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Abstract: Moving averages are often used for forecasting and the optimal length of the 
moving average depends on the size and frequency of structural breaks. A new time 
series model is proposed to describe permanent shocks related to structural breaks and 
temporary shocks with probability distributions. In the proposed model, permanent 
shocks are captured by a Poisson-jump or a Bernoulli-jump process, and temporary 
shocks are independent and identically normally distributed. This model requires a time 
series to have negative autocorrelation created by overdifferencing the temporary shocks. 
The proposed model is adapted to allow for positive autocorrelation by permitting 
autocorrelation of the jump process. The models are estimated with Oklahoma hard red 
winter wheat basis, Illinois corn basis and soybean basis, money stock, stock prices, total 
employment and total unemployment rate macroeconomic series. The parameters of the 
models are the probability of occurrence of jumps, the variance and the mean of the jump 
process, a time trend, and the variance of temporary shocks. The parameters are estimated 
with generalized method of moments estimation. In order to deal with autocorrelation in 
each series, we add an additional moment condition about autocorrelation to the 
generalized method of moments estimation. Most shocks are permanent shocks. The 
findings imply that shorter moving averages are the best for forecasting these series. The 
developed models are used to estimate the relative impacts of permanent and temporary 
shocks on the optimal length of moving average to use for forecasts. One year is the 
optimal length due to the large proportion of permanent shocks occur. The autoregressive 
integrated moving average (ARIMA) model with outliers is selected as a competing 
model.  The proposed models for both a Poisson-jump model and a Bernoulli-jump 
model fit actual series better than the competing ARIMA models with outliers. 
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CHAPTER I 
 

 

Introduction 

Forecasting is an important aim of time-series analysis. The occurrence of 

structural breaks increases uncertainty and decreases the accuracy of forecasts in time 

series analyses. A moving average is a common and simple method of forecasting a time 

series. A moving average forecast using historical data works best if the mean is constant 

or changes slowly or infrequently. In order to better understand and predict, several 

researchers have compared the forecasting performance of the simple moving average 

method and various regression models. Jiang and Hayenga (1997) applied several 

methods of forecasting corn and soybean basis and they found three-year moving 

averages worked relatively well. However, the three-year-average method modified with 

current market information and seasonal autoregressive integrated moving average 

(ARIMA) models outperformed the simple three-year-moving average method in out of 

sample forecasting tests. Sanders and Manfredo (2006) considered a variety of time series 

models and concluded that even when the time series model produced better forecasts 

than a five-year moving average, the accuracy gained from advanced time series models 

was relatively small. 
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While there is agreement that moving averages compete well with time series 

approaches, there is much less agreement about the length of moving average to use. The 

optimal length of moving average is sensitive to the effects of structural changes (or breaks). 

Hatchett, Brorsen, and Anderson (2010) argued that the longer moving averages are optimal 

when little or no structural change occurs, but shorter moving averages are optimal following 

structural changes. They suggested that when a structural change has occurred, the previous 

year’s basis or an alternative approach should be used to forecast it. The existence of 

structural breaks in time-series analysis is a long-standing problem and a variety of 

approaches have been attempted to identify and to estimate the effects of structural breaks 

(Chen and Hong, 2012).  

We take as a starting point the existence of permanent shocks associated with 

structural breaks in a time series and we assume permanent shocks produce leptokurtic 

features of series. The permanent shock should have a different distribution than temporary 

shocks. The study proposes a new approach of time-series analysis to estimate the probability 

and relative size of structural changes. The proposed model allows two types of shocks: 

transitory shocks and permanent shocks. Even though separating shocks into permanent and 

temporary effects has a long history, there is a key difference between the existing models to 

decompose temporary and permanent effects of shocks and the new time series process 

proposed in the study. The proposed stochastic processes are designed by choosing a 

probability distribution process to model permanent shocks. In traditional time series 

analysis, macroeconomic variables were separated into a trend component assumed 

deterministic and a cyclical component assumed to be transitory (Banerjee and Urga, 2005). 

Nelson and Plosser (1982) challenged such a traditional view that the trend is deterministic 
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and augured that possible stochastic features of the trend caused by permanent shocks should 

be considered. In their paper, the timing of shocks that have permanent effects on the long-

run level of most macroeconomic aggregates is known and the shocks are related to the Great 

Depression and the first oil-price crisis. A set of literature related to the structural breaks of 

Nelson and Plosser (1982) typically only considers one or two structural breaks and captures 

structural breaks using indicator variables. Perron (1989) similarly argued for the need to 

isolate some unexpected and discrete economic events and considered them as permanent 

effects of time series. These time series processes with structural breaks often have a 

completely different set of parameters before and after the break and the way they are 

identified will miss small breaks. While most post literature has considered one or two are 

exogenous structural breaks, several later literature has treated structural breaks as 

endogenous ones. Lumsdaine and Papell (1997) conducted unit-root tests with two 

endogenous breaks under the alternative hypothesis and found that the case against the 

random walk is strengthened. Lee and Strazicih (2003) allowed for two breaks under the null 

hypothesis, using a minimum Lagrange multiplier test. Campbell and Mankiw (1987) and 

Zivot and Andrews (1992) suggested that current shocks are a combination of temporary and 

permanent shocks, and that the long-run response of a series to a current shock depends on 

the relative importance or size of the two types of shocks. Pesaran, Pettenuzzo, and 

Timmerman (2006) develop a Bayesian forecasting approach that considers the possibility of 

structural breaks when the number of structural breaks is known. In most studies associated 

with structural breaks, these structural breaks are treated as dummy variables to indicate the 

absence or presence of their effects that may be expected to shift the level of series. In a 

number of studies dealing with structural breaks in time series analysis, inference may be 
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organized in several different ways; stationary or non-stationary processes, known or 

unknown break points, multiple breaks or single break, estimation in single-equation or 

systems, or any of these in combination (Banerjee and Urga, 2005).  

Structural breaks can be defined in terms of any parameter. Here we define a 

structural break as a change in the long-run mean. We develop a single stochastic process that 

can estimate the probability of break occurrences as well as a distribution for the size of structural 

breaks and therefore the idea that we impose a probability distribution for permanent shocks is 

necessary. The effects of permanent and temporary shocks are obvious in many time series but they 

are unobserved components in the series. In order to build a new stochastic process including 

permanent and temporary shocks, we use state space modeling that provides an explicit structural 

framework for the unobserved components. The proposed models are estimated, starting with 

Oklahoma hard red winter wheat basis, and Illinois corn basis and soybean basis for harvest. In 

addition, for the validation of the developed model with other data series, we use three more series 

(money stock, stock prices and total employment) out of fourteen macroeconomic series that Nelson 

and Plosser (1982) used to estimate impacts of structural breaks on unit root processes. 

In the paper, the concept of structural changes is associated with abrupt breaks (or 

shocks) occurring at discrete time points within a given period and having permanent effects 

on a market. The potential source of shocks in time series can be a change in production and 

consumption, a change of government policies, technological advances, a change of 

transportation cost and weather, and so on. In the paper, we assume these permanent shocks 

cause the leptokurtic features that have higher peaks around the mean compared to a normal 

distribution, which leads to a distribution with fat tails. Several financial models incorporate 

the leptokurtic features to better match a financial time-series and to provide accurate 
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forecasts. Merton (1976) introduced a jump-diffusion model that combines a Poisson-jump 

process for discrete shocks and a standard geometric Brownian motion diffusion process. The 

proposed model uses a Poisson jump process to model the frequency and size of permanent 

shocks associated with structural breaks, called jumps, which occur independently of one 

another. Transitory shocks are exploited by an independent and identically normal 

distribution. The resulting model differs from the jump-diffusion model of Merton (1976) 

since the normally distributed errors are all temporary shocks that cause negative 

autocorrelation in first differences. In addition to adapting a Poisson-jump process to 

describe permanent shocks, we estimate a Bernoulli-jump process that only allows for one 

permanent shock per observation period. The Bernoulli-jump process  has the advantaged of 

nesting classic time-series models such as a random walk model with drift and a linear time 

trend model. 

After we develop a new stochastic time series model, we consider how well the 

developed model fits the data. We select an ARIMA model with outliers as a competing 

model for the model calibration tests. In the ARIMA model with outliers, outliers can be a 

level shift outlier or a temporary shock that is referred to as a transient change outlier. Fox 

(1972) classified outliers as additive outliers or innovative outliers. Tsay (1988) suggested 

three classes of outliers: level shift, transient change, and variance change. An additive 

outlier (AO) affects only a single observation and after this disturbance, the series returns to 

its normal path as if nothing has happened. An innovative outlier (IO) is an unusual 

innovation affecting all later observations. A level shift (LS) outlier changes the level or 

mean of the series after a shift. A transient change outlier (TC) causes an initial impact like 

an additive outlier but the effect takes a few periods to disappear after a change occurred. 
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Variance change outliers affect the variance of the observed data by a certain magnitude. The 

combination of outliers could be used to estimate the effects of different shocks. We combine 

level shift and transient change outliers to match the concept of permanent and temporary 

shocks considered in the developed model. 

One of our interests is to determine how well the developed models are calibrated to a 

data series. It is achieved by Kolmogorov-Smirnov test, testing a maximum distance between 

empirical cumulative distribution curves from historical and simulated time series. The test 

statistic of the KS test is the maximum difference of empirical cumulative density functions 

of the data and the estimated model. The model calibration test is not to assess whether a 

particular model is true, but rather understand which features of data it can explain because 

models are rejected by the data (Hnatkovska et al. 2012). 

 

Objective 

The general objective is to develop a new time series model to better describe permanent 

shocks and temporary shocks with appropriate probability distributions and based on the 

developed model, we determine the optimal length of moving average to use forecasts.  

1. The first specific objective is to develop a new time series stochastic process to better 

describe the behavior of permanent and temporary shocks; a permanent shock is 

reflected by a Poisson jump process and a Bernoulli jump process, respectively and a 

temporary shock is explained by an independent and identically distributed normal 

distribution. 
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2. The second objective is to determine the effects of the relative importance of 

permanent shocks on the optimal length of moving averages to use in forecasting.  

3. The last objective is to determine whether the proposed model is well calibrated 

through the indirect inference of comparing with ARIMA models with outliers. 

The new stochastic model developed in this study is estimated, using a generalized 

method of moments (GMM) estimation. For GMM estimation, each moment equation is 

derived from first order condition of the assumed log-likelihood function of the developed 

model. Even in the presence of autocorrelation, maximum likelihood that does not consider 

the autocorrelation is still consistent. The existence of autocorrelation created by over-

differencing a temporary shock is dealt with by adding an additional moment equation. Based 

on the developed model, we determine the impacts of permanent shocks on the optimal 

length of moving average to use for forecasting time series. In order to evaluate accuracy of 

forecasts, we use root mean squared error (RMSE). Lastly, we consider whether the 

developed model is well calibrated to the actual data. We select an ARIMA model with 

outliers as a competing model. The Kolmogorov-Smirnov test for two samples is used to test 

whether the estimated models are well calibrated. 

 

Literature Review 

There is a need to look for a new approach for time-series analysis. It is important to 

understand movement of a time series. Understanding structural breaks is essential to 

improve the accuracy of forecasting. We propose describing the structural breaks by an 

appropriate probability distribution. There are permanent shocks and temporary shocks. 
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Traditional time-series analyses have tended to distinguish between processes where shocks 

have a permanent effect and those where they do not. The distinction between stationary 

first-order autoregressive (AR (1)) processes, where all shocks are temporary, and the 

random walk process is a common way to determine permanent effects of shocks in the 

series (Engle and Smith, 1999). However, AR (1) process could not explain that a series 

responds not only to permanent shocks but also to temporary by modeling a process. Several 

studies have challenged this view by finding empirical evidence of not only permanent 

shocks but also temporary shocks in a series. Campbell and Mankiw (1989), Lee (1995), and 

Engle and Smith (1999) suggested that a current shock are a combination of temporary and 

permanent shocks, and that the long-run response of a series to a current shock depends on 

the relative importance or size of the two types of shocks. Beveridge and Nelson (1981) 

introduced a decomposition process of an autoregressive integrated moving average 

(ARIMA) for a univariate time series to separate effects of the permanent components 

representing long term change and temporary components reflecting short term changes. 

Fountis and Dickey (1986) extended this decomposition to vector autoregressive (VAR) 

models with a single unit root (stochastic trend). Stock and Watson (1988) generalized the 

process of Fountis and Dickey (1986) to cases having several unit roots. Clarida and Taylor 

(2003) proposed a decomposition method for univariate as well as multivariate nonlinear 

processes to analyze the permanent and temporary components, using real US GNP from 

1947 to 1998. Although these decomposition processes of univariate time series found 

separate effects of the trend cycle and seasonality from permanent shocks, their estimation 

procedure depends on Gaussian white noise processes. In the study, the developed time-
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series models do not decompose temporary and permanent shocks, but instead we impose 

different probability distributions processes to reflect permanent and temporary shocks. 

The permanent shocks related to structural breaks is defined as the long-horizon level 

forecast of the series, or the part that remains after all transitory dynamics have disappeared 

(Clarida and Taylor, 2003). All possible breaks occurring at the discrete time points in a 

series could be attributed to some random external variables to the series. Modeling impacts 

of permanent shocks in time-series analyses has become a key point. Several researchers 

have treated permanent shocks as indicator variables and these variables are removed from 

the noise function of the Nelson and Plosser (1982) data. With Nelson and Plosser (1982) 

data, Perron (1989) showed that the ability to reject a unit root decreases when the stationary 

alternative is true and an existing structural break is ignored in the process. He allowed for 

the presence of a one-time change in the level or in the slope of the trend function under both 

the null and alternative hypotheses. The one-time change could occur due to either the 1929 

crash or the 1973 oil price shock. He used a modified Dickey-Fuller unit root test that 

includes a dummy variable to control one fixed structural break. Zivot and Andrews (1992) 

treated breakpoints as endogenous variables that are estimated rather than fixed, and 

determined the asymptotic distribution of the estimated breakpoint test statistic. They tested a 

unit-root that allows for the estimated breaks in the trend function under the alternative 

hypothesis. They found that there is less evidence against the unit-root hypothesis than 

Perron’s (1989) finds for many of the data series, but for several of the series such as 

industrial production, nominal GNP, and real GNP there is stronger evidence against the 

unit-root hypothesis. Nunes, Newbold and Kuan (1997) allowed a structural break under both 

the null and alternative hypotheses, using Nelson and Plosser’s (1982) data. In addition to 
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permitting one structural break for both null and alternative hypotheses, they emphasized the 

importance of the size of Zivot and Andrews’s (1992) breakpoint test statistic. Their testing 

procedure showed that the unit root hypothesis is failed to reject for any series at the 5% 

level, and for real GNP the hypothesis is rejected at the 10% level. These studies mainly 

consider as the cause of permanent changes either the Great Crash or the oil-price shock and 

both ones. The matter of their studies is whether the points of the occurrence of structural 

breaks are given or are estimated. In the study, we less focus on the time points occurring at 

structural breaks. We are interested in the probability of permanent shocks related to 

structural breaks in the given period and the distribution of a size of permanent shocks. Since 

Perron (1989) who suggested that it might need to isolate some unexpected and discrete 

economic events and considered them as permanent effects of time series, the implication of 

structural breaks when testing for unit root processes has been emphasized. However, the 

assumption of only one structural break given a time-period has implied the possibility of 

multiple structural breaks. Lumsdaine and Papell (1997) discussed that the inference about 

the break points themselves is less sensitive than inference about the assumption about the 

number of breaks, and therefore, the results about tests of the unit root hypothesis are 

sensitive to the number of breaks in the alternative specification. They tested the unit root 

hypothesis against an alternative of two breaks and rejected the unit root hypothesis at the 

5% level for seven of the 13 series and for two more series at the 10% level. Lee and 

Strazicih (2003) argued the computation of critical values based on the assumption of no 

breaks under the unit root hypothesis (Zivot and Andrews ,1992;  Lumsdain and Papell, 

1997) might lead to the erroneous reject on of the unit root hypothesis. They allowed for two 

breaks under both the null and alternative hypotheses, and they concluded the rejection of the 
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null hypothesis (a unit root with two breaks) clearly implies trend stationarity, using a 

minimum Lagrange multiplier test. Although they showed the processes imposing two 

endogenous breaks are more reasonable to analyze data series than those imposing a break, 

their models could not provide the possibility that a process containing breaks more than two 

is appropriate. Pesaran, Pettenuzzo, and Timmerman (2006) proposed a Bayesian forecasting 

approach that considers the possibility of structural breaks when the number of structural 

breaks is known. They considered the number of breaks as well as the size of breaks for the 

nominal three-month U.S. T-bill rate from July 1947 to December 2002  in their model and 

modeled the break process, using a hierarchical hidden Markov chain (HMC) approach under 

the assumption that the parameters within each break segment are drawn from some common 

meta-distribution. They found the HMC approach worked well in forecasting the series, 

however, when forecasting many periods ahead or when breaks occur relatively frequently, 

this approach is unlikely to show satisfactory forecasts. When we consider the case of more 

than one structural break, the distinction between a series with a unit root and a stationary 

series with nonconstant deterministic components is less clear (Hansen, 2001). In the paper, 

we assume that multiple structural breaks are captured by Poisson-jump process and also 

consider Bernoulli-jump process that takes value 1 with a success probability of one 

permanent shock and value 0 with a failure probability of no permanent shock. 

With the importance of dealing with structural breaks in time series estimations, 

various approaches for detecting and handling structural breaks have been provided. In the 

paper, we have a particular interest in the existing method that detects and handles structural 

breaks in an autoregressive integrated moving average (ARIMA) process. An ARIMA model 

with outliers is selected as a competing model with the proposed model. There exists some 
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controversy and not everyone agrees with the use of outlier methods, but, it is common to 

treat structural breaks the indicator variables in a time-series analysis (Proietti, 2008). The 

presence of structural breaks influences the autocorrelation structure of a time series, and 

therefore they easily mislead the conventional Box-Jenkins procedure (Tsay, 1988). The 

ARIMA model with outliers is to identify outliers and remove the impacts of outliers from a 

series to better understand the structure of a series (Chang, Tiao and Chen, 1988). Fox (1972) 

derived the likelihood ratio criteria for testing the presence of outliers and for identifying 

additive outlier and innovation outliers. Tsay (1988) suggested the structure breaks allow 

level shift and variance change, and level shift is classified as a permanent level change and a 

temporary change. Although the classification of outliers provides with advantages to 

determine the impacts of different outliers, there is an ambiguous identification between level 

shift and innovation outliers since a level shift and an innovative outlier are identical on a 

random walk. Sanchez and Pena (2003) argued the ARIMA model with outliers may 

misidentify level shifts as innovative outliers  and this procedure may fail to identify patches 

of outliers due to the masking effects. Balke (1993) reported a level shift in a stationary time 

series is identified as an innovation outlier. In our study, however, the alternative procedures 

proposed by several studies to avoid this confusion is not an interesting subject. In order to 

match the concept of permanent and temporary shocks considered in our paper, we use a 

combination of level change and transient change. Level shifts and transient changes can 

have more serious effects on point forecasts even when outliers are not close to the forecast 

region (Trivez 1993). 

These time-series models with structural break specifications often have a completely 

different set of parameters before and after the break and the way they are identified will 
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miss small breaks. In addition, inference about unit roots depends on the number of break 

dates exogenously or endogenously permitted (Nunes, Newbold and Kuan, 1996). However, 

these time-series models with structural breaks could not address distributional features from 

variations in a price series. In order for the improved understanding of irregular events 

associated with structural breaks that produce fat-tailed distributions, we need to select an 

appropriate distribution for the data. Price variations within a various type of data series can 

present common empirical properties. These properties could be seen as various assumptions 

or constraints that a probabilistic model may provide better understandings of time-series 

behavior. Almost all financial asset prices such as US and worldwide stock indices, 

individual stocks, foreign exchange rates, interest rates, etc. display a high peak and 

asymmetric heavy tails (Kou 2008). This is, they have a leptokurtic distribution. In order to 

incorporate the leptokurtic features of financial prices, various models have been proposed in 

finance. Merton (1976) introduced the jump-diffusion model for the stock price. He 

categorized the total change in the stock price into normal and abnormal types. The normal 

variations in price are due to temporary disturbances between supply and demand, changes in 

capitalization rates, changes in the economic outlook, or other new information that causes 

incremental changes in the stock’s value. In Merton (1976)’s jump-diffusion model, the 

temporary disturbance is modeled by a standard geometric Brownian motion with a constant 

variance per unit time and it has a continuous sample path. The abnormal variations in the 

stock price are due to the arrival of important new information about the stock that has more 

than a marginal effect on price. Such information arrives at discrete points in time by its 

nature. He treated this component as a “jump” process reflecting the non-marginal impact of 

the information. The assumption of discontinuities due to the discrete breaks is consistent 
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with the observed leptokurtosis in the distributions of many financial variables (Hall et al. 

1989).  

In several studies associate with jump-diffusion models, jump-diffusion models have 

been adjusted by different methods. Kou (2002) proposed a double exponential jump-

diffusion model for option prices. He differentiated the double exponential jump-diffusion 

model from Merton’s jump-diffusion model, by assuming that jump sizes from a Poisson 

process are double exponentially distributed. The advantage of the double exponential jump-

diffusion model over other financial models is that it can capture the asymmetric leptokurtic 

features as well as the volatility smile and lead to analytical solutions for many option prices. 

However, there is a weak point in jump-diffusion models. They cannot capture the volatility 

clustering effects that can be captured by other models such as a stochastic volatility model. 

An affine jump-diffusion model is one that combines jump-diffusion and stochastic volatility 

processes (Duffie and Singleton, 2000).  

Most data in macroeconomics and finance come in the form of time series. Many 

finance models require often identical and independent random variables and assume 

constant variance, normal distribution and the absence of autocorrelation (Hull, 2005). To 

deal with an assumption of a constant variance in classical financial models, Bollerslev 

(1986) proposed a generalized autoregressive conditional heteroskedasticity (GARCH) 

process that can successfully account for the volatility of price being time dependent. 

However, the jump-diffusion-based models assume there exists small or no autocorrelation.  

Kou (2008) found the magnitude of autocorrelations in a variable is quite small, only about -

0.05 to 0.05 in the daily closing prices of S&P 500 index from January 2, 1980 to December 

31, 2005 and it is even smaller for weekly and monthly returns. Applying an assumption of 
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zero autocorrelation to a jump-diffusion process is a common way to deal with 

autocorrelation. However, with time-series data, where the observations follow a natural 

ordering through time, there is a high possibility that successive errors will be correlated with 

each other. Ignoring the presence of autocorrelation in time-series models could lead to poor 

predictions in a short-run. Tomek and Myers (1993) discussed time-series properties of 

commodity prices. Features of commodity price behaviors over time could be categorized in 

immediate response by the high degree of positive autocorrelation in price levels and 

occasional breaks that can appear in a price distribution. Besides the effects of permanent 

shocks in a series, it is an important step to analyze the existence of autocorrelation in time-

series analyses to show the effect of temporary shocks. In our study, the temporary shocks 

created by overdifferencing imply autocorrelation in a series. Therefore, a first-order moving 

average process models the autocorrelation of the change in a series in our study.  

Appropriately modeling impacts of permanent shocks related to structural breaks is 

essential for time-series forecasts. Structural breaks could be the main source of forecast 

failure (Pesaran et al. 2006). For example, recently the Oklahoma red wheat and Illinois corn 

and soybean basis series have become more difficult to forecast. Figures 1 to 3 display 

Oklahoma red wheat and Illinois corn and soybean basis series for harvest. Several 

forecasting methods have been applied to improve the accuracy of basis forecasts. Jiang and 

Hayenga (1997) applied reported that the simple three –years-average forecast method 

outperformed several forecasting techniques with corn and soybean basis behavior in 

different locations. In out of sample tests, however, the three-years-average model 

supplemented with current market information and seasonal ARIMA model provided the best 

forecasts. Sanders and Manfredo (2006) compared the forecast abilities within a variety of 
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time series models for soybeans, soybean meal, and soybean oil. They argued neither a 5-

year average basis forecast commonly used may be the most accurate forecasting method nor 

the complicated time models do outperform the simple moving average methods. These 

studies have found favor in the simple moving average method than in other forecasting 

methods, and when current market information play an important role of improving accuracy 

of forecasting. In this study, the focus is on the proper length of moving average to use for 

forecasts when structural changes have been observed in a series. 

The length of moving average could depend on the size or frequency of structural 

breaks. Hatchett, Brorsen, and Anderson (2010) discussed that the longer moving averages 

are optimal when little or no structural change occurs, but shorter moving averages are 

optimal following structural changes. They suggested that when a structural change has 

occurred, the previous year’s basis or an alternative approach should be used to forecast it. 

For forecasting purposes a model of the stochastic process underlying the structure breaks 

address questions such as how often breaks are likely to occur over the forecasting sample, 

how large such breaks will be and at which dates they occur (Pesaran et al, 2006). 

The proposed model is built to estimate a probability of occurrence of and size of 

permanent shocks related to structural shocks. If there exist permanent shocks captured by a 

Poisson process then a change of series responds according to the jump size distribution, 

while if there do not exist permanent shocks then the series follows a Gaussian white noise 

process. 
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CHAPTER II 
 

 

Model Development 

 We consider the impacts of permanent and temporary shocks simultaneously on a 

series. Permanent and temporary shocks in our study are treated by different 

distributions; permanent shocks are reflected by a Poisson-jump process and a Bernoulli-

jump process, and temporary shocks are represented by an independent identical normal 

distribution. In order to explain a stochastic process of permanent and temporary shocks, 

we adapt the framework of state space model. In state space analysis, the unobserved 

dynamic process at time 𝑡 is referred to as the state of the time series (Commandeur and 

Koopman, 2007). The state is modeled in the state equation that is a key component in 

state space modeling. In the state equation, time dependencies in a time series are dealt 

with by letting the state at time 𝑡 + 1 be a function of the state at time 𝑡 (Commandeur 

and Koopman, 2007). An original permanent-jump and temporary shocks model is 

required to a series having negative autocorrelation because of overdifferencing 

temporary shocks. Thus, we adjust the original model for a series having positive 

autocorrelation. Since all series used in the study are dependent, it needs to prove the 

weak consistence of maximum likelihood estimation with dependent observations.  
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Jump-Diffusion Model 

Jump diffusion processes are widely used in finance to model asset prices because 

asset return distributions tend to be leptokurtic having heavier tails than those of a normal 

distribution. The classical financial model, Black-Scholes assumes geometric Brownian 

motion and thus cannot capture leptokurtic feature of a distribution (Kou, 2008). In order 

to incorporate the leptokurtic feature, many alternative models have been proposed. The 

jump-diffusion model is one of them and this model has been applied successfully with 

stock and foreign currency prices displaying large price changes over a small time 

interval (Hilliard and Reis, 1998). Merton (1976) discussed the total change in the stock 

price is categorized into two types of changes: normal and abnormal. The normal 

variations in price are modeled by a standard geometric Brownian motion with a constant 

variance per unit of time and it has a continuous sample path. The abnormal variations in 

price are represented by a jump process reflecting discrete breaks in time. Jump-diffusion 

models proposed by Merton (1976) could be expressed as (Kou, 2002): 

(1) 𝑋𝑡 = 𝜎𝑊𝑡 + 𝜇𝑡 + �𝑌𝑖

𝑁𝑡

𝑖=1

,  

where 𝑊𝑡 is a standard Brownian motion with 𝑊0 = 0, 𝑁𝑡 is a Poisson process with 

average probability κ , constants μ and σ are the drift and volatility of the diffusion part 

respectively, jump size 𝑌𝑖 are independent and identically distributed random variables, 

and the random process 𝑊𝑡, 𝑁𝑡, and random variable 𝑌𝑖 are assumed to be independent. 

Many finance models often require identical and independent random variables and 

assume constant variance, absence of autocorrelation and a normal distribution (Hull, 

2005). Especially, the restriction of zero autocorrelation is commonly applied to finance 
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models. However, most data in macroeconomics and finance come in the form of time 

series. Ignoring the presence of autocorrelation in time-series models could lead to 

erroneous results. 

 

Permanent-Jump and Transitory Shocks Model 

With the characteristic structure of state space models, describe a series of 

unobserved values, 𝑎1, … ,𝑎𝑡 called the states, with a set of observations, 𝑥1, … , 𝑥𝑡, and 

the states can be specified in a state equation (Commandeur and Koopman, 2007, Durbin 

and Koopman, 2012). The level component model of the state space model can be 

formulated as: 

(2) 𝑥𝑡 = 𝑎𝑡 + 𝜐𝑡,  

(3) 𝑎𝑡 = 𝑎𝑡−1 + 𝜏𝑡,  

where 𝑎𝑡 is the unobserved level at time 𝑡, 𝑡 = 1, … ,𝑛, if 𝑎𝑡 does not change from time to 

time then it becomes an intercept in a regression model, 𝜐𝑡 is the observation disturbance 

and 𝜏𝑡 is the level disturbance, these two error terms are assumed to be independently, 

identically and normally distributed with zero mean and variances 𝜎𝜐2and 𝜎𝜏2, respectively, 

The equation (2) is called the observation or measurement equation, and the equation (3) 

is called the state equation. This local level model could be a random walk model if the 

variance of 𝜐𝑡 is equal to zero. 

The similarity between a local level model and a random walk model could be 

shown as: 
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(4) 𝑥𝑡 = 𝑎𝑡−1 + 𝜏𝑡,  

(5) 𝛥𝑥𝑡 = 𝜏𝑡,  

where 𝑎𝑡−1 is equal to 𝑥𝑡−1, 𝛥𝑥𝑡 is the first differences of 𝑥𝑡. The equation (5) implies 

that the local level model is equivalent to an ARIMA (1,1,0) model. However, 

Commandeur and Koopman (2007) discussed differences between ARIMA model and 

state space approaches to time series analysis. While ARIMA models are concerned with 

the short-term dynamics only and thus are primarily concerned with forecasting only, the 

state space models provide an explicit structural (state equation) for the decomposition of 

time series in order to diagnose all the dynamics in the time series data simultaneously.  

The study adapts the framework of the local level model. We assume that a 

Poisson distribution provides a more proper model for the features of permanent shocks 

related with structural breaks that yield a fat-tailed distribution. Based on the local level 

model, we build the permanent-jump and temporary–diffusion model. As an alternative 

model of commodity prices, the paper assume that each of permanent shock and 

temporary shock produces different impacts on a market and thus we impose different 

distributional form on permanent and temporary shocks, respectively. A permanent shock 

occurs at discrete time points and the impact of the shocks remains on the market. This 

permanent shock is modeled by a Poisson-jump process and a Bernoulli-jump process, 

respectively. Due to overdifferencing temporary shocks, the temporary error term implies 

a first-order moving average. The temporary shock follows an independent and identical 

normal distribution. 

For the model mixed with the Poisson-jump process, a combination of the two 

different shocks is expressed by the state space approach: 
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(6) 𝑆𝑒𝑟𝑖𝑒𝑠𝑡 = 𝜇𝑡 + 𝜀𝑡,  

(7) 𝜇𝑡 = 𝜇𝑡−1 + 𝛾 + �𝐽𝑢𝑚𝑝𝑞𝑡

𝑄𝑡

𝑞=1

,  

where 𝑆𝑒𝑟𝑖𝑒𝑠𝑡 is data series at time 𝑡, 𝜇𝑡 is an unobserved variable which assumed to 

include unexpected and discrete structural changes, 𝜀𝑡 is the transitory shocks and follows 

independent and identical normal distribution with a zero mean and a variance, 𝜎𝜀2, and 

𝐸(𝜀𝑡𝜀𝑡−1) = 0, 𝛾 is a drift, 𝐽𝑢𝑚𝑝𝑞𝑡 follows independent and identical normal distribution 

with a mean, µ𝐽, and a variance, 𝜎𝐽2, 𝑄𝑡 represents the number of permanent shocks 

occurring in a given time period, 𝑡, and follows a Poisson process with parameter 𝜆 

which is a probability of structural breaks, and 𝜀𝑡 and 𝑄𝑡 are independent. The first 

difference is applied to convert the stochastic processes to achieve stationarity. One risk 

of this data transformation is the possibility of overdifferencing. First differencing creates 

a first order moving average (MA) process from the temporary shocks. The resulting data 

generating process can be expressed as: 

(8) 𝛥𝑆𝑒𝑟𝑖𝑒𝑠𝑡 = 𝑆𝑒𝑟𝑖𝑒𝑠𝑡 − 𝑆𝑒𝑟𝑖𝑒𝑠𝑡−1 = 𝛾 + �𝐽𝑢𝑚𝑝𝑞𝑡

𝑄𝑡

𝑞=1

+ 𝜈𝑡 ,  

 𝜈𝑡 = 𝜀𝑡 − 𝜀𝑡−1,  

where the autocorrelated error 𝜈𝑡 is replaced by the stationary and non-autocorrelated 

error 𝜀𝑡. The relationship between 𝜈𝑡 and 𝜀𝑡 is given by a non-invertible first-order 

moving average process. In the paper, all series are transformed to the first difference: 

𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1. The difference transformation in the proposed model 

induces a non-invertible moving average process (𝜈𝑡 = 𝜀𝑡 − 𝜀𝑡−1) in the transformed 

21 
 



model. We face the problems associated with estimating the proposed model containing 

the non-invertible moving average process based on the likelihood function. A number of 

researchers have studied the properties of different estimators of a non-invertible moving 

average process. In practice, the most common approach to the non-invertible moving 

average process is to set the initial condition, 𝜀0 = 0, because the conditional maximum 

likelihood estimator for a parameter of first-order autocorrelation  merely requires finding 

the value of the parameter which minimizes the sum of squares function (Pierce, 1971). 

Since the initial condition has diminishing influence on series as time gets large for 

invertible processes, all of the estimators share the large sample distributional properties 

of the likelihood estimator. Plosser and Schwert (1997) argued that the efficiency 

properties of the error term in the regression equation are affected by the difference 

transformation, but the values of the regression coefficients are not substantially affected 

by overdifferencing if an MA parameter is estimated from the difference.  

Ball and Torous (1983) introduce a model mixed with a Bernoulli jump process 

model for jump features of stock prices instead of a model mixed with a Poisson jump 

process. A Poisson process counts the number of events occurring in a given time period 

and a Poisson process in a jump-diffusion model might capture all possible type of 

discrete events. But, such discontinuous events ought not to be very often. A Bernoulli 

process is a finite or infinite sequence of binary random variables that take only two 

values, canonically 0 (no event) and 1 (one event). The Bernoulli process in a jump-

diffusion model is that over a given time period either no event occurs in a price series or 

one event occurs with probability λ. A merit of this Bernoulli-jump and temporary-

diffusion model is that it could nest traditional time-series models. From the equations (9) 
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and (10), if the probability of one permanent shock (𝑃) is equal to zero and the variance 

of temporary shocks (𝜎𝑒2) is equal to zero and the mean (𝜇𝐵) is equal to zero then the 

Bernoulli-jump model nests a linear time trend. If 𝑃 = 1 then the Bernoulli-jump model 

nests a random walk model. 

The data generating process mixed with a Bernoulli process is expressed as : 

(9) 𝑆𝑒𝑟𝑖𝑒𝑠𝑡 = 𝑎𝑡 + 𝑒𝑡,  

(10) 𝑎𝑡 = 𝑎𝑡−1 + 𝛽 + 𝐵𝑡𝐽𝑡,  

where 𝑆𝑒𝑟𝑖𝑒𝑠𝑡is a series at time 𝑡, 𝑎𝑡 is an unobserved variable which assumed to explain 

a permanent shock occurring in a given period of time, 𝑡, 𝑒𝑡 are the transitory shocks and 

follows an independent and identical normal distribution with a zero mean and a 

variance, 𝜎𝑒2, and 𝐸(𝑒𝑡𝑒𝑡−1) = 0, 𝛽 is a drift, 𝐽𝑡 follows an independent and identical 

normal distribution with a mean, µ𝐵 and a variance, 𝜎𝐵2, 𝐵𝑡 represents one permanent 

shock in a fixed time period  and follows a Bernoulli (P) process, P is the probability of 

one permanent shock in a given time interval, 𝑡 , and 𝐵𝑡 and 𝐽𝑡 are independent. From the 

model mixed with the Bernoulli process, the data generating process for a change in a 

series is: 

(11) 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1 = 𝛽 + 𝐵𝑡𝐽𝑡 + 𝑢𝑡 ,  

 𝑢𝑡 = 𝑒𝑡 − 𝑒𝑡−1.  

The relationship between 𝑢𝑡 and 𝑒𝑡 is given by a first-order moving average process. A 

merit of this Bernoulli-jump and temporary-diffusion model is that it nests traditional 

time-series models. From the equation (9), if the probability of one permanent shock (𝑃) 

is equal to zero and the variance of temporary shocks (𝜎𝑒2) is equal to zero and the mean 
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(𝜇𝐵) is equal to zero then the Bernoulli-jump model becomes a linear time trend model. 

If 𝑃 = 0 and 𝜎𝑒2 = 0 then the Bernoulli-jump model becomes a random walk model. 

In Poisson-jump and Bernoulli-jump models derived above, the overdifferencing 

of the shock term creates negative autocorrelation in the first differenced series. Since the 

requirement of negative autocorrelation is too restrictive for other time series, we 

consider the case where there exist positive autocorrelation in a series and thus we 

assume autocorrelation in permanent shocks as well. The state equations (7) and (10) are 

adjusted to consider both cases of autocorrelation.  

From equation (7) for the Poisson-jump process, the data generating process is 

rewritten as: 

(12) 
𝜇𝑡 = 𝜇𝑡−1 + 𝛾∗ + �𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

+ 𝜌 ∙ � 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1

𝑞=1

, 
 

where 𝜌 is autocorrelation at lag one of ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡
𝑄𝑡
𝑞=0 . The adjusted data generating 

process for positive autocorrelation is: 

(13) 𝛥𝑆𝑒𝑟𝑖𝑒𝑠𝑡 = 𝛾∗ + �𝐽𝑢𝑚𝑝𝑞𝑡

𝑄𝑡

𝑞=1

+ 𝜌 ∙ � 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1

𝑞=1

+ 𝜀𝑡∗ − 𝜀𝑡−1∗ .  

From equation (10) for the Bernoulli-jump process, the adjusted data generating process 

is expressed as: 

(14) 𝑎𝑡 = 𝑎𝑡−1 + 𝛽 + 𝐵𝑡𝐽𝑡 + 𝜂 ∙ 𝐵𝑡−1𝐽𝑡−1.  

where 𝜂 is autocorrelation at lag one. The adjusted data generating process is: 
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(15) 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 = 𝛽∗ + 𝐵𝑡𝐽𝑡 + 𝜂 ∙ 𝐵𝑡−1𝐽𝑡−1 + 𝑒𝑡∗ − 𝑒𝑡∗.  

 

Autoregressive Integrated Moving Average Model with Outliers 

The method for detecting outliers in autoregressive integrated moving average 

processes is based on Tsay (1988)’s five classifications of outliers. We especially focus 

on outliers for level shift and transient change because of the in similarity to the proposed 

model. The autoregressive integrated moving average (ARIMA) process for univariate 

time series model could be written as: 

(16) ∆𝑑𝑌𝑡𝛷(𝐿) = 𝛩(𝐿)𝑢𝑡,  

where 𝑌𝑡 is a data series, ∆ is the difference operator of degree d, L is the lag operator 

such that 𝐿𝑌𝑡 = 𝑌𝑡−1, 𝛷(𝐿) = 1 − 𝜙1𝐿 −⋯− 𝜙𝑝𝐿𝑝 and 𝛩(𝐿) = 1 − 𝜃1𝐿 −⋯− 𝜃𝑞𝐿𝑞 

are polynomials in L of degrees p and q, respectively.  

Based on the outlier specification of Tsay (1988), after allowing for the existence 

of outliers, we consider a series, 𝑍𝑡, contaminated by outliers instead of the series, 𝑌𝑡. The 

contaminated series, 𝑍𝑡, could be expressed as: 

(17) 𝑍𝑡 = 𝑔(𝑡) + 𝑌𝑡,  

where 𝑔(𝑡) is a function representing the exogenous distribution of 𝑌𝑡 such as different 

types of outliers. Tsay (1988) suggested that the function 𝑔(𝑡) could be deterministic or 

stochastic depending on the types of disturbances. He considered the stochastic case only 

for the variance change of outliers. In the paper, we estimate the deterministic model of 
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𝑔(𝑡) as a competing model since we focus on the level shift and transient change of 

outliers. The deterministic function of 𝑔(𝑡) can be written as: 

(18) 𝑔(𝑡) = 𝑤0 ∙
𝛷(𝐿)
𝛩(𝐿) ∙ 𝜁𝑡

(𝐷),  

where 𝛷(𝐿)
𝛩(𝐿)  defines the characteristic of outliers, 𝜁𝑡

(𝐷) is a dummy variable for outliers 

occurring at time point 𝐷, 𝜁𝑡
(𝐷) = 1 if 𝑡 = 𝐷 and 𝜁𝑡

(𝐷) = 0 if 𝑡 ≠ 𝐷.  

The combination of level shift and transitory changes in an ARIMA process with 

outliers is used due to the similarity to the concept of permanent and temporary shocks in 

the developed model. According to Tsay’s (1988) classification of outliers, for a level 

shift (LS) outlier, when 𝑤0 = 𝑤𝐿𝑆 and  𝛷(𝐿)
𝛩(𝐿) = 1

(1−𝐿)
, this is a level change model because 

𝑍𝑡 = 𝑌𝑡 for 𝑡 < 𝐷 but 𝑍𝑡 = 𝑤𝐿𝑆 + 𝑌𝑡 for 𝑡 ≥ 𝐷. The model says that a level shift of 

magnitude 𝑤𝐿 occurs at time t = d and the change is permanent. For a transient change 

(TC), when 𝑤0 = 𝑤𝑇𝐶 and  𝛷(𝐿)
𝛩(𝐿) = 1

(1−𝜃𝐿)
 where 0 < 𝜃 < 1. This model describes a 

disturbance that affects 𝑌𝑡 for 𝑡 ≥ 𝐷. However, the effect decays exponentially with rate 

θ and initial impact 𝑤𝑇𝐶 and thus the change is temporary. 

 

 

 

26 
 



Weak Consistency for Maximum Likelihood Estimation with Dependent Observations 

Observations are independent if the sampling of one observation does not affect 

another observation, however, when we are dealing with time series, it is likely that there 

is some relationships between a given time series and a lagged time series over 

consecutive periods. In this paper, we face a case in which the observations are not 

independent. In order to show the consistency of the known joint density of observations 

in the proposed models, we adopt Heijmans and Magnus (1986)’s Theorem 2 shows that 

consistent maximum likelihood estimation with dependent observations. Heijmans and 

Magnus (1986) proposed two theorems on the weak consistency of the maximum 

likelihood (ML) estimator obtained from generally dependent observations under the 

assumption that the joint density of the observations is known.  

According to their arguments, the Theorem1 contains conditions that are necessary as 

well as sufficient, while the conditions for Theorem 2 are somewhat stronger but more 

readily applicable than Theorem 1. In theorem 2, they added a condition of the 

normalizing function for the behavior of log-likelihood ratio.  

First, some notations are defined based on Heijmans and Magnus (1986). ℕ = 

{1,2,…} and ℝℎ is the Euclidean space of dimension ℎ > 1. 𝑁(𝜃) is a neighborhood of a 

point 𝜃 ∈ 𝛤 ⊂  ℝℎ is an open subset of 𝛤 which contains 𝜃. Ɓ means Borel measurable. 

E and var are mathematical expectation and variance. Let {𝛥𝑠𝑒𝑟𝑖𝑒𝑠1,𝛥𝑠𝑒𝑟𝑖𝑒𝑠2, … } be a 

sequence of random time series variables, not necessarily independent or identically 

distributed. For each 𝑡 ∈ ℕ, let 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 = (𝛥𝑠𝑒𝑟𝑖𝑒𝑠1,𝛥𝑠𝑒𝑟𝑖𝑒𝑠2, … ,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) be defined 
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on the probability space �ℝ𝑛,Ɓ𝑡,𝑃𝑡,𝜃� with values in (ℝ𝑡,Ɓ𝑡), where Ɓ𝑡 denotes the 

minimal Borel field on ℝ𝑡 and 𝑃 is the probability of a sequence of 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡. 

 Before discussing the consistent estimation with the known likelihood function of 

dependent observations, we need to discuss that the given joint density functions are 

measurable. We assume that a likelihood function 𝑓𝑡(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ;  𝜃) of the permanent-

jump and temporary-diffusion model is known. For every 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ∈  ℝ𝑡, the real-valued 

likelihood function, 

 𝛬𝑡(𝜃) = 𝛬𝑡(𝜃;𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) = log 𝐿𝑡 (𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ;  𝜃), 𝜃 ∈ 𝛤, 

and 𝛬𝑡(𝜃) = log𝐿𝑡(𝜃) is given in the paper. The true (but unknown) value of 𝜃 ∈ 𝛤 is 

denoted by 𝜃0. An MLE estimate of 𝜃0 is a value 𝜃�𝑡(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) ∈ 𝛤 for every 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ∈

 ℝ𝑡 with  

 𝐿𝑡�𝜃�𝑡(𝑧); 𝑧� = sup
𝜃∈𝛤

𝐿𝑡(𝜃; 𝑧).  

Heijmans and Magnus (1986) discussed that since the supremum is not always attained, 

and thus the values of sup𝜃∈𝛤 𝐿𝑛(𝜃; 𝑧) does not necessarily exist everywhere on ℝ𝑡. 

However, if 𝛤 is a compact subset of ℝℎ, then sup𝜃∈𝛤 𝐿𝑛(𝜃; 𝑧) always permits solution 

and the function, 𝐿𝑡�𝜃�𝑡(𝑧); 𝑧�, can be chosen as a measurable function. If there exists a 

measurable function 𝜃�𝑡 from ℝ𝑡 into 𝛤 such that sup𝜃∈𝛤 𝐿𝑡(𝜃; 𝑧) holds for every 

𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ∈ ℝ𝑡, an MLE estimator of 𝜃0 ∈ 𝛤 exists surely.  

The basic assumptions of the measurability of the assumed likelihood function for 

the proposed models are 1) 𝐿𝑡(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ;  𝜃) is a measurable function of 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 for 

𝜃 ∈ 𝛤,; 2) 𝐿𝑡(𝜃;𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) is continuous function of 𝜃 for every 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ∈  ℝ𝑡; 3) 𝛤 is a 
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compact subset. In addition to the assumptions of the measurability, several estimating 

sequences �𝜃�𝑛� are allowed.  

In order to obtain the weak consistency of an MLE with serially correlated 

observations under the known likelihood function, we adopt other two conditions from 

Heigmans and Magnus’s Theorem 2 with basis measurability conditions: 

A. for every 𝜃 ∈ 𝛤, 𝜃 ≠ 𝜃0, there exists a sequence of non-random non-negative 

quantities 𝑘𝑡(𝜃,𝜃0), which may depend on 𝜃 and 𝜃0, such that 

a) lim𝑡→∞ inf 𝑘𝑡(𝜃,𝜃0) > 0, 

b) plim
𝑡→∞

� 1
𝑘𝑡(𝜃,𝜃0)� �𝛬𝑡(𝜃) − 𝛬𝑡(𝜃0)� = −1; 

B. for every 𝜃 ≠ 𝜃0 ∈ 𝛤 there exists a neighborhood 𝑁(𝜃) of 𝜃 such that 

lim𝑛→∞ P �� 1
𝑘𝑡(𝜃,𝜃0)� sup𝜙∈𝑁(𝜃)�𝛬𝑡(𝜃) − 𝛬𝑡(𝜃0)� < 1� = 1. 

The condition A is supportive one for the proposed models. Heijmans and Magnus 

(1986) discussed the use of Kullback-Leibler information as normalizing function, 𝑘𝑡. 

The Kullback-Leibler information is criterion of evaluating model’s similarity. The 

normalizing function 𝑘𝑛 is not required to be continuous in either 𝜃 and 𝜃0, and is 

expressed as: 

(19)  𝑘𝑡(𝜃, 𝜃0) = −E�𝛬𝑡(𝜃) − 𝛬𝑡(𝜃0)�.  
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For the developed model in the study, the conditions A and B are applied to prove 

the weak consistency of MLE with a serially correlated observation. Each series used in 

the study is not independent of each other. With a dependent time series, a density 

function can be expressed: 

(20) 
𝑙𝑡∗(𝛥𝑠𝑒𝑟𝑖𝑒𝑠1, … ,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) = �𝑙𝑖∗(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝜽∗)

𝑡

𝑖=1

≠�𝑙𝑖(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝜽)
𝑡

𝑖=1

. 

where a 𝑙𝑖(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝜽) is a log-likelihood function with an independent time series and it 

is given, 𝑙𝑖∗(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝜽) is a log- likelihood function with a dependent time series, 

𝑙𝑖(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝜽) defines a distribution on ℝ𝑛 corresponding 𝜽 in Ω, where Ω is a matrix 

space and a subset of ℝ𝑠, 𝑛 ∋ 𝑠, 𝜽 is a vector of parameters from MLE with an 

independent series, and define 𝜽∗ is a vector of parameters from MLE with a dependent 

variable. The normalized 𝑘𝑡(𝜽,𝜽∗) function can be rewritten as:  

(21) −E�𝑙𝑡(𝜽) − 𝑙𝑡∗(𝜽∗)� = −E�𝑙𝑡(𝜽)� + E�𝑙𝑡∗(𝜽∗)�,  

 =  𝑘𝑡(𝜽,𝜽∗),  

where 𝑘𝑡(𝜽,𝜽∗) → ∞ for every 𝜽 ≠ 𝜽∗ based on the given assumption, 

lim𝑛→∞ inf 𝑘𝑡(𝜽,𝜽∗) > 0, in the condition A. Thus, if 𝑡 → ∞ for every 𝜽∗ ≠ 𝜽 then  

(22) 𝑣𝑎𝑟�𝑙𝑡(𝜽) − 𝑙𝑡∗(𝜽∗)�
 𝑘𝑡(𝜽,𝜽∗) → 0, 

 

and the condition B holds for the developed models. We do not fully complete the proof 

of weak consistency of MLE with a dependent observation and we leave a more complete 

proof to later works. 
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CHAPTER III 
 

 

Procedure 

We estimate the permanent-jump and temporary-diffusion model proposed in the 

paper by a generalized method of moments (GMM) procedure. The generalized method 

of moments (GMM) has become an essential estimation procedure in various areas of 

applied economics and finance since Hansen (1982) introduced the power of the GMM 

estimators with statistical theory (Jagannathan, et al. 2002). Hansen and Hodrick (1980) 

and Hansen and Singleton (1982) showed important applications of the GMM approach 

in the case where time-series data are used through their empirical analyses of foreign 

exchange markets and asset pricing, respectively. For the new stochastic time-series 

process proposed in the study, we apply the GMM framework for estimation. For GMM 

estimation of parameters of the developed models, we adapt an alternative approach for 

generating moment conditions proposed by Gallant and Tauchen (1996). Their idea of 

generating moment conditions is to use the derivative of the log density of a given model 

with respect to the parameters of the model. 
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Since we assume permanent shocks follow both a Poisson-jump process and a 

Bernoulli-jump process, the proposed models rely on a particular probability density 

function and distributional assumption. Having restricted the distribution of error terms, 

we first apply the maximum likelihood estimation (MLE) to estimate parameters of the 

proposed model. If the proposed model closely approximates the distribution of observed 

data then the hypothetical parameter vectors, 𝜽� for a model mixed with Poisson jump 

process and 𝝃� for a model mixed with a Bernoulli jump process, equal the true parameter 

vector, 𝜽 (or 𝝃) , and the hypothetical density function of first difference series, 

𝑓�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡;𝜽� (or 𝝃�)�, becomes the true one. The MLE estimate of the unknown true 

parameter vector, 𝜽 (or 𝝃), is the 𝜽� (or 𝝃�) that maximizes the likelihood function. The 

maximization is equivalent to maximizing the log likelihood function because the log 

transformation is a monotone transformation. With the MLE method, however, we ignore 

autocorrelation in a series. Harris (1999) argued that moving average (MA) terms in a 

time series model complicates the estimation problem since the least squares are no 

longer linear in the parameters and thus an MLE estimation of the time-series model with 

MA components face computational difficulty to obtain numerical optimization. Since 

the proposed time-series models involve a MA term created by overdifference of 

temporary shocks, the GMM estimation is applied to handle autocorrelation cause by the 

MA term.  

The data generating processes for Poison-jump (equation (8)) and Bernoulli-jump 

(equations (11)) induce negative autocorrelation in first differenced series. Therefore, the 

models only require a time series having negative autocorrelation and it is too restrictive 

for a vast number of time series. Therefore, we adjust the developed models for positive 
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autocorrelation; equation (12) for the Poisson-jump model and equation (13) for the 

Bernoulli-jump model. Each model has its log likelihood function but the log likelihood 

function is based on the case where autocorrelation is ignored.   

The log likelihood function of the permanent-Poisson jump and temporary-

diffusion model for a series having negative autocorrelation can be expressed as: 

(23) 

𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�

= �𝑙𝑜𝑔

⎣
⎢
⎢
⎡
�

𝑒−𝜆��̃�𝑞

𝑞!

∞

𝑞=0

 
1

�2𝜋�2𝜎�𝜀2 + 𝑞𝜎�𝐽2�
𝑒𝑥𝑝 �

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛾� − 𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2 + 𝑞𝜎�𝐽2�
�

⎦
⎥
⎥
⎤𝑇

𝑖=1

, 

where 𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡� is the log likelihood function mixed with Poisson and normal 

distributions, 𝜽� is a vector of five parameters (𝛾�,𝜎�𝜀2, 𝜇�𝐽,𝜎�𝐽2, �̃�) estimated from the 

permanent-jump and transitory-diffusion model, �̃� is an average of jump probability 

measuring the occurrence rate of discrete structural breaks by Poisson distribution, 𝜎�𝐽2 is 

variance and 𝜇�𝐽 is mean of jump process, respectively, 𝛾� is a drift and 𝜎�𝜀2 is a variance of 

transitory shocks, and the variance of transitory shocks has to be doubled (2𝜎�𝜀2) due to 

the moving average term, 𝜀𝑡 − 𝜀𝑡−1. In order for a series having positive autocorrelation, 

the log-likelihood function of the adjusted model is: 

(24) 

 𝑙∗�𝜃�∗,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡� = � log

⎣
⎢
⎢
⎢
⎢
⎡

��
𝑒−𝜆�∗ ∙ ��̃�∗�𝑞

𝑞! ∙
∞

𝑖=0

𝑒−𝜆�∗ ∙ ��̃�∗�𝑖

𝑖!

∞

𝑞=0

∙
𝑒𝑥𝑝 �

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛾�∗ − 𝜇�𝑗∗ − 𝑖 ∙ 𝜌� ∙ 𝜇�𝑗∗�
2

2�2 ∙ 𝜎�𝜀2∗ + 𝑞 ∙ 𝜎�𝐽2∗ + 𝑖 ∙ 𝜌� ∙ 𝜎�𝐽2∗�
�

�2𝜋�2 ∙ 𝜎�𝜀2∗ + 𝑞 ∙ 𝜎�𝐽2∗ + 𝑖 ∙ 𝜌� ∙ 𝜎�𝐽2∗�
⎦
⎥
⎥
⎥
⎥
⎤

𝑇

𝑖=1

, 

where  𝑙∗�𝜃�∗,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡� is the likelihood function, 𝜃�∗ is a vector of six parameters, 

�𝛾�∗, 𝜇�𝑗∗,𝜎�𝜀2∗,𝜎�𝐽2∗, �̃�∗,𝜌��, 𝜌� is a parameter of autocorrelation between permanent shocks. 
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For the model combined with a Bernoulli-jump process, the log-likelihood 

function without considering the autocorrelation is: 

(25) 𝑙𝑙�𝝃� ,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡� = �𝑙𝑜𝑔

⎣
⎢
⎢
⎢
⎢
⎡

�𝑃�𝑗(1 − 𝑃�)1−𝑗
1

𝑗=0

𝑒𝑥𝑝�
−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛽� − 𝑗 ∙ 𝜇�𝐵�

2

2(2𝜎�𝑒2 + 𝑗 ∙ 𝜎�𝐵2) �

�2𝜋(2𝜎�𝑒2 + 𝑗 ∙ 𝜎�𝐵2)

⎦
⎥
⎥
⎥
⎥
⎤

,
𝑇

𝑡=1

  

where 𝝃� ̃is a vector of five parameters (𝛽�,𝜎�𝑒2, 𝜇�𝐵,𝜎�𝐵2,𝑃�) estimated from the  permanent-

jump and transitory-diffusion model that a jump is represented by a Bernoulli 

distribution. 𝑃� is jump probability of one discrete event captured by a Bernoulli 

distribution, 𝜎�𝐵2 and 𝜇�𝐵 are the variance and mean of one permanent shock, respectively, 

and 𝛽� is a drift and 𝜎�𝑒2 is a variance of temporary shocks. For the adjusted model with 

Bernoulli-jump process, the log-likelihood function can be expressed as: 

(26) 
𝑙𝑙∗�𝝃�∗,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡� = � log

⎣
⎢
⎢
⎢
⎢
⎡

���𝑃�∗�
𝑗(1− 𝑃�∗)1−𝑗

1

𝑟=0

∙ �𝑃�∗�
𝑟(1− 𝑃�∗)1−𝑟 ∙

1

𝑗=0

𝑒𝑥𝑝 �
−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛽�∗ − 𝑗 ∙ 𝜇�𝐵∗ − 𝑟 ∙ 𝜂� ∙ 𝜇�𝐵∗ �

2

2(2 ∙ (𝜎�𝑒∗)2 + 𝑗 ∙ (𝜎�𝐵∗)2 + 𝑟 ∙ 𝜂� ∙ (𝜎�𝐵∗)2) �

�2𝜋(2 ∙ (𝜎�𝑒∗)2 + 𝑗 ∙ (𝜎�𝐵∗)2 + 𝑟 ∙ 𝜂� ∙ (𝜎�𝐵∗)2)

⎦
⎥
⎥
⎥
⎥
⎤

𝑇

𝑡=1

 

where 𝑙𝑙∗�𝝃�∗,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡� is the likelihood function, 𝝃�∗ is a vector of six parameters, 

�𝛽�∗, 𝜇�𝐵∗ ,𝜎�𝑒2∗,𝜎�𝐵2∗,𝑃�∗, 𝜂��, 𝜂� is a parameter of autocorrelation at lag one of permanent 

shock. 

Based on the log likelihood function of the models, we compute first-order 

conditions and these first order conditions become moment equations for GMM 

estimation. Each moment equation is derived from the known log-likelihood function 

based on the Gallant and Tauchen (1996)’s approach. Gallant and Tauchen (1996) 

proposed an alternative way to generate a moment equation. Gallant and Tauchen (1996) 

defined the score generator that is a model assumed to be close to true model to compute 
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moment conditions for a GMM estimator. According to their definition of the score 

generator, the observed data {𝑦�𝑡, 𝑥�𝑡}𝑡=1∞  are assumed to have been generated from the 

sequence of densities, {𝑃1(𝑥1|𝜍𝑜), {𝑃𝑡(𝑦𝑡|𝑥𝑡, 𝜍𝑜)}𝑡=1∞ }𝜍∈𝑅 where 𝜍𝑜 is true value of the 

parameter 𝜍 and 𝑅 is the parameter space. The given model is said to be smoothly 

embedded within the score generator, {𝑓1(𝑥1|𝜃), {𝑓𝑡(𝑦𝑡|𝑥𝑡, 𝜃)}𝑡=1∞ }𝜃∈𝑅 for every 𝜍 ∈ 𝑅 

and 𝑃1(𝑥1|𝜍) = 𝑓1�𝑥1�𝑔(𝜍)� for every 𝜍 ∈ 𝑅. Under the condition of a score generator, 

they derived the first order condition of the log density of a score generator function with 

respect to the parameters of the score generator function. In the paper, we assume that a 

series is generated from the mixture densities of Poisson (or Bernoulli) and normal. 

Based on the log-likelihood function assumed true, we generate moment conditions 

through applying Gallant and Tauchen’s (1996) approach.  There is an advantage to used 

Gallant and Tauchen’s (1996) approach is that the estimator is nearly fully efficient even 

though a given parametric model does not require perfectly nesting the true model for a 

time-series. 

We address the choices of the number of moments. For series having negative 

autocorrelation, we obtain five parameter estimates, using MLE estimation; a drift (𝛾), a 

variance (𝜎𝜀2) of a diffusion process, and a probability (𝜆) of permanent shocks, mean 

(𝜇𝐽) and variance (𝜎𝐽2) of a jump process. For series having positive autocorrelation, we 

obtain six parameters from the adjusted model; a drift (𝛾∗), a variance (𝜎𝜀2∗) of a 

diffusion process, and a probability (𝜆∗) of permanent shocks, mean (𝜇𝐽∗) and variance 

(𝜎𝐽2∗) of a jump process, autocorrelation (𝜌) between jump processes. We first choose 
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moments matching parameters. Each moment equation is an expectation of a first order 

condition of the given log-likelihood function in the paper: 

(27) 𝑚�𝑙�𝜽�� =
1
𝑁
�

𝑑
𝑑𝜃

𝑁

𝑡=1

𝑙�𝜽�,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�,  

where  𝑚�𝑙(𝜃) is an expectation of ith moment equation, 𝑙 = {1, … ,5}, each moment 

equation is evaluated at 𝜽� = (𝛾�,𝜎�𝜀2, 𝜇�𝐽,𝜎�𝐽2, �̃�) or 𝝃� = (𝛽�,𝜎�𝑒2, 𝜇�𝐵,𝜎�𝐵2,𝑃�) and should be 

close to zero for large value of 𝑁. We apply the same computation procedure for the 

adjusted model. The five moment equations for the Poisson-jump process are: 

(28) 

𝑚�1 =
1
𝑁
��

𝜕𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�
𝜕𝛾� �

𝑁

𝑡=1

=
1
𝑁
�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛∑

⎝

⎜
⎛𝑒−𝜆� ∙ �̂�𝑞 ∙ (𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛾� − 𝑞 ∙ �̂�𝐽) ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(2 ∙ 𝜎�𝜀2 + 2 ∙ 𝑞 ∙ 𝜎�𝐽2) ∙ (𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

∑

⎝

⎜
⎛1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑁

𝑡=1

, 

(29) 

𝑚�2 =
1
𝑁
��

𝜕𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�
𝜕�̂�𝐽

�
𝑁

𝑡=1

=
1
𝑁
�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛∑

⎝

⎜
⎛𝑒−𝜆� ∙ �̂�𝑞 ∙ (𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛾� − 𝑞 ∙ �̂�𝐽) ∙ 𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(2 ∙ 𝜎�𝜀2 + 2 ∙ 𝑞 ∙ 𝜎�𝐽2) ∙ (𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

∑

⎝

⎜
⎛1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑁

𝑡=1

, 

(30) 
𝑚�3 =

1
𝑁
��

𝜕𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�
𝜕𝜎�𝜀2

�
𝑁

𝑡=1

=
1
𝑁
�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛∑

⎝

⎜
⎛𝑒−𝜆� ∙ �̂�𝑞 ∙ (𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛾� − 𝑞 ∙ �̂�𝐽)2 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(2 ∙ 𝜎�𝜀2 + 2 ∙ 𝑞 ∙ 𝜎�𝐽2)2 ∙ (𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
− 1

4 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2 ∙ 𝜋

(𝑞!)(𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2))3/2

⎠

⎟
⎞𝑄

𝑞=0

∑

⎝

⎜
⎛1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,
𝑁

𝑡=1
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(31) 
𝑚�4 =

1
𝑁
��

𝜕𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�
𝜕𝜎�𝐽2

�
𝑁

𝑡=1

=
1
𝑁
�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛∑

⎝

⎜
⎛𝑒−𝜆� ∙ �̂�𝑞 ∙ (𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛾� − 𝑞 ∙ �̂�𝐽)2 ∙ 𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(2 ∙ 𝜎�𝜀2 + 2 ∙ 𝑞 ∙ 𝜎�𝐽2)2 ∙ (𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
− 1

4 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2 ∙ 𝜋 ∙ 𝑞

(𝑞!)(𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2))3/2

⎠

⎟
⎞𝑄

𝑞=0

∑

⎝

⎜
⎛1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,
𝑁

𝑡=1

 

(32) 
𝑚�5 =

1
𝑁
��

𝜕𝑙�𝜽,� 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡�
𝜕�̂�

�
𝑁

𝑡=1

=
1
𝑁
�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛∑

⎝

⎜
⎛
−1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 2 ∙ 𝑞 ∙ 𝜎�𝐽2)
+ 1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

𝜆 ∙ (𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

∑

⎝

⎜
⎛1

2 ∙
𝑒−𝜆� ∙ �̂�𝑞 ∙ 𝑒

−�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−𝛾�−𝑞𝜇�𝐽�
2

2�2𝜎�𝜀2+𝑞𝜎�𝐽
2� ∙ √2

(𝑞!)�𝜋(2 ∙ 𝜎�𝜀2 + 𝑞 ∙ 𝜎�𝐽2)
⎠

⎟
⎞𝑄

𝑞=0

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑁

𝑡=1

 

The same computations for moment equations are applied for the Bernoulli permanent-

jump and temporary-diffusion model and are provided in an Appendix (A1). 

The GMM estimation based on parameters and moment conditions of the given 

likelihood function ignores the existence of autocorrelation at lag one that is 

characteristic of a first-order moving average process. The presence of autocorrelation 

could cause underestimation of the standard errors of the parameter estimates. In order to 

consider autocorrelation, we provide additional information about autocorrelation for a 

GMM procedure. The additional moment equation reflects the autocorrelation caused by 

overdifferencing the transitory shocks. This moment equation for autocorrelation is 

derived by equating an empirical autocorrelation and the theoretical autocorrelation and 

can be expressed as: 
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(33) 𝑚6 = Empirical Autocorrelation

− Theoretical Autocorrelation 
 

 
=

𝐶𝑜𝑣(∆𝑠𝑒𝑟𝑖𝑒𝑠𝑡,∆𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)

�𝑣𝑎𝑟(∆𝑠𝑒𝑟𝑖𝑒𝑠𝑡)𝑣𝑎𝑟(∆𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)

−
−2 ∙ 𝜎�𝜀2

�̂� ∙ 𝜎�𝐽2 − �̂�2 ∙ �̂�𝐽2 + 2 ∙ (2 ∙ 𝜎�𝜀2)
 

 

where the empirical autocorrelation is computed form the actual data set and  theoretical 

autocorrelation is computed from the data generating process assumed to be true. Based 

on the data generating processes, we compute theoretical autocorrelation between 

𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 and 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1. From Poisson-jump data generating process of equation (4), 

theoretical autocorrelation is computed as: 

(34) 𝑐𝑜𝑟𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)

=
𝑐𝑜𝑣(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)

�𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) ∙ �𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)
 

 

 
=
𝐸[(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛥𝑠𝑒𝑟𝚤𝑒𝑠����������)(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1 − 𝛥𝑠𝑒𝑟𝚤𝑒𝑠����������)]

𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡)
 

 

 
=
𝐸[(𝜀𝑡 − 𝜀𝑡−1)(𝜀𝑡−1 − 𝜀𝑡−2)]

𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡)
 

 

 
=

𝐸(−𝜀𝑡−1 ∙ 𝜀𝑡−1)
𝑣𝑎𝑟(𝛾 + ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡
𝑞=1 + 𝜀𝑡 − 𝜀𝑡−1)

 
 

 
=

𝐸(−𝜀𝑡−1 ∙ 𝜀𝑡−1)
𝑣𝑎𝑟(∑ 𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡
𝑞=1 ) + 𝑣𝑎𝑟(𝜀𝑡) + 𝑣𝑎𝑟(𝜀𝑡−1)

 
 

 
=

−𝜎𝜀2

𝜆 ∙ 𝜎𝐽2 − �𝜆2 ∙ 𝜇𝐽2� + 2 ∙ 𝜎𝜀2
, 
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where for  𝑣𝑎𝑟(∑ 𝐽𝑢𝑚𝑝𝑞𝑡
𝑄𝑡
𝑞=1 )  

 
𝑣𝑎𝑟 ��𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

� = 𝐸 ��𝐽𝑢𝑚𝑝𝑞,𝑡
2

𝑄𝑡

𝑞=1

� − 𝐸 ��𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

�

2

 
 

 = 𝐸�𝐽𝑢𝑚𝑝0,𝑡
2 + 𝐽𝑢𝑚𝑝1,𝑡

2 + ⋯+ 𝐽𝑢𝑚𝑝𝑄𝑡,𝑡
2�

− 𝐸�𝐽𝑢𝑚𝑝0,𝑡 + 𝐽𝑢𝑚𝑝1,𝑡 + ⋯+ 𝐽𝑢𝑚𝑝𝑄𝑡,𝑡�
2
 

 

 = 𝜆 ∙ 𝜎𝐽2 − �𝜆 ∙ 𝜇𝐽�
2

.  

The same computation for theoretical autocorrelation is applied for the Bernoulli-jump 

model and is in the Appendix (A2). 

For positive autocorrelation, the adjusted data generating process (equation (12)) 

is used to compute a theoritical correlation between 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 and 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1. The 

procedure of computation for the adjusted Poisson-jump process is derived as: 

(35) 
𝑐𝑜𝑟𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1) =

𝑐𝑜𝑣(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)
�𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) ∙ �𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)

 
 

 
=
𝐸[(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛥𝑠𝑒𝑟𝚤𝑒𝑠����������)(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1 − 𝛥𝑠𝑒𝑟𝚤𝑒𝑠����������)]

𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡)
 

 

 
=
𝐸�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡
𝑞=0 + 𝜌 ∙ ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1
𝑞=0 + 𝜀𝑡 − 𝜀𝑡−1�

�𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡)

∙
�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1
𝑞=0 + 𝜌 ∙ ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−2

𝑄𝑡−2
𝑞=0 + 𝜀𝑡−1 − 𝜀𝑡−2�

�𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)
 

 

 
=

𝐸 �𝜌 ∙ �∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1
𝑄𝑡−1
𝑞=0 �

2
− (𝜀𝑡−1)2�

𝑣𝑎𝑟�𝛾 + ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡
𝑄𝑡
𝑞=0 + 𝜌 ∙ ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1
𝑞=0 + 𝜀𝑡 − 𝜀𝑡−1�
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=

𝜌 ∙ 𝐸�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1
𝑄𝑡−1
𝑞=0 �

2
− 𝐸(𝜀𝑡−1)2

𝑣𝑎𝑟�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡
𝑄𝑡
𝑞=1 � + 𝑣𝑎𝑟�𝜌 ∙ ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1
𝑞=0 � + 𝑣𝑎𝑟(𝜀𝑡) + 𝑣𝑎𝑟(𝜀𝑡−1)

 
 

 
=

𝜌 ∙ 𝑣𝑎𝑟�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1
𝑄𝑡−1
𝑞=0 � − 𝑣𝑎𝑟(𝜀𝑡−1)

𝑣𝑎𝑟�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡
𝑄𝑡
𝑞=1 � + 𝜌2 ∙ 𝑣𝑎𝑟�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1

𝑄𝑡−1
𝑞=0 � + 𝑣𝑎𝑟(𝜀𝑡) + 𝑣𝑎𝑟(𝜀𝑡−1)

, 
 

 
=

𝜌 ∙ �𝜆 ∙ 𝜎𝐽2 − �𝜆2 ∙ 𝜇𝐽2�� − 𝜎𝜀2

(1 + 𝜌2) ∙ �𝜆 ∙ 𝜎𝐽2 − �𝜆2 ∙ 𝜇𝐽2�� + 𝜎𝜀2
, 

 

where for 𝑣𝑎𝑟�∑ 𝐽𝑢𝑚𝑝𝑞𝑡
𝑄𝑡
𝑞=1 �  

 
𝑣𝑎𝑟 ��𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

� = 𝐸 ��𝐽𝑢𝑚𝑝𝑞,𝑡
2

𝑄𝑡

𝑞=1

� − 𝐸 ��𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

�

2

 
 

 = 𝐸�𝐽𝑢𝑚𝑝0,𝑡
2 + 𝐽𝑢𝑚𝑝1,𝑡

2 + ⋯+ 𝐽𝑢𝑚𝑝𝑄𝑡,𝑡
2�

− 𝐸�𝐽𝑢𝑚𝑝0,𝑡 + 𝐽𝑢𝑚𝑝1,𝑡 + ⋯+ 𝐽𝑢𝑚𝑝𝑄𝑡,𝑡�
2
 

 

 = 𝜆 ∙ 𝜎𝐽2 − �𝜆 ∙ 𝜇𝐽�
2

,  

for 𝜌2 ∙ 𝑣𝑎𝑟�∑ 𝐽𝑢𝑚𝑝𝑞,𝑡−1
𝑄𝑡−1
𝑞=0 �,  

 

𝜌2 ∙ 𝑣𝑎𝑟 ��𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

� = 𝜌2 ∙ �𝐸 ��𝐽𝑢𝑚𝑝𝑞,𝑡
2

𝑄𝑡

𝑞=1

� − 𝐸 ��𝐽𝑢𝑚𝑝𝑞,𝑡

𝑄𝑡

𝑞=1

�

2

� 

 

 = 𝜌2 ∙ �𝜆 ∙ 𝜎𝐽2 − �𝜆 ∙ 𝜇𝐽�
2
�.  

The same computation for theoretical autocorrelation of series having positive 

autocorrelation is applied for the Bernoulli-jump model and is in the Appendix (A3). 

With additional moment condition for autocorrelation, there are more moment 

equations, 𝑘 = {1, … ,6}, than parameters, 𝑙 = {1, … ,5}, (𝑘 ≥ 𝑙), and we expect to see an 

improvement of estimation performance. Andersen and Sorensne (1996) argued including 
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more information in the form of additional moment restriction improves estimation 

performance for a given degree of precision in the estimate of the weighting matrix, but 

in small samples, this must be balanced against the deterioration in the estimate of the 

weighting matrix as the number of moments expands. 

With the moment equations, GMM estimation is used to estimate the parameters 

of the proposed model. The GMM estimator is defined by choosing 𝜽� to minimize 𝑞: 

(36) 𝑞 = 𝑚�𝑘′𝑊𝑘�𝜽��𝑚�𝑘,  

where 𝜽� is a vector of five parameters, 𝜽� = �𝛾�,𝜎�𝜀2, 𝜇�𝐽,𝜎�𝐽2, �̃��, 𝑚�𝑘 represents the kth 

moment equations, 𝑘 = {1, … ,6}, including additional moment equation of 

autocorrelation, five moment equations are an expectation of a first order conditions of  

the log-likelihood function and the additional moment equation in order for 

autocorrelation is a difference between empirical autocorrelation and theoretical, 𝑊𝑘�𝜽�� 

is a positive-definite, symmetric weighting matrix that can depend on sample 

information, and 𝑊𝑘�𝜽�� = �1
𝑁
∑ 𝑚𝑘

′𝑚𝑘
𝑁
𝑡=1 �

−1
. A weighting matrix �𝑊𝑘�𝜽��� is essential 

to obtain an optimal GMM estimator. Newey and West (1987) found an optimal GMM 

estimator is obtained when 𝑊𝑘 is a consistent estimator of (𝑆𝑘)−1. Based on Newey and 

West (1987), the asymptotic covariance matrix of 𝜽� or �𝝃�� for a GMM estimation of the 

proposed model could be expressed as: 

(37) 𝑉𝜽�,𝑘 = �𝐻𝜽�,𝑘
′ 𝑆𝑘𝐻𝜽�,𝑘�

−1
,  

where 𝐻𝜽�,𝑘 =
∑ 𝐸�𝑚𝑡,𝜽�,𝑘�𝜽���
𝑁
𝑡=1

𝑁
, 𝑚𝑡,𝜽�,𝑘�𝜽�� is the (𝑙 × 𝑘) matrix of partial derivative of 

𝑚𝑡,𝑘�𝜽�� with respect to 𝜽� where 𝑚𝑡,𝑘�𝜽�� is a partial derivative of log-likelihood 
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functions, and 𝑆𝑘 =
∑ 𝐸�𝑚𝑡,𝑘�𝜽��𝑚𝑡,𝑘�𝜽��

′
�𝑁

𝑡=1

𝑁
 if  𝑚𝑡,𝑘 is serially uncorrelated. The efficient 

GMM estimator is constructed with a weighting matrix. Greene (2011) discussed that the 

asymptotic covariance matrix is a function of a weighting matrix. He also discussed that 

different choices of computing a weighting matrix for the efficient GMM estimator 

produce different estimates, but the estimator is consistent for any weighting matrix. 

 In the study, GMM estimation is used with first differenced series. The 

differenced series created autocorrelation. In order to deal with autocorrelation, we adapt 

the advantage of GMM estimation that can have more moment equations than 

parameters. We concern the estimates of GMM with first difference in a series can be 

biased. A Monte Carlo method is used to estimate the variance of the parameters of all 

the change in observations that are not independent, since we assume that Poisson (or 

Bernoulli) and normal distributions of error terms are met by the data. In using a Monte 

Carlo method, we investigate the finite-sample properties of GMM procedures for 

conducting inference about standard deviation of first differenced series. The simulation 

method has been used primarily to obtain information on the small sample properties of 

asymptotically valid estimators and test statistics, or to calibrate the distribution of test 

statistics (Pesaran and Pesaran, 1993). The empirical standard deviation of a series of 

Monte Carlo replications of estimators can be used to approximate the standard error of 

an estimator. First we draw M=10,000 independent samples with same size of an actual 

data set, where based on the parameters estimated from the permanent-jump and 

temporary-diffusion model. Second, we estimate the parameters, 𝜃� = (𝛾�,𝜎�𝜀2, �̂�𝐽,𝜎�𝐽2, �̂�), of 

the developed model for each generated sample. We obtain M numbers of parameters, 

42 
 



𝜃�𝑚 = �𝛾�𝑚,𝜎�𝜀,𝑚
2 , �̂�𝐽,𝑚,𝜎�𝐽,𝑚

2 , �̂�𝑚� for m=1,…,M. Then we compute standard error, 𝑠𝑒(𝜃�), 

by 𝑠𝑒�𝜃�� = � 1
𝐵−1

∑ (𝜃�𝑏 − 𝜃�)2𝐵
𝑏=1 , where 𝜃� = 1

𝐵
∑ 𝜃�𝑏𝐵
𝑏=1 . The standard error of the 

sample mean is the estimate of the standard deviation of samples means for some sample 

drawn from the population. The standard error of running Monte Carlo simulation is 

therefore the estimate of the standard deviation of values returned from running many 

Monte Carlo simulations. 

 

Test Statistics and Bernoulli-Jump Model under the Alternative Hypothesis 

In the study, a benefit of the Bernoulli-jump model is that it nests the classic time-

series models such as a random walk model with drift and a linear trend model 

comparing with the Poisson-jump model. In order to determine whether the Bernoulli-

jump model encompass a random walk model with drift and a linear trend model, we 

conduct the hypotheses tests for the nested models, using Monte Carlo methods. Since 

the small-sample size of the Wald tests exceeds its asymptotic size and increases sharply 

with the number of hypotheses being jointly tested (Burnside and Eichenbaum, 1996), 

Wald test statistics based on the asymptotic approximations used in the study becomes 

unreliable. In addition, we conduct hypotheses test even there exist nuisance parameters 

are not identified under the null hypotheses. The Monte Carlo method can be used to 

estimate the distribution of asymptotically pivotal statistics. Monte Carlo estimate of the 

variance to construct the Wald statistic provide more reliable small sample inference than 

the usual asymptotic Wald test in the optimally weighted GMM estimators (Bond and 

Windmeijer, 2003). Hansen (1996) argued showed the conditional p-value transformation 
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provided an asymptotic distribution free of nuisance parameters through Monte Carlo 

methods. In our approach for an asymptotic distribution, Monte Carlo method is 

appropriate. Under the null hypotheses of a random walk model with drift and a linear 

trend model, we generate 10,000 sets of time series, each of length 𝑇=actual series. For 

the test of the nested random walk model with drift, the data generating process is: 

(38) 𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝑖 = 𝑠𝑒𝑟𝑖𝑒𝑠𝑖𝑡−1,𝑖 + 𝛽𝑖 + 𝐽𝑡,𝑖  

where is the simulated series at 𝑖th sample, 𝑖 = 1, … ,𝑁 and the same size as an actual 

data, 𝑡 = 1, … ,𝑇, 𝛽𝑖 is a drift at 𝑖th sample, and 𝐽𝑡,𝑖 is an error term. For the test of the 

nested linear trend model, the data generating process is: 

(39) 𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝑡 = 𝛽𝑖 ∙ 𝑡𝑖 + 𝐽𝑖,𝑡  

 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖,𝑡 = 𝛽𝑖 + 𝐽𝑖,𝑡 − 𝐽𝑖,𝑡−1  

where 𝛽𝑖 is a time trend coefficient at 𝑖th set, and 𝑡𝑖 is time at 𝑖th set. 

The hypotheses under the random walk model with drift in equation (38) are: 

(40) 𝐻0: 𝜎𝑒2 = 0,𝑃 = 1  

 𝐻𝐴: 𝜎𝑒2 > 0 and /or 𝑃 < 1,  

where 𝜎𝑒2 and 𝑃 are parameters from the unrestricted Bernoulli-jump model, and the null 

hypothesis that a probability of one jump (𝑃) from is equal to one and a variance of 

temporary shocks (𝜎𝑒2) is equal to zero is tested. 
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The hypotheses under the linear trend model in the equation (39) are:  

(41) 𝐻0: 𝑃 = 0  

 𝐻𝐴: 𝑃 > 0,  

where the null hypothesis that a probability of one permanent shock (𝑃) is equal to zero 

is tested. In the case, when the null hypothesis is 𝑃 = 0, parameters, 𝜇𝐵 and 𝜎𝐵2 are not 

identified and they are nuisance parameters. According to Hansen (1996), if a conditional 

transformation is analogous to an asymptotic p-value and it has an asymptotic uniform 

distribution under the null hypothesis then the asymptotic null distribution is free of 

nuisance parameters. 

The test statistic for Wald test is derived as: 

(42) 
𝑊𝐹 =

𝑎�𝜃��
′
�𝐴�𝜃�� ∙ 𝐴𝑣𝑎𝑟�𝜃�� ∙ 𝐴�𝜃��

′
�
−1
𝑎�𝜃��

𝑅
𝑑
→ 𝐹(𝑅,𝑇 − 𝐾), 

 

 
𝐴𝑣𝑎𝑟�𝜃�� = 𝑊𝑘�𝜽�� = �

1
𝑁
�𝑚𝑘

′𝑚𝑘

𝑁

𝑡=1

�

−1

, 
 

where 𝑎(∙)is a vector-valued function, 𝐴(∙) is the Jacobian of 𝑎(∙) and is of full row 

rank ℎ , 𝐴(∙)ℎ×𝑔 = 𝜕𝑎(∙)
𝜕

, ℎ ≤ 𝑔. Under the null hypotheses, the test statistics is that 

�𝑊𝐹
𝑅� � 𝑅�

𝑑
→ 𝐹(𝑅,𝑇 − 𝐾).  

 

 

 

45 
 



Optimal Length of Moving Average for Actual and Stochastic Time Series 

A moving average method is one of forecasting methods. In a simple moving 

average method, the forecast for next period will be equal to the average of a specified 

number of the most recent observation, with each observation receiving the same 

emphasis. In order to determine the effects of permanent shocks and temporary shocks on 

optimal length of moving the stochastic series are simulated from the developed models 

(equations (8), (11), (13) and (15)). Moving average methods use the simple average of 

the previous N years: 

(43) 𝛥𝑠𝑒𝑟𝚤�𝑒𝑠𝑖(𝑁) =
1
𝑁
�𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖−𝑠

𝑁

𝑠=1

,  

where 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖 is a series or simulated series, 𝛥𝑠𝑒𝑟𝚤�𝑒𝑠𝑖 is series forecast, N is the 

moving average interval. 

In order to evaluate an optimal length of moving average in actual data and the 

data simulated from the proposed models, root mean squared errors (RMSE) is applied. 

The root mean squared error is the square of the difference between the values actually 

observed and values predicted by a model such as equation (26) and is expressed as: 

(44) 𝑅𝑀𝑆𝐸 = �
1
𝑁
�(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑖 − 𝛥𝑠𝑒𝑟𝚤�𝑒𝑠𝑖(𝑁))2
𝑁

𝑖=1

,  

where 𝑁 is number of years, 𝑁 = 1,2, … ,5. The lowest value of RMSE is selected as the 

optimal length of moving average. 
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Autoregressive Integrated Moving Average with Outliers 

We determine whether a basis price series has a unit root using the augmented 

Dickey-Fuller (ADF) test according to a general procedure for a time-series model. Time 

series in levels are tested first, and then in first differences if necessary. Based on the 

ARIMA specification to use how many autoregressive and moving average parameters to 

include, we estimate ARIMA models for basis in a first difference until we found the 

properties of white noise, using Akaike information criterion (AIC) to identify the best 

structure. Now, we identify the types of outliers in a given data series, but at unknown 

time points. After detecting outliers, we treat these times as known, and estimate the 

outlier parameters with parameters of the specified ARIMA model. We could use several 

methods to deal with the existence of outliers (Franses and Haldrup, 1994). One approach 

is to consider robust estimation of the model by attaching less weight to extreme 

observations. Another approach is to remove the outliers’ effects with dummy variables. 

We include dummy variables in the auxiliary augmented Dickey-Fuller regression. This 

paper first detects the presence of a level shift (permanent shocks) and a transient change 

in first differences. After outliers for level shifts and transient changes, we again detect 

outlier without restricting any types of outliers. We add those outliers to an ARIMA 

model as dummy variables and estimate the ARIMA model with outliers. The structure of 

the model may be slightly different from the ARIMA without outliers. Thus, we conduct 

the model identification again and make sure the new residuals exhibit white noise.  
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Comparison of Empirical CDF of a Series and Theoretical CDF of the Specified 

Distribution 

For the indirect inference of a better fit to data, we use an empirical distribution 

function statistic. The empirical distribution function statistics are based on the 

comparison of distribution functions of samples (Stephens, 1974). We begin by 

simulating series based on the developed models in the study and the competing models, 

and we compare how well those models capture the dynamic characteristics of an actual 

series. For the comparison of empirical distribution functions of series and theoretical 

distribution functions of the specified distributions, Kolmogorov-Smirnov test is used. 

We consider four models for comparison. There are two cases for the permanent-jump 

and temporary diffusion model; one is that permanent-jump process follows a Poisson-

jump process and the other one is that permanent-jump process follows a Bernoulli-jump 

process. A conventional ARIMA model and an ARIMA model with outliers are selected 

as the competing models.  

Let 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡, 𝑡 = 1, … ,𝑁 denote the actual time series in first difference and 

estimate the cumulative density function, 𝐹(𝛥𝑠𝑒𝑟𝑖𝑒𝑠) = 𝑃[𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ≤ 𝛥𝑠𝑒𝑟𝑖𝑒𝑠], using 

the proportion of a series that are less than 𝛥𝑠𝑒𝑟𝑖𝑒𝑠. The empirical cumulative density 

function is; 

(45) 
𝐹�(𝛥𝑠𝑒𝑟𝑖𝑒𝑠) =

1
𝑁

{#𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ≤ 𝛥𝑠𝑒𝑟𝑖𝑒𝑠} =
1
𝑁
�𝐼(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 ≤ 𝛥𝑠𝑒𝑟𝑖𝑒𝑠)
𝑁

𝑡=1

. 

 In the study, we test the assumption that the true distribution is the mixed 

distribution of Poisson (or Bernoulli) and normal. We simulate 𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝑟 with 𝑟 =
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1, … , 100 and 𝑡 = 1, … ,𝑁. Then we obtain the corresponding specified cumulative 

density function, 𝐹(𝛥𝑠𝑒𝑟𝑖𝑒𝑠). Therefore, the maximum vertical distance of Kolmogorov-

Smirnov distance between the empirical CDF and theoretical CDF is: 

(46) 𝐷𝑘𝑠 = max
𝑠
��𝐹�(𝛥𝑠𝑒𝑟𝑖𝑒𝑠)  − 𝐹(𝛥𝑠𝑒𝑟𝑖𝑒𝑠)��.  
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CHAPTER IV 
 

 

Data 

As a prime example of where both permanent and transitory shocks in time series 

are expected, harvest basis prices for Oklahoma hard red winter wheat, Illinois #2 corn 

and #1soybean are selected. Although basis will vary throughout the marketing year, the 

variation tends to be more predictable and less extreme than changes in the price of cash 

price since the carrying charge, arbitrage between the futures and cash markets, and 

transportation costs (Baldwin and Smith, 2011). According to visual inspection from 

figures 1 to 3, however, certain shocks in recent years of series make behavior of basis 

series less predictable. Permanent effects of shocks in grain markets change the 

relationship between cash and futures prices. Figures from 1 to 3 displays Oklahoma hard 

red wheat, Illinois corn and soybean basis series for harvest. For the validation of the 

developed models, we also use four series out of fourteen macroeconomic time series 

used by Nelson and Plosser (1982). 
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The basis is the difference between the local cash price and the nearby futures 

price. A harvest basis is considered in the paper. Harvest basis is useful for grain 

producers’ decision. The information from harvest basis helps grain producers predict 

harvest prices, evaluate forward contract bids for harvest delivery, and decide whether to 

sell their grain at harvest or store. For Oklahoma hard red winter wheat, harvest basis is 

calculated as the cash price in June minus the price of the July futures contract in June. 

For corn, harvest basis is that the cash price in October minus the futures prices of the 

December contract. For soybean, harvest basis is that the futures prices of the November 

contract in October are subtracted from the cash price in October. Monthly average prices 

are used for cash and futures prices for Oklahoma red wheat, Illinois corn and soybean. 

The harvest basis use in the paper is annual data taking average for the specific months. 

Using annual data is more appropriate for the estimation of the developed model than 

monthly and daily data to estimate the effects of permanent shocks in the series. The 

characteristic of permanent shocks in the paper is that the effects of them remain in a 

market.  

Cash prices of hard red winter wheat for Oklahoma locations were taken from the 

Oklahoma Department of Agriculture, Food and Forestry’s weekly “Oklahoma Market 

Report” from 1942 through 2012. The five production areas in Oklahoma for cash prices: 

Frederick, Medford, Weatherford, and Kingfisher and Okarche included since May 2003, 

are considered and then the prices from these areas are averaged. Daily spot prices for 

corn and soybean for seven regions of Illinois Agricultural Marketing service and reflect 

the mid-range of elevator bids for each region on Thursdays of each month from 1975-

2012 (Hatchett, Brorsen and Anderson, 2010 and FarmDoc, 2013).  
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The cash prices from the seven production areas in Illinois: northern, western, 

north central, south central, Wabash, west and southwest, Little Egypt are averaged. 

Futures prices reflect daily closing prices at the Kansas City Board of Trade (KCBT) for 

hard red winter wheat and at the Chicago Board of Trade (CBOT) for corn and soybean. 

This template is best used for directly typing in your content. However, you can paste 

text into the document, but use caution as pasting can produce varying results. 

 

Figure 1. Oklahoma Hard Red Winter Wheat for Harvest Basis from 1942 to 2012 
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Figure 2. Illinois Corn for Harvest Basis from 1975 to 2012 

 

 

 

Figure 3. Illinois Soybean for Harvest Basis from 1975 to 2009 
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In addition to the grain basis series, we use three macroeconomic series out of 

fourteen series that Nelson and Plosser (1982) used to estimate impacts of structural 

breaks on stationary processes. Several researchers have applied Nelson and Plosser data 

sets to their studies to show how different the various estimation methods work with 

these data series (Perron, 1988, Zivot and Andrews, 1992 Nunes et al., 1997). In the 

study, we use Nelson and Plosser data sets to show how different the developed model 

can imply impact of permanent and temporary shocks. All their data can be accessed at 

http://korora.econ.yale.edu/phillips/data/np&enp.dat. The selected three data series for 

the new stochastic time series model are the total employment from 1890 to 1988, total 

unemployment rate from 1890 to 1988, the money stock from 1889 to 1988, and the 

stock prices from 1871 to 1988 and these three data sets are extended from original data 

set ending in 1970. The total employment, money stock and stock price follow a random 

walk while the series of total unemployment rate follows a stationary series. With total 

employment rate, we show whether the proposed model can estimate stationary series or 

not. Figures 4-7 display four series. These data are annual data and thus many smaller 

variations would average out. Since the feature of permanent shocks remaining a market 

forever, using high-frequency time-series data is not useful to apply the proposed model. 

We follow their data transformation that the four series are transformed to natural log.  

For the original models and the models adjusted for positive autocorrelation, we 

compute first order autocorrelation in first differenced series. The harvest basis series for 

Oklahoma red winter wheat, Illinois corn and soybean have negative autocorrelation at 

lag one. The total employment, money stock and stock price display positive 
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autocorrelation at lag one. Table 1 reports the first order autocorrelation of the series in 

first difference. 

 
Figure 4. Total Employment from 1890 to 1988 

 

 

Figure 5. Money Stock from 1889 to 1988 
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Figure 6. Stock Prices from 1871 to 1988 

 

 

 

Figure 7. Total Unemployment Rate from 1890 to 1988 
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Table 1 Autocorrelation of Series in First Difference 
 Autocorrelation P-values for 

Durbin-Watson test 
Oklahoma red wehat harvest basis (1964-2012) -0.507 <.0001* 
Illinois corn harvest basis (1975-2012) -0.305 0.0566 
Illinois soybean harvest basis (1975-2009) -0.302 0.0674 
Money Stock (1889-1988) 0.622 <.0001* 
Stock price (1871-1988) 0.174 0.0201* 
Total employment (1890-1988) 0.311 0.0005* 
Total unemployment rate (1890-1988) 0.755 <.0001* 
Note: One (*) indicates the rejection of the hypothesis of no first order autocorrelation at 5% significance 
level.  
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CHAPTER V 
 

 

Results 

Poisson-jump and Bernoulli-jump processes are applied to capture permanent 

shocks. With the Poisson-jump model, multiple jumps are possible to make the Poisson-

jump likelihood function tractable, its infinite sum must be approximated by a finite sum. 

Table 2 shows that once the finite sum reaches four there is no change in the parameter 

estimates. In the permanent-Bernoulli jump model, the number of permanent shocks is 

either zero or one. The original model assumes no autocorrelation in jumps and results in 

negative autocorrelation in the first differenced series. For the requirement of the original 

model, Oklahoma hard red winter wheat and Illinois corn and soybean basis series are 

used since they display negative autocorrelation in first differenced series are used. For 

series having positive autocorrelation, the assumptions of the original model are relaxed. 

The money stock, stock prices and total employment have positive autocorrelation and 

are used for the adjusted models. Table 1 reports the autocorrelation in first differenced 

series. For corn and soybean bases, series show negative autocorrelation but they are 

failed to reject the null hypothesis of no first order autocorrelation at 5% significance 

level. We estimate grain basis with adjusted models as well. For macroeconomic 

variables, all series are positive and significant at 5% level. 
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Table 2. Parameter Estimates of Poisson-Jump Model with Different Number of 
Jumps for Oklahoma Wheat Basis 
Parameters 1 Jump 2 Jumps 3 Jumps 4 Jumps 5 Jumps 6 >Jumps 
Drift (𝛾) -0.0082 

(0.0107) 
-0.0081 
(0.0107) 

-0.0080 
(0.0107) 

-0.0080 
(0.0107) 

-0.0080 
(0.0107) 

-0.0080 
(0.0107) 

       
Jump Mean �𝜇𝐽� 0.0252 

(0.1245) 
0.0193 
(0.0983) 

0.0181 
(0.0939) 

0.0180 
(0.0934) 

0.0180 
(0.0934) 

0.0180 
(0.0934) 

       
Variance (𝜎𝜀2) 0.0027 

(0.0007) 
0.0025 
(0.0007) 

0.0025 
(0.0007) 

0.0025 
(0.0007) 

0.0025 
(0.0007) 

0.0025 
(0.0007) 

       
Jump Variance�𝜎𝐽2� 0.1767 

(0.0814) 
0.1388 
(0.0693) 

0.1321 
(0.0690) 

0.1315 
(0.0692) 

0.1315 
(0.0692) 

0.1315 
(0.0692) 

       
Probability of Jump 
(𝜆) 

0.1765 
(0.0635) 

0.2261 
(0.0874) 

0.2373 
(0.0967) 

0.2384 
(0.0980) 

0.2384 
(0.0981) 

0.2384 
(0.0981) 

AIC -72.1 -74.7 -74.9 -74.9 -74.9 -74.9 
Note: numbers in parenthesis are standard errors. 

 

Permanent-Jumps and Temporary-Shocks Model 

In table 3-12, the jump mean, the jump variance, and the probability (average of 

jump probability for Poisson-jump process) are from Poisson-jump and Bernoulli-jump 

processes, respectively, the variance is from diffusion process, and a drift is considered. 

These parameters are estimated with different estimation methods, the maximum 

likelihood estimation (MLE) ignoring the presence of autocorrelation, the generalized 

method of moments (GMM) with and without imposing an additional moment for 

autocorrelation, and GMM with Monte Carlo method to compute standard errors for the 

parameter estimates. From tables 3-12, we compare the values between the third and the 

fifth columns. The second column shows the estimated parameters with quasi-maximum 

likelihood estimation but in MLE estimation, we do not consider autocorrelation. For the 

second and fourth columns, GMM estimation is used. The third column represents the 
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estimated parameters of GMM without considering autocorrelation and thus the 

coefficients of parameters are similar to the coefficients estimated from MLE. Since the 

small sample property of GMM, the standard errors can be different. The fourth column 

reports the estimated parameters of GMM with considering autocorrelation. We add an 

additional moment equation for autocorrelation. For possibly biased standard errors of 

GMM estimation, Monte Carlo method is used. The fourth and sixth columns present the 

estimated parameters from Monte Carlo Method. The coefficients of parameters in the 

fifth column are used to estimate other objects of this study. Tables 3-8 present the 

estimates of Poisson-jump and Bernoulli-jump models for the three basis series. Since 

there obviously exists negative autocorrelation in wheat basis series, we should not 

ignore autocorrelation causing temporary shocks in the series. The GMM process with 

autocorrelation for wheat series produces slightly different values in a jump mean and 

jump variance from GMM without autocorrelation. In the study, we take the values from 

the GMM estimation with autocorrelation.  

Table 3 reports the parameter estimates for Oklahoma hard red winter wheat basis 

from the permanent-jump and temporary-diffusion model both for Poisson-jump and 

Bernoulli-jump cases. Most time-series models that consider structural breaks treat 

structural breaks as indicator variables and estimate the impact of them on a series. 

However, we impose a Poisson distribution and a Bernoulli distribution to show a 

probability of occurrence of permanent shocks related to structural breaks and size of 

permanent shocks. In addition, we consider a distribution for the size of temporary 

shocks. In the Poisson-jump model from the fifth column in table 6, the jump probability 

is 0.2281 and in the Bernoulli-jump model, the probability of one jump is 0.1949. The 
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estimated jump variance is relatively bigger than the estimated variance of temporary 

shocks for both the Poisson-jump and Bernoulli-jump processes. From the results, most 

shocks are permanent and it implies a shorter moving average is best for forecasting.  

Table 4, 6, and 8 present the estimated parameters from the adjusted models with 

wheat, corn and soybean bases. These grain bases have negative autocorrelation at lag 

one, but only wheat basis has the statistical significance of autocorrelation. Therefore, we 

apply the adjusted models for these series. Due to the jump autocorrelation parameter, for 

Oklahoma red winter wheat, the coefficient values of jump mean and jump variance 

slightly are changed but the jump probability is decreased in table 4. For corn and 

soybean, the jump probability is obviously changed while the coefficients values of other 

parameters are almost close to those of original models. The existence of jump 

autocorrelation decreases the frequency of jumps. 
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Table 3. Parameter Estimates for Oklahoma Wheat Harvest Basis from Permanent-
Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation With Autocorrelation 

Parameters MLE GMM 
Monte Carlo 

(1000 samples 
and size 71) 

GMM 
Monte Carlo 

(1000 samples 
and size 71) 

Poisson-jump 
Drift (𝛾) -0.0081 

(0.0107) 
-0.0080 
(0.0076) 

-0.0082 
(0.0128) 

-0.0085 
(0.0157) 

-0.0073 
(0.0290) 

      
Jump mean �𝜇𝐽� 0.0193 

(0.0934) 
0.0180 

(0.1090) 
0.0169 

(0.1048) 
0.0096 

(0.0792) 
0.0094 

(0.0068) 
      
Variance (𝜎𝜀2) 0.0025 

(0.0007) 
0.0025 

(0.0006) 
0.0026 

(0.0012) 
0.0026 

(0.0006) 
0.0022 

(0.0011) 
      
Jump variance 
�𝜎𝐽2� 

0.1388 
(0.0692) 

0.1315 
(0.1156) 

0.1288 
(0.0905) 

0.1088 
(0.0120) 

0.1255 
(0.3767) 

      
Probability of 
Jump (𝜆) 

0.2261 
(0.0981) 

0.2384 
(0.1678) 

0.2595 
(0.1598) 

0.2281 
(0.0810) 

0.2448 
(0.3708) 

      
Bernoulli-jump 
Drift (𝛽) -0.0080 

(0.0107) 
-0.0080 
(0.0108) 

-0.0084 
(0.0092) 

-0.0085 
(0.0108) 

-0.0075 
(0.0488) 

      
Jump mean (𝜇𝐵) 0.0209 

(0.1083) 
0.0209 

(0.1104) 
0.0307 

(0.1274) 
0.0091 

(0.1053) 
0.0067 

(0.0867) 
      
Variance (𝜎𝑒2) 0.0025 

(0.0006) 
0.0025 

(0.0007) 
0.0025 

(0.0011) 
0.0026 

(0.0007) 
0.0022 

(0.0082) 
      
Jump variance 
(𝜎𝐵2) 

0.1536 
(0.0693) 

0.1536 
(0.0816) 

0.1463 
(0.1019) 

0.1304 
(0.0358) 

0.1417 
(0.1677) 

      
Probability of 
Jump (𝑃) 

0.2059 
(0.0714) 

0.2059 
(0.0743) 

0.2157 
(0.1014) 

0.1949 
(0.0572) 

0.2041 
(0.1317) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 4. Parameter Estimates for Oklahoma Wheat Harvest Basis from Adjusted 
Permanent-Poisson Jumps and Temporary-Shocks Model 

 Without Autocorrelation With Autocorrelation 

Parameters MLE GMM 
Monte Carlo 

(1000 samples 
and size 71) 

GMM 
Monte Carlo 

(1000 samples 
and size 71) 

Poisson-jump 
Drift (𝛾∗) -0.0072 

(0.0111) 
-0.0072 
(0.0022) 

-0.0072  
(0.0138) 

-0.0072 
(0.0082) 

-0.0087 
(0.0321) 

      
Jump mean �𝜇𝐽∗� 0.0208 

(0.1366) 
0.0208 

(0.0004) 
0.0478 

(0.0611) 
0.0083 

(0.1643) 
0.0207 

(0.0338) 
      
Variance (𝜎𝜀2∗) 0.0024 

(0.0007) 
0.0024 

(0.00003) 
0.0026 

(0.0012) 
0.0023 

(0.0004) 
0.0096 

(0.0218) 
      
Jump variance 
�𝜎𝐽2∗� 

0.1929 
(0.1187) 

0.1929 
(0.0012) 

0.1748 
(0.0792) 

0.1783 
(0.1361) 

0.1856 
(0.0282) 

      
Probability of 
Jump (𝜆∗) 

0.1416 
(0.0663) 

0.1416 
(0.0001) 

0.1516 
(0.0893) 

0.1478 
(0.0600) 

0.1349 
(0.0325) 

      
Autocorrelation 
of jump (𝜌) 

0.1961 
(0.2315) 

0.1961 
(0.0013) 

0.2006 
(0.0492) 

0.2262 
(0.0479) 

0.1905 
(0.0263) 

      
Bernoulli-jump 
Drift (𝛽∗) -0.0072 

(0.0111) 
-0.0072 
(0.0116) 

-0.0077 
(0.0153) 

-0.0063 
(0.0315) 

-0.0076 
(0.0164) 

      
Jump mean (𝜇𝐵∗ ) 0.0223 

(0.1468) 
0.0223 

(0.1504) 
0.0274 

(0.0091) 
0.0223 

(0.0721) 
0.0154 

(0.0257) 
      
Variance (𝜎𝑒2∗) 0.0024 

(0.0007) 
0.0024 

(0.0007) 
0.0028 

(0.0041) 
0.0012 

(0.0004) 
0.0092 

(0.0172) 
      
Jump variance 
(𝜎𝐵2∗) 

0.2065 
(0.1202) 

0.2065 
(0.1175) 

0.1353 
(0.0097) 

0.0447 
(0.0082) 

0.1972 
(0.0186) 

      
Probability of 
Jump (𝑃∗) 

0.1321 
(0.0565) 

0.1321 
(0.0487) 

0.1331 
(0.0119) 

0.1363 
(0.0161) 

0.1245 
(0.0198) 

      
Autocorrelation 
of jump (𝜃) 

0.1902 
(0.2141) 

0.1902 
(0.1234) 

0.1919 
(0.0110) 

0.1919 
(0.2073) 

0.1854 
(0.0150) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 5. Parameter Estimates for Illinois Corn Harvest Basis from Permanent-
Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation With Autocorrelation 

Parameters MLE GMM 
Monte Carlo 

(1000 samples 
and size 37) 

GMM 
Monte Carlo 

(1000 samples 
and size 37) 

Poisson-jump 
Drift (𝛾) -0.0299 

(0.0353) 
-0.0299 
(0.0871) 

-0.0308 
(0.0336) 

-0.0334 
(0.0164) 

-0.0321 
(0.0608) 

      
Jump mean �𝜇𝐽� 0.0500 

(0.0652) 
0.0500 

(0.1035) 
0.0498 

(0.0927) 
0.0582 

(0.0345) 
0.0610 

(0.0593) 
      
Variance (𝜎𝜀2) 0.0045 

(0.0028) 
0.0045 

(0.0093) 
0.0044 

(0.0036) 
0.0050 

(0.0016) 
0.0046 

(0.0080) 
      
Jump variance 
�𝜎𝐽2� 

0.0681 
(0.0400) 

0.0681 
(0.0930) 

0.0582 
(0.0298) 

0.0661 
(0.0007) 

0.0959 
(0.4636) 

      
Probability of 
Jump (𝜆) 

0.8336 
(0.4464) 

0.8336 
(0.4877) 

0.8891 
(0.2673) 

0.7747 
(0.1363) 

0.7910 
(0.4293) 

      
Bernoulli-jump 
Drift (𝛽) -0.0304 

(0.0361) 
-0.0304 
(0.0363) 

-0.0348 
(0.0397) 

-0.0392 
(0.0441) 

-0.0341 
(0.0288) 

      
Jump mean (𝜇𝐵) 0.0734 

(0.0893) 
0.0734 

(0.0896) 
0.0875 

(0.1223) 
0.0927 

(0.1120) 
0.0927 

(0.0235) 
      
Variance (𝜎𝑒2) 0.0044 

(0.0027) 
0.0044 

(0.0019) 
0.0043 

(0.0041) 
0.0057 

(0.0041) 
0.0059 

(0.0364) 
      
Jump variance 
(𝜎𝐵2) 

0.0926 
(0.0377) 

0.0926 
(0.0235) 

0.0872 
(0.0628) 

0.0854 
(0.0147) 

0.0901 
(0.1785) 

      
Probability of 
Jump (𝑃) 

0.5761 
(0.1323) 

0.5761 
(0.1555) 

0.5836 
(0.2604) 

0.5247 
(0.0991) 

0.5271 
(0.1442) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 6. Parameter Estimates for Illinois Corn Harvest Basis from Adjusted 
Permanent-Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation With Autocorrelation 

Parameters MLE GMM 
Monte Carlo 

(1000 samples 
and size 100) 

GMM 
Monte Carlo 

(1000 samples 
and size 100) 

Poisson-jump 
Drift (𝛾∗) -0.0299 

(0.0355) 
-0.0291 
(0.5818) 

-0.0280 
(0.0242) 

-0.0581 
(0.0073) 

-0.0308 
(0.0564) 

      
Jump mean �𝜇𝐽∗� 0.0495 

(0.0731) 
0.0478 

(1.0540) 
0.0476 

(0.0242) 
0.0453 

(0.0055) 
0.0456 

(0.0450) 
      
Variance (𝜎𝜀2∗) 0.0045 

(0.0028) 
0.0045 

(0.2505) 
0.0033 

(0.0058) 
0.0136 

(0.0005) 
0.0133 

(0.0217) 
      
Jump variance 
�𝜎𝐽2∗� 

0.0675 
(0.0613) 

0.0674 
(1.2557) 

0.0628 
(0.0241) 

0.0317 
(0.0014) 

0.0619 
(0.0473) 

      
Probability of 
Jump (𝜆∗) 

0.4212 
(0.2331) 

0.4221 
(1.7120) 

0.4282 
(0.0491) 

0.4303 
(0.0124) 

0.4179 
(0.0506) 

      
Autocorrelation 
of jump (𝜌) 

1.0000 
(1.3633) 

1.0005 
(0.2999) 

0.9890 
(0.0580) 

1.0212 
(0.0253) 

0.9936 
(0.0456) 

      
Bernoulli-jump 
Drift (𝛽∗) -0.0301 

(0.0357) 
-0.0301 
(0.0356) 

-0.0309 
(0.0259) 

-0.0597 
(0.1408) 

-0.0348 
(0.0607) 

      
Jump mean (𝜇𝐵∗ ) 0.0605 

(0.0853) 
0.0605 

(0.0736) 
0.0602 

(0.0297) 
0.0555 

(0.1828) 
0.0500 

(0.0856) 
      
Variance (𝜎𝑒2∗) 0.0044 

(0.0027) 
0.0044 

(0.0019) 
0.0037 

(0.0047) 
0.0143 

(0.0066) 
0.0331 

(0.0705) 
      
Jump variance 
(𝜎𝐵2∗) 

0.0794 
(0.0639) 

0.0794 
(0.0234) 

0.0708 
(0.0249) 

0.0373 
(0.0663) 

0.0691 
(0.0694) 

      
Probability of 
Jump (𝑃∗) 

0.3466 
(0.1456) 

0.3466 
(0.1212) 

0.3575 
(0.0467) 

0.3553 
(0.0897) 

0.3405 
(0.0743) 

      
Autocorrelation 
of jump (𝜃) 

1.0000 
(1.2821) 

1.0003 
(0.0026) 

0.9910 
(0.0340) 

1.0236 
(1.6108) 

0.9766 
(0.0563) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 7. Parameter Estimates for Illinois Soybean Harvest Basis from Permanent-
Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation With Autocorrelation 
Parameters MLE GMM Monte Carlo 

(1000 samples 
and size 34) 

GMM Monte Carlo 
(1000 samples 
and size 34) 

Poisson-jump 
Drift (𝛾) -0.0139 

(0.0456) 
-0.0139 
(0.0266) 

-0.0148 
(0.0487) 

-0.0072 
(0.0172) 

-0.0089 
(0.0399) 

      
Jump mean �𝜇𝐽� 0.0176 

(0.0443) 
0.0176 

(0.0336) 
0.0192 

(0.0579) 
0.0139 

(0.0237) 
0.0160 

(0.0463) 
      
Variance (𝜎𝜀2) 0.0026 

(0.0039) 
0.0026 

(0.0011) 
0.0029 

(0.0043) 
0.0034 

(0.0020) 
0.0026 

(0.0032) 
      
Jump variance 
�𝜎𝐽2� 

0.0425 
(0.0259) 

0.0425 
(0.0066) 

0.0403 
(0.0250) 

0.0430 
(0.0004) 

0.0780 
(0.4929) 

      
Probability of 
Jump (𝜆) 

1.3039 
(0.7461) 

1.3039 
(0.2142) 

1.3342 
(0.3582) 

1.2139 
(0.1687) 

1.2329 
(0.4149) 

      
Bernoulli-jump 
Drift (𝛽) -0.0170 

(0.0465) 
-0.0170 
(0.0593) 

-0.0259 
(0.3008) 

-0.0103 
(0.0471) 

-0.0155 
(0.1718) 

      
Jump mean (𝜇𝐵) 0.0361 

(0.0805) 
0.0361 

(0.0911) 
0.0367 

(0.0987) 
0.0287 

(0.0847) 
0.3281 

(0.0955) 
      
Variance (𝜎𝑒2) 0.0025 

(0.0037) 
0.0025 

(0.0048) 
0.0034 

(0.0045) 
0.0032 

(0.0052) 
0.0030 

(0.0050) 
      
Jump variance 
(𝜎𝐵2) 

0.0750 
(0.0275) 

0.0750 
(0.0274) 

0.0690 
(0.0295) 

0.0742 
(0.0258) 

0.0764 
(0.0269) 

      
Probability of 
jump (𝑃) 

0.7205 
(0.2215) 

0.7205 
(0.2591) 

0.7551 
(0.2636) 

0.6857 
(0.2085) 

0.7073 
(0.1292) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 8. Parameter Estimates for Illinois Soybean Harvest Basis from Adjusted 
Permanent-Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation With Autocorrelation 

Parameters MLE GMM 
Monte Carlo 

(1000 samples 
and size 34) 

GMM 
Monte Carlo 

(1000 samples 
and size 34) 

Poisson-jump 
Drift (𝛾∗) -0.0209 

(0.0672) 
-0.0209 
(0.0065) 

-0.0297 
(0.0289) 

-0.0313 
(0.1044) 

-0.0327 
(0.0084) 

      
Jump mean �𝜇𝐽∗� 0.0249 

(0.0581) 
0.0249 

(0.0073) 
0.0209 

(0.0259) 
0.0520 

(0.1100) 
0.0508 

(0.0070) 
      
Variance (𝜎𝜀2∗) 0.0016 

(0.0044) 
0.0016 

(0.0029) 
0.0015 

(0.0013) 
0.0007 

(0.0047) 
0.0020 

(0.0088) 
      
Jump variance 
�𝜎𝐽2∗� 

0.0474 
(0.0522) 

0.0474 
(0.0244) 

0.0405 
(0.0165) 

0.0623 
(0.0283) 

0.0603 
(0.0144) 

      
Probability of 
Jump (𝜆∗) 

0.8486 
(0.7527) 

0.8486 
(1.3111) 

0.8566 
(0.0277) 

0.6449 
(0.4457) 

0.6447 
(0.0007) 

      
Autocorrelation 
of jump (𝜌) 

0.4179 
(1.4263) 

0.4179 
(0.5420) 

0.4523 
(0.0631) 

0.3312 
(0.2248) 

0.3306 
(0.0033) 

      
Bernoulli-jump 
Drift (𝛽∗) -0.0315 

(0.0604) 
-0.0315 
(0.1323) 

-0.0302 
(0.0125) 

-0.0313 
(0.1044) 

-0.0427 
(0.0639) 

      
Jump mean (𝜇𝐵∗ ) 0.0529 

(0.0849) 
0.0529 

(0.1439) 
0.0527 

(0.0154) 
0.0520 

(0.1100) 
0.0395 

(0.0457) 
      
Variance (𝜎𝑒2∗) 0.0009 

(0.0038) 
0.0009 

(0.0085) 
0.0011 

(0.0005) 
0.0007 

(0.0047) 
0.0058 

(0.0080) 
      
Jump variance 
(𝜎𝐵2∗) 

0.0745 
(0.0354) 

0.0744 
(0.0489) 

0.0696 
(0.0109) 

0.0623 
(0.0283) 

0.0498 
(0.0301) 

      
Probability of 
Jump (𝑃∗) 

0.6389 
(0.3181) 

0.6489 
(0.5687) 

0.6348 
(0.0412) 

0.6449 
(0.4457) 

0.6314 
(0.0235) 

      
Autocorrelation 
of jump (𝜃) 

0.2002 
(0.3345) 

0.2002 
(0.1879) 

0.1972 
(0.0148) 

0.3312 
(0.2248) 

0.3192 
(0.0199) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Tables 9-11 report the results of the adjusted model with money stock, stock 

prices and total employment series that have positive autocorrelation. Money stock, stock 

prices and total employment series are selected out of the fourteen series. Money stock 

and stock price series are have relatively bigger jump variance than variance from 

temporary shocks, and total employment series has relatively smaller values of jump 

variance than variance from temporary shocks. In tables 6-8, the parameters of the jump 

mean, the jump variance, the probability and the autocorrelation of jumps are from 

Poisson-jump and Bernoulli-jump processes, respectively, the variance is from temporary 

shocks, and a drift. The positive autocorrelation of permanent shocks neutralize the 

negative autocorrelation of temporary shocks. In the study of Perron (1982) with Nelson 

and Plosser’s (1982) fourteen microeconomic series, he imposed one structural break 

either at the Great Crash of 1929 or at the 1973 oil-price shock. Later studies based on 

Perron’s(1982) paper have argued whether the time point occurring structural breaks is 

known and how many jumps should be imposed. With the proposed models, we do not 

concentrate on how structural breaks affect unit root tests. 

Table 9 reports the parameter estimates for the money stock series from the adjusted 

permanent-jump and temporary-diffusion models both for Poisson-jump and Bernoulli-

jump cases. In table 9, we compare the values between the second and the fourth columns. 

The second column shows the parameters estimated from GMM without an additional 

moment condition about autocorrelation, and the fourth column shows the parameters 

estimated from GMM with an additional moment condition about autocorrelation. For 

money stock series, the GMM process with autocorrelation produces slightly different 

estimates and standard errors from GMM without autocorrelation. The value of jump 
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variance is also bigger than that of variance of temporary shocks for both a Poisson-jump 

process and a Bernoulli-jump process with a money stock series. The positive 

autocorrelation from the fourth column, 0.1814 for Poisson-jump model and 0.1714 for 

Bernoulli-jump model, imply that a large value of ∑ 𝐽𝑢𝑚𝑝𝑞,𝑡
𝑄𝑡
𝑞=0  is likely to be followed 

by an additional effect in the next time period. 

Table 10 presents the estimates using stock prices. The values of jump variance, 0.0006 

for Poisson and 0.0011 for Bernoulli are smaller than the values of variance from 

temporary shocks, 0.0092 for Poisson and 0.0092 for Bernoulli and the probability is 

relatively smaller than that of other series. From table 11, the variance of temporary 

shocks in total employment series is close to zero (0.00003), but the variances of 

permanent shocks is relatively bigger for both the adjusted Poisson-jump model (0.0014) 

and an adjusted Bernoulli-jump model (0.0019).  
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Table 9. Parameter Estimates for Money Stock from Adjusted Permanent-Poisson 
Jumps and Temporary-Shocks Model 
 Without Autocorrelation With Autocorrelation 

Parameters MLE GMM 
Monte Carlo 

(1000 samples 
and size 100) 

GMM 
Monte Carlo 

(1000 samples 
and size 100) 

Poisson-jump 
Drift (𝛾∗) 0.0699 

(0.0060) 
0.0699 

(0.0033) 
0.0070 

(0.0029) 
0.0699 

(0.0186) 
0.0699 

(0.0030) 
      
Jump mean �𝜇𝐽∗� -0.0201 

(0.0322) 
-0.0201 
(0.0113) 

-0.0204 
(0.0069) 

-0.0250 
(0.0616) 

-0.0251 
(0.0037) 

      
Variance (𝜎𝜀2∗) 0.0006 

(0.0004) 
0.0006 

(0.0001) 
0.0005 

(0.0003) 
0.0006 

(0.0003) 
0.0006 

(0.0031) 
      
Jump variance 
�𝜎𝐽2∗� 

0.0067 
(0.0060) 

0.0067 
(0.0014) 

0.0059 
(0.0028) 

0.0078 
(0.0080) 

0.0075 
(0.0034) 

      
Probability (𝜆∗) 0.2506 

(0.3326) 
0.2503 

(0.0409) 
0.2519 

(0.0094) 
0.2066 

(0.1906) 
0.2065 

(0.0029) 
      
Autocorrelation 
of jump (𝜌) 

0.2112 
(0.5971) 

0.2112 
(0.0024) 

0.2113 
(0.0095) 

0.1814 
(0.1478) 

0.1811 
(0.0047) 

      
Bernoulli-jump 
Drift (𝛽∗) 0.0699 

(0.0060) 
0.0699 

(0.0061) 
0.0718 

(0.0084) 
0.0700 

(0.0056) 
0.0728 

(0.0100) 
      
Jump mean (𝜇𝐵∗ ) -0.0241 

(0.0336) 
-0.0241 
(0.0432) 

-0.0250 
(0.0223) 

-0.0275 
(0.0296) 

-0.0298 
(0.0114) 

      
Variance (𝜎𝑒2∗) 0.0006 

(0.0004) 
0.0006 

(0.0005) 
0.0007 

(0.0005) 
0.0007 

(0.0001) 
0.0008 

(0.0007) 
      
Jump variance 
(𝜎𝐵2∗) 

0.0078 
(0.0049) 

0.0078 
(0.0045) 

0.0073 
(0.0031) 

0.0083 
(0.0031) 

0.0077 
(0.0016) 

      
Probability of 
jump (𝑃∗) 

0.2119 
(0.1984) 

0.2118 
(0.1914) 

0.2244 
(0.0258) 

0.1902 
(0.0673) 

0.2257 
(0.0383) 

      
Autocorrelation 
of jump (𝜃) 

0.1939 
(0.5077) 

0.1939 
(0.2801) 

0.1992 
(0.0206) 

0.1714 
(0.1361) 

0.2030 
(0.0456) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 10. Parameter Estimates for Stock Prices from Adjusted Permanent-Poisson 
Jumps and Temporary-Shocks Model 
 Without Autocorrelation  With Autocorrelation 
Parameters MLE GMM Monte Carlo 

(1000 samples 
and size 118) 

GMM Monte Carlo 
(1000 samples 
and size 118) 

Poisson-jump 
Drift (𝛾∗) 0.0467 

(0.0169) 
0.0467 

(0.0727) 
0.0475 

(0.0027) 
0.0469 

(0.0125) 
0.0471 

(0.0160) 
      
Jump mean �𝜇𝐽∗� -0.5992 

(0.2858) 
-0.5992 
(0.2853) 

-0.5997 
(0.0180) 

-0.6053 
(0.1384) 

-0.6059 
(0.0171) 

      
Variance (𝜎𝜀2∗) 0.0092 

(0.0022) 
0.0092 

(0.0491) 
0.0072 

(0.0029) 
0.0092 

(0.0021) 
0.0069 

(0.0187) 
      
Jump variance �𝜎𝐽2∗� 0.0006 

(0.0334) 
0.0006 

(0.0162) 
0.0014 

(0.0032) 
0.0002 

(0.0144) 
0.0049 

(0.0102) 
      
Probability (𝜆∗) 0.0160 

(0.0271) 
0.0160 

(0.3411) 
0.0181 

(0.0191) 
0.0155 

(0.0356) 
0.0145 

(0.0079) 
      
Autocorrelation of 
jump (𝜌) 

0.2766 
(2.3941) 

0.2767 
(0.6191) 

0.2803 
(0.0189) 

0.3198 
(1.5796) 

0.3127 
(0.0408) 

      
Bernoulli-jump 
Drift (𝛽∗) 0.0465 

(0.0165) 
0.0465 

(0.0152) 
0.0488 

(0.0041) 
0.0464 

(0.0132) 
0.0472 

(0.0079) 
      
Jump mean (𝜇𝐵∗ ) -0.5936 

(0.1771) 
-0.5936 
(0.1902) 

-0.6236 
(0.1103) 

-0.5888 
(0.1779) 

-0.5766 
(0.0466) 

      
Variance (𝜎𝑒2∗) 0.0092 

(0.0018) 
0.0092 

(0.0013) 
0.0074 

(0.0031) 
0.0093 

(0.0011) 
0.0105 

(0.0037) 
      
Jump variance (𝜎𝐵2∗) 0.0011 

(0.0324) 
0.0011 

(0.0190) 
0.0047 

(0.0156) 
0.0015 

(0.0200) 
0.0051 

(0.0096) 
      
Probability of Jump 
(𝑃∗) 

0.0165 
(0.0166) 

0.0165 
(0.0159) 

0.0141 
(0.0055) 

0.0168 
(0.0152) 

0.0145 
(0.0066) 

      
Autocorrelation of 
jump (𝜃) 

0.2295 
(1.4524) 

0.2296 
(0.9830) 

0.1876 
(0.2084) 

0.2038 
(0.3592) 

0.1958 
(0.1275) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Table 11. Parameter Estimates for Total Employment from Adjusted Permanent-
Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation  With Autocorrelation 
Parameters MLE GMM Monte Carlo 

(1000 samples 
and size 99) 

GMM Monte Carlo 
(1000 samples 
and size 99) 

Poisson-jump 
Drift (𝛾∗) 0.0243 

(0.0026) 
0.0244 

(0.0007) 
0.0242 

(0.0016) 
0.0264 

(0.0009) 
0.0251 

(0.0020) 
      
Jump mean �𝜇𝐽∗� -0.0091 

(0.0061) 
-0.0092 
(0.0013) 

-0.0090 
(0.0021) 

-0.0088 
(0.0013) 

-0.0073 
(0.0062) 

      
Variance (𝜎𝜀2∗) 0.00003 

(0.00003) 
0.00003 

(0.00001) 
0.00002 

(0.00003) 
0.00003 

(5.12E-6) 
0.0007 

(0.0001) 
      
Jump variance �𝜎𝐽2∗� 0.0014 

(0.0006) 
0.0014 

(0.0001) 
0.0014 

(0.0003) 
0.0013 

(0.0352) 
0.0012 

(0.0002) 
      
Probability (𝜆∗) 0.6863 

(0.3487) 
0.6804 

(0.0219) 
0.6223 

(0.0231) 
0.6837 

(0.0242) 
0.6570 

(0.0511) 
      
Autocorrelation of 
jump (𝜌) 

0.2147 
(0.3376) 

0.2142 
(0.0178) 

0.2148 
(0.0123) 

0.2550 
(0.0096) 

0.2339 
(0.0155) 

      
Bernoulli-jump 
Drift (𝛽∗) 0.0243 

(0.0026) 
0.0244 

(0.0027) 
0.0242 

(0.0023) 
0.0243 

(0.0028) 
0.0242 

(0.0111) 
      
Jump mean (𝜇𝐵∗ ) -0.0130 

(0.0078) 
-0.0132 
(0.0082) 

-0.0136 
(0.0029) 

-0.0129 
(0.0082) 

-0.0093 
(0.0035) 

      
Variance (𝜎𝑒2∗) 0.00003 

(0.00003) 
0.00004 

(0.00003) 
0.00003 

(0.00002) 
0.00003 

(0.00002) 
0.0008 

(0.0024) 
      
Jump variance (𝜎𝐵2∗) 0.0019 

(0.0005) 
0.0019 

(0.0004) 
0.0018 

(0.0004) 
0.0019 

(0.0003) 
0.0016 

(0.0036) 
      
Probability of Jump 
(𝑃∗) 

0.4965 
(0.1351) 

0.4938 
(0.0934) 

0.4861 
(0.0129) 

0.4982 
(0.0938) 

0.5482 
(0.0157) 

      
Autocorrelation of 
jump (𝜃) 

0.1699 
(0.1870) 

0.1691 
(0.1019) 

0.1682 
(0.0301) 

0.1824 
(0.0317) 

0.1835 
(0.0113) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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 Table 12 reports the results of the adjusted models with total unemployment rate. 

Total employment, money stock and stock price follow non-stationary process while total 

unemployment rate follows stationary process. We estimate permanent and temporary 

shocks in the total unemployment rate series. The total unemployment rate has positive 

autocorrelation and the adjusted model is applied. From the estimated parameters of 

GMM estimation with considering autocorrelation, we found that jump variance (0.3527) 

is relatively bigger than variance (0.0298) from temporary shocks. The frequency of jump 

probability is about 0.5088. The test of unit roots is a first and primary step of a time-

series analysis. Although we do not focus on the existence of unit root in a series in the 

study, we apply a stationary series to estimate a probability of permanent shocks and a 

distribution of the size of permanent shocks and a distribution of the size of temporary 

shocks. 
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Table 12. Parameter Estimates for Total Unemployment Rate from Adjusted 
Permanent-Poisson Jumps and Temporary-Shocks Model 
 Without Autocorrelation  With Autocorrelation 
Parameters MLE GMM Monte Carlo 

(1000 samples 
and size 99) 

GMM Monte Carlo 
(1000 samples 
and size 99) 

Poisson-jump 
Drift (𝛾∗) 1.6119 

(0.0656) 
1.6190 

(0.0918) 
1.6140 

(0.0276) 
1.6658 

(0.0079) 
1.6588 

(0.0765) 
      
Jump mean �𝜇𝐽∗� 0.1302 

(0.2086) 
0.1302 

(0.0185) 
0.1260 

(0.0471) 
0.0541 

(0.0068) 
0.0532 

(0.0632) 
      
Variance (𝜎𝜀2∗) 0.0298 

(0.0140) 
0.0298 

(0.0123) 
0.0279 

(0.0067) 
0.0086 

(0.0007) 
0.0140 

(0.0365) 
      
Jump variance �𝜎𝐽2∗� 0.3527 

(0.2016) 
0.3527 

(0.0441) 
0.3427 

(0.0474) 
0.2552 

(0.0026) 
0.2484 

(0.1057) 
      
Probability (𝜆∗) 0.5088 

(0.1980) 
0.5089 

(0.3230) 
0.5251 

(0.0606) 
0.7539 

(0.0183) 
0.7524 

(0.0289) 
      
Autocorrelation of 
jump (𝜌) 

1.0000 
(0.8151) 

1.0002 
(1.5003) 

1.0146 
(0.0511) 

0.9732 
(0.0188) 

0.9723 
(0.0148) 

      
Bernoulli-jump 
Drift (𝛽∗) 1.6137 

(0.0668) 
1.6190 

(0.2426) 
1.6076 

(0.0391) 
1.6188 

(0.6127) 
1.6196 

(0.0187) 
      
Jump mean (𝜇𝐵∗ ) 0.1705 

(0.1297) 
0.1301 

(0.3872) 
0.1655 

(0.0691) 
0.1301 

(0.2360) 
0.1261 

(0.0351) 
      
Variance (𝜎𝑒2∗) 0.0287 

(0.0134) 
0.0298 

(0.0911) 
0.0269 

(0.0157) 
0.0291 

(0.0287) 
0.0416 

(0.0374) 
      
Jump variance (𝜎𝐵2∗) 0.4300 

(0.2065) 
0.3526 

(0.3509) 
0.4165 

(0.0812) 
0.3525 

(0.2472) 
0.3443 

(0.0256) 
      
Probability (𝑃∗) 0.4040 

(0.1103) 
0.5088 

(0.1024) 
0.4184 

(0.0872) 
0.5088 

(0.0169) 
0.5004 

(0.0309) 
      
Autocorrelation of 
jump (𝜃) 

1.0000 
(0.7528) 

1.0000 
(0.1705) 

1.0187 
(0.0689) 

1.0003 
(0.1165) 

0.9997 
(0.0162) 

Note: Numbers in parenthesis are standard errors. In GMM with and without autocorrelation, for 
a nonlinear minimization problem, Newton-Raphson method with line search and Newton-
Raphson method with ridging method are applied. The optimization techniques stop the iteration 
process when the absolute function convergence criterion meets 1.e-8 or 1.e-12. 
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Test Statistics and Bernoulli-Jump Model under the Alternative Hypothesis 

In the test for a random walk model with a drift, using the Bernoulli-jump process 

𝐻0:𝜎𝑒2 = 0,𝑃 = 1 is tested with the simulated series with 5000 replications and the same 

sample size as the corresponding actual series. The Wald test statistic is asymptotically 

pivotal, which means that its distribution does not depend on unknown parameters. Table 

13 reports the value of Wald test statistics and asymptotic critical values from the Monte 

Carlo simulation with 10% and 5% significance levels, respectively. For a linear trend 

model, we test 𝐻0: 𝑃 = 0. 

We fail to reject the null hypothesis of 𝐻0:𝜎𝑒2 = 0,𝑃 = 1 for harvest wheat, corn 

and soybean basis series at both 10% and 5% significance levels, respectively, since the 

asymptotic critical values at the 10% and 5% significance levels are greater than the 

calculated Wald test statistics. However, we reject the null hypothesis of 𝐻0: 𝑃 = 0 at the 

5 % significance levels. We found that we fail to reject a random walk model with drift 

but we could not fail to reject a linear trend model. 

For money stock, stock price and total employment series, since they have a 

positive autocorrelation at lag one, we simulated the adjusted Bernoulli-jump model. 

From table 13, for the test of nested random walk model with drift, we fail to reject the 

null hypothesis of 𝐻0:𝜎𝑒2 = 0,𝑃 = 1 at the 10% significance level, respectively. For the 

test of the nested linear trend model, the null hypothesis of 𝐻0: 𝑃 = 0 can be rejected at 

the 5% significance levels. In macroeconomic variables, we also found that a Bernoulli-

jump model fail to reject to a random walk model with drift but a Bernoulli-jump model 

reject a linear trend model. 
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Table 13. Monte Carlo Results for Nested Models Test Statistics 

Nested Models Wald Test Statistics Asymptotic Critical Values 
5% 10% 

 Wheat basis (T=71)   
Random walk model with drift  
(𝐻0:𝜎𝑒2 = 0,𝑃 = 1) 2.657 3.332 2.814 

Linear trend model 
(𝐻0: 𝑃 = 0) 7.191 1.799 1.641 

    
 Corn basis (T=38)   
Random walk model with drift  
(𝐻0:𝜎𝑒2 = 0,𝑃 = 1) 2.062 2.648 2.191 

Linear trend model 
(𝐻0: 𝑃 = 0) 11.154 3.466 1.645 

    
 Soybean basis (T=35)   
Random walk model with drift  
(𝐻0:𝜎𝑒2 = 0,𝑃 = 1) 1.794 2.953 1.946 

Linear trend model 
(𝐻0: 𝑃 = 0) 8.565 2.983 1.501 

    
 Money stock (T=100)   
Random walk model with drift  
(𝐻0:𝜎𝑒2 = 0,𝑃 = 1) 1.432 2.869 2.013 

Linear trend model 
(𝐻0: 𝑃 = 0) 8.542 1.899 1.707 

    
 Stock price (T=118)   
Random walk model with drift 
(𝐻0:𝜎𝑒2 = 0,𝑃 = 1) 2.182 2.964 2.302 

Linear trend model 
(𝐻0: 𝑃 = 0) 10.519 1.379 1.288 

    
 Total Employment (T=99)   
Random walk model with drift 
(𝐻0:𝜎𝑒2 = 0,𝑃 = 1) 1.408 3.546 3.159 

Linear trend model 
(𝐻0: 𝑃 = 0) 5.509 1.892 1.572 

Note: T is a number of observations. 
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Optimal Length of Moving Average 

Based on the Poisson jump and Bernoulli jump processes with an autocorrelation moment 

condition, we simulated stochastic series. We select two examples; Oklahoma wheat 

basis having negative autocorrelation at lag one and stock prices having positive 

autocorrelation at lag one. We first apply a simple moving average method for actual 

wheat basis series, stock prices, and simulated stochastic series and then measure the 

accuracy of forecasts, root mean squared errors (RMSE). The simulated series by the 

proposed models involves the existence of permanent shocks in the series.  

Tables 14 and 16 present length of the moving average, using historical series and 

stochastic series from Poisson jump and Bernoulli jump models, respectively. In table 14, 

the 2-year moving average has the lowest RMSE for wheat, corn and soybean harvest 

basis forecasts from actual series. From table 14, the RMSE with stochastic series gives 

relatively large errors. Thus, we compute RMSE with adjusted models and the RMSE 

provide with smaller errors. Table 15 presents the results of RMSE for wheat, corn and 

soybean harvest basis with adjusted models. For money stock, stock prices and total 

employment forecasts, the previous year has the lowest RMSE. With the simulated series, 

the last year is the lowest RMSE for wheat corn and soybean harvest basis forecasts, and 

the last-year is the lowest RMSE for money stock, stock prices and total employment 

forecasts. In all the series, the shorter length of moving average is preferred. That is, the 

effects of permanent shocks dominate and the optimal length of moving average to use 

when forecasting is small to quickly respond to the permanent shocks. In wheat, corn and 

soybean bases, the optimal length of moving average (2-years) from historical series 

differs slightly from the optimal length of moving average (last-year) from the estimated 
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model. In addition, for stock prices of table 16, the simulated series for both Poisson-

jump and Bernoulli-jump models report that the optimal length of moving average to use 

forecasts is 2-years. The reason is that the probability of occurrence of permanent shocks 

is relatively small (Table 10) and size of permanent shocks is smaller than that of 

temporary shocks. With these results, the effects of permanent shocks is important for 

forecasting a series and the effects of temporary shocks is essential for accurate 

forecasting as well. 

 

Table 14. RMSE of Simple Moving Average Models for Grain Basis 
Years Actual Data Poisson-Jumps Bernoulli-Jump 
Oklahoma wheat basis  (T=71) (T=10,000) (T=10,000) 
1-year 0.19174 0.23584 0.24891 
2-year 0.16633 0.30265 0.31298 
3-year 0.16692 0.35421 0.36441 
4-year 0.16772 0.39903 0.40866 
5-year 0.16744 0.43972 0.44830 
    
Illinois corn basis  (T=38) (T=10,000) (T=10,000) 
1-year 0.25214 0.34872 0.32080 
2-year 0.24831 0.45016 0.40946 
3-year 0.24907 0.52930 0.47855 
4-year 0.26457 0.59787 0.53856 
5-year 0.26152 0.65966 0.59276 
    
Illinois soybean basis  (T=35) (T=10,000) (T=10,000) 
1-year 0.24381 0.35319 0.33176 
2-year 0.23937 0.43109 0.43250 
3-year 0.244165 0.50567 0.51033 
4-year 0.24858 0.56960 0.57746 
5-year 0.25347 0.67880 0.63715 
Note: RMSE is the root mean squared error. The lowest RMSE suggests the optimal length for series 
forecasts. T is a number of observations. 
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Table 15. RMSE of Simple Moving Average Models for Grain Basis with Adjusted 
Model  
Years Actual Data Adjusted Poisson-

Jumps 
Adjusted Bernoulli-

Jump 
Oklahoma wheat basis  (T=71) (T=10,000) (T=10,000) 
1-year 0.19174 0.23584 0.24891 
2-year 0.16633 0.30265 0.31298 
3-year 0.16692 0.35421 0.36441 
4-year 0.16772 0.39903 0.40866 
5-year 0.16744 0.43972 0.44830 
    
Illinois corn basis  (T=38) (T=10,000) (T=10,000) 
1-year 0.25214 0.34872 0.32080 
2-year 0.24831 0.45016 0.40946 
3-year 0.24907 0.52930 0.47855 
4-year 0.26457 0.59787 0.53856 
5-year 0.26152 0.65966 0.59276 
    
Illinois soybean basis  (T=35) (T=10,000) (T=10,000) 
1-year 0.24381 0.35319 0.33176 
2-year 0.23937 0.43109 0.43250 
3-year 0.244165 0.50567 0.51033 
4-year 0.24858 0.56960 0.57746 
5-year 0.25347 0.67880 0.63715 
Note: RMSE is the root mean squared error. The lowest RMSE suggests the optimal length for series 
forecasts. T is a number of observations. 
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Table 16. RMSE of Simple Moving Average Models for Macroeconomic Variables 
Years Actual Data Poisson-Jumps Bernoulli-Jump 
Money stock  (T=100) (T=10,000) (T=10,000) 
1-year 0.08591 0.09153 0.09111 
2-year 0.12411 0.11697 0.11622 
3-year 0.16125 0.14634 0.14529 
4-year 0.19719 0.17699 0.17555 
5-year 0.23293 0.20817 0.20643 
    
Stock prices  (T=118) (T=10,000) (T=10,000) 
1-year 0.16035 0.21391 0.21145 
2-year 0.19582 0.20379 0.19959 
3-year 0.22326 0.20876 0.20427 
4-year 0.24737 0.21786 0.21325 
5-year 0.26815 0.22922 0.22499 
    
Total employment  (T=99) (T=10,000) (T=10,000) 
1-year 0.03890 0.03660 0.04632 
2-year 0.05077 0.04626 0.06148 
3-year 0.06081 0.05560 0.07716 
4-year 0.07030 0.06464 0.09296 
5-year 0.07877 0.07355 0.10881 
Note: RMSE is the root mean squared error. The lowest RMSE suggests the optimal length for series 
forecasts. T is a number of observations. 
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Tables 17 and 18 show the effects of jump size and frequency on optimal length 

of moving average and a case where there is no time trend, through the simulated series 

for wheat basis and stock prices. The jump frequency is increased by 0.1 units from 0 

through 1, and the size of jumps is changed by an estimates of jump variance. From table 

17, in the Poisson jump process for wheat harvest basis, frequency is zero and the size of 

jump changes, 3-year is the optimal length. However, when the jump frequency and the 

size of jumps become larger, the one year is the optimal length. From table 18, for 

simulated stock prices of the Poisson jump process, when the jump frequency is 0 and the 

size of jumps is 0, the optimal length of moving average is the 2-year. Figure 7-14 

visually shows the changes of optimal length of moving average. 

If there are no structural breaks then the longer moving average is the optimal 

length. However, in the developed models, we include a time trend in the series. If there 

is no time trend, we obtain the longest length as optimal from tables 17 and 18 and 

figures 9, 11, 13 and 15 as well. For the Bernoulli-jump process, tables 17 and 18 also 

present the changes of optimal length of moving average according to changes in a jump 

probability (𝑃) and a jump size (𝜎𝐵2), respectively.  

Through the simulated stochastic series based on the permanent-jump and temporary 

diffusion model for both a Poisson-jump process and a Bernoulli-jump process, clearly 

the optimal length of moving average is sensitive to the jump frequency and the size of 

permanent shock. 
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Table 17. Optimal Length of Moving Average for Wheat Basis Series According to 
Changes in Mean of Jump Probability and Jump Size from Permanent-Jump 
Processes 
Poisson-Jump Probability (𝜆) of Jumps 
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Jump size �𝜎𝐽2� < 0.1315 
Optimal length (𝑁) 3 2 1 1 1 1 1 1 1 1 1 
Jump size �𝜎𝐽2� < 0.1315 and No time trend (𝛾) = 0 
Optimal length (𝑁) 10 10 5 4 3 3 2 2 2 2 2 
            
Jump size �𝜎𝐽2� = 0.1315 
Optimal length (𝑁) 3 1 1 1 1 1 1 1 1 1 1 
Jump size �𝜎𝐽2� = 0.1315 and No time trend (𝛾) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Jump size �𝜎𝐽2� > 0.1315 
Optimal length (𝑁) 3 1 1 1 1 1 1 1 1 1 1 
Jump size �𝜎𝐽2� > 0.1315 and No time trend (𝛾) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Bernoulli-Jump Probability (𝑃) of One Jump 
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Jump size (𝜎𝐵2) < 0.1536 
Optimal length (𝑁) 3 2 1 1 1 1 1 1 1 1 1 
Jump size (𝜎𝐵2) < 0.1536 and No time trend (𝛽) = 0 
Optimal length (𝑁) 10 8 5 4 3 3 2 2 2 2 2 
            
Jump size (𝜎𝐵2) = 0.1536 
Optimal length (𝑁) 3 1 1 1 1 1 1 1 1 1 1 
Jump size (𝜎𝐵2) = 0.1536 and No time trend (𝛽) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Jump size (𝜎𝐵2) > 0.1536 
Optimal length (𝑁) 3 1 1 1 1 1 1 1 1 1 1 
Jump size (𝜎𝐵2) > 0.1536 and No time trend (𝛽) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
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Figure 8. Optimal Length of Moving Average for Simulated Wheat Basis Series 
from Permanent-Poisson Jump Process 

 

 

Figure 9. Optimal Length of Moving Average for Simulated with No Trend for 
Wheat Basis Series from Permanent-Poisson Jump Process 
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Figure 10. Optimal Length of Moving Average for Simulated Wheat Basis Series 
from Permanent-Bernoulli Jump Process 

 

Figure 11. Optimal Length of Moving Average for Simulated with No Trend for 
Wheat Basis Series from Permanent-Poisson Jump Process 
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Table 18. Optimal Length of Moving Average for Stock Prices According to 
Changes in Mean of Jump Probability and Jump Size from Permanent-Jump 
Processes 
Poisson-Jumps Probability (𝜆) of Jumps 
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Jump size �𝜎𝐽2� < 0.0006 
Optimal length (𝑁) 2 1 1 1 1 1 1 1 1 1 1 
Jump size �𝜎𝐽2� < 0.0006 and No time trend (𝛾) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Jump size �𝜎𝐽2� = 0.0006 
Optimal length (𝑁) 2 1 1 1 1 1 1 1 1 1 1 
Jump size �𝜎𝐽2� = 0.0006 and No time trend (𝛾) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Jump size �𝜎𝐽2� > 0.0006 
Optimal length (𝑁) 2 1 1 1 1 1 1 1 1 1 1 
Jump size �𝜎𝐽2� > 0.0006 and No time trend (𝛾) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Bernoulli-Jump Probability (𝑃) of One Jump 
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Jump size (𝜎𝐵2) < 0.0011 
Optimal length (𝑁) 2 1 1 1 1 1 1 1 1 1 1 
Jump size (𝜎𝐵2) < 0.0011 and No time trend (𝛽) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Jump size (𝜎𝐵2) = 0.0011 
Optimal length (𝑁) 2 1 1 1 1 1 1 1 1 1 1 
Jump size (𝜎𝐵2) = 0.0011 and No time trend (𝛽) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
            
Jump size (𝜎𝐵2) > 0.0011 
Optimal length (𝑁) 2 1 1 1 1 1 1 1 1 1 1 
Jump size (𝜎𝐵2) > 0.0011 and No time trend (𝛽) = 0 
Optimal length (𝑁) 10 1 1 1 1 1 1 1 1 1 1 
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Figure 12. Optimal Length of Moving Average for Simulated Stock Prices from 
Permanent-Poisson Jump Process 

 

 

 

Figure 13. Optimal Length of Moving Average for Simulated with No Trend for 
Stock Prices from Permanent-Poisson Jump Process 
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Figure 14. Optimal Length of Moving Average for Simulated Stock Prices from 
Permanent-Bernoulli Jumps Process 

 

 

Figure 15. Optimal Length of Moving Average for Simulated with No Trend for 
Stock Prices from Permanent-Bernoulli Jumps Process 
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ARIMA Models with Outliers 

The ARIMA models with outliers are estimated in order to compare the performance 

with the developed models. Detection and identification of outliers is important process 

in ARIMA models because outliers can lead to biased parameter estimation and poor 

forecasts. Based on the general ARIMA specification procedure, we estimate ARIMA 

models with first differences. With the ARIMA models, we detect level shift (LS) 

outliers causing the level or mean changes of the series and transient change (TC) outliers 

to match the concept of temporary shocks.  

Tables 19-24 report the results of the ARIMA model with outliers. From table 19, under 

the requirement of specific types of outliers such as level shift and transient changes, the 

model finds two outliers in Oklahoma harvest wheat basis. One outlier occurs in 2007-

2008 crop year and has a temporary effect on the series. The other one occurs in 2010-

2011 year and has a permanent effect on the series. When we compare the findings of 

outliers with the graph of the series from figure 1, the findings tends to follow visual 

inspection. Table 20 reports the results of the ARIMA model with outliers for Illinois 

harvest corn basis, the model finds a transient outlier in 2010- 2011. From table 21 

presenting the results with Illinois soybean harvest basis, the model finds no outliers. In 

figure 3, there are no extraordinary observations near the end of the period, and the 

ARIMA model with outlier does not detect any outlier in soybean basis. With wheat, corn 

and soybean bases for harvest, detection of outliers in this method matches the visual 

inspection. The value of Akaike information criterion (AIC) that measures the relative 

goodness of fit of a model is reported in each table. From the AIC value, ARIMA models 

with outliers always fit data better than conventional ARIMA model.  
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Table 19 ARIMA with Outliers for Oklahoma Harvest Wheat Basis 
Parameters Estimates P-value Years of Outliers Types 
ARIMA(0,1,1)     
MA(1) 0.764 <.0001   
AIC -58.176    
     
ARIMA (0,1,1) with LS and TC 
MA(1) 0.846 <.0001   
Outlier 1 0.254 0.0002 2011 Level Shift 
Outlier 2 -0.433 <.0001 2007 Transient Change 
AIC -80.668    
 

 

Table 20 ARIMA with Outliers for Illinois Harvest Corn Basis 
Parameters Estimates P-value Years of Outliers Types 
ARIMA(0,1,1)     
MA(1) 0.737 <.0001   
AIC 1.236    
     
ARIMA (0,1,1) with LS and TC 
MA(1) 0.769 <.0001   
Outlier 1 0.505 0.0002 2010 Transient Change 
AIC -8.894    
 

 

Table 21 ARIMA with Outliers for Illinois Harvest Soybean Basis 
Parameters Estimates P-value Years of Outliers Types 
ARIMA(0,1,1)     
MA(1) 0.810 <.0001   
AIC -4.391    
     
No Outliers     
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 Tables 17-19 present the results of ARIMA models with outliers for three 

macroeconomic series out of Nelson and Plosser’s (1982) fourteen data sets. With Nelson 

and Plosser (1982) data sets, Perron tested the unit-root hypothesis against the alternative 

hypothesis of trend stationarity with a break to estimate the impacts of either the Great 

Crash of 1929 or the 1973 oil-price shock. He assumed that each series has only one 

shock having a permanent effect either at 1929 or at 1973. With money stock, stock 

prices and total employment series, we allow finding level shift outliers and transient 

outliers. Table 17 repots the results of money stock and the model finds two transient 

outliers with one occurring between 1918 and 1919 and another between 1931 and 1932. 

However, the model did not find a permanent shock at either 1929 or 1973. For the stock 

prices, the model finds two transient outliers and one level shift outlier in table 18. The 

level shift outlier occurred between 1921 and 1922 and it is not at the Great Crash or at 

the oil price shock. From the total employment series, we find one level shift outlier 

during 1891-1892 and one transient outlier after the level shift, however, findings of 

outliers in ARIMA model with outliers are not consistent with Perron’s assumption that 

there exist a permanent shock either at 1929 or at 1973.  

 The ARIMA models with outliers fit data better than the conventional ARIMA 

model. The method tends to capture outliers near the end of the observation period for 

wheat and corn basis. For money stock, stock prices and total employment series, the 

method does not capture the expected structural breaks such as the Great Crash of 1929 

and the 1973 oil price shock. 
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Table 22 ARIMA with Outliers for Money Stock 
Parameters Estimates P-value Years of Outliers Types 
ARIMA(2,1,0)     
AR(1) 0.839 <.0001   
AR(2) -0.012 0.9061   
AIC -316.539    
     
ARIMA (2,1,0) with LS and TC 
AR(1) 0.763 <.0001   
AR(2) 0.083 0.4189   
Outlier 1 0.052 0.1636 1919 Transient Change 
Outlier 2 -0.092 0.0134 1932 Transient Change 
AIC -119.457    
 

Table 23 ARIMA with Outliers for Stock Prices 
Parameters Estimates P-value Years of Outliers Types 
ARIMA (0,1,0) with LS and TC 
Outlier 1 0.204 0.1851 1922 Level Shift 
Outlier 2 -0.341 0.0050 1931 Transient Change 
Outlier 3 -0.294 0.0562 1937 Transient Change 
AIC -103.176    
 

Table 24 ARIMA with Outliers for Total Employment 
Parameter Estimates P-value Years of Outliers Types 
ARIMA(1,1,0)     
AR(1) 0.435 <.0001   
AIC -376.994    
     
ARIMA (1,1,0) with LS and TC 
AR(1) 0.306 0.0018   
Outlier 1 -0.075 0.0170 1893 Transient Change 
Outlier 2 0.018 0.0002 1892 Level Shift 
AIC -388.329    
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Calibration Tests 

We look at how well the developed model fits data, we compare the cumulative 

density function (CDF) between an actual time series and a stochastic series. Table 25 

reports the results of the Kolmogorov-Smirnov (K-S) test of the empirical CDFs of 

harvest wheat basis and stock price under the theoretical CDFs of each simulated series 

based on the proposed models and competing models. We choose harvest wheat basis and 

stock price as each example for the proposed model with negative autocorrelation and the 

adjusted model with positive autocorrelation. First, we simulate observations based on 

the permanent-jump and temporary shocks models, the conventional ARIMA model, and 

the ARIMA model with outliers, in 1000 replications with the sample size as 

corresponding actual series. The null hypothesis is that the observed cumulative 

distribution function for an actual series is from a specific theoretical distribution, which 

is estimated by the developed models and the competing models. The D statistic is the 

maximum distance between the observed and theoretical cumulative distribution 

functions. The critical values for the K-S statistic are from the statistical table. 

Table 25 presents the results of K-S test between empirical CDF of an actual 

series and theoretical CDF of the specified distribution models. For the empirical CDF of 

harvest wheat basis, we reject the null hypothesis that the empirical CDF of the harvest 

wheat basis is from the theoretical CDF of  the conventional ARIMA model at the 5% 

significance level. For the theoretical CDF of the ARIMA model with outliers, the null 

hypotheses could be not rejected at the 5% significance level in both wheat basis and 

stock price. For the theoretical CDFs of the Poisson-jump model and the Bernoulli-jump 

model, we fail to reject the null hypothesis at the 5% significance level, respectively. The 
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results of K-S test show that the harvest wheat basis and stock price more reasonably are 

from the mixed distributions of Poisson (Bernoulli) and normal than the normal 

distribution assumed in convential ARIMA models. 

Figures 16-22 graphically display the empirical CDF and the theoretical CDF for 

harvest wheat basis and stock price. From the results of table 25, we found we fail to 

reject the null hypothesis that the empirical CDF of the harvest wheat basis is from the 

theoretical CDF of ARIMA with outliers at the 5% significance level, however, we can 

see the obvisous difference of the maximum distance between the empirical CDF of an 

actual series and theoretical CDF of ARIMA with outliers and the empirical CDF of an 

actual series and theoretical CDF of the proposed models from figures.We impose a 

Poisson-jump process on permanent shocks and a normal distribution on temporary 

shocks to find a better stochastic time-series model. According to the K-S, we conclude 

that the model combined with a Poisson-jump (or Bernoulli-jump) and normal 

distribution processes reflect the features of data reasonably well.  

 

Table 25. Kolmogorov-Smirnov Test between Empirical CDF of an Actual Series 
and Theoretical CDF of the Specified Distributions 
Data Series D statistic Critical Values of 

K-S test 
Wheat Basis   
ARIMA 0.209 0.161 
ARIMA with LS and TC 0.186 0.161 
Poisson-jump process 0.077 0.161 
Bernoulli-jump process 0.078 0.161 
   
Stock Prices   
ARIMA with LS and TC 0.182 0.125 
Poisson-jump process 0.053 0.125 
Bernoulli-jump process 0.077 0.125 
Note: The null hypothesis is that the two data sets are from the same distribution. 

93 
 



Figure 16. K-S Test of Empirical CDF of Wheat Basis under Theoretical CDF of 
ARIMA model 

 

 

Figure 17. K-S Test of Empirical CDF of Wheat Basis under Theoretical CDF of 
ARIMA model with Outliers 
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Figure 18. K-S Test of Empirical CDF of Wheat Basis under Theoretical CDF of 
Poisson-Jump Process 

 

 

Figure 19. K-S Test of Empirical CDF of Wheat Basis under Theoretical CDF of 
Bernoulli-Jump Process 
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Figure 20. K-S Test of Empirical CDF of Stock Prices under Theoretical CDF of 
ARIMA model with Outliers 

 

 

Figure 21. K-S Test of Empirical CDF of Stock Price under Theoretical CDF of 
Poisson-Jump Process 
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Figure 22. K-S Test of Empirical CDF of Stock Price under Theoretical CDF of 
Bernoulli-Jump Process 
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CHAPTER VI 
 

 

Summary and Conclusion 

Many researchers recognize the weaknesses of current unit-root assumptions used 

in time-series models. The presence of structural breaks in time-series modeling has 

changed the tests for the unit root hypothesis favored in many time series. Irregular 

permanent shocks related to structural breaks in a series are a possible explanation of the 

leptokurtic distributions of many financial time series. Permanent shocks are modeled by 

specifying a probability distribution rather than by indicator variables. Thus, we take a 

different approach to build a new time-series model that treats permanent shocks and 

temporary shocks, differently. We impose a Poisson-jump process and a Bernoulli-jump 

process to reflect permanent shocks and impose a normal distribution to represent 

temporary shocks. Oklahoma hard red winter wheat basis for harvest, Illinois corn basis 

and soybean basis for harvest, money stock, stock prices and total employment and total 

unemployment rate macroeconomics series are used to estimate the developed model and 

the relative impacts of permanent shocks related to structural breaks and of transitory 

shocks. To test the developed model we select four out of Nelson and Plosser’s (1982) 

fourteen series. 
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With their data sets, many researchers have reported the importance of structural breaks 

in time-series analyses by several methods. Their studies depend on whether the time that 

structural breaks occur is assumed known or it is estimated and on the number of 

structural breaks. In the study, however, we estimate the probability of permanent shocks 

and not the time points of the breaks in non-stationary series and stationary series. Total 

unemployment rate is a stationary series while the other six series are non-stationary 

series. 

A temporary shock in the developed model induces negative autocorrelation in 

the differenced series due to overdifferencing the temporary shocks. We also derive a 

model for a time series having positive autocorrelation since some time-series have 

positive autocorrelation. Maximum likelihood estimation (MLE) and generalized method 

of moments (GMM) with an additional moment condition about autocorrelation are 

applied to estimate the developed models. Since we have autocorrelation created by 

overdifferencing temporary shocks, MLE estimation has a computational difficulty to 

compute numerical optimization. GMM estimation is an alternative approach to handle 

autocorrelation. An advantage of GMM estimation is that we can have more moment 

equations than parameters. In the study, we add an additional moment condition about 

autocorrelation with the GMM procedure. Monte Carlo methods are used to estimate the 

standard errors of estimates since GMM standard errors are biased. The Bernoulli-jump 

model has an advantage of encompassing several classic time-series models such as a 

random walk model with drift and a linear time trend model. With the Bernoulli-jump 

model, the random walk model cannot be rejected but the linear time trend model is 

rejected. The critical values of the test statistics are computed using Monte Carlo 
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methods. For a linear time trend model, the computed Wald test critical values are 

relatively bigger than those obtained assuming an asymptotic chi-squared distribution.  

From the developed models, most shocks are permanent except for stock prices as 

shown by estimated jump variance being relatively bigger than the estimated variance of 

temporary shocks. Thus, a shorter moving average is preferred to forecast. Based on the 

results of developed models, we determine the optimal length of moving average to use 

for forecasts. Two years is the optimal length to use for forecasting wheat basis, corn 

basis and soybean basis using the actual data, while with the estimated models, one year 

is the optimal length. For money stock, stock prices and total employment series, the last 

year is the optimal length for both the actual series and the simulated series. In addition, 

when jump frequency and size of jump become larger, the optimal length of moving 

average is the previous year for the time series. That is, the presence of permanent shocks 

as well as the probability and the variance of permanent shocks clearly reduce the optimal 

length of moving average. After permanent shocks associated with structural breaks, a 

shorter moving average is the best for forecasting. 

To evaluate the developed model, the autoregressive integrated moving average 

(ARIMA) model with outliers is selected as a competing model. The ARIMA models 

with outliers describe a series better than the conventional ARIMA models according to 

values of AIC. However, outlier detection with money stock, stock prices and total 

employment series did not detect a level shift outlier either at the 1929 Great crash or at 

the 1973 oil price shock.  

100 
 



Based on the developed models and the competing model, we test how well the 

developed models are calibrated to actual series, using the K-S test. Through the K-S test, 

we provide some implications of the permanent-jump and temporary-diffusion model that 

specify distributions to better describe permanent and temporary shocks. When we 

compare the ARIMA models with outliers and the permanent-jump and temporary-

diffusion models proposed in the paper, the empirical density curve of proposed models 

matches a series better than that of the competing ARIMA models with outliers. 

There are several potential improvements that could be considered in future 

research. First, we can concern the robustness of the developed model. Even though 

quasi-maximum likelihood estimation maximizes the assumed log-likelihood function 

that does not consider autocorrelation, future research should develop a formal proof of  

consistency of maximum likelihood estimation without considering autocorrelation. The 

GMM estimation including an additional moment equation is used to deal with 

autocorrelation. Second, the additional moment equation can cause over identification 

problems in GMM estimation and thus the J-statistics is suggested for a well specified 

overidentified model. Third, the proposed models can be expanded by adding a diffusion 

process for temporary shocks. Finally, we can consider to estimate the proposed model 

with the multivariate time series because a time series can be influenced by one or more 

variables. 
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APPENDICES 
 

In A1, five moment equations for the Bernoulli-jump process are computed as: 
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In A2, For a Bernoulli-jump process, the computation for theoretical autocorrelation is 

derived as: 

A2-1 
𝑐𝑜𝑟𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1) =
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, 

 

where for 𝑣𝑎𝑟(𝐵𝑡 ∙ 𝐽𝑡)  

 𝑣𝑎𝑟(𝐵𝑡 ∙ 𝐽𝑡) = 𝐸(𝐵𝑡)2 ∙ 𝑣𝑎𝑟(𝐽𝑡) + 𝑣𝑎𝑟(𝐵𝑡) ∙ 𝐸(𝐽𝑡)2 + 𝑣𝑎𝑟(𝐵𝑡)

∙ 𝑣𝑎𝑟(𝐽𝑡) 

 

 = 𝑃 ∙ 𝜇𝐵2 − (𝑃2 ∙ 𝜇𝐵2) + 𝑃 ∙ 𝜎𝐵2.  
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In A3, for the adjusted Bernoulli-jump process, the derivation of theoretical 

autocorrelation follows as: 

A3-1 
𝑐𝑜𝑟𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1) =

𝑐𝑜𝑣(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡,𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)
�𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) ∙ �𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1)

 

 
=
𝐸[(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡 − 𝛥𝑠𝑒𝑟𝚤𝑒𝑠����������)(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1 − 𝛥𝑠𝑒𝑟𝚤𝑒𝑠����������)]

𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡)
 

 = 𝐸[(𝐵𝑡 ∙ 𝐽𝑡 + 𝜃 ∙ 𝐵𝑡−1 ∙ 𝐽𝑡−1 + 𝑒𝑡 − 𝑒𝑡−1)(𝐵𝑡−1 ∙ 𝐽𝑡−1 + 𝜃 ∙ 𝐵𝑡−2 ∙ 𝐽𝑡−2 + 𝑒𝑡−1

− 𝑒𝑡−2)]/𝑣𝑎𝑟(𝛥𝑠𝑒𝑟𝑖𝑒𝑠𝑡) 

 
=

𝐸[𝜃 ∙ (𝐵𝑡−1 ∙ 𝐽𝑡−1)2 − (𝑒𝑡−1)2]
𝑣𝑎𝑟(𝛽 + 𝐵𝑡 ∙ 𝐽𝑡 + 𝜃 ∙ 𝐵𝑡−1 ∙ 𝐽𝑡−1 + 𝑒𝑡 − 𝑒𝑡−1)

 

 
=

𝜃 ∙ 𝐸(𝐵𝑡−1𝐽𝑡−1)2 − 𝐸(𝑒𝑡−1)2

𝑣𝑎𝑟(𝐵𝑡 ∙ 𝐽𝑡) + 𝜃2 ∙ 𝑣𝑎𝑟(𝐵𝑡−1 ∙ 𝐽𝑡−1) + 𝑣𝑎𝑟(𝑒𝑡) + 𝑣𝑎𝑟(𝑒𝑡−1)
 

 
=

𝜃 ∙ (𝑃 ∙ 𝜇𝐵2 − (𝑃2 ∙ 𝜇𝐵2) + 𝑃 ∙ 𝜎𝐵2) − 𝜎𝑒2

(1 + 𝜃2) ∙ (𝑃 ∙ 𝜇𝐵2 − (𝑃2 ∙ 𝜇𝐵2) + 𝑃 ∙ 𝜎𝐵2) + 2 ∙ 𝜎𝑒2
, 

where for  𝑣𝑎𝑟(𝐵𝑡 ∙ 𝐽𝑡) 

 𝑣𝑎𝑟(𝐵𝑡 ∙ 𝐽𝑡) = 𝐸(𝐵𝑡)2 ∙ 𝑣𝑎𝑟(𝐽𝑡) + 𝑣𝑎𝑟(𝐵𝑡) ∙ 𝐸(𝐽𝑡)2 + 𝑣𝑎𝑟(𝐵𝑡) ∙ 𝑣𝑎𝑟(𝐽𝑡) 

 = 𝑃 ∙ 𝜇𝐵2 − (𝑃2 ∙ 𝜇𝐵2) + 𝑃 ∙ 𝜎𝐵2, 

where for 𝜃2 ∙ 𝑣𝑎𝑟(𝐵𝑡−1𝐽𝑡−1) 

 𝜃2 ∙ 𝑣𝑎𝑟(𝐵𝑡−1𝐽𝑡−1)

= 𝜃2 ∙ 𝐸(𝐵𝑡−1)2 ∙ 𝑣𝑎𝑟(𝐽𝑡−1) + 𝑣𝑎𝑟(𝐵𝑡−1) ∙ 𝐸(𝐽𝑡−1)2 + 𝜃2

∙ 𝑣𝑎𝑟(𝐵𝑡−1) ∙ 𝑣𝑎𝑟(𝐽𝑡−1) 

 = 𝜃2 ∙ (𝑃 ∙ 𝜇𝐵2 − (𝑃2 ∙ 𝜇𝐵2) + 𝑃 ∙ 𝜎𝐵2). 
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In A4, we provide SAS program code for the Bernoulli-jump model without autocorrelation. 

proc iml; 
use a; 
read all var{dy} into y; 
start f(x) global(y); 
n=nrow(y);  
Pi=3.14; 
/**** b="drift", c="jump mean", d="variance", j="jump variance", 
p="probability" ****/  
/*Compute moment equation*/ 
/*F.O.C of given log-likelihood*/ 
b=x[1]; c=x[2]; d=x[3]; j=x[4]; p=x[5];  
m1 = ((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d)) 
+p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j)))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
m2 = p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))); 
m3 = ((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
m4 = (p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/4)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
m5 = (-(1/2)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
 
mm1=sum(m1)/n; 
mm2=sum(m2)/n; 
mm3=sum(m3)/n; 
mm4=sum(m4)/n; 
mm5=sum(m5)/n; 
m=(mm1//mm2//mm3//mm4//mm5);  
 
/*Compute a weighting matrix*/ 
w11=sum(m1#m1)/n; 
w21=sum(m2#m1)/n;w22=sum(m2#m2)/n; 
w31=sum(m3#m1)/n;w32=sum(m3#m2)/n;w33=sum(m3#m3)/n; 
w41=sum(m4#m1)/n;w42=sum(m4#m2)/n;w43=sum(m4#m3)/n;w44=sum(m4#m4)/n; 
w51=sum(m5#m1)/n;w52=sum(m5#m2)/n;w53=sum(m5#m3)/n;w54=sum(m5#m4)/n;w55
=sum(m5#m5)/n;  
 
 w12=w21;w13=w31;w14=w41;w15=w51;w23=w32;w24=w42;w25=w52; 
 w34=w43;w35=w53;w45=w54; 
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w=(w11||w12||w13||w14||w15)// 
  (w21||w22||w23||w24||w25)// 
  (w31||w32||w33||w34||w35)// 
  (w41||w42||w43||w44||w45)// 
  (w51||w52||w53||w54||w55);  
v=ginv(w);  
q=m`*v*m;  
return(q); 
finish  f; 
x={-0.00804 0.02086 0.0025063 0.1536 0.2059}; 
optn=j(1,10,.);  
optn[1]=0;/*specify a minimization problem*/ 
optn[2]=3;/*specify the amount of printed output*/  
optn[3]=0;/*specify the scaling of the Hessian matrix(HESCAL)*/  
optn[5]=0;/*defines th line-search techniqe for the unconstrianed or 
linearly constrained*/ 
optn[8]=0;/*specify types of differences and how to compute the 
difference interval*/ 
tc=repeat(.,1,12);/*termination criteria that are tested in each 
iteration*/ 
tc[9]=1.e-15;/*9 specifies the absolute function convergence 
criterion(ABSFTOL)*/ 
*tc[12]=1.e-2;/*12 specifies the absolute parameter convergence 
criterion(ABSXTOL), 
Termination requires a small relative parameter change in consecutive 
iterations*/ 
con={  .       .     1.e-5    1.e-5     1.e-5, 
       .       .      .       .          .}; 
call nlpnra(rc,result, "f", x, optn,con)tc=tc;  
xopt=result`; 
n=nrow(y);  Pi=3.14; 
/*Compute variance-covariance matrix*/ 
b=xopt[1]; c=xopt[2]; d=xopt[3]; j=xopt[4]; p=xopt[5];  
m1 = ((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d)) 
+p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j)))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
m2 = p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))); 
m3 = ((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
m4 = (p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/4)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
m5 = (-(1/2)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
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/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))); 
 
mm1=sum(m1)/n; 
mm2=sum(m2)/n; 
mm3=sum(m3)/n; 
mm4=sum(m4)/n; 
mm5=sum(m5)/n; 
m=(mm1//mm2//mm3//mm4//mm5);  
 
/*Compute a weighting matrix*/ 
w11=sum(m1#m1)/n; 
w21=sum(m2#m1)/n;w22=sum(m2#m2)/n; 
w31=sum(m3#m1)/n;w32=sum(m3#m2)/n;w33=sum(m3#m3)/n; 
w41=sum(m4#m1)/n;w42=sum(m4#m2)/n;w43=sum(m4#m3)/n;w44=sum(m4#m4)/n; 
w51=sum(m5#m1)/n;w52=sum(m5#m2)/n;w53=sum(m5#m3)/n;w54=sum(m5#m4)/n;w55
=sum(m5#m5)/n;  
 
 w12=w21;w13=w31;w14=w41;w15=w51;w23=w32;w24=w42;w25=w52; 
 w34=w43;w35=w53;w45=w54; 
w=(w11||w12||w13||w14||w15)// 
  (w21||w22||w23||w24||w25)// 
  (w31||w32||w33||w34||w35)// 
  (w41||w42||w43||w44||w45)// 
  (w51||w52||w53||w54||w55);  
 
v=ginv(w);  
 
/*F.O.C of each moment equation*/ 
sm11 = (-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d))+(1/8)#(1-
p)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d) 
/(d##2#sqrt(Pi#d))-p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d))+p#(Y-b-
c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))))##2/((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm12 = (-p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-
b)##2/d)/(d#sqrt(Pi#d)) 
+p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))))#p#(Y-b-c)#exp(-
(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/(((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))##2#(4#d+2#j)#sqrt(Pi#(2#d+j))); 
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sm13 = (-(1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
+(1/16)#(1-p)#(Y-b)##3#exp(-(1/4)#(Y-b)##2/d)/(d##3#sqrt(Pi#d)) 
-(1/8)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)#Pi/(d#(Pi#d)##(3/2)) 
-4#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
+4#p#(Y-b-c)##3#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j))) 
-p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)#(Pi#(2#d+j))##(3/2))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-
b)##2/d)/(d#sqrt(Pi#d)) 
+p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))))#((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-
b)##2/d) 
/(d##2#sqrt(Pi#d))-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi 
/(Pi#d)##(3/2)+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))/((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm14 = (-2#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
+2#p#(Y-b-c)##3#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j))) 
-(1/2)#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)#(Pi#(2#d+j))##(3/2))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d) 
/(d#sqrt(Pi#d))+p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))))#(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm15 = (-(1/4)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d)) 
+(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j)))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-
b)##2/d)/(d#sqrt(Pi#d)) 
+p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))))#(-(1/2)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))/((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
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sm21 = -p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))#((1/2)#(1-
p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d))+p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))))#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/(((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))##2#(4#d+2#j)#sqrt(Pi#(2#d+j))); 
sm22 = -p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))#((1/2)#(1-
p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
-2#p##2#(Y-b-c)##2#(exp(-(Y-b-c)##2/(4#d+2#j)))##2 
/((4#d+2#j)##2#Pi#(2#d+j)#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))##2); 
sm23 = -4#p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
+4#p#(Y-b-c)##3#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##3#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))))-p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)#(Pi#(2#d+j))##(3/2)#((1/2)#(1-
p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))))-p#(Y-b-c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)#((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-
b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/(Pi#(2#d+j))##(3/2))/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2); 
sm24 = -2#p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d) 
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/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
+2#p#(Y-b-c)##3#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##3#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
-(1/2)#p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi 
/((4#d+2#j)#(Pi#(2#d+j))##(3/2)#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
-p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2); 
sm25 = (Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))) 
-p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#(-(1/2)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2); 
sm31 = (-(1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
+(1/16)#(1-p)#(Y-b)##3#exp(-(1/4)#(Y-b)##2/d)/(d##3#sqrt(Pi#d)) 
-(1/8)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)#Pi/(d#(Pi#d)##(3/2))-4#p#(Y-
b-c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))+4#p#(Y-b-
c)##3#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j)))-p#(Y-b-c)#exp(-(Y-
b-c)##2 
/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)#(Pi#(2#d+j))##(3/2)))/((1/2)#(1-
p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d))+p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))))#((1/8)#(1-p)#(Y-
b)##2#exp(-(1/4)#(Y-b)##2/d) 
/(d##2#sqrt(Pi#d))-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2) 
+2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))/((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm32 = (-4#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
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+4#p#(Y-b-c)##3#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j)))-p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)#(Pi#(2#d+j))##(3/2)))/((1/2)#(1-
p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))-p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)#((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-
b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2 
/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))/((4#d+2#j)#sqrt(Pi#(2#d+j))
#((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2); 
sm33 = (-(1/4)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d) 
/(d##3#sqrt(Pi#d))+(1/32)#(1-p)#(Y-b)##4#exp(-(1/4)#(Y-
b)##2/d)/(d##4#sqrt(Pi#d)) 
-(1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-
b)##2/d)#Pi/(d##2#(Pi#d)##(3/2))+(3/8)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)#Pi##2 
/(Pi#d)##(5/2)-16#p#(Y-b-c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##3#sqrt(Pi#(2#d+j)))+8#p#(Y-b-c)##4#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##4#sqrt(Pi#(2#d+j)))-4#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/((4#d+2#j)##2#(Pi#(2#d+j))##(3/2))+(3/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi##2/(Pi#(2#d+j))##(5/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
-((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))##2 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm34 = (-8#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j))) 
+4#p#(Y-b-c)##4#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##4#sqrt(Pi#(2#d+j))) 
-2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)##2#(Pi#(2#d+j))##(3/2)) 
+(3/4)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi##2/(Pi#(2#d+j))##(5/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))-((1/8)#(1-p)#(Y-b)##2#exp(-
(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/(Pi#(2#d+j))##(3/2))#(p#(Y-b-c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
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/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm35 = (-(1/8)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
+(1/4)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
-((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/(Pi#(2#d+j))##(3/2))#(-(1/2)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))/((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm41 = (-2#p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))+2#p#(Y-b-c)##3#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##3#sqrt(Pi#(2#d+j)))-(1/2)#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/((4#d+2#j)#(Pi#(2#d+j))##(3/2)))/((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))-
((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d) 
/(d#sqrt(Pi#d))+p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))))#(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm42 = (-2#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
+2#p#(Y-b-c)##3#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j))) 
-(1/2)#p#(Y-b-c)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)#(Pi#(2#d+j))##(3/2))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-p#(Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#(p#(Y-
b-c)##2#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/(Pi#(2#d+j))##(3/2))/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2); 
sm43 = (-8#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##3#sqrt(Pi#(2#d+j))) 
+4#p#(Y-b-c)##4#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##4#sqrt(Pi#(2#d+j))) 
-2#p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/((4#d+2#j)##2#(Pi#(2#d+j))##(3/2)) 
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+(3/4)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi##2/(Pi#(2#d+j))##(5/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-
b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/(Pi#(2#d+j))##(3/2))#(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))/((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm44 = (-4#p#(Y-b-c)##2#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##3#sqrt(Pi#(2#d+j)))+2#p#(Y-b-c)##4#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##4#sqrt(Pi#(2#d+j)))-p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/((4#d+2#j)##2#(Pi#(2#d+j))##(3/2))+(3/8)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi##2 
/(Pi#(2#d+j))##(5/2))/((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))-(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi 
/(Pi#(2#d+j))##(3/2))##2/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm45 = ((Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/4)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))/((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
-(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/4)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))#(-
(1/2)#exp(-(1/4)#(Y-b)##2/d 
)/sqrt(Pi#d)+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm51 = (-(1/4)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d))+(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))))/((1/2)#(1-p)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
-((1/4)#(1-p)#(Y-b)#exp(-(1/4)#(Y-b)##2/d)/(d#sqrt(Pi#d))+p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)#sqrt(Pi#(2#d+j))))#(-(1/2)#exp(-
(1/4)#(Y-b)##2/d) 
/sqrt(Pi#d)+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
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/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm52 = (Y-b-c)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))))-p#(Y-b-
c)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)#(-(1/2)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d) 
+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
/((4#d+2#j)#sqrt(Pi#(2#d+j))#((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2); 
sm53 = (-(1/8)#(Y-b)##2#exp(-(1/4)#(Y-b)##2/d)/(d##2#sqrt(Pi#d)) 
+(1/4)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/sqrt(Pi#(2#d+j)))-((1/8)#(1-p)#(Y-b)##2#exp(-(1/4)#(Y-
b)##2/d)/(d##2#sqrt(Pi#d)) 
-(1/4)#(1-p)#exp(-(1/4)#(Y-b)##2/d)#Pi/(Pi#d)##(3/2)+2#p#(Y-b-
c)##2#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/2)#p#exp(-(Y-b-
c)##2 
/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))#(-(1/2)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm54 = ((Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2)/((4#d+2#j)##2#sqrt(Pi#(2#d+j))) 
-(1/4)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2)) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))-(p#(Y-b-c)##2#exp(-(Y-b-
c)##2/(4#d+2#j))#sqrt(2) 
/((4#d+2#j)##2#sqrt(Pi#(2#d+j)))-(1/4)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)#Pi/(Pi#(2#d+j))##(3/2))#(-(1/2)#exp(-(1/4)#(Y-
b)##2/d) 
/sqrt(Pi#d)+(1/2)#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j))) 
/((1/2)#(1-p)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#p#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
sm55 = -(-(1/2)#exp(-(1/4)#(Y-b)##2/d)/sqrt(Pi#d)+(1/2)#exp(-(Y-b-c)##2 
/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2/((1/2)#(1-p)#exp(-(1/4)#(Y-
b)##2/d)/sqrt(Pi#d) 
+(1/2)#p#exp(-(Y-b-c)##2/(4#d+2#j))#sqrt(2)/sqrt(Pi#(2#d+j)))##2; 
 
 
sr11=sum(sm11)/n;sr21=sum(sm21)/n;sr31=sum(sm31)/n;sr41=sum(sm41)/n;sr5
1=sum(sm51)/n; 
sr12=sum(sm12)/n;sr22=sum(sm22)/n;sr32=sum(sm32)/n;sr42=sum(sm42)/n;sr5
2=sum(sm52)/n; 
sr13=sum(sm13)/n;sr23=sum(sm23)/n;sr33=sum(sm33)/n;sr43=sum(sm43)/n;sr5
3=sum(sm53)/n; 
sr14=sum(sm14)/n;sr24=sum(sm24)/n;sr34=sum(sm34)/n;sr44=sum(sm44)/n;sr5
4=sum(sm54)/n; 
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sr15=sum(sm15)/n;sr25=sum(sm25)/n;sr35=sum(sm35)/n;sr45=sum(sm45)/n;sr5
5=sum(sm55)/n; 
 
r=(sr11||sr21||sr31||sr41||sr51)// 
  (sr12||sr22||sr32||sr42||sr52)// 
  (sr13||sr23||sr33||sr43||sr53)// 
  (sr14||sr24||sr34||sr44||sr54)// 
  (sr15||sr25||sr35||sr45||sr55); 
 
h=r`*v*r;    
cov=(1/n)*(ginv(h));   
 
se_b=sqrt(cov[1,1]); 
se_c=sqrt(cov[2,2]); 
se_d=sqrt(cov[3,3]); 
se_j=sqrt(cov[4,4]); 
se_p=sqrt(cov[5,5]); 
 
/**** b="drift", c="jump mean", d="variance", j="jump variance", 
p="probability" ****/  
print b c d j p; 
print se_b se_c se_d se_j se_p; 
print r; 
print cov; 
quit; 
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