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ABSTRACT: 

 

The use of heavy duty diesel (HDD) equipment in infrastructure projects accounts for a 

large quantity of fuel consumption, pollutants emissions and the majority of the total cost 

of the project compared to others. Construction professionals need a tool that can be used 

to estimate not only the cost, but also the fuel use and emissions footprint of construction 

projects, particularly HDD equipment activities. The main purpose of this research is to 

develop an E3 tool to estimate the economic, energy, and environmental impact of 

bulldozers, scrapers, excavators, and dum trucks. The tool was developed by combining 

the multiple linear regression (MLR)-based productivity rate model of selected HDD 

equipment from RSMeans Heavy Construction Data with the US EPA’s NONROAD 

model. The results showed that the overall productivity prediction models accounted for 

high percentage of variability in its respective data source; 95% for bulldozer, 99% for 

scraper, 92% for excavator, and 94% for dump truck. While the cost models also 

accounted for high percentage of variability, which are 97% for bulldozer, 99% for 

scraper, 70% for excavator, and 88% for dump truck. Since the the productivity and cost 

models had high precision and accuracy with low bias, it can be used as the basis for 

estimating the total cost and fuel quantities that will be required and the total expected 

pollutant emissions for the project. The total fuel use and emissions estimates resulted 

from E3 model are also useful to observe its relationship with HDD equipment 

performance attributes, such as engine size and the attachments set up to the equipment 

(buckets or blades), and with various earthwork working conditions, such as type of soil, 

distance, depth, and cycle time. This tool can also be used to estimate emissions for 

various construction sectors. By using construction plans and specifications, the 

methodology and tool presented in this research can be used to estimate cost, fuel use, 

and emissions from commercial, residential, industrial, or heavy highway. Once all types 

of construction can be covered by this methodology, it is possible to develop new fuel use 

and emissions inventories for the construction industry in general.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

1.1 Background 

Air pollutant emissions, which have serious effects on both the environment and 

human health from the use of heavy duty diesel (HDD) construction equipment, have 

become a major concern at the national level (Hendrickson & Horvath, 2000). According 

to the Environmental Protection Agency (EPA, 2005a), it is estimated that this type of 

equipment will consume over six billion gallons of diesel fuel and produce approximately 

643,000 tons of nitrogen oxides (NOx), 63,000 tons of hydrocarbons (HC), 339,000 tons 

of carbon monoxide (CO), 71,000,000 tons of carbon dioxide (CO2), and 60,000 tons of 

particulate matter (PM) (Rasdorf et al., 2010). Construction and mining equipment 

account for 45-48% of the overall totals of each pollutant emitted by the nonroad 

equipment. The pollution emissions from major U.S. construction sectors are shown in 

Table 1.1. According to EPA’s 2001 National Emission Inventory, main pollutants from 

nonroad diesel engines (including construction, and agricultural equipment,
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marine vessels, and locomotives) are NOx and PM. These pollutants and ozone adversely 

affect the environment in various ways including visibility impairment, crop damage, and 

acid rain. The construction sector is a significant contributor to these emissions, creating 

32 percent of all mobile source NOx emissions and 37 percent of PM emissions (EPA, 

2007). 

Nonroad diesel engine is responsible for 16 percent of NOx emissions nationally 

(3,600 tons per year) and 29 percent of NOx emissions come from mobile sources. NOx, 

which contributes to the formation of ground-level ozone, can cause respiratory 

problems. Ozone can trigger asthma and other respiratory diseases, as well as inflame and 

damage the lining of the lungs, which may lead to permanent changes in lung tissue and 

to irreversible reductions in lung function if the inflammation occurs repeatedly over a 

long time period (EPA, 2007).  

Nationally, PM emissions are dominated by fugitive dust sources (mostly from 

farming and unpaved roads. Non-road diesel engines are responsible for eight percent of 

fine particulate emissions (PM-2.5) nationally (222 tons per year) and half of PM-2.5 

emissions from mobile sources. PM has been associated with an increased risk premature 

mortality, hospital admissions for heart and lung disease, and increased respiratory 

symptoms. Long-term exposure to diesel exhaust is likely to pose a lung cancer hazard 

(EPA, 2007). 

Earthwork is one of the fundamental activities of construction projects. Most 

earthwork activities are completed by HDD construction equipment, which consumes 

mass quantities of energy (diesel fuel) and subsequently emits large quantities of air 

pollutants and greenhouse gases. Although recent engine technology has greatly 
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improved emission rates for new equipment, this technology has not specifically 

addressed fuel use and greenhouse gas emissions, and has focused primarily on National 

Ambient Air Quality Standards (NAAQS) criteria pollutants including NOx, PM, CO, and 

HC (EPA, 2011). Furthermore, most HDD equipment currently in use was manufactured 

prior to the new engine standards and can last for over 30 years; thus, it is necessary to 

accurately estimate production rates of HDD equipment for economic, energy, and 

environmental purposes. 

Table 1.1. Pollution Emissions from Major U.S. Construction Sectors (Hendrickson & 

Horvath, 2000) 
Pollutant New highways, bridges, and other 

horizontal construction 

New office, industrial, and commercial 

building construction 

Per 
$100,000,000 

Per total 
sector 

output 

Percentage 
of US total 

Per 
$100,000,000 

Per total 
sector 

output 

As 
percentage 

of US total 

SO2 (tons) 258 86,678 0.4 197 181,017 1 

CO (tons) 419 141,767 0.2 367 337,225 0.4 

NOx (tons) 373 125,313 - 281 260,000 - 

VOC (tons) 67 22,509 0.1 59 54,000 0.3 

PM (tons) 402 135,056 - 394 368,000 - 

CO2 (tons) 84,485 28,383,581 2 63,949 58,760,818 3 

Pollutant New residential one-unit structures 

construction 

Other new construction 

Per 

$100,000,000 

Per total 

sector 

output 

As 

percentage of 

US total 

Per 

$100,000,000 

Per total 

sector 

output 

As 

percentage 

of US total 

SO2 (tons) 216 249,372 1 178 253,460 1 

CO (tons) 413 476,809 0.6 363 516,887 0.7 

NOx (tons) 325 375,213 - 305 434,299 - 

VOC (tons) 76 87,742 0.4 50 71,197 0.4 

PM (tons) 466 537,997 - 57,900 757,531 - 

CO2 (tons) 69,388 80,108,446 5 2,013 82,445,547 5 

 

 

1.2 Problem Statement 

Developing fuel use and emissions inventories based on production rate can help 

design and construction professionals forecast the economic, energy, and environmental 

impact of a project based on a quantity takeoff using a set of construction documents, 
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including plans and specifications. Estimating emissions from project unit costs can be 

used with a project cost breakdown to assess the overall financial and environmental 

impacts of the project. It will also possible to assign a dollar value to construction 

emissions (Rasdorf, Lewis, & Frey, 2010). Construction estimators have long been able 

to estimate the costs associated with construction equipment and the earthwork activities 

that they perform. Moreover, most construction estimators seldom concern themselves 

with the environmental impact, specifically air pollutant emissions, of the equipment that 

they use. As new environmental regulations, such as cap-and-trade and carbon taxes, 

appear on the horizon in other industries, construction professionals can no longer afford 

to disregard the environmental aspects of their work. They need a tool that can be used 

with their existing expertise to quantify the total cost, fuel consumption, and emissions of 

earthwork activities. A model is needed to estimate the emissions footprint of earthwork 

construction projects in order to assess their overall environmental impact. Reliable 

emission factors based on commonly accepted construction estimating techniques are 

required for the methodology to be useful. Although there are existing models that 

estimate emissions inventories of construction equipment, these tools typically do not 

address construction costs because their focus is on environmental issues. Conversely, 

most construction cost estimating tools accurately address equipment production rates 

and unit costs, but not equipment emissions. 

 

1.3 Objective 

The main goal of this research is to develop a sustainability quantification tool for 

construction infrastructure projects, with particular focus on earthwork activities. To 
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achieve this goal, the primary objective is to build a model for estimating fuel use and 

emission rates of air pollutants from HDD construction equipment and link them to the 

costs of performing these earthwork activities, thus addressing three pillars of 

sustainability – economy, energy, and environment. This model will utilize cost, fuel use, 

and emission factors based on units of production, such as dollars of equipment operating 

cost per cubic yard of earth moved, gallons of fuel consumed per cubic yard, and grams 

of pollutant emitted per cubic yard. The productivity-based cost, fuel use, and emission 

factors can be used with construction plans and specification to estimate the fuel use and 

emissions footprint for a construction activity or an overall project during the planning 

phase, or it may be used to monitor, track, and control cost, fuel use, and emissions 

during the construction phase. 

As shown in Figure 1.1., to achieve the objective of this research, the following 

tasks will be completed: 

1. Develop Economic, Energy, and Environmental Models 

In order to estimate the economic, energy, and environmental impact of 

earthwork activities, a model will be developed for each impact. 

a. Economic Model.  

The data from two reliable sources, RS Means Building Construction Cost 

Data 2010 and Caterpillar Performance Handbook 38
th
 Editio, will be the 

basis for predicting productivity and cost. Productivity and cost rates will 

be predicted by using Multiple Linear Regression (MLR) analysis, 

resulting in productivity rates in terms of volume of soil per time (hour or 

day) and a cost rate in terms of dollars per volume of soil moved. 
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b. Energy Model.  

The energy model will link with the brake specific fuel consumption 

(BSFC) rates from EPA’s NONROAD model (EPA, 2010b) to estimate 

the total fuel consumed in terms of total gallons per volume soil moved. 

c. Environmental Model. 

The environmental model will link with the mass per time emission rates 

of NOx, HC, CO, PM, and CO2 from EPA’s NONROAD Model in order 

to estimate the total mass of pollutants emitted in terms of grams per 

volume of soil moved. 

2. Validate and Calibrate Models 

Each models will be validated and calibrated by using field testing procedures 

and data, including a portable emissions measurement system (PEMS). 

3. Develop the Economic-Energy-Environmental (E3) Decision Support 

Tool 

Using the economic, energy, and environmental model, a spreadsheet-based 

tool with a graphical user interface will be developed. The purpose of this tool 

is to integrate the economic, energy, and environmental models into a user-

friendly estimating tool that can be used to predict, monitor, track, and control 

costs, fuel use, and emissions from HDD construction equipment performing 

earthwork ativities. The outputs from this tool are productivity rate, total cost, 

total fuel use, and total pollutants emitted for a specified construction activity. 

4. Conduct Sensitivity Analyses for Earthwork Activities using the E3 

Model 
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In order to quantify the economic, energy, and environmental impact of 

earthwork activities, the E3 tool will be used to conduct sensitivity analyses 

under various conditions. The resulting costs, fuel use, and emissions for each 

condition will be compared. 

 

1.4. Scope of the Research 

This research focuses on analyzing the productivity and economic, enegy, and 

environmental impacts of earthwork activities performed by HDD equipment. A group of 

heavy equipment can work together to perform earthwork activities and each item of 

equipment in the group plays a specific role in the series of activities required to perform 

the task efficiently and effectively. Type of equipment used in the activity will vary based 

on the volume of work, desired productivity, equipment availability, and specific work 

conditions. Table 1.2 lists common earthwork activities and the types of equipment 

typically included.  The specific equipment and activities selected for the purpose of the 

research are: 

1. Bulldozer performing heavy ripping, topsoil removal, rough cutting, rough filling, 

road base construction, temporary road construction, dam construction, hauling 

soil less than 500 ft, soil windrowing, soil spreading, trench backfilling, rock 

removal, and side sloping. 

2. Scraper performing below grade excavation, topsoil removal, rough cutting and 

filling, hauling soil 500 ft to 2 miles, and soil spreading. 

3. Dump truck performing soil hauling over 2 miles.  
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4. Excavator performing below grade excavation, grubbing, foundation excavation 

and backfilling, footing excavation, ditch maintenance, deep trench excavation 

and backfilling, and small and large pipe installation. 

 

Figure 1.1. Flowchart of research tasks 
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Table 1.2. Common earthwork activities and types of equipment (Gransberg, et al., 2006) 

Activity 

D
o
z
er

 

L
o
a
d

e
r 

G
r
a
d

e
r 

S
c
r
a
p

er
 

T
r
u

c
k

 

B
a
c
k

h
o
e 

E
x
c
a
v
a
to

r 

S
h

o
v
e
l 

Excavating above grade        X 

Excavating below grade X   X  X   

Grubbing X      X  

Heavy ripping X        

Light ripping   X      

Tree stump removal X      X  

Topsoil removal X  X X     

Rough cutting X   X   X  

Rough filling X X  X X    

Finish grading   X      

Foundation excavation      X X  

Foundation backfilling  X    X X  

Footing excavation      X X  

Road base construction X X X  X    

Temporary road construction X X X  X    

Haul road maintenance   X      

Culvert placement X  X  X X X  

Dam construction X  X  X    

Drainage ditch maintenance      X X  

Haul less than 500 ft X X       

Haul 500 ft to 2 miles    X     

Haul over 2 miles     X    

Soil windrowing X  X      

Soil spreading X X X X X    

Soil removal  X   X    

Deep trench excavation       X  

Shallow trench excavation      X   

Trench backfilling X X    X X  

Small utility pipe placement      X X  

Large utility pipe placement       X  

Trench box placement      X X  

Trash removal  X   X  X  

Rock removal X X   X  X  

Asphalt paving removal X X   X  X  

Concrete removal X X   X  X  

Assisting scraper X   X     

Towing other equipment X X       

Concrete placement       X  

Side sloping X        
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

 

2.1 Methods in Estimating Emissions from HDD Construction Equipment 

Various methods have been employed to quantify emissions from HDD 

equipment. Real-world, in-use emission measurement is used to measure emissions from 

HDD equipment by using an on-board instrument. Other studies have tried to simulate or 

create models to estimate emissions. Government or agencies, like EPA or California Air 

Resource Board (CARB) have their own models to estimate emissions from HDD 

construction equipment. The section provides and overview of the major studies which 

have been conducted to measure emissions from HDD construction equipment. 

 

2.1.1 Real-World In-Use Emissions Measurement 

One alternative method for measuring emissions is to collect data in the field 

during actual operations. Real-World In-Use measurement is the methodology for 
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collecting real world air pollutant emissions from in-use diesel construction equipment. 

The methodology consists of second-by-second measurements of in-use equipment using 

a Portable Emissions Measurement System (PEMS) (Choi, 2009; Lewis, 2009; Rasdorf et 

al., 2010). The PEMS instrument, such as AXION RS (Global MRV, 2012) or 

SEMTECH (Sensor-Inc. 2011), collects both engine and emissions data on a second-by-

second basis, so the relationship between engine performance and emissions may be 

determined. The PEMS uses non-dispersive infrared (NDIR) detection to measure CO2, 

CO, and HC, and uses electrochemical cells to measure NO and oxygen (O2). PM 

measurement is obtained by a light scattering laser photometer detection method. There 

are two ways that the PEMS collects engine data. First is through the use of an electronic 

control unit (ECU) to collect and report engine parameter. Second is through a sensor 

array that attaches to the equipment’s engine to measure intake air temperature (IAT), 

manifold absolute pressure (MAP), and rotation per minute (rpm). 

The results of emissions measurement from PEMS have been used to develop 

real-world emissions inventories of various types of diesel construction vehicles. Lewis et 

al. (2009) presented a new methodology for developing an emission inventory for 

construction vehicles on the basis of real world data from backhoes, front-end loaders, 

and motor graders. This study established three primary components of emission 

inventory: average emission rates, average annual fuel use, and estimated average annual 

emission. The emission inventory was used to compare vehicle types, fuel types, engine 

tiers, and to evaluate emission reduction strategies. 

Meanwhile, Abolhasani et al. (2008) suggested the critical need to develop 

emissions inventories to understand the relationship between construction equipment 
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duty cycles with respect to energy use and emissions. This study laid its basis to a 

hypothesis that the variability in in-use duty cycle of construction equipment leads to 

variability in energy use and emissions that should be accounted for when developing an 

energy and emissions assessment framework. By using a PEMS for three excavators, this 

study demonstrated the episodic nature of the vehicle activity and emissions data and the 

influence of vehicle duty cycle on the average emissions rate. Since fuel use and emission 

rates typically have a strong linear association with MAP compared to other engine 

variables, such as IAT and RPM, the engine modal analysis is very useful to determine 

whether there are consistent trends in the relationship between fuel consumption or 

emission rates and engine activity. Engine modal analysis is the method of observing fuel 

use and emissions rates based on engine modes, which is represented by MAP. This study 

also found that the emission rates per gallon of fuel consumed were highest at idle for 

NOx, HC, and CO. 

Frey et al. (2010) reported and assessed trends in nonroad construction equipment 

field data including engine size, model year, engine tier level, engine load, duty cycle, 

fuel use and emission rates (NOx, HC, CO, CO2, and PM). By using PEMS to measure 

the emissions, this study gave the basis for developing diesel emission inventories, 

evaluating diesel emission reduction programs, modeling diesel equipment fuel use, 

assessing air quality impact of alternative fuel, and estimating CO2 emissions. For 

measuring emission rates, this study used representative duty cycles, which were divided 

into activity modes (idling, moving, working with attachment, such as blades or buckets) 

to evaluate relationships among equipment activity, engine performance data, and fuel 

use (Figure 2.1 and Figure 2.2). 
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Figure 2.1. Real world-based emission inventory from construction vehicles (Lewis et al., 

2009) 

  

 

Figure 2.2.  Equipment data to measure the emission rate (Lewis, 2009) 
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The PEMS results are also used for comparing different emissions characteristics 

from different types of fuel. Frey & Kim (2007) used PEMS to study the characteristics 

of real-world fuel use and in-use on-road emissions from dump trucks using B20 

biodiesel and petroleum diesel. This study identified factors responsible for variability in 

emissions and fuel use, including the effects of different types of fuel. The emissions of 

HC, CO, NOx, PM, and CO2 are measured by PEMS, which was attached to Tier 1 and 

Tier 2 single and tandem axle of dump trucks. The fuel use and emissions are measured 

during the following modes: idle, three level of acceleration, three levels of cruise, 

deceleration, and dumping. The results showed that the highest mass emission rates 

typically occur in the high acceleration mode.  

Frey et al. (2008a) characterized the real world activity, fuel use, and emissions 

for selected motor graders fueled with petroleum diesel and B20 diesel. The study found 

that the idle mode is associated with the lowest mass per time fuel use and emissions in 

all cases. MAP is highly correlated with variability in fuel use and emission rates and 

thus is a practical basis for developing modal emission rates on a mass per time basis. 

Concerning the type of fuel, this study found that the emission rates for B20 biodiesel 

versus petroleum diesel were approximately the same for NOx, but decreased 

significantly for PM, HC, and CO. The overall comparison of emission estimates from 

different fuel use is shown in Figure 2.3.  

Frey et al. (2008b) presented the PEMS-assisted benchmark comparison of 

average emission factors from selected construction equipment using B20 biodiesel and 

petroleum diesel. The equipment included backhoes, front-end loaders, and motor 

graders. By using PEMS for measuring HC, CO, CO2, NOx, and PM, this study analyzed 
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the effect of engine activity on fuel use and emissions and its correlation to the engine’s 

manifold absolute pressure (MAP). It provided a time series plot to represent the 

variation of fuel use and emission rate in different real-world activities. 

The PEMS results are also useful for comparing emissions rates with those from 

modeling tools such as NONROAD model. Lewis et al. (2009b) presented the 

comparison between real world emissions measurement using PEMS with the steady-

state emissions estimates using EPA’s NONROAD model. The equipment used in this 

study were backhoes, bulldozers, excavators, front-end loaders, generators, motor 

graders, off road trucks and skidsteers.  

 

Figure 2.3. Comparison between petroleum diesel and B20 biodiesel from motor grader 

(Frey et al., 2008a) 
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The emission measurements from PEMS are based on actual in-use vehicle 

performing its duty cycles while the NONROAD model results are based on engine 

dynamometer results. PEMS uses actual engine load measurement whereas NONROAD 

uses various load factor adjustments to estimate emissions. The data obtained from 

PEMS can be used to characterize the episodic variation in fuel use attributable to 

specific activity, while outputs from NONROAD cannot. The available data on the 

NONROAD model provides only average emission rates, in contrast, real-world data 

from PEMS can be used to quantify real-world duty cycles and the influence of episodic 

events on fuel use and emission rates. 

 

2.1.2 Modeling and Simulations 

An emission inventory can also be developed by using models or simulations. 

This method does not require a specific instrument to be attached to the construction 

equipment. Some studies used engine parameters, fuel characteristics, or the type of 

equipment activities to estimate the emissions rates. 

Discrete-Event Simulation (DES) has been used as an approach to estimate 

emissions (Ahn, Pan, Lee, & Pena-Mora, 2010). DES can simulate a project or operation 

by running chronological occurred events. By calculating durations of work package, 

DES will estimate the emissions (Pan, 2011). Li & Lei (2010) studied the use of Discrete-

Event Simulation (DES) in estimating and analyzing CO2 emission during earthwork 

construction. The model can be used in the project pre-planning phase for assessment of 

pollutant emissions. One of the significant advantages of DES compared with other 
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existing methods is that the model is capable of estimating emissions from individual 

project-specific construction at a micro level. 

Ammouri et al. (2011) proposed a model capable of estimating the total carbon 

footprint of a construction project taking into consideration the size, landscape, and 

material of construction. The proposed model, which is called as Carbon Footprint 

Calculator for Construction Project (CFCCP), utilized the detailed project bill of material 

quantities and schedule to produce a precise calculation of the total footprint. The data for 

the model building are collected from the construction material supplier, and coded to 

classify the general project information such as site work, concrete work, metal work, 

wood work, windows and doors, finishes, mechanical work, and electrical work. The 

expected outputs from this model are total carbon footprint that includes carbon 

embodied in raw material, transportation carbon footprint, and workforce carbon 

footprint.  

Rasdorf et al. (2010) proposed an approach to estimate emission footprint of 

construction equipment. The estimate was based on the type of activity and takes the 

production rate into account. The estimate, which was called productivity emission rates 

and cost emission rates, was the total mass of pollutants emitted from construction 

activity (and ultimately the entire project) based on the quantity takeoff and cost estimate 

of construction plans and specifications. To estimate the productivity and cost emission 

rates, the following are required: construction activity, type of equipment to complete the 

activity, production rate of the equipment, the unit cost of the activity, and air pollutant 

emission rates of the equipment. The production and unit cost were obtained from RS 

Means Heavy Construction Data, which has been widely accepted and used. The 
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emission rates of each equipment type for HC, CO, NOx, PM, CO2 and SO2 were 

obtained by using EPA’s NONROAD model. Studying topsoil stripping activities 

performed by 200 and 300 hp of bulldozers, this research expressed the production 

emission rate in term of grams pollutant emitted per cubic yard soil, while the cost 

emission rate in term of grams pollutant emitted per dollar amount spent. This approach 

can help design and construction professionals forecast the emission footprint of a project 

based on a quantity takeoff using a set of construction documents, including plans and 

specification. 

Some studies approached emissions estimating by using Artificial Neural 

Networks (ANN). The ANN methodology is a modeling technique that produces 

mathematical expressions using a set of input-output data (Karonis et al., 2003). Artificial 

neurons are the elements that constitute the input, output, and hidden layers of the ANN 

models. Thompson et al. (2000) used ANN modeling to predict the relationship between 

the output torque and exhaust emissions from heavy duty diesel engines with limited use 

of dynamometer testing. The results showed that ANN was able to predict the 

instantaneous emissions of HC, CO, CO2, NOx, and PM and opacity for a heavy duty 

diesel engine. In concern with fuel properties, Karonis, et al. (2003) used ANN to model 

the exhaust emissions from a single-cylinder diesel engine with some of the most 

important properties of fuels. Using 29 fuels for training and 30 fuels for validating, the 

predictions of CO, HC, NOx, and PM emissions were very good. The fuel parameters 

affecting most significantly the emissions from diesel engines are density and backend 

volatility. Nagendra & Khare (2004, 2006) described a methodology consisting of step-

by-step procedures involved in the development of ANN-based vehicular exhaust 
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emissions (VEE) model for urban roadways. The model was used to predict CO and NOx 

emissions for the purpose of air quality prediction at a traffic intersection and arterial 

road. 

Some studies tried to estimate the emissions by using fuel-based method, where 

emission factors are normalized to fuel consumption and vehicle activity is measured by 

the amount of diesel fuel consumed. Dreher & Harley (1998) applied the fuel-based 

method for estimating heavy duty truck exhaust emissions of fine black carbon (BC) 

particles and NOx. The results showed that the heavy duty diesel truck emits 110,000 

kg/day of NOx and 3,700 kg/day of fine BC during weekdays, and the emissions decline 

by 70-80% on weekends. Kean et al. (2000) described a fuel-based method for 

determining NOx and PM emissions from off-road diesel engines. The emission 

inventory from this model was obtained by multiplying the diesel fuel consumed by off-

road engines by emission factors that normalized by fuel consumption (i.e. mass of 

pollutant emitted per unit of fuel consumed). 

 

2.1.3 EPA NONROAD Model 

The emissions from construction activities, particularly from HDD equipment, 

can also be estimated by using some models developed by government agencies. The 

U.S. EPA has developed and published the EPA’s NONROAD Model for estimating 

emissions from nonroad vehicles. Meanwhile, state governments including California, 

through the California Air Resource Board (CARB), also developed models such as 

OFFROAD and EMFAC2007 Model to estimate the emissions from construction projects 

and its heavy duty equipment in particular (CARB, 2007a & 2007b ). Some local 
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authorities, such as the city of Sacramento, California has also been developed a model to 

address emissions from construction. 

The NONROAD model estimates air pollution from various types of diesel 

compression ignition (CI) and gasoline spark ignition (SI) nonroad sources. By using 

information such as equipment populations, equipment use, and emission factors, the 

NONROAD model estimates emissions of HC, CO, NOx, SO2, PM, and CO2 (EPA, 

2010b). The estimates rely on emission factors – estimates of the amount of pollution 

emitted by a particular type of equipment during a unit of use. Typically, emission factors 

for nonroad sources are expressed in terms of grams per horsepower-hour (gr/hp-hr), but 

they also may be reported in grams per mile, grams per hour, and grams per gallon. The 

CI emission factors in the NONROAD model are expressed in gr/hp-hr and are based on 

emissions test data where available, adjusted when necessary to account for in-use 

operation that differs from the typical test conditions. The process of obtaining the 

emission factors from off-road diesel equipment is shown in Figure 2.4. 

 For HC, CO, and NOx, the emission factor for a given diesel equipment type in a 

given year or age is calculated as follows: 

EFadj (HC, CO, NOx) = EFss x TAF x DF           (2-1) 

where: 

EFadj = final emission factors used in model, after adjustments to account for transient  

operation and deterioration (gr/hp-hr) 

EFss = zero-hour, steady-state emission factors (gr/hp-hr) 

TAF = transient adjustment factor (unitless) 

DF = deterioration factor (unitless) 
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The zero-hour, steady-state emission factors (EFss) are mainly a function of 

model year and horsepower category, which defines the technology type. The transient 

adjustment factors (TAF) vary by equipment type. The deterioration factor (DF) is a 

function of the technology type and age of the engine. 

 

 

Figure 2.4. The NONROAD process of obtaining emission factors (Lewis, 2009; Pan, 

2011) 

 

Since PM emissions are dependent on the sulfur content of the fuel, the equation 

is as follows: 

EFadj(PM) = (EFss x TAF x DF) – SPMadj.          (2-2) 

where: 
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EFadj = final emission factors used in model, after adjustments to account for 

transient operation and deterioration (gr/hp-hr) 

EFss = zero-hour, steady-state emission factors (gr/hp-hr) 

TAF = transient adjustment factor (unitless) 

DF = deterioration factor (unitless) 

SPMadj = adjustment to PM emission factor to account for variations in fuel sulfur 

content (gr/hp-hr) 

 Emission factors for CO2 and SO2 are calculated based on brake-specific fuel 

consumption; therefore, the equation is as follows: 

EFadj(BSFC) = EFss x TAF             (2-3) 

To develop an emission inventory using EPA’s NONROAD model, the 

construction equipment have to be categorized in the engine’s tier level. The tier level is 

the emission standard that corresponds to the equipment model years and technology 

types (represented by engine horsepower) (EPA, 2005a). EPA has regulated emissions 

from non-road engines used in most construction and port cargo handling equipment 

since 1999. As shown in Table 2.1, these regulations continue to be phased in under a 

four-tier system, with emission standards based on engine horsepower (hp) and 

equipment model year.  

Tier 1, 2, and 3 standards are largely being met by enhanced engine design and 

manufacturing improvements; they require little or no exhaust after-treatment, and do not 

address fuels. The Tier 4 standards require dramatic reduction in NOx and PM emissions. 

The off-road NOx and PM standards under Tier 4 are approximately 10 times lower than 

the Tier 3 standards for most engines. They will be phased in between 2008 and 2015. To 

comply with this rule, engine manufacturers will need to produce engines with advanced 

emissions control technologies similar to those that will be used for on-road trucks (Berg, 
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2010). This ruling also requires fuel producers to reduce the sulfur content of diesel fuel 

used in non-road engines. Reducing the level of sulfur in diesel fuel is necessary to 

prevent damage to emission control systems. The summary of all methods used to 

estimates and measure emissions from off-road vehicles are shown in Table 2.2, 2.3, and 

2.4. 

 

 

Table 2.1. General Guide to EPA Tier Level for Off-Road Diesel Engines (EPA, 2010a) 

Engine 

Power 

Tier Years Engine Power Tier Years 

HP < 11 1 

2 

4 

2000-2004 

2005-2007 

2008+ 

100 ≤ HP < 175 1 

2 

3 

4 

1997-2002 

2003-2006 

2007-2011 

2012+ 

11 ≤ HP < 

25 

1 

2 

4 

2000-2004 

2005-2007 

2008+ 

175 ≤ HP < 300 1 

2 

3 

4 

1996-2002 

2003-2005 

2006-2010 

2011+ 

25 ≤ HP < 

50 

1 

2 

4 

1999-2003 

2004-2007 

2008+ 

300 ≤ HP < 600 1 

2 

3 

4 

1996-2000 

2001-2005 

2006-2010 

2011+ 

50 ≤ HP < 

75 

1 

2 

3 

1998-2003 

2004-2007 

2008+ 

600 ≤ HP < 750 1 

2 

3 

4 

1996-2001 

2002-2005 

2006-2010 

2011+ 

75 ≤ HP < 

100 

1 

2 

3 

4 

1998-2003 

2004-2007 

2008 

2008+ 

HP ≥ 750 1 

2 

4 

2000-2005 

2006-2010 

2011+ 
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Table 2.2. Summary of methods of measuring emissions from off-road vehicles 

Research/Institution Year 

Methods 

Simulation / 

Model 

Laboratory Test 

(Dynamometer) 

In-Use 

Operation 

(Real-World) 

Rasdorf, Lewis, Frey 2010   √ 

Li and Lei 2010 √   

Frey, Rasdorf, Kim, Pang, Lewis 2008   √ 

Frey, Kim 2006   √ 

Lewis, rasdorf, Frey, Pang, Kim 2009   √ 

Frey, Rasdorf, Lewis 2009   √ 

Abolhasani, Frey, Kim, Rasdorf, 

Lewis, Pang 

2008 
  √ 

Frey, Kim, Pang, Rasdorf, Lewis 2008   √ 

Lindgren, Larsson, Hansson 2010  √  

Rasdorf, Frey, Lewis, Kim, Pang, 

Abolhasani 

2010 
  √ 

Ammouri, Srour, Hamade 2011 √   

Ahn, Pan, et al. 2010 √   

Pan 2011 √   

Karonis, Lois, et al. 2003 √   

Thompson and Atkinson 2000  √  

Nagendra and Khare 2006 √   

Dreher and Harley 1998 √   

Kean, Sawyer, et al. 2000 √   

The U.S. Environmental Protection 

Agency (EPA) 

2003 
 √  

 

Table 2.3. Summary of type of pollutants measured from off-road vehicles 

Research/Institution Year 
Type of Pollutants 

HC CO NOx PM CO2 SO2 

Rasdorf, Lewis, Frey 2010   √ √   

Li and Lei 2010     √  

Frey, Rasdorf, Kim, Pang, Lewis 2008 √ √ √ √ √ √ 

Frey, Kim 2006 √ √ √ √ √ √ 

Lewis, rasdorf, Frey, Pang, Kim 2009 √ √ √ √ √ √ 

Frey, Rasdorf, Lewis 2009 √ √ √ √ √ √ 

Abolhasani, Frey, Kim, Rasdorf, Lewis, 

Pang 

2008 √ √  √   

Frey, Kim, Pang, Rasdorf, Lewis 2008 √ √ √ √ √ √ 

Lindgren, Larsson, Hansson 2010 √ √ √ √ √ √ 

Rasdorf, Frey, Lewis, Kim, Pang, 

Abolhasani 

2010 √ √ √ √ √ √ 

Ammouri, Srour, Hamade 2011     √  

The U.S. Environmental Protection Agency 

(EPA) 

2003 √ √ √ √ √ √ 
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Table 2.4. Summary of types of vehicle as source of off-road emissions 

Research/Institution Year 

Type of Vehicle/Equipment 

B
a
c
k

h
o
e 

E
x
c
a
v
a
to

r 

B
u

ll
d

o
ze

r 

M
o
to

r
 

g
r
a
d

er
 

O
ff

ro
a
d

 

T
r
u

c
k

 

L
o
a
d

e
r 

S
k

id
st

e
e
r 

G
e
n

er
a
to

r 

Rasdorf, Lewis, Frey 2010   √      

Li and Lei 2010  √ √  √ √   

Frey, Rasdorf, Kim, Pang, Lewis 2008 √   √  √   

Frey, Kim 2006     √    

Lewis, rasdorf, Frey, Pang, Kim 2009 √ √ √ √ √ √ √ √ 

Frey, Rasdorf, Lewis 2009 √ √ √ √ √ √ √ √ 

Abolhasani, Frey, Kim, Rasdorf, Lewis, 

Pang 

2008  √       

Frey, Kim, Pang, Rasdorf, Lewis 2008    √     

Lindgren, Larsson, Hansson 2010   √      

Rasdorf, Frey, Lewis, Kim, Pang, 

Abolhasani 

2010 √ √ √ √ √ √ √ √ 

The U.S. Environmental Protection 

Agency (EPA) 

2003 √ √ √ √ √ √ √ √ 

 

 

2.2 Estimating Productivity in Earthwork Construction Activities 

Productivity in earthwork construction activities, particularly for the equipment 

which performs it, has been studied and approached by various methods and techniques. 

Some researchers have tried to estimate the productivity of construction equipment 

performing earthwork projects. Some mathematical or statistical models both 

deterministic and probabilistic have been developed to explain factors influencing 

productivity. Productivity estimation is also provided by professional references such as 

RSMeans Construction Data to comply with the standard classification system from 

Construction Specification Institute (CSI). This data is widely accepted by most 

construction professionals since it provides technical data required to prepare quantity 

takeoffs and complete construction estimates for major construction projects. Some 

construction equipment manufacturers such as CAT, John Deere, or Komatsu also 
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provide and recommend off-the-job productivity predictions in their performance 

handbooks. 

 

2.2.1 Methods and Models for Estimating Productivity in Earthwork Construction 

         Activities 

 

Productivity is defined as the rate of product output per unit time for a given 

production system (Parsakho et al., 2008). Productivity in earthwork activities have been 

conducted by several studies. The use of deterministic multiple regression (MR) analysis 

is well established in construction management research, particularly in predicting 

construction productivity (Akinsola, 1997; Akintoye & Skitmore, 1994; Edwards, Holt, 

& Harris, 2000; Smith, 1999). Smith (1999) outlined the development of a deterministic 

model that can be used to estimate earthmoving productivity. This study examined the 

excavator/dump truck earthmoving system that consists of a truck loading cycle, haulage 

of trucks to the planned fill or disposal point, dumping of the material and a return haul to 

queue and commence the cycle again. The model was based on data obtained from four 

United Kingdom (U.K.) highway construction projects and was developed using stepwise 

multiple regression techniques. The regression model provided an equation that describes 

over 90% of the variance in a large set of data. The significant factors of this model are: 

number of trucks, bucket per load and volume, truck travel time, and haul length. David 

& Gary (1993) used deterministic multiple regression to propose ESTIVATE, a model 

for calculating excavator productivity and output cost. The model was developed for 

calculating the cycle time of hydraulic excavators operating within the construction 

project. With machine cycle time, swing angle, machine weight, and digging depth as 
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predictor variables for cycle time, the resulted model can explain 88% variability of the 

excavator’s cycle time. Parsakho, et al., (2008) studied the effects of soil moisture, soil 

porosity, soil bulk density, stump diameter in grubbing operations and terrain side slopes 

on hourly productivity of hydraulic excavator. By using multiple regression analysis, it 

was shown that grubbing time depends on the number of stumps, tree species, stump 

diameter, soil moisture, soil compaction, rooting system, rooting depth, and grubbing 

machine power. There were no significant effects from the slope classes treatment on 

productivity. 

ANN was also used to predict heavy construction equipment productivity. 

Schabowicz & Hola (2007) applied the artificial neural network (ANN) to design sets of 

earthmoving machinery and used the results to predict productivity of collaborating 

earthmoving machines, which consisted of excavators and haulers. With low network 

training and testing RMSE values and high values of correlation coefficient R for testing, 

this study concluded that by having a set of such data as hauler capacity, excavator 

bucket capacity, hauling distance, road class, number of excavators and number of 

haulers in the earthwork operating system, productivity rate of can be predicted. Hola & 

Schabowicz (2010) presented a methodology for selecting an optimum set of 

collaborating earthmoving machines (excavators and haulers). The selection criterion is 

the minimum time needed to carry out the earthworks of the minimum cost of carrying 

them out. The main parameter having the bearing on the time and cost by the excavators 

and haulers is the productivity of the set of machines, measured by the number of cubic 

meters of soil loosened and transported to the place of unloading in a unit time. This 

study employed the ANNs to predict the productivity of such machines. The results 
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showed that the selected feed-forward multilayer error back propagation neural network 

with a conjugate gradient algorithm (BPNN-CGB), having  five neurons in the input 

layer, eight neurons in the hidden layer, and one neuron in the output layer, is useful for 

predicting productivity of machinery sets made up of excavators and haulers. 

In predicting the productivity rate in earthwork construction activities, some 

studies tried to compare the model built by using regression analysis with the model 

resulted from the ANN. Han et al. (2011) suggested new methods for productivity 

prediction with the use of construction simulation as a tool for data generation, and a 

multiple regression (MR) analysis and an ANN as tools for prediction. The results 

showed that a predictive model using ANN was better fitted to the actual data than using 

MR.  However, the ANN model requires a specific skill for running the MATLAB 

program, while MR model was relatively easier since the user can obtain predictive 

results by merely inputting the information for each factor or explanatory variable. The 

predictive models from this study can help planners to carry out reliable productivity 

prediction while facing insufficient actual datasets. Ok & Sinha (2006) developed and 

compared two methods for estimating dozer’s productivity. This study hypothesized that 

the neural network model may improve dozer’s productivity estimation because of the 

neural network’s inherent ability to capture non-linearity and the complexity of the 

changeable environment of each construction project.  The parameters of this study 

included predicting dozer’s productivity for earthmoving tasks, which consists of 

different type of dozers, blades, soil types, weather conditions, dozing grades, and 

distance. The mean-square errors results revealed that the non-linear neural network 

results have lower explained variation than the multiple regressions. 
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Kecojevic & Mrugala (2003) developed a tool that can be used for estimating 

bulldozer’s purchase and evaluating the costs of performance. This tool was called as a 

Dozer Productivity and Cost (DPC) and capable of determining the productivity and 

economics of dozer units, using the logic that models simulate real situations. The DPC 

program includes the features such as: calculation of dozer production, estimation and 

comparison of dozer’s ownership cost (residual value, cost per hour, interest, insurance 

and taxes, and operating costs). By using equipment database models, the dozer’s 

production is defined by selecting a dozer from the existing database and specifying the 

cycle elements. The ownership cost is calculated by using parameters such as delivery 

price, time period, annual operating hours, interest rate, and insurance and taxes. The 

operating cost is defined by fuel cost, lubricants cost, undercarriage, repair reserve, and 

labor. Han & Halpin (2005) provided a methodology to establish a productivity 

estimation model combining actual data collection, input data generation using 

experimental designs and multiple regression analysis. This research suggested the use of 

a simulation methodology as an alternative to resolve the limitations of actual data: 

WebCYCLONE as one of simulation programs in order to generate datasets. A large 

number of datasets were generated by WebCYCLONE using sensitivity analysis, and the 

datasets were used as constant, precise, and abundant resources that provide input 

datasets to a multiple regression model. 

 

2.2.2 Cost and Productivity Data from RSMeans Heavy Construction Data 

RSMeans Heavy Construction Data is a part of RSMeans estimating references, 

which is widely accepted and used by most construction professionals. This data provides 
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technical information required to prepare quantity takeoffs and complete construction 

estimates for major construction projects (RSMeans, 2010). It helps design and 

construction professionals compare the estimates of design alternatives, perform cost 

analysis and value engineering, and review estimates quotes and change orders prepared 

by others. The data also includes information in sizing, productivity, equipment 

requirements, design standards, and engineering factors – all organized according to the 

latest 2004 Construction Specification Institute (CSI) Master Format classification 

system, which has 48 divisions ranging from General Requirements to Electrical Power 

Generation. 

Earthwork construction is provided in this data on Division 31: ‘Earthwork’. This 

division has sections representing major earthwork activities: clearing and grubbing, tree 

and shrub removal and trimming, stripping and stockpiling, grading, excavation and fill, 

erosion and sedimentation controls, soil treatment and stabilization, shoring, 

underpinning, dams, and tunnel construction. For the purpose of this research, sub-

division 31.23 – Excavation and Fill is selected. This sub-division has two sections: 

31.23.16 – Excavation, 31.23.19 – Dewatering, and 31.23.23 – Fill. For building the 

productivity and cost models of construction equipment, this research selected three sub-

sections from Excavation section: 31.23.16.13 – Excavating Trench for excavators, 

31.23.16.46 – Excavating Bulk Dozer for bulldozers, 31.23.16.50 – Excavating Bulk 

Scraper for scrapers, and one sub-sections from Fill section: 31.23.23.20 – Hauling for 

hauling trucks. 

The productivity rate in RSMeans is listed as Daily Output; the number of units of 

a defined task that a designated crew or equipment will produce in one eight-hour 
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workday (RSMeans & Mubarak, S.A., 2006). Daily output represents an average figure, 

which varies with job conditions and measured in the units specified for related type of 

activities. For earthwork activities, the units are mostly in loose cubic yard (lcy) or bank 

cubic yard (bcy). The unit costs in RSMeans for each type of construction are broken 

down into the components of material, labor, equipment, and overhead-profit. The data 

also provides square foot costs by project type, which must be adjusted to fit with the 

specific location, size, and conditions of particular project. 

 

2.2.3 Off-the-Job Productivity Estimates from CAT Performance Handbook 

 CAT Performance Handbook provides machine performance information released 

by Caterpillar Inc. for their equipment. The information includes current specifications of 

all types of equipment and off-the-job measurement of both productivity and cost. The 

HDD equipment covered in this handbook includes track-type tractors, motor graders, 

skid steer loaders, excavators, backhoe loaders, forest equipment, pipelayer equipment, 

wheel tractor-scrappers, construction and mining trucks, wheel dozers and loaders, 

compactors, track loaders, and other hydro-mechanical work tools. 

 In estimating productivity, this handbook uses bearing factors such as weight to 

horsepower ratio, capacity, type of transmission, speeds, and operating costs. Some 

sections also include tables or charts showing cycle times or hourly production rate under 

certain conditions. The data provided are based on field testing, computer analysis, 

laboratory research. The methods for estimating productivity and machine owning-

operating costs are based upon 100% efficiency in operation, which cannot be achieved 

continuously even under ideal conditions. For the purpose of this research, the following 
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sections are used: track-type tractors/bulldozers, wheel tractor-scrappers, excavator, and 

construction trucks.
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CHAPTER III 
 

 

RESEARCH METHODOLOGY 

 

 

 

3.1 Productivity and Cost Models 

As a basis for the emission model, the productivity and cost models will be 

developed from the selected vehicles. This section will describe the methodology used to 

develop the model: organizing the data from construction equipment and earthwork 

activity, analyzing the data by using multiple linear regression method, and applying the 

results from productivity models to build fuel use and emission models. 

3.1.1 Construction Equipment and Earthwork Activity Data 

The data for developing the productivity and cost models are collected from two 

sources: RSMeans Heavy Construction Cost Data 2010 and Caterpillar (CAT) 

Performance Handbook 38
th
 Edition. RSMeans data is the most powerful and widely 

accepted construction tool available to construct an estimate and as reference for key 
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costs, current construction cost and productivity rates for any types of project (RSMeans, 

2010). In constructing the costs, RSMeans takes some elements into consideration: 

material costs, labor costs, equipment costs, general conditions, overhead and profit, and 

factors affecting costs: quality, overtime, productivity, size of project, and location. 

RSMeans has updated its database from Construction Specifications Institute’s 16-

division Master Format 95 to the 48-division Master Format 2004. 

 In RSMeans data, earthwork activities are provided in Division 31 – Earthwork. 

For the purpose of this research, sub-division 31.23 – Excavation and Fill is selected. 

This sub-division has two sections: 31.23.16 – Excavation, 31.23.19 – Dewatering, and 

31.23.23 – Fill. For building the productivity and cost models of construction equipment, 

this research selected three sub-sections from Excavation section: 31.23.16.13 – 

Excavating Trench for excavators, 31.23.16.46 – Excavating Bulk Dozer for bulldozers, 

31.23.16.50 – Excavating Bulk Scraper for scrapers, and one sub-sections from Fill 

section: 31.23.23.20 – Hauling for hauling trucks. Therefore, the productivity and cost 

models will be based on four types of construction equipment: bulldozer, scraper, 

excavator, and hauling truck. 

 CAT Performance Handbook is used to measure the performance of heavy 

construction equipment manufactured by Caterpillar. The performance of each type of 

equipment is measured by its productivity rate and its affecting factors, such as weight to 

horsepower ratio, capacity, type of transmission, speeds, or operating costs (Caterpillar, 

2008). Some tables and charts are also provided for calculating off-the-job productivity 

estimates. For the purpose of this research and to compare the productivity rate obtained 
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from RSMeans data, the selected construction equipment are track-type tractors 

(bulldozer), wheel-tractor scraper (scraper), excavator, and construction truck. 

 

3.1.2 Multiple Linear Regressions (MLR) Analysis 

Regression analysis is a powerful tool to learn more about the relationships within 

the data being studied and has widely been used by many researchers (David J & Gary D, 

1993; Dunlop & Smith, 2003; Han & Halpin, 2005; Lowe et al., 2006; Smith, 1999). It is 

one of the most widely used statistical tools because it provides a simple method for 

establishing a functional relationship among variables. Productivity in earthwork 

activities has been conducted by several studies. The use of ‘deterministic’ multiple 

regression regressions (MLR) analysis is well established in construction management 

research, particularly in predicting construction productivity (Akinsola, 1997; Akintoye 

& Skitmore, 1994; Edwards, et al., 2000; Smith, 1999). In this research, multiple linear 

regressions will be used to determine the statistical relationship between a response (i.e. 

productivity rate or unit cost) and the explanatory variables (e.g. engine horsepower, 

dozing distance, and type of soil). 

 The multiple linear regression model is written in the following form: 

 

yi = β0 + β1xi1 + β2xi2 + … + βpxip + εi        (3-1) 

where: 

1. yi  is the response that corresponds to the levels of explanatory variables x1, x2, 

…xp at the ith observation 

2. β0, β1, β2, … βp are the coefficients in the linear relationship. For a single factor 

(p=1), β0 is the intercept, and β1 is the slope of the straight line defined 
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3. ε1, ε2, …, εn are errors that create scatter around the linear relationship at aeach of 

the i=1 to n observations. The regression model assumes that these errors are 

mutually independent, normally distributed, and with a zero mean and variance 

σ
2
. To make estimates of the coefficients in the regression model, the method of 

least squares is used.  

Table 3.1. Equipment data from RSMeans Heavy Construction Data 
Type of Equipment Activity Input Unit/type/range 

Bulldozer Engine size Horsepower (80-700 hp) 

Excavating distance 50-300 ft 

Type of soil Sand and gravel 

Sandy clay and loam 

Common earth 

Clay 

Soil quantity cy 

Scraper Engine size Horsepower (hp) 

Excavating distance 1500-5000 ft 

Type of soil Sand and gravel 

Common earth 

Sandy clay and loam 

Clay 

Type of excavation Elevated scraper 

Self-propelled scraper 
Towed 

Excavating bucket 11-21 cy 

Soil quantity cy 

Excavator Engine Size Horsepower (HP) 

Bucket size 0.5-3.5 cy 

Trench deep 1-6 ft (shallow), 6-14 ft (medium), 16-

24 ft (deep)  

Soil type Sand and gravel 

Sandy clay and loam 

Common earth 

Clay 

Excavating type Excavator 

Excavator with truck mounted 

Excavator with trench box 

Soil quantity cy 

Hauling Truck Engine Size Horsepower (hp) 

Capacity 22-60 cy 

Cycle distance 2,000 ft – 4 miles 

Average hauling speed 5-25 mph 

Average 

Waiting/loading/unloading time 

15-25 minutes 
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The main purpose of carrying out a regression analysis on diesel construction 

equipment data is to obtain a model that will estimate productivity rates and unit cost of 

earthwork activities. The explanatory variables used to predict or estimate the 

productivity rates are obtained from the data available in two sources: RSMeans Heavy 

Construction Data 2010 and Caterpillar (CAT) Performance Handbook 38
th
 Edition. The 

explanatory variables are shown in Table 3.1 and 3.2. 

Table 3.2. Equipment data from CAT Performance Handbook 
Type of Equipment Activity Input Unit/type/range 

Bulldozer Engine size Horsepower (HP) 

Blade capacity 7.53-45 cy 

Distance 100-500 feet 

Efficiency 67-83% 

Soil grade 0.2-1.8 

Operator’s skill Excellent 

Average 

poor 

Soil type Loose stockpile 

Hard to cut 

Hard to drift 

Rock/ripped/blasted 

Dozing techniques Slot dozing 

Side-by-side 

Scraper Engine size Horsepower (HP) 

Material density lbs/cy 

Capacity (payload) 8.8-34.6 cy 

Empty weight lbs 

Distance 100-5200 ft 

Cycle time 0-16 min. 

Rolling resistance % 

Excavator Engine size Horsepower (HP) 

Bucket capacity cy 

Cycle time min. 

Depth ft 

Load factor % 

Type of soil Moist loam (sandy clay) 
Sand-gravel 

Hard-tough clay 

Rock-well blasted 

Rock-poorly blasted 

Hauling Truck Engine size Horsepower (HP) 

Capacity cy 

Loading time Min. 

Hauling time Min. 

Dump time Min. 

Return time Min. 
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3.1.3    Total Cost, Total Fuel Use, and Total Emissions Models 

The models for cost, fuel use and emissions from diesel construction equipment 

will be built based on the productivity model and the EPA’s NONROAD Model. For 

each type of equipment, all observed data will be categorized into two groups: Activity 

Input and Engine Property Input.  

The activity inputs, such as soil type, dozing distance, and engine horse power 

will be used to build models for productivity and unit cost by using regression analysis. 

The projected results from this analysis are the productivity rate (soil volume per unit 

time), activity duration (time), and unit cost (dollar amount per soil volume). By using 

the information of engine horsepower, activity duration, total soil quantity, and EPA’s 

fuel consumption rate (brake-specific-fuel-consumption or BSFC), the result will also 

have the rate of fuel use in term of gallons per soil quantity. 
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Figure 3.1. Productivity and emission model development chart 

 

The engine property input –engine horsepower and engine model year, will be 

used to determine the engine tier level. The information of engine tier level will then be 

used to calculate deterioration factor (DF), transient adjustment factor (TF), and zero-

hour steady state emission factors for all gas pollutants (HC, CO, NOx, CO2, and SO2) 

and PM. Meanwhile the type of equipment will define the load factor (LF) and annual 

activity, and the engine horsepower will determine the engine median life. 

Since the projected results from engine property input will be emission factors of 

all pollutants in mass per horsepower-hour (g/hp-hr), the total mass emissions from an 

earthwork activity will be obtained by multiplying the emission factors with engine rated 

horsepower and total activity duration (as results from productivity model). The total 
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mass emissions per dollar amount spent on the earthwork activity will be obtained by 

dividing the total emissions with total cost (as results from cost model). The chart 

showing the productivity-based cost, fuel use, and emission model for all four studied 

equipment –bulldozer, excavator, scraper, and truck, is displayed in Figure 3.1. 

 

3.1.4 Model Validation and Calibration 

The estimated total fuel use and emissions acquired by using the model will be 

validated with on-vehicle instrument in the field. The instrument used in this study is 

Portable Emissions Measurement System (PEMS) manufactured by Axion. Using the 

Clean Air Technologies International (CATI) system, the PEMS measures second-by-

second mass emissions released from vehicle’s exhaust and some other information 

associated with the engine, such as manifold absolute pressure (MAP), rotation per 

minute (RPM), and intake air temperature (IAT) (Frey et al., 2008).  

 For diesel construction vehicle, the PEMS collects emissions by using sample 

probe inserted into the tailpipe for the gas pollutants (HC, CO, NOx, CO2) and PM and 

connected to gas and PM analyzers. In order to collect emissions from the vehicle, the 

PEMS has to be installed and attached on the vehicle with the following procedures: 

1. placing/mounting the PEMS safety case on the vehicle 

2. connecting the emissions sample probes from the tailpipe to the gas and PM 

analyzer input lines 

3. connecting the sensor array lines from vehicle’s engine the PEMS 

4.  starting the PEMS 
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The PEMS uses non-dispersive infrared (NDIR) detection to measure CO2, CO, 

and HC, and uses electrochemical cells to measure NO and O2, while PM measurement 

is acquired by a light scattering laser photometer detection method (Rasdorf, Frey, et al., 

2010). The PEMS is also equipped to detect vehicle location coordinate from a GPS. 

This will allow the vehicle to be tracked for providing data on the position, speed, and 

working distance of the vehicle. The illustration of installing PEMS instrument is shown 

in Figure 3.2. 

 

Figure 3.2. Installation of PEMS on construction equipment 
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3.1.5 Model Application and Sensitivity Analysis 

Model application and sensitivity analysis is conducted to analyze the effect of 

changes in explanatory variables against the output; cost, fuel use, and emissions. The 

analyses are useful to understand the economic, energy, and environmental impact of a 

certain earthwork activity performed by HDD equipment in different set of conditions. 

 The economic impact of the activity is determined by the total cost (including 

labor, equipment, overhead, and profit) to complete the activity. The energy impact of the 

activity is based on the amount of diesel fuel consumed by HDD equipment in terms of 

total gallons. The environmental impact of the activity is based on total emissions of each 

pollutant (HC, CO, PM, NOx, and CO2) in terms of grams. 

 

3.2 Economic-Energy-Environmental (E3) Model User’s Interface 

The Economic-Energy-Environmental (E3) decision support tool is a user 

interface developed from the regression model results by using Visual Basic program 

(VBA) for Microsoft Excel 2007. With a spreadsheet-based UserForm which is a 

custom-built dialog box, the interface was built by codes in the Visual Basic Editor. All 

input filled in the interface will automatically be executed when the spreadsheet is 

opened. UserForms are similar to other VBA objects in that they have properties, 

methods, and events used to control the appearance and behavior of the interface 

window. 
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CHAPTER IV 
 

 

RESEARCH RESULTS 

 

 

 

4.1 Productivity Models 

 Productivity models for bulldozer, scraper, excavator, and truck are built by using 

data from two sources: RSMeans Heavy Construction Data and CAT Performance 

Handbook. The productivity models are built, analyzed, and validated by using multiple 

linear regression (MLR) methods. The productivity models for each type of HDD 

equipment will be compared based on the source of data; models built by using RSMeans 

data and models built using CAT performance data. The comparisons of these two 

productivity models will be based on some key factors or predictors, such as engine size, 

working distance, soil types, or bucket/blade capacity. The comparison of estimated fuel 

use is also presented to show the magnitude of working duration of each type of 

equipment.
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4.1.1 Model Building and Validation 

 Since the data collection has been done by using the RSMeans Heavy 

Construction Data and the CAT Performance Handbook, the next step for the building of 

a regression model involves three following phases: model building, model selection, and 

model validation. During the model building process, we need to examine whether all of 

the potential ‘X’ variable are needed or whether a subset of them is adequate (Kutner et 

al, 2004). A number of useful measures have been developed to assess the adequacy of 

various subsets of ‘X’ variables. For the purpose of this research, one manual selection 

method: Mallow’s Cp, and an automatic model selection method: stepwise regression 

selection are used to develop best subset of ‘X’ variables 

 Mallow’s Cp criterion considers the total mean squared error of the fitted values 

for each subset regression model. This value indicates a good model when it is small and 

ideally close to the number of regression parameters, p. It is calculated as: 

    Cp  
SSEp

 MSE (X1, ,Xp-1)
-(n-2p)    (4-1) 

Stepwise model selection uses an automatic search procedure to develop and identify a 

single regression model as ‘best’. This research used a forward stepwise regression 

procedure. Essentially, this search method develops a sequence of regression models, at 

each step adding or deleting an ‘X’ variable. The criterion for adding or deleting an ‘X’ 

variable can be stated equivalently in terms of error sum of square reduction, coefficient 

of partial correlation, t statistic, or F statistic (Kutner et al, 2004). 

 The final step in the model building process is the validation of the selected 

regression model. The productivity models in this research are validated by using two 
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methods: data splitting and a plot showing a comparison of predicted and actual data. In 

data splitting method, the original data set are split into a model-building set and a 

validation set (Kutner et al, 2004). If the number of data is within 6 to 10 times the 

number of predictor variables, it is enough for making an equal data split. If the entire 

data is not large enough under these circumstances, the validation set will need to be 

smaller than the model building data set.  

The model-building set is used to develop the model. The validation set is used to 

evaluate the reasonableness and predictive ability of the selected model. A means of 

measuring the actual predictive ability is to use the model to predict each case in the 

validation data set and then to calculate the mean of the squared prediction errors, 

denoted by MSPR or mean squared prediction error. The MSPR is calculated as: 

MSPR 
∑ ( i- i)

2n
i 1

n
          (4-2) 

where: 

Yi = the value of the response variable in the i-th validation case 

 i = the predicted value for the i-th validation case based on the model from using the 

model building data set 

n = the number of cases in the validation data set 

If the MSPR is fairly close to the MSE based on the regression fit to the model-building 

data set, then MSE for the selected regression model is not seriously biased and gives an 

appropriate indication of the predictive ability of the model. 

 The plot showing the predicted versus the actual result of productivity model is 

used to identify the accuracy, precision, and bias of the model. Ideally, a plot of the 
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predicted versus the actual results will produce a line with a slope of 1.0 (accurate), R
2
 = 

1.0 (precise), and y-intercept = 0 (no-bias). 

 Since some the productivity models have two or more qualitative predictors such 

as types of soil, types of excavator, or types of scraper, the regression functions need to 

be written in such way to consider the number of qualitative variables included in the 

model (Kutner et al, 2004). A bulldozer productivity model on four types of soil for 

example, has to be written for each type of soil. If engine size and distance are included 

in the productivity model as X1 and X2, and for types of soil are defined as X3, X4, X5, 

and X6 respectively, the response function for regression model will be: 

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6      (4-3a) 

To understand the meaning of the regression coefficients, it is defined that when: 

X3 = 1 for soil type a, or X3 = 0 for otherwise, 

X4 = 1 for soil type b, or X4 = 0 for otherwise, 

X5 = 1 for soil type c, or X5 = 0 for otherwise. 

For soil type d, since X3 = X4 = X5 = 0, the response function becomes: 

Y = β0 + β1X1 + β2X2         (4-3b) 

Similarly, response functions for soil type a, b, and c becomes: 

Y = β0 + β1X1 + β2X2 + β3        (4-3c) 

Y = β0 + β1X1 + β2X2 + β4, and       (4-3d) 

Y = β0 + β1X1 + β2X2 + β5        (4-3e) 

Thus, response functions imply that the regression models of each soil type on engine 

size and distance are linear. 
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4.1.1.1 Bulldozer 

 The RSMeans productivity model for bulldozer was based on 72 observations 

taken from the ‘excavation bulk-dozer’ activity. The response variable of productivity 

was based on the daily output values for each observation, which was converted to hourly 

output values based on an eight hour work day, and reported in units of bank cubic yards 

per hour (bcy/hr). The predictor variables included a range of engine sizes (80-700 

horsepower), dozing distance (50-300 feet), and soil types (sand-gravel, sandy clay-loam, 

common earth, and clay). Soil type was treated as a categorical variable with a value of 0 

or 1, depending on the type of soil under consideration. 

 To build the productivity model, the data is split into two parts; model building 

data set and model validation data set. Since the number of data is more than 10 times of 

the number of predictors, the data can be equally splitted. From the results of original 

regression function, it was found that the plot of residuals against the predicted values 

showed evidence of unequal variance. The unequal error variances and non-normality of 

the error terms frequently appear together. 

A Box-Cox analysis has been conducted and the result recommended the best 

lambda (λ) for transforming the response variables ( ) is 0.2. Based on the transformed 

regression equations, the value of R
2
 = 0.9534 showed that the productivity model for 

bulldozer accounts approximately 95% of the variability of the RSMeans data. With α   

0.05, all parameters (including the intercept) in the transformed model had p-values < 

0.0001 and were statistically significant. 

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 4.296 and R-square of 0.9530, engine horsepower, dozing distance, and soil type 
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can be included in the model. Meanwhile, after fourth step in stepwise selection method, 

engine horsepower, dozing distance, and soil type were included in the model, and gave 

the R-square value of 0.9474. From these two methods, the final regression model for 

productivity can include bulldozer horsepower (hp), dozing distance (feet), and type of 

soil. 

With the form of transformed regression function which can be written as: 

Y
0.2

 = β0 + β1xi1 + β2xi2 + … + βpxip + εi  or,        (4-4a) 

 

Y = (β0 + β1xi1 + β2xi2 + … + βpxip + εi)
5
        (4-4b) 

the overall productivity models of bulldozer for all types of soil are shown in the Table 

4.1. 

 

Table 4.1. Productivity models for bulldozer – RSMeans  

Soil Type Productivity Model 

Sand-gravel Y = (2.117 +0.0035X1 – 0.0024X2)
5
                                     (4-5) 

Sandy clay-loam Y = (2.097 +0.0035X1 – 0.0024X2)
5
                                     (4-6) 

Common earth Y = (2.046 +0.0035X1 – 0.0024X2)
5
                                     (4-7) 

Clay Y = (1.878 +0.0035X1 – 0.0024X2)
5
                                     (4-8) 

 

where: 

Y = bulldozer productivity (bcy/hr) 

X1 = engine horsepower (hp) 

X2 = dozing distance (feet) 

 

To validate the model, a plot in Figure 4.1 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.9763, R
2
 = 0.9478, and intercept = 0.2338 bcy/hr, thus, the model was considered to be 

accurate, precise, and had small bias. In cross-validation procedure, the data were split to 

two: 36 data for model building and 36 data for model validation. The calculation result 

of mean squared prediction error (MSPR), by dividing the errors sum of squares with 

number of data in validation data set, is 0.084/36 = 0.0023. This result is fairly not too far 
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compared to mean square error (MSE) in model building data set, which is 0.0061. It can 

be concluded that the regression model for bulldozer productivity is not seriously biased 

and gives an appropriate indication of the predictive ability of the model. 

 

Figure 4.1. Actual and estimated productivity for bulldozer - RSMeans 

  

The CAT productivity model for bulldozer was based on 2,880 observations taken 

from chart estimating off-the-job productivity rate and using correction factors such as 

operational efficiencies, site slope, operator skill, soil type, and dozing techniques. The 

estimated off-the-job productivity rates are obtained by using chart showing different 

types of bulldozer productivity as the function of dozing distance (Figure 4.3). All types 

of bulldozer in the chart using the same type of blade; universal blade, which provides 

high volume movement of light non-cohesive materials and other reclamation works. The 

bulldozer models used in the chart are listed in Table. 
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 The response variable of productivity was based on the hourly productivity rate in 

loose cubic yard per hour (lcy/hr) by using the combination of bulldozer models or types 

and all possible correction factors configurations. The predictor variables included a 

range of engine size (202-850 hp), blade capacities (7.5-45 lcy), dozing distances (100-

500 feet), operational efficiencies (67-83%), site slope (0.2-1.8%), operator skill 

(excellent, average, poor), soil types (loose stockpile, hard to cut, hard to drift, and 

blasted/ripped rock), and dozing techniques (slot and side-by-side). 

Operator skill, soil type, and dozing techniques were treated as categorical 

variable with a value of 0 or 1 depending on the type under consideration; poor operator 

skill, blasted/ripped rock, and side-by-side dozing were considered to be the base cases. 

From the results of original regression function, it was found that the plot of residuals 

against the predicted values showed evidence of unequal variance. The unequal error 

variances and non-normality of the error terms frequently appear together. However, 

since the number of data is large (n = 2,880), the normality issue is not important 

anymore, and the regression model for bulldozer can be used without using 

transformation. Based on the value of R
2
 = 0.6421, the regression function for predicting 

productivity accounts for approximately 64% of the variability in the CAT data. With α = 

0.05, almost all parameters (including the intercept) in the transformed model had p-

values < 0.0001 and were statistically significant, except for blade capacity and dozing 

techniques.  
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Table 4.3. Types of CAT bulldozer used to develop productivity model 

Bulldozer 

model 

Type of blade Blade 

capacity 

(lcy) 

Engine 

size (hp) 

Picture 

CAT  

D11-U 

Universal 45 850 

 
CAT  

D10-U 

Universal 28.7 580 

 
CAT 

D8-U 

Universal 15.5 305 

 
CAT 

D7-R 

Universal 7.53 202 

 
 

  The blade capacity is technically designed as function of engine size; bigger 

engine size has bigger blade capacity. From the result of Pearson Correlation Coefficients 

tests, it was also found that there is strong linear correlation between engine horsepower 

(hp) and blade capacity (0.998 with p-value <0.0001). Based on the result of correlation 

test, engine size or blade capacity has to be taken out from the regression model. 

Concerning the dozing techniques, since the p-values of dozing techniques is 0.1454 and 

is bigger than α   0.05, it can be concluded that different dozing techniques do not 

significantly lead to different rate of productivity. However, since the dozing technique is 
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categorical variable, it can be used to represent the categories of a qualitative explanatory 

variable in the regression model. 

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 11.122 and R-square of 0.642, engine horsepower, dozing distance, operational 

efficiency, site slope, operator skill, soil type, and dozing techniques can be included in 

the model. Meanwhile, after tenth step in stepwise selection method, dozing distance, 

engine horsepower, site slope, soil type, operator skill, and operation efficiency were 

included in the model, and gave the R-square value of 0.6417. From these two methods, 

the final regression model for productivity can include bulldozer horsepower (hp), dozing 

distance (feet), site slope (%), operational efficiency (%), soil type, operator skill, and 

dozing technique. 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi                      (4-33) 

 

the overall CAT productivity models of bulldozer for all types of soil are shown in the 

Table 4.4. 

To validate the model, a plot in Figure 4.2 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

1.0204, R
2
 = 0.9357, and intercept = 12.535 lcy/hr, thus, the model was considered to be 

accurate, precise, and had no bias.  
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Table 4.4. Productivity models for bulldozer – CAT  

Dozing 

Technique 

Operator 

skill 

Soil type Productivity model  

Slot Excellent loose stockpile Y = -158.1 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                          

(4-9) 

hard to cut Y = -443.62 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                        

(4-10) 

hard to drift Y = -368.5 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                      

(4-11) 

blasted/ripped 
rock 

Y = -500.7 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                     
(4-12) 

Average loose stockpile Y = -308.4 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                          

(4-13) 

hard to cut Y = -593.9 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                            

(4-14) 

hard to drift Y = -536.8 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                          

(4-15) 

blasted/ripped 

rock 

Y = -651 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                

(4-16) 

Poor loose stockpile Y = -398.6 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                      

(4-17) 

hard to cut Y = -684.1 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                      

(4-18) 

hard to drift Y = -627 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                    
(4-19) 

blasted/ripped 

rock 

Y = -741.2 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                                

(4-20) 

Side-by-

side 

Excellent loose stockpile Y = -178.1 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                               

(4-21) 

hard to cut Y = -463.6 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                   

(4-22) 

hard to drift Y = -406.5 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                 

(4-23) 

blasted/ripped 

rock 

Y = -520.7 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                      

(4-24) 

Average loose stockpile Y = -328.4 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                   

(4-25) 
hard to cut Y = -613.9 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                     

(4-26) 

hard to drift Y = -556.8 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                   

(4-27) 

blasted/ripped 

rock 

Y = -671 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                         

(4-28) 

Poor loose stockpile Y = -418.6 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                      

(4-29) 

hard to cut Y = -704.1 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                      

(4-30) 

hard to drift Y = -647 + 1.5X1 – 1.65X2 + 628X3 + 471X4                                                         

(4-31) 

blasted/ripped 
rock 

Y = -761.2 + 1.5X1 – 1.65X2 + 628X3 + 471X4                 
(4-32) 

 

Where: 

Y = productivity rate (lcy/hr) 
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X1 = engine horsepower (hp) 

X2 = dozing distance (feet) 

X3 = Job efficiency (%) 

X4 = site slope (%) 
 

 

Figure 4.2. Actual and estimated productivity for bulldozer - CAT 

 

4.1.1.2 Scraper 

The RSMeans productivity model for scraper was based on 60 observations taken 

from the ‘excavation bulk-scraper’ activity. The response variable of productivity was 

based on the daily output values for each observation, which was converted to hourly 

output values based on an eight hour work day, and reported in units of bank cubic yards 

per hour (bcy/hr). The predictor variables included a range of bucket size (11-21 cy), 

distance (1500-5000 feet), type of scraper (elevated scraper, slef-propelled scraper, and 

towed), and soil types (sand-gravel, sandy clay-loam, common earth, and clay). Soil type 
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and type of scraper were treated as a categorical variable with a value of 0 or 1, 

depending on the type of soil under consideration. To build the productivity model, the 

data is split into two parts; model building data set and model validation data set. Since 

the number of data is more than 10 times of the number of predictors, the data can be 

equally. 

From the results of original regression function, it was found that the plot of 

residuals against the predicted values showed evidence of unequal variance. The unequal 

error variances and non-normality of the error terms frequently appear together. To 

remedy the non-normality in the data, a Box-Cox analysis has been conducted and the 

result recommended the best lambda (λ) for transforming the response variables ( ) is 0. 

After transformation, the regression model for productivity is formulated as: 

logY = β0 + β1xi1 + β2xi2 + … + βpxip + εi, or        (4-34) 

 

Y = e(β0 + β1xi1 + β2xi2 + … + βpxip + εi)
         (4-35) 

Based on the transformed regression equations, the value of R
2
 = 0.9936 showed 

that the productivity model for bulldozer accounts approximately 99% of the variability 

of the RSMeans data. With α   0.05, all parameters (including the intercept) in the 

transformed model had p-values < 0.0001 and were statistically significant for the model. 

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 7.000 and R-square of 0.9936, type of scraper, soil type, bucket size, and 

distance can be included in the model. Meanwhile, after seventh step in stepwise 

selection method, bucket size, soil type, distance, and type of scraper were included in the 

model, and gave the R-square value of 0.9936. From these two methods, the final 

regression model for productivity can include bucket size (cy), distance (feet), type 
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scraper, and type of soil. The overall productivity models for scraper are shown in Table 

4.5. 

 

Table 4.5. Productivity models for scraper – RSMeans  

Type of 

scraper 

Soil type Productivity models  

Elevated 

scraper 

Sand-gravel Y = e
(1.878 + 0.0107X1 – 0.000045X2)

 (4-36) 

 Common 

earth 
Y = e

(1.817 + 0.0107X1 – 0.000045X2)
 (4-37) 

 Sandy-clay 

loam 
Y = e

(1.853 + 0.0107X1 – 0.000045X2)
 (4-38) 

 Clay Y = e
(1.613 + 0.0107X1 – 0.000045X2)

 (4-39) 

Self-

propelled 

scraper 

Sand-gravel Y = e
(1.853 + 0.0107X1 – 0.000045X2)

 (4-40) 

 Common 

earth 
Y = e

(1.792 + 0.0107X1 – 0.000045X2)
 (4-41) 

 Sandy-clay 

loam 
Y = e

(1.828  + 0.0107X1 – 0.000045X2)
 (4-42) 

 Clay Y = e
(1.587  + 0.0107X1 – 0.000045X2)

 (4-43) 

Towed Sand-gravel Y = e
(1.965  + 0.0107X1 – 0.000045X2)

 (4-44) 

 Common 

earth 
Y = e

(1.904  + 0.0107X1 – 0.000045X2)
 (4-45) 

 Sandy-clay 

loam 
Y = e

(1.940  + 0.0107X1 – 0.000045X2)
 (4-46) 

 Clay Y = e
(1.717  + 0.0107X1 – 0.000045X2)

 (4-47) 

 

Where: 

Y = productivity rate (bcy/hr) 

X1 = bucket size (bcy) 

X2 = distance (ft) 
 

To validate the model, a plot in Figure 4.3 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.9488, R
2
 = 0.9711, and intercept = 3.34 bcy/hr, thus, the model was considered to be 

accurate, precise, and had small bias. In cross-validation procedure, the data were split to 
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two: 30 data for model building and 30 data for model validation. The calculation result 

of mean squared prediction error (MSPR), by dividing the errors sum of squares with 

number of data in validation data set, is 0.01474/30 = 0.00049. This result is fairly not 

too far compared to mean square error (MSE) in model building data set, which is 

0.00018. It can be concluded that the regression model for scraper productivity is not 

seriously biased and gives an appropriate indication of the predictive ability of the model.  

 

 

Figure 4.3. Actual and estimated productivity for scraper - RSMeans 
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hauling distance in feet. Each model of scraper has productivity chart with information 

about its payload or bucket size in bank cubic yard (bcy), empty weight in pounds (lb), 

and material rolling resistance. The bucket capacity and empty weight will determine the 

size of the engine (horsepower), which can be found in the specification chart. The 

scraper models used in the chart are listed in Table 4.6. 

 The response variable of productivity was based on the hourly productivity rate in 

loose cubic yard per hour (bcy/hr). The predictor variables included a range of engine 

size (175-564 hp), bucket capacities (8.8-34.6 bcy), rolling resistance (0.02-0.1), and 

hauling distances (200-3600) feet. From the results of original regression function, it was 

found that the regression function for predicting productivity accounts for approximately 

90% of the variability in the CAT data (R
2
 = 0.9053). With α   0.05, almost all 

parameters (including the intercept) in the transformed model had p-values < 0.0001 and 

were statistically significant, except for engine size (hp).  

The engine size is technically related to bucket capacity or size; bigger engine 

size has bigger bucket capacity. From the result of Pearson Correlation Coefficients tests, 

it was also found that there is strong linear correlation between engine horsepower (hp) 

and bucket capacity (0.989 with p-value <0.0001). Based on the result of correlation test, 

the regression model has to exclude whether the engine size or bucket capacity.  

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 5.000 and R-square of 0.9053, engine horsepower, bucket capacity, rolling 

resistance, and hauling distance can be included in the model. Meanwhile, after fifth step 

in stepwise selection method, bucket capacity, hauling distance, rolling resistance, and 

engine size were included in the model, and gave the R-square value of 0.9053 (Table 4). 
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From these two methods, the final regression model for productivity can include bucket 

capacity (bcy), hauling distance (ft), and rolling resistance. 

Table 4.6. Types of CAT scraper used to develop productivity model 

Scraper model Bucket capacity 

(lcy) 

Engine 

size (hp) 

Picture 

CAT-613C 8.9 175 

 
CAT-615C 13.6 265 

 
CAT-623G 17.6 330 

 
CAT-623G 18.3 365 

 
CAT-637G 27.4 462 

 
CAT-657G 34.6 564 
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With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi         (4-48) 

 

the CAT productivity models of scraper for all types of soil are shown as: 

 

 Y = 263.97 + 9.518X1 – 1556.28X2 – 0.092X3       (4-49) 

 

Where: 

Y = productivity rate (bcy/hr) 

X1 = bucket capacity (bcy) 

X2 = rolling resistance 

X3 = hauling distance (ft) 

 

To validate the model, a plot in Figure 4.4 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.662, R
2
 = 0.8611, and intercept = -13.815 bcy/hr, thus, the model was considered to be 

accurate, precise, and had no bias. 

 

Figure 4.4. Actual and estimated productivity for scraper - CAT 
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4.1.1.3 Excavator 

The RSMeans productivity model for excavator was based on 195 observations 

taken from the ‘excavation trench’ activity. The response variable of productivity was 

based on the daily output values for each observation, which was converted to hourly 

output values based on an eight hour work day, and reported in units of loose cubic yards 

per hour (lcy/hr). The predictor variables included a range of trench depth (2.5-22 feet), 

bucket size (0.375-3.5 cy), type of excavator (excavator, excavator-truck mounted, and 

excavator-trench box), and soil types (common earth, loam-sandy clay, sand-gravel, and 

hard clay). Soil type and type of excavator were treated as a categorical variable with a 

value of 0 or 1. 

From the results of original regression function, it was found that the plot of 

residuals against the predicted values showed evidence of unequal variance. The unequal 

error variances and non-normality of the error terms frequently appear together. 

However, since the number of data is large (n = 195), the term of normality is not 

important, and the transformation to remedy the non-normality is not needed. 

The regression function has the value of R
2
 = 0.9195, and give the ability of  

predicting productivity accounts for approximately 92% of the variability in the 

RSMeans data. With α   0.05, almost all parameters in the transformed model had p-

values < 0.0001 and were statistically significant, except for type of excavator. 

Concerning the type of excavator, since the p-values of excavator and excavator-truck 

mounted were 0.1676 and 0.4743 respectively, bigger than α   0.05, they can be 

concluded that different type of excavator do not significantly lead to different rate of 
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productivity. However, since the type of excavator is categorical variable, it can be used 

to represent the categories of a qualitative explanatory variable in the regression model. 

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 4.297 and R-square of 0.9194, soil type, trench depth, bucket size, and type of 

excavator can be included in the model. Meanwhile, after fifth step in stepwise selection 

method, bucket size, trench depth, and soil type were included in the model, and gave the 

R-square value of 0.9185. From these two methods, the final regression model for 

productivity can include bucket size (cy), trench depth (feet), soil type, and type of 

excavator. 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi         (4-50) 

 

the overall RSMeans productivity models of excavator for all types of soil and types of 

excavator are shown in the Table 4.7. 

To validate the model, a plot in Figure 4.5 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.9195, R
2
 = 0.9195, and intercept = 6.2632 lcy/hr, thus, the model was considered to be 

accurate, precise, and had no bias. Because the data set is large enough (n=195), the 

model was also validated by using cross-validation procedure or data splitting. 101 

observed data were used for model building, and 94 data were used for model validation. 

The calculation result of mean squared prediction error (MSPR), by dividing the errors 

sum of squares with number of data in validation data set, is 20205/94 = 214.5. This 

result is fairly not too far compared to mean square error (MSE) in model building data 

set, which is 225.52. It can be concluded that the regression model for excavator 
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productivity is not seriously biased and gives an appropriate indication of the predictive 

ability of the model. 

 

Table 4.7. Productivity models for excavator – RSMeans  

Type of 

excavator 

Soil type Productivity models  

Excavator Common 
earth 

Y = 7.832 – 2.069X1 + 55.131X2  (4-51) 

Loam-sandy 

clay 

Y = 14.274 – 2.069X1 + 55.131X2  (4-52) 

Sand-gravel Y = 15.779 – 2.069X1 + 55.131X2  (4-53) 
Hard clay Y = -0.633 – 2.069X1 + 55.131X2  (4-54) 

Excavator-

truck 

mounted 

Common 

earth 

Y = 8.681 – 2.069X1 + 55.131X2  (4-55) 

Loam-sandy 
clay 

Y = 15.123 – 2.069X1 + 55.131X2  (4-56) 

Sand-gravel Y = 16.628 – 2.069X1 + 55.131X2  (4-57) 

Hard clay Y = 0.216 – 2.069X1 + 55.131X2  (4-58) 

Excavator-

trench box 

Common 

earth 

Y = 4.515 – 2.069X1 + 55.131X2  (4-59) 

Loam-sandy 

clay 

Y = 10.957 – 2.069X1 + 55.131X2  (4-60) 

Sand-gravel Y = 12.562 – 2.069X1 + 55.131X2  (4-61) 

Hard clay Y = -3.946 – 2.069X1 + 55.131X2 (4-62) 

 

Where: 

Y = productivity rate (lcy/hr) 

X1 = trench depth (feet) 

X2 = bucket size (cy) 

 

The CAT productivity model for excavator was based on 1260 observations taken 

from two charts estimating cycle time and off-the-job productivity rate with various 

operation efficiency. The chart for estimating cycle time gives the estimation of total 

cycle time from loading, swinging (loaded and empty), and dumping. The total cycle time 

were accounted for different type/model of excavator, bucket size, soil type, and digging 

depth. This total time and bucket size information were then projected to the chart 

estimating productivity to obtain the estimated productivity rate in loose cubic yard per 

hour (lcy/hr). The bucket size information can also be used to determine the engine size 
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of the excavator by using specification chart. The selected excavators used in generating 

productivity model are shown in Table 4.8.  

 

 

Figure 4.5. Actual and estimated productivity for excavator - RSMeans 
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Table 4.8. Types of CAT excavator used to develop productivity model 

Excavator model Bucket capacity 

(lcy) 

Engine 

size (hp) 

Picture 

CAT-307C 0.48 54 

 
CAT-311C 1.33 79 

 
CAT-312C 0.98 96 

 
CAT-315C 1.13 115 

 
CAT-318C 1.8 125 

 
CAT-320D 1.96 138 

 
CAT-324D 2.6 166 

 
CAT-325D 2.6 204 

 
CAT-330D 3 268 

 
CAT-365C 4.29 404 
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From the results of original regression function, it was found that the regression 

function for predicting productivity accounts for approximately 90% of the variability in 

the CAT data (R
2
 = 0.8981). With α   0.05, all parameters (including the intercept) in the 

transformed model had p-values < 0.0001 and were statistically significant. The model 

selection result by using Mallow’s Cp method shows that with C(p) value of 9.000 and R-

square of 0.8527, engine size, bucket size, soil type, cycle time, and operational 

efficiency can be included in the model. Meanwhile, after ninth step in stepwise selection 

method, bucket size, cycle time, soil type, operation efficiency, and engine size were 

included in the model, and gave the R-square value of 0.8527 (Table 4). From these two 

methods, the final regression model for productivity can include engine size (hp), bucket 

size (cy), soil type, cycle time (second), and operation efficiency. 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi         (4-63) 

 

the CAT productivity models of excavator for all types of soil are shown in Table 4.9. 

 

Table 4.9. Productivity models for excavator – CAT 

Soil type Productivity models  

Sandy clay Y = 67.5 – 0.521X1 + 141.50X2 – 10.23X3 + 290.73X4   

(4-64) 

Sand-gravel Y = 52.64 – 0.521X1 + 141.50X2 – 10.23X3 + 290.73X4   

(4-65) 

Hard-tough 

clay 

Y = 38.24 – 0.521X1 + 141.50X2 – 10.23X3 + 290.73X4   

(4-66) 

Rock well-

blasted 

Y = -4.97 – 0.521X1 + 141.50X2 – 10.23X3 + 290.73X4   

(4-67) 

Rock poor 

blasted 

Y = -76.986 – 0.521X1 + 141.50X2 – 10.23X3 + 290.73X4  

(4-68) 

 

Where: 

Y = productivity rate (lcy/hr) 

X1 = engine size (hp) 

X2 = bucket size (lcy) 
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X3 = cycle time (seconds) 

X4 = operation efficiency 

 

To validate the model, a plot in Figure 4.6 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.8198, R
2
 = 0.8629, and intercept = 49.69 lcy/hr, thus, the model was considered to be 

accurate, precise, but had bias. The estimated productivity has 49.69 lcy/hr more than the 

actual, when the actual productivity has 0 lcy /hr. It equals to approximately 8 buckets 

loaded with maximum capacity (6.1 lcy). The lowest bias occurred when the actual 

productivity is around 400 lcy/hr, and the estimated productivity departed gradually from 

ideal estimation as the actual productivity increase from 500 lcy/hr to 1500 lcy/hr. 

 

Figure 4.6. Actual and estimated productivity for excavator - CAT 
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4.1.1.4 Truck 

The RSMeans productivity model for truck was based on 240 observations taken 

from the ‘hauling’ activity. The response variable of productivity was based on the daily 

output values for each observation, which was converted to hourly output values based on 

an eight hour work day, and reported in units of loose cubic yards per hour (lcy/hr). The 

predictor variables included a range of loading capacity (22-60 lcy), average hauling 

speed (5-25 miles per hour), cycle distance (0.38-2 miles), and cycle time (15-25 

minutes). 

From the results of original regression function, it was found that the plot of 

residuals against the predicted values showed evidence of unequal variance. The unequal 

error variances and non-normality of the error terms frequently appear together. 

However, since the number of data is large (n = 240), the term of normality is not 

important, and the transformation to remedy the non-normality is not needed. 

The regression function has the value of R
2
 = 0.9432, and give the ability of  

predicting productivity accounts for approximately 94% of the variability in the 

RSMeans data. With α   0.05, all parameters in the transformed model had p-values < 

0.0001 and were statistically significant is predicting productivity. The model selection 

result by using Mallow’s Cp method shows that with C(p) value of 5.000 and R-square of 

0.9432, loading capacity, average speed, cycle distance, and cycle time can be included in 

the model. Meanwhile, after fifth step in stepwise selection method, loading capacity, 

cycle distance, cycle time, and average speed were included in the model, and gave the 

R-square value of 0.9432. From these two methods, the final regression model for 
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productivity can include loading capacity (lcy), average hauling speed (mph), cycle 

distance (miles), and cycle time (minutes). 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi         (4-69) 

 

the RSMeans productivity models of truck is written as: 

 

Y = 58.799 + 2.079X1 + 1.625X2 – 12.056X3 – 2.789X4      (4-70) 

where: 

Y = productivity rate (lcy/hr) 

X1 = loading capacity (lcy) 

X2 = average speed (mph) 

X3 = cycle distance (miles) 

X4 = cycle time (minutes) 

 

 

To validate the model, a plot in Figure 4.7 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.9432, R
2
 = 0.9432, and intercept = 4.528 lcy/hr, thus, the model was considered to be 

accurate, precise, and had no bias. Because the data set is large enough (n=240), the 

model was also validated by using cross-validation procedure or data splitting. 120 

observed data were used for model building, and the remaining 120 data were used for 

model validation. The calculation result of mean squared prediction error (MSPR), by 

dividing the errors sum of squares with number of data in validation data set, is 5913/120 

= 49.28. This result is fairly not too far compared to mean square error (MSE) in model 

building data set, which is 46.79. It can be concluded that the RSMeans regression model 

for truck productivity is not seriously biased and gives an appropriate indication of the 

predictive ability of the model. 
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Figure 4.7. Actual and estimated productivity for truck - RSMeans 
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minute. Since the average hauling speed is given in the specification, and the cycle 

distance of an off-road truck is in range of 0.22 to 2 miles, the average hauling time for 

truck can be calculated accordingly. 

To generate the regression model for CAT productivity of truck, the predictor 

variables used includes a range of engine size (476-740 hp), loading capacity (21.5-43.3 

cy), average hauling speed (38.6-49.5 mph), cycle distance (0.38-2 miles), cycle time 

(3.36-33.4 minutes), operation efficiency (0.67-1), excavator’s bucket size (1.13-6.1 cy), 

and excavator’s cycle time (0.22-0.67 minutes). The models of truck used in generating 

the productivity model are shown in Table 4.10. From the results of original regression 

function, it was found that the regression function for predicting productivity accounts for 

approximately 85% of the variability in the CAT data (R
2
 = 0.8465). With α   0.05, 

almost all parameters (including the intercept) in the transformed model had p-values < 

0.0001 and were statistically significant, except for engine size (hp).  

The engine size is technically related to loading capacity or size; bigger engine 

size has bigger loading capacity. From the result of Pearson Correlation Coefficients 

tests, it was also found that there is strong linear correlation between engine horsepower 

(hp) and loading capacity (0.641 with p-value <0.0001). Based on the result of correlation 

test, the regression model has to exclude whether the engine size or loading capacity.  
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Table 4.10. Types of CAT truck used to develop productivity model 

Truck model Loading 

capacity 

(lcy) 

Average 

speed 

(mph) 

Engine 

size (hp) 

Picture 

CAT-770 21.5 46.5 476 

 
CAT-772 30.5 49.5 535 

 
CAT-773E 34.8 38.6 671 

 
CAT-773F 35 41.9 703 

 
CAT-775F 43.3 41.9 740 

 
 

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 7.474 and R-square of 0.8510, loading capacity, hauling speed, cycle distance, 

bucket size, excavator’s cycle time, truck’s cycle time, and operation efficiency can be 

included in the model. Meanwhile, after eight steps in stepwise selection method, truck’s 

cycle time, loading capacity, operation efficiency, bucket size, excavator’s cycle time, 

cycle distance, and hauling speed were included in the model, and gave the R-square 
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value of 0.8510. From these two methods, the final regression model for productivity can 

include loading capacity (cy), hauling speed (mph), cycle distance (miles), excavator’s 

bucket size (cy), excavator’s cycle time (minutes), truck’s cycle time (minutes), and 

operation efficiency. 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi         (4-71) 

 

the CAT productivity models of dump truck for all types of soil are shown as: 

 Y = -89.111 + 3.35X1 + 1.01X2 – 23.02X3 + 18.36X4 – 133.03X5 – 3.94X6 + 

202.96X7             (4-72) 

Where: 

Y = productivity rata (cy/hr) 

X1 = loading capacity (cy) 

X2 = hauling speed (mph) 

X3 = cycle distance (miles) 

X4 = bucket size (cy) 

X5   excavator’s cycle time (minutes) 

X6   truck’s cycle time (minutes) 

X7 = operation efficiency 

 

 

Figure 4.8. Actual and estimated productivity for truck - CAT 
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To validate the model, a plot in Figure 4.8 showing the predicted versus the actual 

results for the productivity model was made. The plot from the model shows the slope of 

0.7572, R
2
 = 0.8828, and intercept = 45.84 lcy/hr, thus, the model was considered to be 

accurate, precise, but had bias. 

 

4.1.2 Model Comparison 

 The purpose of this part is to evaluate how the regression models of productivity 

from two data sources; RSMeans Data and CAT Data, predict the productivity rate for 

the activities based on each data source. The comparisons of these two productivity 

models will be based on some key factors or predictors, such as engine size, working 

distance, soil types, or bucket/blade capacity, are presented. The comparison of estimated 

fuel use is also presented to show the magnitude of working duration of each type of 

equipment.  

As an initial step towards developing the emissions estimating tool, modeling the 

productivity rate of HDD equipment is important. Air pollutants and greenhouse gas 

emissions are direct by-products of fuel consumption, and fuel consumption is dependent 

upon equipment productivity. Productivity is simply defined as the ratio of the quantity of 

work completed to the duration of time for completing the work. This definition also 

reveals that the duration of an equipment activity is inversely proportional to 

productivity; as productivity increases, the duration decreases or vice versa. The duration 

has the key role in estimating fuel use, cost, and emissions from a HDD equipment. The 
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increase of duration typically results in higher cost, higher fuel consumption, and higher 

emissions. 

 

4.1.2.1 Bulldozer 

Although in the previous sections both models were proven statistically accurate, precise, 

and had no bias, there are obvious differences between the two. For example, the 

RSMeans model is based only on three input variables whereas CAT model is based on 

eight input variables. Both models included engine size, dozing distance, and soil type, 

but CAT model included additional information, such as blade capacity, operational 

efficiency, site slope, operator’s skill, and dozing technique. At this analysis, it is difficult 

to conclude that the RSMeans model is simpler because it has fewer input variables to 

consider.  

The comparison of the two models is based on similar range of input or predictor 

variables. Since the range of RSMeans model predictor variables is lesser than CAT 

model, the input variables for the comparison are selected as fit as possible to the 

RSMeans predictor’s range. The comparison used 80-700 hp of engine size, 50-300 feet 

of distance, and all the same type of soil. The blade capacity from CAT model is applied 

by using the nearest related engine size from the CAT bulldozer specification. For 

comparison, average skill operator slot dozing technique were used. For the unit of 

productivity, bank cubic yard per hour (bcy/hr) from RSMeans model had to be 

converted first to loose cubic yard per hour (lcy/hr) as used in CAT model. 

As shown in Figure 4.9 and 4.10, the difference in the two models is the 

magnitude of the productivity results; it is apparent that the CAT model produces much 
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higher results that the RSMeans model. It means that using RSMeans model gives more 

duration for the same quantity of soil comparing to CAT model. As the function of either 

engine size or dozing distance, the CAT model gives the productivity three or four times 

higher than RSMeans model. Furthermore, in a relation to dozing distance, there is an 

inverse relationship (Figure 4.9), where the productivity rates of bulldozer from both 

models decrease as the dozing distance increases. For different soil types, the estimated 

productivity curves for each soil type has the same general shape. For both models, based 

on dozing distance, sand-gravel type of soil gives highest productivity for bulldozer, 

while clay has the lowest productivity rate. 

 

 

 

Figure 4.9. Bulldozer productivity comparison based on distance 
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Figure 4.10. Bulldozer productivity comparison based on horsepower 

 

 As the function to engine size, there is a positive relationship between 

productivity rate and bulldozer horsepower for both models (Figure 4.10). The 

productivity increases as the engine size increases. For different type of soil, sand and 

gravel gives the highest productivity, while clay gives the bulldozer the lowest 

productivity. There is little difference or virtually no difference in RSMeans productivity 

rate with respect to engine size for sand-gravel, sandy clay, and common earth. The 

similar productivity rate also happened to sandy clay, common earth, and clay for CAT 

productivity rate. 

  

 

 

0

100

200

300

400

500

600

0 200 400 600 800

P
r
o
d

. 
(l

c
y
/h

r
) 

Horse Power 

Sand-gravel

(RSMeans)

Sandy clay-loam

(RSMeans)

Common earth

(RSMeans)

Clay (RSMeans)

Sand-gravel (CAT)

Sandy clay-loam

(CAT)

Common earth (CAT)

Clay (CAT)



78 
 

4.1.2.2 Scraper 

 The differences between two productivity models for scraper are that the 

RSMeans model for scraper is based on the type of scraper, type of soil, bucket size, and 

distance, while the CAT model is based only on numerical variables; engine size, bucket 

size, rolling resistance, and distance. Both models have distance and bucket size in the 

productivity model.  

To compare these two models, some range of predictor variables are selected to fit 

with both models’ range. For example, the bucket size is selected in the range of 10-21 

cy, and the distance is selected within the range of 2000-3500 feet. Types of soil used in 

the RSMeans model are converted to nearest related rolling capacity in the CAT model. 

For example, sand-gravel is substituted with 0.02 rolling resistance, common earth with 

0.06, and clay with 0.1. The comparison of productivity is based on various bucket 

capacity and distance. 

Figure 4.11 shows that there is a positive relationship between bucket size or 

capacity with the productivity rate for both models. As the bucket used is bigger, then the 

productivity rate is higher. Generally, it can be said that the average estimated 

productivity from CAT model is higher than those from RSMeans model. However, for 

10 to 14 cy of bucket size, RSMeans model estimates the productivity model for clay 

higher than CAT model. The productivity of different type of soil in CAT model looks 

more considerable compared to those from RSMeans model, and showed that the change 

in bucket size affects the productivity more intense. It also showed that sand-gravel gives 

highest productivity rate, while clay gives lowest productivity rate for both scraper 

productivity models. 
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Figure 4.11. Scraper productivity comparison based on bucket capacity 
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Figure 4.12. Scraper productivity comparison based on distance 
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Figure 4.13 shows that generally, the estimated productivity from CAT model is 

higher than those from RSMeans model. It also shows that there is a positive relationship 

between the bucket size and the productivity rate. As the excavator uses bigger size of 

bucket, the productivity will increase. Although there is no significant difference of 

productivity among all types of soil, both models have different facts about which type of 

soil made the excavator more productive. Using CAT model, the excavator has highest 

productivity while digging sandy clay, and lowest in hard-clay. Meanwhile, the RSMeans 

model shows that the lowest productivity occurred in hard-clay, and both sandy-clay and 

gravel are about the same. 

 

Figure 4.13. Excavator productivity comparison based on bucket size 
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4.1.2.4 Truck 

 Both RSMeans model and CAT model have truck loading capacity, average 

hauling speed, and cycle distance in estimating productivity. The main difference of these 

two models is about truck’s cycle time. RSMeans data have provided the productivity 

data with truck’s cycle time, while in the CAT data the cycle time has to be estimated by 

breaking down the total time to its components; loading time, average hauling time (both 

loaded and empty), and dumping or waiting time.  

To compare the RSMeans and CAT model, the relationship between the 

productivity rate with hauling distance and loading capacity were presented. The hauling 

distance used in the comparison is within range of 0.30 to 2 miles, and 22 to 60 cy for 

loading capacity. The comparison also applied to different total cycle time for trucks and 

different average hauling speed. Different cycle time represents how the supporting 

equipment (excavator) affects the cycle time, while different hauling speed –as specified 

in CAT’s excavator specification- represents the model or size of truck engine. 

 Figure 4.14 and Figure 4.15 shows that the overall estimated productivity from 

two models are about the same, either as function of hauling distance or loading capacity. 

Figure 4.14 shows that, for both models, there is an inverse relationship between 

productivity and hauling distance. As hauling distance increases, the productivity rate 

decreases. In comparison of two models, it shows that in 15 minutes cycle time and 

within distance of 0.38 to 1.7 miles, RSMeans model estimated productivity higher than 

CAT model, and change oppositely after 1.7 miles. In 20 minutes cycle time, RSMeans 

model estimation is higher at 0.38 to 1.2 miles of hauling distance , while in 25 minutes 

cycle time, RSMeans’ higher estimation occurred only at less than 0.6 miles of distance. 
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Figure 4.14. Truck productivity comparison based on distance 
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Figure 4.15. Truck productivity comparison based on loading capacity 
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and an automatic model selection method: stepwise regression selection are used to 

develop best subset of ‘X’ variables 

 The final step in the model building process is the validation of the selected 

regression model. The cost models in this research are validated by using two methods: 

data splitting for large data set, and a plot showing comparison of predicted and actual 

data. In data splitting method, the original data set are split into a model-building set and 

a validation set (Kutner et al, 2004). The model-building set is used to develop the model. 

The validation set is used to evaluate the reasonableness and predictive ability of the 

selected model. A means of measuring the actual predictive ability is to use the model to 

predict each case in the validation data set and then to calculate the mean of the squared 

prediction errors, denoted by MSPR or mean squared prediction error. If the MSPR is 

fairly close to the MSE based on the regression fit to the model-building data set, then 

MSE for the selected regression model is not seriously biased and gives an appropriate 

indication of the predictive ability of the model. 

 The plot showing the predicted versus the actual result of cost model is used to 

identify the accuracy, precision, and bias of the model. Ideally, a plot of the predicted 

versus the actual results will produce a line with a slope of 1.0 (accurate), R
2
 = 1.0 

(precise), and y-intercept = 0 (no-bias). 

 

4.2.1 Bulldozer 

The RSMeans cost model for bulldozer was based on 72 observations taken from 

the ‘excavation bulk-dozer’ activity. The response variable of unit cost was based on the 

sum of total labor and equipment costs plus overhead and profit, reported in units of 
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dollars per cubic yard ($/cy). The predictor variables included a range of engine sizes 

(80-700 horsepower), dozing distance (50-300 feet), and soil types (sand-gravel, sandy 

clay-loam, common earth, and clay). Soil type was treated as a categorical variable with a 

value of 0 or 1, depending on the type of soil under consideration. 

 To build cost  model, the data is split into two parts; model building data set and 

model validation data set. Since the number of data is more than 10 times of the number 

of predictors, the data can be equally. From the results of original regression function, it 

was found that the plot of residuals against the predicted values showed evidence of 

unequal variance. The unequal error variances and non-normality of the error terms 

frequently appear together. 

To remedy the non-normality in the data, a Box-Cox analysis has been conducted. 

Based on the transformed regression equations, the value of R
2
 = 0.9741 showed that the 

cost model for bulldozer accounts approximately 97% of the variability of the RSMeans 

data. With α   0.05, all parameters (including the intercept) in the transformed model had 

p-values < 0.0001 and were statistically significant. The model selection result by using 

Mallow’s Cp method shows that with C(p) value of 4.3851 and R-square of 0.9737, 

engine horsepower, dozing distance, and soil type can be included in the model. 

Meanwhile, after fourth step in stepwise selection method, dozing distance, soil type, and 

engine horsepower were included in the model, and gave the R-square value of 0.9737. 

From these two methods, the final regression model for unit cost can include bulldozer 

horsepower (hp), dozing distance (feet), and type of soil. 

With the form of transformed regression function which can be written as: 

log Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi  or,       (4-73) 
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Y = e 
(β0 + β1xi1 + β2xi2 + … + βpxip + εi)

       (4-74) 

the overall cost models of bulldozer for all types of soil are shown in the Table 4.11. 

 

Table 4.11. Cost models for bulldozer 

Soil Type Cost Model  

Sand-gravel Y = e
(0.986 - 0.00398X1 + 0.0058X2)

 (4-75) 

Sandy clay-

loam 
Y = e

(1.021 - 0.00398X1 + 0.0058X2)
 (4-76) 

Common earth Y = e
(1.13 - 0.00398X1 + 0.0058X2)

 (4-77) 

Clay Y = e
(1.565 - 0.00398X1 + 0.0058X2)

 (4-78) 

 

where: 

Y = unit cost ($/cy) 

X1 = engine horsepower (hp) 

X2 = dozing distance (feet) 
 

To validate the model, a plot in Figure 4.16 showing the predicted versus the 

actual results for the cost model was made. The plot from the model shows the slope of 

1.0564, R
2
 = 0.9454, and intercept = 0.091 $/cy, thus, the model was considered to be 

accurate, precise, and had no bias. In cross-validation procedure, the data were split to 

two: 36 data for model building and 36 data for model validation. The calculation result 

of mean squared prediction error (MSPR), by dividing the errors sum of squares with 

number of data in validation data set, is 0.22355/36 = 0.0062. This result is fairly not too 

far compared to mean square error (MSE) in model building data set, which is 0.01431. It 

can be concluded that the regression model for bulldozer unit cost is not seriously biased 

and gives an appropriate indication of the predictive ability of the model. 
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Figure 4.16. Actual and estimated cost for bulldozer 
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To remedy the non-normality in the data, a Box-Cox analysis has been conducted 

and the result recommended the best lambda (λ) for transforming the response variables 

(Y) is 0. After transformation, the regression model for unit cost is formulated as: 

logY = β0 + β1xi1 + β2xi2 + … + βpxip + εi, or        (4-79) 

 

Y = e(β0 + β1xi1 + β2xi2 + … + βpxip + εi)
         (4-80) 

Based on the transformed regression equations, the value of R
2
 = 0.9903 showed 

that the cost model for bulldozer accounts approximately 99% of the variability of the 

RSMeans data. With α   0.05, only bucket size has p-value = 0.75, and this variable is 

not significant for the model. 

The model selection result by using Mallow’s Cp method shows that with C(p) 

value of 5.1038 and R-square of 0.9903, type of scraper, soil type, and distance can be 

included in the model. Meanwhile, after sixth step in stepwise selection method, soil 

type, distance, and type of scraper were included in the model, and gave the R-square 

value of 0.9903. From these two methods, the final regression model for unit cost can 

include distance (feet), type scraper, and type of soil. The overall cost models for scraper 

are shown in Table 4.12.  

To validate the model, a plot in Figure 4.17 showing the predicted versus the 

actual results for the cost model was made. The plot from the model shows the slope of 

0.9303, R
2
 = 0.9112, and intercept = 0.3883 $/cy, thus, the model was considered to be 

accurate, precise, and had no bias. In cross-validation procedure, the data were split to 

two: 30 data for model building and 30 data for model validation. The calculation result 

of mean squared prediction error (MSPR), by dividing the errors sum of squares with 

number of data in validation data set, is 0.01466/30 = 0.00049. This result is fairly not 
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too far compared to mean square error (MSE) in model building data set, which is 

0.00018. It can be concluded that the regression model for bulldozer productivity is not 

seriously biased and gives an appropriate indication of the predictive ability of the model.  

 

Table 4.12. Cost models for scraper 

Type of 

scraper 

Soil type Cost models  

Elevated 

scraper 

Sand-gravel Y = 10
(0.505 + 0.000045X1)

 (4-81) 

 Common 

earth 
Y = 10

(0.565+ 0.000045X1)
 (4-82) 

 Sandy-clay 

loam 
Y = 10

(0.528 + 0.000045X1)
 (4-83) 

 Clay Y = 10
(0.769 + 0.000045X1)

 (4-84) 

Self-

propelled 

scraper 

Sand-gravel Y = 10
(0.475 + 0.000045X1)

 (4-85) 

 Common 

earth 
Y = 10

(0.535 + 0.000045X1)
 (4-86) 

 Sandy-clay 

loam 
Y = 10

(0.489 + 0.000045X1)
 (4-87) 

 Clay Y = 10
(0.737 + 0.000045X1)

 (4-88) 

Towed Sand-gravel Y = 10
(0.475 + 0.000045X1)

 (4-89) 

 Common 

earth 
Y = 10

(0.535 + 0.000045X1)
 (4-90) 

 Sandy-clay 

loam 
Y = 10

(0.489 + 0.000045X1)
 (4-91) 

 Clay Y = 10
(0.737 + 0.000045X1)

 (4-92) 

 

Where: 

Y = unit cost ($/cy) 

X1 = distance (feet) 
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Figure 4.17. Actual and estimated cost for scraper 
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reported in units of dollars per cubic yard ($/cy).  The predictor variables included a 

range of trench depth (2.5-22 feet), bucket size (0.375-3.5 cy), type of excavator 

(excavator, excavator-truck mounted, and excavator-trench box), and soil types (common 

earth, loam-sandy clay, sand-gravel, and hard clay). Soil type and type of excavator were 

treated as a categorical variable with a value of 0 or 1. 

From the results of original regression function, it was found that the plot of 

residuals against the predicted values showed evidence of unequal variance. The unequal 
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error variances and non-normality of the error terms frequently appear together. 

However, since the number of data is large (n = 195), the term of normality is not 

important, and the transformation to remedy the non-normality is not needed. 

The regression function has the value of R
2
 = 0.6916, and give the ability in 

predicting unit cost accounts for approximately 70% of the variability in the RSMeans 

data. With α   0.05, all parameters in the transformed model had p-values < 0.0001 and 

were statistically significant. The model selection result by using Mallow’s Cp method 

shows that with C(p) value of 5.135 and R-square of 0.6897, soil type, trench depth, 

bucket size, and type of excavator can be included in the model. Meanwhile, after sixth 

step in stepwise selection method, trench depth, soil type, type of excavator, and bucket 

size were included in the model, and gave the R-square value of 0.6897. From these two 

methods, the final regression model for unit cost can include bucket size (cy), trench 

depth (feet), soil type, and type of excavator. 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi         (4-93) 

 

the overall RSMeans cost models of excavator for all types of soil and types of excavator 

are shown in the Table 4.13. 
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Table 4.13. Cost models for excavator 
Type of 
excavator 

Soil type Cost models  

Excavator Common earth Y = 7.056 + 0.045X1 – 1.658X2  (4-94) 

Loam-sandy 
clay 

Y = 6.654 + 0.045X1 – 1.658X2  (4-95) 

Sand-gravel Y = 6.570 + 0.045X1 – 1.658X2  (4-96) 

Hard clay Y = 7.703 + 0.045X1 – 1.658X2  (4-97) 

Excavator-
truck mounted 

Common earth Y = 8.044 + 0.045X1 – 1.658X2  (4-98) 
Loam-sandy 

clay 

Y = 7.642 + 0.045X1 – 1.658X2  (4-99) 

Sand-gravel Y = 7.558 + 0.045X1 – 1.658X2  (4-100) 
Hard clay Y = 8.691 + 0.045X1 – 1.658X2  (4-101) 

Excavator-

trench box 

Common earth Y = 7.623 + 0.045X1 – 1.658X2   (4-102) 

Loam-sandy 

clay 

Y = 7.221 + 0.045X1 – 1.658X2   (4-103) 

Sand-gravel Y = 7.137 + 0.045X1 – 1.658X2   (4-104) 

Hard clay Y = 8.269 + 0.045X1 – 1.658X2  (4-105) 

 

Where: 

Y = unit cost ($/cy) 

X1 = trench depth (feet) 

X2 = bucket size (cy) 

 

To validate the model, a plot in Figure 4.18 showing the predicted versus the 

actual results for the cost model was made. The plot from the model shows the slope of 

0.6916, R
2
 = 0.6916, and intercept = 1.51 $/cy, thus, the model was considered to be 

accurate, precise, and had no bias. Because the data set is large enough (n=195), the 

model was also validated by using cross-validation procedure or data splitting. 101 

observed data were used for model building, and 94 data were used for model validation. 

The calculation result of mean squared prediction error (MSPR), by dividing the errors 

sum of squares with number of data in validation data set, is 103.097/94 = 1.097. This 

result is fairly not too far compared to mean square error (MSE) in model building data 

set, which is 1.31. It can be concluded that the regression model for excavator unit cost is 

not seriously biased and gives an appropriate indication of the predictive ability of the 

model. 
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Figure 4.18. Actual and estimated cost for excavator 
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However, since the number of data is large (n = 240), the term of normality is not 

important, and the transformation to remedy the non-normality is not needed. 

The regression function has the value of R
2
 = 0.8793, and give the ability of  

predicting unit cost accounts for approximately 88% of the variability in the RSMeans 

data. With α   0.05, all parameters in the transformed model had p-values < 0.0001 and 

were statistically significant is predicting productivity. The model selection result by 

using Mallow’s Cp method shows that with C(p) value of 5.000 and R-square of 0.8793, 

loading capacity, average speed, cycle distance, and cycle time can be included in the 

model. Meanwhile, after fifth step in stepwise selection method, loading capacity, cycle 

distance, cycle time, and average speed were included in the model, and gave the R-

square value of 0.8793. From these two methods, the final regression model for 

productivity can include loading capacity (lcy), average hauling speed (mph), cycle 

distance (miles), and cycle time (minutes). 

With the form of transformed regression function which can be written as: 

Y = β0 + β1xi1 + β2xi2 + … + βpxip + εi       (4-106) 

 

the RSMeans cost models of truck is written as: 

 

Y = 3.203 – 0.056X1 – 0.098X2 + 0.709X3 + 0.143X4    (4-107) 

where: 

Y = unit cost ($/cy) 

X1 = loading capacity (lcy) 

X2 = average speed (mph) 

X3 = cycle distance (miles) 

X4 = cycle time (minutes) 

 

To validate the model, a plot in Figure 4.19 showing the predicted versus the 

actual results for the cost model was made. The plot from the model shows the slope of 
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0.881, R
2
 = 0.8793, and intercept = 0.4551 $/cy, thus, the model was considered to be 

accurate, precise, and had no bias. Because the data set is large enough (n=240), the 

model was also validated by using cross-validation procedure or data splitting. 120 

observed data were used for model building, and the remaining 120 data were used for 

model validation. The calculation result of mean squared prediction error (MSPR), by 

dividing the errors sum of squares with number of data in validation data set, is 

15.028/120 = 0.125. This result is fairly not too far compared to mean square error (MSE) 

in model building data set, which is 0.153. It can be concluded that the RSMeans 

regression model for truck unit cost is not seriously biased and gives an appropriate 

indication of the predictive ability of the model. 

 

 

 

Figure 4.19. Actual and estimated cost for truck 
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4.3. Economic-Energy-Environmental (E3) Model 

The economic-energy-environmental (E3) model is developed by using 

productivity and cost models built from RSMeans Heavy Construction data, combined 

with EPA’s NONROAD model. RSMeans data is the most powerful and nationally 

accepted construction tool available to construct estimates and as reference for current 

construction productivity and cost for any type of project. The ‘economic’ term is 

represented by cost models, and formulating the total cost required to complete a certain 

quantity of soil by a specific type of equipment. The ‘energy’ term is used to quantify the 

total amount of fuel needed to perform a specific type of earthwork activity. The total 

fuel use is obtained by using the productivity model combined with NONROAD’s brake-

specific-fuel-consumption (BSFC). Total estimated emissions of pollutants (NOx, PM, 

CO, HC), and greenhouse gas (CO2) determine the term ‘environmental’. The total 

emissions are calculated by using productivity models to obtain activity duration, and 

NONROAD model to obtain emission factors. 

 

4.3.1 Total Cost Estimation Model – ECONOMIC 

 The ‘economic’ model in E3 model is the total cost estimation model. The model 

is formulated by using unit cost model from RSMeans data and multiplied by the quantity 

of soil dozed or hauled or excavated by a specific type of equipment. The unit cost is 

expressed in the unit of dollars per cubic yard ($/cy), the quantity of soil in term of cubic 

yard (cy), and the total cost is in dollars ($). The overall total cost estimating models for 

bulldozer, scraper, excavator, and truck are shown in Table 4.14. 
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Table 4.14. Total cost models for all type of HDD equipment 

Equipment Total cost model  

Bulldozer 
Total cost ($)  = (10

1.565 - 0.00398 P   0.0058D - fs
 ) x Q 

 
fs (soil type factor): 

sand-gravel = 0.574; sandy-clay loam = 0.539; common earth = 0.430; 

clay = 0 

 

(4-108) 

Scraper 
Total cost ($) = 10(             -     0.00004 D) x Q 

 
fs (soil type factor): 

sand-gravel = 0.265; sandy-clay loam = 0.205; common earth = 0.241; 

clay = 0 

ft (scraper type factor): 

elevated = 0.0295; self-propelled = 0; towed = 0 

 

(4-109) 

Excavator Total cost ($) = (8.269 - fs + 0.045d – 1.658B + ft) x Q 

 
fs (soil type factor): 

common earth = 0.647; sandy-clay loam = 1.049; sand-gravel = 1.133; 

hard clay = 0 

ft (scraper type factor): 

excavator  = -0.567; truck-mounted = 0.421; trench-box = 0 

 

(4-110) 

Truck Total cost ($) = (3.2 – 0.06C – 0.1S + 0.71D + 0.14t) x Q 

 

(4-111) 

 

where,  Q = quantity of soil dozed/moved (cy) 

HP = engine horsepower (hp) 

D = distance (ft) – miles for truck 

d = depth (ft) 

B = bucket capacity (cy) 

C = loading capacity (cy) 

S = speed (mph) 

t = cycle time (min.) 

 

 To demonstrate the total cost estimation for bulldozer, an example is presented 

that has inputs of a 150-hp bulldozer that has to haul 1000 cubic yard of common earth in 

300 feet of distance. The result shows that the bulldozer requires $9.02 per cubic yard or 

$9,020.50 in total to complete the task. The example case for scraper is presented when 

an elevated type of scraper with 10 cy bucket size has to haul 1000 cubic yard of clay in 
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2000 feet of distance. The unit cost for this scraper is $6.92 per cubic yard or $6,920 in 

total for completing the work. As for the excavator, the example is that a regular 

excavator with 3 cy of bucket has to dig 12 feet deep of trench in sand-gravel type of soil. 

The unit cost required to complete this work is $2.13 per cubic yard. If the length and 

width of the trench are 100 feet and 10 feet respectively, the total volume of the soil will 

be 12,000 cubic feet of equals to 444.4 cubic yard, and the total cost is $945.72. The 

example estimation for truck is shown that a 30 cy truck has to haul 1000 cy of soil in 1 

mile with 10 miles per hour of average hauling speed. For loading and dumping the soil, 

the truck needs 15 minutes. The unit cost for truck to complete the work is $3.31 per 

cubic yard or $3,314.21 in total. 

 

4.3.2 Total Fuel Use Estimation Model – ENERGY 

 The ‘energy’ model in E3 is the total fuel use estimation model. The model was 

formulated by using the productivity model to obtain the total duration of work, and 

combined with the NONROAD’s brake specific fuel consumption (BSFC) to gain the 

fuel consumption rate in term of pounds per horsepower-hour (lbs/hp-hr). BSFC is the 

factor that approximates the amount of fuel consumed by a particular type of equipment 

during a unit of use. This factor is based on EPA’s engine dynamometer test data and 

adjusted accordingly to account for in-use operation that differs from the typical test 

conditions. The test is based on steady-state tests, and does not always accurately reflect 

fuel use for HDD equipment applications. Some differences are due to load or engine 

speed, whereas some are due to transient demands. Transient adjustment factors (TAF) 

are calculated as the ration of the transient fuel use factor to the corresponding steady-
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state fuel use factor. TAF are applied to Tier 0, 1, 2, and 3 engines but are not applied to 

Tier 4 engines, because transient fuel use controls will be a part of all Tier 4 engines 

designs. By multiplying the BSFC with TAF, the work duration and engine horsepower 

(hp), the total fuel use is gained and expressed in term of pounds (lbs) or converted into 

gallons (gal). 

 

4.3.2.1. Total Fuel Use Estimation Model 

 The total fuel use estimate is calculated by multiplying the work duration (hr), 

engine size (hp), BSFC (gal/hp-hr), and TAF. The total work duration is obtained by 

dividing the total soil quantity with the productivity rate. The formula to calculate the 

total fuel use is as follows: 

F (gal) duration   engine horsepower   BSFC   TAF     (4-112) 

F (gal) 
Soil  uantity (cy)

Productivity Rate (
cy

hr
)
 engine horsepower (hp) BSFC (

gal

hp.hr
) TAF   (4-113) 

The overall total fuel use estimation models for bulldozer, scraper, excavator, and truck 

are shown in Table 4.15.  

To demonstrate the total fuel use estimate for bulldozer, a case of 150 hp 

bulldozer, model year 2003 has to haul 1000 cy common earth in 300 feet is presented. 

The engine size, distance, and type of soil are used to generate productivity rate, while 

engine size and model year are used to obtain engine tier level, BSFC, and TAF. The 

results showed that the productivity rate is 20.02 cy/hr and it needs 49.95 hours to 

complete the work. This bulldozer is in Tier 2 level and has BSFC of 0.367 lbs/hp-hr and 
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TAF of 1.01. The total fuel consumed to complete 1000 cy common earth is 333.37 

gallons. 

Table 4.15. Total fuel use models for all type of HDD equipment 

Equipment Total fuel use model  

Bulldozer  

Fuel (   )  
 

(1.876 0.00   P 0.002 D   )
5
x  P x BSFC x TAF 

 

fs (soil type factor): 

sand-gravel = 0.236; sandy-clay loam = 0.217; common earth = 0.166; clay 

= 0 

 

 

 

(4-114) 

Scraper  

Fuel (gal) = 
 

10(1.717    0.01 7B-0.00004D   )
 x HP x BSFC x 

TAF 

 
fs (soil type factor): 
sand-gravel = 0.265; sandy-clay loam = 0.240; common earth = 0.204; clay 

= 0 

ft (scraper type factor): 

elevated = -0.087; self-propelled = 0; towed = 0 

 

 

 

(4-115) 

Excavator  

Fuel (gal) = 
 

-3.9467   -2.069d 55.13B   
 x HP x BSFC x TAF 

 
fs (soil type factor): 

common earth = 8.465; sandy-clay loam = 14.907; sand-gravel = 16.412; 

hard clay = 0 

ft (scraper type factor): 
excavator  = 3.317; truck-mounted = 4.165; trench-box = 0 

 

 

 

(4-116) 

Truck  

Fuel (gal) = 
 

(58.799 2.079C 1.625S-12.056D-2.789t)
 x HP x BSFC x 

TAF 

 

 

 

(4-117) 

 

where,  Q = quantity of soil dozed/moved/excavated (cy) 

HP = engine horsepower (hp) 

BSFC = brake specific fuel consumption (gal/hp-hr) 

TAF = transient adjustment factor (unitless) 

D = distance (ft) – miles for truck 

d = depth (ft) 
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B = bucket capacity (cy) 

C = loading capacity (cy) 

S = speed (mph) 

t = cycle time (min.) 

 

  As for scraper case, an elevated type of scraper, which has 10 cy of bucket 

capacity, and 475 hp – model year 2003, has to haul 1000 cy clay in 2000 feet of distance 

is presented.  The bucket size, hauling distance, type of soil, and type of scraper are 

analyzed to obtain the productivity rate, while engine size and its model year are utilized 

to define the engine tier level, BSFC, and TAF. The fuel use model results showed that 

the productivity rate of this scraper performing the work is 46.01 cy/hr and it needs 21.73 

hours to complete the work. This scraper is categorized as Tier 2 with BSFC of 0.367 

lbs/hp-hr and TAF of 1.01. The scraper needs 459.12 gallons of fuel in total. 

 The total fuel use estimate for excavator is presented in the following case: a 

regular excavator with 3 cy bucket size has to dig a 100 feet long – 10 feet wide – 12 feet 

deep trench in a sand-gravel type of soil. The engine has 400 hp and model year 2003. 

The type of soil, type of excavator, soil quantity, and bucket size is utilized to calculate 

the productivity rate, while the engine size and model year will determine the engine tier, 

BSFC, and TAF. The model showed the results that the productivity rate is 156.34 cy/hr 

or equals to 2.84 hours of total duration to complete the trench. The excavator is 

categorized in Tier 2 engine and has the BSFC of 0.367 lbs/hp-hr and TAF of 1.01. To 

complete digging the trench, the excavator needs 50.53 gallons of fuel. 

 The sample case for truck is presented as a 30 cy off-road truck has to haul 1000 

cy of soil in 1 mile. The truck has 535 hp – model year 2003 with 10 miles per hour of 

average hauling speed. The truck needs 15 minutes on average to load and dump the soil. 
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The truck capacity, average speed, hauling distance, and load-dump time is utilized to 

determine the productivity rate, while engine size and model year will define the engine 

tier level, BSFC, and TAF. The fuel use model showed the results that the truck has 

productivity of 83.54 cy/hr or needs 11.97 hours to haul all soil quantity. Since the engine 

is categorized as Tier 2, the truck has BSFC of 0.367 lbs/hp-hr and TAF of 1.01. To 

complete the task, the truck needs 284.85 gallons of fuel in total. 

 

4.3.2.2. Results Comparison with Field Data 

The purpose of comparison between the fuel use from field data and E3 model 

outputs is to determine if the two sources of fuel use data were of a similar relationship. It 

is expected that the two data are not narrowly similar since the field data are for 

individual vehicles, while E3 results are based on NONROAD model, which was 

intended to estimate average fuel use for a fleet of HDD equipment. Results comparison 

is conducted by comparing the total fuel use obtained from in-use HDD equipment in the 

field with those estimated by using E3 model. The fuel use factors and fuel use from in-

use HDD equipment from field is measured by using portable emissions measurement 

system (PEMS). The field data collected by using PEMS are obtained from construction 

equipment fleet inventory data in North Carolina Department of Transportation 

(NCDOT), Raleigh as the result of the research conducted by North Carolina State 

University (Lewis, 2009). The data, which is available for public use consists of PEMS 

measurement results from seven types of HDD equipment: bulldozers, backhoes, 

excavators, motorgraders, wheel loaders, skidsteers, and trucks (Lewis, 2009). The field 

HDD equipment used for this comparison are shown in Table 4.16.  
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The PEMS measures total fuel use of HDD equipment based on the fuel use 

factors at its rated engine horsepower in terms of gallons per time. Since the PEMS 

measurement is second-by-second data, the total duration used by the HDD equipment in 

seconds is converted to hours, and multiplied by the fuel use factors and engine 

horsepower to obtain the working total fuel use. The total fuel use from E3 model are 

calculated by multiplying the brake specific fuel consumption (BSFC), engine size, total 

duration, and equipment load factor. Table 4.17 shows the total fuel from two data 

sources. 

Table 4.16. HDD equipment used for PEMS field measurement 

Equipment Horsepower 

(HP) 

Model Year Engine Tier Work 

Duration 

(hrs) 
Bulldozer 1 89 1988 0 0.839 

Bulldozer 2 95 2002 1 5.862 

Bulldozer 3 90 2003 1 2.631 

Bulldozer 4 175 1998 1 2.188 

Bulldozer 5 285 1995 0 2.083 

Bulldozer 6 99 2005 2 1.415 

Excavator 1 254 2001 1 1.027 

Excavator 2 138 2003 2 4.312 
Excavator 3 93 1998 1 4.994 

Truck 1 306 2005 2 5.125 

Truck 2 285 1998 1 1.117 

Truck 3 285 1998 1 0.509 

  

In general, the average total fuel use from E3 model is relatively similar to those 

from field PEMS measurement. For example in Excavator 1, 1 hour fuel use obtained 

from PEMS is 10.24 gallons, while from E3 model estimation is 11.60 gallons. E3 model 

estimates 0.5 hours fuel use from Truck 3 as 6.45 gallons, while PEMS measures fuel use 

as 6.66 gallons. At some points, the fuel use estimates of E3 model are higher than PEMS 

measurement; however at some other cases the PEMS measurement gives higher output 

than E3 model. As shown in Figure 4.20, the average total fuel use estimates of bulldozer 
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are 9% lower than those from PEMS measurement, while fuel use estimates of excavator 

and truck are 34% and 17% higher than the field data respectively. The overall average 

total fuel use estimates for these three HDD equipment is 14% higher than the field data. 

 

Table 4.17. Fuel use comparison between  E3 model and PEMS measurement results 

Equipment Fuel use 

Fuel Use Factor (gal/hp-hr) Total Fuel Use (gal) 
E3 PEMS E3 PEMS 

Bulldozer 1 0.049 0.062 3.69 4.62 

Bulldozer 2 0.049 0.037 27.54 20.46 

Bulldozer 3 0.049 0.072 11.71 17.01 

Bulldozer 4 0.044 0.056 17.03 21.29 

Bulldozer 5 0.044 0.061 26.40 36.31 

Bulldozer 6 0.049 0.015 6.93 2.05 

Excavator 1 0.044 0.039 11.60 10.24 

Excavator 2 0.044 0.017 26.47 9.86 

Excavator 3 0.049 0.043 22.96 19.89 

Truck 1 0.044 0.034 69.75 52.49 

Truck 2 0.044 0.050 14.16 15.85 

Truck 3 0.044 0.046 6.45 6.66 

 

 
Figure 4.20. Total fuel use comparison – E3 model and PEMS result 
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4.3.3 Total Emissions Model – ENVIRONMENTAL 

 The ‘environmental’ model in E3 is the total emissions estimation models. Total 

emission estimates were calculated by using the emission factors (EF) from EPA’s 

NONROAD model and total duration of work obtained from the productivity rate. The 

emission factors needed are approximations of the amount of pollutants emitted by a 

particular type of equipment during a unit of use. The EF used here are reported in grams 

per horsepower-hour (g/hp-hr). The EF are based on engine dynamometer test data and 

adjusted accordingly to account for in-use operation that differs from the typical test 

conditions. 

 The type of equipment will define the load factor and hours activity per year. The 

equipment engine horsepower and model year will define the engine tier category. The 

engine tier will then define the median life, transient adjustment factor (TAF), 

deterioration factor (DF), and steady state emission factor (EFss). By using EFss, TAF, 

and DF, with the age of equipment, the adjusted emission factor (EFadj.) in term of 

grams per horsepower-hour (g/hp-hr) can be calculated. 

 The total emissions (in grams) released from an equipment performing work for a 

certain quantity of soil is calculated by using work duration (in hour) obtained from the 

productivity rate, engine size (in hp), and the EFadj. (in g/hp-hr). The total emissions 

calculations for each type of equipment are divided into three parts: first, for nitrogen 

oxide (NOx), hydrocarbons (HC), and carbon monoxide (CO); second, for particulate 

matters (PM), since it is dependent on sulfur content; and third, for carbon dioxide (CO2), 

since it computes in-use adjusted BSFC. 
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4.3.3.1. Total Emissions Estimation Model 

 The total emissions (grams) are calculated by multiplying the work duration (hr), 

engine size (hp), and emission factor (g/hp-hr). The total work duration is obtained by 

dividing the total soil quantity with the productivity rate. The formula to calculate the 

total emissions is as follows: 

E Duration   engine horsepower   Emission factor      (4-118) 

 

E (     )  
Soil  uantity (cy)

Production Rate (
cy
hr
)
   engine horsepower (hp)   Emission factor (

gr

hp.hr
) 

(4-119) 

 

The overall total emissions models for bulldozer are shown in Table 4.18. 

 

Table 4.18. Total emission model for bulldozer 

Pollutant(s) Total emission model  

 

HC, CO, 

NOx 

 

E 
 

(1.876 0.0035 P 0.0024D fs)
5
  P EFss TAF DF 

 

 

 

(4-120) 

 

PM 

 

E 
 

(1.876 0.0035 P 0.0024D fs)
5
  P ((EFss TAF DF)  SPM) 

 

 

 

(4-121) 

 

CO2 

 

E 
 

(1.876 0.0035 P 0.0024D fs)
5
  P ((BSFC 453.6)  C) 0.87 (

44

12
) 

 

 

 

(4-122) 

 

where,  E = total emissions (grams) 

Q = quantity of soil dozed/moved/excavated (cy) 

HP = engine horsepower (hp) 

EFss = steady-state emission factor (g/hp-hr) 

BSFC = brake specific fuel consumption (gal/hp-hr) 

TAF = transient adjustment factor (unitless) 

DF = deterioration factor (unitless) 
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SPM = adjustment to PM emission factor for fuel sulfur content (g/hp-hr) 

HC = in-use adjusted hydrocarbon emissions (g/hp-hr) 

453.6 = conversion factor from pounds to grams 

0.87 = carbon mass fraction of diesel 

44/12 = ratio of CO2 mass to carbon mass 

D = distance (ft) 

fs (soil type factor): 

- Sand and gravel = 0.236 

- Sandy clay and loam = 0.217 

- Common earth = 0.166 

- Clay = 0 

 

 To demonstrate the emission model for bulldozer, a case is presented where a 150 

hp of bulldozer model year 2003 has to haul 1000 cy of common earth in distance of 300 

feet. The result showed that the estimated productivity of this bulldozer is 20.02 cubic 

yard per hour and can approximately complete the job in 49.94 hours. Based on the 

engine size and model year, this bulldozer is categorized in Tier 2 engine level and has 

0.59 of LF, and 936 hours of activity per year in average. This engine also has the EFss 

as follows: 0.3384 g/hp-hr of HC, 0.8667 g/hp-hr of CO, 4.1 g/hp-hr of NOx, 0.18 g/hp-

hr of PM, and 0.367 lbs/hp-hr of BSFC. When completing the job, this bulldozer was 

estimated to emit 2,662 grams of HC, 9,938 grams of CO, 29,183 grams of NOx, 1,502 

grams of PM, and 3.4 tons of CO2. 

To demonstrate the models for estimating emissions from scraper, a case is 

presented where an elevated scraper with 475 horsepower of engine size and model year 

2003, has to haul 1000 cy clay in 2000 feet of distance. The scraper has 10 cy of bucket 

capacity. The model gives the results that the scraper has the productivity of 46.01 cubic 

yard per hour, and needs 21.37 hours to finish the job. Based on the engine size and 

model year information, the engine is categorized as Tier 2 level. In this Tier level, the 

scraper has 0.59 of load factor and 914 hours average per year activity. This engine also 
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has the following EFss: 0.1669 g/hp-hr of HC, 0.8425 g/hp-hr of CO, 4.3351 g/hp-hr of 

NOx, 0.1316 g/hp-hr of PM, and 0.367 lbs/hp-hr of BSFC. As the job finished, the total 

emissions released from the scraper are: 1809 grams of HC, 13307 grams of CO, 42510 

grams of NOx, 1453 grams of PM, and 4.66 tons of CO2. 

 The total emissions models for scraper are shown in Table 4.19. 

Table 4.19. Total emission model for scraper 

Pollutant(s) Total emission model  

 

HC, CO, 

NOx 

 

E 
 

10(1.717 ft 0.0107B 0.00004D fs)
  P EFss TAF DF 

 

 

 

(4-123) 

 

PM 

 

E 
 

10(1.717 ft 0.0107B 0.00004D fs)
  P ((EFss TAF DF)  SPM) 

 

 

 

(4-124) 

 

CO2 

 

E 
 

10(1.717 ft 0.0107B 0.00004D fs)
  P ((BSFC 453.6)  C) 0.87 (

44

12
) 

 

 

 

(4-125) 

 

where,  E = total emissions (grams) 

Q = quantity of soil dozed/moved/excavated (cy) 

HP = engine horsepower (hp) 

EFss = steady-state emission factor (g/hp-hr) 

BSFC = brake specific fuel consumption (gal/hp-hr) 

TAF = transient adjustment factor (unitless) 

DF = deterioration factor (unitless) 

SPM = adjustment to PM emission factor for fuel sulfur content (g/hp-hr) 

HC = in-use adjusted hydrocarbon emissions (g/hp-hr) 

453.6 = conversion factor from pounds to grams 

0.87 = carbon mass fraction of diesel 

44/12 = ratio of CO2 mass to carbon mass 

D = distance (ft) 

B = bucket capacity (cy) 

fs (soil type factor): 

- Sand and gravel = 0.265 

- Sandy clay and loam = 0.240 

- Common earth = 0.204 
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- Clay = 0 

ft (scraper type factor): 

- Elevated  = 0.06844 

- Self-propelled = 0.1123 

- Towed = 0 

 

The total emissions models for excavator are shown in Table 4.20. 

Table 4.20. Total emission model for excavator 

Pollutant(s) Total emission model  

 

HC, CO, 

NOx 

 

E 
 

( 3.9467 fs 2.069d 55.13B ft)
  P EFss TAF DF 

 

 

 

(4-126) 

 

PM 

 

E 
 

( 3.9467 fs 2.069d 55.13B ft)
  P ((EFss TAF DF)  SPM) 

 

 

 

(4-127) 

 

CO2 

 

E 
 

( 3.9467 fs 2.069d 55.13B ft)
  P ((BSFC 453.6)  C) 0.87 (

  

  
) 

 

 

 
(4-128) 

 

where,  E = total emissions (grams) 

Q = quantity of soil dozed/moved/excavated (cy) 

HP = engine horsepower (hp) 

EFss = steady-state emission factor (g/hp-hr) 

BSFC = brake specific fuel consumption (gal/hp-hr) 

TAF = transient adjustment factor (unitless) 

DF = deterioration factor (unitless) 

SPM = adjustment to PM emission factor for fuel sulfur content (g/hp-hr) 

HC = in-use adjusted hydrocarbon emissions (g/hp-hr) 

453.6 = conversion factor from pounds to grams 

0.87 = carbon mass fraction of diesel 

44/12 = ratio of CO2 mass to carbon mass 

d = trench depth (ft) 

B = bucket capacity (cy) 

fs (soil type factor): 

- Sand and gravel = 16.412 

- Sandy clay and loam = 14.907 

- Common earth = 8.465 

- Clay = 0 
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ft (excavator type factor): 

- Excavator  = 3.317 

- Truck-mounted = 4.165 

- Trench-box = 0 

 

To demonstrate the models for estimating total emissions from excavator, a case 

of a 400 hp – model year 2003 excavator is presented. The excavator has to dig a 100 feet 

long-10 feet wide-12 feet deep trench in sand-gravel soil with its 3 cy bucket. The results 

showed that the excavator has the productivity rate of 156.34 cubic yard per hour or 

needs 2.84 hours to complete digging the trench. Based on the horsepower and model 

year, the engine is categorized as Tier 2 engine and has 0.59 of load factor, 1092 hours 

activity per year on average, and steady state emission factors as follows: 0.1669 g/hp-hr 

of HC, 0.8425 g/hp-hr of CO, 4.3351 g/hp-hr of NOx, 0.1316 g/hp-hr of PM, and 0.367 

lbs/hp-hr of BSFC. When finishing the trench, this excavator released 199.1 grams of 

HC, 1464 grams of CO, 4678.5 grams of NOx, 160 grams of PM, and 0.5 tons of CO2. 

The total emissions models for truck are shown in Table 4.21. 

Table 4.21. Total emission model for truck 

Pollutant(s) Total emission model  

 

HC, CO, 

NOx 

 

E 
 

(58.799 2.079C 1.625S 12.056D 2.789t)
  P EFss TAF DF 

 

 

 
(4-129) 

 

PM 

 

E 
 

(58.799 2.079C 1.625S 12.056D 2.789t)
  P ((EFss TAF DF)  SPM) 

 

 

 

(4-130) 

 

CO2 

 

E 
 

(58.799 2.079C 1.625S 12.056D 2.789t)
  P ((BSFC 453.6)  C) 0.87 (

  

  
) 

 

 

 

(4-131) 

 

where,  E = total emissions (grams) 

Q = quantity of soil dozed/moved/excavated (cy) 

HP = engine horsepower (hp) 
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EFss = steady-state emission factor (g/hp-hr) 

BSFC = brake specific fuel consumption (gal/hp-hr) 

TAF = transient adjustment factor (unitless) 

DF = deterioration factor (unitless) 

SPM = adjustment to PM emission factor for fuel sulfur content (g/hp-hr) 

HC = in-use adjusted hydrocarbon emissions (g/hp-hr) 

453.6 = conversion factor from pounds to grams 

0.87 = carbon mass fraction of diesel 

44/12 = ratio of CO2 mass to carbon mass 

C = loading capacity (cy) 

S = average hauling speed (mph) 

D = cycle distance (miles) 

t = load-dump time (minutes) 

 

 To illustrate the emissions models for truck, a simple case is presented as follows: 

a 535 hp – model year 2003 truck is used to haul 1000 cy of soil in 1 mile of distance. 

The truck has 30 cy of loading capacity with average hauling speed of 10 miles per hour. 

For loading and dumping the soil, the truck needs 15 minutes in average. The estimated 

productivity rate for this truck is 83.54 cubic yard per hour, and for hauling 1000 cy of 

soil, the truck needs 11.97 hours. Based on the horsepower and model year, the truck is 

categorized as Tier 2 engine, has 0.59 of load factor with 1641 hours of activity per year 

in average and steady state emission factors as follows: 0.1669 g/hp-hr of HC, 0.8425 

g/hp-hr of CO, 4.3351 g/hp-hr of NOx, 0.1316 g/hp-hr of PM, and 0.367 lbs/hp-hr of 

BSFC. When the job is completed, the truck released 1122 grams of HC, 8256 grams of 

CO, 26,374 grams of NOx, 902 grams of PM, and 2.9 tons of CO2. 

 

4.3.3.2. Results Comparison with Field Data 

The purpose of comparison between the field data and E3 model outputs is to 

determine if the two sources were of a similar relationship. It is expected that the two 
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data are not narrowly similar since the field data are for individual vehicles, while E3 

results are based on NONROAD model, which was intended to estimate average 

emissions for a fleet of HDD equipment. Results comparison is conducted by comparing 

the total emissions obtained from in-use HDD equipment in the field with those estimated 

by using E3 model. The emission factors and total emissions from in-use HDD 

equipment from field is measured by using portable emissions measurement system 

(PEMS). The field HDD equipment used for this comparison are shown in Table 4.16. 

 The PEMS measures total emissions of HDD equipment based on the emission 

factors at its rated engine horsepower in terms of mass per time. Since the PEMS 

measurement is second-by-second data, the total duration used by the HDD equipment in 

seconds is converted to hours, and multiplied by the emission factors and engine 

horsepower to obtain the working total emissions. The total emissions from E3 model are 

calculated by multiplying the emission factors, engine size, total duration, and equipment 

load factor. Table 4.22 shows the total emissions from two data sources. 

Table 4.22. Total emission comparison between E3 model and PEMS measurement 

Equipment Total Emission  

HC (gr) CO (gr) NOx (gr) PM (gr) CO2 (kg) 
E3 PEMS E3 PEMS E3 PEMS E3 PEMS E3 PEMS 

Bulldozer 1 50.2 26.0 324.2 116.7 302.9 585.9 75.9 7.7 26.1 48.9 

Bulldozer 2 182.8 283.2 1243.7 249.6 1766.6 1671.2 224.5 28.4 195.3 216.3 

Bulldozer 3 77.7 108.1 528.8 250.2 751.1 2398.8 95.5 48.3 83.1 180.3 

Bulldozer 4 83.6 182.1 334.0 536.2 1246.4 3822.2 114.8 14.3 120.9 224.9 

Bulldozer 5 267.4 92.5 1842.2 521.1 2887.0 7726.3 286.8 N/A 187.0 385.0 

Bulldozer 6 32.4 43.5 312.9 39.1 370.5 167.8 27.7 9.8 49.2 21.6 

Excavator 1 51.1 21.4 188.3 60.1 828.9 1186.5 60.1 14.2 82.4 108.8 

Excavator 2 126.5 81.3 485.1 380.1 1372.6 798.2 85.5 7.3 187.8 104.0 

Excavator 3 156.0 134.6 1102.3 204.9 1496.0 2186.4 236.2 20.6 162.9 210.8 

Truck 1 164.4 404.1 1242.6 3028.1 3842.6 5447.7 159.6 59.1 495.7 552.1 

Truck 2 65.4 59.7 259.9 173.3 1044.9 1365.6 111.4 14.7 100.6 167.5 

Truck 3 29.8 25.9 118.3 71.9 475.7 717.4 50.7 6.1 45.8 70.6 
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 In general, the average total emissions from E3 model are relatively similar to 

those from field PEMS measurement, especially for HC, CO, NOx, and CO2. For 

example in Bulldozer 2, 5.9 hours NOx emission obtained from PEMS is 1671 grams, 

while from E3 model estimation is 1767 grams. E3 model estimates 0.5 hours HC 

emission from truck 3 as 29.8 grams, while PEMS measures HC emission as 25.9 grams. 

At some points, the emissions estimates of E3 model are higher than PEMS 

measurement; however at some other cases the PEMS measurement gives higher output 

than E3 model. As shown in Figure 4.21, the average emissions estimates of HC for 

bulldozers and excavators have similar magnitude with those from PEMS measurement. 

HC emission estimates for truck are much lower than the PEMS measurement. The 

overall average HC emission estimates for these three HDD equipment is 22% lower than 

the field data.  

The average emissions estimates of CO for bulldozers and excavators are higher 

than those from PEMS measurement; however the CO estimates for trucks are much 

lower than the PEMS has. The overall average CO emission estimates of these three 

HDD equipment is 8% higher than the average of PEMS measurement results. For NOx 

emissions, the E3 model estimates of all three equipment are lower than those from 

PEMS by 59%. The average CO2 emission estimates of excavators from E3 models have 

similar magnitude with the PEMS measurement results, but lower for bulldozers and 

trucks. Overall, this CO2 emission estimates are 28% lower than the field data. 

 The biggest differences between these two sources of data occurred at PM 

emissions (Figure). The E3 model estimates PM emissions much higher than PEMS 

measurement for all type of equipment. The estimates are about 85% higher than the field 
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data. According to PEMS system operation manual released by Clean Air Technologies 

2003 and research conducted by Lewis et al. (2009), this is due to the fact that PM data 

are measured by a laser light scatter method, rather than by a filter-based method, and it 

makes a systematic measurement bias for PM concentration for this PEMS instrument. 

 

 
Figure 4.21. Total emission comparison – E3 model and PEMS result 
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4.4. E3 User’s Interface 

 A spreadsheet-based user’s interface is developed to make the E3 model easy to 

use and run in practice. It can help construction estimator, site manager, equipment 

operator, or fleet manager to estimate the productivity rate, work duration, cost, fuel 

consumption, and pollutants emitted from the work they perform. The interface covers all 

type of HDD equipment usually used in earthwork construction projects. For the purpose 

of this research, only four types of HDD equipment is displayed; bulldozer, scraper, 

excavator, and off-road truck. 

 The interface is developed by using Visual Basic program for Microsoft Excel 

2010 and structured as three main parts: 

- Activity input. The part in the interface that allows users to give the input for 

determined variables for specific type of HDD equipment. 

- Engine properties. The part in the interface showing the engine data (tier level, 

load factor, activity, median life, deterioration factor, steady-state emission 

factors, and transient adjustment factors) related to engine horsepower and model 

year of the HDD equipment. 

- Activity output and total emissions. The part in the interface displaying the output 

of the model that includes: productivity rate, total duration, unit and total cost, 

total fuel use, and total mass emissions of all pollutants. 

The overall screenshot appearances and calculation algorithm of the user’s 

interface are shown in Figure 4.22 to Figure 4.24. 
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Figure 4.22. Front page screen-shot of E3 model user’s interface 

 

  

  

Figure 4.23. Input page screen-shot of E3 model user’s interface 
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Figure 4.24. Calculation algorithm of E3 model user’s interface 

 As user complete filling out the activity input boxes, it can be followed by 

clicking the ‘start’ button to let the model generate output. As shown in Figure, once all 

required activity input obtained, the interface will display three groups of output: activity 

output, engine properties output, and total fuel use and emissions.  

 

4.5. E3 Model Application and Sensitivity Analysis 

 Model application and sensitivity analysis is conducted to analyze the effect of 

changes in explanatory variables against the output; cost, fuel use, and emissions. The 

analyses are useful to understand the economic, energy, and environmental impact of a 

certain earthwork activity performed by HDD equipment in different set of conditions. 

 The economic impact of the activity is determined by the total cost (including 

labor, equipment, overhead, and profit) to complete the activity. The energy impact of the 
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activity is based on the amount of diesel fuel consumed by HDD equipment in terms of 

total gallons. The environmental impact of the activity is based on total emissions of each 

pollutant (HC, CO, PM, NOx, and CO2) in terms of grams. 

 

4.5.1. Bulldozer 

 The sensitivity analysis for bulldozer are constructed by two different work 

conditions: first, as shown in Table Table K.1, bulldozer has to haul 1000 cy of soil in 

300 feet of distance, using various size of engine and all type of soil; second, as shown in 

Table K.2, 564 hp bulldozer – model year 2003, has to haul 1000 cy of all type of soil in 

various distance.  Based on the information in Appendix K – Table K.1 and K.2, there is 

an inverse relationship between productivity rate and the other parameters including total 

cost, fuel use, and emissions; that is, as the productivity rate decreases, the other 

parameters increase. The productivity rate also decreases with the dozing resistance based 

on soil type; sand-gravel has the highest productivity rate whereas clay has the lowest. 

Likewise, activity duration, total cost, fuel use, and emissions all increase as the soil 

resistance increase. Furthermore, for a specific soil type, the productivity rate increases as 

engine size increases, and decreases as the dozing distance increases. 

 Figure 4.25 shows the economic impact of the activity based on engine size. For 

each soil type, the total cost to complete the activity decreases as the engine size 

increases. The estimated cost curves for each soil type has the same general shape and 

there is little difference in cost with respect to engine size for sand-gravel, sandy clay-

loam, and common earth; there is virtually no difference in the predicted total cost for 
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sand-gravel and sandy clay-loam. The soil type with the highest predicted economic 

impact based on engine size of bulldozer is clay. 

 
Figure 4.25. Economic and energy impact of bulldozer based on engine size 

 

 

Figure 4.25 also shows the energy impact of the activity based on engine size. It 

presents some interesting findings of the energy impact related to the engine size of the 

bulldozer. Initially, fuel use increases sharply as the engine size increases and then begins 

to decrease, with the maximum fuel use occurring around 350 hp for each soil type. The 

convexity of these curves indicate that a specific quantity of fuel use for a given soil type 

may occur at two different engine size. For example, when hauling clay, a 100 hp and 

500 hp bulldozer will both consume approximately 500 gallons of fuel to complete the 

activity. However, according to Figure 4.25, the total cost to complete the activity is 

$15,000 for 100 hp bulldozer and $11,000 for 500 hp bulldozer, which is nearly 30% 

decrease in cost. It is concluded that a substantially lower economic impact can be 

achieved by using a larger size of engine while having the same energy impact of the 

smaller bulldozer.  

The environmental impact of the activity based on engine size is shown in Figure 

4.26. Generally, it shows an inverse relationship between engine size and total emissions; 
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that is, for all types of soil, as the bulldozer uses bigger size of engine or bigger rated 

horsepower, the total emissions become lower. Especially for CO2, because the emission 

is highly correlated to fuel use, thus the shapes of the curves are the same for both fuel 

use and total emissions. There is little difference in total emissions for sand-gravel, sandy 

clay-loam, and common earth. The soil type with the highest estimated total emissions 

based on engine size is clay. 

 

 

Figure 4.26. Environmental impact of bulldozer based on engine size 

 

 Figure 4.27 shows the economic and energy impact of the bulldozer activity based 

on the dozing distance. For each soil type, the estimated total cost and fuel use increase as 

the dozing distance increase. It is understood that longer distance will make the bulldozer 



122 
 

needs longer duration to complete the activity, and longer duration will also need higher 

fuel consumption. The estimated total cost and fuel use have relatively the same shape for 

all type of soil, with little difference of cost and fuel use for sand-gravel, sandy clay-

loam, and common earth. Again, clay gives the highest estimated total cost and fuel use 

for the bulldozer activity based on dozing distance. 

 
Figure 4.27. Economic and energy impact of bulldozer based on distance 

 

 

 Figure 4.28 shows the environmental impact of the bulldozer activity based on 

dozing distance. There are positive relationship between dozing distance and total 

emissions; that is, for all types of soil, as the bulldozer has to haul longer distance, the 

total emissions become higher. For all types of soil, the curve shapes are generally the 

same, and displays that clay gives the bulldozer the highest total emissions of all 

pollutants and CO2 based on dozing distance. 



123 
 

 

Figure 4.28. Environmental impact of bulldozer based on distance 

 

4.5.2. Scraper 

 The sensitivity analysis for scraper is designed in two different conditions: first, 

as shown in Table, a 475 hp – model year 2003 scraper has to haul 1000 cy of soil in 

2000 feet of distance with various size of bucket; second, the same scraper with 15 cy of 

bucket size has to haul 1000 cy of soil in various distance. Based on the information in 

Appendix L – Table L.1 and L.2, there is an inverse relationship between productivity 

rate and the other parameters including total cost, fuel use, and emissions; that is, as the 

productivity rate decreases, the other parameters increase. The productivity rate also 

decreases with the hauling resistance based on soil type; sand-gravel has the highest 

productivity rate whereas clay has the lowest. Likewise, activity duration, total cost, fuel 
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use, and emissions all increase as the soil resistance increase. Furthermore, for a specific 

soil type, the productivity rate increases as bucket size increases, and decreases as the 

hauling distance increases.  

Figure 4.29 shows the economic and energy impact of the activity among the 

types of scraper based on its bucket size. For all types of scraper, the estimated total cost 

and fuel use decrease as the bucket size increases. When a scraper uses bigger size of 

bucket, the productivity rate will increase, and then the work duration will decrease. 

Since the total duration decrease, the total cost and fuel use will also decrease. Among 

the types of scraper, towed scraper has the highest economic and energy impact, self-

propelled scraper has the lowest for energy impact, and elevated scraper has the lowest 

for economic impact. This is an important result regarding scraper selection for hauling 

soil activity with respect to minimizing total cost and total fuel use. 

 

Figure 4.29. Economic and energy impact of scraper based on  

scraper type and bucket size 

 

The economic and energy impact of the scraper activity based on the bucket size 

are shown in Figure 4.30. For all types of soil, the estimated total cost and total fuel use 

decrease as the scraper uses bigger bucket size. When the scraper used bigger bucket size, 
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the productivity increases, and the duration will decrease. The shorter duration of activity 

leads to less use of fuel and estimated total cost. Concerning soil type, there is little 

difference of total cost and total fuel use based on bucket size for sand-gravel, sandy 

clay-loam, and common earth, while clay gives the highest economic and energy impact 

of the activity.  

 

Figure 4.30. Economic and energy impact of scraper based on soil type and bucket size 

 

Figure 4.31 shows the environmental impact of the scraper activity, which is 

represented by the emissions of NOx, PM, CO, and CO2, based on the bucket size. For all 

types of soil, as the scraper uses bigger bucket size, the estimated total emissions of each 

type of pollutant will decrease. Again, there is little difference of total emissions between 

sand-gravel, sandy clay-loam, and common earth. Based on the bucket size, clay has the 

highest environmental impact of the scraper activity.  
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Figure 4.31. Environmental impact of scraper based on bucket size 

  

 The economic and energy impact of the scraper activity among its type and based 

on the hauling distance are shown in Figure 4.32. It is displayed using common earth type 

of soil. For all types of scraper, Figure shows the positive relationship between hauling 

distance and estimated total cost and total fuel use. As the scraper has to haul the soil in 

longer distance, the estimated total cost and total fuel use will increase. Towed scraper 

has the highest economic and energy impact of the activity. The lowest economic impact 

was given by elevated scraper, while the lowest energy impact was given by self-

propelled scraper. In this case, hauling distance can also be used as a consideration of 

selecting type of scraper to minimize the economic and energy impact of earthwork 

construction activity. 



127 
 

 

Figure 4.32. Economic and energy impact of scraper based on scraper type and distance 

 

 The economic and energy impact of the scraper based on the hauling distance can 

also be analyzed for different types of soil. Figure 4.33 shows the relationship between 

the distance and estimated total cost and fuel use for all types of soil. There are positive 

relationships; that is as the hauling distance increase, the estimated total cost and total 

fuel use also increase for all types of soil. The estimated total cost and fuel use from clay 

are very high compared to other three types of soil; approximately two times higher than 

those of sand-gravel, sandy clay-loam, and common earth. Thus, for a specific soil type, 

clay gives the highest economic and energy impact based on the hauling distance for 

scraper. 
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Figure 4.33. Economic and energy impact of scraper based on soil type and distance 

 

 Figure 4.34 shows the environmental impact of the scraper activity based on the 

hauling distance, which is represented by the total emissions of NOx, PM, CO, and CO2. 

It is shown that there are positive relationships between the hauling distance and 

estimated total emission of each pollutant based on the hauling distance. When the 

scraper has to haul soil in a longer distance, the total emissions will be higher. Similar 

with the environmental impact based on bucket size, clay also has the highest 

environmental impact on the scraper activity based on the hauling distance, with nearly 

1.5 times than those of sand-gravel, sandy clay-loam, and common earth. 
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Figure 4.34. Environmental impact of scraper based on distance 

 

4.5.3. Excavator 

The sensitivity analysis for excavator is applied in two different work scenarios: 

first, a 400 hp – model year 2003 excavator has to dig 100 feet long – 10 feet wide trench 

in various depth, using 3 cy of bucket size on all types of soil; second, the same excavator 

with various size of bucket has to dig 100 feet long – 10 feet wide – 12 feet deep trench 

on all types of soil as well. Based on the information in Appendix M – Table M.1 and 

M.2, there is an inverse relationship between productivity rate and the other parameters 

including total cost, fuel use, and emissions; that is, as the productivity rate decreases, the 

other parameters increase. The productivity rate also decreases with the digging 

resistance based on soil type; sand-gravel has the highest productivity rate whereas clay 
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has the lowest. Likewise, although in very little difference productivity rate based on soil 

type, activity duration, total cost, fuel use, and emissions all increase as the soil resistance 

increase. Furthermore, for a specific soil type, the productivity rate increases as bucket 

size increases, and decreases as the trench depth increases.  

Figure 4.35 shows the economic and energy impact of the excavator activity 

based on the trench depth for different types of excavator. For all types of excavator, it 

shows that when the excavator has to dig deeper trench, the estimated total cost and fuel 

use will be higher. The estimated total costs for all types of excavator are about the same 

for digging the trench with 5 feet or less. When the trench depth increased for more than 

5 feet, the total cost of three types of excavator become more varies. Excavator with truck 

mounted has the highest economic impact, while regular excavator has the lowest. The 

estimated fuel uses of all types of excavator are considered the same for any depth of 

trench. It is understood that in the productivity model for excavator, the type of excavator 

is not significantly explain the productivity rate; that is, as the activities use different type 

of excavator, the productivity rates are about the same (Table). Thus, the durations 

needed to complete the work are also the same. 

 

Figure 4.35. Economic and energy impact of excavator based on  

excavator type and trench depth 
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 The economic and energy impact of the excavator activity based on the trench 

depth for all types of soil are presented in Figure 4.36. For all types of soil, the estimated 

total cost and fuel use increase as the trench depth increase. The total costs of the activity 

on different types of soil are about the same when the excavator has to dig less than 5 feet 

deep. As the trench depth becomes deeper than 5 feet, the total cost from all types of soil 

become diverges. The total cost from hard clay increases more rapidly than the other 

types of soil and has the highest economic impact for the activity. The lowest economic 

impact occurs on sand-gravel and sandy clay-loam type of soil. As the excavator digs a 

trench not deeper than 12 feet, the estimated fuel uses for all types of soil are about the 

same (Table). Although the fuel uses from all types of soil start varies when the trench 

went deeper than 12 feet, particularly for hard clay and common earth, the overall 

estimated total fuel use are considered the same. As shown in Figure 4.37, this 

circumstance also appears in the overall environmental impact of the activity based on 

the trench depth. The estimated total emissions of NOx, PM, CO, and CO2 are the same 

for all types of soil, and increase as the depth of the trench goes deeper. 

 

Figure 4.36. Economic and energy impact of excavator based on  

soil type and trench depth 
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Figure 4.37. Environmental impact of excavator based on trench depth 

 

 The economic and energy impact of excavator activity based on its bucket size are 

presented in Figure 4.38. The estimated total cost of excavator activity has an inverse 

relationship with its bucket size for all types of soil; that is, as the size of bucket 

increases, the total cost decreases. Again, the most resistant soil type, which is hard clay, 

has the highest economic impact on the activity, while sand gravel and sandy clay-loam 

has the lowest. The Figure 4.38 also shows an interesting fact about estimated total fuel 

use based on the bucket size. The fuel use decreases exponentially while excavator digs 

the trench with bucket size less than 1.50 cy. In this range of depth, hard clay has the 
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highest total fuel use, while sand-gravel and sandy clay-loam has the lowest. However, 

when the bucket size used is bigger than 1.50 cy, the estimated total fuel use starts 

decreasing linearly and shows that for all types of soil, the fuel uses are the same. It 

indicates that the productivity rate of excavator based on the resistance of soil or soil type 

varies only when the excavator uses small size of bucket. For bigger bucket size, the 

resistance of soil does not have impact on productivity rate. 

 

Figure 4.38. Economic and energy impact of excavator based on bucket size 

 

 Similar fact with the fuel use also occurs in the estimated total emissions. 

Represented by the emissions of NOx, PM, CO, and CO2, Figure 4.39 shows how the 

environmental impact of the excavator activity is less varies when 1.50 cy or more bucket 

size is used. The shape of the line chart is the same with those in the fuel use chart, since 

both the emission factors and fuel use factor are multiplied with the same duration and 

engine size to obtain estimated total fuel use and total emissions. 
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Figure 4.39. Environmental impact of excavator based on bucket size 

 

4.5.4. Truck 

The sensitivity analysis for truck is applied in two different work situations: first, 

as shown in Table, a 535 hp – model year 2003 truck with 30 cy loading capacity has to 

haul 1000 cy of soil in various distance, using various hauling speed, and has to wait for 

dumping and loading for 15 to 25 minutes; second, the same truck with various capacity 

of loading has to haul 1000 cy of soil in 1 mile, using average hauling speed range of 5 to 

25 miles per hour, and has to wait for loading and dumping for 15 minutes. Based on the 

information in Appendix N – Table N.1 and N.2, there is an inverse relationship between 

productivity rate and the other parameters including total cost, fuel use, and emissions; 

that is, as the productivity rate decreases, the other parameters increase. For any speed the 
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truck uses to haul the soil, the productivity rate increases as loading capacity increases, 

and decreases as the haul distance increases.  

The economic, energy and environmental impact of truck activity based on cycle 

distance are shown in Figure 4.40 and Figure 4.41, analyzed using three different load-

dump times: 15, 20, and 25 minutes. For all load-dump times, estimated total cost and 

total fuel use increase as the cycle distance increase. The longer the truck has to wait for 

loading and dumping, the higher total cost and total fuel use. More productive supporting 

equipment (such as excavator or backhoes) for loading and unloading soil to truck is 

needed to shorten the load-dump time and improve the truck’s productivity rate. The 

estimated fuel use and total emissions for three load-dump time has little difference when 

the truck has to haul within less than 2 miles. For hauling distance more than 2 miles, the 

estimated fuel use and emissions vary for three different load-dump times. Truck with 25 

minute load-dump time increases its fuel use, emissions of NOx, PM, CO, and CO2 very 

rapidly compared to 15 and 20 minute load-dump time, as the hauling distance increase. 

 

Figure 4.40. Economic and energy impact of truck based on cycle distance 
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Figure 4.41. Environmental impact of truck based on cycle distance 

  The economic, energy, and environmental impact of truck activity based on 

loading capacity, and analyzed using five different hauling speeds (5,10,15,20, and 25 

miles per hour), are shown in Figure 4.42 and Figure 4.43. For all hauling speeds, the 

estimated total cost decreases as the loading capacity increases. It is understood that the 

productivity rate of truck improves when using bigger loading capacity, and therefore 

shorten the hauling duration. Truck with highest hauling speed (25 mph) has the lowest 

economic impact. The estimated total fuel use and emissions for all hauling speeds 

decreases as the loading capacity increases. The difference of fuel use and emissions 

among all hauling speeds becomes smaller following the loading capacity; for instance, 

the difference of fuel use and emissions at 25 cy loading capacity is bigger than those at 

50 cy or more loading capacity. It indicates that using various speed of hauling does not 
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have bigger impact on the estimated fuel use and emissions if the truck uses bigger 

loading capacity. 

 

Figure 4.42. Economic and energy impact of truck based on loading capacity 

 

Figure 4.43. Environmental impact of truck based on loading capacity 



138 
 

CHAPTER V 
 

 

CONCLUSIONS AND FUTURE WORKS 

 

 

 

5.1. Conclusions 

 This research has attempted to present a methodology and tool for estimating the 

economic (total cost), energy (fuel use), and environmental (emissions) impact for 

common earthwork activities performed by HDD equipment. This tool can be used 

together with other common estimating approaches to gain an overall understanding of 

the financial, fuel, and emissions footprint for construction activities. Although there are 

already methods, or models, or tools for estimating productivity, costs, and emissions for 

construction equipment, there currently is not a means for doing all of these at once. This 

tool can be developed into a stand-alone model, or into a module that can be used 

collaboratively with other existing earthwork and emissions estimator. 

 Some specific conslusions from the methodology and results of the research are 

described as follows:
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5.1.1. Multiple Linear Regression (MLR) for Productivity Models 

 The MLR had produced two statistically accurate and precise models with low 

bias for productivity rate based on two independent data sources; RSMeans Data and 

CAT Performance Data. Each productivity prediction model accounted for a high 

percentage of variability in its respective data source; productivity on RSMeans Data: 

95% for bulldozer, 99% for scraper, 92% for excavator, and 94% for truck, while 

productivity on CAT Performance Data: 64% for bulldozer, 90% for scraper, 89% for 

excavator, and 85% for truck. The two data sources are considered to be reliable and of 

good quality; well respected and frequently used in construction activity and equipment 

estimating. This MLR-produced methodology provides a reasonable benchmark to use 

for quantifying the economic, energy, and environmental impact of earthwork activities. 

 In the development of MLR-based productivity rate model, the two data sources 

are different in terms of input variables and the magnitude of productivity results. 

RSMeans Data mostly uses fewer variables compared to CAT Data. For example, the 

productivity model for bulldozer in RSMeans Data was built from engine size, distance, 

and soil types, whereas CAT Data has engine size, blade capacity, distance, operational 

efficiency, site slope, operator’s skill, soil type, and dozing technique. RSMeans Data 

also has fewer variables for truck, which are loading capacity, speed, distance, and cycle 

time, while CAT Data has engine size, loading capacity, speed, distance, cycle time, 

operational efficiency, bucket size of excavator, and cycle time of excavator. Some 

additional input variables that CAT Data have indicates that the manufacturer must 

examine closely and comprehensively to determine its products’ value in productivity 

rate. As one of HDD equipment manufacturer, CAT has a purpose to explain the 
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performances and specifications in detail to the prospective users. RSMeans Data 

provides with information on sizing, productivity, equipment requirements, design 

standards, and engineering factors for all type of major construction projects, including 

earthwork activities. All information are compiled and taken as averages from large 

number of sources including project information from many construction professional 

associations, construction companies, material suppliers, and manufacturers. Simpler and 

fewer input variables found in RSMeans Data are intended to help construction estimator 

to use some technical data to prepare quantity takeoffs and complete construction 

estimates, compare the cost of design alternatives, cost analysis, and value engineering. 

 Another difference is tye magnitude of the productivity results. On average, CAT 

Performance Data produces about 130% higher productivity rates or 1.3 times higher 

than those from the RSMeans Data. For bulldozer, productivity rate from CAT Data is 

about 150%-240% higher than RSMeans Data based on engine size and dozing distance. 

For scraper, CAT Data produces productivity rate 100%-120% higher than RSMeans 

Data based on distance and bucket capacity, with an exceptional case for clay type of soil 

on which CAT Data and RSMeans Data give about the same productivity rate based on 

bucket capacity. For excavator, productivity rate based on bucket size from CAT Data is 

about 120%-400% higher than RSMeans for all types of soil. Productivity rates of truck 

from two sources of data are about the same based on distance and less-than-50 cy 

loading capacity. CAT Data produces 30% higher productivity rate than those from 

RSMeans when the trucks have more than 50 cy loading capacity. Higher productivity 

rates produced from CAT Data are obtained because the manufacturer calculated the 

productivity based on 100% efficiency in operation, by using computer analysis and 
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laboratory research, both on and off-site testing. 100% efficiency in operation most likely 

cannot be achieved continuously even under ideal conditions. RSMeans Data provides 

average of all data compiled from many sources; construction professional associations, 

construction companies, material suppliers, and manufacturers. The data in RSMeans are 

widely accepted and used by most construction professionals, especially for preparing 

quantity takeoffs and complete construction estimates. Productivity rates in RSMeans are 

calculated as daily output basis and represents average figures, which will vary with job 

conditions. Productivity rates in RSMeans Data are also provided with the estimated 

labor hours, unit costs, bare costs (including materials, labors, and equipment), and total 

cost, which includes bare cost plus profit and overhead costs. As for the purpose of 

practicability and the differences between these two data sources, this research has 

decided to use RSMeans Data for the basis of productivity and cost models building. 

 

5.1.2. Multiple Linear Regression (MLR) for Cost Models 

 The MLR had also produced statistically accurate and precise models with low 

bias for estimated unit cost based on RSMeans Data. Each cost prediction model 

accounted for a high percentage of variability in its respective data source: 97% for 

bulldozer, 99% for scraper, 70% for excavator, and 88% for truck. By using the models, 

construction estimators can estimate unit costs of the use of HDD equipment over a range 

of values of engine size, distance, bucket size, trench depth, loading capacity. 

Additionally, unit cost estimates can also be obtained based on some specific job 

conditions such as type of soil, cycle distance or average hauling speed and other 

supporting equipment’s cycle time (for truck). For specific range of engine size, generally 
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it can be concluded that using bigger engine size (horsepower), which means using bigger 

equipment’s attachments or tools (bucket, blade, or loading capacity), to perform 

earthwork activities will significantly decrease the total cost. Bigger engine size increases 

productivity significantly, reduces the duration of activities, and decreases the total costs. 

Concerning the job conditions, the total cost increases as the working loads of HDD 

equipment become higher. Higher soil density or rolling resistance, longer distances for 

hauling, dozing, or excavating, longer cycle times, or deeper trenches decrease the 

productivity rates, increase the activity duration, and increase the total cost. 

 Using RSMeans Heavy Construction Data as the basis for building the cost 

models is reliable not only because it has been widely accepted and used by most of 

construction professionals, but also because it is produced with the compliance of the 

latest Construction Specifications Institute (CSI) MasterFormat that has a system of titles 

and numberings used extensively to organize construction information. All data in the 

RSMeans cost data are arranged in the 50-division MasterFormat 2004 system. The 

overall cost data are also continuously monitored by the RSMeans according to the 

developments of the construction industry in order to ensure its reliability, thoroughness, 

and up-to-date cost information. 

 

5.1.3. Total Fuel Use Models 

 Total fuel use estimates are calculated by using the total duration of the activity 

obtained from productivity model and fuel use factors obtained from NONROAD model.  

When compared with field data, the average total fuel use estimates of bulldozer are 9% 

lower than those from PEMS measurement, while fuel use estimates of excavator and 
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truck are 34% and 17% higher than the field data respectively. The overall average total 

fuel use estimates for these three HDD equipment is 14% higher than the field data. For 

fuel use, NONROAD uses constant brake specific fuel consumption (BSFC) for each 

engine tier within a specified engine size range, without regard for the activity being 

performed by the HDD equipment. The difference between E3 model results and PEMS 

results is due to the variation of fuel consumption rate of individual vehicles and the 

conditions on which the works are being performed. 

 The total fuel use estimates as resulted from E3 model are also useful to observe 

its trends and relationship with engine size and earthwork conditions performed by HDD 

equipment. Total fuel use estimates can help the HDD equipment operators to decide the 

size of engine (horsepower) to be used in the activities. Although most results from 

excavator, scraper, and truck showed that bigger engine size for a specific soil quantity 

lead to lower fuel use, however bulldozer gives a more specific result. The convex 

relationship between bulldozer’s engine size and its fuel use is useful for selecting the 

appropriate engine size for an earthwork activity. Particularly when it recalls the 

relationships with total cost, it is possible for a HDD equipment with higher horsepower 

to perform an activity at a significantly lower cost than a lower horsepower HDD 

equipment without substantially increasing the energy (fuel use) impact. Concerning the 

job conditions, such as type of soil, dozing distance, cycle time, depth of trench, or 

equipment’s attachments, usch as bucket size, blade, and loading capacity, total fuel use 

increases as the soil becomes more difficult to excavate, the distance becomes further, the 

cycle time becomes longer, the trench becomes deeper, or as the attachment size becomes 

smaller. 



144 
 

 

5.1.4. Total Emissions Models 

 Total emissions estimates are calculated by using the total duration of the activity 

obtained from productivity model and emissions factors obtained from NONROAD 

model. When compared to field data, results from E3 model give different magnitude of 

the average total emissions of each pollutants. 22% lower for HC, 8% higher for CO, 

59% lower for NOx, 85% higher for PM , and 28% lower for CO2. Except for PM, the 

different results obtained from PEMS and E3 model are due to the nature of emission 

factors used from NONROAD model. The NONROAD model data were built to estimate 

average emissions for a bigger fleet of vehicles in scope of county-size fleet, state-size 

fleet, or sometimes for whole fleets in the US. The NONROAD model data are also 

obtained from the standardized engine dynamometer tests in laboratory conditions. 

Meanwhile, results from PEMS are gathered from individual in-use HDD equipment 

when it is operating on various jobsite conditions. Although the results from E3 model do 

not represent actual working conditions on field, it can be used as a framework and 

practical tool to predict the emissions from HDD equipment, its fuel use, total duration, 

and productivity rate at the same time, which have not currently been available by 

previous models and methods. 

 The total emissions estimates resulted from E3 model are also useful to observe 

its relationship with HDD equipment performance attributes, such as engine size and the 

attachments set up to the equipment (buckets or blades), and with various earthwork 

working conditions, such as type of soil, distance, depth, and cycle time. Generally, as 

performed in total fuel use estimates, the total emissions also decrease when the engine 
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size (horsepower) increase. It can be understood that by using bigger engine size, which 

means having bigger capacity of attachments, the productivity rate can be improved and 

the total duration of the work can be reduced. On the other hands, the total emissions 

becomes higher when the HDD equipment have to perform works on higher rolling 

resistance of soil, or deeper trench excavatings, or further hauling and dozing distances, 

or longer times in completing the cycles.  

 The estimating tool presented in this research will be an effective means for 

assessing the economic, energy, and environmental impacts of construction activities and 

will allow HDD equipment owners or fleet managers, policy makers, and project 

stakeholders to evaluate more sustainable alternatives. This tool will help contractors to 

estimate not only fuel quantities and cost that will be required for a project, but also 

emissions inventories at the same time. This tool can also be used to estimate emissions 

for various construction sectors. By using construction plans and specifications, the 

methodology and tool presented in this research can be used to estimate cost, fuel use, 

and emissions from commercial, residential, industrial, or heavy highway. Once all types 

of construction can be covered by this methodology, it is possible to develop new fuel use 

and emissions inventories for construction industry in general.  

This methodology and tool can also be used as one of basic considerations for 

HDD equipment selection. Since the US EPA promulgated the emissions standard for 

diesel equipment including all construction equipment in 1999, the environmental issues 

has become one of the factors in selecting equipment. Construction professionals are 

encouraged to selct new cleaner and lower emissions HDD equipment for their fleets. By 

using findings in this research, a HDD fleet manager can now be able to select the right 
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machine for matching to the appropriate work activities, the physical properties of earth 

or soil, and to set the desired productivity. By using the findings in this research, the 

selected HDD equipment can be more economic, energy, and environmentally sound. 

 

5.2. Future Works 

 To address the environmental concerns associated with construction, a set of 

substantial data related to construction projects for developing emissions inventories is 

needed. The productivity-based cost, fuel use and emissions estimating tool proposed in 

this research can help to fill this need. To develop meaningful emissions inventories for 

the construction industry, some improvements and recommended works in the future are 

as follows: 

 

5.2.1. Productivity Modeling for More Variabilities and Uncertainties 

 The productivity rate models used in this research are built from RSMeans Heavy 

Construction Data, which is considered as reliable and widely accepted data for 

construction estimating. RSMeans data representing cost and productivity provide basic 

information that allows construction estimators to predict the productivity rates. 

However, the information, which is comprised of average values, provided by the 

RSMeans Data is not easily applied to various site conditions where numerous 

unexpected factors are found. Productivity models built from RSMeans Data were 

developed by using deterministic type of analysis, which primarily focuses on the use of 

a single fixed or constant value, with the assumption that any variability and uncertainty 

in the activities are ignored. Determinstic approach was used for simple calculation of the 
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productivity of HDD equipment operations based on equipment characteristics and other 

stated site conditions provided by the reference. Deterministic approach does not present 

actual productivity of HDD equipment based on real condition such as idling and loss of 

productivity related to random variations on site. 

 To overcome the limitations of deterministic models, and to match with real-

world in-use emissions measurement by using PEMS, approaches in developing more 

accurate productivity rates estimations are needed. The use of construction simulation 

methods or other mathematical relations between productivity and operating conditions 

of HDD equipment with probabilistic approach can help these needs. The support from a 

large amount of input datasets covering various actual conditions is also useful to develop 

more reliable productivity models. 

 

5.2.2. Different Types of HDD Equipment 

 To create substantial data related to construction projects for developing 

emissions inventories of construction industry, the tool and methodology resulted from 

this research have to also be applied thoroughly to all available types of HDD equipment. 

Bulldozers, scrapers, excavators, and dump trucks are only some substes of bigger group 

of HDD equipment. There are still a lot of types of HDD equipment that can be used as 

sources of productivity-based cost, fuel use, and emissions estimation models, such as 

motorgraders, skidsteer loaders, multi-terrain loaders, track loaders, backhoe loaders, 

tractors, wheel loaders, integrated tool-carriers, and underground mining equipment. It 

can be useful since the latest EPA’s NONROAD model, which is used in this research, 

has included more than 80 basic and 260 specific types of nonroad equipment. 
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5.2.3. Different Types of Construction Projects or Activities 

 The tool presented in this research is a framework that can be used with other 

common estimating approaches to gain an overall understanding of the financial, fuel, 

and emissions footprint for a construction activity and ultimately an entire project. To 

draw a complete picture for an entire project, and by using construction specifications 

and plans, the same methodology can also be applied. Since RSMeans has updated the 

organization of its database from Construction Specifications Institute’s 16-Division 

MasterFormat 95 to the 44-Division MasterFormat 2004, a set of more detailed activities 

in construction projects can be used to develop comprehensive productivity models as 

basis for economic, energy, and environmental model. With specific-related equipment, 

the activities in concrete, masonry, metals, wood and plastics, thermal and moisture 

protections, doors and windows, finishes and equipment, plumbing, and other electrical 

and mechanical works can also be assessed. Particularly for earthwork activities, there are 

still some other works useful to develop productivity models for different types of HDD 

equipment, such as soil grading, dewatering, backfill, compaction, shoring, sheet piling, 

driven piles, drilled piles, and some earthwork specialty items. 

 

5.2.4. Different Types of Fuel 

 A comprehensive emissions inventory requires not only the lists of air pollutants 

quantities emitted, but also the insight about the distribution of emissions among different 

source categories, such as types of vehicles or types of fuel. Emissions inventory based 

on types of fuel can also help equipment fleet managers to evaluate some emissions 

reduction strategies. Since EPA’s Clean Air Nonroad Diesel rule required that sulfur 
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levels in highway diesel fuel be reduced by approximately 99% from 3,000 ppm to 15 

ppm in 2004, the use of altenative fuels, such as biodiesel, is encouraged to be used. 

Biodiesel is registered with EPA and is a legal fuel at any blend level for use in highway 

and nonroad vehicles. In EPA’s NONROAD model itself, the model has included various 

fuel types, such as compressed natural gas (CNG) and liquefied petroleum gas (LPG). 

 

5.2.5. Comparison with Other Countries’ Emissions Standards 

 EPA’s NONROAD model and Engine Tier Levels for Emissions Standard used in 

this research are part of EPA responsibilities under the Clean Air Act to reduce the 

emissions of pollutants from a range of sources in order to provide clean and healthy air 

in the United States. Although most of data used by the EPA are US-based data, however 

some construction HDD equipment included in the model and standard are also used 

widely in other countries in the world. Some HHD equipment manufaturers, such as 

Caterpillar or Komatsu, also produce their products for worldwide construction projects. 

To observe the magnitude of emissions reduction policies and standards in the US among 

all global emissions standards, a comparison showing relationships between the EPA’s 

standard for nonroad vehicles and those from other countries is also important. For 

example, regulatory authorities in the European Union (EU) and Japan have been 

involved by the engine and equipment manufacturers to harmonize worldwide emissions 

standard, in order to streamline engine development and emission type certification. 

Similar with Engine Tiers Level 1-4 in EPA’s nonroad emission standard, the European 

emissions standards for new nonroad diesel engines have been structured as gradually 

more stringet tiers known as Stage I-IV standards. By understanding and comparing other 
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countries’ emissions standards, the estimating tool developed in this research can be 

modified and applied to fit with local needs and regulations.
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APPENDICES 
 

 

 

The appendices provides supporting results, data, calculation, or codes which are used for 

developing productivity, cost, fuel use, and emission models for bulldozer, scraper, 

excavator, and truck. The appendices are broken down as follows: 

Appendix A Results of multiple linear regression (MLR) analysis to obtain   

productivity and cost models for bulldozer 

Appendix B Results of multiple linear regression (MLR) analysis to obtain   

productivity and cost models for scraper 

Appendix C Results of multiple linear regression (MLR) analysis to obtain   

productivity and cost models for excavator 

Appendix D Results of multiple linear regression (MLR) analysis to obtain   

productivity and cost models for truck 

Appendix E PEMS field measurement results for bulldozers 

Appendix F PEMS field measurement results for excavators 

Appendix G PEMS field measurement results for trucks 

Appendix H E3 model output of emission factors for bulldozers, excavators, and 

trucks 

Appendix I SAS coding for productivity and cost models 

Appendix J Visual Basic coding for E3 model user’s interface 

Appendix K E3 model output for bulldozer 

Appendix L E3 model output for scraper 

Appendix M E3 model output for excavator 

Appendix N E3 model output for truck 
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Appendix A 

Results of multiple linear regression (MLR) analysis to obtain productivity and  

cost models for bulldozer 
 

 

Figure A.1. Plots of predicted values versus residuals of productivity model 

 

Figure A.2. The best λ-value of Box-Cox transformation productivity  
regression model 
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Table A.1. Regression coefficients for productivity model – RSMeans 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 1.87859 40.56 <0.0001 

Horsepower β1 0.00350 14.02 <0.0001 

Dozing distance β2 -0.00240 -19.13 <0.0001 

Soil type 1 β3 0.23656 6.47 <0.0001 
Soil type 2 β4 0.21667 5.93 <0.0001 

Soil type 3 β5 0.16644 4.56 <0.0001 

 

Table A.2. Mallow’s C(p) values of variables selection for productivity model –RSMeans  

C(p) R-square Predictors 

4.2963 0.9530 Hp, distance, soil 3 soil 4 

5.8891 0.9505 Hp, distance, soil 4 
5.9114 0.9474 Hp, distance, soil 1, soil 4 

6.0000 0.9534 Hp, distance, soil 1, soil 2, soil 3 

 

Table A.3. Stepwise selection method result for productivity model - RSMeans 

Step Variable entered Model R
2
 F-value P-value 

1 Distance 0.5667 44.65 <0.0001 

2 Horsepower 0.8730 79.30 <0.0001 
3 Soil 4* 0.9474 45.23 <0.0001 
 *categorical variable 

 

 

Figure A.3. Productivity estimation chart based on dozing distance for CAT bulldozer using 
universal blades 
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Table A.4. Regression coefficients for productivity – CAT 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 -761.221 -10.28 <0.0001 

Blade capacity β1 -7.937 -1.06 0.2896 
Horsepower β2 1.502 3.56 0.0004 

Dozing distance β3 -1.646 -39.06 <0.0001 

Job efficiency β4 628.041 7.30 <0.0001 

Soil grade β5 471.03 38.72 <0.0001 
Skill 1 β6 240.526 14.27 <0.0001 
Skill 2 β7 90.197 5.35 <0.0001 
Soil type 1 β8 342.568 17.6 <0.0001 
Soil type 2 β9 57.095 2.93 0.0034 

Soil type 3 β10 114.189 5.87 <0.0001 

Dozing technique 1 β11 20.044 1.46 0.1454 

 

Table A.5. Mallow’s C(p) values of variables selection for productivity model – CAT  

C(p) R-square Predictors 

11.122 0.642 Hp, dist., jobeff, soil grade, skill 1-2, 
soil type 1-3, dozing 1 

11.122 0.642 Hp, dist., jobeff, soil grade, skill 1-2, 

soil type 1-3, dozing 2 

11.122 0.642 Hp, dist., jobeff, soil grade, skill 1-2, 
soil type 1,3,4; dozing 1 

11.122 0.642 Hp, dist., jobeff, soil grade, skill 1-2, 

soil type 2-4, dozing 2 

 

Table A.6. Stepwise selection method result for productivity model - CAT 

Step Variable entered Model R
2 

 F-value P-value 

1 Distance 0.1904 676.82 <0.0001 
2 Horsepower 0.3776 865.12 <0.0001 
3 Soil grade 0.5646 1235.57 <0.0001 
4 Soil type 1* 0.6049 292.91 <0.0001 
5 Skill 1* 0.6272 172.39 <0.0001 
6 Job efficiency 0.6339 52.19 <0.0001 
7 Skill 2* 0.6375 28.30 <0.0001 
8 Soil type 4* 0.6407 25.73 <0.0001 
9 Soil 3* 0.6417 8.60 0.0034 

 *categorical variable 
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Figure A.4. Dozing factor as a function of soil grade percentage (slope) 

 

 

Figure A.5. Plots of predicted values versus residuals of cost model 

Table A.7. Regression coefficients for cost model 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 1.56464 21.94 <0.0001 

Horsepower β1 -0.00398 -10.32 <0.0001 

Dozing distance β2 0.00578 29.80 <0.0001 
Soil type 1 β3 -0.57444 -10.19 <0.0001 

Soil type 2 β4 -0.53944 -9.56 <0.0001 

Soil type 3 β5 -0.43000 -7.62 <0.0001 

 

Table A.8. Mallow’s C(p) values of variables selection for cost model 

C(p) R-square Predictors 

4.3851 0.9737 Hp, distance, soil 3 soil 4 
6.0000 0.9741 Hp, distance, soil 4 

6.0000 0.9741 Hp, distance, soil 2-4 

6.0000 0.9741 Hp, distance, soil 1, soil 3, soil 4 
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Table A.9. Stepwise selection method result for cost model 

Step Variable entered Model R
2
 F-value P-value 

1 Distance 0.7678 112.45 <0.0001 

2 Soil type 4* 0.8758 28.69 <0.0001 
3 Horsepower 0.9679 91.76 <0.0001 
 *categorical variable 
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Appendix B 

Results of multiple linear regression (MLR) analysis to obtain productivity and  

cost models for scraper 

 

 

Figure B.1. Plots of predicted values versus residuals of productivity model 

 

 

Figure B.2. The best λ-value of Box-Cox transformation productivity  
regression model 
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Table B.1. Regression coefficients for productivity model – RSMeans 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 1.71676 97.23 <0.0001 

Scraper type 1 β1 -0.08669 -11.87 <0.0001 
Bucket size β3 0.01071 10.27 <0.0001 
Soil type 1 β4 0.26481 35.42 <0.0001 
Soil type 2 β5 0.20403 27.29 <0.0001 
Soil type 3 β6 0.24017 30.76 <0.0001 
Distance β7 0.0000448 -25.82 <0.0001 
 

Table B.2. Mallow’s C(p) values of variables selection for productivity model –RSMeans  

C(p) R-square Predictors 

7.0000 0.9936 Scraper type 1-2, bucket, soil 
type 1-3, distance 

7.0000 0.9936 Scraper type 2-3, bucket, soil 

type 1-3, distance 

7.0000 0.9936 Scraper type 1,3; bucket, soil 
type 1-3; distance 

7.0000 0.9936 Scraper type 1-2, bucket, soil 

type 1,3,4; distance 

 

Table B.3. Stepwise selection method result for productivity model - RSMeans  

Step Variable entered Model R
2
 F-value P-value 

1 Soil type 1* 0.5319 31.82 <0.0001 
2 Scraper type 2* 0.7509 23.74 <0.0001 
3 Distance 0.9371 76.98 <0.0001 
4 Bucket size 0.9680 24.14 <0.0001 
5 Soil type 2* 0.9905 57.22 <0.0001 
6 Soil type 1* 0.9936 10.86 0.0032 

 *categorical variable 

 

 

Figure B.3. Productivity estimation chart based on one way distance for CAT scraper  
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Table B.4. Regression coefficients for productivity – CAT 

Variable Parameter estimate t-value p-value 

Intercept 263.973 18.53 <0.0001 

Horsepower 0.337 2.22 0.0271 

Bucket capacity 9.518 4.12 <0.0001 

Rolling resistance -1556.281 -18.45 <0.0001 
distance -0.092 -32.93 <0.0001 
 

Table B.5. Mallow’s C(p) values of variables selection for productivity model – CAT  

C(p) R-square Predictors 

5.000 0.9053 Hp, bucket cap., rolling resist., 

dist. 

7.926 0.9040 Bucket cap., rolling resist., dist. 
19.989 0.9008 Hp, rolling resist., dist. 

343.411 0.8140 Hp, bucket cap., dist. 

 

Table B.6. Stepwise selection method result for productivity model - CAT 

Step Variable entered Model R
2
 F-value P-value 

1 Bucket capacity 0.5199 385.53 <0.0001 

2 Distance 0.8127 555.06 <0.0001 
3 Rolling resistance 0.9040 336.64 <0.0001 
4 Horsepower 0.9053 4.93 0.0271 
 

 

 

Figure B.4. Plots of predicted values versus residuals of cost model 

Table B.7. Regression coefficients for cost model 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 0.73663 42.08 <0.0001 
Scraper type 1 β1 0.02950 4.07 <0.0001 
Bucket size β2 -0.00033 -0.32 0.750 

Soil type 1 β3 -0.26519 -35.78 <0.0001 
Soil type 2 β4 -0.20464 -27.61 <0.0001 
Soil type 3 β5 -0.24083 -31.11 <0.0001 
Distance β6 0.0000445 26.07 <0.0001 
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Table B.8. Mallow’s C(p) values of variables selection for cost model 

C(p) R-square Predictors 

5.1038 0.9903 Scraper type 1-2, soil type 1-3, 

distance 

5.1038 0.9903 Scraper type 1,3;  soil type 1-3, 

distance 
5.1038 0.9903 Scraper type 2,3;  soil type 1-3; 

distance 

5.1038 0.9903 Scraper type 1-2,  soil type 1,3,4; 
distance 

 

Table B.9. Stepwise selection method result for cost model 

Step Variable entered Model R
2
 F-value P-value 

1 Soil type 4* 0.6503 52.08 <0.0001 

2 Distance 0.9358 120.15 <0.0001 
3 Soil type 2* 0.9667 24.12 <0.0001 
4 Scraper type 2* 0.9851 30.83 <0.0001 

5 Soil type 1* 0.9903 12.84 0.0015 

 *categorical variable 
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Appendix C 

Results of multiple linear regression (MLR) analysis to obtain productivity and  

cost models for excavator 

 

 

Figure C.1. Plots of predicted values versus residuals of productivity model 

Table C.1. Regression coefficients for productivity model – RSMeans 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 -3.946 -0.91 0.3656 
Soil type 1 β1 8.465 2.36 0.0193 

Soil type 2 β2 14.907 4.16 <0.0001 
Soil type 3 β3 16.412 4.58 <0.0001 
Depth β4 -2.069 -9.92 <0.0001 
Bucket Size β5 55.131 42.19 <0.0001 
Excavator type 1 β6 3.317 1.39 0.1676 
Excavator type 2 β7 4.166 0.72 0.4743 
 

Table C.2. Mallow’s C(p) values of variables selection for productivity model –RSMeans  

C(p) R-square Predictors 

4.297 0.9194 Soil type 1,4; depth; bucket size, 

excav type 3 

4.309 0.9185 Soil type 1,4; depth, bucket size 

4.788 0.9192 Soil type 1,4; depth, bucket size, 
excav type 1 

6.023 0.9195 Soil type 1,3; depth, bucket size, 

excav type 3 

 

Table C.3. Stepwise selection method result for productivity model - RSMeans  

Step Variable entered Model R
2
 F-value P-value 

1 Bucket size 0.8654 1240.52 <0.0001 
2 Depth 0.9083 89.85 <0.0001 
3 Soil type 4* 0.9149 14.87 <0.0001 
4 Soil type 1* 0.9185 8.38 0.0042 

 *categorical variable 
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Figure C.2. Cycle time estimation chart based on soil type for CAT excavator  

 

 

Figure C.3. Productivity estimation chart based on bucket size and cycle time for CAT excavator  
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Table C.4. Regression coefficients for productivity – CAT 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 -76.986 -4.69 <0.0001 
Horsepower β1 -0.521 -6.27 <0.0001 
Bucket size β2 141.504 19.05 <0.0001 
Soil type 1 β3 144.037 21.40 <0.0001 
Soil type 2 β4 129.633 19.26 <0.0001 
Soil type 3 β5 115.230 17.12 <0.0001 
Soil type 4 β6 72.018 10.70 <0.0001 
Cycle time β7 -10.228 -38.63 <0.0001 
Job efficiency β8 290.732 16.69 <0.0001 
 

Table C.5. Mallow’s C(p) values of variables selection for productivity model – CAT  

C(p) R-square Predictors 

9.000 0.8527 Hp, bucket size, soil type 2-5, 

cycle time, job efficiency 
9.000 0.8527 Hp, bucket size, soil type 1,3-5; 

cycle time, job efficiency 

9.000 0.8527 Hp, bucket size, soil type 

1,2,4,5; cycle time, job 
efficiency 

9.000 0.8527 Hp, bucket size, soil type 1-3,5; 

cycle time, job efficiency 

 

Table C.6. Stepwise selection method result for productivity model - CAT 

Step Variable entered Model R
2
 F-value P-value 

1 Bucket size 0.5737 1693.24 <0.0001 

2 Cycle time 0.7450 844.21 <0.0001 
3 Soil type 5* 0.8002 347.14 <0.0001 
4 Job efficiency 0.8330 246.29 <0.0001 
5 Soil type 4* 0.8459 105.34 <0.0001 
6 Horsepower 0.8506 38.83 <0.0001 
7 Soil type 1* 0.8522 13.70 <0.0001 
8 Soil type 3* 0.8527 4.58 0.0325 

 *categorical variable 

 

 

Figure C.4. Plots of predicted values versus residuals of cost model 
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Table C.7. Regression coefficients for cost model 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 8.269 25.93 0.3656 

Soil type 1 β1 -0.647 -2.46 0.0147 

Soil type 2 β2 -1.049 -3.99 <0.0001 
Soil type 3 β3 -1.133 -4.31 <0.0001 
Depth β4 0.045 2.94 0.0036 
Bucket Size β5 -1.658 -17.31 <0.0001 
Excavator type 1 β6 -0.567 -3.23 0.0014 
Excavator type 2 β7 0.421 0.99 0.3243 

 

Table C.8. Mallow’s C(p) values of variables selection for cost model 

C(p) R-square Predictors 

5.135 0.6897 Soil type 1,4; depth; bucket size, 

excav type 1 

6.159 0.6913 Soil type 1,4; depth, bucket size,  
excav type 1,3 

6.159 0.6913 Soil type 1,4; depth, bucket size, 

excav type 1-2 

6.976 0.6899 Soil type 1,2,4; depth, bucket 
size, excav type 1 

 

Table C.9. Stepwise selection method result for cost model 

Step Variable entered Model R
2
 F-value P-value 

1 Depth 0.6266 323.86 <0.0001 

2 Soil type 4* 0.6433 8.99 0.0031 
3 Excavator type 1* 0.6664 13.26 0.0003 
4 Bucket size 0.6799 8.01 0.0042 

5 Soil type 1* 0.6897 5.94 0.0158 

 *categorical variable 
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Appendix D 

Results of multiple linear regression (MLR) analysis to obtain productivity and  

cost models for truck 

 

 

Figure D.1. Plots of predicted values versus residuals of productivity model 

 

Table D.1. Regression coefficients for productivity model – RSMeans 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 58.799 19.74 <0.0001 

Loading capacity β1 2.079 55.85 <0.0001 
Speed β2 1.625 17.52 <0.0001 
Cycle distance β3 -12.056 -27.25 <0.0001 
Cycle time β4 -2.789 -20.83 <0.0001 

 

Table D.2. Mallow’s C(p) values of variables selection for productivity model –RSMeans  

C(p) R-square Predictors 

5.000 0.9432 Capacity, speed, cycle distance, 

cycle time 

309.822 0.8691 Capacity, cycle distance, cycle 
time 

437.002 0.8384 Capacity, speed, cycle distance 

734.983 0.7659 Capacity, cycle distance 

 

Table D.3. Stepwise selection method result for productivity model - RSMeans  

Step Variable entered Model R
2
 F-value P-value 

1 Loading capacity 0.6558 453.51 <0.0001 

2 Cycle distance 0.7659 111.41 <0.0001 

3 Cycle time 0.8691 186.06 <0.0001 

4 Speed 0.9432 306.82 <0.0001 

 *categorical variable 
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Table D.4. Regression coefficients for productivity – CAT 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 -89.111 -4.88 <0.0001 

Horsepower β1 0.022 0.96 0.3368 

Loading capacity β2 3.345 13.42 <0.0001 
Speed β3 1.007 3.82 <0.0001 
Cycle distance β4 -23.022 -35.21 <0.0001 
Excavator bucket β5 18.363 41.98 <0.0001 
Excavator cycle time β6 -133.030 -33.94 <0.0001 
Cycle time β7 -3.938 -20.44 <0.0001 
Job efficiency β8 202.975 52.34 <0.0001 

 

Table D.5. Mallow’s C(p) values of variables selection for productivity model – CAT  

C(p) R-square Predictors 

7.474 0.8510 Capacity, speed, distance, excav-

bucket, excav-cycle, truck-cycle, 
operation eff. 

9.000 0.8511 Hp, capacity, speed, distance, 

excav-bucket, excav-cycle, truck-

cycle, operation eff. 
13.929 0.8506 Hp, capacity, distance, excav-

bucket, excav-cycle, truck-cycle, 

operation eff. 
18.477 0.8502 Capacity, distance, excav-bucket, 

excav-cycle, truck-cycle, 

operation eff. 

 

Table D.6. Stepwise selection method result for productivity model - CAT 

Step Variable entered Model R
2
 F-value P-value 

1 Truck cycle time 0.5381 2793.37 <0.0001 
2 Loading capacity 0.7117 1442.88 <0.0001 

3 Operation efficiency 0.8032 1114.55 <0.0001 

4 Excavator bucket size 0.8163 171.31 <0.0001 
5 Excavator cycle time 0.8242 106.51 <0.0001 

6 Distance 0.8502 416.55 <0.0001 

7 Speed 0.8510 13.01 0.0003 

 

 

Figure D.2. Plots of predicted values versus residuals of cost model 
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Table D7. Regression coefficients for cost model 

Variable Coefficient Parameter estimate t-value p-value 

Intercept β0 3.203 19.27 <0.0001 

Loading capacity β1 -0.056 -26.75 <0.0001 
Speed β2 -0.098 -19.02 <0.0001 
Cycle distance β3 0.709 28.71 <0.0001 
Cycle time β4 0.143 19.20 <0.0001 

 

Table D.8. Mallow’s C(p) values of variables selection for cost model 

C(p) R-square Predictors 

5.000 0.8793 Capacity, speed, cycle distance, 

cycle time 

364.680 0.6936 Capacity, cycle distance, cycle 
time 

371.576 0.6900 Capacity, speed, cycle distance 

718.454 0.5119 Speed, cycle distance, cycle time 

 

Table D.9. Stepwise selection method result for cost model 

Step Variable entered Model R
2
 F-value P-value 

1 Loading capacity 0.2555 81.68 <0.0001 
2 Cycle distance 0.5078 121.47 <0.0001 

3 Cycle time 0.6936 143.07 <0.0001 

4 Speed 0.8793 361.68 <0.0001 
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Appendix E 

PEMS field measurement results of emission factors and fuel use factor  

for bulldozers 

 

Table E.1. Fuel use factor based on engine load 

Engine 

Load 

Fuel use factor (gal/hp-hr) 

BD1 BD2 BD3 BD4 BD5 BD6 

89 hp 95 hp 90 hp 175 hp 285 hp 99 hp 

10% 0.0047 0.0039 0.0081 0.0068 0.0050 0.0074 

20% 0.0130 0.0108 0.0188 0.0110 0.0145 0.011 

30% 0.0188 0.0150 0.0267 0.0178 0.0220 0.0147 

40% 0.0272 0.0187 0.0344 0.0245 0.0281 0.0127 

50% 0.0330 0.0215 0.0416 0.0303 0.0323 0.0100 

60% 0.0394 0.0244 0.0470 0.0357 0.0371 0.0105 

70% 0.0447 0.0267 0.0552 0.0411 0.0434 0.0117 

80% 0.0504 0.0312 0.0605 0.0470 0.0490 0.0123 

90% 0.0573 0.0351 0.0668 0.0528 0.0563 0.0142 

100% 0.0618 0.0367 0.0718 0.0555 0.0611 0.0146 

 

Table E.2. HC emission factor based on engine load 

Engine 

Load 

HC emission factor (gr/hp-hr) 

BD1 BD2 BD3 BD4 BD5 BD6 

89 hp 95 hp 90 hp 175 hp 285 hp 99 hp 

10% 0.1136 0.0968 0.1484 0.1410 0.0400 0.2552 

20% 0.1587 0.1778 0.2354 0.2014 0.0658 0.1980 

30% 0.2061 0.2232 0.2734 0.2971 0.0783 0.2885 

40% 0.2340 0.2615 0.2922 0.3014 0.0921 0.1998 

50% 0.2560 0.2065 0.3260 0.3124 0.1098 0.0853 

60% 0.2741 0.3334 0.3459 0.3405 0.1171 0.0288 

70% 0.2656 0.3765 0.3597 0.3650 0.1470 0.0812 

80% 0.2737 0.4138 0.3600 0.3796 0.1397 0.1047 

90% 0.3100 0.4320 0.4163 0.4243 0.1411 0.0926 

100% 0.3487 0.5085 0.4567 0.4754 0.1559 0.3106 
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Table E.3. CO emission factor based on engine load 

Engine 

Load 

CO emission factor (gr/hp-hr) 

BD1 BD2 BD3 BD4 BD5 BD6 

89 hp 95 hp 90 hp 175 hp 285 hp 99 hp 

10% 0.3498 0.2419 0.8631 0.3537 0.4348 0.3985 

20% 0.7409 0.2432 0.9665 0.7437 1.6659 0.4799 

30% 0.8954 0.3008 0.9602 1.0639 1.6797 0.5191 

40% 0.9612 0.3605 0.9446 1.2432 1.3557 0.3266 

50% 1.0034 0.3336 1.0557 1.4372 1.3382 0.1644 

60% 1.0894 0.4334 1.0827 1.4200 1.1862 0.2537 

70% 1.2123 0.4527 0.9790 1.6427 1.8587 0.1356 

80% 1.4964 1.0352 0.9327 1.4920 1.1016 0.1442 

90% 1.6405 0.4564 1.0287 1.2675 0.9203 0.2181 

100% 1.5633 0.4483 1.0567 1.4001 0.8778 0.2791 

 

Table E.4. NOx emission factor based on engine load 

Engine 

Load 

NOx emission factor (gr/hp-hr) 

BD1 BD2 BD3 BD4 BD5 BD6 

89 hp 95 hp 90 hp 175 hp 285 hp 99 hp 

10% 1.1298 0.5271 1.4783 1.5548 1.2625 0.7915 

20% 2.6919 1.3804 3.2683 2.3478 2.8989 1.0905 

30% 3.6514 1.7455 4.5320 3.4569 3.9460 1.3864 

40% 4.3427 2.0516 5.6933 4.5805 5.1201 1.1592 

50% 4.9418 2.2808 6.6090 5.4093 6.0639 0.8235 

60% 5.5779 2.3967 7.2307 6.3225 6.8602 0.8654 

70% 5.9454 2.4612 8.7828 6.9562 7.5776 0.8330 

80% 6.5944 2.8895 9.9521 7.7867 9.0207 0.8876 

90% 7.4800 3.1087 10.6205 8.9848 11.2123 0.9768 

100% 7.8471 3.0013 10.1311 9.9806 13.0162 1.1977 
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Table E.5. PM emission factor based on engine load 

Engine 

Load 

PM emission factor (gr/hp-hr) 

BD1 BD2 BD3 BD4 BD5 BD6 

89 hp 95 hp 90 hp 175 hp 285 hp 99 hp 

10% 0.0055 0.0022 0.0089 0.0061 n/a 0.0049 

20% 0.0170 0.0091 0.0265 0.0122 n/a 0.0076 

30% 0.0319 0.0123 0.0428 0.0238 n/a 0.0138 

40% 0.0427 0.0170 0.0636 0.0273 n/a 0.0162 

50% 0.0496 0.0216 0.0853 0.0307 n/a 0.0152 

60% 0.0583 0.0271 0.1040 0.0327 n/a 0.0171 

70% 0.0687 0.0299 0.1280 0.0378 n/a 0.0188 

80% 0.0874 0.0404 0.1372 0.0404 n/a 0.0226 

90% 0.0959 0.0489 0.1646 0.0374 n/a 0.0383 

100% 0.1031 0.0510 0.2042 0.0373 n/a 0.0702 

 

Table E.6. CO2 emission factor based on engine load 

Engine 

Load 

CO2 emission factor (gr/hp-hr) 

BD1 BD2 BD3 BD4 BD5 BD6 

89 hp 95 hp 90 hp 175 hp 285 hp 99 hp 

10% 49.17207 41.06598 84.45314 71.50014 53.17706 77.59042 

20% 136.6877 114.961 198.8901 116.159 151.9537 118.0164 

30% 198.8666 158.4868 282.4458 187.339 231.4211 154.7608 

40% 287.5149 198.309 364.1341 257.8608 297.2826 133.977 

50% 349.3079 228.1519 440.904 319.5726 341.4367 106.695 

60% 416.5459 258.4276 498.287 376.4309 392.5481 111.3205 

70% 473.0216 282.5637 585.364 433.498 458.7394 124.4445 

80% 533.5579 329.5309 642.1244 497.1027 519.1926 130.6533 

90% 606.1214 371.9768 709.11 558.9358 597.0806 151.4242 

100% 654.5919 388.4824 761.6773 587.35 648.6315 154.0242 
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Appendix F 

PEMS field measurement results of emission factors and fuel use factor  

for excavators 
 

Table F.1. Fuel use factor based on engine load 

Engine 

Load 

Fuel use factor (gal/hp-hr) 

EX1 EX2 EX3 

254 hp 138 hp 93 hp 

10% 0.0027 0.0251 0.0029 

20% 0.0089 0.0227 0.0087 

30% 0.0126 0.0202 0.0134 

40% 0.0174 0.0186 0.0171 

50% 0.0218 0.0194 0.0228 

60% 0.0258 0.0173 0.0269 

70% 0.0299 0.0172 0.0308 

80% 0.0334 0.0168 0.0347 

90% 0.0363 0.0177 0.0389 

100% 0.0393 0.0166 0.0428 

 

Table F.2. HC emission factor based on engine load 

Engine 

Load 

HC emission factor (gr/hp-hr) 

EX1 EX2 EX3 

254 hp 138 hp 93 hp 

10% 0.0319 0.1658 0.0661 

20% 0.0779 0.1549 0.0755 

30% 0.0656 0.1475 0.1918 

40% 0.0670 0.1389 0.2219 

50% 0.0706 0.1402 0.2436 

60% 0.0835 0.1326 0.2637 

70% 0.0923 0.1315 0.2909 

80% 0.0863 0.1317 0.3230 

90% 0.0837 0.1371 0.3286 

100% 0.0819 0.1367 0.2898 
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Table F.3. CO emission factor based on engine load 

Engine 

Load 

CO emission factor (gr/hp-hr) 

EX1 EX2 EX3 

254 hp 138 hp 93 hp 

10% 0.0845 0.6480 0.1369 

20% 0.2402 0.6080 1.0577 

30% 0.2266 0.5883 0.7304 

40% 0.2225 0.5787 0.4469 

50% 0.2211 0.5785 0.3204 

60% 0.2488 0.5674 0.2925 

70% 0.2606 0.5799 0.2912 

80% 0.2640 0.5581 0.3235 

90% 0.2434 0.5670 0.3828 

100% 0.2303 0.6387 0.4412 

 

Table F.4. NOx emission factor based on engine load 

Engine 

Load 

NOx emission factor (gr/hp-hr) 

EX1 EX2 EX3 

254 hp 138 hp 93 hp 

10% 0.4460 1.8696 0.5709 

20% 0.8081 1.7597 1.0964 

30% 1.3540 1.5870 1.2985 

40% 1.9268 1.4806 1.8196 

50% 2.3739 1.5148 2.6815 

60% 2.7597 1.3952 3.1222 

70% 3.2474 1.3780 3.5026 

80% 3.7208 1.3789 3.8456 

90% 4.1604 1.4297 4.2340 

100% 4.5487 1.3413 4.7079 
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Table F.5. PM emission factor based on engine load 

Engine 

Load 

PM emission factor (gr/hp-hr) 

EX1 EX2 EX3 

254 hp 138 hp 93 hp 

10% 0.0025 0.0201 0.0025 

20% 0.0102 0.0177 0.0076 

30% 0.0155 0.0153 0.0097 

40% 0.0216 0.0143 0.0123 

50% 0.0246 0.0148 0.0170 

60% 0.0311 0.0127 0.0207 

70% 0.0390 0.0124 0.0252 

80% 0.0417 0.0124 0.0324 

90% 0.0470 0.0126 0.0409 

100% 0.0543 0.0123 0.0436 

 

Table F.6. CO2 emission factor based on engine load 

Engine 

Load 

CO2 emission factor (gr/hp-hr) 

EX1 EX2 EX3 

254 hp 138 hp 93 hp 

10% 28.1708 265.6044 30.1242 

20% 94.0290 240.2125 90.19911 

30% 133.0323 213.5680 141.2265 

40% 184.6922 196.8202 181.0132 

50% 231.6529 204.7068 241.6455 

60% 274.2513 183.2738 285.1157 

70% 317.2323 181.3434 326.4566 

80% 354.2657 177.9367 367.8238 

90% 385.7088 186.8080 412.0469 

100% 416.9189 174.8290 453.9535 
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Appendix G 

PEMS field measurement results of emission factors and fuel use factor  

for trucks 

 

 
Table G.1. Fuel use factor based on engine load 

Engine 

Load 

Fuel use factor (gal/hp-hr) 

TR1 TR2 TR3 

306 hp 285 hp 285 hp 

10% 0.0038 0.0036 0.0044 

20% 0.0090 0.0133 0.0127 

30% 0.0117 0.0190 0.0191 

40% 0.0149 0.0239 0.0246 

50% 0.0188 0.0284 0.0288 

60% 0.0207 0.0323 0.0341 

70% 0.0222 0.0368 0.0372 

80% 0.0238 0.0397 0.0414 

90% 0.0284 0.0480 0.0434 

100% 0.0335 0.0498 0.0459 

 
 

Table G.2. HC emission factor based on engine load 

Engine 

Load 

HC emission factor (gr/hp-hr) 

TR1 TR2 TR3 

306 hp 285 hp 285 hp 

10% 0.042 0.0514 0.0532 

20% 0.088 0.1014 0.0949 

30% 0.107 0.1246 0.1121 

40% 0.133 0.1342 0.1319 

50% 0.158 0.1293 0.1708 

60% 0.180 0.1318 0.1823 

70% 0.178 0.1426 0.1718 

80% 0.205 0.0976 0.2048 

90% 0.223 0.0780 0.1886 

100% 0.258 0.1875 0.1785 
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Table G.3. CO emission factor based on engine load 

Engine 

Load 

CO emission factor (gr/hp-hr) 

TR1 TR2 TR3 

306 hp 285 hp 285 hp 

10% 0.100 0.0912 0.1762 

20% 0.543 0.3938 0.3691 

30% 0.771 0.4820 0.4552 

40% 1.115 0.5722 0.5155 

50% 1.627 0.5027 0.5547 

60% 1.543 0.8443 0.5844 

70% 1.528 0.7262 0.6191 

80% 1.717 0.9234 0.6511 

90% 1.721 1.3493 0.5508 

100% 1.931 0.5442 0.4964 

 
 

Table G.4. NOx emission factor based on engine load 

Engine 

Load 

NOx emission factor (gr/hp-hr) 

TR1 TR2 TR3 

306 hp 285 hp 285 hp 

10% 0.658 0.6962 0.7951 

20% 1.066 1.3203 1.3376 

30% 1.335 1.9604 2.0389 

40% 1.684 2.5476 2.6454 

50% 2.228 2.9384 2.9845 

60% 2.335 3.0139 3.2374 

70% 2.461 3.3660 3.6440 

80% 2.577 4.4973 4.1285 

90% 3.131 4.2615 4.2935 

100% 3.474 4.2888 4.9493 

 
 

 
 

 

 

 
 

 



184 
 

 

 
 

 

 

Table G.5. PM emission factor based on engine load 

Engine 

Load 

PM emission factor (gr/hp-hr) 

TR1 TR2 TR3 

306 hp 285 hp 285 hp 

10% 0.003 0.0033 0.0043 

20% 0.009 0.0139 0.0119 

30% 0.012 0.0170 0.0158 

40% 0.016 0.0203 0.0169 

50% 0.021 0.0226 0.0278 

60% 0.025 0.0288 0.0292 

70% 0.025 0.0324 0.0290 

80% 0.030 0.0554 0.0322 

90% 0.036 0.0496 0.0348 

100% 0.038 0.0461 0.0422 

 
 
Table G.6. CO2 emission factor based on engine load 

Engine 

Load 

CO2 emission factor (gr/hp-hr) 

TR1 TR2 TR3 

306 hp 285 hp 285 hp 

10% 40.4153 37.6160 46.3601 

20% 95.0822 139.9120 134.3940 

30% 123.1789 200.3096 202.1267 

40% 156.1324 252.7273 259.9892 

50% 196.6117 300.5503 304.5774 

60% 217.1684 340.6927 361.3219 

70% 233.1563 389.0986 393.8897 

80% 249.4316 419.817 439.1392 

90% 298.7024 502.8497 460.2709 

100% 352.1071 526.0632 487.1354 
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Appendix H 

E3 model output of emission factors for bulldozers, excavators, and trucks 

 

 
Table H.1. E3 output - Emission and fuel use factor for bulldozer, excavator, and truck 

HDD 

equipment 

Engine 

size 

(hp) 

Emission factor (gr/hp-hr) 

HC CO NOx PM CO2 

Fuel Use 

(gal/hp-

hr) 

BD 1 89 1.139 7.361 6.877 1.724 592.638 0.049 

BD 2 95 0.556 3.785 5.377 0.683 594.498 0.049 

BD 3 90 0.556 3.785 5.377 0.683 594.498 0.049 

BD 4 175 0.370 1.478 5.516 0.508 535.174 0.044 

BD 5 285 0.764 5.260 8.243 0.819 533.918 0.044 

BD 6 99 0.392 3.785 4.483 0.335 595.024 0.049 

EX 1 254 0.332 1.223 5.386 0.390 535.295 0.044 

EX 2 138 0.360 1.382 3.910 0.244 535.204 0.044 

EX 3 93 0.569 4.023 5.460 0.862 594.458 0.049 

Truck 1 306 0.178 1.343 4.134 0.172 535.787 0.044 

Truck 2 285 0.348 1.383 5.562 0.593 535.243 0.044 

Truck 3 285 0.348 1.383 5.562 0.593 535.243 0.044 
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Appendix I 

SAS coding for productivity and cost models 

 

Bulldozer Productivity - RSMeans 
 
data dozer; 

input hp distance matr1 matr2 matr3 matr4 hourlyout hourlyouttrans; 

datalines; 

80 300 0 0 0 1 8.125 1.520 

80 300 0 0 1 0 12.5 1.657 

80 300 0 1 0 0 14.375 1.704 

. 

. 

. 

; 

proc reg data=dozer; 

model hourlyouttrans=hp distance matr1 matr2 matr3 matr4 / clb cli r p ss1 ss2; 

run; 

proc reg data=dozer outest=Table_Model; 

model hourlyouttrans=hp distance matr1 matr2 matr3 matr4 / best=4 selection=cp; 

model hourlyouttrans=hp distance matr1 matr2 matr3 matr4 / best=4 selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=dozer; 

model hourlyouttrans=hp distance matr1 matr2 matr3 matr4 / selection=stepwise details 

slstay=0.05 slentry=0.05; 

run; 

proc reg data=dozer; 

model hourlyouttrans=hp distance matr1 matr2 matr3 matr4 / selection=backward details 

slstay=0.05; 

run; 

proc reg data=dozer; 

model hourlyouttrans=hp distance matr1 matr2 matr3 matr4 / selection=forward details 

slentry=0.05; 

run; 

proc corr data=dozer plots=matrix; 

var hourlyouttrans hp distance matr1 matr2 matr3 matr4; 

title 'dozer RS correlation matrix'; 

run; 

 

Bulldozer Productivity – CAT 

 
data dozerCAT; 

input blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 soil4 

dozing1 dozing2 prod; 

datalines; 

45 850 100 0.83 1.8 1 0 0 1 0 0 0

 1 0 6023.81 

45 850 300 0.83 1.8 1 0 0 1 0 0 0

 1 0 2366.50 

45 850 500 0.83 1.8 1 0 0 1 0 0 0

 1 0 1505.95 

. 

. 

. 

; 

proc reg data=dozerCAT; 

model prod=blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 

soil4 dozing1 dozing2 / clb cli r p ss1 ss2; 

run; 

proc reg data=dozerCAT outest=Table_Model; 

model prod=blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 

soil4 dozing1 dozing2 / best=4 selection=cp; 

model prod=blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 

soil4 dozing1 dozing2 / best=4 selection=aic; 
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run; 

proc print data=Table_Model; 

run; 

proc reg data=dozerCAT; 

model prod=blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 

soil4 dozing1 dozing2 / selection=stepwise details slstay=0.05 slentry=0.05; 

run; 

proc reg data=dozerCAT; 

model prod=blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 

soil4 dozing1 dozing2 / selection=backward details slstay=0.05; 

run; 

proc reg data=dozerCAT; 

model prod=blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 

soil4 dozing1 dozing2 / selection=forward details slentry=0.05; 

run; 

proc corr data=dozerCAT plots=matrix; 

var prod blade hp distance jobeff soilgrade skill1 skill2 skill3 soil1 soil2 soil3 soil4 

dozing1 dozing2; 

title 'dozer CAT correlation matrix'; 

run; 

 

Bulldozer Cost – RSMeans 

 
data dozer; 

input hp distance matr1 matr2 matr3 matr4 hourlyout totalcost hourlylog lntotalcost; 

datalines; 

80 300 0 0 0 1 8.125 18.45 1.520 2.915 

80 300 0 0 1 0 12.5 12  1.657 2.485 

80 300 0 1 0 0 14.375 10.45 1.704 2.347 

. 

. 

. 

; 

proc reg data=dozer; 

model lntotalcost=hp distance matr1 matr2 matr3 matr4 / clb cli r p ss1 ss2; 

run; 

proc reg data=dozer outest=Table_Model; 

model lntotalcost=hp distance matr1 matr2 matr3 matr4 / best=4 selection=cp; 

model lntotalcost=hp distance matr1 matr2 matr3 matr4 / best=4 selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=dozer; 

model lntotalcost=hp distance matr1 matr2 matr3 matr4 / selection=stepwise details 

slstay=0.05 slentry=0.05; 

run; 

proc reg data=dozer; 

model lntotalcost=hp distance matr1 matr2 matr3 matr4 / selection=backward details 

slstay=0.05; 

run; 

proc reg data=dozer; 

model lntotalcost=hp distance matr1 matr2 matr3 matr4 / selection=forward details 

slentry=0.05; 

run; 

 

Scraper Productivity and Cost - RSMeans 

 
data scraper; 

input excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

hourlyout totalcost loghour logcost; 

datalines; 

1 0 0 11 1 0 0 0 1500 86.25 3.75 1.936

 0.574 

1 0 0 11 1 0 0 0 3000 76.25 4.24 1.882

 0.627 

1 0 0 11 1 0 0 0 5000 63.125 5.15 1.800

 0.712 

. 
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. 

. 

; 

proc reg data=scraper; 

model loghour=excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

/ clb cli r p ss1 ss2; 

run; 

proc reg data=scraper outest=Table_Model; 

model loghour=excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

/ best=4 selection=cp; 

model loghour=excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

/ best=4 selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=scraper; 

model loghour=excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

/ selection=stepwise details slstay=0.05 slentry=0.05; 

run; 

proc reg data=scraper; 

model loghour=excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

/ selection=backward details slstay=0.05; 

run; 

proc reg data=scraper; 

model loghour=excavtype1 excavtype2 excavtype3 bucketvol matr1 matr2 matr3 matr4 distance 

/ selection=forward details slentry=0.05; 

run; 

 

Scraper Productivity - CAT 

 
data scrapercat; 

input hp capacity rolling distance prod; 

datalines; 

175 8.8 0.02 400 250 

175 8.8 0.02 600 225 

175 8.8 0.02 800 210 

. 

. 

. 

; 

proc reg data=scrapercat; 

model prod=hp capacity rolling distance / clb cli r p ss1 ss2; 

run; 

proc reg data=scrapercat outest=Table_Model; 

model prod=hp capacity rolling distance / best=4 selection=cp; 

model prod=hp capacity rolling distance / best=4 selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=scrapercat; 

model prod=hp capacity rolling distance / selection=stepwise details slstay=0.05 

slentry=0.05; 

run; 

proc reg data=scrapercat; 

model prod=hp capacity rolling distance / selection=backward details slstay=0.05; 

run; 

proc reg data=scrapercat; 

model prod=hp capacity rolling distance / selection=forward details slentry=0.05; 

run; 

proc corr data=scrapercat plots=matrix; 

var prod hp capacity rolling distance; 

title 'scraper CAT correlation matrix'; 

run; 

 

Excavator Productivity - RSMeans 

 
data trench; 

input soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 hourlyout; 
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datalines; 

1 0 0 0 2.5 0.375 1 0 0 18.75 

1 0 0 0 2.5 0.5  1 0 0 25.00 

1 0 0 0 2.5 0.75 1 0 0 33.75 

. 

. 

. 

; 

proc reg data=trench; 

model hourlyout=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / clb cli r p 

ss1 ss2; 

run; 

proc reg data=trench outest=Table_Model; 

model hourlyout=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / best=4 

selection=cp; 

model hourlyout=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / best=4 

selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=trench; 

model hourlyout=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / 

selection=stepwise details slstay=0.05 slentry=0.05; 

run; 

proc reg data=trench; 

model hourlyout=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / 

selection=backward details slstay=0.05; 

run; 

proc reg data=trench; 

model hourlyout=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / 

selection=forward details slentry=0.05; 

run; 

proc corr data=trench plots=matrix; 

var hourlyout soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3; 

title 'excavator RS correlation matrix'; 

run; 

 

Excavator Productivity – CAT 

 
data excavcat; 

input hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff prod; 

datalines; 

54 0.48 1 0 0 0 0 13.3 1 135.00 

54 0.48 0 1 0 0 0 13.3 1 128.25 

54 0.48 0 0 1 0 0 13.3 1 121.50 

. 

. 

. 

; 

proc reg data=excavcat; 

model prod=hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff / clb cli r p ss1 ss2; 

run; 

proc reg data=excavcat outest=Table_Model; 

model prod=hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff / best=4 selection=cp; 

model prod=hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff / best=4 selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=excavcat; 

model prod=hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff / selection=stepwise 

details slstay=0.05 slentry=0.05; 

run; 

proc reg data=excavcat; 

model prod=hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff / selection=backward 

details slstay=0.05; 

run; 

proc reg data=excavcat; 

model prod=hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff / selection=forward 

details slentry=0.05; 
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run; 

proc corr data=excavcat plots=matrix; 

var prod hp bucket soil1 soil2 soil3 soil4 soil5 cycle jobeff; 

title 'excavator CAT correlation matrix'; 

run; 

 

Excavator Cost – RSMeans 

 
data trench; 

input soil1 soil2 soil3 soil4 bucket depth excav1 excav2 excav3 totalcost; 

datalines; 

1 0 0 0 2.5 0.375 1 0 0 8.65 

1 0 0 0 2.5 0.5  1 0 0 6.75 

1 0 0 0 2.5 0.75 1 0 0 6.25 

. 

. 

. 

; 

proc reg data=trench; 

model totalcost=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / clb cli r p 

ss1 ss2; 

run; 

proc reg data=trench outest=Table_Model; 

model totalcost=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / best=4 

selection=cp; 

model totalcost=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / best=4 

selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=trench; 

model totalcost=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / 

selection=stepwise details slstay=0.05 slentry=0.05; 

run; 

proc reg data=trench; 

model totalcost=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / 

selection=backward details slstay=0.05; 

run; 

proc reg data=trench; 

model totalcost=soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3 / 

selection=forward details slentry=0.05; 

run; 

proc corr data=trench plots=matrix; 

var totalcost soil1 soil2 soil3 soil4 depth bucket excav1 excav2 excav3; 

title 'excavator RS correlation matrix'; 

run; 

 

 

Truck Productivity - RSMeans 

 
data truckRS; 

input capacity speed distance cycle prod; 

datalines; 

22 5 0.38 15 66 

22 5 0.57 15 60.5 

22 5 0.76 15 55 

. 

. 

. 

; 

proc reg data=truckRS; 

model prod=capacity speed distance cycle / clb cli r p ss1 ss2; 

run; 

proc reg data=truckRS outest=Table_Model; 

model prod=capacity speed distance cycle / best=4 selection=cp; 

model prod=capacity speed distance cycle / best=4 selection=aic; 

run; 

proc print data=Table_Model; 
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run; 

proc reg data=truckRS; 

model prod=capacity speed distance cycle / selection=stepwise details slstay=0.05 

slentry=0.05; 

run; 

proc reg data=truckRS; 

model prod=capacity speed distance cycle / selection=backward details slstay=0.05; 

run; 

proc reg data=truckRS; 

model prod=capacity speed distance cycle / selection=forward details slentry=0.05; 

run; 

proc corr data=truckRS plots=matrix; 

var prod capacity speed distance cycle; 

title 'truck RS correlation matrix'; 

run; 

 

Truck Productivity – CAT 

 
data truckCAT; 

input hp capacity speed distance excavbucket excavcycle truckcycle opeff prod logprod; 

datalines; 

476 21.5 46.5 0.38 1.13 0.22 6.766 1 190.65 

476 21.5 46.5 0.38 1.13 0.33 8.859 1 145.61 

476 21.5 46.5 0.38 1.13 0.5 12.094 1 106.67 

. 

. 

. 

; 

proc reg data=truckCAT; 

model prod=hp capacity speed distance excavbucket excavcycle truckcycle opeff / clb cli r 

p ss1 ss2; 

run; 

proc reg data=truckCAT outest=Table_Model; 

model prod=hp capacity speed distance excavbucket excavcycle truckcycle opeff / best=4 

selection=cp; 

model prod=hp capacity speed distance excavbucket excavcycle truckcycle opeff / best=4 

selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=truckCAT; 

model prod=hp capacity speed distance excavbucket excavcycle truckcycle opeff / 

selection=stepwise details slstay=0.05 slentry=0.05; 

run; 

proc reg data=truckCAT; 

model prod=hp capacity speed distance excavbucket excavcycle truckcycle opeff / 

selection=backward details slstay=0.05; 

run; 

proc reg data=truckCAT; 

model prod=hp capacity speed distance excavbucket excavcycle truckcycle opeff / 

selection=forward details slentry=0.05; 

run; 

proc corr data=truckCAT plots=matrix; 

var prod hp capacity speed distance excavbucket excavcycle truckcycle opeff; 

title 'truck CAT correlation matrix'; 

run; 

 

Truck Cost - RSMeans 

 
data truckRS; 

input capacity speed distance cycle cost; 

datalines; 

22 5 0.38 15 3.41 

22 5 0.57 15 3.72 

22 5 0.76 15 4.09 

. 

. 

. 
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; 

proc reg data=truckRS; 

model cost=capacity speed distance cycle / clb cli r p ss1 ss2; 

run; 

proc reg data=truckRS outest=Table_Model; 

model cost=capacity speed distance cycle / best=4 selection=cp; 

model cost=capacity speed distance cycle / best=4 selection=aic; 

run; 

proc print data=Table_Model; 

run; 

proc reg data=truckRS; 

model cost=capacity speed distance cycle / selection=stepwise details slstay=0.05 

slentry=0.05; 

run; 

proc reg data=truckRS; 

model cost=capacity speed distance cycle / selection=backward details slstay=0.05; 

run; 

proc reg data=truckRS; 

model cost=capacity speed distance cycle / selection=forward details slentry=0.05; 

run; 

proc corr data=truckRS plots=matrix; 

var cost capacity speed distance cycle; 

title 'truck RS correlation matrix'; 

run; 
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Appendix J 

Visual Basic coding for E3 model user’s interface 

 

BULLDOZER 

 
Private Sub cmdclose_Click() 

    Unload Me 

End Sub 

 

Private Sub cmdReset_Click() 

    For Each ctl In Me.Controls 

        If TypeName(ctl) = "TextBox" Or TypeName(ctl) = "ComboBox" Then 

            ctl.Value = "" 

        End If 

    Next ctl 

End Sub 

 

Private Sub cmdstart_Click() 

Dim RowCount As Long 

Dim ctl As Control 

    If Me.Dozmodelyear.Value = "" Then 

            MsgBox "Please enter Dozer Model Year.", vbExclamation, "Missing Input" 

        Me.Dozmodelyear.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.Dozmodelyear.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.Dozmodelyear.SetFocus 

            Exit Sub 

    End If 

    If Me.horsepower.Value = "" Then 

            MsgBox "Please enter Dozer Horsepower.", vbExclamation, "Missing Input" 

        Me.horsepower.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.horsepower.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.horsepower.SetFocus 

            Exit Sub 

    End If 

     

    If Me.Dozmodelyear.Value > 0 Then 

        Me.dozlf.Value = 0.59 

        Me.dozact.Value = 936 

    End If 

     

    If Me.horsepower.Value > 300 Then 

        Me.dozmed.Value = 7000 

    End If 

    If Me.horsepower.Value <= 300 Then 

        Me.dozmed.Value = 4667 

    End If 

     

To the rest of Tier Level determination 

. 

. 

. 

    End If 

     

    If Me.doztier.Value = "0" Then 

        Me.dozAhc.Value = 0.047 

        Me.dozAco.Value = 0.185 

        Me.dozAnox.Value = 0.024 

        Me.dozApm.Value = 0.473 

        Me.dozThc.Value = 1.05 

        Me.dozTco.Value = 1.53 

        Me.dozTnox.Value = 0.95 
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        Me.dozTpm.Value = 1.23 

        Me.dozTbsfc.Value = 1.01 

    End If 

 

To the rest of deterioration factor, transient adjustment factor, and steady-state 

emission factor for each pollutant 

. 

. 

. 

    End If 

     

    If Me.distance.Value = "" Then 

            MsgBox "Please enter Hauling Distance.", vbExclamation, "Missing Input" 

        Me.distance.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.distance.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.distance.SetFocus 

            Exit Sub 

    End If 

    If Me.distance.Value > 300 Then 

            MsgBox "inappropriate distance!", vbExclamation, "Out of Range" 

        Me.distance.SetFocus 

        Exit Sub 

    End If 

    If Me.soiltype.Value = "" Then 

            MsgBox "Please select Soil Type.", vbExclamation, "Missing Input" 

        Me.soiltype.SetFocus 

        Exit Sub 

    End If 

    If Me.soilquantity.Value = "" Then 

            MsgBox "Please enter Soil Quantity.", vbExclamation, "Missing Input" 

        Me.soilquantity.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.soilquantity.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.soilquantity.SetFocus 

            Exit Sub 

    End If 

    If Me.soiltype.Value = "Sand and Gravel" Then 

        Me.productivity.Value = Round((2.14 + (0.0015 * CDbl(Me.horsepower.Value)) - 

(0.0025 * CDbl(Me.distance.Value)) + (0.279 * 1)) ^ 5, 2) 

        Me.unitcost.Value = Round(Exp(1.19 - (0.00085 * CDbl(Me.horsepower.Value)) + 

(0.0053 * CDbl(Me.distance.Value)) - (0.595 * 1)), 2) 

    End If 

    If Me.soiltype.Value = "Sandy Clay and Loam" Then 

        Me.productivity.Value = Round((2.14 + (0.0015 * CDbl(Me.horsepower.Value)) - 

(0.0025 * CDbl(Me.distance.Value)) + (0.261 * 1)) ^ 5, 2) 

        Me.unitcost.Value = Round(Exp(1.19 - (0.00085 * CDbl(Me.horsepower.Value)) + 

(0.0053 * CDbl(Me.distance.Value)) - (0.567 * 1)), 2) 

    End If 

    If Me.soiltype.Value = "Common Earth" Then 

        Me.productivity.Value = Round((2.14 + (0.0015 * CDbl(Me.horsepower.Value)) - 

(0.0025 * CDbl(Me.distance.Value)) + (0.206 * 1)) ^ 5, 2) 

        Me.unitcost.Value = Round(Exp(1.19 - (0.00085 * CDbl(Me.horsepower.Value)) + 

(0.0053 * CDbl(Me.distance.Value)) - (0.453 * 1)), 2) 

    End If 

    If Me.soiltype.Value = "Clay" Then 

        Me.productivity.Value = Round((2.14 + (0.0015 * CDbl(Me.horsepower.Value)) - 

(0.0025 * CDbl(Me.distance.Value)) + (0 * 1)) ^ 5, 2) 

        Me.unitcost.Value = Round(Exp(1.19 - (0.00085 * CDbl(Me.horsepower.Value)) + 

(0.0053 * CDbl(Me.distance.Value)) - (0 * 1)), 2) 

    End If 

    Me.duration.Value = Round(CDbl(Me.soilquantity.Value) / CDbl(Me.productivity.Value), 

2) 

    Me.totalcost.Value = Round(CDbl(Me.soilquantity.Value) * CDbl(Me.unitcost.Value), 2) 

    Me.fuel.Value = Round(CDbl(Me.dozEbsfc.Value) * CDbl(Me.dozTbsfc.Value) * 0.12 * 

CDbl(Me.horsepower.Value) * CDbl(Me.duration.Value), 2) 

    Me.emission.Value = Round((10.15 * CDbl(Me.fuel.Value)) / 1000, 2) 
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    Me.dozHC.Value = Round((1 + (CDbl(Me.dozAhc.Value) * (2012 - 

CDbl(Me.Dozmodelyear.Value) + 1) / CDbl(Me.dozmed.Value))) * CDbl(Me.dozEhc.Value) * 

CDbl(Me.dozThc.Value) * CDbl(Me.horsepower.Value) * CDbl(Me.duration.Value), 2) 

    Me.dozCO.Value = Round((1 + (CDbl(Me.dozAco.Value) * (2012 - 

CDbl(Me.Dozmodelyear.Value) + 1) / CDbl(Me.dozmed.Value))) * CDbl(Me.dozEco.Value) * 

CDbl(Me.dozTco.Value) * CDbl(Me.horsepower.Value) * CDbl(Me.duration.Value), 2) 

    Me.dozNOX.Value = Round((1 + (CDbl(Me.dozAnox.Value) * (2012 - 

CDbl(Me.Dozmodelyear.Value) + 1) / CDbl(Me.dozmed.Value))) * CDbl(Me.dozEnox.Value) * 

CDbl(Me.dozTnox.Value) * CDbl(Me.horsepower.Value) * CDbl(Me.duration.Value), 2) 

    Me.dozPM.Value = Round((((1 + (CDbl(Me.dozApm.Value) * (2012 - 

CDbl(Me.Dozmodelyear.Value) + 1) / CDbl(Me.dozmed.Value))) * CDbl(Me.dozEpm.Value) * 

CDbl(Me.dozTpm.Value)) - ((CDbl(Me.dozEbsfc.Value) * CDbl(Me.dozTbsfc.Value)) * 453.6 * 7 

* 0.02247 * 0.01 * 0.08)) * CDbl(Me.horsepower.Value) * CDbl(Me.duration.Value), 2) 

    Me.dozSO2.Value = Round((((CDbl(Me.dozEbsfc.Value) * CDbl(Me.dozTbsfc.Value)) * 453 * 

(1 - 0.02247)) - CDbl(Me.dozEhc.Value)) * 0.01 * 0.25 * 2 * CDbl(Me.horsepower.Value) * 

CDbl(Me.duration.Value), 2) 

    RowCount = Worksheets("Bulldozer").range("A1").CurrentRegion.Rows.Count 

    With Worksheets("Bulldozer").range("A1") 

        .Offset(RowCount, 0).Value = Me.horsepower.Value 

        .Offset(RowCount, 1).Value = Me.Dozmodelyear.Value 

        .Offset(RowCount, 2).Value = Me.doztier.Value 

        .Offset(RowCount, 3).Value = Me.distance.Value 

        .Offset(RowCount, 4).Value = Me.soiltype.Value 

        .Offset(RowCount, 5).Value = Me.soilquantity.Value 

        .Offset(RowCount, 6).Value = Me.productivity.Value 

        .Offset(RowCount, 7).Value = Me.unitcost.Value 

        .Offset(RowCount, 8).Value = Me.duration.Value 

        .Offset(RowCount, 9).Value = Me.totalcost.Value 

        .Offset(RowCount, 10).Value = Me.fuel.Value 

        .Offset(RowCount, 11).Value = Me.dozHC.Value 

        .Offset(RowCount, 12).Value = Me.dozCO.Value 

        .Offset(RowCount, 13).Value = Me.dozNOX.Value 

        .Offset(RowCount, 14).Value = Me.dozPM.Value 

        .Offset(RowCount, 15).Value = Me.emission.Value 

        .Offset(RowCount, 16).Value = Me.dozSO2.Value 

    End With 

End Sub 

 

Private Sub CloseButton_Click() 

    Unload Me 

End Sub 

 

 
Figure J.1. E3 user’s interface for bulldozer 

 

SCRAPER 

 
Private Sub ResetButton_Click() 

    For Each ctl In Me.Controls 

        If TypeName(ctl) = "TextBox" Or TypeName(ctl) = "ComboBox" Then 

            ctl.Value = "" 
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        End If 

    Next ctl 

End Sub 

 

Private Sub StartButton_Click() 

Dim RowCount As Long 

Dim ctl As Control 

    If Me.Scramodelyear.Value = "" Then 

            MsgBox "Please enter Scraper Model Year.", vbExclamation, "Missing Input" 

        Me.Scramodelyear.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.Scramodelyear.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.Scramodelyear.SetFocus 

            Exit Sub 

    End If 

    If Me.boxhp.Value = "" Then 

            MsgBox "Please enter Scraper Horsepower.", vbExclamation, "Missing Input" 

        Me.boxhp.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.boxhp.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.boxhp.SetFocus 

            Exit Sub 

    End If 

     

    If Me.Scramodelyear.Value > 0 Then 

        Me.scralf.Value = 0.59 

        Me.scraact.Value = 914 

    End If 

     

    If Me.boxhp.Value > 300 Then 

        Me.scramed.Value = 7000 

    End If 

    If Me.boxhp.Value <= 300 Then 

        Me.scramed.Value = 4667 

    End If 

     

    If Me.boxhp.Value < 50 Then 

        If Me.Scramodelyear.Value < 1999 Then 

            Me.scratier.Value = "0" 

        End If 

    End If 

    If Me.boxhp.Value < 50 Then 

        If Me.Scramodelyear.Value >= 1999 Then 

            If Me.Scramodelyear.Value < 2004 Then 

                Me.scratier.Value = "1" 

            End If 

        End If 

    End If 

 

To the rest of Tier Level determination 

. 

. 

. 

     

    If Me.scratier.Value = "0" Then 

        Me.scraAhc.Value = 0.047 

        Me.scraAco.Value = 0.185 

        Me.scraAnox.Value = 0.024 

        Me.scraApm.Value = 0.473 

        Me.scraThc.Value = 1.05 

        Me.scraTco.Value = 1.53 

        Me.scraTnox.Value = 0.95 

        Me.scraTpm.Value = 1.23 

        Me.scraTbsfc.Value = 1.01 

    End If 

    If Me.scratier.Value = "1" Then 

        Me.scraAhc.Value = 0.036 
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        Me.scraAco.Value = 0.101 

        Me.scraAnox.Value = 0.024 

        Me.scraApm.Value = 0.473 

        Me.scraThc.Value = 1.05 

        Me.scraTco.Value = 1.53 

        Me.scraTnox.Value = 0.95 

        Me.scraTpm.Value = 1.23 

        Me.scraTbsfc.Value = 1.01 

    End If 

 

To the rest of deterioration factor, transient adjustment factor, and steady-state 

emission factor for each pollutant 

 

. 

. 

. 

    End If 

     

    If Me.boxexcav.Value = "" Then 

            MsgBox "Please select Excavation Type.", vbExclamation, "Missing Input" 

        Me.boxexcav.SetFocus 

        Exit Sub 

    End If 

    If Me.boxsoil.Value = "" Then 

            MsgBox "Please select Soil Type.", vbExclamation, "Missing Input" 

        Me.boxsoil.SetFocus 

        Exit Sub 

    End If 

    If Me.boxdist.Value = "" Then 

            MsgBox "Please enter Distance.", vbExclamation, "Missing Input" 

        Me.boxdist.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.boxdist.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.boxdist.SetFocus 

            Exit Sub 

    End If 

    If Me.boxdist.Value > 5000 Then 

            MsgBox "inappropriate distance!", vbExclamation, "Out of Range" 

        Me.boxdist.SetFocus 

        Exit Sub 

    End If 

    If Me.boxbucket.Value = "" Then 

            MsgBox "Please enter Bucket Volume.", vbExclamation, "Missing Input" 

        Me.boxbucket.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.boxbucket.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.boxbucket.SetFocus 

            Exit Sub 

    End If 

    If Me.boxbucket.Value > 21 Then 

            MsgBox "inappropriate bucket volume!", vbExclamation, "Out of Range" 

        Me.boxbucket.SetFocus 

        Exit Sub 

    End If 

    If Me.boxsoilqua.Value = "" Then 

            MsgBox "Please enter Soil Quantity.", vbExclamation, "Missing Input" 

        Me.boxsoilqua.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.boxsoilqua.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.boxsoilqua.SetFocus 

            Exit Sub 

    End If 

    If Me.boxexcav.Value = "Elevated Scrapper" Then 

        If Me.boxsoil.Value = "Sand and Gravel" Then 
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            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.06844 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.24427 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.15182 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.24407 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Elevated Scrapper" Then 

        If Me.boxsoil.Value = "Common Earth" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.06844 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.17427 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.15182 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.1746 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Elevated Scrapper" Then 

        If Me.boxsoil.Value = "Sandy Clay and Loam" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.06844 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.2092 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.15182 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.20927 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Elevated Scrapper" Then 

        If Me.boxsoil.Value = "Clay" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.06844 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.15182 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Self-propelled Scrapper" Then 

        If Me.boxsoil.Value = "Sand and Gravel" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.1123 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.24427 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.11694 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.24407 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Self-propelled Scrapper" Then 

        If Me.boxsoil.Value = "Common Earth" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.1123 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.17427 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.11694 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.1746 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Self-propelled Scrapper" Then 

        If Me.boxsoil.Value = "Sandy Clay and Loam" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.1123 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.2092 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.11694 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.20927 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Self-propelled Scrapper" Then 

        If Me.boxsoil.Value = "Clay" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0.1123 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0.11694 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Towed" Then 

        If Me.boxsoil.Value = "Sand and Gravel" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.24427 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.24407 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Towed" Then 
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        If Me.boxsoil.Value = "Common Earth" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.17427 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.1746 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Towed" Then 

        If Me.boxsoil.Value = "Sandy Clay and Loam" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0.2092 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0.20927 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    If Me.boxexcav.Value = "Towed" Then 

        If Me.boxsoil.Value = "Clay" Then 

            Me.boxprod.Value = Round(10 ^ (1.5124 + (0 * 1) + (0.01724 * 

CDbl(Me.boxbucket.Value)) + (0 * 1) - (0.00004519 * CDbl(Me.boxdist.Value))), 2) 

            Me.boxunitcost.Value = Round(10 ^ (1.00358 - (0 * 1) - (0.01021 * 

CDbl(Me.boxbucket.Value)) - (0 * 1) + (0.00004525 * CDbl(Me.boxdist.Value))), 2) 

        End If 

    End If 

    Me.boxduration.Value = Round(CDbl(Me.boxsoilqua.Value) / CDbl(Me.boxprod.Value), 2) 

    Me.boxtotalcost.Value = Round(CDbl(Me.boxsoilqua.Value) * CDbl(Me.boxunitcost.Value), 

2) 

    Me.boxfuel.Value = Round(CDbl(Me.scraEbsfc.Value) * CDbl(Me.scraTbsfc.Value) * 0.12 * 

CDbl(Me.boxhp.Value) * CDbl(Me.boxduration.Value), 2) 

    Me.boxco2.Value = Round((10.15 * CDbl(Me.boxfuel.Value)) / 1000, 2) 

    Me.scraHC.Value = Round((1 + (CDbl(Me.scraAhc.Value) * (2012 - 

CDbl(Me.Scramodelyear.Value) + 1) / CDbl(Me.scramed.Value))) * CDbl(Me.scraEhc.Value) * 

CDbl(Me.scraThc.Value) * CDbl(Me.boxhp.Value) * CDbl(Me.boxduration.Value), 2) 

    Me.scraCO.Value = Round((1 + (CDbl(Me.scraAco.Value) * (2012 - 

CDbl(Me.Scramodelyear.Value) + 1) / CDbl(Me.scramed.Value))) * CDbl(Me.scraEco.Value) * 

CDbl(Me.scraTco.Value) * CDbl(Me.boxhp.Value) * CDbl(Me.boxduration.Value), 2) 

    Me.scraNOX.Value = Round((1 + (CDbl(Me.scraAnox.Value) * (2012 - 

CDbl(Me.Scramodelyear.Value) + 1) / CDbl(Me.scramed.Value))) * CDbl(Me.scraEnox.Value) * 

CDbl(Me.scraTnox.Value) * CDbl(Me.boxhp.Value) * CDbl(Me.boxduration.Value), 2) 

    Me.scraPM.Value = Round((((1 + (CDbl(Me.scraApm.Value) * (2012 - 

CDbl(Me.Scramodelyear.Value) + 1) / CDbl(Me.scramed.Value))) * CDbl(Me.scraEpm.Value) * 

CDbl(Me.scraTpm.Value)) - ((CDbl(Me.scraEbsfc.Value) * CDbl(Me.scraTbsfc.Value)) * 453.6 

* 7 * 0.02247 * 0.01 * 0.08)) * CDbl(Me.boxhp.Value) * CDbl(Me.boxduration.Value), 2) 

    Me.scraSO2.Value = Round((((CDbl(Me.scraEbsfc.Value) * CDbl(Me.scraTbsfc.Value)) * 

453 * (1 - 0.02247)) - CDbl(Me.scraEhc.Value)) * 0.01 * 0.25 * 2 * CDbl(Me.boxhp.Value) * 

CDbl(Me.boxduration.Value), 2) 

    RowCount = Worksheets("Scraper").range("A1").CurrentRegion.Rows.Count 

    With Worksheets("Scraper").range("A1") 

        .Offset(RowCount, 0).Value = Me.boxhp.Value 

        .Offset(RowCount, 1).Value = Me.Scramodelyear.Value 

        .Offset(RowCount, 2).Value = Me.scratier.Value 

        .Offset(RowCount, 3).Value = Me.boxexcav.Value 

        .Offset(RowCount, 4).Value = Me.boxsoil.Value 

        .Offset(RowCount, 5).Value = Me.boxdist.Value 

        .Offset(RowCount, 6).Value = Me.boxbucket.Value 

        .Offset(RowCount, 7).Value = Me.boxsoilqua.Value 

        .Offset(RowCount, 8).Value = Me.boxprod.Value 

        .Offset(RowCount, 9).Value = Me.boxunitcost.Value 

        .Offset(RowCount, 10).Value = Me.boxduration.Value 

        .Offset(RowCount, 11).Value = Me.boxtotalcost.Value 

        .Offset(RowCount, 12).Value = Me.boxfuel.Value 

        .Offset(RowCount, 13).Value = Me.scraHC.Value 

        .Offset(RowCount, 14).Value = Me.scraCO.Value 

        .Offset(RowCount, 15).Value = Me.scraNOX.Value 

        .Offset(RowCount, 16).Value = Me.scraPM.Value 

        .Offset(RowCount, 17).Value = Me.boxco2.Value 

        .Offset(RowCount, 18).Value = Me.scraSO2.Value 

    End With 

End Sub 

Private Sub tclose_Click() 

    Unload Me 

End Sub 
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Figure J.2. E3 user’s interface for scraper 

 

EXCAVATOR 

 
Private Sub treset_Click() 

    For Each ctl In Me.Controls 

        If TypeName(ctl) = "TextBox" Or TypeName(ctl) = "ComboBox" Then 

            ctl.Value = "" 

        End If 

    Next ctl 

End Sub 

 

Private Sub tstart_Click() 

Dim RowCount As Long 

Dim ctl As Control 

    If Me.Tremodelyear.Value = "" Then 

            MsgBox "Please enter excavator Model Year.", vbExclamation, "Missing Input" 

        Me.Tremodelyear.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.Tremodelyear.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.Tremodelyear.SetFocus 

            Exit Sub 

    End If 

    If Me.thp.Value = "" Then 

            MsgBox "Please enter excavator Horsepower.", vbExclamation, "Missing Input" 

        Me.thp.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.thp.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.thp.SetFocus 

            Exit Sub 

    End If 

     

    If Me.Tremodelyear.Value > 0 Then 

        Me.trelf.Value = 0.59 

        Me.treact.Value = 1092 

    End If 

     

    If Me.thp.Value > 300 Then 

        Me.tremed.Value = 7000 

    End If 

    If Me.thp.Value <= 300 Then 

        Me.tremed.Value = 4667 

    End If 
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To the rest of Tier Level determination 

. 

. 

. 

 

End If 

     

    If Me.tretier.Value = "0" Then 

        Me.treAhc.Value = 0.047 

        Me.treAco.Value = 0.185 

        Me.treAnox.Value = 0.024 

        Me.treApm.Value = 0.473 

        Me.treThc.Value = 1.05 

        Me.treTco.Value = 1.53 

        Me.treTnox.Value = 0.95 

        Me.treTpm.Value = 1.23 

        Me.treTbsfc.Value = 1.01 

    End If 

 

To the rest of deterioration factor, transient adjustment factor, and steady-state 

emission factor for each pollutant 

 

. 

. 

. 

 

End If 

     

    If Me.tsoil.Value = "" Then 

            MsgBox "Please select Soil Type.", vbExclamation, "Missing Input" 

        Me.tsoil.SetFocus 

        Exit Sub 

    End If 

    If Me.tdepth.Value = "" Then 

            MsgBox "Please enter Trench Depth.", vbExclamation, "Missing Input" 

        Me.tdepth.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.tdepth.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.tdepth.SetFocus 

            Exit Sub 

    End If 

    If Me.tdepth.Value > 24 Then 

            MsgBox "inappropriate depth!", vbExclamation, "Out of Range" 

        Me.tdepth.SetFocus 

        Exit Sub 

    End If 

    If Me.tlength.Value = "" Then 

            MsgBox "Please enter Trench Length.", vbExclamation, "Missing Input" 

        Me.tlength.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.tlength.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.tlength.SetFocus 

            Exit Sub 

    End If 

    If Me.twidth.Value = "" Then 

            MsgBox "Please enter Trench Width.", vbExclamation, "Missing Input" 

        Me.twidth.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.twidth.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.twidth.SetFocus 

            Exit Sub 

    End If 

    If Me.texcav.Value = "" Then 

            MsgBox "Please select Excavation Type.", vbExclamation, "Missing Input" 

        Me.texcav.SetFocus 
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        Exit Sub 

    End If 

    If Me.tbucket.Value = "" Then 

            MsgBox "Please enter Bucket Volume.", vbExclamation, "Missing Input" 

        Me.tbucket.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.tbucket.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.tbucket.SetFocus 

            Exit Sub 

    End If 

    If Me.tbucket.Value > 3.5 Then 

            MsgBox "inappropriate bucket volume!", vbExclamation, "Out of Range" 

        Me.tbucket.SetFocus 

        Exit Sub 

    End If 

    If Me.thp.Value = "" Then 

            MsgBox "Please enter Engine Horsepower.", vbExclamation, "Missing Input" 

        Me.thp.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.thp.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.thp.SetFocus 

            Exit Sub 

    End If 

    If Me.texcav.Value = "Excavator" Then 

        If Me.tsoil.Value = "Common Earth" Then 

            Me.tprod.Value = Round(-3.9467 + 8.46539 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)) + 3.31699, 2) 

            Me.tunitcost.Value = Round(8.2689 - 0.64735 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)) - 0.56754, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator" Then 

        If Me.tsoil.Value = "Loam and Sandy Clay" Then 

            Me.tprod.Value = Round(-3.9467 + 14.90685 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)) + 3.31699, 2) 

            Me.tunitcost.Value = Round(8.2689 - 1.04899 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)) - 0.56754, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator" Then 

        If Me.tsoil.Value = "Sand and Gravel" Then 

            Me.tprod.Value = Round(-3.9467 + 16.41176 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)) + 3.31699, 2) 

            Me.tunitcost.Value = Round(8.2689 - 1.13299 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)) - 0.56754, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator" Then 

        If Me.tsoil.Value = "Dense Hard Clay" Then 

            Me.tprod.Value = Round(-3.9467 - (2.06932 * CDbl(Me.tdepth.Value)) + 

(55.13072 * CDbl(Me.tbucket.Value)) + 3.31699, 2) 

            Me.tunitcost.Value = Round(8.2689 + (0.04504 * CDbl(Me.tdepth.Value)) - 

(1.65841 * CDbl(Me.tbucket.Value)) - 0.56754, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, truck mounted" Then 

        If Me.tsoil.Value = "Common Earth" Then 

            Me.tprod.Value = Round(-3.9467 + 8.46539 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)) + 4.16554, 2) 

            Me.tunitcost.Value = Round(8.2689 - 0.64735 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)) + 0.42075, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, truck mounted" Then 

        If Me.tsoil.Value = "Loam and Sandy Clay" Then 

            Me.tprod.Value = Round(-3.9467 + 14.90685 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)) + 4.16554, 2) 
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            Me.tunitcost.Value = Round(8.2689 - 1.04899 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)) + 0.42075, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, truck mounted" Then 

        If Me.tsoil.Value = "Sand and Gravel" Then 

            Me.tprod.Value = Round(-3.9467 + 16.41176 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)) + 4.16554, 2) 

            Me.tunitcost.Value = Round(8.2689 - 1.13299 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)) + 0.42075, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, truck mounted" Then 

        If Me.tsoil.Value = "Dense Hard Clay" Then 

            Me.tprod.Value = Round(-3.9467 - (2.06932 * CDbl(Me.tdepth.Value)) + 

(55.13072 * CDbl(Me.tbucket.Value)) + 4.16554, 2) 

            Me.tunitcost.Value = Round(8.2689 + (0.04504 * CDbl(Me.tdepth.Value)) - 

(1.65841 * CDbl(Me.tbucket.Value)) + 0.42075, 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, with trench box" Then 

        If Me.tsoil.Value = "Common Earth" Then 

            Me.tprod.Value = Round(-3.9467 + 8.46539 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)), 2) 

            Me.tunitcost.Value = Round(8.2689 - 0.64735 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)), 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, with trench box" Then 

        If Me.tsoil.Value = "Loam and Sandy Clay" Then 

            Me.tprod.Value = Round(-3.9467 + 14.90685 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)), 2) 

            Me.tunitcost.Value = Round(8.2689 - 1.04899 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)), 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, with trench box" Then 

        If Me.tsoil.Value = "Sand and Gravel" Then 

            Me.tprod.Value = Round(-3.9467 + 16.41176 - (2.06932 * CDbl(Me.tdepth.Value)) 

+ (55.13072 * CDbl(Me.tbucket.Value)), 2) 

            Me.tunitcost.Value = Round(8.2689 - 1.13299 + (0.04504 * 

CDbl(Me.tdepth.Value)) - (1.65841 * CDbl(Me.tbucket.Value)), 2) 

        End If 

    End If 

    If Me.texcav.Value = "Excavator, with trench box" Then 

        If Me.tsoil.Value = "Dense Hard Clay" Then 

            Me.tprod.Value = Round(-3.9467 - (2.06932 * CDbl(Me.tdepth.Value)) + 

(55.13072 * CDbl(Me.tbucket.Value)), 2) 

            Me.tunitcost.Value = Round(8.2689 + (0.04504 * CDbl(Me.tdepth.Value)) - 

(1.65841 * CDbl(Me.tbucket.Value)), 2) 

        End If 

    End If 

    Me.tduration.Value = Round((0.037 * CDbl(Me.tlength.Value * Me.twidth.Value * 

Me.tdepth.Value)) / CDbl(Me.tprod.Value), 2) 

    Me.ttotalcost.Value = Round((0.037 * CDbl(Me.tlength.Value * Me.twidth.Value * 

Me.tdepth.Value)) * CDbl(Me.tunitcost.Value), 2) 

    Me.tfuel.Value = Round(CDbl(Me.treEbsfc.Value) * CDbl(Me.treTbsfc.Value) * 0.12 * 

CDbl(Me.thp.Value) * CDbl(Me.tduration.Value), 2) 

    Me.tco2.Value = Round((10.15 * CDbl(Me.tfuel.Value)) / 1000, 2) 

    Me.treHC.Value = Round((1 + (CDbl(Me.treAhc.Value) * (2012 - 

CDbl(Me.Tremodelyear.Value) + 1) / CDbl(Me.tremed.Value))) * CDbl(Me.treEhc.Value) * 

CDbl(Me.treThc.Value) * CDbl(Me.thp.Value) * CDbl(Me.tduration.Value), 2) 

    Me.treCO.Value = Round((1 + (CDbl(Me.treAco.Value) * (2012 - 

CDbl(Me.Tremodelyear.Value) + 1) / CDbl(Me.tremed.Value))) * CDbl(Me.treEco.Value) * 

CDbl(Me.treTco.Value) * CDbl(Me.thp.Value) * CDbl(Me.tduration.Value), 2) 

    Me.treNOx.Value = Round((1 + (CDbl(Me.treAnox.Value) * (2012 - 

CDbl(Me.Tremodelyear.Value) + 1) / CDbl(Me.tremed.Value))) * CDbl(Me.treEnox.Value) * 

CDbl(Me.treTnox.Value) * CDbl(Me.thp.Value) * CDbl(Me.tduration.Value), 2) 

    Me.trePM.Value = Round((((1 + (CDbl(Me.treApm.Value) * (2012 - 

CDbl(Me.Tremodelyear.Value) + 1) / CDbl(Me.tremed.Value))) * CDbl(Me.treEpm.Value) * 
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CDbl(Me.treTpm.Value)) - ((CDbl(Me.treEbsfc.Value) * CDbl(Me.treTbsfc.Value)) * 453.6 * 7 

* 0.02247 * 0.01 * 0.08)) * CDbl(Me.thp.Value) * CDbl(Me.tduration.Value), 2) 

    Me.treSO2.Value = Round((((CDbl(Me.treEbsfc.Value) * CDbl(Me.treTbsfc.Value)) * 453 * 

(1 - 0.02247)) - CDbl(Me.treEhc.Value)) * 0.01 * 0.25 * 2 * CDbl(Me.thp.Value) * 

CDbl(Me.tduration.Value), 2) 

    RowCount = Worksheets("Excavator").range("A1").CurrentRegion.Rows.Count 

    With Worksheets("Excavator").range("A1") 

        .Offset(RowCount, 0).Value = Me.thp.Value 

        .Offset(RowCount, 1).Value = Me.Tremodelyear.Value 

        .Offset(RowCount, 2).Value = Me.tretier.Value 

        .Offset(RowCount, 3).Value = Me.tsoil.Value 

        .Offset(RowCount, 4).Value = Me.tdepth.Value 

        .Offset(RowCount, 5).Value = Me.tlength.Value 

        .Offset(RowCount, 6).Value = Me.twidth.Value 

        .Offset(RowCount, 7).Value = Me.texcav.Value 

        .Offset(RowCount, 8).Value = Me.tbucket.Value 

        .Offset(RowCount, 9).Value = Me.tprod.Value 

        .Offset(RowCount, 10).Value = Me.tunitcost.Value 

        .Offset(RowCount, 11).Value = Me.tduration.Value 

        .Offset(RowCount, 12).Value = Me.ttotalcost.Value 

        .Offset(RowCount, 13).Value = Me.tfuel.Value 

        .Offset(RowCount, 14).Value = Me.treHC.Value 

        .Offset(RowCount, 15).Value = Me.treCO.Value 

        .Offset(RowCount, 16).Value = Me.treNOx.Value 

        .Offset(RowCount, 17).Value = Me.trePM.Value 

        .Offset(RowCount, 18).Value = Me.tco2.Value 

        .Offset(RowCount, 19).Value = Me.treSO2.Value 

    End With 

End Sub 

 

 

Figure J.3. E3 user’s interface for excavator 

 

 

TRUCK 

 
Private Sub truReset_Click() 
    For Each ctl In Me.Controls 

        If TypeName(ctl) = "TextBox" Or TypeName(ctl) = "ComboBox" Then 

            ctl.Value = "" 

        End If 

    Next ctl 

End Sub 

 

Private Sub trustart_Click() 

Dim RowCount As Long 

Dim ctl As Control 

    If Me.truhp.Value = "" Then 

            MsgBox "Please enter truck Horsepower.", vbExclamation, "Missing Input" 

        Me.truhp.SetFocus 

        Exit Sub 
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    End If 

    If Not IsNumeric(Me.truhp.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.truhp.SetFocus 

            Exit Sub 

    End If 

    If Me.trumodelyear.Value = "" Then 

            MsgBox "Please enter truck Model Year.", vbExclamation, "Missing Input" 

        Me.trumodelyear.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.trumodelyear.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.trumodelyear.SetFocus 

            Exit Sub 

    End If 

     

    If Me.trumodelyear.Value > 0 Then 

        Me.trulf.Value = 0.59 

        Me.truact.Value = 1641 

    End If 

     

    If Me.truhp.Value > 300 Then 

        Me.trumed.Value = 7000 

    End If 

    If Me.truhp.Value <= 300 Then 

        Me.trumed.Value = 4667 

    End If 

 

To the rest of Tier Level determination 

. 

. 

. 

 

 

End If 

     

    If Me.trutier.Value = "0" Then 

        Me.truAhc.Value = 0.047 

        Me.truAco.Value = 0.185 

        Me.truAnox.Value = 0.024 

        Me.truApm.Value = 0.473 

        Me.truThc.Value = 1.05 

        Me.truTco.Value = 1.53 

        Me.truTnox.Value = 0.95 

        Me.truTpm.Value = 1.23 

        Me.truTbsfc.Value = 1.01 

    End If 

 

To the rest of deterioration factor, transient adjustment factor, and steady-state 

emission factor for each pollutant 

 

. 

. 

. 

 

 

End If 

     

    If Me.trucap.Value = "" Then 

            MsgBox "Please enter truck capacity.", vbExclamation, "Missing Input" 

        Me.trucap.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.trucap.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.trucap.SetFocus 

            Exit Sub 

    End If 

    If Me.trucap.Value < 20 Then 

            MsgBox "inappropriate capacity!", vbExclamation, "Out of Range" 
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        Me.trucap.SetFocus 

        Exit Sub 

    End If 

    If Me.trucap.Value > 60 Then 

            MsgBox "inappropriate capacity!", vbExclamation, "Out of Range" 

        Me.trucap.SetFocus 

        Exit Sub 

    End If 

    If Me.truspeed.Value = "" Then 

            MsgBox "Please enter truck speed.", vbExclamation, "Missing Input" 

        Me.truspeed.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.truspeed.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.truspeed.SetFocus 

            Exit Sub 

    End If 

    If Me.truspeed.Value < 5 Then 

            MsgBox "inappropriate speed!", vbExclamation, "Out of Range" 

        Me.truspeed.SetFocus 

        Exit Sub 

    End If 

    If Me.truspeed.Value > 25 Then 

            MsgBox "inappropriate speed!", vbExclamation, "Out of Range" 

        Me.truspeed.SetFocus 

        Exit Sub 

    End If 

    If Me.trudist.Value = "" Then 

            MsgBox "Please enter hauling distance", vbExclamation, "Missing Input" 

        Me.trudist.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.trudist.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.trudist.SetFocus 

            Exit Sub 

    End If 

    If Me.trudist.Value < 0 Then 

            MsgBox "inappropriate distance!", vbExclamation, "Out of Range" 

        Me.trudist.SetFocus 

        Exit Sub 

    End If 

    If Me.trudist.Value > 4 Then 

            MsgBox "inappropriate distance!", vbExclamation, "Out of Range" 

        Me.trudist.SetFocus 

        Exit Sub 

    End If 

    If Me.trutime.Value = "" Then 

            MsgBox "Please enter wait-dump time.", vbExclamation, "Missing Input" 

        Me.trutime.SetFocus 

        Exit Sub 

    End If 

    If Not IsNumeric(Me.trutime.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.trutime.SetFocus 

            Exit Sub 

    End If 

    If Me.trutime.Value < 0 Then 

            MsgBox "inappropriate time!", vbExclamation, "Out of Range" 

        Me.trutime.SetFocus 

        Exit Sub 

    End If 

    If Me.trutime.Value > 25 Then 

            MsgBox "inappropriate time!", vbExclamation, "Out of Range" 

        Me.trutime.SetFocus 

        Exit Sub 

    End If 

    If Me.trusoil.Value = "" Then 

            MsgBox "Please enter Soil Quantity.", vbExclamation, "Missing Input" 

        Me.trusoil.SetFocus 
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        Exit Sub 

    End If 

    If Not IsNumeric(Me.trusoil.Value) Then 

            MsgBox "must be in number only.", vbExclamation, "Wrong Input" 

            Me.trusoil.SetFocus 

            Exit Sub 

    End If 

     

Me.truprod.Value = Round((58.799 + (2.07931 * CDbl(Me.trucap.Value)) + (1.62496 * 

CDbl(Me.truspeed.Value)) - (12.05623 * CDbl(Me.trudist.Value)) - (2.78874 * 

CDbl(Me.trutime.Value))), 2) 

Me.trucost.Value = Round((3.203 - (0.055 * CDbl(Me.trucap.Value)) - (0.098 * 

CDbl(Me.truspeed.Value)) + (0.709 * CDbl(Me.trudist.Value)) + (0.143 * 

CDbl(Me.trutime.Value))), 2) 

Me.trudur.Value = Round(CDbl(Me.trusoil.Value) / CDbl(Me.truprod.Value), 2) 

Me.trutotcost.Value = Round(CDbl(Me.trusoil.Value) * CDbl(Me.trucost.Value), 2) 

Me.trufuel.Value = Round(CDbl(Me.truEbsfc.Value) * CDbl(Me.truTbsfc.Value) * 0.12 * 

CDbl(Me.truhp.Value) * CDbl(Me.trudur.Value), 2) 

Me.truCO2.Value = Round((10.15 * CDbl(Me.trufuel.Value)) / 1000, 2) 

Me.truHC.Value = Round((1 + (CDbl(Me.truAhc.Value) * (2012 - CDbl(Me.trumodelyear.Value) 

+ 1) / CDbl(Me.trumed.Value))) * CDbl(Me.truEhc.Value) * CDbl(Me.truThc.Value) * 

CDbl(Me.truhp.Value) * CDbl(Me.trudur.Value), 2) 

Me.truCO.Value = Round((1 + (CDbl(Me.truAco.Value) * (2012 - CDbl(Me.trumodelyear.Value) 

+ 1) / CDbl(Me.trumed.Value))) * CDbl(Me.truEco.Value) * CDbl(Me.truTco.Value) * 

CDbl(Me.truhp.Value) * CDbl(Me.trudur.Value), 2) 

Me.truNOx.Value = Round((1 + (CDbl(Me.truAnox.Value) * (2012 - 

CDbl(Me.trumodelyear.Value) + 1) / CDbl(Me.trumed.Value))) * CDbl(Me.truEnox.Value) * 

CDbl(Me.truTnox.Value) * CDbl(Me.truhp.Value) * CDbl(Me.trudur.Value), 2) 

Me.truPM.Value = Round((((1 + (CDbl(Me.truApm.Value) * (2012 - 

CDbl(Me.trumodelyear.Value) + 1) / CDbl(Me.trumed.Value))) * CDbl(Me.truEpm.Value) * 

CDbl(Me.truTpm.Value)) - ((CDbl(Me.truEbsfc.Value) * CDbl(Me.truTbsfc.Value)) * 453.6 * 7 

* 0.02247 * 0.01 * 0.08)) * CDbl(Me.truhp.Value) * CDbl(Me.trudur.Value), 2) 

Me.truSO2.Value = Round((((CDbl(Me.truEbsfc.Value) * CDbl(Me.truTbsfc.Value)) * 453 * (1 

- 0.02247)) - CDbl(Me.truEhc.Value)) * 0.01 * 0.25 * 2 * CDbl(Me.truhp.Value) * 

CDbl(Me.trudur.Value), 2) 

RowCount = Worksheets("Truck").range("A1").CurrentRegion.Rows.Count 

    With Worksheets("Truck").range("A1") 

        .Offset(RowCount, 0).Value = Me.truhp.Value 

        .Offset(RowCount, 1).Value = Me.trumodelyear.Value 

        .Offset(RowCount, 2).Value = Me.trutier.Value 

        .Offset(RowCount, 3).Value = Me.trucap.Value 

        .Offset(RowCount, 4).Value = Me.truspeed.Value 

        .Offset(RowCount, 5).Value = Me.trudist.Value 

        .Offset(RowCount, 6).Value = Me.trutime.Value 

        .Offset(RowCount, 7).Value = Me.trusoil.Value 

        .Offset(RowCount, 8).Value = Me.truprod.Value 

        .Offset(RowCount, 9).Value = Me.trucost.Value 

        .Offset(RowCount, 10).Value = Me.trudur.Value 

        .Offset(RowCount, 11).Value = Me.trutotcost.Value 

        .Offset(RowCount, 12).Value = Me.trufuel.Value 

        .Offset(RowCount, 13).Value = Me.truHC.Value 

        .Offset(RowCount, 14).Value = Me.truCO.Value 

        .Offset(RowCount, 15).Value = Me.truNOx.Value 

        .Offset(RowCount, 16).Value = Me.truPM.Value 

        .Offset(RowCount, 17).Value = Me.truCO2.Value 

        .Offset(RowCount, 18).Value = Me.truSO2.Value 

    End With 

End Sub 
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Figure J.4. E3 user’s interface for truck
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