd + nsdv – nwlv+ 1 < ITWL(i) < nwl – nsd + nsdv

The viscous wall file case.vwl written by makeg2d contains a list of the nodes 

along viscous walls along with their x- and y-coordinates. 

• The heat flux boundary conditions are specified at nbeq boundary elements, listed in 

IQWL.  Each boundary element index IQWL is matched with a dimensional heat flux 

QWALL through the boundary element, where a positive QWALL represents heat flowing 

into the domain.  The heat flux conditions are implied to the specified boundary 

elements through their boundary integrals. 

• The heat flux conditions QWALL are linearly increased from zero (adiabatic) over 

ntemp iterations. 

• The number of heat flux boundary conditions nbeq must be less than the number of 

viscous wall elements LBE(8) - LBE(7) specified in the geometry file case.g2d, 

and the indices IQWL must point to viscous wall elements:   

LBE(7) < IQWL(i) < LBE(8)



651 

The viscous wall file case.vwl written by makeg2d contains a list of the boundary 

elements that make-up viscous walls along with the x- and y-coordinates of both end 

points. 

• The temperature and heat flux conditions are non-dimensionalized after being read 

into the solver, using the freestream density and velocity: 

2

*

∞

=
U

TWALL
hw   

3

*

∞∞

=′′
U

QWALL
qw

ρ

• The temperature boundary conditions can be grouped into three categories, which are 

applied according to their rank (or importance):   

(1) The specified temperature (Dirichlet) BC strictly applies TWALL at the specified 

viscous solid wall nodes between iterations.  The temperature BC supersedes all 

heat flux boundary condition at the nodal level, as specified by this file. 

(2) The adiabatic (Neumann) BC is implied through the heat flux used in viscous 

solid wall boundary integrals.  The adiabatic wall is the default condition. 

(3) The specified heat flux (Neumann) BC implies QWALL through the boundary 

integrals, as specified by this file. 

Sample File  

$ nwlt, nbeq, ntemp 

     6     5   1000 

$ Temperature BCs 

  1  3.0 

  2  3.1 

  3  3.0 

  4  2.9 

  5  2.8 

  6  2.8 

$ Heat flux BCs 

  1  0.0 

  2  0.0 

  3  0.0 

  4  0.0 

  5  0.0 



652 

Temperature Boundary Conditions Input File (case.tbc) 

Basic File Format 

Line of Text 

  nwlt nbeq ntemp 

Line of Text 

  ITWL(1)    TWALL(1) 

   �         �

  ITWL(nwlt) TWALL(nwlt) 

Line of Text 

  IQWL(1)    QWALL(1) 

   �         �

  IQWL(nbeq) QWALL(nbeq) 

Definition of Terms 

nwlt: int number of nodes with specified 

temperatures 

nbeq: int number of boundary elements 

with specified heat fluxes 

ntemp: int number of iterations to ramp up 

boundary conditions 

ITWL: int node index for temperature BC 

TWALL: real internal enthalpy at node (dim�l) 

IQWL: int boundary element index for heat 

flux BC 

QWALL: real heat normal flux through 

boundary element (dim�l) 

Comments  

• This is a plain text (ASCII) file. 

• The temperature boundary conditions are specified at nwlt wall nodes, listed in ITWL.  

Each node index ITWL is matched with a dimensional enthalpy value TWALL repre-

senting the temperature at that wall node.  The temperature boundary conditions are 

strictly applied at each node between iterations. 

• The temperature conditions TWALL are linearly increased from freestream conditions 

over ntemp iterations. 

• The number of temperature boundary conditions nwlt must be less than the number 

of viscous wall nodes nwlv specified in the geometry file case.g2d, and the indices 

ITWL must point to viscous wall nodes:   

nwl – nsd + nsdv – nwlv+ 1 < ITWL(i) < nwl – nsd + nsdv

The viscous wall file case.vwl written by makeg2d contains a list of the nodes 

along viscous walls along with their x- and y-coordinates. 

• The heat flux boundary conditions are specified at nbeq boundary elements, listed in 

IQWL.  Each boundary element index IQWL is matched with a dimensional heat flux 

QWALL through the boundary element, where a positive QWALL represents heat flowing 

into the domain.  The heat flux conditions are implied to the specified boundary 

elements through their boundary integrals. 

• The heat flux conditions QWALL are linearly increased from zero (adiabatic) over 

ntemp iterations. 

• The number of heat flux boundary conditions nbeq must be less than the number of 

viscous wall elements LBE(8) - LBE(7) specified in the geometry file case.g2d, 

and the indices IQWL must point to viscous wall elements:   

LBE(7) < IQWL(i) < LBE(8)



D.653 

The viscous wall file case.vwl written by makeg2d contains a list of the boundary 

elements that make-up viscous walls along with the x- and y-coordinates of both end 

points. 

• The temperature and heat flux conditions are non-dimensionalized after being read 

into the solver, using the freestream density and velocity: 

2

*

∞

=
U

TWALL
hw   

3

*

∞∞

=′′
U

QWALL
qw

ρ

• The temperature boundary conditions can be grouped into three categories, which are 

applied according to their rank (or importance):   

(4) The specified temperature (Dirichlet) BC strictly applies TWALL at the specified 

viscous solid wall nodes between iterations.  The temperature BC supersedes all 

heat flux boundary condition at the nodal level, as specified by this file. 

(5) The adiabatic (Neumann) BC is implied through the heat flux used in viscous 

solid wall boundary integrals.  The adiabatic wall is the default condition. 

(6) The specified heat flux (Neumann) BC implies QWALL through the boundary 

integrals, as specified by this file. 

Sample File  

$ nwlt, nbeq, ntemp 

     6     5   1000 

$ Temperature BCs 

  1  3.0 

  2  3.1 

  3  3.0 

  4  2.9 

  5  2.8 

  6  2.8 

$ Heat flux BCs 

  1  0.0 

  2  0.0 

  3  0.0 

  4  0.0 

  5  0.0 

653 



654 

Unknowns Output File (case.un#) 

Basic File Format 

np gam xmi alp ref t Re iturb 

((UN(i,j), i = 1,nnd ), j = 1,5) 

((UNT(i,j), i = 1,nnd ), j = 1,4) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

ref: real reference dimension 

t: real dimensionless time 

Re: real free-stream Reynolds number 

iturb: int turbulence model type 

UN(i,1): int density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real pressure for node i

UN(i,5): real total enthalpy for node i

UNT(i,1): real eddy viscosity for node i

UNT(i,2): real turb. KE for node i

UNT(i,3): real turb. diss. for node i

UNT(i,4): real model variable for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 

• The turbulent variables UNT are only written if a turbulence model (iturb > 0) has 

been used to construct the file.  



655 

Turbulent Unknowns Output File (caset.un#) 

Basic File Format 

np gam xmi alp ref t Re iturb 

((UT(i,j), i = 1,nnd ), j = 1,5) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

ref: real reference dimension 

t: real dimensionless time 

Re: real free-stream Reynolds number 

iturb: int turbulence model type 

UT(i,1): int eddy viscosity for node i

UT(i,2): real turb. KE for node i

UT(i,3): real = 0.0 

UT(i,4): real model variable for node i (in 

press. coeff. form, see below) 

UT(i,5): real turb. diss. for node i (in total 

energy form, see below) 

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• The turbulent variables UNT are converted to the UT variables show in this file so that 

this file can be coupled with a caset.g2d file and plotted using GlPlot2D.  (A 

caset.g2d can be created by copying the case.g2d file and adding a �t� to its 

name.)  In this way, the four turbulence variables in UNT can be plotted: 

• Eddy viscosity UNT(:,1) can be seen in density plots. 

• Turbulent kinetic energy UNT(:,2) can be seen in velocity magnitude plots. 

• Turbulent dissipation UNT(:,3) can be seen in total energy plots. 

• Model variable UNT(:,4) can be seen in pressure coefficient plots. 

• Total energy is calculated in GlPlot2D by subtracting UT(:,4)  from UT(:,5) .   

• The pressure coefficient is calculated in GlPlot2D by subtracting the dimensionless 

freestream pressure (= 1.0 / gam / xmi2) from UT(:,4)  and scaling the result by 2. 



656 

Residuals Output File (case.rsd) 

Basic File Format 

  1 (RSD(i), i = 1,6) 

  �      �

istp (RSD(i), i = 1,6) 

  �      �

nstp (RSD(i), i = 1,6) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real energy solution residual 

RSD(5): real 1st turb. model eq. residual 

RSD(6): real 2nd turb. model eq. residual 

Comments  

• This is a plain text (ASCII) file. 

• For steady problems, the solution residuals indicate the degree of convergence to the 

final steady state solution.  All four solution residuals should converge to 

approximately the same order of magnitude. 

• For unsteady problems, the solution residuals indicate the degree of convergence for 

each global step of the solution, or the degree of convergence for the steady solution 

that is solved at each step. 

• RSD(5) and RSD(6) represent residuals for the equation(s) of the turbulence model: 

• If iturb = 0, RSD(5) and RSD(6) are omitted. 

• If iturb = 1, RSD(5) is written, representing the SA differential equation; 

RSD(6) is omitted. 

• If iturb = 1, RSD(5) and RSD(6) are both written, representing the SST 

differential equations. 



Sample File  (iturb = 0) 

     1    0.38320E-05   0.10743E-04   0.69854E-05   0.10598E-03 
     2    0.20317E-05   0.50694E-05   0.40436E-05   0.56307E-04 
     3    0.12024E-05   0.35187E-05   0.26241E-05   0.32195E-04 
     4    0.91334E-06   0.25166E-05   0.23637E-05   0.24240E-04 
     5    0.73183E-06   0.19442E-05   0.22228E-05   0.19376E-04 
     6    0.59870E-06   0.16179E-05   0.20889E-05   0.15963E-04 
     7    0.51663E-06   0.14311E-05   0.19719E-05   0.13946E-04 
     8    0.44924E-06   0.12989E-05   0.18536E-05   0.12398E-04 
     9    0.39510E-06   0.12095E-05   0.17283E-05   0.11156E-04 
    10    0.34726E-06   0.11478E-05   0.15878E-05   0.99450E-05 
    11    0.30775E-06   0.10746E-05   0.14329E-05   0.88159E-05 
    12    0.26207E-06   0.98700E-06   0.12833E-05   0.76280E-05 
    13    0.22418E-06   0.87924E-06   0.11245E-05   0.65113E-05 
    14    0.18904E-06   0.77764E-06   0.98148E-06   0.54617E-05 
    15    0.15809E-06   0.69345E-06   0.84471E-06   0.44739E-05 
    16    0.13411E-06   0.62203E-06   0.72991E-06   0.37422E-05 
    17    0.11564E-06   0.55717E-06   0.64350E-06   0.32661E-05 
    18    0.10516E-06   0.50502E-06   0.57520E-06   0.30152E-05 
    19    0.10101E-06   0.46193E-06   0.53100E-06   0.29279E-05 
    20    0.98711E-07   0.43618E-06   0.49934E-06   0.28901E-05 

     �        �   �        �            �

657 



658 

Residuals Output File (case.rsd2) 

Basic File Format 

  1 (RSD(i), i = 1,6)     1 

  1 (RSD(i), i = 1,6)     2 

  �      �           �

  1 (RSD(i), i = 1,6)   icyc 

  �      �           �

istp (RSD(i), i = 1,6)     1 

  �      �           �

nstp (RSD(i), i = 1,6)     1 

  �      �           �

Definition of Terms 

istp: int current solution step 

icyc: int iteration of current residual 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real energy solution residual 

RSD(5): real 1st turb. model eq. residual 

RSD(6): real 2nd turb. model eq. residual 

Comments  

• This is a plain text (ASCII) file. 

• This file is output when irsds = .true. in the controls case.con file.  The 

residuals shown in this file represent the RMS changes at all nodes in the domain for 

this inner cycle.  The convergence of residuals within any iteration can be seen in the 

trend in the residuals through the cycles used. 

• RSD(5) and RSD(6) represent residuals for the equation(s) of the turbulence model: 

• If iturb = 0, RSD(5) and RSD(6) are omitted. 

• If iturb = 1, RSD(5) is written, representing the SA differential equation; 

RSD(6) is omitted. 

• If iturb = 2, RSD(6) and RSD(7) are both written, representing the SST 

differential equations. 



S
a

m
p

le
 F

il
e 

 (
it
u
r
b

 =
 0

) 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 

 
 
1
 

 
 
 
 
 
1
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
2
 

 
 
 
 
 
1
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
3
 

 
 
 
 
 
1
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
4
 

 
 
 
 
 
1
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
5
 

 
 
 
 
 
1
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
6
 

 
 
 
 
 
1
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
7
 

 
 
 
 
 
1
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
8
 

 
 
 
 
 
2
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
 
1
 

 
 
 
 
 
2
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
 
2
 

 
 
 
 
 
2
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
 
3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
 
4
 

 
 
 
 
 
2
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
 
5
 

 
 
 
 
 
2
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
 
6
 

 
 
 
 
 
2
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
 
7
 

 
 
 
 
 
2
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
 
8
 

 
 
 
 
 
3
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
 
1
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
 
2
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5
 

 
 
3
 

 
 
 
 
 
3
 
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
2
8
9
0
1
E
-
0
5
 

 
 
4
 

 
 
 
 
 
�
   

  
  

 �
 

 
 

�
 

 
  

  
  
�
 

 
  

  
  

  
  
�

659 



Time Step Output File (case.time) 

Basic File Format 

 utime  htime  vtime  stime 

   �     �      � �

Definition of Terms 

utime: real unsteady time step ratio 

htime: real heat transfer time step ratio 

vtime: real momentum time step ratio 

stime: real turbulence time step ratio 

Comments  

• This is a plain text (ASCII) file. 

• The time step file case.time is written out when the residuals watching flag is 

turned on (irsds = .true.).  The third column, containing vtime, is only written 

when itime > 1; and the fourth column, containing stime, is only written when 

itime = 2. 

• The four ratios are calculated using the following equations: 

�
�

�

�

�
�

	



��
�

�
��
	




∆

∆
= 1,

ninv

HT

t

t
MINhtime           ( ) ( ) ( )( )

nymomnxmomnmom ttMINt ,, , ∆∆=∆

�
�

�

�

�
�

	




��
�

�
��
	




∆

∆
= 1,

min n

HT

mom

t

t
MINvtime   ( ) ( ) ( )( )

nHTninvn

HT ttMINt ∆∆=∆ ,min

( )
( ) �

�
�

�
�
�
	




∆

∆
= 1,

min n

mom

nturb

t

t
MINstime   ( ) ( ) ( )( )

nmomn

HT

n

mom ttMINt ∆∆=∆ ,minmin

( )
�
�
�

�
�
�
	


 ∆
= 1,

min

dt

t
MINutime n

turb

  ( ) ( ) ( )( )
nturbn

mom

n

turb ttMINt ∆∆=∆ ,minmin

For SST,                    ( ) ( ) ( )( )
nnKnturb ttMINt ω∆∆=∆ ,

 where ∆tinv , ∆tHT, ∆tmom, and ∆tturb are the inviscid, heat transfer, momentum, and 

turbulence local time steps and dt is the global time step.   

• The heat transfer time step is calculated using its stiffness matrix for itime > 0.  For 
itime < 0, the minimum element length is used to calculate the local time step. 

• For momentum, the diagonal of both the x- and y-stiffness matrices are tested for their 
local time steps and then combined into a single momentum time step. 

• For the SA model, the SA diffusion terms are used to calculate its local time step.  

For the SST model, both the k- and ω-diffusion terms are used to calculate the local 

time step, as shown above. 

D.24 660 



661 

• A conservative rule of thumb is to apply itime = 2 to use the minimum of all local 

time steps.  If a column of the file shows all ones, like the example below, then the 

corresponding equation is more stable than those tested before it, and itime can be 

reduced.  In the example below shows the turbulence model is more stable than the 

other equations at all time steps.  The example also shows that the momentum 

stability is necessary at the beginning of the run but can be removed after several 

iterations.  For this case, after 20 iterations, itime can be decreased to 0 to limit 

testing to the heat transfer stiffness matrix.   

• Maximum viscous stability is obtained when all columns except for the first take a 

value of unity (1). 

• The first column should be less than unity (1).  The ratio of local to global time step 

acts like a relaxation factor in the solver.  The solver limits this ratio to a maximum of 

unity, so unity in the first column shows that the global time step is smaller than all of 

the local time steps on the domain.  The global time step should be increased until a 

value less than unity is reached somewhere on the domain.   

• The number of cycles ncyc can also be gauged using the first column.  The number 

of cycles should be greater than dt / ∆tmin to maintain a reasonable assumption of time 

accuracy.  Column represents the minimum of ∆tmin / dt on the domain, or the maxi-

mum cycles needed on the domain. 

Sample File  

    0.85620E+00   0.75632E+00   0.56382E+00   1.00000E+00 
    0.87930E+00   0.75555E+00   0.62853E+00   1.00000E+00 
    0.78200E+00   0.75334E+00   0.75932E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.88937E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.93048E+00   1.00000E+00 
    0.79381E+00   0.75475E+00   0.95043E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.97490E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.98403E+00   1.00000E+00 
    0.79379E+00   0.75475E+00   0.98738E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99018E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99205E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99405E+00   1.00000E+00 
    0.79378E+00   0.75475E+00   0.99739E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99993E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79381E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79382E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79382E+00   0.75475E+00   1.00000E+00   1.00000E+00 

       �              �      �         �



662 

Restart Files (case.rst  and case.rs2) 

Basic File Format 

istp nnd gam xmi ref dt Re iturb 

((UN(i,j), i = 1,nnd), j = 1,5) 

((UNO(i,j), i = 1,nnd), j = 1,5) 

((UNT(i,j), i = 1,nnd), j = 1,4) 

((UNTO(i,j), i = 1,nnd), j = 1,4) 

(XN(i,j), i = 1,2*nr),  

(XN1(i), i = 1,2*nr) 

(FA(i,j), i = 1,nr),  

(FA2(i), i = 1,nr) 

(XD(i,j), i = 1,6),  

(XD1(i), i = 1,6) 

(FD(i,j), i = 1,3),  

(FD2(i), i = 1,3) 

Definition of Terms 

istp: int step in global solution 

nnd: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

ref: real reference dimension 

dt: real global time step 

Re: real free-stream Reynolds number 

iturb: int turbulence model type 

UN: real unknowns at previous step 

UNO: real unknowns at two steps prior 

UNT: real turb .unknowns at prev. step 

UNTO: real turb .unk.s at two steps prior 

XN: real elastic deflect / velocity 

XN1: real prev. elastic deflect / velocity 

FA: real generalized aero. forces  

FA2: real external forcing on modes 

XD: real rigid body position / velocity 

XD1: real prev. rigid body pos. / vel. 

FD: real aero. forces on vehicle 

FD2: real external forcing on vehicle 

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns, deflections, and forces stored in this file are dimensionless 

quantities. 

• Turbulent unknowns properties vector UNT and UNTO are only written for turbulent 

solutions (iturb > 0).   

• Unknowns properties vector UNO and UNTO are only written for 2nd order unsteady 

solutions (isol = 2).   

• Elastic properties XN, XN1, FA, and FA2 is only written when the elastics flag ielast

is set to .true.   

• Non-inertial properties XD, XD1, FD, and FD2 is only written when the non-inertial 

flag idynm is set to .true.  



663 

APPENDIX E 

EULER3D FILE FORMATS 

The file formats included in this section are used to create the input files required to operate 

Euler3D and interpret the files that are written by Euler3D. 



664 

Euler3D 

Summary of File Formats 

Input Files: 

• case.g3d (required, if inetcdf = .false.) contains geometry data structures representing 

the computational mesh as required by the flow solver (binary) 

• case.nc3d (required, if inetcdf = .true.) contains geometry data structures representing 

the computational mesh as required by the flow solver (netCDF) 

• case.con (required) contains values for the solver control parameters and flow 

conditions (ASCII) 

• case.unk (optional) contains the nodal values of the primitive flow variables (density, 

velocity, pressure, and total enthalpy) for each node of the computational mesh to be used 

as the initial conditions for the flow solution (binary or netCDF) 

• case.dyn (optional) contains the non-inertial matrices and initial conditions as required 

for a non-inertial solution (ASCII) 

• case.vec (optional) contains the elastic mode matrices, initial conditions, and mode 

shape vectors for the solid wall surfaces as required for an aeroelastic solution (ASCII) 

• case.frc (optional) contains external forces to be applied to each solution step in a 

dynamic or aeroelastic solution (ASCII) 

• case.cmb (optional) contains mass and enthalpy generation data used by the quasi-

combustion model (ASCII)  [see Appendix C] 

• case.eng (optional) contains rocket and turbojet engine (boundary condition) data 

(ASCII)  [see Appendix C] 

• case.acst (optional) contains the acoustic output data (ASCII) 

Output Files: 

• case.un# contains the nodal values of the primitive flow variables (density, velocity, 

pressure, and total enthalpy) for each node of the computational mesh; # is iterated as 

more files are produced so the progress of the solution can be followed (binary or 

netCDF) 



665 

• case.rsd contains a history of the solution residuals for the conservation variables 

(density, momentum, and total energy) (ASCII) 

• case.rsd2 contains a history of the solution residuals for the conservation variables 

for each inner cycle (ASCII) 

• case.cyc contains a history of the number of inner cycles used to converge each 

iteration (ASCII)  [see Appendix C] 

• case.time contains a history of the local time step ratios (ASCII)                       [see 

Appendix C] 

• case.lds contains a history of the dimensionless aerodynamic forces acting on the 

solid walls of the geometry (ASCII) 

• xd.dat contains a history of the non-inertial displacements, velocities, and 

accelerations for a dynamic solution (ASCII) 

• xn.dat contains a history of the generalized displacements, velocities, and forces for an 

unsteady, aeroelastic solution (ASCII) 

• case.rst and case.rs2 contain information on up to two sets of unknowns data, 

elastic system data, and dynamic motion data (binary) 

• case.pac contains a history of pressure data at prescribed nodes (ASCII) 

• case.rac contains a history of density data at prescribed nodes (ASCII) 

• case.uac contains a history of u-velocity data at prescribed nodes (ASCII) 

• case.vac contains a history of v-velocity data at prescribed nodes (ASCII) 

• case.wac contains a history of w-velocity data at prescribed nodes (ASCII) 



666 

Geometry Input File (case.g3d) 

Basic File Format 

  nnd nel nsg nbe nbp nwl nsd nsf 

  (LBE(i), i = 1, 8) 

  (COOR(i,j), j = 1,3)  (i = 1,nnd) 

  (IELM(i,j), j = 1,4)  (i = 1,nel) 

  (ISEG(i,j), j = 1,2)  (i = 1,nsg) 

  (IBEL(i,j), j = 1,5)  (i = 1,nbe) 

Definition of Terms 

nnd: int number of nodes 

nel: int number of elements 

nsg: int number of segments 

nbe: int number of boundary elements 

nbp: int number of boundary points 

nwl: int number of wall nodes 

nsd: int number of singular nodes 

nsf: int number of boundary surfaces 

LBE(i): int start/ stop index for 3 BC types 

COOR(i,1): real x-coordinate for node i

COOR(i,2): real y-coordinate for node i

COOR(i,3): real z-coordinate for node i

IELM(i,1): int node 1 for element i

IELM(i,2): int node 2 for element i

IELM(i,3): int node 3 for element i

IELM(i,4): int node 4 for element i

ISEG(i,1): int node 1 for segment i

ISEG(i,2): int node 2 for segment i

IBEL(i,1): int node 1 for boundary elem. i

IBEL(i,2): int node 2 for boundary elem. i

IBEL(i,3): int node 3 for boundary elem. i

IBEL(i,4): int surface index in case.sur

IBEL(i,5): int domain elem. associated with 

boundary elem. i

Comments  

• This is an unformatted (binary) file. 

• The nodal coordinates in this file are treated as dimensional values and are non-

dimensionalized using the reference dimension refdim specified in the control file.   

• The element connectivity data IELM  and IBEL  define positive element volumes eV

and boundary normal vectors n�  pointed into the solution domain: 

06

343434

242424

141414

>=

zyx

zyx

zyx

Ve      
3121

3121�
xx

xx
n ��

��

×

×
=  where     

jiij xxx
���

−=

• The program makeg3d is used to convert a standard STARS surface triangulation file 

case.fro, mesh file case.gri, and modified boundary conditions file case.bco

into an appropriately sorted three-dimensional geometry file. 



667 

• Nodal data COOR  is sorted such that the first nwl nodes are defined as solid wall 

nodes.  Out of the first nwl nodes, the last nsd  nodes are defined as singular nodes.   

• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 

LBE(3) through LBE(4) are symmetry elements, and LBE(5) through LBE(6) are far-

field elements. 



668 

Geometry Input File, netCDF Format (case.nc3d) 

Basic File Format 

File Attributes: 

“title” :: “Euler3D Geometry File” 

“TimeDay” :: TimeDay 

“name” :: filen 

“Version” :: VerYMD 

Dimensions: 

“nnd”  :: nnd  (IDnnd) 

“nel”  :: nel  (IDnel) 

“nsg”  :: nsg  (IDnsg) 

“nbe”  :: nbe  (IDnbe) 

“nbp”  :: nbp  (IDnbp) 

“nsf”  :: nsf  (IDnsf) 

“ncv”  :: ncv  (IDncv) 

“mxs”  :: mxs  (IDmxs) 

“nLBE” :: 8    (nLBE) 

“Dim2” :: 2    (ID2) 

“Dim3” :: 3    (ID3) 

“Dim4” :: 4    (ID4) 

“Dim5” :: 5    (ID5) 

Variables: 

“nwl”  :: nwl  (IDnwl)  [ ] 

“nsd”  :: nsd  (IDnsd)  [ ] 

“LBE”  :: LBE  (IDLBE)  [nLBE] 

“COOR” :: COOR (IDcoor) [IDnnd,ID3] 

“IELM” :: IELM (IDelm)  [IDnel,ID4] 

“ISEG” :: ISEG (IDseg)  [IDnsg,ID2] 

“IBEL” :: IBEL (IDbel)  [IDnbe,ID5] 

Definition of Terms 

TimeDay: int time and date generated 

filen: char case name 

VerYMD: int MakeNC3D version, written 

using YYYYMMDD notation 

nnd: int number of nodes 

nel: int number of elements 

nsg: int number of segments 

nbe: int number of boundary elements 

nbp: int number of boundary points 

nsf: int number of surfaces in front file 

ncv: int number of curves in front file 

mxs: int maximum dimension (= 2 nel) 

nLBE: int = 8, used to dimension LBE 

Dim2: int = 2, used to dimension arrays 

Dim3: int = 3, used to dimension arrays 

Dim4: int = 4, used to dimension arrays 

Dim5: int = 5, used to dimension arrays 

nwl: int number of wall nodes 

nsd: int number of singular nodes 

LBE(i): int start/ stop index for 3 BC types 

COOR(i,1): real x-coordinate for node i

COOR(i,2): real y-coordinate for node i

COOR(i,3): real z-coordinate for node i

IELM(i,1): int node 1 for element i

IELM(i,2): int node 2 for element i

IELM(i,3): int node 3 for element i

IELM(i,4): int node 4 for element i

ISEG(i,1): int node 1 for segment i

ISEG(i,2): int node 2 for segment i

IBEL(i,1): int node 1 for boundary elem. i

IBEL(i,2): int node 2 for boundary elem. i

IBEL(i,3): int node 3 for boundary elem. i

IBEL(i,4): int surface index in case.sur

IBEL(i,5): int domain elem. associated with 

boundary elem. i

Comments  

• This file is created using the netCDF library.  Formatting is handled using the netCDF 

library file netCDF.dll.  The case.nc3d file contains the same base information in 

the case.g3d file. 



669 

• The netCDF formatting has been represented here using four designations: 

• Names in quotes ( � � ) represent the human-name of the variable or array 

• The value following the double-colon ( :: ) is the variable stored under this name. 

• The name in parentheses ( ) is the handle used to recall information from netCDF. 

• The values in brackets [ ] are the array dimensions.  The empty brackets are 

shown for scalar variables.  Single-dimension arrays (vectors) are shown as a 

single value between the brackets.  Multi-dimension arrays (matrices, etc.) are 

shown by values separated by commas.   

• Data in case.nc3d can be written or read in any particular order, but for simplicity, 

the file has been represented here in three sections: 

• File Attributes:  Values describing the file (name, date, version, etc.) are not read 

by Euler3D.  

• Dimensions:  Values used to size the arrays (variables) that follow are read using 

nf_inq_dimid and nf_inq_dimlen.  The first function inquires of the netCDF ID 

to identify the dimension, and the second is used to read the value.  The file 

structure has been established so that all of the dimensions are positive-definite 

(no zeros or negatives).  For example, the number of nodes (nnd) are read: 

   call check(nf_inq_dimid(ncid, "nnd", IDnnd)) 
   call check(nf_inq_dimlen(ncid, IDnnd, nnd))

• Variables:  Scalars and arrays are read using nf_inq_varid, nf_get_var_int, 

nf_put_var_double, and nf_get_var1_int.  The first function inquires of the 

netCDF ID to identify the variable.  The second and third read an entire integer 

and double-precision real array, respectively.  The final function is used to read an 

array one part at a time, used for LBE and IBEL.  For example, the number of wall 

nodes (nwl, scalar), nodal coordinates (COOR, double, array), and element connec-

tivity (IELM, integer, array) are read: 

   call check(nf_inq_varid(ncid, "nwl", IDnwl)) 
call check(nf_get_var_int(ncid, IDnwl, nwl)) 

call check(nf_inq_varid(ncid, "COOR", IDcoor)) 
call check(nf_get_var_double(ncid, IDcoor, COOR)) 

call check(nf_inq_varid(ncid, "IELM", IDelm)) 
call check(nf_get_var_int(ncid, IDelm, IELM))

• The functions used to read and write using the netCDF format can be found in the 

netCDF manuals (www.unidata.ucar.edu/software/netcdf/). 

• Nodal data COOR  is sorted such that the first nwl nodes are defined as solid wall 

nodes.  Out of the first nwl nodes, the last nsd  nodes are defined as singular nodes.   

• The nodal coordinates in this file are treated as dimensional values and are non-

dimensionalized using the reference dimension refdim specified in the control file.   

• The element connectivity data IELM  and IBEL  define positive element volumes eV

and boundary normal vectors n�  pointed into the solution domain: 



670 

06

343434

242424

141414

>=

zyx

zyx

zyx

Ve      
3121

3121�
xx

xx
n ��

��

×

×
=  where     

jiij xxx
���

−=

• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 

LBE(3) through LBE(4) are symmetry elements, and LBE(5) through LBE(6) are far-

field elements. 

• The program makenc3d is used to convert a standard STARS surface triangulation 
file case.fro, mesh file case.gri, and modified boundary conditions file 

case.bco into an appropriately sorted three-dimensional geometry file in netCDF 

format. 



671 

Solver Control Input File (case.con) 

Basic File Format 

&control 
dt   = 0.1d0, 
gamma  = 1.4d0, 
diss   = 1.0d0, 
cfl   = 0.5d0, 

mach   = 0.6d0, 
alpha  = 0.0d0, 
beta  = 0.0d0, 
refdim  = 1.0d0, 

nstp   = 100, 
nout   = 50, 
ncyc   = 4, 

rsdtol = 1.0d-20, 
rsdmax = 10.0d0, 

isol   = 0, 
ipnt  = 1, 
idiss  = 0, 
ndiss  = 1, 
idsol  = 2, 
icomb       = 0, 

isize       = 5,  
displ       = 0.1d0, 
omega       = 0.2d0, 
ratio       = 600.0d0, 

istrt  = .false., 
iaero  = .true., 
idynm  = .false., 
ielast  = .false., 
iprop       = .false., 
ifree  = .true., 
iforce      = .false., 
isafe  = .false., 
irsds  = .false., 
inetcdf = .false., 
iacoust     = .false., 

nr   = 0, 
ainf   = 1.0d0, 
rhoinf  = 1.0d0, 
gravity = 0.0d0, 

/ 

Definition of Terms 

dt: real dimensionless global time step 

gamma: real ratio of specific heats 

diss: real dissipation factor 

cfl: real local time step stability factor 

mach: real free-stream Mach number 

alpha: real free-stream angle of attack (deg) 

beta: real side slip angle (deg)  

refdim: real reference length (dim�l) 

nstp: int total solution steps 

nout: int output frequency, steps/output 

ncyc: int iterative cycles per solution step 

rsdtol: real energy residual converg tolerance 

rsdmax: real energy residual divergence criteria 

isol: int CFD solution type 

ipnt: int number of Gauss points  

idiss: int dissipation type 

ndiss: int # of inner cycles / diss. calculation 

idsol: int order of elastic forces integration 

icomb: int combustion model type 

isize: int width of multisteps 

displ: real max displacement of forced mode 

omega: real frequency scalar 

ratio real chirp envelop length 

istrt: log restart flag 

iaero: log aerodynamic forces flag 

idynm: log dynamic/non-inertial flag 

ielast: log elastic flag 

iprop: log propulsion flag 

ifree: log free-stream velocity flag 

iforce: log external forces flag 

isafe: log safe-mode flag 

irsds: log residual watching flag 

inetcdf: log NetCDF input / output flag 

iacoust: log acoustics output flag 

nr: int number of elastic modes 

ainf: real free-stream sonic speed (dim�l) 

rhoinf: real free-stream density (dim�l) 

gravity: real gravity (dim�l) 



672 

Comments  

• This is a plain text (ASCII) file formatted as a Fortran namelist.   

• The namelist must begin with the line �&control� and end with the line �/�.   

• The remaining lines can be listed in any order or omitted, if desired.   

• The intermediate lines work like variable assignments with the loose format:  

variable_name = value, followed by a comma.   

• Integers (int) are listed as whole numbers. 

• Real numbers (real) are listed in double precision, scientific notation:  #.##d+##. 

• Logical variables (log) are listed as either �.true.� or �.false.�. 

• Lines can be commented out by including an exclamation point �!� prior to any 

other information on the line.   

• The default values, shown above, are used for variables omitted or commented 

out of the namelist. 

• Any information listed after the last line of the namelist �/� are not read by the 

program and can be used to store notes and other calculations. 

• The global time step dt is only used for unsteady solutions.  dt is a dimensionless 

value calculated:  dt = ∆t U / L, where ∆t is the dimensional time step, U is the free-

stream velocity ( = mach ainf ), and L is the reference length refdim.   
• Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.  Some 

dissipation is required to stabilize the solution, but too much dissipation will corrupt 

the solution and possibly be a destabilizing influence. 

• The local time step stability factor is a safety factor used to compute local time steps 

for each solution step. For steady solutions, a stability factor of 0.8 is typical for most 

problems. For unsteady solutions, the stability factor is typically 0.3 < cfl < 0.8. 

• The values of refdim, mach, ainf, and rhoinf are used to non-dimensionalize all 

values read into the flow solver. 

• The free-stream orientation angles are ignored for dynamic (non-inertial) problems. 

• The number of iterative cycles should be set to 4 for steady solutions. For unsteady 

solutions, use a sufficient number of cycles to allow for an appropriate level of con-

vergence at each step.  A sufficient number can be estimated as N = dt / ∆tloc,min. 

• The following is a good practice for finding a sufficient number of iterations for 

unsteady solutions:   

1. Select initial values for dt, ncyc, and rsdtol.   

2. Step the solution forward 20-50 iterations.   

3. Check the *.cyc file for the number of cycles required per iteration.  The 

number of cycles should level off after 10 iterations.  If not, run enough 

iterations for the number of required cycles to level off. 

4. If the last 10 iterations require more than 20 cycles, lower the time step.   

5. If the last 10 iterations require less than 8 iterations, increase the time step.   

6. The sweet spot is 10-15 iterations. 

• The residual tolerance can be used to exit the iterative cycles if the energy 

residual meets a specified criteria rsdtol.  (The energy residual is used because 

the other residuals normally converge faster than energy.)  This feature can be 

used to set the number of iterations to a very large number with a residual 



673 

tolerance rsdtol.  When the residual drops below the tolerance, the solution will 

progress to the next time step.  Lower rsdtol values require more iterations. 

• The divergence tolerance rsdmax creates an upper tolerance on the energy 

residual.  If the solution is diverging, the energy residual will grow larger than 

rsdmax and terminate the run.  The solution also terminates if the residuals 

become NAN or INFINITY.  Larger rsdmax values will allow the solution to 

diverge further and ensure that the solution is in fact diverging.   

• There are four available CFD solution types defined as follows: 

• isol = 0 is a steady solution (not time accurate) 

• isol = 1 is a first-order unsteady solution 

• isol = 2 is a second-order unsteady solution 

• isol = 3 is a supersonic piston perturbation solution 

• There are two types of numerical integration defined as follows: 

• ipnt = 1 uses a one-point Gauss quadrature 

• ipnt = 4 uses a four-point symmetric Gauss quadrature

• There are three available dissipation types defined as follows: 

• idiss = 0 is a low order dissipation 

• idiss = 1 is a high order dissipation with gradient limiters 

• The lower order dissipation is typically overly diffuse and should be used in 

conjunction with low values of the dissipation factor. Low-order dissipation works 

best for problems without strong vortices and for supersonic/hypersonic flows. 

• The higher order dissipation is more CPU intensive than the low-order dissipation and 

less stable. Larger values for the dissipation factor are typically required for 

stabilization. The high-order dissipation works best for subsonic to transonic flows 

with strong gradients or vortices. Rotating domains will typically require high-order 

dissipation to resolve the circulating pattern of the relative flow velocities. 

• The values of ndiss controls the number of iterations between dissipation calcula-

tions.  For example, if ndiss = 1, the dissipation is recalculated at every inner cycle.; 

if ndiss = 2, the dissipation is calculated ever other inner cycle, and stored in 

between; and, etc.  ndiss can only be used to control the higher-order dissipation 

model (idiss = 1). 

• There are three available elastic solution types defined as follows: 

• idsol = 0 is a zeroth-order integration for applied forces 

• idsol = 1 is a first-order integration for applied forces 

• idsol = 2 is a second-order integration for applied forces 

• Combustion properties are specified in the case.cmb file.  The mass and heat 

generation are distributed throughout the domain using the following distributions: 

• icomb = 0, no combustion (case.cmb not read) 

• icomb = 1, combustion properties are piece-wise linear (specified at the nodes) 

• icomb = 2, combustion properties are constant (specified) on the elements 

• Four IBXN controls are listed in the case.con file:  isize, displ, omega, and 

ratio.  These controls are only necessary if ielast is turned on and IBXN = 3 to 9. 

• When the restart flag istrt is set to .true., the solver will read one set of solution 

unknowns from the case.unk file and apply this set of unknowns as the initial 

conditions for the new iterative solution.



674 

• A restarted solution assumes that the time gradient of the initial state is zero, i.e. the 

solution stored in the case.unk file is a converged, steady state solution.  This has a 

significant impact on the second-order unsteady solution since it relies on two sets of 

solution unknowns for advancement to the next time step, i.e. a second-order 

unsteady solution should not be restarted from the last time step of a similar unsteady 

solution that was stopped because both sets of unsteady data from the last solution 

step are not available for accurate evaluation of the time gradients in the flow.

• If the aerodynamics flag iaero is set to .true., the aerodynamic forces are applied 

to the dynamic and elastic motion.  If the flag is set to .false., the dynamic and 

elastic motion must forced externally or occur as free-response vibrations.   

• The non-inertial dynamics routine is turned on when idynm is set to .true.  Euler2D 

will then read in the case.dyn file for dynamic inputs and write out dynamic motion 

to the xd.dat.   

• If the free-stream velocity flag ifree is set to .false., the free-stream velocity 

is set to zero, and relative flow velocities must be generated through dynamic 

rotation or translation of the non-inertial coordinate system.

• If ifree = .true. , the freestream starts aligned with the global fixed x-direction 

(i.e., alpha = beta = 0) but can be rotated using the initial orientation of the body 

in case.dyn. 

• The elastic deflection routine is turned on when ielast is set to .true.  Euler3D 

will read in the case.vec file for modal elastic inputs and write out modal 

deformations and forces to the xn.dat.  The number of modes nr must match that 

shown in the elastic file case.vec. 

• For steady solutions (isol = 0), the dynamics flags for each degree of freedom in the 

case.dyn and case.vec should be set to 1 (clamped condition). 

• The propulsion boundary conditions are turned on when iprop is set to .true.  

Euler3D will read in the case.eng file for rocket and engine inputs.   

• If the external forces flag is set to .true., the solver will read the user defined 

external force vector for each global time step from the input file case.frc.  If the 

solver reaches the end of the input file before completing the solution, the last force 

vector in the file carries over to each of the remaining time steps if it was non-zero.

• If the safe-mode flag is set to .true., Euler3D writes two files per step that are used 

to restart the solution:  case.rst and case.rs2.  Two files are used so while one 

file is being over-written, the other file is still preserved.  Each file stores the previous 

two values of all unknowns, elastic mode shapes, and generalized elastic forces.  

Safe-mode can be used for fast restarts for very long runs that are not time sensitive.

• When the safe-mode flag is set to .true., Euler3D checks for both restart files.  If 

the case.rst exists, but has an error, the error is reported to the user.  The case.rst 

can be moved, renamed, or deleted.  The solution will then be restarted from the 

case.rs2 file.  (Euler3D does not skip between files to avoid overwriting files that 

contain correctable errors.) 

• If the residual watching flag is set to .true., residuals are written out at each inner 

iteration to the case.rsd2 file.  This option can be used to check the residual 

convergence within steps.  The number of inner cycles used at each iteration is 

written to the case.cyc file for plotting and comparison of convergence.



675 

• If the NetCDF flag is set to .true., then the geometry and unknowns information is 

passed through NetCDF formats instead of the traditional binary files.  The geometry 

is read in through the case.nc3d instead of the case.g3d.  The unknowns files 

(case.unk and case.un#) retain the same name, but the format is the NetCDF 

format instead of the traditional binary format.  

• If the acoustic output flag is set to .true., the acoustic input file case.acst is read 

for controls, and one or more of the acoustic output files (pressure � case.pac; 

density � case.rac; u-velocity � case.uac; v-velocity � case.vac; w-velocity � 

case.wac) are written.

• Gravity is assumed to act on the vehicle along the inertial z-axis.  In the non-inertial 

reference frame, the body force vector rotates so that gravity is always pointed down 

in the positive z-direction.  The value gravity is non-dimensionalized using refdim

(L), mach (M), and ainf, so the dimensions of these variables should be consistent:

22

*

∞

=
aM

Lg
g



676 

Unknowns (Initial Conditions) Input File (case.unk) 

Basic File Format 

np gam xmi alp bet ref t 

((UN(i,j), i = 1,nnd ), j = 1,6) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side slip angle 

ref: real reference dimension 

t: real dimensionless time 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

UN(i,6): real total enthalpy for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 

• The quantities nnd must match the values in the geometry file case.g3d as nnd. 

• The quantities gam and xmi must match the values in the control file case.con as 

gamma and mach. 

• When restarting a solution, the most recent unknowns output file case.un# can be 

renamed as the initial conditions file case.unk.



677 

Geometry Input File, netCDF Format (case.unk) 

Basic File Format 

File Attributes: 

“title”   :: “Euler3D Unk File” 

“time”    :: TimeDay 

“name”    :: filen 

“Version” :: VerYMD 

“gam”     :: gam   

“xmi”     :: xmi   

“alp”     :: nbe   

“bet”     :: nbp   

“refdim”  :: ref  

“time”    :: t    

Dimensions: 

“nnd”     :: nnd  (IDnnd) 

“Dim1”    :: 1    (ID1) 

Variables: 

“Density”   :: UN(:,1) (IDrho)   

[IDnnd,ID1] 

“Xvelocity” :: UN(:,2) (IDxvel)  

[IDnnd,ID1] 

“Yvelocity” :: UN(:,3) (IDyvel)   

[IDnnd,ID1] 

“Zvelocity” :: UN(:,4) (IDzvel)   

[IDnnd,ID1] 

“Pressure”  :: UN(:,5) (IDp)   

[IDnnd,ID1] 

Definition of Terms 

TimeDay: int time and date generated 

filen: char case name 

VerYMD: int Euler3D version, written 

using YYYYMMDD notation 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side slip angle 

ref: real reference dimension 

t: real dimensionless time 

nnd: int number of nodes 

Dim1: int = 1, used to dimension arrays 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

Comments  

• This file is created using the netCDF library.  Formatting is handled using the netCDF 

library file netCDF.dll.   

• The netCDF formatting has been represented here using four designations: 

• Names in quotes ( � � ) represent the human-name of the variable or array 

• The value following the double-colon ( :: ) is the variable stored under this name. 

• The name in parentheses ( ) is the handle used to recall information from netCDF. 

• The values in brackets [ ] are the array dimensions.  Multi-dimension arrays 

(matrices, etc.) are shown by values separated by commas.   

• Data in case.unk can be written or read in any particular order, but for simplicity, 

the file has been represented here in three sections: 



678 

• File Attributes:  Values describing the file (name, date, version, etc.) are read 

using nf_get_att_double.  For example, the ratio of specific heats (gam) and 

mach number (xmi) are read: 

   call check(nf_get_att_double(ncid, nf_global, "gam", gam_unk))  

   call check(nf_get_att_double(ncid, nf_global, "xmi", xmi_unk))

• Dimensions:  Values used to size the arrays (variables) that follow are read using 

nf_inq_dimid and nf_inq_dimlen.  The first function inquires of the netCDF ID 
to identify the dimension, and the second is used to read the value.  The file 

structure has been established so that all of the dimensions are positive-definite 

(no zeros or negatives).  For example, the number of nodes (nnd) are read: 

   call check(nf_inq_dimid(ncid, "nnd", IDnnd))  
   call check(nf_inq_dimlen(ncid, IDnnd, nnd))

• Variables:  The IDs for arrays are identified using nf_inq_varid, and then the 

arrays are read using nf_get_var_double (double-precision reals).  For example, 

the nodal density (UN(:,1), double, array) are read: 

call check(nf_inq_varid(ncid, "Density", IDrho)) 
call check(nf_get_var_double(ncid, IDrho, UN(:,1)))

• The functions used to read and write using the netCDF format can be found in the 

netCDF manuals (www.unidata.ucar.edu/software/netcdf/). 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 

• The quantities nnd must match the values in the geometry file case.nc3d as nnd. 

• The quantities gam and xmi must match the values in the control file case.con as 

gamma and mach. 

• When restarting a solution, the most recent unknowns output file case.un# can be 

renamed as the initial conditions file case.unk. 



679 

Dynamic Mesh Input File (case.dyn) 

Basic File Format 

Line of Text 

 (R0(i), i = 1, 3) 

Line of Text 

 ((RM1(i,j), j = 1,6), i = 1,6) 

Line of Text 

 ((RC1(i,j), j = 1,6), i = 1,6) 

Line of Text 

 ((RK1(i,j), j = 1,6), i = 1,6) 

Line of Text 

  x,  y,  z,  p,  q,  r,  

 vx, vy, vz, vp, vq, vr,  

 ax, ay, az, ap, aq, ar 

Line of Text 

 (IBXD(i), i = 1,13) 

Definition of Terms 

R0(1): real x-coord. for origin of rotation 

R0(2): real y-coord. for origin of rotation 

R0(3): real z-coord. for origin of rotation 

RM1(i,j): real dimensional mass matrix 

RC1(i,j): real dimensional damping matrix 

RK1(i,j): real dimensional stiffness matrix 

x: real initial x-position of system 

y: real initial y-position of system 

z: real initial z-position of system 

p: real initial roll angle of system (deg) 

q: real initial pitch angle of system (deg) 

r: real initial yaw angle of system (deg) 

vx: real initial x-velocity of system 

vy: real initial y-velocity of system 

vz: real initial z-velocity of system 

vp: real initial roll rate (deg/s) 

vq: real initial pitch rate (deg/s) 

vr: real initial yaw rate (deg/s) 

ax: real initial x-acceleration of system 

ay: real initial y-acceleration of system 

az: real initial z-acceleration of system 

ap: real initial roll acceleration (deg/s
2
) 

aq: real initial pitch acceleration (deg/s
2
) 

ar: real initial yaw acceleration (deg/s
2
) 

IBXD(1): int flag for x-position-DOF 

IBXD(2): int flag for y-position-DOF 

IBXD(3): int flag for z-position-DOF 

IBXD(4): int flag for x-velocity-DOF 

IBXD(5): int flag for y- velocity-DOF 

IBXD(6): int flag for z- velocity-DOF 

IBXD(7): int flag for p-velocity-DOF 

IBXD(8): int flag for q-velocity-DOF 

IBXD(9): int flag for r-velocity-DOF 

IBXD(10): int flag for first quaternion q0

IBXD(11): int flag for second quaternion q1

IBXD(12): int flag for third quaternion q2

IBXD(13): int flag for fourth quaternion q3

  

Comments  

• This is a plain text (ASCII) file. 

• All values entered into this file should be dimensional.  The solver will automatically 

non-dimensionalize the values using the reference conditions specified in the solver 

control file.  The units of mass, length, and time in this file should match those in the 

controls file case.con. 



680 

• The vector defining the origin of rotation R0 is subtracted directly from the nodal 

coordinates defined in the geometry input file case.g3d after it is non-dimension-

alized by the reference dimension. 

• The mass matrix RM1 defined in this file cannot be singular. 

• Matrices must take on the following form: 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−−

−−

−−
=

zyzxz

yzyxy

xzxyx

III

III

III

m

m

m

RM1  

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

ψ

θ

φ

C

C

C

C

C

C

RC
z

y

x

1         

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

ψ

θ

φ

K

K

K

K

K

K

RK
z

y

x

1

where m is the mass of the vehicle, Iij is the inertia of the vehicle, Ci is the damping of 

the i
th

 degree-of-freedom, and Ki is the stiffness of the i
th

 degree-of-freedom. 

• Initial conditions for the three translational degrees of freedom are specified relative 

to the inertial coordinate system, i.e. as seen by a stationary observer on the ground. 

• The dynamics of each degree of freedom is controlled separately using the following 

values for IBXD: 

o IBXD = 0 is a free / forced response calculation, i.e. uses mass, stiffness, and 

damping to compute position , velocity, and acceleration of system. 

o IBXD = 1 is a static condition for this DOF, i.e. hold at initial values for position 

and velocity. 

• The acceleration of gravity is scaled by gravity so that: 

kgravitygag
�−==

��

where k points in the positive z-direction in the inertial frame. 



681 

• To convert from xd.dat to ICs: 

XD(1) x refdim  x

XD(2) x refdim  y

XD(3) x refdim  z

XD(4) x mach x ainf   vx

XD(5) x mach x ainf   vy

XD(6) x mach x ainf   vz

roll x 180/π    p

pitch x 180/π  q

yaw x 180/π    r

XD(7) x 180/π x mach x ainf  / refdim vp

XD(8) x 180/π x mach x ainf  / refdim  vq 

XD(9) x 180/π x mach x ainf  / refdim  vr 

The accelerations ax, ay, az, ap, aq, and ar are not used to restart the system and do 

not need to be converted from the xd.dat file. 

Sample File  

$ Position vector to origin of non-inertial frame (rx, ry, rz) 
  0.0d0  0.0d0  0.0d0 
$ Mass matrix for non-inertial frame (6 x 6) 
  1.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  1.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  1.0d0 
$ Damping matrix for non-inertial frame (6 x 6) 
  1.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  1.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  1.0d0 
$ Stiffness matrix for non-inertial frame (6 x 6) 
  1.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  1.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  1.0d0 
$ IC’s for non-inertial frame (6 positions, 6 rates, 6 accelerations) 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
$ IBXD for non-inertial frame (13) 
  1  1  1    1  1  1    1  1  1    1  1  1  1 



682 

Elastic Vectors Input File (case.vec) 

Basic File Format 

Line of Text 

 nr 

Line of Text 

 ((RM(i,j), j = 1,nr), i = 1,nr) 

Line of Text 

 ((RC(i,j), j = 1,nr), i = 1,nr) 

Line of Text 

 ((RK(i,j), j = 1,nr), i = 1,nr) 

Line of Text 

 (XN(i), i = 1,nr*2) 

Line of Text 

 (IBXN(i), i = 1,nr) 

Line of Text 

 ((PHIA(i,j), i = 1,nwl*3), j = 1,nr) 

Definition of Terms 

nr: int number of elastic modes 

RM(i,j): real dimensional mass matrix 

RC(i,j): real dimensional damping matrix 

RK(i,j): real dimensional stiffness matrix 

XN(i): real initial gen. displ. for mode i

XN(i+nr): real initial gen. vel. for mode i

IBXD(i): int dynamics flag for i
th

 mode 

PHIA(i*3-2,j): real x-displacement vector 

for mode j at node i

PHIA(i*3-1,j): real y-displacement vector 

for mode j at node i

PHIA(i*3,j): real z-displacement vector 

for mode j at node i

  

Comments  

• This is a plain text (ASCII) file. 

• All values entered into this file should be dimensional.  The solver will automatically 

non-dimensionalize the values using the reference conditions specified in case.con. 

• The mass matrix RM defined in this file cannot be singular. 

• The dynamics of each degree of freedom is controlled separately using the following 

values for IBXN: 

o IBXN = 0 is a free / forced response calculation, i.e. uses mass, stiffness, and 

damping to compute position, velocity, and acceleration of system. 

o IBXN = 1 is a clamped condition, i.e. hold at initial position and velocity with zero 

acceleration. 

o IBXN = 2 is a constant velocity, uncoupled response, i.e. integrates acceleration 

and velocity to compute new displacement. 

o IBXN = 3 is a forced 3211 mulistep response used for system ID purposes. 

o IBXN = 4 is a forced mulistep response used for system ID purposes. 

o IBXN = 5 is a forced chirp response used for system ID purposes. 

o IBXN = 6 is a forced multi-processor chirp response used for system ID purposes. 

o IBXN = 7 is a forced DC chirp response used for system ID purposes. 

o IBXN = 8 is a forced Schroeder chirp response used for system ID purposes. 

o IBXN = 9 is a forced Fresnel chirp response used for system ID purposes. 

• Do not combine zero IBXN values with non-zero values for different modes if there 

are coupling or off-diagonal terms in the mass, damping, or stiffness matrices. 

• The modal displacement is defined at nwl nodes using the PHIA.  The corresponding 

nodes are specified through IPHIA, which point to the node indices in case.g3d. 



683 

• A limited set of simple model vectors representing standard rigid-body degrees of 

freedom can be generated using the program makevec3d.  

• To convert from xn.dat to ICs: 

XN(i)  XN(i) 

VN(i) x mach x ainf / refdim  XN(i+nr) 

Sample File  

$ Number of elastic modes 
  3 
$ Mass matrix for elastic modes (nr x nr) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ Damping matrix for elastic modes (nr x nr) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ Stiffness matrix for elastic modes (nr x nr) 
  1.0d0  0.0d0  0.0d0 
  0.0d0  1.0d0  0.0d0 
  0.0d0  0.0d0  1.0d0 
$ IC’s for elastic modes (x1...xn, vx1...vxn) 
  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0  0.0d0 
$ IBXN for elastic modes (nr) 
  1    1    1 
$ Elastic modes vectors PHIA ((nwl*3) x nr) 
  0.0d0  0.0d0  1.0d0 
  0.0d0  0.0d0  1.0d0 
  0.0d0  0.0d0  1.0d0 
  0.0d0  0.0d0  1.0d0 
  0.0d0  0.0d0  1.0d0 
  0.0d0  0.0d0  1.0d0 
  0.0d0  0.0d0  1.0d0 

    �     �     �



684 

External Forces File (case.frc) 

Basic File Format 

  0 (FD(i), i = 1, 6)  

   (FA(i), i = 1,nr) 

  �  �      �  �

istp (FD(i), i = 1, 6)  

        (FA(i), i = 1,nr) 

  �  �      �  �

nstp (FD(i), i = 1, 6)  

        (FA(i), i = 1,nr) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

FD(1): real x-force applied at istp

FD(2): real y-force applied at istp

FD(3): real z-force applied at istp

FD(4): real roll moment applied at istp

FD(5): real pitch moment applied at istp

FD(6): real yaw moment applied at istp

FA(i): real gen. force applied to mode i

Comments  

• This is a plain text (ASCII) file. 

• All values entered into this file should be dimensional.  The solver will automatically 

non-dimensionalize the values using the reference conditions specified in the solver 

control file.  The units of mass, length, and time in this file should match those in the 

controls file case.con. 

• The forces applied to the three translational degrees of freedom are specified relative 

to the inertial coordinate system, i.e. as seen by a stationary observer on the ground. 

• The specified forces are read one line at a time following each solution step. 

• Up to nstp forces may be specified, but are not required.  The last force read in by 

the solver will be applied for all remaining solution steps



6
8
5

 

S
a

m
p

le
 F

il
e 

 (
n
r
 =

 3
) 

 
 
0
 
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
0
.
0
0
d
+
0
0
 
 
 

 
 
1
 
 
 
0
.
0
0
d
+
0
0
 

 
 
2
 
 
 
0
.
0
0
d
+
0
0
 

 
 
3
 
 
 
0
.
0
0
d
+
0
0
 

 
 
4
 
 
 
0
.
0
0
d
+
0
0
 

 
 
5
 
 
 
0
.
0
0
d
+
0
0
 

 
 
6
 
 
 
0
.
0
0
d
+
0
0
 

 
 
7
 
 
 
0
.
0
0
d
+
0
0
 

 
 
8
 
 
 
0
.
0
0
d
+
0
0
 

 
 
9
 
 
 
0
.
0
0
d
+
0
0
 

 
1
0
 
 
 
0
.
0
0
d
+
0
0
 

 
1
1
 
 
 
0
.
0
0
d
+
0
0
 

 
1
2
 
 
 
0
.
0
0
d
+
0
0
 

 
1
3
 
 
 
0
.
0
0
d
+
0
0
 

 
1
4
 
 
 
0
.
0
0
d
+
0
0
 

 
1
5
 
 
 
0
.
0
0
d
+
0
0
 

 
1
6
 
 
 
0
.
0
0
d
+
0
0
 

 
1
7
 
 
 
0
.
0
0
d
+
0
0
 

 
1
8
 
 
 
0
.
0
0
d
+
0
0
 

 
1
9
 
 
 
0
.
0
0
d
+
0
0
 

 
2
0
 
 
 
0
.
0
0
d
+
0
0
 

       685



686 

Acoustic Input File (case.acst) 

Basic File Format 

Line of Text 

  ipres  idens  iuvel  ivvel  iwvel 

Line of Text 

  nacp  nacl 

Line of Text 

  x(1)     y(1)     z(1) 

   �       �        �

  x(nacp)  y(nacp)  z(nacp) 

Line of Text 

  x1(1) y1(1) z1(1) x2(1) y2(1) z2(1) 

   �    �    �     �     �     �

  x1(nacl) y1(nacl) z1(nacl)  

           x2(nacl) y2(nacl) z2(nacl) 

Definition of Terms 

ipres: int pressure output flag 

idens: int density output flag 

iuvel: int u-velocity output flag 

ivvel: int v-velocity output flag 

iwvel: int w-velocity output flag 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

x(:): real x-coordinate of acoustic point 

y(:): real y- coordinate of acoustic point 

z(:): real z- coordinate of acoustic point 

x1(:): real x-coord - starting point of line 

y1(:): real y-coord - starting point of line 

z1(:): real z-coord - starting point of line 

x2(:): real x-coord - ending point of line 

y2(:): real y-coord - ending point of line 

z2(:): real z-coord - ending point of line 

Comments  

• This is a plain text (ASCII) file. 

• One of the four acoustics flags must be on, in order for the output files to be created 

and data written out.   

• If ipres = 1, then coefficient of pressure data is written to the case.pac file.   

• If idens = 1, then density data is written to the case.rac file.   

• If iuvel = 1, then u-velocity data is written to the case.uac file.   

• If ivvel = 1, then v-velocity data is written to the case.vac file.   

• If iwvel = 1, then w-velocity data is written to the case.wac file.   

• If none of the four flags are on, ipres is set to 1 (on). 

• The header lines must still be written, even if no data is given in the corresponding 

section.  For instance, if nacp = 0, the point header must still exist in the file at the 5
th

line.  If nacl = 0, the line header must still exist at the end of the file.  The header 

lines exist as place holders, so anything can be written on these lines, but the lines 

themselves must exist. 

• Acoustic points can exist anywhere inside of the domain.  These points are described 

by (x,y,z) coordinates.  If the coordinates do not exist within the field, the first node 

of the first element is used to calculate properties written to the file(s).  A warning is 

written in the header of these files, and the (x,y,z) coordinates of this point will not 

match those in the input file.  This data should not be used but treated as a place 

holder. 

• The acoustic lines are represented by drawing a line from a starting point (x1,y1,z1) 

to an ending point (x2,y2,z2).  Any element face in the solution domain that crosses 



687 

this line is used to calculate properties at the intersection (of the acoustic line and 

element face).  Intersections along a particular line are listed in order from starting to 

ending points. 

Sample File  

$ Acoustic output file flags 

  1  0  1  0  0 

$ Number of points and lines 

  4  2 

$ Coordinates of acoustic points 

  0.3  0.0 

  0.7  0.1 

  0.1  0.0 

  0.8  0.8 

$ Coordinates of acoustic lines 

  0.5  0.0   0.5  1.0 

  0.0  0.0   1.0  0.0



688 

Unknowns Output File (case.un#) 

Basic File Format 

np gam xmi alp bet ref t 

((UN(i,j), i = 1,nnd ), j = 1,6) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side slip angle 

ref: real reference dimension 

t: real dimensionless time 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

UN(I,6): real total enthalpy for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system.



689 

Unknowns File, netCDF Format (case.un#) 

Basic File Format 

File Attributes: 

“title”   :: “Euler3D Un# File” 

“time”    :: TimeDay 

“name”    :: filen 

“Version” :: VerYMD 

“gam”     :: gam   

“xmi”     :: xmi   

“alp”     :: alp   

“bet”     :: bet   

“refdim”  :: ref  

“time”    :: t    

Dimensions: 

“nnd”     :: nnd  (IDnnd) 

“Dim1”    :: 1    (ID1) 

“Dim4”    :: 4    (ID4) 

“Dim6”    :: 6    (ID6) 

Variables: 

“Density”   :: UN(:,1) (IDrho)   

[IDnnd,ID1] 

“Xvelocity” :: UN(:,2) (IDxvel)  

[IDnnd,ID1] 

“Yvelocity” :: UN(:,3) (IDyvel)   

[IDnnd,ID1] 

“Zvelocity” :: UN(:,4) (IDzvel)   

[IDnnd,ID1] 

“Pressure”  :: UN(:,5) (IDP)   

[IDnnd,ID1] 

Definition of Terms 

TimeDay: int time and date generated 

filen: char case name 

VerYMD: int Euler3D version, written 

using YYYYMMDD notation 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real free-stream side slip angle 

ref: real reference dimension 

t: real dimensionless time 

nnd: int number of nodes 

Dim1: int = 1, used to dimension arrays 

Dim4: int = 4, used to dimension arrays 

Dim6: int = 6, used to dimension arrays 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

Comments  

• This file is created using the netCDF library.  Formatting is handled using the netCDF 

library file netCDF.dll.   

• The netCDF formatting has been represented here using four designations: 

• Names in quotes ( � � ) represent the human-name of the variable or array 

• The value following the double-colon ( :: ) is the variable stored under this name. 

• The name in parentheses ( ) is the handle used to recall information from netCDF. 

• The values in brackets [ ] are the array dimensions.  Multi-dimension arrays 

(matrices, etc.) are shown by values separated by commas.   



690 

• Data in case.un# can be written or read in any particular order, but for simplicity, 

the file has been represented here in three sections: 

• File Attributes:  Values describing the file (name, date, version, etc.) are written 

using nf_put_att_text, nf_put_att_int, or nf_put_att_double if the value is 

a string, integer, or double-precision real, respectively.  For example, the date 

(int), case name (char), and Mach number (xmi, double) are written: 

call check(nf_put_att_int(ncid, nf_global, "time", nf_int, 8, Day )) 

   call check(nf_put_att_text(ncid, nf_global, "name",  
len(trim(filen)), trim(filen) )) 

   call check(nf_put_att_double(ncid, nf_global, "xmi", nf_double,  
                                                              1, xmi )) 

• Dimensions:  Values used to size the arrays (variables) that follow are written 

using nf_def_dim.  The file structure has been established so that all of the 

dimensions are positive-definite (no zeros or negative numbers).  For example, 

the number of nodes (nnd) is written: 

   call check(nf_def_dim(ncid, "nnd", nnd, IDnnd)) 

• Variables:  Arrays are defined using nf_def_var and written using 

nf_put_var_double (double-precision reals).  For example, the nodal density 

(UN(:,1), double, array) are written: 

RankTwo = (/ IDnnd, ID1 /) 
call check(nf_def_var(ncid, "Density", nf_double, 2, RankTwo,  
                                                           IDrho)) 
call check(nf_put_var_double(ncid, IDrho, UN(:,1)))

• The functions used to read and write using the netCDF format can be found in the 

netCDF manuals (www.unidata.ucar.edu/software/netcdf/). 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 



691 

Residuals Output File (case.rsd) 

Basic File Format 

  1 (RSD(i), i = 1,5) 

  �      �

istp (RSD(i), i = 1,5) 

  �      �

nstp (RSD(i), i = 1,5) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real z-momentum solution residual 

RSD(5): real energy solution residual 

Comments  

• This is a plain text (ASCII) file. 

• For steady problems, the solution residuals indicate the degree of convergence to the 

final steady state solution.  All five solution residuals should converge to 

approximately the same order of magnitude. 

• For unsteady problems, the solution residuals indicate the degree of convergence for 

each global step of the solution, or the degree of convergence for the steady solution 

that is solved at each step. 



6
9
2

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
 
 
 
3
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
 
 
 
4
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
 
 
 
5
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
 
 
 
6
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
 
 
 
7
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
 
 
 
8
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
 
 
 
9
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
 
 
 
1
0
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
 
 
 
1
1
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
 
 
 
1
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
 
 
 
1
3
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
 
 
 
1
4
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
 
 
 
1
5
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
 
 
 
1
6
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
 
 
 
1
7
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
 
 
 
1
8
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
 
 
 
1
9
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5
 

 
 
 
 
2
0
 
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
2
8
9
0
1
E
-
0
5

       692



693 

Residuals Output File (case.rsd2) 

Basic File Format 

  1 (RSD(i), i = 1,5)     1 

  1 (RSD(i), i = 1,5)     2 

  �      �           �

  1 (RSD(i), i = 1,5)   icyc 

  �      �           �

istp (RSD(i), i = 1,5)     1 

  �      �           �

nstp (RSD(i), i = 1,5)     1 

  �      �           �

Definition of Terms 

istp: int current solution step 

icyc: int iteration of current residual 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real z-momentum solution residual 

RSD(5): real energy solution residual 

Comments  

• This is a plain text (ASCII) file. 

• This file is output when irsds = .true. in the controls case.con file.  The 

residuals shown in this file represent the RMS changes at all nodes in the domain for 

this inner cycle.  The convergence of residuals within any iteration can be seen in the 

trend in the residuals through the cycles used. 



6
9
4

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 
 

1
 

 
 
 
 
 
1
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 
 

2
 

 
 
 
 
 
1
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 
 

3
 

 
 
 
 
 
1
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 
 

4
 

 
 
 
 
 
1
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 
 

5
 

 
 
 
 
 
1
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 
 

6
 

 
 
 
 
 
1
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 
 

7
 

 
 
 
 
 
1
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 
 

8
 

 
 
 
 
 
2
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 
 

1
 

 
 
 
 
 
2
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 
 

2
 

 
 
 
 
 
2
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 
 

3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 
 

4
 

 
 
 
 
 
2
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 
 

5
 

 
 
 
 
 
2
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 
 

6
 

 
 
 
 
 
2
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 
 

7
 

 
 
 
 
 
2
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 
 

8
 

 
 
 
 
 
3
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 
 

1
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 
 

2
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5
 
 

3
 

 
 
 
 
 
3
 
 
 
 
0
.
9
8
7
1
1
E
-
0
7
 
 
 
0
.
4
3
6
1
8
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
4
9
9
3
4
E
-
0
6
 
 
 
0
.
2
8
9
0
1
E
-
0
5
 
 

4

       694



695 

Aerodynamic Loads Output File (case.lds) 

Basic File Format 

  0 0.0 (FD(i), i = 1,6) 

  �  �     �

istp tistp (FD(i), i = 1,6) 

  �  �     �

nstp tnstp (FD(i), i = 1,6) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

t: real dimensionaless time at step i

FD(1): real x-force coefficient 

FD(2): real y-force coefficient 

FD(3): real z-force coefficient 

FD(4): real x-moment coefficient 

FD(5): real y-moment coefficient 

FD(6): real z-moment coefficient 

Comments  

• This is a plain text (ASCII) file. 

• The force coefficients FD in this output file are dimensionless values based on the 

reference conditions specified in the solver control file case.con: 

222

2
1

)1(
LaM

F
FD X

∞∞

=
ρ

          
222

2
1

)2(
LaM

F
FD Y

∞∞

=
ρ

222

2
1

)3(
LaM

F
FD z

∞∞

=
ρ

   
322

2
1

)4(
LaM

M
FD x

∞∞

=
ρ

322

2
1

)5(
LaM

M
FD

y

∞∞

=
ρ

   
322

2
1

)6(
LaM

M
FD z

∞∞

=
ρ

 where M is the free-stream Mach number and L is the reference dimension, both 

appearing in case.con. 

• The moment coefficient is calculated in reference to the origin of the mesh. 

• For dynamic (non-inertial) problems, the force coefficients stored in this file are 

referenced to the body-fixed coordinate system.



6
9
6

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
 
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
1
 
 
 
 
0
.
1
0
0
0
0
E
+
0
0
 
 
 
 
0
.
2
9
1
8
6
E
+
0
1
 
 
 
 
0
.
4
0
8
9
3
E
-
0
4
 
 
 
 
0
.
2
0
3
8
6
E
-
0
4
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
2
 
 
 
 
0
.
2
0
0
0
0
E
+
0
0
 
 
 
 
0
.
5
3
8
7
8
E
+
0
1
 
 
 
 
0
.
7
4
0
3
6
E
-
0
4
 
 
 
 
0
.
3
6
9
2
0
E
-
0
4
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
3
 
 
 
 
0
.
3
0
0
0
0
E
+
0
0
 
 
 
 
0
.
7
3
4
2
6
E
+
0
1
 
 
 
 
0
.
1
0
7
9
8
E
-
0
3
 
 
 
 
0
.
5
3
8
6
7
E
-
0
4
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
4
 
 
 
 
0
.
4
0
0
0
0
E
+
0
0
 
 
 
 
0
.
8
7
7
5
4
E
+
0
1
 
 
 
 
0
.
1
4
6
1
1
E
-
0
3
 
 
 
 
0
.
7
2
9
2
0
E
-
0
4
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
5
 
 
 
 
0
.
5
0
0
0
0
E
+
0
0
 
 
 
 
0
.
9
7
2
2
1
E
+
0
1
 
 
 
 
0
.
1
8
8
3
5
E
-
0
3
 
 
 
 
0
.
9
4
0
3
3
E
-
0
4
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
6
 
 
 
 
0
.
6
0
0
0
0
E
+
0
0
 
 
 
 
0
.
1
0
2
5
0
E
+
0
2
 
 
 
 
0
.
2
3
5
7
4
E
-
0
3
 
 
 
 
0
.
1
1
7
7
2
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
7
 
 
 
 
0
.
7
0
0
0
0
E
+
0
0
 
 
 
 
0
.
1
0
4
4
4
E
+
0
2
 
 
 
 
0
.
2
6
2
5
7
E
-
0
3
 
 
 
 
0
.
1
3
1
1
2
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
8
 
 
 
 
0
.
8
0
0
0
0
E
+
0
0
 
 
 
 
0
.
1
0
3
9
1
E
+
0
2
 
 
 
 
0
.
2
5
3
4
8
E
-
0
3
 
 
 
 
0
.
1
2
6
5
7
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
9
 
 
 
 
0
.
9
0
0
0
0
E
+
0
0
 
 
 
 
0
.
1
0
1
7
3
E
+
0
2
 
 
 
 
0
.
2
5
3
0
2
E
-
0
3
 
 
 
 
0
.
1
2
6
3
2
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
0
 
 
 
 
0
.
1
0
0
0
0
E
+
0
1
 
 
 
 
0
.
9
8
6
3
0
E
+
0
1
 
 
 
 
0
.
2
3
3
7
7
E
-
0
3
 
 
 
 
0
.
1
1
6
6
8
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
1
 
 
 
 
0
.
1
1
0
0
0
E
+
0
1
 
 
 
 
0
.
9
5
1
3
6
E
+
0
1
 
 
 
 
0
.
2
0
4
8
2
E
-
0
3
 
 
 
 
0
.
1
0
2
1
9
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
2
 
 
 
 
0
.
1
2
0
0
0
E
+
0
1
 
 
 
 
0
.
9
1
5
4
3
E
+
0
1
 
 
 
 
0
.
1
9
3
7
0
E
-
0
3
 
 
 
 
0
.
9
6
6
4
0
E
-
0
4
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
3
 
 
 
 
0
.
1
3
0
0
0
E
+
0
1
 
 
 
 
0
.
8
8
1
1
8
E
+
0
1
 
 
 
 
0
.
2
3
3
6
5
E
-
0
3
 
 
 
 
0
.
1
1
6
6
2
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
4
 
 
 
 
0
.
1
4
0
0
0
E
+
0
1
 
 
 
 
0
.
8
5
1
1
6
E
+
0
1
 
 
 
 
0
.
2
8
5
5
3
E
-
0
3
 
 
 
 
0
.
1
4
2
5
6
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
5
 
 
 
 
0
.
1
5
0
0
0
E
+
0
1
 
 
 
 
0
.
8
2
5
5
3
E
+
0
1
 
 
 
 
0
.
3
7
5
3
9
E
-
0
3
 
 
 
 
0
.
1
8
7
4
7
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
6
 
 
 
 
0
.
1
6
0
0
0
E
+
0
1
 
 
 
 
0
.
8
0
3
6
7
E
+
0
1
 
 
 
 
0
.
5
5
5
4
4
E
-
0
3
 
 
 
 
0
.
2
7
7
4
9
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
7
 
 
 
 
0
.
1
7
0
0
0
E
+
0
1
 
 
 
 
0
.
7
8
4
6
1
E
+
0
1
 
 
 
 
0
.
7
6
6
6
2
E
-
0
3
 
 
 
 
0
.
3
8
3
0
6
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
8
 
 
 
 
0
.
1
8
0
0
0
E
+
0
1
 
 
 
 
0
.
7
6
7
4
7
E
+
0
1
 
 
 
 
0
.
1
0
0
9
5
E
-
0
2
 
 
 
 
0
.
5
0
4
4
9
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
1
9
 
 
 
 
0
.
1
9
0
0
0
E
+
0
1
 
 
 
 
0
.
7
5
1
4
7
E
+
0
1
 
 
 
 
0
.
1
2
6
6
4
E
-
0
2
 
 
 
 
0
.
6
3
2
9
2
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
2
0
 
 
 
 
0
.
2
0
0
0
0
E
+
0
1
 
 
 
 
0
.
7
3
6
0
7
E
+
0
1
 
 
 
 
0
.
1
5
0
5
8
E
-
0
2
 
 
 
 
0
.
7
5
2
6
2
E
-
0
3
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 

 
 
 
 
 
 
� 

  
  

  
 �

 
 

  
  

  
  

  
 �

   
  

  
  

  
  

  
� 

 
  

  
� 

  
  

  
  
  

  
  

  
  

  
  
� 

 
  

  
  
  

  
 �

  
 �

       696



697 

Dynamic Output File (xd.dat) 

Basic File Format 

  0 0.0 (XD(i), i = 1,3) 

   roll  pitch  yaw  

  (XD(i), i = 4,9) 

  (FD(i), i = 1,6) 

(XD(i), i = 10,13) 

  �  �      �  �

istp tistp (XD(i), i = 1,3) 

   roll  pitch  yaw  

  (XD(i), i = 4,9) 

  (FD(i), i = 1,6) 

(XD(i), i = 10,13) 

  �  �      �  �

nstp t
nstp

 (XD(i), i = 1,3) 

   roll  pitch  yaw  

  (XD(i), i = 4,9) 

  (FD(i), i = 1,6) 

(XD(i), i = 10,13) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

t: real dimensionless time at step i

XD(1): real x- position 

XD(2): real y- position 

XD(3): real z- position 

XD(4): real x-velocity 

XD(5): real y-velocity 

XD(6): real z-velocity 

XD(7): real roll rate (rad/s) 

XD(8): real pitch rate (rad/s) 

XD(9): real yaw rate (rad/s) 

XD(10): real first quaternion q0

XD(11): real second quaternion q1

XD(12): real third quaternion q2

XD(13): real fourth quaternion q3

roll: real roll angle (rad) 

pitch: real pitch angle (rad) 

yaw: real yaw angle (rad) 

FD(1): real x- force 

FD(2): real y- force 

FD(3): real z- force 

FD(4): real roll moment 

FD(5): real pitch moment 

FD(6): real yaw moment 

Comments  

• This is a plain text (ASCII) file. 

• The dynamic data in this output file is dimensionless based on the reference 

conditions specified in the solver control file case.con: 

L

x
XD 0)1( =   

L

y
XD 0)2( =   

L

z
XD 0)3( =

)(0 radroll φ= )(0 radpitch θ= )(0 radyaw ψ=

∞

=
aM

V
XD X)4(

∞

=
aM

V
XD Y)5(

∞

=
aM

V
XD z)6(

)/()7( 0 sradp
aM

L
XD

∞

=   )/()8( 0 sradq
aM

L
XD

∞

=



698 

          )/()9( 0 sradr
aM

L
XD

∞

=

222

2
1

)1(
LaM

F
FD X

∞∞

=
ρ

          
222

2
1

)2(
LaM

F
FD Y

∞∞

=
ρ

222

2
1

)3(
LaM

F
FD z

∞∞

=
ρ

   
322

2
1

)4(
LaM

M
FD x

∞∞

=
ρ

322

2
1

)5(
LaM

M
FD

y

∞∞

=
ρ

   
322

2
1

)6(
LaM

M
FD z

∞∞

=
ρ

 where M is the Mach number and L is the reference dimension in case.con.  The 

dimensionless forces are expressed in the same form as the case.lds file. 

• The position, velocity, and acceleration vectors in this file are defined relative to the 

global coordinate system, while the rotational quantities are defined as rotations about 

the local or body-fixed coordinate system.



6
9
9

 

S
a

m
p

le
 F

il
e 

 

 
 
1
 
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 

 
 
2
 
 
 
0
.
2
0
3
E
-
0
5
 
 
0
.
5
0
6
E
-
0
5
 
 
0
.
4
0
4
E
-
0
5
 
 
0
.
5
6
3
E
-
0
4
 

 
 
3
 
 
 
0
.
1
2
0
E
-
0
5
 
 
0
.
3
5
1
E
-
0
5
 
 
0
.
2
6
2
E
-
0
5
 
 
0
.
3
2
1
E
-
0
4
 

 
 
4
 
 
 
0
.
9
1
3
E
-
0
6
 
 
0
.
2
5
1
E
-
0
5
 
 
0
.
2
3
6
E
-
0
5
 
 
0
.
2
4
2
E
-
0
4
 

 
 
5
 
 
 
0
.
7
3
1
E
-
0
6
 
 
0
.
1
9
4
E
-
0
5
 
 
0
.
2
2
2
E
-
0
5
 
 
0
.
1
9
3
E
-
0
4
 

 
 
6
 
 
 
0
.
5
9
8
E
-
0
6
 
 
0
.
1
6
1
E
-
0
5
 
 
0
.
2
0
8
E
-
0
5
 
 
0
.
1
5
9
E
-
0
4
 

 
 
7
 
 
 
0
.
5
1
6
E
-
0
6
 
 
0
.
1
4
3
E
-
0
5
 
 
0
.
1
9
7
E
-
0
5
 
 
0
.
1
3
9
E
-
0
4
 

 
 
8
 
 
 
0
.
4
4
9
E
-
0
6
 
 
0
.
1
2
9
E
-
0
5
 
 
0
.
1
8
5
E
-
0
5
 
 
0
.
1
2
3
E
-
0
4
 

 
 
9
 
 
 
0
.
3
9
5
E
-
0
6
 
 
0
.
1
2
0
E
-
0
5
 
 
0
.
1
7
2
E
-
0
5
 
 
0
.
1
1
1
E
-
0
4
 

 
1
0
 
 
 
0
.
3
4
7
E
-
0
6
 
 
0
.
1
1
4
E
-
0
5
 
 
0
.
1
5
8
E
-
0
5
 
 
0
.
9
9
4
E
-
0
5
 

 
1
1
 
 
 
0
.
3
0
7
E
-
0
6
 
 
0
.
1
0
7
E
-
0
5
 
 
0
.
1
4
3
E
-
0
5
 
 
0
.
8
8
1
E
-
0
5
 

 
1
2
 
 
 
0
.
2
6
2
E
-
0
6
 
 
0
.
9
8
7
E
-
0
6
 
 
0
.
1
2
8
E
-
0
5
 
 
0
.
7
6
2
E
-
0
5
 

 
1
3
 
 
 
0
.
2
2
4
E
-
0
6
 
 
0
.
8
7
9
E
-
0
6
 
 
0
.
1
1
2
E
-
0
5
 
 
0
.
6
5
1
E
-
0
5
 

 
1
4
 
 
 
0
.
1
8
9
E
-
0
6
 
 
0
.
7
7
7
E
-
0
6
 
 
0
.
9
8
1
E
-
0
6
 
 
0
.
5
4
6
E
-
0
5
 

 
1
5
 
 
 
0
.
1
5
8
E
-
0
6
 
 
0
.
6
9
3
E
-
0
6
 
 
0
.
8
4
4
E
-
0
6
 
 
0
.
4
4
7
E
-
0
5
 

 
1
6
 
 
 
0
.
1
3
4
E
-
0
6
 
 
0
.
6
2
2
E
-
0
6
 
 
0
.
7
2
9
E
-
0
6
 
 
0
.
3
7
4
E
-
0
5
 

 
1
7
 
 
 
0
.
1
1
5
E
-
0
6
 
 
0
.
5
5
7
E
-
0
6
 
 
0
.
6
4
3
E
-
0
6
 
 
0
.
3
2
6
E
-
0
5
 

 
1
8
 
 
 
0
.
1
0
5
E
-
0
6
 
 
0
.
5
0
5
E
-
0
6
 
 
0
.
5
7
5
E
-
0
6
 
 
0
.
3
0
1
E
-
0
5
 

 
1
9
 
 
 
0
.
1
0
1
E
-
0
6
 
 
0
.
4
6
1
E
-
0
6
 
 
0
.
5
3
1
E
-
0
6
 
 
0
.
2
9
2
E
-
0
5
 

 
2
0
 
 
 
0
.
9
8
7
E
-
0
7
 
 
0
.
4
3
6
E
-
0
6
 
 
0
.
4
9
9
E
-
0
6
 
 
0
.
2
8
9
E
-
0
5
 

 
 
� 

  
  
  
  
  
  

  
 �

  
  

  
  
  
  
  

  
  

  
 �

  
  

  
  

  
  
  

  
  
  
  
� 

  
  

  
  

  
  
  
  

  
 �

 
  
  

  
  

  
  
  
  
� 

  
  

  
  

  
  
 �

 
  
  

  
  

  
  
� 

  
  

  
  

 �
 

  
  

  
� 

  
  

  
  

  
  
  
  
  

  
 �

  
  

  
  
  
  
  

  
  

  
 �

  
  

  
  

  
  
  

  
  
  
  
� 

  
  
  
  

  
  
  
  

  
  
 �

0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 
 
0
.
0
0
0
E
+
0
0
 

0
.
2
0
3
E
-
0
5
 

0
.
1
2
0
E
-
0
5
 

0
.
9
1
3
E
-
0
6
 

0
.
7
3
1
E
-
0
6
 

0
.
5
9
8
E
-
0
6
 

0
.
5
1
6
E
-
0
6
 

0
.
4
4
9
E
-
0
6
 

0
.
3
9
5
E
-
0
6
 

0
.
3
4
7
E
-
0
6
 

0
.
3
0
7
E
-
0
6
 

0
.
2
6
2
E
-
0
6
 

0
.
2
2
4
E
-
0
6
 

0
.
1
8
9
E
-
0
6
 

0
.
1
5
8
E
-
0
6
 

0
.
1
3
4
E
-
0
6
 

0
.
1
1
5
E
-
0
6
 

0
.
1
0
5
E
-
0
6
 

0
.
1
0
1
E
-
0
6
 

0
.
9
8
7
E
-
0
7

       699



700 

Dynamic Output File (xn.dat) 

Basic File Format 

  0 0.0 (XN(i), i = 1, nr)  

(VN(i), i = 1,nr) 

(FA(i), i = 1,nr) 

  �  �      �  �

istp t
istp

 (XN(i), i = 1,nr)  

(VN(i), i = 1,nr)  

(FA(i), i = 1,nr) 

  �  �      �  �

nstp tnstp (XN(i), i = 1,nr)  

(VN(i), i = 1,nr)  

(FA(i), i = 1,nr) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

t: real dimensionaless time at step i

XN(i): real generalized displ. on mode i

VN(i): real generalized velocity on mode i

FA(i): real generalized force on mode i

Comments  

• This is a plain text (ASCII) file. 

• The number of modes nr is given in the control file case.con. 

• The elastic data in this output file is dimensionless based on the reference conditions 

specified in the solver control file case.con: 

inxiXN ,)( =   inx
aM

L
iVN ,)( �

∞

=   
322

,
)(

LaM

F
iFA

in

∞∞

=
ρ

 where M is the Mach number and L is the reference dimension in case.con. 

• To reassemble the elastic displacements at all points along the surface of the model, 

use the modal deflections (mode shapes) PHIA in the elastics file (case.vec) and xn,i.  

The displacement vector at the k
th

 node is: 

( )
( )
( )�

= �
	



�
�
 −

=
N

i

in
ikPHIA

ikPHIA
xk

1

,
,2

,12
δ
�

where N is the number of mode shapes in the elastic system.  The boundary velocity 

at the k
 th

 node is: 

( )
( )
( )�

= �
	



�
�
 −

=
N

i

inb
ikPHIA

ikPHIA
xkV

1

,
,2

,12
�

�



7
0
1

 

S
a

m
p

le
 F

il
e 

 (
n
r
 =

 3
) 

 
 
1
 
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
0
.
0
0
0
0
0
E
+
0
0
 
 
 
 

 
 
2
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
3
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
4
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
5
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
6
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
7
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
8
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
9
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
1
0
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
1
1
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
1
2
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
1
3
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
1
4
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
1
5
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
1
6
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
1
7
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
1
8
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
1
9
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
0
.
2
9
2
7
9
E
-
0
5

       701



702 

Restart Files (case.rst  and case.rs2) 

Basic File Format 

istp nnd gam xmi ref dt 

((UN(i,j), i = 1,nnd), j = 1,6) 

((UNO(i,j), i = 1,nnd), j = 1,6) 

(XN(i,j), i = 1,2*nr),  

(XN1(i), i = 1,2*nr) 

(FA(i,j), i = 1,3*nr),  

(FA2(i), i = 1,nr) 

(XD(i,j), i = 1,13),  

(XD1(i), i = 1,13) 

(FD(i,j), i = 1,18),  

(FD2(i), i = 1,6) 

Definition of Terms 

istp: int step in global solution 

nnd: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

ref: real reference dimension 

dt: real global time step 

UN: real unknowns at previous step 

UNO: real unknowns at two steps prior 

XN: real elastic deflect / velocity 

XN1: real prev. elastic deflect / velocity 

FA: real gen. aero. forces at 3 steps 

FA2: real external forcing on modes 

XD: real rigid body position / velocity 

XD1: real prev. rigid body pos. / vel. 

FD: real aero. forces at 3 steps 

FD2: real external forcing on vehicle 

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns, deflections, and forces stored in this file are dimensionless 

quantities. 

• Unknowns properties vector UNO is only written for 2
nd

 order unsteady solutions 

(isol = 2).   

• Elastic properties XN, XN1, FA, and FA2 is only written when the elastics flag ielast

is set to .true.   

• Non-inertial properties XD, XD1, FD, and FD2 is only written when the non-inertial 

flag idynm is set to .true.   

• A two-file system is used so that one file is written while the other file is untouched.  

If the program crashes, one file is always untouched so that one of the two files is 

always recoverable.



703 

Acoustic Pressure Output File (case.pac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

  z-coord ==> “z1” “z2” || “z3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “Cp1”“Cp2”|| “Cp3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

z#: real z-coordinate at node 

t: real solution time 

Cp#: real coefficient of pressure at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first three rows give the (x,y,z) coordinate of the node or inter-

section.  The rows under the dashed divider line are the coefficient of pressure at the 

node or intersection point at the solution time designated in the first column.   

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data between acoustic lines.   



704 

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



7
0
5

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
 
 
z
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
1
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
5
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
 
� 

  
  
  

  
  
  

  
  
  

  
� 

 
 

  
� 

 
  

  
  

  
  
  

  
� 

 
  

  
  

  
� 

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  
�

       705



706 

Acoustic Density Output File (case.rac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

  z-coord ==> “z1” “z2” || “z3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “rh1”“rh2”|| “rh3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

z#: real z-coordinate at node 

t: real solution time 

rh#: real dimensionless density at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first three rows give the (x,y,z) coordinate of the node or inters-

ection.  The rows under the dashed divider line are the dimensionless density at the 

node or intersection point at the solution time designated in the first column.   

• Density data is presented in dimensionless form: 



707 

∞

=
ρ

ρ
#rh

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



7
0
8

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
 
 
z
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
1
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
5
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
 
� 

  
  
  

  
  
  

  
  
  

  
� 

 
 

  
� 

 
  

  
  

  
  
  

  
� 

 
  

  
  

  
� 

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  
�

       708



709 

Acoustic u-Velocity Output File (case.uac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

  z-coord ==> “z1” “z2” || “z3” . . . . 

--- Time --- ---- ---- ++ ---- . . . .  

     “t”      “uu1”“uu2”|| “uu3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

z#: real z-coordinate at node 

t: real solution time 

uu#: real dimensionless u-velocity at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first three rows give the (x,y,z) coordinate of the node or inter-

section.  The rows under the dashed divider line are the dimensionless u-velocity at 

the node or intersection point at the solution time designated in the first column.   

• u-Velocity data is presented in dimensionless form:



710 

∞

=
U

u
uu#

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



7
1
1

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
 
 
z
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
1
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
5
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
4
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
 
� 

  
  
  

  
  
  

  
  
  

  
� 

 
 

  
� 

 
  

  
  

  
  
  

  
� 

 
  

  
  

  
� 

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  
�

       711



712 

Acoustic v-Velocity Output File (case.vac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

  z-coord ==> “z1” “z2” || “z3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “vv1”“vv2”|| “vv3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

z#: real z-coordinate at node 

t: real solution time 

vv#: real dimensionless v-velocity at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first three rows give the (x,y/z) coordinate of the node or 

intersection.  The rows under the dashed divider line are the dimensionless v-velocity 

at the node or intersection point at the solution time designated in the first column.   

• v-Velocity data is presented in dimensionless form:



713 

∞

=
U

v
vv#

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



7
1
4

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
 
 
z
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
1
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
5
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|

       714



715 

Acoustic w-Velocity Output File (case.wac) 

Basic File Format 

Controls: 

  dt   = “dt” 

  Lref = “refdim” 

  Uinf = “uinf” 

  ainf = “ainf” 

  mach = “mach” 

  gam  = “gam” 

Data Layout: 

  nacp = “nacp” 

  nacl = “nacl” 

  -- “NN” intersections with Line #“N” 

       �          �       �

  -- “NN” intersections with Line #“N” 

  x-coord ==> “x1” “x2” || “x3” . . . . 

  y-coord ==> “y1” “y2” || “y3” . . . . 

  z-coord ==> “z1” “z2” || “z3” . . . . 

 --- Time --- ---- ---- ++ ---- . . . .  

     “t”      “ww1”“ww2”|| “ww3”. . . . 

      �     �    �  ||   �

Definition of Terms 

dt: real current solution step 

refdim: real total or last solution step 

uinf: real total or last solution step 

ainf: real total or last solution step 

mach: real total or last solution step 

gam: real total or last solution step 

nacp: int number of acoustic points 

nacl: int number of acoustic lines 

NN: int number of intersections along 

a particular acoustic line 

N: int index of this acoustic lines 

x#: real x-coordinate at node 

y#: real y-coordinate at node 

z#: real z-coordinate at node 

t: real solution time 

ww#: real dimensionless w-velocity at node 

Comments  

• This is a plain text (ASCII) file. 

• Text shown in the file format above without quotes ( � � ) is used directly in the 

output file.  Text shown above in quotes represents a variable, or number written to 

the file.  These variables are defined above on the right. 

• Descriptions may be included in the output file to the right of line of header data. 

• The first section represents solution controls used to generate the data file. 

• The second section describes the data in the third section.  If any of the acoustic 

points are not found within the solution domain, a warning is written before the 

number of acoustic lines is written.  The number of intersections is listed for each 

acoustic line in the input file. 

• The data is written out so that each column represents a node or intersection within 

the domain.  The first three rows give the (x,y,z) coordinate of the node or inter-

section.  The rows under the dashed divider line are the dimensionless w-velocity at 

the node or intersection point at the solution time designated in the first column.   

• w-Velocity data is presented in dimensionless form:



716 

∞

=
U

w
ww#

• A double vertical line breaks the acoustic point and acoustic line data.  Subsequent 

single vertical lines break data from acoustic lines.   

• The intersections along a particular acoustic line are ordered parametrically along the 

length of the acoustic line, from starting to end points, as listed in the input file. 



7
1
7

 

S
a

m
p

le
 F

il
e 

 

C
o
n
t
r
o
l
s
:
 

 
 
d
t
 
 
 
=
 
 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
 
D
i
m
e
n
s
i
o
n
l
e
s
s
 
t
i
m
e
 
s
t
e
p
 

 
 
L
r
e
f
 
=
 
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
R
e
f
e
r
e
n
c
e
 
d
i
m
e
n
s
i
o
n
 

 
 
U
i
n
f
 
=
 
 
 
 
 
7
8
1
.
2
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
v
e
l
o
c
i
t
y
 

 
 
a
i
n
f
 
=
 
 
 
 
1
1
1
6
.
0
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
a
c
o
u
s
t
i
c
 
s
p
e
e
d
 

 
 
m
a
c
h
 
=
 
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
 
 
 
 
 
 
F
r
e
e
s
t
r
e
a
m
 
M
a
c
h
 
n
u
m
b
e
r
 

 
 
g
a
m
 
 
=
 
 
 
 
 
 
 
1
.
4
0
0
0
0
0
0
 
 
 
 
 
 
 
R
a
t
i
o
 
o
f
 
s
p
e
c
i
f
i
c
 
h
e
a
t
s
 

D
a
t
a
 
L
a
y
o
u
t
:
 

 
 
n
a
c
p
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
p
o
i
n
t
s
 

 
 
n
a
c
l
 
=
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
N
u
m
b
e
r
 
o
f
 
a
c
o
u
s
t
i
c
 
l
i
n
e
s
 

 
 
-
-
 
 
 
 
 
2
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
1
 

 
 
-
-
 
 
 
 
 
1
 
i
n
t
e
r
s
e
c
t
i
o
n
s
 
w
i
t
h
 
L
i
n
e
 
#
 
 
2
 

 
 
 
x
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
 

 
 
 
y
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
7
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
4
0
0
0
0
0
0
 
 
 
 
 
 
1
.
3
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
6
0
0
0
0
0
0
 
|
 

 
 
 
z
-
c
o
o
r
d
 
=
=
>
 
 
 
 
 
 
 
0
.
0
0
0
0
0
0
0
 
 
 
 
 
 
0
.
1
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
 
 
 
 
 
0
.
2
0
0
0
0
0
0
 
|
 
 
 
 
 
 
0
.
5
0
0
0
0
0
0
 
|
 

 
-
-
-
-
 
T
i
m
e
 
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
+
 

 
 
 
 
 
 
0
.
0
0
1
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
2
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 

 
 
 
 
 
 
0
.
0
0
3
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|
 
 
 
 
 
 
1
.
0
0
0
0
0
0
0
 
|

       717



718 

APPENDIX F 

NS3D FILE FORMATS 

The file formats included in this section are used to create the input files required to operate 

NS3D and interpret the files that are written by NS3D.  In order to make this appendix more 

compact, file formats that are already outlined in Appendices C, D, and E are not repeated 

here.  If additional terms or options are added to model viscous or turbulent effects, the file 

formats are called out in full detail here to show the differences.  



719 

NS3D 

Summary of File Formats 

Input Files: 

• case.g3d (required, if inetcdf = .false.) contains geometry data structures representing 

the computational mesh as required by the flow solver (binary) 

• case.nc3d (required, if inetcdf = .true.) contains geometry data structures representing 

the computational mesh as required by the flow solver (netCDF) 

• case.con (required) contains values for the solver control parameters and flow 

conditions (ASCII) 

• case.unk (optional) contains the nodal values of the primitive flow variables (density, 

velocity, pressure, and total enthalpy) for each node of the computational mesh to be used 

as the initial conditions for the flow solution (binary or netCDF) 

• case.dyn (optional) contains the non-inertial matrices and initial conditions as required 

for a non-inertial solution (ASCII)  [see Appendix E] 

• case.vec (optional) contains the elastic mode matrices, initial conditions, and mode 

shape vectors for the solid wall surfaces as required for an aeroelastic solution (ASCII)  

[see Appendix E] 

• case.frc (optional) contains external forces to be applied to each solution step in a 

dynamic or aeroelastic solution (ASCII)  [see Appendix E] 

• case.cmb (optional) contains mass and enthalpy generation data used by the quasi-

combustion model (ASCII)  [see Appendix C] 

• case.eng (optional) contains rocket and turbojet engine (boundary condition) data 

(ASCII)  [see Appendix C] 

• case.acst (optional) contains the acoustic output data (ASCII)  [see Appendix E] 

• case.tbc (optional) contains temperature boundary condition data (ASCII)  [see 

Appendix D] 



720 

Output Files: 

• case.un# contains the values of the primitive flow variables (density, velocity, 

pressure, and total enthalpy) and the turbulent flow variables (turbulent viscosity, 

turbulent kinetic energy, turbulent dissipation, and model variables) for each node of the 

computational mesh; # is iterated as more files are produced so the progress of the 

solution can be followed (Binary) 

• caset.un# contains the values of the turbulent flow variables (turbulent viscosity, 

turbulent kinetic energy, turbulent dissipation, and model variables) for each node of the 

computational mesh; # is iterated as more files are produced so the progress of the 

solution can be followed (Binary) 

• case.rsd contains a history of the solution residuals for the conservation variables 

(density, momentum, and total energy) (ASCII) 

• case.rsd2 contains a history of the solution residuals for the conservation variables 

for each inner cycle (ASCII) 

• case.cyc contains a history of the number of inner cycles used to converge each 

iteration (ASCII)  [see Appendix C] 

• case.time contains a history of the local time step ratios (ASCII) 

• case.lds contains a history of the dimensionless aerodynamic forces acting on the 

solid walls of the geometry (ASCII)  [see Appendix E] 

• xd.dat contains a history of the non-inertial displacements, velocities, and 

accelerations for a dynamic solution (ASCII)  [see Appendix E] 

• xn.dat contains a history of the generalized displacements, velocities, and forces for an 

unsteady, aeroelastic solution (ASCII)  [see Appendix E] 

• case.rst and case.rs2 contain information on up to two sets of unknowns data, 

elastic system data, and dynamic motion data (binary) 

• case.pac contains a history of pressure data at prescribed nodes (ASCII)  [see 

Appendix E] 

• case.rac contains a history of density data at prescribed nodes (ASCII)  [see 

Appendix E] 

• case.uac contains a history of u-velocity data at prescribed nodes (ASCII)  [see 

Appendix E] 

• case.vac contains a history of v-velocity data at prescribed nodes (ASCII)  [see 

Appendix E] 



721 

• case.wac contains a history of w-velocity data at prescribed nodes (ASCII)  [see 

Appendix E] 



722 

Geometry Input File (case.g3d) 

Basic File Format 

  nnd nel nsg nbe nbp nwl nsd nsf  

     nwlv nsdv 

  (LBE(i), i = 1, 8) 

  (COOR(i,j), j = 1,3)  (i = 1,nnd) 

  (IELM(i,j), j = 1,4)  (i = 1,nel) 

  (ISEG(i,j), j = 1,2)  (i = 1,nsg) 

  (IBEL(i,j), j = 1,5)  (i = 1,nbe) 

Definition of Terms 

nnd: int number of nodes 

nel: int number of elements 

nsg: int number of segments 

nbe: int number of boundary elements 

nbp: int number of boundary points 

nwl: int number of wall nodes 

nsd: int number of singular nodes 

nsf: int number of boundary surfaces 

nwlv: int number of viscous wall nodes 

nsdv: int number of viscous singular nodes 

LBE(i): int start/ stop index for 4 BC types 

COOR(i,1): real x-coordinate for node i

COOR(i,2): real y-coordinate for node i

COOR(i,3): real z-coordinate for node i

IELM(i,1): int node 1 for element i

IELM(i,2): int node 2 for element i

IELM(i,3): int node 3 for element i

IELM(i,4): int node 4 for element i

ISEG(i,1): int node 1 for segment i

ISEG(i,2): int node 2 for segment i

IBEL(i,1): int node 1 for boundary elem. i

IBEL(i,2): int node 2 for boundary elem. i

IBEL(i,3): int node 3 for boundary elem. i

IBEL(i,4): int surface index in case.sur

IBEL(i,5): int domain elem. associated with 

boundary elem. i

Comments  

• This is an unformatted (binary) file. 

• The nodal coordinates in this file are treated as dimensional values and are non-

dimensionalized using the reference dimension refdim specified in the control file.   

• The element connectivity data IELM  and IBEL  define positive element volumes eV

and boundary normal vectors n�  pointed into the solution domain: 

06

343434

242424

141414

>=

zyx

zyx

zyx

Ve      
3121

3121�
xx

xx
n ��

��

×

×
=  where     

jiij xxx
���

−=



723 

• The program makeg3d is used to convert a standard STARS surface triangulation file 

case.fro, mesh file case.gri, and modified boundary conditions file case.bco

into an appropriately sorted three-dimensional geometry file. 

• Nodal data COOR  is sorted such that the first nwl nodes are defined as solid wall 

nodes.  Out of the first nwl nodes, the last nsd  nodes are defined as singular nodes.  

The viscous nodes are placed in the middle (nwlv and nsdv), according to the 

following diagram: 

• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 

LBE(3) through LBE(4) are symmetry elements, LBE(5) through LBE(6) are far-field 

elements, and LBE(7) through LBE(8) are viscous solid wall elements, where the two 

solid wall elements are restricted to LBE(1) < LBE(7) < LBE(8) < LBE(2).  (In 

other words, the viscous solid walls must exist within the limits of the viscous walls.) 



724 



725 

Geometry Input File, netCDF Format (case.nc3d) 

Basic File Format 

File Attributes: 

“title” :: “NS3D Geometry File” 

“TimeDay” :: TimeDay 

“name” :: filen 

“Version” :: VerYMD 

Dimensions: 

“nnd”  :: nnd  (IDnnd) 

“nel”  :: nel  (IDnel) 

“nsg”  :: nsg  (IDnsg) 

“nbe”  :: nbe  (IDnbe) 

“nbp”  :: nbp  (IDnbp) 

“nsf”  :: nsf  (IDnsf) 

“ncv”  :: ncv  (IDncv) 

“mxs”  :: mxs  (IDmxs) 

“nLBE” :: 8    (nLBE) 

“Dim2” :: 2    (ID2) 

“Dim3” :: 3    (ID3) 

“Dim4” :: 4    (ID4) 

“Dim5” :: 5    (ID5) 

Variables: 

“nwl”  :: nwl  (IDnwl)  [ ] 

“nsd”  :: nsd  (IDnsd)  [ ] 

“nwlv” :: nwlv (IDnwlv) [ ] 

“nsdv” :: nsdv (IDnsdv) [ ] 

“LBE”  :: LBE  (IDLBE)  [nLBE] 

“COOR” :: COOR (IDcoor) [IDnnd,ID3] 

“IELM” :: IELM (IDelm)  [IDnel,ID4] 

“ISEG” :: ISEG (IDseg)  [IDnsg,ID2] 

“IBEL” :: IBEL (IDbel)  [IDnbe,ID5] 

Definition of Terms 

TimeDay: int time and date generated 

filen: char case name 

VerYMD: int MakeNC3D version, written 

using YYYYMMDD notation 

nnd: int number of nodes 

nel: int number of elements 

nsg: int number of segments 

nbe: int number of boundary elements 

nbp: int number of boundary points 

nsf: int number of surfaces in front file 

ncv: int number of curves in front file 

mxs: int maximum dimension (= 2 nel) 

nLBE: int = 8, used to dimension LBE 

Dim2: int = 2, used to dimension arrays 

Dim3: int = 3, used to dimension arrays 

Dim4: int = 4, used to dimension arrays 

Dim5: int = 5, used to dimension arrays 

nwl: int number of wall nodes 

nsd: int number of singular nodes 

nwlv: int number of viscous wall nodes 

nsdv: int number of viscous singular nodes 

LBE(i): int start/ stop index for 4 BC types 

COOR(i,1): real x-coordinate for node i

COOR(i,2): real y-coordinate for node i

COOR(i,3): real z-coordinate for node i

IELM(i,1): int node 1 for element i

IELM(i,2): int node 2 for element i

IELM(i,3): int node 3 for element i

IELM(i,4): int node 4 for element i

ISEG(i,1): int node 1 for segment i

ISEG(i,2): int node 2 for segment i

IBEL(i,1): int node 1 for boundary elem. i

IBEL(i,2): int node 2 for boundary elem. i

IBEL(i,3): int node 3 for boundary elem. i

IBEL(i,4): int surface index in case.sur

IBEL(i,5): int domain elem. associated with 

boundary elem. i



726 

Comments  

• This file is created using the netCDF library.  Formatting is handled using the netCDF 

library file netCDF.dll.  The case.nc3d file contains the same base information in 

the case.g3d file. 

• The netCDF formatting has been represented here using four designations: 

• Names in quotes ( � � ) represent the human-name of the variable or array 

• The value following the double-colon ( :: ) is the variable stored under this name. 

• The name in parentheses ( ) is the handle used to recall information from netCDF. 

• The values in brackets [ ] are the array dimensions.  The empty brackets are 

shown for scalar variables.  Single-dimension arrays (vectors) are shown as a 

single value between the brackets.  Multi-dimension arrays (matrices, etc.) are 

shown by values separated by commas.   

• Data in case.nc3d can be written or read in any particular order, but for simplicity, 

the file has been represented here in three sections: 

• File Attributes:  Values describing the file (name, date, version, etc.) are not read 

by Euler3D.  

• Dimensions:  Values used to size the arrays (variables) that follow are read using 

nf_inq_dimid and nf_inq_dimlen.  The first function inquires of the netCDF ID 

to identify the dimension, and the second is used to read the value.  The file 

structure has been established so that all of the dimensions are positive-definite 

(no zeros or negatives).  For example, the number of nodes (nnd) are read: 

   call check(nf_inq_dimid(ncid, "nnd", IDnnd)) 
   call check(nf_inq_dimlen(ncid, IDnnd, nnd))

• Variables:  Scalars and arrays are read using nf_inq_varid, nf_get_var_int, 

nf_put_var_double, and nf_get_var1_int.  The first function inquires of the 

netCDF ID to identify the variable.  The second and third read an entire integer 

and double-precision real array, respectively.  The final function is used to read an 

array one part at a time, used for LBE and IBEL.  For example, the number of wall 

nodes (nwl, scalar), nodal coordinates (COOR, double, array), and element connec-

tivity (IELM, integer, array) are read: 

   call check(nf_inq_varid(ncid, "nwl", IDnwl)) 
call check(nf_get_var_int(ncid, IDnwl, nwl)) 

call check(nf_inq_varid(ncid, "COOR", IDcoor)) 
call check(nf_get_var_double(ncid, IDcoor, COOR)) 

call check(nf_inq_varid(ncid, "IELM", IDelm)) 
call check(nf_get_var_int(ncid, IDelm, IELM))

• The functions used to read and write using the netCDF format can be found in the 

netCDF manuals (www.unidata.ucar.edu/software/netcdf/). 

• Nodal data COOR  is sorted such that the first nwl nodes are defined as solid wall 

nodes.  Out of the first nwl nodes, the last nsd  nodes are defined as singular nodes.   

• The nodal coordinates in this file are treated as dimensional values and are non-

dimensionalized using the reference dimension refdim specified in the control file.   



727 

• The element connectivity data IELM  and IBEL  define positive element volumes eV

and boundary normal vectors n�  pointed into the solution domain: 

06

343434

242424

141414

>=

zyx

zyx

zyx

Ve      
3121

3121�
xx

xx
n ��

��

×

×
=  where     

jiij xxx
���

−=

• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 

LBE(3) through LBE(4) are symmetry elements, LBE(5) through LBE(6) are far-field 

elements, and LBE(7) through LBE(8) are viscous wall elements and overlap the solid 

wall elements so that LBE(1) < LBE(7) < LBE(8) < LBE(2). 

• The program makenc3d is used to convert a standard STARS surface triangulation 

file case.fro, mesh file case.gri, and modified boundary conditions file 

case.bco into an appropriately sorted three-dimensional geometry file in netCDF 

format. 



728 

Solver Control Input File (case.con) 

Basic File Format 

&control 

dt   = 0.1d0, 
gamma  = 1.4d0, 
diss   = 1.0d0, 
cfl   = 0.5d0, 
lamb        = -0.666d0, 
Smod        = 0.0d0,  
dislen      = 1.0d-20, 

mach   = 0.6d0, 
Re          = 2.0d5, 
Pr          = 0.7d0, 
alpha  = 0.0d0, 
beta  = 0.0d0, 
refdim  = 1.0d0, 

iturb       = 0, 
turbI       = 0.01d0, 
muTinf      = 0.01d0, 
rnuinf      = 0.0d0, 
rhoKinf     = 0.0d0, 
rhoWinf     = 0.0d0, 
PrT         = 0.9d0, 
disst       = 1.0d0, 

nstp   = 100, 
nout   = 50, 
ncyc   = 4, 

rsdtol = 1.0d-20, 
rsdmax = 10.0d0, 

isol   = 0, 
idiss  = 0, 
ndiss  = 1, 
idsol  = 2, 
icomb       = 0, 
itime       = 0, 
iquasi2D    = 0, 

isize       = 5,  
displ       = 0.1d0, 
omega       = 0.2d0, 
ratio       = 600.0d0, 

Definition of Terms 

dt: real dimensionless global time step 

gamma: real ratio of specific heats 

diss: real dissipation factor 

cfl: real local time step stability factor 

lamb: real ratio of 2
nd

 over 1
st
 viscosity (λ/µ) 

Smod: real modified Sutherland�s constant 

dislen: real distance from wall where no 

artificial dissipation is used 

mach: real free-stream Mach number 

Re: real free-steam Reynolds number 

Pr: real Prandtl number 

alpha: real free-stream angle of attack (deg) 

beta: real side slip angle (deg)  

refdim: real reference length (dim�l) 

iturb: int turbulence model flag 

turbI: real freestream turbulence intensity 

muTinf: real freestream eddy viscosity 

rnuinf: real turbulence IC and FF BC for ρν
rhoKinf: real turbulence IC and FF BC for ρK

rhoWinf: real turbulence IC and FF BC for ρω
PrT: real turbulent Prandtl number 

disst: real turb dissipation factor 

nstp: int total solution steps 

nout: int output frequency, steps/output 

ncyc: int iterative cycles per solution step 

rsdtol: real energy residual converg tolerance 

rsdmax: real energy residual divergence criteria 

isol: int CFD solution type 

idiss: int dissipation type 

ndiss: int # of inner cycles / diss. calc. 

idsol: int order of elastic forces integration 

icomb: int combustion model type 

itime: int viscous local time stepping type 

iquasi2D: int directionality  

isize: int width of multisteps 

displ: real max displacement of forced mode 

omega: real frequency scalar 

Ratio: real chirp envelop length 



729 

istrt  = .false., 
iaero  = .true., 
idynm  = .false., 
ielast  = .false., 
iprop  = .false., 
ifree  = .true., 
iforce      = .false., 
isafe  = .false., 
irsds  = .false., 
inetcdf = .false., 
iacoust     = .false., 
itempbc     = .false., 

nr   = 0, 
ainf   = 1.0d0, 
rhoinf  = 1.0d0, 
gravity = 0.0d0, 

/ 

istrt: log restart flag 

iaero: log aerodynamic forces flag 

idynm: log dynamic/non-inertial flag 

ielast: log elastic flag 

iprop: log propulsion flag 

ifree: log free-stream velocity flag 

iforce: log external forces flag 

isafe: log safe-mode flag 

irsds: log residual watching flag 

inetcdf: log NetCDF input / output flag 

iacoust: log acoustics output flag 

itempbc: log temperature BC flag 

nr: int number of elastic modes 

ainf: real free-stream sonic speed (dim�l) 

rhoinf: real free-stream density (dim�l) 

gravity: real gravity (dim�l) 

Comments  

• This is a plain text (ASCII) file formatted as a Fortran namelist.   

• The namelist must begin with the line �&control� and end with the line �/�.   

• The remaining lines can be listed in any order or omitted, if desired.   

• The intermediate lines work like variable assignments with the loose format:  

variable_name = value, followed by a comma.   

• Integers (int) are listed as whole numbers. 

• Real numbers (real) are listed in double precision, scientific notation:  #.##d+##. 

• Logical variables (log) are listed as either �.true.� or �.false.�. 

• Lines can be commented out by inserting an exclamation point �!� prior to any 

other information on the line.   

• The default values, shown above, are used for variables omitted or commented 

out of the namelist. 

• Any information listed after the last line of the namelist �/� are not read by the 

program and can be used to store notes and other calculations. 

• The global time step dt is only used for unsteady solutions.  dt is a dimensionless 

value calculated:  dt = ∆t U / L, where ∆t is the dimensional time step, U is the free-

stream velocity ( = mach ainf ), and L is the reference length refdim.   
• Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.  Some 

dissipation is required to stabilize the solution, but too much dissipation will corrupt 

the solution and possibly be a destabilizing influence. 

• The local time step stability factor is a safety factor used to compute local time steps 

for each solution step. For steady solutions, a stability factor of 0.8 is typical for most 

problems. For unsteady solutions, the stability factor is typically 0.3 < cfl < 0.8. 

• The coefficient lamb is the ratio of second to first viscosity l/m, which is considered 

constant across the domain.  lamb is restricted to be greater than or equal to -2/3 to 

maintain positive viscous dissipation in the energy equation (Stoke�s hypothesis). 



730 

• The coefficient Smod is the modified Sutherland�s coefficient:  Smod = cp S / Uinf
2, 

where cp is the specific heat at constant pressure, S is Sutherland�s constant, and Uinf

is the freestream velocity (= mach ainf).  If Smod is set to zero, the viscosity is 

constant, equal to the freestream viscosity throughout the domain.  IF Smod > 0, 

Sutherland�s equation is used to vary viscosity with temperature (enthalpy). 

• The values of refdim, mach, ainf, and rhoinf are used to non-dimensionalize all 

values read into the flow solver. 

• Prandtl number Pr is used to relate viscosity and thermal conductivity k.  The 

freestream Reynolds number Re is used to relate the density and velocity in the 

freestream to the viscosity in the freestream, using L as refdim: 

k

c p µ
=Pr   

∞

∞∞=
µ

ρ LU
Re   ∞∞∞ = aMU

• The free-stream orientation angles are ignored for dynamic (non-inertial) problems. 

• Turbulence is represented by the addition of differential equations.  The order and 

accuracy differs by turbulence model: 

• iturb = 0, no turbulence model (N-S only) 

• iturb = 1, Spalart-Allmarus model (one-equation; good for streamlined bodies) 

• iturb = 2, Menter�s SST model (two-equation; good for more complex flows) 

• Initial conditions, far field (freestream), and lowest allowable values for turbulence 

are set through rnuinf, rhoKinf, rhoWinf, turbI, and muTinf.  The first three 

variables are used to set turbulent quantities directly, while the other two variables 

can be used to back-calculate the turbulent quantities from more user-friendly values: 

• For the SA model (iturb = 1), rnuinf represents the SA variable ρν, which is 

used to directly calculate the local eddy viscosity.  The amount of turbulence in 

the freestream affects the laminar performance and growth rate of turbulence 

along the wall.  rnuinf = 10
-4

 is suggested to create �natural transition�, and 

rnuinf = 3 is suggested to create a wholly turbulent solution.  If rnuinf < 0, then 

ρν is calculated from the eddy viscosity muTinf, using: 

*

1

*

,
�

∞∞ = νρµ vT f      or 
( )

( ) 33*

3*

1

1.7�

�

+
=

∞

∞

νρ

νρ
vf

• For the SST model (iturb = 2), rhoKinf represents the turbulent kinetic energy 

ρK, and rhoWinf represents the rate of dissipation of turbulent kinetic energy ρω.  

The amount of turbulence in the freestream affects the laminar performance and 

growth rate of turbulence along the wall.  If rhoKinf < 0, then ρK is calculated 

from turbulent intensity turbI, shown as T�: 

23

2

∞

∞
∞ =′

U

K
T     or ( )2** 5.1 ∞∞∞

′= TK ρρ

If rhoWinf < 0, then ρω is calculated from eddy viscosity muTinf, shown as µT: 



731 

LT

K
Re

*

*
**

,

∞

∞
∞∞ =

ρω

ρ
ρµ    or L

T

K
Re

*

,

*
**

∞

∞
∞∞ =

µ

ρ
ρρω

muTinf and turbI are more user-friendly and therefore the suggested means of 

specifying ICs for the SST model.   Turbulent intensity has a physical meaning: 

• For internal flows, turbI is 1% to 5%. 

• For external (quiescent) flows and high-quality wind tunnel, turbI < 1%. 

Freestream eddy viscosity muTinf represents additional diffusion throughout the 

solution.  To minimize additional diffusion with a non-zero value:  

muTinf %1*

, ≈==
∞

∞ µ

µ
µ T

T

• The turbulent Prandtl number PrT is used to model the transport of heat through 

turbulence, using Reynolds analogy.  The turbulent Prandtl number for air is 0.9. 

• Artificial dissipation is added to each turbulence model using the same algorithms 

applied to the N.S. equations.  The N.S. dissipation factor has been combined with 

another scalar to allow the user to adapt the dissipation used in the turbulence models.  

The artificial dissipation in the turbulence models is scaled by (disst*diss). 

• The number of iterative cycles should be set to 4 for steady solutions. For unsteady 

solutions, use a sufficient number of cycles to allow for an appropriate level of 

convergence at each step.  A sufficient number can be estimated as N = dt / ∆tloc,min. 

• The following is a good practice for finding a sufficient number of iterations for 

unsteady solutions:   

1. Select initial values for dt, ncyc, and rsdtol.   

2. Step the solution forward 20-50 iterations.   

3. Check the *.cyc file for the number of cycles required per iteration.  The 

number of cycles should level off after 10 iterations.  If not, run enough 

iterations for the number of required cycles to level off. 

4. If the last 10 iterations require more than 20 cycles, lower the time step.   

5. If the last 10 iterations require less than 8 iterations, increase the time step.   

6. The sweet spot is 10-15 iterations. 

• The residual tolerance can be used to exit the iterative cycles if the energy 

residual meets a specified criteria rsdtol.  (The energy residual is used because 

the other residuals normally converge faster than energy.)  This feature can be 

used to set the number of iterations to a very large number with a residual 

tolerance rsdtol.  When the residual drops below the tolerance, the solution will 

progress to the next time step.  Lower rsdtol values require more iterations. 

• The divergence tolerance rsdmax creates an upper tolerance on the energy 

residual.  If the solution is diverging, the energy residual will grow larger than 

rsdmax and terminate the run.  The solution also terminates if the residuals 

become NAN or INFINITY.  Larger rsdmax values will allow the solution to 

diverge further and ensure that the solution is in fact diverging.   

• There are four available CFD solution types defined as follows: 

• isol = 0 is a steady solution (not time accurate) 

• isol = 1 is a first-order unsteady solution 

• isol = 2 is a second-order unsteady solution 



732 

• isol = 3 is a supersonic piston perturbation solution 

• There are three available options for viscous local time stepping: 

• itime = -1 uses the minimum distance across each element (algebraic) 

• itime = 0 uses diagonals of the stiffness matrix (heat transfer only) 

• itime = 1 uses diagonals of the stiffness matrices (momentum & heat transfer) 

• itime = 2 uses diagonals of the stiffness matrices (mom, heat trans & turb model) 

• Euler3D uses various orders of numerical integration, specified by ipnt.  NS3D only 

uses single point (or first order) Gauss quadrature (ipnt = 1), which is hard-coded 

into the controls.  If a file from Euler3D is used to create the NS3D file case.con, 

then the integration order ipnt must be removed or commented out (�!�). 

• There are three available dissipation types defined as follows: 

• idiss = �1 is no artificial dissipation (only viscous dissipation) 

• idiss = 0 is a lower order dissipation 

• idiss = 1 is a high order dissipation with gradient limiters 

• The lower order dissipation is typically overly diffuse and should be used in 

conjunction with low values of the dissipation factor. Low-order dissipation works 

best for problems without strong vortices and for supersonic/hypersonic flows. 

• The higher order dissipation is more CPU intensive than the low-order dissipation and 

less stable. Larger values for the dissipation factor are typically required for 

stabilization. The high-order dissipation works best for subsonic to transonic flows 

with strong gradients or vortices. Rotating domains will typically require high-order 

dissipation to resolve the circulating pattern of the relative flow velocities. 

• dislen is the distance, near walls, where no artificial dissipation is used.  The arti-

ficial dissipation model is scaled by f (d), where d is the distance to the nearest wall: 

( )
( )( )( )�

�

�
�

�

−−

≥

≤

=

otherwise

dislendif

dislendif

df

dislen
d 1cos1

21

0

2
1 π

• Combustion properties are specified in the case.cmb file.  The mass and heat 

generation are distributed throughout the domain using the following distributions: 

• icomb = 0, no combustion (case.cmb not read) 

• icomb = 1, combustion properties are piece-wise linear (specified at the nodes) 

• icomb = 2, combustion properties are constant (specified) on the elements 

• The values of ndiss controls the number of iterations between dissipation calcula-

tions.  For example, if ndiss = 1, the dissipation is recalculated at every inner cycle.; 

if ndiss = 2, the dissipation is calculated ever other inner cycle, and stored in 

between; and, etc.  ndiss can only be used to control the higher-order dissipation 

model (idiss = 1). 

• There are three available elastic solution types defined as follows: 

• idsol = 0 is a zeroth-order integration for applied forces 

• idsol = 1 is a first-order integration for applied forces 

• idsol = 2 is a second-order integration for applied forces 

• There are four available directionality conditions as follows: 

• iquasi2D = 0 is fully three-dimensional 



733 

• iquasi2D = 1 is quasi two-dimensional (yz only) 

• iquasi2D = 2 is quasi two-dimensional (xz only) 

• iquasi2D = 3 is quasi two-dimensional (xy only) 

• Four IBXN controls are listed in the case.con file:  isize, displ, omega, and 

ratio.  These controls are only necessary if ielast is turned on and IBXN = 3 to 9. 

• When the restart flag istrt is set to .true., the solver will read one set of solution 

unknowns from the case.unk file and apply this set of unknowns as the initial 

conditions for the new iterative solution.

• A restarted solution assumes that the time gradient of the initial state is zero, i.e. the 

solution stored in the case.unk file is a converged, steady state solution.  This has a 

significant impact on the second-order unsteady solution since it relies on two sets of 

solution unknowns for advancement to the next time step, i.e. a second-order 

unsteady solution should not be restarted from the last time step of a similar unsteady 

solution that was stopped because both sets of unsteady data from the last solution 

step are not available for accurate evaluation of the time gradients in the flow.

• If the aerodynamics flag iaero is set to .true., the aerodynamic forces are applied 

to the dynamic and elastic motion.  If the flag is set to .false., the dynamic and 

elastic motion must forced externally or occur as free-response vibrations.   

• The non-inertial dynamics routine is turned on when idynm is set to .true.  NS3D 

will then read in the case.dyn file for dynamic inputs and write out dynamic motion 

to the xd.dat.   

• If the free-stream velocity flag ifree is set to .false., the free-stream velocity 

is set to zero, and relative flow velocities must be generated through dynamic 

rotation or translation of the non-inertial coordinate system.

• If ifree = .true. , the freestream starts aligned with the global fixed x-direction 

(i.e., alpha = beta = 0) but can be rotated using the initial orientation of the body 

in case.dyn. 

• The elastic deflection routine is turned on when ielast is set to .true.  NS3D will 

then read in the case.vec file for modal elastic inputs and write out modal 

deformations and forces to the xn.dat.   

• For steady solutions (isol = 0), the dynamics flags for each degree of freedom in the 

case.dyn and case.vec should be set to 1 (clamped condition). 

• The propulsion boundary conditions are turned on when iprop is set to .true.  

NS3D will read in the case.eng file for rocket and engine inputs.   

• If the external forces flag is set to .true., the solver will read the user defined 

external force vector for each global time step from the input file case.frc.  If the 

solver reaches the end of the input file before completing the solution, the last force 

vector in the file carries over to each of the remaining time steps if it was non-zero.

• If the safe-mode flag is set to .true., NS3D writes two files per step that are used to 

restart the solution:  case.rst and case.rs2.  Two files are used so while one file 

is being over-written, the other file is still preserved.  Each file stores the previous 

two values of all unknowns, elastic mode shapes, and generalized elastic forces.  

Safe-mode can be used for fast restarts for very long runs that are not time sensitive.

• When the safe-mode flag is set to .true., NS3D checks for both restart files.  If the 

case.rst exists, but has an error, the error is reported to the user.  The case.rst 

can be moved, renamed, or deleted.  The solution will then be restarted from the 



734 

case.rs2 file.  (NS3D does not skip between files to avoid overwriting files that 

contain correctable errors.) 

• If the residual watching flag is set to .true., residuals are written out at each inner 

iteration to the case.rsd2 file.  This option can be used to check the residual 

convergence within steps.  The number of inner cycles used at each iteration is 

written to the case.cyc file for plotting and comparison of convergence.

• If the acoustic output flag is set to .true., the acoustic input file case.acst is read 

for controls, and one or more of the acoustic output files (pressure � case.pac; 

density � case.rac; u-velocity � case.uac; v-velocity � case.vac; w-velocity � 

case.wac) are written.

• If the NetCDF flag is set to .true., then the geometry and unknowns information is 

passed through NetCDF formats instead of the traditional binary files.  The geometry 

is read in through the case.nc3d instead of the case.g3d.  The unknowns files 

(case.unk and case.un#) retain the same name, but the format is the NetCDF 

format instead of the traditional binary format.  

• If the temperature boundary conditions flag is set to .true., then the temperature 

boundary conditions are read in through the case.tbc file.  The temperature 

boundary conditions have not yet been verified.

• Gravity is assumed to act on the vehicle along the inertial z-axis.  In the non-inertial 

reference frame, the body force vector rotates so that gravity is always pointed down 

in the positive z-direction.  The value gravity is non-dimensionalized using refdim

(L), mach (M), and ainf, so the dimensions of these variables should be consistent:

22

*

∞

=
aM

Lg
g



735 

Unknowns (Initial Conditions) Input File (case.unk) 

Basic File Format 

np gam xmi alp bet ref t Re 

((UN(i,j), i = 1,nnd ), j = 1,6) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side slip angle 

ref: real reference dimension 

t: real dimensionless time 

Re: real freestream Reynolds number 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

UN(i,6): real total enthalpy for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 

• The quantities nnd must match the values in the geometry file case.g3d as nnd. 

• The quantities gam, and xmi, and Re must match the values in the control file 

case.con as gamma and mach. 

• When restarting a solution, the most recent unknowns output file case.un# can be 

renamed as the initial conditions file case.unk.



736 

Geometry Input File, netCDF Format (case.unk) 

Basic File Format 

File Attributes: 

“title”   :: “NS3D Unk File” 

“time”    :: TimeDay 

“name”    :: filen 

“Version” :: VerYMD 

“gam”     :: gam   

“xmi”     :: xmi   

“alp”     :: nbe   

“bet”     :: nbp   

“refdim”  :: ref  

“time”    :: t    

“Re”      :: Re    

“iturb”   :: iturb 

Dimensions: 

“nnd”     :: nnd  (IDnnd) 

“Dim1”    :: 1    (ID1) 

Variables: 

[nsz] = [IDnnd,ID1] 

“Density”   :: UN(:,1) (IDrho)  [nsz] 

“Xvelocity” :: UN(:,2) (IDxvel) [nsz] 

“Yvelocity” :: UN(:,3) (IDyvel) [nsz] 

“Zvelocity” :: UN(:,4) (IDzvel) [nsz] 

“Pressure”  :: UN(:,5) (IDp)    [nsz] 

“Eddy_Visc”    :: UNT(:,1) (IDmuT)  

  [nsz] 

“Turb_KE”      :: UNT(:,2) (IDtKE)  

  [nsz] 

“Diss_Turb_KE” :: UNT(:,3) (IDeps)  

  [nsz] 

“4th_Turb_Var” :: UNT(:,4) (IDvar4)  

  [nsz] 

Definition of Terms 

TimeDay: int time and date generated 

filen: char case name 

VerYMD: int NS3D version, written using 

YYYYMMDD notation 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side slip angle 

ref: real reference dimension 

t: real dimensionless time 

Re: real freestream Reynolds number 

iturb: int turbulence model flag 

nnd: int number of nodes 

Dim1: int = 1, used to dimension arrays 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

UNT(i,1): real eddy viscosity for node i

UNT(i,2): real turb kinetic energyfor node i

UNT(i,3): real dissipation of turbulent 

kinetic energy for node i

UNT(i,4): real 4
th

 turb variable for node i



737 

Comments  

• This file is created using the netCDF library.  Formatting is handled using the netCDF 

library file netCDF.dll.   

• The netCDF formatting has been represented here using four designations: 

• Names in quotes ( � � ) represent the human-name of the variable or array 

• The value following the double-colon ( :: ) is the variable stored under this name. 

• The name in parentheses ( ) is the handle used to recall information from netCDF. 

• The values in brackets [ ] are the array dimensions.  Multi-dimension arrays 

(matrices, etc.) are shown by values separated by commas.   

• Data in case.unk can be written or read in any particular order, but for simplicity, 

the file has been represented here in three sections: 

• File Attributes:  Values describing the file (name, date, version, etc.) are read 

using nf_get_att_double.  For example, the ratio of specific heats (gam) and 

mach number (xmi) are read: 

   call check(nf_get_att_double(ncid, nf_global, "gam", gam_unk))  

   call check(nf_get_att_double(ncid, nf_global, "xmi", xmi_unk))

• Dimensions:  Values used to size the arrays (variables) that follow are read using 

nf_inq_dimid and nf_inq_dimlen.  The first function inquires of the netCDF ID 

to identify the dimension, and the second is used to read the value.  The file 

structure has been established so that all of the dimensions are positive-definite 

(no zeros or negatives).  For example, the number of nodes (nnd) are read: 

   call check(nf_inq_dimid(ncid, "nnd", IDnnd))  
   call check(nf_inq_dimlen(ncid, IDnnd, nnd))

• Variables:  The IDs for arrays are identified using nf_inq_varid, and then the 

arrays are read using nf_get_var_double (double-precision reals).  For example, 

the nodal density (UN(:,1), double, array) are read: 

call check(nf_inq_varid(ncid, "Density", IDrho)) 
call check(nf_get_var_double(ncid, IDrho, UN(:,1)))

• The functions used to read and write using the netCDF format can be found in the 

netCDF manuals (www.unidata.ucar.edu/software/netcdf/). 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 

• The quantities nnd must match the values in the geometry file case.nc3d as nnd. 

• The quantities gam, xmi, Re and iturb must match the values in the control file 

case.con as gamma and mach. 

• When restarting a solution, the most recent unknowns output file case.un# can be 

renamed as the initial conditions file case.unk. 



738 

Unknowns Output File (case.un#) 

Basic File Format 

np gam xmi alp bet ref t Re 

((UN(i,j), i = 1,nnd ), j = 1,6) 

((UNT(i,j), i = 1,nnd ), j = 1,4) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side slip angle 

ref: real reference dimension 

t: real dimensionless time 

Re: real freestream Reynolds number 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

UN(I,6): real total enthalpy for node i

UNT(i,1): real eddy viscosity for node i

UNT(i,2): real turb kinetic energyfor node i

UNT(i,3): real dissipation of turbulent 

kinetic energy for node i

UNT(i,4): real 4
th

 turb variable for node i

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system.



739 

Unknowns File, netCDF Format (case.un#) 

Basic File Format 

File Attributes: 

“title”   :: “NS3D Un# File” 

“time”    :: TimeDay 

“name”    :: filen 

“Version” :: VerYMD 

“gam”     :: gam   

“xmi”     :: xmi   

“alp”     :: alp   

“bet”     :: bet   

“refdim”  :: ref  

“time”    :: t    

“Re”      :: Re    

“iturb”   :: iturb 

Dimensions: 

“nnd”     :: nnd  (IDnnd) 

“Dim1”    :: 1    (ID1) 

“Dim4”    :: 1    (ID4) 

“Dim6”    :: 1    (ID6) 

Variables: 

[nsz] = [IDnnd,ID1] 

“Density”   :: UN(:,1) (IDrho)  [nsz] 

“Xvelocity” :: UN(:,2) (IDxvel) [nsz] 

“Yvelocity” :: UN(:,3) (IDyvel) [nsz] 

“Zvelocity” :: UN(:,4) (IDzvel) [nsz] 

“Pressure”  :: UN(:,5) (IDp)    [nsz] 

“Eddy_Visc”    :: UNT(:,1) (IDmuT)  

  [nsz] 

“Turb_KE”      :: UNT(:,2) (IDtKE)  

  [nsz] 

“Diss_Turb_KE” :: UNT(:,3) (IDeps)  

  [nsz] 

“4th_Turb_Var” :: UNT(:,4) (IDvar4)  

  [nsz] 

Definition of Terms 

TimeDay: int time and date generated 

filen: char case name 

VerYMD: int NS3D version, written using 

YYYYMMDD notation 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real free-stream side slip angle 

ref: real reference dimension 

t: real dimensionless time 

Re: real freestream Reynolds number 

iturb: int turbulence model flag 

nnd: int number of nodes 

Dim1: int = 1, used to dimension arrays 

Dim4: int = 4, used to dimension arrays 

Dim6: int = 6, used to dimension arrays 

UN(i,1): real density for node i

UN(i,2): real x-velocity for node i

UN(i,3): real y-velocity for node i

UN(i,4): real z-velocity for node i

UN(i,5): real pressure for node i

UNT(i,1): real eddy viscosity for node i

UNT(i,2): real turb kinetic energyfor node i

UNT(i,3): real dissipation of turbulent 

kinetic energy for node i

UNT(i,4): real 4
th

 turb variable for node i



740 

Comments  

• This file is created using the netCDF library.  Formatting is handled using the netCDF 

library file netCDF.dll.   

• The netCDF formatting has been represented here using four designations: 

• Names in quotes ( � � ) represent the human-name of the variable or array 

• The value following the double-colon ( :: ) is the variable stored under this name. 

• The name in parentheses ( ) is the handle used to recall information from netCDF. 

• The values in brackets [ ] are the array dimensions.  Multi-dimension arrays 

(matrices, etc.) are shown by values separated by commas.   

• Data in case.un# can be written or read in any particular order, but for simplicity, 

the file has been represented here in three sections: 

• File Attributes:  Values describing the file (name, date, version, etc.) are written 

using nf_put_att_text, nf_put_att_int, or nf_put_att_double if the value is 

a string, integer, or double-precision real, respectively.  For example, the date 

(int), case name (char), and Mach number (xmi, double) are written: 

call check(nf_put_att_int(ncid, nf_global, "time", nf_int, 8, Day )) 

   call check(nf_put_att_text(ncid, nf_global, "name",  
len(trim(filen)), trim(filen) )) 

   call check(nf_put_att_double(ncid, nf_global, "xmi", nf_double,  
                                                              1, xmi )) 

• Dimensions:  Values used to size the arrays (variables) that follow are written 

using nf_def_dim.  The file structure has been established so that all of the 

dimensions are positive-definite (no zeros or negative numbers).  For example, 

the number of nodes (nnd) is written: 

   call check(nf_def_dim(ncid, "nnd", nnd, IDnnd)) 

• Variables:  Arrays are defined using nf_def_var and written using 

nf_put_var_double (double-precision reals).  For example, the nodal density 

(UN(:,1), double, array) are written: 

RankTwo = (/ IDnnd, ID1 /) 
call check(nf_def_var(ncid, "Density", nf_double, 2, RankTwo,  
                                                           IDrho)) 
call check(nf_put_var_double(ncid, IDrho, UN(:,1)))

• The functions used to read and write using the netCDF format can be found in the 

netCDF manuals (www.unidata.ucar.edu/software/netcdf/). 

• The solution unknowns stored in this file are dimensionless quantities. 

• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system.  The fluid velo-

cities (in the inertial frame) can be calculated by subtracting out the translational and 

rotational components of the body-fixed coordinate system. 



741 

Turbulent Unknowns Output File (caset.un#) 

Basic File Format 

np gam xmi alp bet ref t Re iturb 

((UT(i,j), i = 1,nnd ), j = 1,6) 

Definition of Terms 

np: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

alp: real free-stream angle of attack 

bet: real side-slip angle 

ref: real reference dimension 

t: real dimensionless time 

Re: real free-stream Reynolds number 

iturb: int turbulence model type 

UT(i,1): int eddy viscosity for node i

UT(i,2): real turb. KE for node i

UT(i,3): real = 0.0 

UT(i,4): real = 0.0 

UT(i,5): real model variable for node i (in 

press. coeff. form, see below) 

UT(i,6): real turb. diss. for node i (in total 

energy form, see below) 

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns stored in this file are dimensionless quantities. 

• The turbulent variables UNT are converted to the UT variables show in this file so that 

this file can be coupled with a caset.g3d file and plotted using GlPlot2D.  (A 

caset.g3d can be created by copying the case.g3d file and adding a �t� to its 

name.)  In this way, the four turbulence variables in UNT can be plotted: 

• Eddy viscosity UNT(:,1) can be seen in density plots. 

• Turbulent kinetic energy UNT(:,2) can be seen in velocity magnitude plots. 

• Turbulent dissipation UNT(:,3) can be seen in total energy plots. 

• Model variable UNT(:,4) can be seen in pressure coefficient plots. 

• Total energy is calculated in GlPlot3D by subtracting UT(:,5)  from UT(:,6) .   

• The pressure coefficient is calculated in GlPlot3D by subtracting the dimensionless 

freestream pressure (= 1.0 / gam / xmi2) from UT(:,5)  and scaling the result by 2. 



Residuals Output File (case.rsd) 

Basic File Format 

  1 (RSD(i), i = 1,7) 

  �      �

istp (RSD(i), i = 1,7) 

  �      �

nstp (RSD(i), i = 1,7) 

Definition of Terms 

istp: int current solution step 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real z-momentum solution residual 

RSD(5): real energy solution residual 

RSD(6): real 1st turb. model eq. residual 

RSD(7): real 2nd turb. model eq. residual 

Comments  

• This is a plain text (ASCII) file. 

• For steady problems, the solution residuals indicate the degree of convergence to the 

final steady state solution.  All five solution residuals should converge to 

approximately the same order of magnitude. 

• For unsteady problems, the solution residuals indicate the degree of convergence for 

each global step of the solution, or the degree of convergence for the steady solution 

that is solved at each step. 

• RSD(5) and RSD(6) represent residuals for the equation(s) of the turbulence model: 

• If iturb = 0, RSD(5) and RSD(6) are omitted. 

• If iturb = 1, RSD(5) is written, representing the SA differential equation; 

RSD(6) is omitted. 

• If iturb = 1, RSD(5) and RSD(6) are both written, representing the SST 

differential equations. 

742 



7
4
3

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 

 
 
 
 
 
3
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 

 
 
 
 
 
4
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 

 
 
 
 
 
5
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 

 
 
 
 
 
6
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 

 
 
 
 
 
7
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 

 
 
 
 
 
8
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 

 
 
 
 
 
9
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 

 
 
 
 
1
0
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 

 
 
 
 
1
1
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 

 
 
 
 
1
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 

 
 
 
 
1
3
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 

 
 
 
 
1
4
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 

 
 
 
 
1
5
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 

 
 
 
 
1
6
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 

 
 
 
 
1
7
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 

 
 
 
 
1
8
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 

 
 
 
 
1
9
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5

       743



744 

Residuals Output File (case.rsd2) 

Basic File Format 

  1 (RSD(i), i = 1,7)     1 

  1 (RSD(i), i = 1,7)     2 

  �      �           �

  1 (RSD(i), i = 1,7)   icyc 

  �      �           �

istp (RSD(i), i = 1,7)     1 

  �      �           �

nstp (RSD(i), i = 1,7)     1 

  �      �           �

Definition of Terms 

istp: int current solution step 

icyc: int iteration of current residual 

nstp: int total or last solution step 

RSD(1): real density solution residual 

RSD(2): real x-momentum solution residual 

RSD(3): real y-momentum solution residual 

RSD(4): real z-momentum solution residual 

RSD(5): real energy solution residual 

RSD(6): real 1st turb. model eq. residual 

RSD(7): real 2nd turb. model eq. residual 

Comments  

• This is a plain text (ASCII) file. 

• This file is output when irsds = .true. in the controls case.con file.  The 

residuals shown in this file represent the RMS changes at all nodes in the domain for 

this inner cycle.  The convergence of residuals within any iteration can be seen in the 

trend in the residuals through the cycles used. 

• RSD(6) and RSD(7) represent residuals for the equation(s) of the turbulence model: 

• If iturb = 0, RSD(6) and RSD(7) are omitted. 

• If iturb = 1, RSD(6) is written, representing the SA differential equation; 

RSD(6) is omitted. 

• If iturb = 2, RSD(6) and RSD(7) are both written, representing the SST 

differential equations. 



7
4
5

 

S
a

m
p

le
 F

il
e 

 

 
 
 
 
 
1
 
 
 
 
0
.
3
8
3
2
0
E
-
0
5
 
 
 
0
.
1
0
7
4
3
E
-
0
4
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
6
9
8
5
4
E
-
0
5
 
 
 
0
.
1
0
5
9
8
E
-
0
3
 
 

1
 

 
 
 
 
 
1
 
 
 
 
0
.
2
0
3
1
7
E
-
0
5
 
 
 
0
.
5
0
6
9
4
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
4
0
4
3
6
E
-
0
5
 
 
 
0
.
5
6
3
0
7
E
-
0
4
 
 

2
 

 
 
 
 
 
1
 
 
 
 
0
.
1
2
0
2
4
E
-
0
5
 
 
 
0
.
3
5
1
8
7
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
2
6
2
4
1
E
-
0
5
 
 
 
0
.
3
2
1
9
5
E
-
0
4
 
 

3
 

 
 
 
 
 
1
 
 
 
 
0
.
9
1
3
3
4
E
-
0
6
 
 
 
0
.
2
5
1
6
6
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
3
6
3
7
E
-
0
5
 
 
 
0
.
2
4
2
4
0
E
-
0
4
 
 

4
 

 
 
 
 
 
1
 
 
 
 
0
.
7
3
1
8
3
E
-
0
6
 
 
 
0
.
1
9
4
4
2
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
2
2
2
2
8
E
-
0
5
 
 
 
0
.
1
9
3
7
6
E
-
0
4
 
 

5
 

 
 
 
 
 
1
 
 
 
 
0
.
5
9
8
7
0
E
-
0
6
 
 
 
0
.
1
6
1
7
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
2
0
8
8
9
E
-
0
5
 
 
 
0
.
1
5
9
6
3
E
-
0
4
 
 

6
 

 
 
 
 
 
1
 
 
 
 
0
.
5
1
6
6
3
E
-
0
6
 
 
 
0
.
1
4
3
1
1
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
9
7
1
9
E
-
0
5
 
 
 
0
.
1
3
9
4
6
E
-
0
4
 
 

7
 

 
 
 
 
 
1
 
 
 
 
0
.
4
4
9
2
4
E
-
0
6
 
 
 
0
.
1
2
9
8
9
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
8
5
3
6
E
-
0
5
 
 
 
0
.
1
2
3
9
8
E
-
0
4
 
 

8
 

 
 
 
 
 
2
 
 
 
 
0
.
3
9
5
1
0
E
-
0
6
 
 
 
0
.
1
2
0
9
5
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
7
2
8
3
E
-
0
5
 
 
 
0
.
1
1
1
5
6
E
-
0
4
 
 

1
 

 
 
 
 
 
2
 
 
 
 
0
.
3
4
7
2
6
E
-
0
6
 
 
 
0
.
1
1
4
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
1
5
8
7
8
E
-
0
5
 
 
 
0
.
9
9
4
5
0
E
-
0
5
 
 

2
 

 
 
 
 
 
2
 
 
 
 
0
.
3
0
7
7
5
E
-
0
6
 
 
 
0
.
1
0
7
4
6
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
1
4
3
2
9
E
-
0
5
 
 
 
0
.
8
8
1
5
9
E
-
0
5
 
 

3
 

 
 
 
 
 
2
 
 
 
 
0
.
2
6
2
0
7
E
-
0
6
 
 
 
0
.
9
8
7
0
0
E
-
0
6
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
1
2
8
3
3
E
-
0
5
 
 
 
0
.
7
6
2
8
0
E
-
0
5
 
 

4
 

 
 
 
 
 
2
 
 
 
 
0
.
2
2
4
1
8
E
-
0
6
 
 
 
0
.
8
7
9
2
4
E
-
0
6
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
1
1
2
4
5
E
-
0
5
 
 
 
0
.
6
5
1
1
3
E
-
0
5
 
 

5
 

 
 
 
 
 
2
 
 
 
 
0
.
1
8
9
0
4
E
-
0
6
 
 
 
0
.
7
7
7
6
4
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
9
8
1
4
8
E
-
0
6
 
 
 
0
.
5
4
6
1
7
E
-
0
5
 
 

6
 

 
 
 
 
 
2
 
 
 
 
0
.
1
5
8
0
9
E
-
0
6
 
 
 
0
.
6
9
3
4
5
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
8
4
4
7
1
E
-
0
6
 
 
 
0
.
4
4
7
3
9
E
-
0
5
 
 

7
 

 
 
 
 
 
2
 
 
 
 
0
.
1
3
4
1
1
E
-
0
6
 
 
 
0
.
6
2
2
0
3
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
7
2
9
9
1
E
-
0
6
 
 
 
0
.
3
7
4
2
2
E
-
0
5
 
 

8
 

 
 
 
 
 
3
 
 
 
 
0
.
1
1
5
6
4
E
-
0
6
 
 
 
0
.
5
5
7
1
7
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
6
4
3
5
0
E
-
0
6
 
 
 
0
.
3
2
6
6
1
E
-
0
5
 
 

1
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
5
1
6
E
-
0
6
 
 
 
0
.
5
0
5
0
2
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
5
7
5
2
0
E
-
0
6
 
 
 
0
.
3
0
1
5
2
E
-
0
5
 
 

2
 

 
 
 
 
 
3
 
 
 
 
0
.
1
0
1
0
1
E
-
0
6
 
 
 
0
.
4
6
1
9
3
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
5
3
1
0
0
E
-
0
6
 
 
 
0
.
2
9
2
7
9
E
-
0
5
 
 

3

       745



746 

Time Step Output File (case.time) 

Basic File Format 

 utime  htime  vtime  stime 

   �     �      � �

Definition of Terms 

utime: real unsteady time step ratio 

htime: real heat transfer time step ratio 

vtime: real momentum time step ratio 

stime: real turbulence time step ratio 

Comments  

• This is a plain text (ASCII) file. 

• The time step file case.time is written out when the residuals watching flag is 

turned on (irsds = .true.).  The third column, containing vtime, is only written 

when itime > 1; and the fourth column, containing stime, is only written when 

itime = 2. 

• The four ratios are calculated using the following equations: 

�
�

�

�

�
�

	



��
�

�
��
	




∆

∆
= 1,

ninv

HT

t

t
MINhtime ( ) ( ) ( ) ( )( )

nzmomnymomnxmomnmom tttMINt ,,, ,, ∆∆∆=∆

�
�

�

�

�
�

	




��
�

�
��
	




∆

∆
= 1,

min n

HT

mom

t

t
MINvtime   ( ) ( ) ( )( )

nHTninvn

HT ttMINt ∆∆=∆ ,min

( )
( ) �

�
�

�
�
�
	




∆

∆
= 1,

min n

mom

nturb

t

t
MINstime   ( ) ( ) ( )( )

nmomn

HT

n

mom ttMINt ∆∆=∆ ,minmin

( )
�
�
�

�
�
�
	


 ∆
= 1,

min

dt

t
MINutime n

turb

  ( ) ( ) ( )( )
nturbn

mom

n

turb ttMINt ∆∆=∆ ,minmin

For SST,                    ( ) ( ) ( )( )
nnKnturb ttMINt ω∆∆=∆ ,

 where ∆tinv , ∆tHT, ∆tmom, and ∆tturb are the inviscid, heat transfer, momentum, and 

turbulence local time steps and dt is the global time step.   

• The heat transfer time step is calculated using its stiffness matrix for itime > 0.  For 
itime < 0, the minimum element length is used to calculate the local time step. 

• For momentum, the diagonal of both the x- and y-stiffness matrices are tested for their 
local time steps and then combined into a single momentum time step. 

• For the SA model, the SA diffusion terms are used to calculate its local time step.  

For the SST model, both the k- and ω-diffusion terms are used to calculate the local 

time step, as shown above. 



747 

• A conservative rule of thumb is to apply itime = 2 to use the minimum of all local 

time steps.  If a column of the file shows all ones, like the example below, then the 

corresponding equation is more stable than those tested before it, and itime can be 

reduced.  In the example below shows the turbulence model is more stable than the 

other equations at all time steps.  The example also shows that the momentum 

stability is necessary at the beginning of the run but can be removed after several 

iterations.  For this case, after 20 iterations, itime can be decreased to 0 to limit 

testing to the heat transfer stiffness matrix.   

• Maximum viscous stability is obtained when all columns except for the first take a 

value of unity (1). 

• The first column should be less than unity (1).  The ratio of local to global time step 

acts like a relaxation factor in the solver.  The solver limits this ratio to a maximum of 

unity, so unity in the first column shows that the global time step is smaller than all of 

the local time steps on the domain.  The global time step should be increased until a 

value less than unity is reached somewhere on the domain.   

• The number of cycles ncyc can also be gauged using the first column.  The number 

of cycles should be greater than dt / ∆tmin to maintain a reasonable assumption of time 

accuracy.  Column represents the minimum of ∆tmin / dt on the domain, or the maxi-

mum cycles needed on the domain. 

Sample File  

    0.85620E+00   0.75632E+00   0.56382E+00   1.00000E+00 
    0.87930E+00   0.75555E+00   0.62853E+00   1.00000E+00 
    0.78200E+00   0.75334E+00   0.75932E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.88937E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.93048E+00   1.00000E+00 
    0.79381E+00   0.75475E+00   0.95043E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.97490E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.98403E+00   1.00000E+00 
    0.79379E+00   0.75475E+00   0.98738E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99018E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99205E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99405E+00   1.00000E+00 
    0.79378E+00   0.75475E+00   0.99739E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   0.99993E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79381E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79380E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79382E+00   0.75475E+00   1.00000E+00   1.00000E+00 
    0.79382E+00   0.75475E+00   1.00000E+00   1.00000E+00 

       �              �      �         �



748 

Restart Files (case.rst  and case.rs2) 

Basic File Format 

istp nnd gam xmi ref dt 

((UN(i,j), i = 1,nnd), j = 1,6) 

((UNO(i,j), i = 1,nnd), j = 1,6) 

((UNT(i,j), i = 1,nnd), j = 1,4) 

((UNTO(i,j), i = 1,nnd), j = 1,4) 

 (XN(i,j), i = 1,2*nr),  

(XN1(i), i = 1,2*nr) 

(FA(i,j), i = 1,3*nr),  

(FA2(i), i = 1,nr) 

(XD(i,j), i = 1,13),  

(XD1(i), i = 1,13) 

(FD(i,j), i = 1,18),  

(FD2(i), i = 1,6) 

Definition of Terms 

istp: int step in global solution 

nnd: int number of nodes 

gam: real ratio of specific heats 

xmi: real free-stream Mach number 

ref: real reference dimension 

dt: real global time step 

UN: real unknowns at previous step 

UNO: real unknowns at two steps prior 

UNT: real turb unknowns at prev step 

UNTO: real turb unknowns back 2 steps 

XN: real elastic deflect / velocity 

XN1: real prev. elastic deflect / velocity 

FA: real gen. aero. forces at 3 steps 

FA2: real external forcing on modes 

XD: real rigid body position / velocity 

XD1: real prev. rigid body pos. / vel. 

FD: real aero. forces at 3 steps 

FD2: real external forcing on vehicle 

Comments  

• This is an unformatted (binary) file. 

• The solution unknowns, deflections, and forces stored in this file are dimensionless 

quantities. 

• Turbulent unknowns properties vector UNT and UNTO  are only written when 

turbulence models are used (iturb > 0).   

• Unknowns properties vector UNO and UNTO  are only written for 2nd order unsteady 

solutions (isol = 2).   

• Elastic properties XN, XN1, FA, and FA2 is only written when the elastics flag ielast

is set to .true.   

• Non-inertial properties XD, XD1, FD, and FD2 is only written when the non-inertial 

flag idynm is set to .true.   

• A two-file system is used so that one file is written while the other file is untouched.  

If the program crashes, one file is always untouched so that one of the two files is 

always recoverable. 



749 

APPENDIX G 

2D ACOUSTIC OUTPUTS 

The acoustic output files report density, velocity, and pressure data at a series of points 

defined by points and lines in space.  The points exist in an element in the domain and are 

therefore interpolated from its three points.  The lines cross one or more elements in the 

domain and are interpolated where the line enters and leaves each element, along the 

segments between its nodes. 

Acoustic Points.  The point (xp, yp) is the desired location within the flow at which properties 

are to be recorded into an acoustic history.  This point exists within at least one element.  

(The point can exist within more than one element if the point exists along the intersection of 

two or more elements.)  Loca-tions within an element can be tracked within the global (x, y) 

and local (ξ 1, ξ 2, ξ3) frames.  The two frames are related: 

3

3

3

2

2

2

1

1

1 ξξξ
�
�
�

�
�
�

+
�
�
�

�
�
�

+
�
�
�

�
�
�

=
�
�
�

�
�
�

y

x

y

x

y

x

y

x
(G.1)

[ ] 3

3

3

2

1

3231

3231
xJ

y

x

yyyy

xxxx

y

x
x e

���
+=

�
�
�

�
�
�

+
�
�
�

�
�
�
�
�

	


�

�

−−

−−
=

�
�
�

�
�
�

= ξ
ξ

ξ
(G.2)



750 

[ ] ( ) [ ]( )33

1 1
xx

J
xxJ

e

e

�����
−=−=

−
Aξ (G.3)

A is the same inverse Jacobian matrix used to construct gradients within each element.  If 0 

< ξ 1, ξ 2 < 1, then the desired point lies within that element, and the properties at the point 

can be reconstructed: 

)1( 2132211 ξξξξ −−++= UUUU p (G.4)

Acoustic Lines.  The acoustic line is defined by two end points (x1L,y1L) and (x2L,y2L) so that: 

( )
�
�
�

�
�
�

+
�
�
�

�
�
�

−

−
=−

�
�
�

�
�
�

+
�
�
�

�
�
�

=
�
�
�

�
�
�

L

L

LL

LL

L

L

L

L

y

x

yy

xx

y

x

y

x

y

x

2

2

21

21

2

2

1

1
1 ηηη (G.5)

The line intersects each element within the domain at its edges.  The edges are represented by 

the segments within the domain: 

�
�
�

�
�
�

+
�
�
�

�
�
�

−

−
=

�
�
�

�
�
�

+
�
�
�

�
�
�

=
�
�
�

�
�
�

2

2

1

21

21

2

2

2

1

1

1

y

x

yy

xx

y

x

y

x

y

x
ξξξ (G.6)

The intersection of the acoustic line and segment is represented by: 

�
�
�

�
�
�

+
�
�
�

�
�
�

−

−
=

�
�
�

�
�
�

+
�
�
�

�
�
�

−

−
=

�
�
�

�
�
�

2

2

1

21

21

2

2

21

21

y

x

yy

xx

y

x

yy

xx

y

x

L

L

LL

LL ξη (G.7)

[ ] b
yy

xx

yyyy

xxxx

L

L

LL

LL
�

=
�
�
�

�
�
�

−

−
=

�
�
�

�
�
�
�
�

	


�

�

−−

−−
=

�
�
�

�
�
�

22

22

11221

1221

1 ξ

η

ξ

η
C (G.8)

[ ] b
�

1

1

−
=

�
�
�

�
�
�

C
ξ

η
(G.9)

If 0 < η , ξ 1 < 1, then the point lies on both the segment and the acoustic line (within the 

bounds of each).  The properties at that point can be reconstructed from the properties at the 

endpoints of the segment: 



751 

)1( 1211 ξξ −+= UUU p (G.10)

If the C-matrix is singular, then the segment is parallel with the acoustic line.  If one or both 

of the end points of the segment lies on the acoustic line, then an infinite number of points 

along the segment also lie on the acoustic line.  For simplicity, the two end points of the seg-

ment can be checked.  If either or both end points lie on the acoustic line, then these points 

should be treated as separate intersections with the acoustic line.  The first end point is: 

�
�
�

�
�
�

+
�
�
�

�
�
�

−

−
=

�
�
�

�
�
�

L

L

LL

LL

y

x

yy

xx

y

x

2

2

21

21

1

1 η (G.11)

10
21

21

21

21 ≤
−

−
=

−

−
=≤

LL

L

LL

L

yy

yy

xx

xx
η (G.12)

If the acoustic line is constant in x, then x1L = x2L and the denominator of the x-test will be 

singular.  In this case, the segment must also lie along the same x (x1 = x2L).  If the acoustic 

line is constant in y, then y1L = y2L and the denominator of the y-test will be singular.  In this 

case, the segment must also lie along the same y (y1 = y2L).  The properties are equal to the 

properties at the first node.

The second end point is checked: 

10
21

22

21

22 ≤
−

−
=

−

−
=≤

LL

L

LL

L

yy

yy

xx

xx
η (G.13)

If the acoustic line is constant in x, then x1L = x2L and the denominator of the x-test will be 

singular.  In this case, the segment must also lie along the same x (x2 = x2L).  If the acoustic 

line is constant in y, then y1L = y2L and the denominator of the y-test will be singular.  In this 

case, the segment must also lie along the same y (y2= y2L).  The properties are equal to the 

properties at the second node. 



752 

APPENDIX H 

3D ACOUSTIC OUTPUTS 

The acoustic output files report density, velocity, and pressure data at a series of points 

defined by points and lines in space.  The points exist in an element in the domain and are 

therefore interpolated from its four points.  The lines cross one or more elements in the 

domain and are interpolated where the line enters and leaves each element, along the 

segments between its nodes. 

Acoustic Points.  The point (xp, yp, zp) is the desired location within the flow at which 

properties are to be recorded into an acoustic history.  This point exists within at least one 

element.  (The point can exist within more than one element if the point exists along the 

intersection of two or more elements.)  Locations within an element can be tracked within the 

global (x, y, z) and local (ξ 1, ξ 2, ξ3, ξ4) frames.  The two frames are related: 

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

ξξξξ
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

(H.1)



753 

[ ] 4

4

4

4

3

2

1

424241

424241

424241

xJ

z

y

x

zzzzzz

yyyyyy

xxxxxx

z

y

x

x e

���
+=

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

�
�
�

	




�
�
�

�



−−−

−−−

−−−

=
�
�

�
�

�

�
�

�
�

�

= ξ

ξ

ξ

ξ

(H.2)

[ ] ( ) [ ]( )44

1 1
xx

J
xxJ e

e

e

�����
−=−=

−
Aξ (H.3)

A is the same inverse Jacobian matrix used to construct gradients within elements.  If 0 < ξ 1, 

ξ 2 , ξ 3 < 1, then the desired point lies within that element, and the properties at the point can 

be reconstructed: 

)1( 3214332211 ξξξξξξ −−−+++= UUUUU p (H.4)

Acoustic Lines.  The acoustic line is defined by two end points (x1L,y1L,z1L) and (x2L,y2L,z2L) 

so that: 

( )
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=−
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

L

L

L

LL

LL

LL

L

L

L

L

L

L

z

y

x

zz

yy

xx

z

y

x

z

y

x

z

y

x

2

2

2

21

21

21

2

2

2

1

1

1

1 ηηη (H.5)

The line intersects each element within the domain at its faces.  The faces are represented by 

ζ1, ζ2, and ζ3 represent the face-local coordinates between the three nodes of a face.  The 

face-local coordinates ζi correspond to three of the element-local coordinates ξi.  The fourth 

element-local coordinate is zero.  For example, if the face corresponds to nodes 1, 3, and 4, 

then the face-local and element-local coordinates are related: 

11 ζξ = 02 =ξ
  23 ζξ = 34 ζξ = (H.6)

Each face is represented in face-local coordinates by: 



754 

3

3

3

3

2

2

2

2

1

1

1

1

ζζζ
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

z

y

x

z

y

x

z

y

x

z

y

x

(H.7)

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

3

3

3

2

32

32

32

1

31

31

31

z

y

x

zz

yy

xx

zz

yy

xx

z

y

x

ζζ (H.8)

The intersection of the acoustic line and element face is represented by: 

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

3

3

3

2

32

32

32

1

31

31

31

2

2

2

21

21

21

z

y

x

zz

yy

xx

zz

yy

xx

z

y

x

zz

yy

xx

z

y

x

L

L

L

LL

LL

LL

ζζη (H.9)

[ ] b

zz

yy

xx

zzzzzz

yyyyyy

xxxxxx

L

L

L

LL

LL

LL
�

=
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

�
�
�

	




�
�
�

�



−−−

−−−

−−−

=
�
�

�
�

�

�
�

�
�

�

23

23

23

2

1

231321

231321

231321

2

1

ζ

ζ

η

ζ

ζ

η

C (H.10)

[ ] b
�

1

2

1

−
=

�
�

�
�

�

�
�

�
�

�

C

ζ

ζ

η

(H.11)

If 0 < η , ζ 1, ζ 2 < 1, then the point lies on both the face and the acoustic line (within the 

bounds of each).  The properties at that point can be reconstructed from the properties at the 

vertices of the face: 

)1( 2132211 ζζζζ −−++= UUUU p (H.12)

The properties can also be written in terms of the four vertices of the element, where one of 

the four element-local coordinates is identically zero: 

)1( 3214332211 ξξξξξξ −−−+++= UUUUU p (H.13)

If the C-matrix is singular, then the face is parallel with the acoustic line.  If one or two 

points along an edge of this face lie on the acoustic line, then an infinite number of points 



755 

along the face also lie on the acoustic line.  For simplicity, intersections with each of the 

three edges are checked against the acoustic line.  Each edge is treated just like the segments 

in the 2D case and represented by two nodes, in edge-local coordinates χ1 and χ2, which 

relate to two of the four element-local coordinates.  For example, if nodes 1 and 3 are used by 

the edge, then edge-local and element-local coordinates are related: 

11 χξ = 02 =ξ
  23 χξ = 04 =ξ (H.14)

The edges are represented by: 

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

=
�
�

�
�

�

�
�

�
�

�

2

2

2

1

21

21

21

2

2

2

2

1

1

1

1

z

y

x

zz

yy

xx

z

y

x

z

y

x

z

y

x

χχχ (H.15)

The intersection of the acoustic line and segment is represented by: 

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

2

2

2

1

21

21

21

2

2

2

21

21

21

z

y

x

zz

yy

xx

z

y

x

zz

yy

xx

z

y

x

L

L

L

LL

LL

LL

χη (H.16)

�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�
�

�
�
�

�
�
�

	




�
�
�

�



−−

−−

−−

L

L

L

LL

LL

LL

zz

yy

xx

zzzz

yyyy

xxxx

22

22

22

1

1221

1221

1221

χ

η
(H.17)

Only two of the equations need to be solved at a time to determine the two unknowns: 

[ ] b
�

=
�
�
�

�
�
�

1χ

η
C

             

so that  [ ] b
�

1

1

−
=

�
�
�

�
�
�

C
χ

η
(H.18)

where the three C-matrices and b-vectors are based in the xy-, xz-, and yz-planes: 

[ ] �
	



�
�



−−

−−
=

1221

1221

yyyy

xxxx

LL

LL

xyC

  �
�
�

�
�
�

−

−
=

L

L

xy
yy

xx
b

22

22
�

(H.19)



756 

[ ] �
	



�
�



−−

−−
=

1221

1221

zzzz

xxxx

LL

LL

xzC

  �
�
�

�
�
�

−

−
=

L

L

xz
zz

xx
b

22

22
�

(H.20)

[ ] �
	



�
�



−−

−−
=

1221

1221

zzzz

yyyy

LL

LL

yzC

  �
�
�

�
�
�

−

−
=

L

L

yz
zz

yy
b

22

22
�

(H.21)

As long as the line and edge are non-constant in the x-, y-, or z-directions, then any of the 

three systems (C and b) can be solved to find the same two unknowns.  If the line and edge 

are constant in the x-direc-tion, for example, then the xy- and xz-systems will be singular.  

For this reason, the solution is checked in each plane, and then the solutions are compared.  

In the case of a pair of singular planes, the common dimension is checked for intersection 

(e.g., if xy- and xz-systems are singular, then x is common and x1 = x2 = x1L = x2L must exist 

for intersection to occur).  The properties at that point can be recon-structed from the 

properties at the endpoints of the segment: 

)1( 1211 χχ −+= UUU p (H.22)

The properties can also be written in terms of the four vertices of the element, where two of 

the four element-local coordinates are identically zero: 

)1( 3214332211 ξξξξξξ −−−+++= UUUUU p (H.23)

If all three systems are singular, then the edge is parallel with the acoustic line.  If one or 

both of the end points of the segment lies on the acoustic line, then an infinite number of 

points along the segment also lie on the acoustic line.  For simplicity, the two end points of 

the segment can be checked.  If either or both end points lie on the acoustic line, then these 

points should be treated as separate intersections with the acoustic line.  The first end point is 

checked using: 



757 

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

L

L

L

LL

LL

LL

z

y

x

zz

yy

xx

z

y

x

2

2

2

21

21

21

1

1

1

η (H.24)

LL

L
x

xx

xx

21

21

−

−
=η

LL

L
y

yy

yy

21

21

−

−
=η

LL

L
z

zz

zz

21

21

−

−
=η (H.25)

10 ≤===≤ zyx ηηηη (H.26)

If the acoustic line is constant in x, then x1L = x2L and the denominator of the x-test will be 

singular.  In this case, the segment must also lie along the same x (x1 = x2L).  If the acoustic 

line is constant in y, then y1L = y2L and the denominator of the y-test will be singular.  In this 

case, the segment must also lie along the same y (y1 = y2L).  If the acoustic line is constant in 

z, then z1L = z2L and the denominator of the z-test will be singular.  In this case, the segment 

must also lie along the same z (z1 = z2L).  The properties can be reconstructed using: 

)1( 1211 ξξ −+= UUU p
   where  11 =ξ (H.27)

This can also be written in terms of the four properties at the vertices of the element, where 

three of the element-local coordinates are identically zero. 

The second end point is checked using: 

�
�

�
�

�

�
�

�
�

�

+
�
�

�
�

�

�
�

�
�

�

−

−

−

=
�
�

�
�

�

�
�

�
�

�

L

L

L

LL

LL

LL

z

y

x

zz

yy

xx

z

y

x

2

2

2

21

21

21

2

2

2

η (H.28)

LL

L
x

xx

xx

21

22

−

−
=η

LL

L
y

yy

yy

21

22

−

−
=η

LL

L
z

zz

zz

21

22

−

−
=η (H.29)

10 ≤===≤ zyx ηηηη (H.30)



758 

If the acoustic line is constant in x, then x1L = x2L and the denominator of the x-test will be 

singular.  In this case, the segment must also lie along the same x (x1 = x2L).  If the acoustic 

line is constant in y, then y1L = y2L and the denominator of the y-test will be singular.  In this 

case, the segment must also lie along the same y (y1 = y2L).  If the acoustic line is constant in 

z, then z1L = z2L and the denominator of the z-test will be singular.  In this case, the segment 

must also lie along the same z (z1 = z2L).  The properties can be reconstructed using: 

)1( 1211 ξξ −+= UUU p
   where  01 =ξ (H.31)

This can also be written in terms of the four properties at the vertices of the element, where 

three of the element-local coordinates are identically zero. 



759 

APPENDIX I 

ENTROPY-BASED ARTIFICIAL DISSIPATION 

A better artificial dissipation model needs to be found.  The current dissipation model in the 

OSU codes is sufficient for invisicid solutions but overly diffuse in the near-wall region.  The 

result is a stable solution with a thickened boundary layer and reduced skin friction.  Neither 

of these influences is acceptable.  A zero dissipation length has been applied to NS2D/3D to 

keep the current model until a new model is found.  CFDsol applies a shock-capturing model 

that is overly diffuse everywhere within the flow, and the zero dissipation length cannot be 

applied to CFDsol because artificial dissipation is required to stabilize the solution, even in 

the near-wall region.   

Both artificial dissipation models are ad hoc attempts at creating positive entropy growth 

everywhere in the solution.  A more appropriate model would incorporate the Second Law of 

Thermodynamics to ensure a positive entropy growth, using entropy (Guermond, 2011; 

Olson, 2012).  The �first T ds equation� (Moran and Shapiro, 2000) can be used to create 

both parts of the model: 

ρ
ρρ

d
p

dedpdedvpdeTds
2

1
−=��

�

�
��
�

�
+=+= (I.1)



760 

Eq. I.1 can be used to relate the time rate of change in entropy s to the rates of change in 

internal energy e and density ρ and similar relationships for the spatial derivatives: 

dt

dp

dt

de

dt

ds
T

ρ

ρ 2
−=   

iii dx

dp

dx

de

dx

ds
T

ρ

ρ 2
−= (I.2)

��
�

�
��
�

�
+−��

�

�
��
�

�
+=��

�

�
��
�

�
+=

i

i

i

i

i

i
dx

d
u

dt

dp

dx

de
u

dt

de

dx

ds
u

dt

ds
T

Dt

Ds
T

ρ
ρ

ρ
ρ

ρ
ρρρρρ

2
(I.3)

Eq. I.3 is the substantial derivative of entropy s or rate of change of entropy traveling with 

the flow (Lagrangian frame).  We can pose Eq. I.3 in terms of the Navier-Stokes equations 

(Euler frame) that we are already using in the CFD solution.  We address the first term on the 

right side of Eq. I.3, starting from the energy equation (Eqs. 3.12 and 3.13 with Eq. 3.6): 

( )( ) ( )ijij

i

i

i

qu
dx

d
pEu

dx

d

dt

Ed
′′−=++ τρ

ρ
(I.4)

( ) ( )( ) ( )
ijij

i

jji

i

jj qu
dx

d
puueu

dx

d
uue

dt

d
′′−=++++ τρρρρ

2
1

2
1

(I.5)

( )

( ) ( )
ijij

ii

i
ijji

i

j

j

i

i
jj

i

i

qu
dx

d

dx

du
ppuu

dx

d

dt

ud
u

dx

ud

dt

d
uue

dx

de
u

dt

de

′′−=+
�
�
	



�
�

+++


�

�
�
�

�
+−++

τδρ
ρ

ρρ
ρρ

2
1

(I.6)

The terms in brackets [ ] is the continuity equation (Eqs. 3.12 and 3.13), which is identically 

zero.  The terms in curly brackets { } are the left side of the momentum equation (Eqs. 3.12 

and 3.13), which can be replaced with the right side of the momentum equation: 

( )
i

i

i

ij

jijij

ii

i
dx

du
p

dx

d
uqu

dx

d

dx

de
u

dt

de
−−′′−=+

τ
τρρ (I.7)



761 

i

i

i

i

i

j

ij

i

i
dx

qd

dx

du
p

dx

du

dx

de
u

dt

de ′′
−−=+ τρρ (I.8)

Eq. I.8 is substituted back into Eq. I.3: 

��
�

�
��
�

�
+−

′′
−−=

i

i

i

i

i

i

i

j

ij
dx

d
u

dt

dp

dx

qd

dx

du
p

dx

du

Dt

Ds
T

ρ
ρ

ρ
ρ

ρ
τρ

2
(I.9)

��
�

�
��
�

�
−+−

′′
−−=

i

i

i

i

i

i

i

i

i

j

ij
dx

du

dx

ud

dt

dp

dx

qd

dx

du
p

dx

du

Dt

Ds
T 2

2
ρ

ρ
ρ

ρ
ρ

ρ
τρ (I.10)


�

�
�
�

�
+−

′′
−=

i

i

i

i

i

j

ij
dx

ud

dt

dp

dx

qd

dx

du

Dt

Ds
T

ρρ

ρ
τρ (I.11)

The term in parentheses in Eq. I.10 is rearranged to cancel the pressure term and creating a 

continuity term, shown in brackets in Eq. I.11.  The continuity equation is identically zero so 

the substantial derivative of entropy can be written using Eq. I.12: 

i

i

i

j

ij
dx

qd

dx

du

Dt

Ds
T

′′
−= τρ (I.12)

Returning to Eqs. I.4 and I.6, the left side of the energy equation can be written in terms that 

are seen in Eq. I.8, so that Eq. I.8 can be written in terms of the left hand sides (LHS) of the 

governing equations (Eqs. 3.12 and 3.13): 

( )( ) ( )

( )
i

i

i

i
jj

ijji

i

j

ji

ii

i

dx

du
p

dx

ud

dt

d
uue

puu
dx

d

dt

ud
upEu

dx

d

dt

Ed

dx

de
u

dt

de

−
�

�
�
�

�
+−−

�
�
	



�
�

++−++=+

ρρ

δρ
ρ

ρ
ρ

ρρ

2
1

(I.13)

( )
i

i
jjujE

i

i
dx

du
pLHSuueLHSuLHS

dx

de
u

dt

de
j

−−−−=+ ρρρρρ 2
1

(I.14)



762 

( ) ρρρρ LHSuuhLHSuLHS
Dt

Ds
T jjujE j 2

1−−−=  (I.15)

Eqs. I.15 can now be integrated using Galerkin�s method: 

( )( )��
ΩΩ

Ω−−−Φ=Ω�
�

�
�
�

�
Φ dLHSuuhLHSuLHSd

Dt

Ds
T jjujE

T

e

T

e j ρρρρ
2
1 (I.16)

( )

( )( )
( )( )�

�

��

−−−+

−−−−

��
�

�
��
�

�

∂

∂
−−

∂

∂
−

∂

∂
=Ω�

�

�
�
�

�
Φ

Ω

be

njjunjEnbec

e

ijjuijEi

T

i

e

e
ecjj

ej

ecj
e

ec

T

e

FuuhFuF

FuuhFuFA
d

t
uuh

t

u
u

t

E
d

Dt

Ds
T

j

j

ρρρ

ρρρ

ρρρ
ρ

,2
1

,,,

,2
1

,,

,2
1,

,,

!

1

M

MMM

(I.17)

( ) ρρρρ ,2
1

,, invjjuinvjEinv

T

e uuhud
Dt

Ds
T

j
RRR −−−=Ω�

�

�
�
�

�
Φ�

Ω

(I.18)

The integral in Eq. I.12 can be greatly simplified by averaging the velocity and enthalpy 

terms over each element.  These terms can then be removed from the element integrals.  Eq. 

8.19 represents the simplified integration.  All of the term in Eq. 8.19 have already been 

implemented in Euler2D/3D and NS2D/3D as the unsteady and inviscid flux contributions to 

the residual (Eq. I.18).  The momentum (inviscid) residual is dotted with the velocity vector 

and the continuity residual is scaled by enthalpy less kinetic energy.  Eq. I.18 gives a node-

wise comparison of the entropy production at the nodes with little additional cost over the 

current implementation.   

Eq. I.18 can be integrated using Galerkin�s method (Eq. I.19).  The stress tensor and heat flux 

have been expanded in Eq. I.20 to illustrate how the viscosity has been factored out in Eq. 

I.21.  The viscosity was then split into real viscosity µ and artificial viscosity µAD: 



763 

{ }��� ��
�

�
��
�

� ′′
−

+

Ω
=Ω��

�

�
��
�

� ′′
−Φ=Ω�

�

�
�
�

�
Φ

ΩΩ e i

i

i

j

ij
e

i

i

i

j

ij

T

e

T

e
dx

qd

dx

du

d
d

dx

qd

dx

du
d

Dt

Ds
T ττρ 1

1
(I.19)

{ }�� �
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
+

�
�

�

�

�
�

�

�
++

+

Ω
=Ω�

�

�
�
�

�
Φ

Ω e jii

j

ij

k

k

j

i

i

jeT

e
dx

dh

dx

d

dx

du

dx

du

dx

du

dx

du

d
d

Dt

Ds
T

PrReRe
1

1

µ
δ

µ

λµ
ρ (I.20)

( )eADeAD

T

e d
Dt

Ds
T ,µµρ +=Ω�

�

�
�
�

�
Φ�

Ω

K (I.21)

Eq. I.21 represents the entropy production as a stiffness matrix times the effective viscosity 

(real plus artificial).  The diagonal of the stiffness matrix 
ADK′  can be used to back solve for 

the effective viscosity.  The viscosity ratio µ (from Sutherland�s equation) can be removed 

from the effective viscosity, leaving the additional viscosity required to stabilize the solution: 

�
�
�

�
�
�
�

�
−Ω�

�

�
�
�

�
Φ′≈ �

Ω

−
e

T

eADeAD d
Dt

Ds
Tdiss µρµ 1

, K (I.22)

{ }� �
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
+�

�

�

�

�
�

�

�
++

+

Ω
=

e jii

j

ij

k

k

j

i

i

je
iiAD

dx

dh

dx

d

dx

du

dx

du

dx

du

dx

du

d
K

PrRe

1

Re

1
1

1
, δ

µ

λ
(I.23)

Eq. I.18 can be assembled alongside the inviscid contributions to the residual while the 

diagonal of the stiffness matrix (Eq. I.23) can be assembled alongside the viscous contribu-

tions to the residual.  Any positive terms assembled using Eq. I.18 represent entropy pro-

duction, which satisfies the Second Law.  These terms are discarded.  The magnitude of the 

entropy destruction (negative terms) are used in Eq. I.23 to calculate the artificial viscosity 

necessary at each node in the domain, similar to the method presented by Olson (2012).  The 

artificial viscosity can be used to reassemble viscous fluxes with µAD instead of µ.  The 

stiffness matrix can be used for quick reassembly.  Notice that the artificial viscosity has 

been scaled by diss to artificial dissipation scalable.   



764 

This model can be implemented in Euler2D/3D, where the real viscosity ratio µ is zero.  The 

magnitude of entropy destruction from Eq. I.21 can be scaled by diss and applied directly 

back into the residual.  Viscous contributions are necessary in NS2D/3D so that the entropy 

production from real viscosity can be accounted for before applying artificial dissipation. 



VITA 

Nicholas J Moffitt 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: GALERKIN CFD SOLVERS FOR USE IN A MULTI-DISCIPLINARY  

   SUITE FOR MODELING ADVANCED FLIGHT VEHICLES 

Major Field:  Mechanical and Aerospace Engineering 

Biographical: 

  

 Education: 

Completed the requirements for the Doctor of Philosophy in Mechanical and 

Aerospace Engineering at Oklahoma State University, Stillwater, Oklahoma in 

May 2013. 

Completed the requirements for the Master of Science in Mechanical 

Engineering at Oklahoma State University, Stillwater, Oklahoma in December 

2004. 

  

Completed the requirements for the Bachelor of Science in Aerospace 

Engineering at Oklahoma State University, Stillwater, Oklahoma in December 

2002. 

 Experience:   

 Teaching Assistant, Oklahoma State University, Aug 2002-Dec 2007. 

Research Assistant, CASE Lab, Oklahoma State University, Mar 2003-May 

2013; worked on three NASA contracts in finite element CFD development. 

 Engineer Intern, Boeing Research & Technology, Boeing, June 2012-Aug 

 2012; worked on finite volume CFD development. 

 Engineer II, Boeing Research & Technology, Boeing, Jan 2013-present; worked 

on finite volume CFD development. 

 Professional Memberships:  

 American Institute of Aeronautics and Astronautics (AIAA), since 1998.  


