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Abstract: In roll-to-roll processes the presence of non-ideal elements, such us out-
of-round or eccentric rollers is fairly common. Periodic oscillations in web tension
and web velocity are observed because of the presence of such non-ideal elements.
Models of web transport on rollers based on the ideal behavior of various machine
elements are not able to reproduce these oscillations in model simulations but can
only follow the average of the measured tension and velocity signals. In order
to reproduce the tension oscillations the models have to be modified to include
the mechanism that creates the oscillations. The first part of this dissertation
discusses the necessary modification of the governing equations of web velocity
and web tension in the presence of an eccentric roller and an out-of-round roll. It
was found that two aspects need to be included in the model: (i) the web span
length adjacent to the non-ideal roller is varying with time and must be included
in the governing equation for web span tension and (ii) the material flow rate in
the web span, which is needed for deriving the governing equation for web ten-
sion, is not proportional to the peripheral velocity of the roller as in the ideal case
and must be explicitly computed. An extensive set of experiments is presented to
validate the proposed governing equations for web transport. The second part of
the dissertation addresses the problem of designing a control algorithm for the at-
tenuation of oscillations in the presence of a non-ideal roller. Besides stability, the
controller needs to guarantee robustness to changing configurations and simplicity
for real time implementation. An adaptive feed-forward control algorithm is iden-
tified as a suitable control algorithm for the attenuation of tension and velocity
oscillations. The algorithm estimates amplitude and phase of the oscillations and
generates a control input which compensates for the oscillations. Extensive ex-
periments are conducted on a large web platform with different scenarios and by
transporting two different web materials at various speeds. Experimental results
show the effectiveness of the proposed algorithm to attenuate tension and velocity
oscillations due to non-ideal rollers.
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Chapter 1

Introduction

Web processing is an important manufacturing activity because of its ability to

mass produce products made from flexible materials in a fast, convenient and reli-

able manner. Any flexible, continuous material is referred to as a web. Examples

of web include paper, aluminum foil, plastic film, composite polymers, etc. Any

time a web needs to be altered in any way a web process is involved. Examples of

web processes are printing, coating, lamination, heating, slitting, etc. Along with

the problems related to web processing, the problem of how to properly trans-

port the web on rollers through processing machinery is important. In fact, the

web is commonly available in the form of rolls of raw material which need to be

unwound, transported through processing machinery on rollers and rewound into

finished rolls.

A web machine consists of a variety of mechanical and electrical devices assem-

bled in a specific manner to process the web. Typically, a web machine is divided

into specific sections. In the most general sense, every web machine consists of

an unwind section, a master speed section, process sections, and a rewind sec-

tion. More specifically, the unwind section contains the roll of raw material and

other mechanical components such as guides, accumulators and driven rollers; the
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master speed section contains driven rollers which are typically under pure speed

control mode and is the primary section setting up transport or line speed; the

processing of the material takes place in the various process sections; and finally

the rewind section is where the finished web gets rewound on a roll. A web line is

composed of several elements that support and control the movement of the web,

such as driven rollers, idle rollers, dancers, load cells, etc. Every element in the

line serves a specific purpose. A driven roller can be used to control the speed

of the line or web tension or both. Idle rollers are used to support the web and

achieve the desired web path through processing machinery. Dancers are devices

that contain rollers whose axis of rotation is allowed to move in a specific manner

based on their construction: linear dancers move in a straight path; pendulum

dancers rotate on an arm around a pivot point. Dancers can be used as a means

to either modify web tension or infer variations in web tension based on dancer

displacement. A roller supported on the ends by load cells has the ability to sense

roller reaction forces which can be assumed to be proportional to the tension in

the web wrapping the roller. An example of a web machine, the Euclid Web Line

(EWL) at the Web Handling Research Center at Oklahoma State University, is

shown in Fig. 1.1.

Web handling is the field in which the transport behavior of the web in the

web machine is studied. Research in web handling covers a variety of topics, such

as: mechanics of winding and unwinding, wrinkling, out-of-plane dynamics, air-

web interaction, longitudinal dynamics and tension control, lateral dynamics and

control, guiding and tracking, etc. The two main areas of interest from a control

system point of view are: lateral and longitudinal dynamics. Web guiding focuses

on the problem of keeping the web at the desired position on the roller. Because

of disturbances, roller imperfections or misalignments, the web can shift laterally
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Figure 1.1: The Euclid Web Line (EWL), Web Handling Research Center.

on the surface of the roller if a mechanism to control the lateral position of the

web is not used. On the other hand, the research in longitudinal behavior of

the web during transport concentrates on the longitudinal movement of the web,

specifically the transport velocity of the web and the tension in the web. Web

tension and velocity are two key variables in web handling because they affect both

quality and quantity of the final product. For example, in a printing process, in

order to have the machine print exactly the desired image, the web needs to be

transported through the line at a very specific velocity. Tension variations may

also cause imperfections such as wrinkling, which affects the quality of the final

product. Moreover, undesired decrease in tension may also cause loss of traction on

the roller which will affect transport as well as guiding. And finally, the velocity

of the web directly influences the production rate of the finished material, and

therefore, there is always a desire to achieve the highest possible velocity without

sacrificing product quality.
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As highlighted earlier, in web handling processes there is a clear need for

controlling web velocity and tension. As for any control problem, the best results

are achieved when there is a clear understanding of the controlled process. Thus,

the need for accurate models which can predict the behavior of the web during

transport through processing machinery is evident. Having good models can help

in many different ways: at the design stage to forecast achievable performances; to

develop simulations tools; or to achieve better control performances by designing

control systems based on the understanding gained by studying the models.

Driven by this necessity, several researchers have been studying the physics

associated with web handling processes and the related control problems. Exam-

ples can be found in [1, 2, 3, 4, 5, 6]. In particular, the Web Handling Research

Center at Oklahoma State University has been particularly active in this field,

and fundamental work has been undertaken over the years. Specifically, models

for general web handling machines and its components have been proposed. The

basic idea is to divide the web handling machine into primitive elements, such

as driven roller, idle roller, free web span, etc. First principles are then used to

derive the governing equation for each primitive element. In this way the prim-

itive elements can be used as building blocks that can be composed together to

describe the behavior of any complex web handling machine. A simulation tool,

called WTS (Web Transport System), has also been developed based on these

ideas. The software allows to reproduce the structure of any web handling ma-

chine and can be used to study the effects of changes in the layout of the line,

type of controllers or the behavior of the system under a variety of circumstances.

Fig. 1.2 shows the implementation of the EWL model using WTS.
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1.1. MOTIVATION AND OBJECTIVES
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Figure 1.2: Schematics of the EWL in WTS.

1.1 Motivation and Objectives

Although there has been much work in dynamic modeling of different web han-

dling elements and web longitudinal behavior, efforts to systematically validate

models by experimentation on a web platform are non-existent. Existing litera-

ture has extensively used dynamic models for numerical analysis and/or design of

control systems without adequate experimental validation of the models. Since

the dynamic models for some of the primitive elements are nonlinear, design-

ing experiments for web line model validation is a difficult task. There are a

few known model validation techniques for nonlinear systems but these do not

provide any clear procedures that can be applied to the web line. The only vi-

able alternative is to compare experimental and model simulation data on a set

of experiments that mimic typical web line operations in the industry, such as

acceleration/deceleration of the line and running the line at a constant speed.

Most of the existing models assume ideal behavior of all the primitive ele-

ments found in the web line. As a consequence these models do not reproduce

the tension oscillations that are commonly observed in experimental data. Since

rollers and rotating machinery are primarily involved in transport of webs, the

measured web tension signal often contains oscillations of periodic nature. These
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1.1. MOTIVATION AND OBJECTIVES

periodic oscillations (disturbances) are typically generated by non-ideal effects and

resonances. Some non-ideal effects that deteriorate web tension regulation perfor-

mance include the presence of eccentric or out-of-round idle rollers and material

rolls, backlash in mechanical transmission systems, and compliance in machine

components or shafts transmitting power. A clear explanation of the source of

the tension oscillations would be a valuable contribution to the web handling

literature.

Moreover, despite the ability to machine roller surfaces with great accuracy,

the occurrence of eccentric rollers is common due to the difficulty of aligning the

rollers properly in harsh industrial environments. Also, it is common to find out-

of-round unwind material rolls due to many reasons: (1) an improperly wound roll

from the previous process, (2) laying of material rolls on the ground which creates

a flat spot, (3) holding a heavy roll on mandrels for a long time causes the bottom

portion of the material to bulge due to gravity, etc. Therefore, incorporation of

these non-ideal effects into models and their subsequent analysis are important to

provide a better understanding of the behavior of the web during transport.

Once accurate models are developed to describe the effects of the presence

of a non-ideal roll or roller, it is possible to design better control systems to

attenuate the tension oscillations. Design of control strategies that prevent tension

oscillations to propagate through the web handling process is also important for

those situations where oscillations in tension must be kept as small as possible in

certain processes.

The goal of this dissertation is to fulfill these needs. In particular: provide ex-

perimental validation of the theoretical models available in the literature; identify

the source of the tension oscillations in the tension signal; explain the mechanism

that causes the tension oscillations when non-ideal elements such as eccentric

6



1.2. EXPERIMENTAL MODEL VALIDATION

rollers or rolls are present in the web line; provide analytical models for web ten-

sion and web velocity in the presence of non-ideal rollers and rolls; propose control

strategies to improve tension regulation and attenuate tension oscillations.

1.2 Experimental Model Validation

The first part of this work will focus on validation of the web handling models.

To validate the models, data collected from the experimental testbed (the Euclid

Web Line) are compared with data obtained from computer simulations based on

the theoretical model. Also refinements to the models are proposed to improve

correlation between experimental and simulation data whenever necessary.

Two sets of experiments are presented. The first set consists of experiments

conducted with a stationary web. These experiments show that data from the

computer model simulations closely match the experimental data. The second

set of experiments is done with a moving web. These experiments and model

simulations show that the data from model simulations follow the experimental

data in an average sense, but the data from model simulations do not show ten-

sion oscillations around the reference value that are found in the measured data.

These results demonstrate the need for refinements of the models to reproduce

these tension oscillations. The fact that the macroscopic response of tension is

reproduced in the model data proves that first order effects are included in the

model. Therefore, the reason for the mismatch must be due to some second order

effects. In deriving the dynamic equations for the primitive elements, it is assumed

that they exhibit ideal behavior. In real situations many primitive elements are

not ideal, and hence, their non-ideal characteristics will affect tension response.

Therefore, non-ideal effects must be systematically included in the models since

7



1.2. EXPERIMENTAL MODEL VALIDATION

it is unclear which non-ideal effects are causing discrepancies between the model

and experimental data. Further, once it is known that a non-ideal component

is causing these tension oscillations, a modeling mechanism must be determined

to appropriately include that particular non-ideal effect into the model. One of

the objectives is to study the non-ideal components and include their effects into

the web line model and verify whether their inclusion makes the data from model

simulations correlate closely with the experimental data.

It is well known that the presence of play between moving parts (backlash)

will deteriorate system performance by inducing oscillations, limit cycles and even

instability. Backlash is commonly found in the mechanical transmission between

motor and roll shafts. In addition to backlash, compliance of shafts/belts will

also reduce performance. An extensive discussion on backlash and compliance

can be found in [7]. These two effects are incorporated into the web line models

and simulations are conducted with different values of backlash and compliance.

Comparison of simulation and experimental data showed that the inclusion of

this non-ideal effect did not adequately capture the tension oscillations in the

measured data.

It is also known that non-ideal components, such as out-of-round material rolls

and eccentric rollers, induce tension disturbances. One of the objectives is to find

a mechanism through which the model can be refined to include these non-ideal

effects. The analysis of the frequency content of the measured data reveals that

the tension oscillations can, in fact, be attributed to non-ideal rotating elements,

such us eccentric rollers or out-of-round roll. In particular, by running experiments

at different line speeds and with different unwind roll radii one can pinpoint the

source of most of the disturbance frequencies found in the tension signal. This is

an important result because the knowledge of sources of tension oscillations is the

8



1.3. EFFECT OF AN ECCENTRIC ROLLER

basic step to design control systems for their attenuation.

1.3 Effect of an Eccentric Roller

A roller is considered to be eccentric when its center of gravity does not coincide

with its center of rotation; in this study an eccentric roller is considered to be

perfectly circular.

Once it is evident that the tension oscillations can be attributed to the presence

of eccentric rollers, the question that needs to be addressed is how does an eccentric

roller affect web tension. From experimental observations of the machine and web

transport it is clear that because of the presence of eccentric rollers the length

of the spans adjacent to the roller are time varying. One of the assumptions

used to derive the governing equation for tension in a web span is that the span

length is not varying with time. Clearly, in the presence of an eccentric roller,

such an assumption does not hold, therefore, the governing equation for tension

needs to be modified where span length changes are encountered. The modified

governing equation for tension should take into account the effects of the span

length variations. To numerically solve the modified governing equation of tension

it is necessary to find an expression for the span length as a function of the

angular displacement of the eccentric roller. To find the span length between two

idle rollers the common tangent needs to be determined. A procedure is presented

that provides a closed form expression of the span length as function of the angular

displacement of the roller.

Because of the presence of eccentricity, the governing equation for web velocity

on an ideal roller cannot be used and a modified version has to be determined.

First, because the center of gravity differs from the center of rotation, a torque
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1.4. EFFECT OF AN OUT-OF-ROUND ROLL

which takes into account the mass of the roller needs to be added in the governing

equation. Second, the web tension in each of the spans adjacent to the eccentric

roller generates a varying torque on the roller. To determine these torques the

distance between the point where the force is applied and the center of rotation

must be computed. This distance is dependant on the angular displacement of

the roller because the point where the web makes contact with the eccentric roller

changes.

Derivation of all the necessary equations is presented and equations for web

tension and velocity in the presence of eccentric rollers are obtained. Numerical

simulations of the refined model are conducted, and data from these simulations

are compared with the data from experiments. Results show an improved corre-

lation between the two.

1.4 Effect of an Out-of-Round Roll

The case of the presence of an out-of-round roll presents additional challenges

compared to the case of the eccentric roller. Similar to the eccentric roller case,

the presence of an out-of-round roll will induce span length variations. Hence,

numerical solution of the modified governing equation for tension requires an

expression for the span length as a function of the angular displacement.

As in the eccentric roller case, the main difficulty is in finding the common

tangent between the out-of-round roll and the downstream idle roller. The solution

to basic tangency problems can be found in [8, 9, 10]. In [11] an algorithm to find

common tangents to parametric curves is described; this algorithm is based on a

binary search algorithm and assumes the curves to be known in parametric form.

This report will present a different approach which is easily applicable to the web
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handling problem.

Finding a closed form expression for the span length is a difficult task for this

situation. In fact, it will be shown that even for a simple shape, an elliptical

roll, it is difficult to find a closed form expression for the length of the span, and

numerical approximations have to be used instead. In the proposed procedure the

problem of finding the span length is converted to the problem of finding, among

the family of lines tangent to the elliptical roll, the line that is also tangent to the

neighboring idle roller. The manner in which this common tangent is distinguished

is by exploiting the fact that the distance between the tangent of a circle and the

center of the circle is equal to the radius of the circle. A cost function is defined

for every point on the surface of the material roll, which is equal to the square

of the difference between the radius of the downstream roller and the distance

between the line tangent to the elliptical roll at that point and the center of the

downstream roller. The cost function is always positive except for the points on

the elliptical roll that have a common tangent with the downstream roller where

it will be zero. This problem is formulated as a minimization problem which can

be solved numerically using efficient methods. This minimization problem in its

simplest form has multiple solutions; a method is given to restrict the search space

in such a way that the minimization problem has only the correct solution.

The computation of the span length for the case of a generally shaped roll is

approached using similar ideas, but compared to the elliptical case this problem

presents more challenges. First, given a generically shaped roll it is necessary to

find a way to characterize its perimeter. The method to characterize the perimeter

must be chosen such that it is possible to capture all the main characteristics

of the roll. The method should also exhibit numerical stability and must be

computationally tractable. Then, an expression for the family of tangents to the

11
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roll must be determined. Given the expression for the family of lines tangent to the

out-of-round roll, one can define the same cost function defined for the elliptically

shaped roll. The solution of the minimization problem provides the common

tangent between the out-of-round roll and the downstream idle roller. Again the

minimization problem has multiple solutions, the approach used for the elliptically

shaped roller cannot be used for this instance. A modified cost function is defined

for the generally shaped material roll; this cost function penalizes certain points

in the search space in such a manner that only the correct minimum is obtained.

Besides the inclusion of the span length variation induced by the presence of

the out-of-round roll, there is another important aspect to consider in deriving

the governing equation for tension in the web span. The derivation of the web

tension governing equation is based on the the mass balance principle for a control

volume that encompasses the entire web span: at any instant of time the variation

of mass in the control volume must be equal to the difference between the web

material flow rate entering the control volume and the material flow rate leaving

the control volume. For an ideal roll it can be shown that the material flow rate

is proportional to the peripheral velocity of the web on the roll and this is what

is commonly used. Simple counter examples show that for an out-of-round roll

the peripheral velocity can no longer be used to compute the material flow rate.

A procedure to compute the material flow rate in the presence of an out-of-round

material roll is presented. Similar to the problem of the computation of the span

length, a closed form solution for the material flow rate is difficult to determine

because of the complexity of the problem, an alternative numerical algorithm is

presented instead. The procedure is based on the same characterization of the

perimeter of the roll that was used for the computation of the span length.

Similar to the case of the presence of the eccentric roller, the governing equation

12
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OSCILLATIONS

for the velocity of the material roll needs to be determined. Because of the out-of-

round material roll, the distance between the point where the web makes contact

with the roll and the center of rotation of the roll is time varying, while for the

ideal case it is always equal to the radius of the roll.

Comparison between experimental data and computer simulation data will

demonstrate that the modified governing equations of web tension and velocity

can replicate in simulation the effects of the presence of an out-of-round roll.

1.5 Control Algorithms for the Attenuation of

Tension Oscillations

Together with the investigation of the physics associated with the transport of

the web in the presence of non-ideal elements, one of the objectives of this work is

to identify, design and implement a suitable control algorithm for the attenuation

of oscillations due to the presence of non-ideal elements. The algorithm is meant

to be used in an industrial set-up for real applications. For these reasons it is

necessary to consider several aspects that limit the choice of the control algorithms.

First, the control algorithm must be suitable for execution on a real-time plat-

form. The selection of the sampling period on these platforms can vary depending

on the application, ranging from a fraction of a millisecond to tens of milliseconds.

In order for the algorithm to be executed in real time, the total execution time

of the algorithm must be less that the sampling period. Given the computational

complexity of the model of the web line when a non-ideal element is present, a

model based controller may not satisfy the time constraint imposed by a real time

implementation.

13
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Another aspect to consider is the fact that the algorithm may be used by line

operators who may have limited control background. Moreover, in order to reduce

the idle time of the machine and avoid loss of productivity, it is desirable to have

an algorithm that can be used in parallel with the existing controls for tension

and speed regulation without the need to retune or redesign them.

Following an extensive literature review of available algorithms for compen-

sation of periodic disturbances, the adaptive feed-forward (AFF) algorithm was

identified as a suitable candidate for the attenuation of oscillations due to the

presence of non-ideal elements. The AFF satisfies all the requirements of compu-

tational complexity and simplicity mentioned above. The idea of the controller

is to estimate amplitude and phase of the periodic disturbance and generate a

feed-forward signal to compensate for such disturbance. The AFF is also placed

in parallel to the existing controller without the need for retuning of such con-

trollers. Several different configurations of the AFF for different scenarios will

be presented and experimental results will show the effectiveness of the control

algorithm.

1.6 Contributions

The contributions of this research are summarized in the following:

• Validation of the ideal primitive element models. A set of significant experi-

ments is designed to validate the model of the primitive elements. Compar-

ison of experimental data and model simulated data shows that the ideal

model can reproduce the measured data in an average sense. The fact that

macroscopic response of tension is reproduced in the data from model nu-

merical solution indicates that the first order effects are included in the
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model. These models can be used in the design of control systems in situ-

ations where rejection of tension oscillations is not a priority and only the

transient behavior is a concern.

• Identification of the sources of tension oscillations. Using the experimental

data collected on the EWL with different configurations, a method to iden-

tify the sources of most of the disturbance frequencies in the tension signal

is provided. The knowledge of the sources of the tension oscillations is the

basic step toward the design of control systems for their attenuation.

• Modified governing equation for web tension. Experimental observations

revealed that the presence of non-ideal elements, such as eccentric rollers or

out-of-round material, roll cause the length of the spans adjacent to the non-

ideal elements to be time varying. In the ideal case it is assumed that the

span length is constant. In order to properly replicate in model simulations

the effects of the presence of an eccentric roller and an out-of-round roll, span

length variations were included in the governing equation for web tension.

• Computation of the span length in the presence of an eccentric roller. A

procedure is developed to compute the length of the web spans adjacent to

an eccentric roller. The procedure gives the expression of the span length

in closed form as a function of the angular displacement of the eccentric

roller. This expression is required for model simulations of a web line in the

presence of an eccentric roller.

• Computation of the span length in the presence of an out-of-round material

roll. A method to efficiently characterize the shape of the out-of-round

material roll is given. A numerical algorithm to compute the length of the
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span between an out-of-round material roll and the downstream idle roller

is also developed.

• Computation of the material flow rate in the presence of an out-of-round

material roll. In the presence of an out-of-round material roll, the peripheral

velocity of the web on the roll is not proportional to the material flow rate.

Hence, it cannot be used in the governing equation for tension in a web span.

A numerical algorithm is developed for the computation of the material flow

rate.

• Implementation of a control algorithm for the attenuation of oscillations

in web tension and velocity. Adaptive feed-forward technique is selected

as a feasible method to satisfy all the constraints associated with the real

time execution and the ease of use by web line operator. Adaptive feed-

forward algorithms are implemented for different scenarios on the EWL for

compensation of tension and velocity oscillations due to eccentric rollers and

out-of-round material rolls.

1.7 Organization of the Report

In Chapter 2 an overview of the primitive elements is presented and how first

principles are applied to obtain the governing equations for each basic element

is given. The chapter also contains a description of the validation process from

a theoretical point of view. Different validation techniques are introduced, high-

lighting advantages and disadvantages of each approach. A description of the

experimental platform and the computer simulation is given. The last part of the

chapter includes the experimental validation of the ideal models and a discussion
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on the identification of the source of oscillations in the tension signal.

Chapter 3 describes the modification of the governing equations of the primi-

tive elements in the presence of an eccentric roller. The chapter concludes with a

comparison of the data obtained from simulations of these modified models with

the experimental data.

Chapter 4 presents the aspects related to the modeling of a web line in the

presence of an out-of-round material roll. First, the problem of the computation

of the span length is introduced. The case of an elliptically shaped material roll

is addressed as a simple example of an out-of-round material roll. This example

offers the baseline for the derivation of an algorithm for the computation of the

span length in the presence of a convex shaped material roll. The second part

of the chapter describes the computation of the material flow rate entering the

control volume. Initially, one simple counter example is presented to show the

fact that the peripheral speed of the web on the roll is not proportional to the

material flow rate when the roll is out-of-round and provides a motivation for the

need to compute the material flow rate using a different approach. Because of the

complexity of the problem a closed form for the material flow rate is difficult and

a numerical algorithm for the computation of the material flow rate is presented

instead. Finally, data collected on the experimental platform with an out-of-round

material roll is compared to the data generated from computer simulations using

the proposed model.

Chapter 5 addresses the problem of identifying a suitable controller for the

attenuation of the tension oscillations due to the presence of a non-ideal roll or

roller. A literate review of the available controllers for attenuation of periodic

oscillation is presented. The reasons for choosing the adaptive feed-forward are

described. The implementation of the AFF is described for several configurations
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and the effectiveness of the controller is shown through extensive experimental

results.

Chapter 6 presents a summary of the results presented in this work and sug-

gests possible topics for future work.
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Chapter 2

Modeling and Validation of

Primitive Web Handling

Elements

One of the well known modeling techniques for creating a model for the entire web

line is based on the concept of primitive elements. In this approach every primitive

element of the web line is modeled separately using the first principles approach,

and then the entire web line model is obtained by appropriately combining the

primitive element models. The first part of this chapter describes the derivation

of the governing equations of the fundamental elements in every web process:

material rolls, idle and driven rollers and web span.

The procedure that is typically employed to corroborate the usefulness of the

developed model is to compare data from model simulations with data from ex-

periments in an open-loop setup, that is, by not using any feedback controllers.

Unfortunately, it is not possible to run web machines in open-loop because main-

taining web tension at some appropriate value is necessary for web transport, and

without controlling web tension either the web breaks due to large tension varia-
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tions or the web is slack which will hinder transport. For this reason web tension

was regulated in the unwind and the rewind sections with tension control systems.

The model simulations of the system also included a model of the controller for

mimicking the same setup as in the experiments. In this configuration the inputs

for the model are reference values of tensions and web velocity.

The model of the complete web line with control systems was formed based on

the governing equations described in this chapter. The entire line is simulated for

all cases but only the data from the unwind section will be shown for comparison

with the experimental data.

The initial set of experiments consisted of a step change in tension reference

with zero line speed. The purpose of these experiments was to verify if the model

is capable of reproducing tension behavior in the absence of speed induced distur-

bances. Various web tension reference values were tested. For all the test cases,

data from model simulations and experiments showed good correlation.

The second set of experiments considered also a step change in tension ref-

erence, but with a non-zero line speed. In this case, speed induced disturbances

are observed in the tension signal. In general, the model simulations appear to

be able to follow the average value of the tension but do not reproduce the speed

induced oscillations. These experiments show the need for modifications to the

existing models to capture the speed induced disturbances.

The chapter ends with a discussion on the frequency content of the tension sig-

nal for the experiments performed under different operating conditions: different

line speeds and different unwind roll radii. Model analysis and experimentation

has revealed that every non-ideal rotating element, either because of eccentricity

or out-of-roundness, will introduce tension oscillations which are integer multiple

of a fundamental frequency f , a frequency that can be computed by knowing the
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2.1. PRIMITIVE ELEMENTS

radius of the rotating element and the line speed. This allows determination of

the source of almost all the tension oscillations in the tension signal.

2.1 Primitive Elements

Web lines can differ widely, either because of their layout or because of the kind

of components that are used to compose the line. In order to come up with a sys-

tematic approach to model web transport behavior and machine components that

make up the web line, the concept of primitive elements is introduced. Primitive

elements are a set of elementary components which form the building blocks for

almost all existing web process lines. Some of the key primitive elements are ma-

terial rolls, idle rollers, driven rollers, web span (the web between two consecutive

rollers), dancers, accumulators, print cylinders, laminators, etc. The primitive

element models are developed from the application of first principles, and a model

for the entire web line is obtained by composing primitive elements models based

on the specific layout of the line. The derivation of the models from the first

principles the fundamental elements of every web processing machine (material

roll, idle roller, driven roller, web span) are described in this section.

2.1.1 Governing Equations for Unwind and Rewind Rolls

A schematic of the unwind roll is shown in Fig. 2.1(a). The dynamic equation

that describes the motion of the unwind roll is given by [5]:

d

dt
(Juωu) = −bωu +RuT1 − τu (2.1)

where Ju is the inertia of the roll, ωu is the angular velocity, b is the viscous

friction coefficient, Ru is the radius of the roll, T1 is web tension, and τu is the
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Figure 2.1: Unwind and Rewind Rolls.

torque transmitted from the motor to the roll through a coupling. Note that all

the variables refer to the roll side. Expanding (2.1):

Juω̇u = −bωu +RuT1 − τu − J̇uωu (2.2)

The moment of inertia Ju is given by

Ju = J0 + Jw (2.3)

where J0 is the inertia of the core shaft, core, coupling, and motor, and Jw is the

inertia of the web material, which is time-varying as the web is unwound. The

moment of inertia Jw can be written as a function of the radius:

Jw =
mw

2
(R2 +R2

c) =
π

2
ρwww(R

2 − R2
c)(R

2 +R2
c) =

π

2
ρwww(R

4 − R4
c) (2.4)

where mw is the mass of the web, Rc is the radius of the core of the roller, ρw

is the density of the web and ww is its width. The external radius of the roll

is also a function of time, as the web leaves the roll the radius decreases. In

particular, the radius decreases by ∆Ru = −tw, with tw being the web thickness,

every one revolution of the roll. The time that the roll takes to rotate 2π radians is

∆t = 2π/ωu. Therefore, the dynamic equation for the roll radius can be expressed

as

Ṙu = lim
∆t→0

∆Ru

∆t
= −twωu

2π
(2.5)
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Figure 2.2: Schematic of a Driven Roller.

From (2.1) and (2.5) J̇u is given by

J̇u = 2πρwwwR
3
uṘu = −ρwwwR3

utwωu (2.6)

Hence, the governing equation for the angular velocity of the unwind roll is

Juω̇u = −buωu +RuT1 − τu + ρwwwR
3
utwω

2
u (2.7)

For the rewind roll model an analogous discussion can be made, the only

difference is that the radius will be increasing and the tension of the web will be

pulling the roller in opposition to the sense of rotation of the roller (see Fig. 2.1(b)).

Therefore, the dynamic equation for the rewind roll will be:

Jrω̇r = −bωr − RrTn + τr − ρwwwR3
rtwω

2
r (2.8)

2.1.2 Governing Equations for Idle and Driven Rollers

Figure 2.2 shows a schematic of a driven roller or for an idle roller if τi is set to

zero. The dynamic equation is obtained by using torque balance. The equation

for a driven roller is

Jiω̇i = −τfi +Ri(Ti+1 − Ti) + τi (2.9)
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Ti, LiTi−1 Ti+1

vi−1 vi

Figure 2.3: Web Span

where τi is the driving torque at the roller shaft, Ji is the inertia of the roller, ωi

is the angular velocity, τfi is the torque due to friction, and Ri is the radius of the

roller.

2.1.3 Governing Equation for Web Tension in a Span

Modeling of tension in a web span has been addressed in several studies, examples

are [1, 2]. The fundamental idea behind the derivation of the dynamic equation is

the conservation of mass in the control volume encompassing a web span between

two rollers, which can be stated as: at any moment, the variation of the mass of

web in the span is equal to the difference between the amount of mass entering

the span from the previous span and the mass leaving the span to enter the next

span. For a web span between two rollers (see Fig. 2.3) mass conservation can be

written as

d

dt

∫ xi(t)

xi−1(t)

ρ(x, t)A(x, t)dx = ρi−1Ai−1vi−1 − ρiAivi (2.10)

where, xi−1(t) and xi(t) are the entry and exit position of the i-th span, ρ is the

density of the web, A is the cross sectional area of the web, and v is the velocity of

the web. Note that since the i-th web span is between the i− 1-th and i-th roller,

the position xi−1(t) refers to the exit point of the wrapped web on the i − 1-th

roller and the position xi(t) refers to the entry point of the wrapped web on the

i-th roller. Let the subscript “n” on a variable denote the normal or unstretched
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state of the variable. Since the mass of an infinitesimal web in the stretched

and unstretched is the same, the mass of an infinitesimal element of web in the

transport direction is given by

dm = ρdxwh = ρdxA = ρndxnwnhn = ρnAndxn (2.11)

The web of length dx in the stretched state is related to its unstretched length

dxn by

dx = (1 + ǫx)dxn (2.12)

where ǫx denotes the web strain in the transport direction. Now considering this

relation, it is possible to write:

ρ(x, t)A(x, t)

ρn(x, t)An(x, t)
=
dxn
dx

=
1

1 + ǫx(x, t)
(2.13)

which can be rearranged as:

ρ(x, t)A(x, t) =
ρn(x, t)An(x, t)

1 + ǫx(x, t)
(2.14)

Substitution of (2.14) in (2.10) gives

d

dt

∫ xi(t)

xi−1(t)

ρn(x, t)An(x, t)

1 + ǫx(x, t)
dx =

ρni−1
(x, t)Ani−1

(x, t)vi−1

1 + ǫxi−1
(x, t)

− ρni
(x, t)Ani

(x, t)vi
1 + ǫxi(x, t)

(2.15)

Under the assumption that the cross sectional area A and the density ρ of the

unstretched material is constant, (2.15) can be simplified to the following:

d

dt

∫ xi(t)

xi−1(t)

1

1 + ǫx(x, t)
dx =

vi−1

1 + ǫxi−1
(x, t)

− vi
1 + ǫxi(x, t)

(2.16)

Considering that ǫ≪ 1, 1/1+ ǫ can be approximated with 1− ǫ, and hence (2.16)

can be written as

d

dt

∫ xi(t)

xi−1(t)

(1− ǫx(x, t))dx = vi−1(1− ǫxi−1
(x, t))− vi(1− ǫxi(x, t)) (2.17)
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Using the Leibnitz rule for the differentiation of integrals:

d

dt

∫ ψ(t)

φ(t)

f(x, t)dx =

∫ ψ(t)

φ(t)

∂f(x, t)

∂t
dx+

dψ

dt
f(ψ(t), t)− dφ

dt
f(φ(t), t) (2.18)

and assuming uniform strain throughout the span, (2.17) can be expressed as

−dǫxi
dt

(xi−xi−1)+(1−ǫxi)
dxi
dt
−(1−ǫxi−1

)
dxi−1

dt
= vi−1(1−ǫxi−1

)−vi(1−ǫxi) (2.19)

Simplifying (2.19) gives the following dynamic equation for strain in the i-th span:

dǫxi
dt

=
vi(1− ǫxi)− vi−1(1− ǫxi−1

) + (1− ǫxi)ẋi − (1− ǫxi−1
)ẋi−1

xi − xi−1
(2.20)

Depending on the property of the web it is possible to introduce a constitutive

relationship between strain and tension. Assuming the web to be elastic, Hooke’s

law (T = EAǫ) can be used to describe this relationship. Substituting Hooke’s

law in (2.20) and simplifying, the following governing equation for the tension in

the i-th span is obtained:

Ṫi =
vi(EA− Ti)− vi−1(EA− Ti−1) + (EA− Ti)ẋi − (EA− Ti−1)ẋi−1

xi − xi−1

(2.21)

This equation includes the hypothesis that both the end rollers are free to move,

that is, the control volume boundaries are time-varying.

The basic model considers the case where both rollers are stationary; in this

situation equation (2.21) is given by

Ṫi(t) =
vi(t)(EA− Ti(t))− vi−1(t)(EA− Ti−1(t))

L

=
EA

L
(vi(t)− vi−1(t)) +

1

L
[vi−1(t)Ti−1(t)− vi(t)Ti(t)]

(2.22)

2.2 Nonlinear Identification and Validation

Model validation aims to give a qualitative or quantitative measure of how well

a simulated model matches a real system. Model validation can be considered
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as the final step of the system identification process. System identification is

the procedure through which a set of equations called the model is generated

starting from a combination of physical insight and experimental data; the model

is expected to reproduce the behavior of the real system.

In a general sense, system identification can be divided into the following

phases:

• Model order: determine the number of input, output and state variables.

• Model structure: define the relations between the input, output and state

variable variables.

• Parameter evaluation: find the best parameters for the chosen model.

• Model validation: test phase that guarantees the correctness of modeling

and/or identification procedure.

Nonlinear system identification and validation presents a much bigger chal-

lenge over linear system identification for several reasons. First, the structure

of linear systems is simpler and the use of frequency domain analysis is possible

which makes the identification process easier. Second, using the superposition

property of linear systems and the property of white noise, it is possible to cover

the effect of all the possible inputs just using zero mean white noise as input to

the system. And finally, during the validation step, it is possible to extrapolate

information about the corrections that should be made to the model through a

statistical analysis of the difference between the estimated model data and real

data. These statements do not hold in the case of nonlinear systems. In fact,

the possible structures of nonlinear systems differ widely and achievable results

strongly depend on the choice of the model structure. The performance of the

model can be guaranteed only for a set of inputs used during the identification

27



2.2. NONLINEAR IDENTIFICATION AND VALIDATION

and/or validation process, in other words the ability of the model to match the

output due to unseen inputs is uncertain. Also, the validation step does not in

general give insights into modifications of the model when the test used to compare

model and experimental data does not pass.

The rest of the section will cover a brief overview of existing nonlinear system

identification techniques and some validation procedures.

2.2.1 Nonlinear System Identification

Nonlinear system identification can be achieved through several different tech-

niques based on the problem at hand. A classification of the different techniques

can be made based on the amount of a priori information available about the

system. Based on this concept, the identification techniques can be classified into

the following:

• Black box identification: applied when prior knowledge of the system is

not available. This is used in situations where only input/output data are

available to describe the system, and a model that is capable of matching

this input/output data needs to be found.

• Gray box identification: applied when some prior knowledge of the system

is available. This is used when most of the dynamics and parameters of the

system can be determined from first principles, but still some effects are not

known and system identification is left to some sort of input/output data

matching.

• White box identification: it is adopted when there is total knowledge about

the system and all the dynamics and the parameters can be deduced without

experimental data.
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Clearly, it is desirable to exploit prior information about the system as much as

possible. Therefore, as a general idea it is preferable to move toward the bottom

of the above classification list when possible. However undesirable, often the only

choice for identification is the black box approach and, for this reason, there is

a rich literature concerning strategies to perform this kind of identification, see

[12] for a detailed survey. In a general sense, the problem faced during black-box

identification is the following: given two sets of recorded data

ut = [u(1), u(2), . . . , u(t)] yt = [y(1), y(2), . . . , y(t)] (2.23)

the input and the output, respectively, of a certain system, find the function:

ŷ(t) = g(ut−1,yt−1) + v(t)

which gives the best match between the recorded data y(t) and the estimated data

ŷ(t) while keeping the additive term v(t) as small as possible.

For black box system identification, validation is done by testing the perfor-

mance of the model on a set of input/output data not used during the parameter

estimation step. This set is, therefore, called the validation data. If the model

gives satisfactory performance on the validation data, then the model is accepted.

Otherwise it is necessary to go back and restart the process of testing different

structures for the model.

Even though there is a well established theory about nonlinear system identi-

fication, it does not fit the purpose of model validation that is sought in the web

line case. Using a black box model for web handling would mean discarding all the

knowledge about the dynamic behavior of the web and other primitive elements

obtained using first principles approach.

Some gray box techniques have been developed in order to exploit prior knowl-

edge about the system in the identification process; examples are given in [13]
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where the concept of semi-physical modeling is introduced, and in [14] where

a priori physical knowledge is introduced in a neural network framework. The

goal of these techniques is to combine strategies from black-box approaches with

equations derived from physical reasoning.

As reported in [13], in order for this procedure to be applicable the model

must satisfy certain requirements. Moreover, the size of the model could make

the procedure computationally untractable. Unfortunately, due to the presence

of non-smooth nonlinearties and because of the high complexity of web handling

machines this procedure is not applicable.

Since none of the identifications techniques found in the literature can be

adapted to the model that has been developed for the web machines, validation

techniques that are appropriate variations of white-box modeling will be discussed

next.

2.2.2 Model Validation

When a model is developed using physical laws like conservation of mass or energy,

a general model is obtained. This general model should be able to describe all

the systems belonging to the same class just by adjusting the parameters of the

model. For example, it is expected that the general model developed for the web

line is able to describe any web line just by adding the right amount of primitive

elements with the right parameters. If the parameters in a general model are

fixed, the resulting model is called the specific model. The model for the EWL is

a specific model of a web machine. Finally, once initial conditions and both forcing

and disturbance inputs are added to the model, the particular model is obtained.

The model validation process is to infer the correctness of the general model by
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means of a variety of specific models. Clearly, this process does not guarantee

that the general model is exact unless every possible particular model is tested

for each specific model, which is practically unrealizable [15]. Normal practice is

to define a set of relevant experiments to test the model and validate the model

if the performance on this set is satisfactory. The measurement of performance

of the model is another key aspect of the validation process and it is difficult to

define a criterion which fits all the possible scenarios. The easiest choice to judge

the performance of the model is through a visual comparison of the output signals

as a function of time. In this case experimental data is plotted with simulated

data and it is left to the user to judge whether the model is acceptable or not.

The performance can also be weighted based on selection of a norm, the most

commonly used norms are L1 (the integral of the absolute value of the error), L2

(the integral of the squared error) or L∞ (the maximum error); in this case the

fitting error would be used as a testing parameter and the model is required to

satisfy a preset bound on the chosen norm. The norm of the fitting error can

also be a good parameter to judge between different models as well. Note that

this does not give an absolute criterion, in fact it is possible to have a model

outperforming another one based on a certain norm.

In order to have a validation test which depends less on the choices made by

the user, the model distortion technique was introduced in [16, 17]. The concept

behind the model distortion is that any set of recorded data can be followed by

any model if the model is distorted using time varying parameters. Clearly, if

the model matches the real system closely, less parameter variation is required in

order to make the simulated data follow the recorded data. From this observation

a quantitative criterion for model validation arises. In fact, since the model is

derived from some physical understanding of the process, every parameter has a
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physical meaning, and hence, it is reasonable to assume that for every parame-

ter an estimation of its variance is available. Therefore, if parameter distortion

necessary to have a perfect match between simulation and experimental data has

variance less than the expected one, then it is possible to claim that the model

is acceptable. Otherwise, the model needs to be modified. Note that the model

distortion technique is just a pass or fail criterion and does not give any insights

into how the model should be adjusted to better follow experimental data. This

framework gives a more structured test for model validation compared to the

simple visual comparison. However, reasonable bounds on the variance of the pa-

rameters are not always available. In such situations the choice of the bound and,

implicitly, the acceptance or rejection of model falls on the user, and the model

distortion approach does not give any real advantage over visual comparison. In

certain situations model distortion can still be a useful tool to perform sensitivity

analysis to parameter variations.

2.3 Experimental Validation

2.3.1 Experimental Setup

Normally, when performing validation of a model, experiments are performed in

an open loop setup. Unfortunately, it is not possible to run web machines in

open-loop because even a small disturbance can induce large tension variations

which may cause web breakage. Another possibility is to run experiments in an

hardware in the loop configuration, which is to run the experiments in closed-loop,

recording the control input, and using that input as model input. Initially, the

hardware in the loop configuration was tested, but this did not give satisfactory
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Figure 2.4: Line schematic of the EWL.

results. There are two plausible reasons for this. First, in the real control input

there are adjustments for disturbances which are not modeled. Second, the control

input that can be recorded is not the actual input to the motor but it is a reference

for the controller that drives the AC motor. Therefore, the real input to the web

machine may differ from the one recorded. For these reasons a closed-loop setup

was chosen to run the experiments, meaning that the simulation of the system

would also include a model of the controller. In this configuration the inputs for

the model are reference values of tensions and web velocity.

All of the experimental data presented in this report has been collected on

the Euclid Web Line (EWL). The web line can be divided into four sections: the

unwind section, the S-wrap section, the pull-roll section, and the rewind section.

The S-wrap functions as the master speed section. The S-wrap roller and the

pull-roll are under pure speed control, whereas the unwind and rewind have an

inner speed loop and an outer tension loop. Hence, tension is regulated in the

unwind and rewind sections only.

The EWL offers the possibility of choosing different web paths with different

span lengths and number of idle rollers. The configuration used to perform all

the experiments is shown in Fig. 2.4. The roller number 9 is mounted on load

cells which measure the tension for the unwind section and provides the feedback
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Kref

Unwind 15

S-wrap leader 20

S-wrap follower 20

Pull-Roll 40

Rewind 15

Table 2.1: Values of Reference Gain for the Velocity PI Controllers.

signal for the unwind tension PI controller. The roller number 15 is also mounted

on load cells and it gives the tension in the pull-roll section which is only used for

monitoring purposes. Tension is measured on roller 19 in the rewind section. All

the experimental data discussed in this report correspond to the unwind section

of the EWL.

All the velocity controllers are in the form:

Cv(s) =
Kp(s+ ωld)

s
(2.24)

where Kp = JKref , with J being the total inertia reflected to the motor side,

ωld = Kref/4ζ
2, where ζ = 1.1 is the damping ratio of the system. Table 2.1

shows the value of Kref for each section.

The tension PI for the unwind roller is

Cunw
t (s) =

2(s+ 10)

s
(2.25)

while the PI for the rewind roller is:

Crew
t (s) =

3(s+ 10)

s
(2.26)

A model for the entire line based on the governing equations of the primitive

elements described earlier and models of the controllers has been implemented in
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Simulink. The entire line is simulated for all cases but only the data from the

unwind section will be compared with the experimental data.

2.3.2 Driven Rollers Parameters Identification

To simulate the governing equations of the driven rollers, the inertia and the

coefficient of friction are necessary. These can be determined from experiments

on the driven rollers without the web in the machine. Consider the inertia first

and assume initially that the friction is negligible. Under these assumptions the

dynamic equation is

Jω̇(t) = τ (2.27)

if a nominal constant torque τn is applied to the motor, the solution of the dynamic

equation is

ω(t) =
τn
J
t (2.28)

By recording the time tn required for the motor to reach the nominal velocity ωn

the moment of inertia can be obtained using the expression:

J =
τntn
ωn

(2.29)

Note that this procedure only provides the value of the core inertia for unwind

and rewind since the inertia will be changing as web is released or accumulated.

Once the value of the inertia is obtained, an estimation for the viscous friction

coefficient b can be determined by non-linear curve fitting of the free velocity

response of the driven roller. The free response is obtained by bringing the driven

roller to a given velocity and then by letting the roller to freely come to a stop.

Assuming the model to be given by (2.9), while having no web and imposing the

control torque to be zero the free response follows the following expression:

ω(t) = ω0e
−

b
J
t (2.30)
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where ω0 is the angular velocity of the roller at the moment the control torque

τ is removed. Given a set of samples ωek taken at time tk with k = 1, . . . , N of

the experimental free response, the value of the viscous friction b is determined

by solving the following minimization problem:

min
b

N∑

k=1

(ωek − ω(tk))2

s.t.

ω(tk) = ω0e
−

b
J
tk

(2.31)

An example of the result obtained from the non-linear fitting is shown in

Fig. 2.5(a). The match between the experimental and the simulated data can be

further improved by including a constant friction term in the model for the driven

roller. With this friction model the governing equation is given by

Jω̇ = −c− bω +R(Ti+1 − Ti) + τ (2.32)

and the minimization problem involves now two variables:

min
b,c

N∑

k=1

(ωek − ω(tk))2

s.t.

ω(tk) = max(0,−c
b
(1− e− b

J
tk) + ω0e

−
b
J
tk)

(2.33)

Using this new model the results of the non-linear curve fit are shown in Fig. 2.5(b).

The plot shows a visible improvement in the curve fitting.

2.3.3 Estimation of Idle Roller Bearing Friction

Due to the absence of speed feedback signals on the idle rollers, estimation of the

idle roller friction parameter must be obtained using other means. A procedure
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(a) Curve fitting using viscous friction model.
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(b) Curve fitting using viscous and coulomb friction model.

Figure 2.5: Estimation of driven roller friction coefficients.
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that was used to estimate torque loss due to bearing friction in the idle rollers is

given in the following; this torque loss estimate was used in the model simulation.

The idea is to use measurements from two pairs of load cells, each pair mounted

on idle rollers which are separated by a known number of idle rollers in the un-

wind section of the EWL, i.e., there are a fixed number of idle rollers between

the two load cell rollers within the unwind section. To illustrate the procedure

consider a simple configuration like the one shown in Fig. 2.6 with load cells on

two consecutive identical idle rollers.

T1
T2 T3

Tm1 Tm2

ω1 ω2

Figure 2.6: Simple Configuration for Identification of Bearing Friction Loss in

Idle Rollers

The dynamic equations for the two rollers are

Jω̇1 = −τf +R(T1 − T2),

Jω̇2 = −τf +R(T2 − T3)
(2.34)

where τf denotes the bearing friction torque. The tension measured by the load

cells is an average of the tensions in adjacent spans, that is,

Tm1 =
T2 + T1

2
, Tm2 =

T3 + T2
2

(2.35)

where Tmi denotes the tension measured by load cells on the ith roller. At the

steady-state condition one can assume constant rotational speed for the idle
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rollers; from equations (2.34) one can obtain the following:

0 = −τf +R(T1 − T2)

0 = −τf +R(T2 − T3)
(2.36)

which gives

0 = −2τf +R(T1 − T3). (2.37)

Since

Tm1 − Tm2 =
T1 − T3

2
, (2.38)

an expression for the friction torque is

τf = R(Tm1 − Tm2 ) (2.39)

This expression for the friction torque based on the two measurements only applies

for this simple configuration. The EWL is equipped with two load cell mounted

rollers in the unwind section, one at R3 and the other at R9 (see Fig.2.4) and

there are five additional idle rollers including the two guide rollers in between the

two load cell rollers. Following the same procedure as was done for the simple

configuration, the equations at steady-state are

0 = −τf1 +R(T1 − T2)

0 = −τf2 +R(T2 − T3)
...

0 = −τf7 +R(T7 − T8)

(2.40)

Addition of the above equations results in

7∑

i=1

τfi = R(T1 − T8). (2.41)

By assuming

Tm1 ≃ T1 Tm2 ≃ T8, (2.42)
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it is possible to define the average friction torque as

τ̄f =

∑7
i=1 τfi
7

=
R(Tm1 − Tm2 )

7
. (2.43)

Note that the friction torque will depend on the angular velocity of the idle roller.

The following friction model which is a linear combination of a constant term and

a viscous term is considered:

τf = −c− bω (2.44)

To estimate the parameters, b and c, in (2.44) the machine is run at N different

line speeds. For each experiment the angular velocity of the idle rollers ωi, the

friction torque τfi are computed using (2.43). This gives N pairs of (ωi, τfi) that

can be used to estimate the friction parameters b and c by solving the following

minimization problem:

min
b,c

N∑

i=1

(−c− bωi − τfi)2 (2.45)

For the friction model considered in (2.44), this minimization problem is a linear

regression.

Table 2.2 shows the results from a set of experiments performed on the EWL

following the procedure described previously. The linear regression of the data

Line speed [FPM] 100 150 200 250 300 350

ω [rad/s] 13.33 20 26.66 33.33 40 46.66

Tm1 − Tm2 [lbf] 0.755 0.84 0.905 0.865 0.935 0.97

Table 2.2: Idle Roller Friction Loss Data at Various Line Speeds

reported in Table 2.2 gives the following values for the friction model coefficients:

c = 0.0127 [lbf-ft], b = 1.054e-4

[
lbf-ft

rad/s

]
(2.46)
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TENSION SIGNAL

2.3.4 Results from Web Line Simulation Using the Prim-

itive Element Models

The initial set of experiments consisted of a step change in tension reference with

zero line speed. The purpose of these experiments was to verify if the model is

capable of reproducing tension behavior when speed induced disturbances are not

present. Different reference values were tested with different gains for the tension

PI. A sample result for a step in tension of 20 lbf is shown in Fig. 2.7. All the

experiments showed that the model simulated data can follow the experimental

data closely.

The second set of experiments considered also a step change in tension ref-

erence, but with a non-zero line speed. In this case, speed induced disturbances

are observed in the tension signal and it is necessary to verify if the model is

able to reproduce these speed induced disturbances. For this case different step

changes and different PI gains were tried. Data from one of the experiments is

shown in Fig. 2.8. In general, the model simulated data appears to be able to

follow the average value of the tension but does not reproduce the speed induced

oscillations. From these preliminary experiments the need for modifications to the

existing model to capture the speed induced disturbances is clear.

2.4 Investigation of the Frequency Content in

the Tension Signal

The tension disturbances that are measured experimentally show a sinusoidal

behavior. The Fast Fourier Transform (FFT) of the signal can be used to analyze

the frequency content in the tension signal. Under the assumption that the tension
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Figure 2.7: Experimental and simulated data comparison for a step reference

change of 20 lbf with zero line speed.
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Figure 2.8: Comparison of experimental and simulated data for step reference

changes with non-zero line speed.
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oscillations are due to rotating machinery, there must be a correlation between the

rotational frequency of the rollers and some of the frequency components in the

tension signal. Consider a web line operating at line speed v [FPM], and consider

a non-ideal roller of radius R [in], then the rotational frequency f [Hz] of the roller

is given by

f =
v

10πR
(2.47)

Also the integer multiples of the frequency in (2.47) in the tension signal can be

generated from the same rotating element. The reasons why the higher order

harmonics are generated will be discussed in the following chapters.

Note that in the case of a non-ideal roll the radius will be time varying as the

material is released or accumulated on the roll, therefore the frequencies of the

induced tension disturbances will be time varying.

These observations can be verified with systematic experimentation. Figure 2.9

shows the FFT of a tension signal collected on the EWL while running the ma-

chine at a web velocity of 200 FPM with unwind radius of 6.375 in; using these

values in (2.47) one obtains f = 0.97 Hz. It is clear from Fig. 2.9 that the tension

signal contains the frequency f and its higher order harmonics. To further consol-

idate the claim that the oscillations are due to the non-ideal material roll, other

velocities have been tested. The values of the fundamental frequency computed

through equation (2.47) at 100 FPM, 200 FPM and 300 FPM, respectively with

the same radius of 6.375 in, are 0.485 Hz, 0.97 Hz and 1.455 Hz. Figure 2.10

shows the first peak of the FFT of the data at different velocities. Results show

a match between the computed values and the experimental data, this provide

a justification of how part of the disturbance frequencies can be linked to the

non-ideal behavior of the unwind roll.

It is also possible to show that some of the disturbance frequencies are instead
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Figure 2.9: Experimental data; line speed=200 FPM, unwind radius=6.375 in

due to idle and driven rollers. A set of experiment was performed to isolate

the oscillations due to eccentric rollers in the FFT of the tension signal from

the one due to out-of-round material roll. Since the frequencies due to a non-

ideal material roll are time dependant they will move if the FFT of the tension

signal is taken at different radii and line speeds, whereas frequencies induced by

rollers will maintain the same value for the same speed of the line. This strategy

can be employed to identify the frequencies which are not due to the non-ideal

material roll. Experiments were conducted at 200 FPM with different values for

the radius of the material roll. The results are plotted in Fig. 2.11. First, it can

be observed that the fundamental disturbance frequency due to the out-of-round

material roll changes when the radius changes. Note that for radius values of

Ra = 6.75 in, Rb = 5.75 in and Rc = 4.75 in, the corresponding fundamental

disturbance frequencies due to the material roll are fa = 0.94 Hz, fb = 1.11 Hz

44



2.4. INVESTIGATION OF THE FREQUENCY CONTENT IN THE

TENSION SIGNAL

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

Frequency (Hz)

T
en

si
on

 V
ar

ia
tio

n 
(lb

f)

 

 

300FPM
200FPM
100FPM

Figure 2.10: First peak of the FFT with different web velocities

and fc = 1.34 Hz, which can be clearly seen in Fig. 2.12. One can also observe the

presence of different disturbances that are not affected by the change in unwind

roll radius, particularly evident are the values f1 = 1.05 Hz (see Fig. 2.13(a)) and

f2 = 4.23 Hz (see Fig. 2.13(b)). The disturbance frequencies that are not affected

by the radius change must be due to non-ideal rollers. It is also important to note

that f2 = 4f1. Therefore, assuming that f1 is the fundamental frequency of a

disturbance due to an eccentric roller, then f2 is its forth harmonic. Using (2.47)

it is possible to determine the radius of the roller causing these disturbances. The

radius corresponding to the frequency f1 is:

R1 =
v

10πf1
= 6.05 in (2.48)

which is the radius of the S-wrap rollers.

These experiments show sufficient evidence to link the tension oscillations to

the non-ideal behaviors of rotating elements such us a material roll or idle/driven
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Figure 2.11: Experimental data with material roll at different radii (line speed

= 200 FPM)

rollers. One way a roll or roller can show non-ideal behavior is because of eccen-

tricity. Eccentricity occurs when the center of rotation of the roller is different

from its geometrical center. Chapter 3 will focus on modeling of eccentric rollers

and its effects on the governing equations of web tension and velocity. For the

case of a material roll, non-ideal behavior can also be due to the roll being out-

of-round. This situation with the material roll introduces additional challenges

which will be discussed in chapter 4.

In this chapter experimental model validation was shown for the fundamental

primitive elements. The models were able to reproduce the macroscopic behavior

recorded in the experimental data, therefore these models can be used for control

design in all those situations where the attenuation of the tension oscillations is

not required or the tension oscillations are not significant. Also, a procedure to

identify the source of the tension oscillations has been presented.
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Figure 2.12: First peak due to out-of-round material roll
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(b) Zoom around f2 = 4.23 Hz

Figure 2.13: Zoom of FFT around disturbance frequencies due to S-wrap roller.
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Chapter 3

Governing Equations for Web

Velocity and Web Tension in the

Presence of Eccentric Rollers

A roller is said to be eccentric if the center of rotation and the geometric center do

not coincide, and the deviation from the geometric center to the center of rotation

is called the eccentricity of the roller.

From the analysis of the frequency content of the measured tension signal,

oscillations due to an eccentric roller may be readily distinguished. In particular,

given the line speed and the radius of the eccentric roller, one can identify the

fundamental frequency of the oscillations and its higher order harmonics. In

order to reproduce in model simulations both the fundamental frequency and its

harmonics, it is necessary to modify the governing equations for web velocity on

the eccentric roller and web tension in span adjacent to the eccentric roller.

One key aspect that is identified is that the change in span length that is

adjacent to an eccentric roller causes tension oscillations. The web span tension

model is refined to include the change in span length due to non-ideal rollers.
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Model simulations require computation of the change in span length. For the case

of the eccentric roller, derivation of a closed form expression for the web span

length as function of the angular displacement of the eccentric roller is given. By

including the closed form expression for the web span length in the span tension

model, one can improve the accuracy of the model simulations. In addition, the

closed form expression for span length adjacent to an eccentric roller facilitates

better understanding of the intrinsic connection between the rotational motion of

the eccentric roller and the tension behavior in the spans, which provides insights

into why higher order harmonics are found in the tension signal.

Because of the eccentricity of the roller, the governing equation for the eccentric

roller angular velocity must be modified to include the additional torque acting

on the roller due to the fact that the center of mass and the center of rotation are

not coincident. Moreover, the torques on the eccentric roller due to the tensions

in web spans adjacent to the eccentric roller are different and are functions of the

angular position of the roller because the wrap angle changes with the rotation

of the eccentric roller. These aspects are discussed in this chapter, and governing

equations for web velocity on an eccentric roller and web tension in adjacent spans

are developed.

To verify that these new models provide improved correlation between model

simulations and experiments, a number of experiments are performed on the EWL.

Comparison of the data from experiments and model computer simulations show

that the new models are able to closely predict experimentally observed behavior.
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3.1 Modeling in the Presence of an Eccentric

Roller

The governing equation for web span tension in (2.22) was derived under the

assumption that the web span length is constant. In the presence of a non-ideal

roller or roll adjacent to the web span, this assumption does not hold anymore. In

fact, as the non-ideal element rotates the point where the web leaves the surface of

the roller changes with time and hence the web span length will be time varying.

Because of this (2.22) cannot be used and (2.21):

Ṫi =
vi(EA− Ti)− vi−1(EA− Ti−1) + (EA− Ti)ẋi − (EA− Ti)ẋi−1

(xi − xi−1)

must be used instead. The above governing equation for web tension in the i-th

span can be simplified by defining the length for the free span as Li = xi − xi−1:

Ṫi =
vi(EA− Ti)− vi−1(EA− Ti−1) + L̇i(EA− Ti)

Li
(3.1)

The solution of the above governing equation requires computation of the span

length. In the following the span length and its derivative will be computed as

function of the angular displacement and the velocity of the eccentric roller. To

reproduce all the harmonics in the measured tension signal due to the presence

of the eccentric roller it is not sufficient to include only the effect of the span

length but it is also necessary to modify the governing equation for web velocity

on the eccentric roller. The motion of an eccentric roller will affect web tension

in adjacent spans via the influence on two aspects: (1) change in length of the

spans adjacent to the roller and (2) additional (gravity induced) torque acting

on the eccentric roller due to imbalance which will result in a different surface

velocity at each point on the eccentric roller. These two issues will be discussed
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3.1. MODELING IN THE PRESENCE OF AN ECCENTRIC ROLLER

in this chapter. The length of the web in the spans adjacent to the eccentric

roller as a function of its angular displacement will be derived first followed by an

appropriate modification of the governing equation of the eccentric roller.

3.1.1 Derivation of Length of Web Spans Adjacent to an

Eccentric Roller

Consider a span where the downstream roller is eccentric and the upstream roller

is ideal. For deriving the web span length between the two rollers one has to

determine the points where the web leaves the upstream ideal roller and the point

where the web enters the downstream eccentric roller. For the eccentric roller the

point at which the web leaves that roller changes with the rotation of the roller;

therefore, one has to determine this point as a function of the angle of rotation of

the roller.

Consider a span between two ideal rollers for the initial setup of the problem,

and the downstream roller will be subsequently modified to an eccentric roller.

Two configurations are possible for a web span between any two rollers, underwrap

and overwrap. These are shown in Fig. 3.1. The under-wrap configuration is

considered first. Since the line segment ED is tangent to both the rollers, the two

right-angled triangles AEB and ADC are similar. Therefore, the angles AB̂E

and AĈD are equal, and so are the angles BÂE and CÂD. This fact will be used

to derive an equation for the length of the segment DE.

The angles AB̂E and AĈD being equal results in

R1

AB
=

R2

AC
⇒ AB = AC

R1

R2
. (3.2)

Also, the distance between the centers of the two rollers is given by

d = AB + AC. (3.3)
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AB
C

D

E

d = BCR1 = BE R2 = CD

(a) Under-wrap Configuration

A
B C

D
E

d = BCR1 = BE R2 = CD

(b) Over-wrap Configuration

Figure 3.1: Roller Configurations

Solving (3.2) and (3.3) results in

AC(d) =
d

1 + R1

R2

. (3.4)

Therefore, the angle AĈD as function of AC is given by

AĈD(d) = acos
R2

AC(d)
. (3.5)

To define the coordinates of the contact points which will be used to determine

the web span length, one must define an appropriate coordinate axis. To do this it

is simpler to first consider a span between two ideal rollers. Consider a coordinate

axis located at the center of the upstream roller with its abscissa (x-axis) along

the line joining the two rollers.

Given the Cartesian coordinates for B ≡ (XB, YB) and C ≡ (XC , YC), the
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B

CGd(t)

d0
e
CR

θ(t)

Figure 3.2: Eccentric idle roller: CG is the geometric center, CR is the center of

rotation, e is the eccentricity, d0 is the distance between the centers of rotation of

the two rollers, and d(t) is the distance between the geometric centers of the two

rollers.

coordinates for D(d) and E(d) are

D(d) ≡ (XD, YD) =



XC −R2 cos(AĈD(d))

YC −R2 sin(AĈD(d))


 ,

E(d) ≡ (XE , YE) =



XB +R1 cos(AĈD(d))

YB +R1 sin(AĈD(d))


 ,

(3.6)

and the span length is given by

L(d) =
√

(XD(d)−XE(d))2 + (YD(d)− YE(d))2. (3.7)

By substituting (3.6) in (3.7) a simplified expression for the span length may be

derived, which is given below:

L(d) =
√
d2 − R2

1 − 2R1R2 − R2
2. (3.8)

In the presence of an eccentric roller the distance d between the geometric

centers of the idle rollers varies with the rotation of the eccentric roller because

the center of the eccentric idler will be rotating. In order to use the previous

procedure it is necessary to determine the value of d(t). Let d0 be the distance
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between the centers of rotation and e be the eccentricity (see Fig. 3.2). The

expression for d(t) is given by

d(t) =
√
(d0 + e sin(θ(t)))2 + (e cos(θ(t)))2 =

√
d20 + 2e d0 sin(θ(t)) + e2 (3.9)

where θ(t) is the angle of rotation of the eccentric roller (see Fig. 3.2). The closed-

form equation for the span length in the case of an eccentric roller is obtained by

combining (3.8) and (3.9):

L(t) =
√
d20 + 2e d0 sin(θ(t)) + e2 − R2

1 − 2R1R2 − R2
2. (3.10)

The time derivative of span length also appears in the governing equation for

web tension in a span (see (3.23)); this is given by differentiating (3.10):

L̇(t) =
d0eω(t) cos(θ(t))

L(t)
(3.11)

where ω := θ̇ is the angular velocity of the eccentric roller.

A similar approach can be taken to develop the span length for the over-wrap

configuration. The first step is to find an expression for the length L as function

of the distance between the geometric centers of the rollers (see Fig. 3.1(b)). In

this case the angles BÂE and CÂD are equal. Since the triangles AED and ADC

are right-angled, it is possible to find the sine of the angle BÂE:

sin(BÂE) =
R2

AC
= sin(CÂD) =

R1

AB
=

R1

d+ AC
. (3.12)

Solving the above equation for AC gives

AC(d) =
R2d

R1 − R2

=
d

R1

R2
− 1

. (3.13)

From AC(d) it is possible to find the angle AĈD as

AĈD(d) = acos
R2

AC(d)
. (3.14)
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The angle AĈD is also equal to BÂE, which can be used to find the coordinates

of the points D(d) and E(d):

D(d) ≡ (XD, YD) =



XC +R2 cos(AĈD(d))

YC +R2 sin(AĈD(d))




E(d) ≡ (XE , YE) =



XB +R1 cos(AĈD(d))

YB +R1 sin(AĈD(d))




(3.15)

Note that d(t) for the over-wrap configuration is also given by (3.3). Substitution

of d(t) obtained using (3.3) into (3.15) gives the time dependant coordinates of

D and E. After simplification the closed-form expression for span length for the

over-wrap configuration is given by

L(t) =
√
d20 + 2e d0 sin(θ(t)) + e2 − R2

1 + 2R1R2 −R2
2. (3.16)

3.1.2 Governing Equation for Angular Velocity of an Ec-

centric Roller

A sketch showing the forces acting on a web wrapped eccentric roller, the key

distances, and the key angles that are required for writing the governing equations

for the rotational motion of the eccentric roller is shown in Fig. 3.3. Due to the

rotation of the eccentric roller the web entry point on the surface of the roller

varies, and as a result den and dex also vary. These must be taken into account

in the angular position and angular velocity governing equations for the eccentric

roller which are given by

θ̇ = ω

Jω̇ = −bfω − Ti−1den cos θen + Tidex cos θex +mge sin θ.

(3.17)
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P

Q

Ti−1

θen

den
θ

CG

CR

mg Ti

θex

dex

e

Figure 3.3: Eccentric idle roller: CG is the geometric center, CR is the center of

rotation, e is the amount of eccentricity, P is the web entry point, Q is the web

exit point, den is the distance between the center of rotation and the web entry

point, and dex is the distance between the center of rotation and the web exit

point.

In (3.17), den, dex, θen, θex are all functions of θ and can be derived based on the

analysis presented in the previous section.

Figure 3.4 shows the relationship between the angles at the entry contact point.

Employing the cosine law, the following expression for the cosine of the angle θen

can be obtained:

cos(θen) =
R2 + d2en − e2

2Rden
. (3.18)

To find den, the coordinates of the points P and CR in the same coordinate

axes must be found first. Equation (3.6) gives the coordinates of the point P in

a coordinate axes having the origin at the geometric center of roller i− 1 and the

x-axis aligned with line joining the geometric centers of the two rollers (note that

in the case of the eccentric roller the distance d between the geometric centers of
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den
θen

θen

CG

CR

R

e

Figure 3.4: The angle θen is determined by using the the cosine law on the

triangle with sides den, R and e.

α

dB CG

CR
d0

e
θ

Figure 3.5: Figure to determine the coordinates of CR in the frame having

the x-axis aligned with the line joining the geometric centers of the rollers (for

computation of den using (3.22)).

the rollers is function of θ; therefore, P is also function of θ). The coordinates of

the center of rotation CR in this reference frame are (see fig. 3.5)

CR =



d0 cos(α)

d0 sin(α)


 . (3.19)

Using again the cosine law for angle α as in

e2 = d20 + d2(θ)− 2d0d(θ) cos(α) (3.20)

and using the expression of d(t) in (3.9), an expression for cos(α) may be given
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by

cos(α) =
d0 + e sin(θ)

d(θ)
. (3.21)

Equipped with equations (3.6), (3.19), (3.21), the expression for the distance

den(θ) may be obtained:

den(θ) = ||P (θ)− CR(θ)||. (3.22)

A similar procedure may be used to determine dex and θex.

The governing equation for web tension in a span (2.21) may be rewritten

compactly by defining L(t) = xi(t)− xi−1(t):

Ṫi(t) =
vi(t)(EA− Ti(t))− vi−1(t)(EA− Ti−1(t)) + (EA− Ti(t))L̇(t)

L(t)
(3.23)

Under the assumption that there is no slip between the roller surface and the

web, the transport velocity of the web is given by vi = Riω; we have denoted

the angular velocity as simply ω instead of ωi to keep the notation simpler in the

previous derivations. Therefore, the governing equation for web velocity on the

eccentric roller may be obtained by substituting vi = Riω in (3.17). From the

analysis of the modified governing equations for web tension in a span and web

velocity on an eccentric roller, it is possible to highlight the reasons for the pres-

ence of tension disturbances with higher order harmonics other than the rotation

frequency of the roller. First, the appearance of the term mge sin θ in the govern-

ing equation for the angular velocity of the eccentric roller indicates that there is

a disturbance with frequency equal to the rotational frequency of the roller (the

fundamental frequency of the tension disturbance). The governing equation for

web tension (3.23) contains the angular velocity of the roller through two terms:

EAvi = EAdenωi and EAL̇ = EAd0eωi cos θi/L. Because the angular velocity

(ωi) in the first term has the fundamental frequency of the disturbance, web ten-

sion will contain this frequency component also. Due to the multiplication of ωi
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3.2. EXPERIMENTS AND MODEL SIMULATIONS

and cos θi in the second term, the second order harmonic will be present in the

tension signal. Since the web tension appears linearly in the governing equation

for web velocity on the roller, it will induce oscillation in the velocity signal with

the first and second harmonic. Because the surface velocity of the roller has the

first and the second harmonic, the multiplication of ωi and cos θi will also generate

the third harmonic, and so on. It is evident that the coupling between roller sur-

face velocity and web tension creates the higher order harmonics in the measured

signals. Understanding this coupling and the consequences of having eccentric

rollers is critical in designing control systems to regulate web tension.

3.2 Experiments and Model Simulations

To validate the proposed model for eccentric rollers, the Euclid Web Line (EWL)

is used as an experimental platform; a sketch of the platform configuration is

shown in Fig. 2.4. From experimental observations it was noted that the S-wrap

lead in the EWL is eccentric. The eccentricity has been included in the computer

simulations using the models presented in this chapter. The goal of the simula-

tion and experimental study is to determine whether the models will be able to

reproduce steady-state oscillations that are found in the measured tension signal.

For this reason it was chosen to conduct experiments at constant web speeds and

analyze the frequency content of the tension signal using the Fast Fourier Trans-

form (FFT) of the signal data obtained from both the experiments and model

simulations.

At a given web velocity v, the fundamental frequency of the tension disturbance

induced by the eccentric S-wrap roller is given by

f0 =
v

2πRS
. (3.24)

60



3.2. EXPERIMENTS AND MODEL SIMULATIONS

It is expected that the tension signal from both the model simulations and exper-

iments will contain oscillations at the fundamental frequency and its harmonics

at 2f0, 3f0, . . . , etc.

3.2.1 Results

Figures 3.6(a) and 3.6(b) show the FFT of the tension signals from experiments

and model simulations, respectively, for the line speed of 200 FPM. At this line

speed the fundamental frequency of the tension oscillations due to eccentricity

in one of the S-wrap rollers is f0 = 1.06 Hz. The presence of the fundamen-

tal frequency of the S-wrap and its higher-order harmonics is evident from the

experimental data. The same frequencies can be easily recognized in the FFT

of the tension data from model simulations, and the amplitude of these tension

oscillations are also comparable. Note that the FFT of the experimental data

has disturbances at other frequencies because of the presence of other non-ideal

rotating elements in the web line which are not included in the model simulation.

Figure 3.7 and Figure 3.8 show results for line speeds of 250 FPM and 300 FPM.

Note that achieving a good match in all the amplitude of the disturbance

frequencies is a challenging task. In fact multiple factors contribute to the final

amplitude of the disturbance frequencies. For example, the parameters for the

friction model of the idle rollers identified with the method proposed in chapter 2

are not exact but only give a sense of the order of amplitude of the friction

parameters. Moreover, the real parameters are sensible to the operative condition

of the machine and can change from one run to the next. Also, the amplitude

of the oscillations depends on the frequency response of the system of web spans

and idle rollers. The portion of the web machine between two driven rollers
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(a) FFT of the experimental data.
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(b) FFT of the simulated data.

Figure 3.6: Comparison between experimental and simulation data at 200 FPM
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can be considered as a system of masses (the idle rollers) and springs (the web

span). Like a system of masses and springs the system of idle rollers and web

spans will have its frequency response and it will amplify disturbances close to

the resonance frequencies of the system. In order to have in simulation the same

frequency response of the real system is necessary to have a good estimation of

the inertias of the idle rollers, the length of the web spans and the Young modulus

of the web. While computation of the inertias and measurements of the web span

can be obtained with good precision, estimation of the Young modulus are not

very accurate.
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(a) FFT of the experimental data.
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(b) FFT of the simulated data.

Figure 3.7: Comparison between experimental and simulation data at 250 FPM
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(a) FFT of the experimental data.
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(b) FFT of the simulated data.

Figure 3.8: Comparison between experimental and simulation data at 300 FPM
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Chapter 4

Governing Equations for Web

Velocity and Web Tension in the

Presence of an Out-of-Round Roll

The discussion in Chapter 2 demonstrated that some of the oscillations found in

the tension signal can be associated to the presence of a non-ideal material roll. To

a certain extent the manner in which the presence of an out-of-round roll affects

web tension and velocity is similar to the case of an eccentric roller. Again both

the governing equations for web tension and web velocity need to be modified to

reproduce in model simulations the oscillations found in the measured signal.

Similar to the case of the eccentric roller if a material roll is out-of-round, the

length of the web span between the material roll and the idle roller adjacent to

it will be time varying. Variations in span length induce variations in tension as

described by equation (3.1). To reproduce in simulations the oscillations due to

the out-of-round material roll the first step is to find an expression for the time

varying web span length. This is a considerably harder problem for the out-of-

round material roll than the eccentric roller discussed in Chapter 3. Even for a
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simple roll shape, a closed form expression for the web span length cannot be

found and only numerical approximation can be derived. The first part of the

chapter is dedicated to the development of an algorithm for the computation of

the span length as function of the angular displacement of the out-of-round roll.

The problem of finding the span length can be summarized as follows. Given

a generic profile for the out-of-round unwind material roll, compute the length of

the adjacent span as a function of time as the material is released from the roll.

It is assumed that the downstream roller is perfectly circular.

As a starting point, in Section 4.1, an elliptical material roll is taken into

consideration. An analytical approach to the problem did not provide any insights

into finding a closed form expression for the span length as a function of angular

displacement of the material roll. To overcome this problem a convex optimization

problem is formulated and an efficient numerical approach is developed to obtain

the common tangent to the material roll and the downstream roller. Once the

common tangent is obtained, the span length and rate of change of span length

may be found numerically as well.

The case of the convex shaped material roll is considered in Section 4.2; one

example that is common in practice, and falls into this category, is a roll with a

flat spot. This situation presents additional challenges over that of the elliptical

roll. First, it is necessary to find an efficient way to characterize the shape of the

roll. Then an expression for the tangent of the roll for any point on its surface

must be derived. And finally, an optimization problem may be formulated to find

the common tangent to both the material roll and the downstream roller.

The modification to the velocity equations is described in Section 4.2.1. Three

main adjustments are made to the ideal model. First, the center of mass of the

roll might not coincide with the center of rotation. In this case an additional
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torque due to gravity has to be included in the model. Second, the arm length

of the torque due to the tension in the first span is not equal to the radius of the

roll; it is time varying and it must be computed for solving the velocity equations.

Lastly, the expression for the roll inertia needs to be obtained and it differs from

the case of the ideal roll.

After including the modifications to the governing equations of web tension and

web velocity, a series of experiments was performed to verify the proposed model.

Section 4.3 gives a discussion of the results obtained from the comparison of the

experimental data with data from model simulations. Since the results of the

comparison showed poor correlation between the two sets of data, it was evident

that the model needed further improvements and this was the motivation for the

modification of the governing equation of web tension described in Section 4.4.

To understand the reasoning for this last modification one has to revert back to

the first principles derivation of governing equations. In particular the governing

equation for web tension is obtained applying the law of conservation of mass

for the control volume containing the web span, i.e., at any instant in time the

variation of mass in the control volume is equal to the difference of entering and

exiting material flow rate. In the case of an ideal roll it can be shown that

the peripheral velocity of the web on the neighboring rolls is proportional to the

material flow rate. Section 4.4 provides a discussion about how in the presence

of a non-ideal roll the the peripheral velocity and the material flow rate are not

proportional. An explicit expression for the material flow rate has to be computed

instead, without relying on it being proportional to the peripheral velocity. The

chapter is concluded with the discussion of the comparison of the data from model

simulations and experiments after an explicit expression for material flow rate is

included in the model.
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x

y

(a) Elliptical unwind roll in the initial position.

x

y θ

L(0)

L(θ)

(b) Elliptical unwind roll rotated by θ.

Figure 4.1: Example of an out-of-round material roll.

4.1 Elliptically Shaped Material Roll

Consider the case of an elliptical unwind roll, and suppose that the major axis

of the ellipse coincides with the y axis of the Cartesian coordinate axis as shown

in Fig. 4.1(a). In order to compute the length of the span, the line tangent to

both the ellipse and the downstream roller must be found. When the material roll

rotates by an angle θ (see Fig. 4.1(b)), the point of release of the material changes

and so does the span length, which is a function of the angular displacement θ.

Finding an analytical expression for L(θ) is not a trivial problem since the system

of equations that must be solved is nonlinear. In fact, it is difficult to find a

solution in closed form even for this simple shape. One way the problem can be

approached is as follows: given a point P0 on the ellipse, find the line t tangent

to the ellipse at that point. If the distance between the line t and the center of

the idle roller is equal to the radius of the idle roller, then the line t is tangent to

both the ellipse and the roller and hence it is the desired line. Once the tangent

t is found, finding the length L is straightforward. An illustration of how this

construction works is shown in Fig. 4.2. The same figure shows that there are

two tangents t2 and t3 which satisfy the previous condition; this will also cause

additional difficulties when the problem is solved numerically. The procedure is
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x

y

d(t, C)

d(t2, C) = R

d(t3, C) = R

t

t2

t3C

Figure 4.2: Procedure to find the length of the span.

explained in more detail in the following.

Consider an ellipse e, representing the material roll, centered at the origin of

the Cartesian reference frame with the equation:

e :
x2

a2
+
y2

b2
− 1 = 0. (4.1)

Note that this equation only describes an ellipse centered at the origin with major

and minor axes along the axes of the Cartesian coordinate system. Also consider

a circle centered at C ≡ (xc, yc) of radius R, representing the first idle roller. The

problem is to find the equation of the line tangent to both the ellipse and the

circle, which will represent the first web span. For any given point Pe ≡ (xe, ye)

on the ellipse, satisfying the equation in (4.1), the equation for the tangent to the

ellipse at the point Pe is

t(xe, ye) :
xex

a2
+
yey

b2
− 1 = 0. (4.2)

Now consider a generic line ℓ : αx + βy + γ = 0 and a point P0 ≡ (x0, y0); the
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equation that gives the distance between the line and the point is given by

d(ℓ, P0) =

√
αx0 + βy0 + γ

α2 + β2
. (4.3)

For this line to be a tangent t to the ellipse, the following must be true:

α =
xe
a2
, β =

ye
b2
, and γ = −1. (4.4)

Therefore, the distance between the tangent t and the center of the roller C is

d(t(xe, ye), C) =

√
|αxc + βyc + γ|

α2 + β2
(4.5)

Note that since xe and ye are on the ellipse, they are not independent. In fact,

they can be parameterized in the following way:

xe = a cos(φ), ye = b sin(φ) (4.6)

with φ ∈ [0, π/2], a and b being the length of the minor and major axes of the

ellipse, respectively. Hence the distance d(t(xe(φ), ye(φ)), C) = d(φ) is a function

of the parameter φ only. This distance will equal R only for the two tangents t2

and t3 in Fig. 4.2. Therefore the cost function

J = (d(φ)− R)2 (4.7)

will be positive everywhere except for the two values of φ corresponding to the

tangents t2 and t3 in Fig. 4.2, for which it will be zero. Hence, by solving the

optimization problem

min
φ
J(φ), (4.8)

the desired φ can be found, which when substituted into (4.6) and (4.2) will

give the equation of the common tangent. In order to avoid the possibility that

the numerical algorithm gives the solution corresponding to the tangent t3 it
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is possible to constrain the numerical algorithm to search in the interval [0, φ0]

instead of [0, π/2], where φ0 is the value of φ for which the tangent to the ellipse

passes through the center C of the idle roller. More specifically, φ0 solves the

equation:

d(φ0, C) = 0.

This equation can be easily solved analytically and its solution is

φ0 = arcsin

−yc
b +

√
x2
c

a2

(
x2
c

a2 +
y2c
b2 − 1

)

x2
c

a2 +
y2c
b2

. (4.9)

Note that restricting the search between [0, φ0] not only avoids the problem of get-

ting the undesired solution but it also results in achieving a faster convergence time

for the numerical algorithm. In fact, the objective function J(φ) is a strictly con-

vex function in the interval [0, φ0] and numerical algorithms for minimum search

are extremely efficient when applied to convex functions. Once the equation of

the tangent t2 is obtained, finding the length of the span is straightforward.

Note that the equation for the tangent to the ellipse in (4.2) is valid only

if the major and minor axes of the ellipse are aligned with the fixed coordinate

system F. If the major and minor axes of the ellipse are not aligned with the fixed

coordinate axes, as is the case with a rotating ellipse, one can perform appropriate

transformations to resolve the issue in the following manner. Let the major axes

be rotated by an angle ωt with respect to the fixed coordinate system F, where ω

is the angular velocity of the elliptical material roll. Given a point P0 ≡ (x0, y0) on

the surface of the rotated material roll, the problem of finding the tangent t to the

material roll at the point P0 needs to be solved. Now consider a second coordinate

system F′ having its axes along the major and minor axes of the elliptical material
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roll. The coordinates of point P0 in F′ are



x′0

y′0


 =




cosωt sinωt

− sinωt cosωt






x0

y0


 . (4.10)

In F′ since the major and minor axes of the ellipse are aligned with the coordinate

axes, (4.2) can be used to find the equation of the tangent t. So (4.2) in F′ can

be written as

t(x′0, y
′

0) :
x′0x

′

a2
+
y′0y

′

b2
− 1 = 0. (4.11)

To transform t back to the coordinate system F, the following change of coordi-

nates must be performed:



x′

y′


 =




cosωt sinωt

− sinωt cosωt






x

y


 . (4.12)

By substituting (4.12) into (4.11) the equation for t in F is obtained. This equation

can be used instead of (4.2) to set up the optimization problem when the major

and minor axes of the ellipse are not aligned with the axes of the fixed coordinate

system F. It should be noted that as a consequence of (4.10), (4.11) and (4.12),

d is also a function of ωt. Therefore, the new optimization problem is given by

min
φ∈[φmin,φmax]

J(φ, ωt). (4.13)

The algorithm for computing the length L(t) is given in Algorithm 1. Algo-

rithm 2 gives a basic implementation for the cost function J(φ, ωt) that defines

the optimization problem.

4.2 Convex Shaped Material Roll

The problem of computing the length of the web span between a convex shaped

material roll and a perfect idle roller is considered in this section. This problem can
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Algorithm 1: Computation of the web span length in the presence of an

elliptical material roll

input : Roller coordinates (Xi, Yi), length of major and minor axes a and

b, roller radius R, angular velocity of the material roll ω,

configuration (over-wrap, under-wrap)

output: Length of the web span L(t)

begin

compute φ0 as in (4.9);

if Under-wrap then

φmin ← 0, φmax ← φ0;

else

φmin ← φ0, φmax ← π/2;

for t← 0 to tfin do

δ ← ωt;

solve min[φmin,φmax] J(φ, δ);

begin Compute the contact point Pcont ≡ (Xcont, Ycont) on roller

AngleOfTangent← atan2(β,−α);

if Under-wrap then

Xcont ← xc +R cos(AngleOfTangent− π/2);

Ycont ← yc +R sin(AngleOfTangent − π/2);

else

Xcont ← xc +R cos(AngleOfTangent + π/2);

Ycont ← yc +R sin(AngleOfTangent + π/2);

L(t)← norm(P − Pcont);
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Algorithm 2: J(φ, δ)

input : A point P0(φ) on the surface of the ellipse, the angle of rotation

δ = ωt of the ellipse respect to the fixed frame F, the data

describing the rollers (radii, coordinates etc.)

output: Distance between the tangent at the point P0(φ) and the center C

of the roller

begin

compute the point P ′

0 as in (4.10);

compute the tangent to P ′

0 as in (4.11);

compute the equation of the tangent in the frame F using (4.12);

compute the distance as in (4.3) using the coefficient obtained in the

previous step;

be divided in three sub-problems. First, given a convex shaped roll it is necessary

to find a way to characterize the roller, which is to find a way to associate a

parametric equation that is, at the same time, accurate enough to describe the

surface of the roller but simple enough to allow the computations necessary for

the subsequent steps. Second, once the equation describing the shape of the roller

is obtained, it is necessary to obtain an equation for the tangent of the roller as a

function of the angular displacement. Finally, an adjusted optimization problem

must be formulated to find the equation for the line tangent to the generally

shaped roller and the idle roller.

To describe the shape of the roller it is assumed that a list of all the maxi-

mum and minimum radii of the roll and their angular position with respect to a

fixed coordinate axis is known; an illustration of this characterization is shown in

Fig. 4.3. Note that the positions of the radius maximum and minimum are func-
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Figure 4.3: Characterization of a generic shaped material roll.

tions of the angular displacement of the roll θ. The algorithm for the computation

of the span length is derived assuming that the roll is fixed. The modifications to

the algorithm to account for the movement of the roll are discussed later in the

section.

One possible approach to characterize the convex shape is to find a single

function that can describe the entire profile of the roll; this approach leads to

undue complexity. In fact, finding such a function is non-trivial and, moreover,

the resulting function will be either a highly nonlinear function or a function

with many parameters; this would also result in numerical implementation of

subsequent steps to be more computationally intensive. To avoid this problem the

characterization of the shape is done in intervals, that means a different function is

used to describe the shape of the roller between each minimum and maximum. In

other words, given the list of the locations (φm1, φM1, φm2, φM2, . . . , φmn, φMn) and

the values of minima and maxima of the radius (rm1, rM1, rm2, rM2, . . . , rmn, rMn,),
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the function takes the form:

r(φ) =





r1(φm1, φM1, rm1, rM1, φ) if φm1 ≤ φ ≤ φM1;

r1(φM1, φm2, rM1, rm2, φ) if φM1 ≤ φ ≤ φm2;

...

r2n(φMn, φm1, rMn, rm1, φ) if φMn ≤ φ ≤ φm1.

(4.14)

To guarantee that each junction point is an extreme point and in order to avoid

any kind of discontinuity, each function ri must be such that

ri(φmj) = ri+1(φmj) = r(φmj),

r′i(φmj) = r′i+1(φmj) = 0.

(4.15)

Let us now consider a specific interval (φm, φM), the problem is to find a function

r(φ) such that r(φm) = rm, r(φM) = rM and r′(φm) = r′(φM) = 0. We start with

the simplest scenario, which is φm = 0, φM = 1, rm = 0 and rM = 1, and consider

the function:

r0(φ) = a3φ
3 + a2φ

2 + a1φ+ a0,

r′0(φ) = 3a3φ
2 + 2a2φ+ a1.

(4.16)

Note that a third order polynomial is the simplest function that can satisfy all

the constraints. Now considering the constraints on the extreme points zero and

one. It is possible to solve for (a0, a1, a2, a4) as follows:

r0(0) = 0 ⇒ a0 = 0,

r0(1) = 1 ⇒ a1 + a2 + a3 = 1,

r′0(0) = 0 ⇒ a1 = 0,

r′0(1) = 0 ⇒ 2a2 + 3a3 = 1.

(4.17)

Solving the system of equations gives r0(φ) = −2φ3 +3φ2. The function r0 solves

the problem for the simplest case, but this solution can be used to find the solution
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to the general case just by scaling and translating r0. First, consider the function

r0 in the new variable φ̃ = ∆φ φ with ∆φ = φM − φm:

r̃(φ̃) = −2 φ̃3

∆φ3
+ 3

φ̃2

∆φ2
. (4.18)

It is simple to verify that the function r̃ still holds all the properties of r0 except

for r̃(∆φ) = 1. Now consider the new variable φ̂ = φ̃ + φm and a new function r̂

given by

r̂(φ̂) = −2(φ̂− φm)
3

∆φ3
+ 3

(φ̂− φm)2
∆φ2

. (4.19)

The function r̂(φ̂) has the property that r̂(φm) = 0 and r̂(φM) = 1. With a

scaling and translation along the y axis one can find the function for the general

case which is

r(φ) = (r(φM)− r(φm))
[
−2(φ− φm)

3

∆φ3
+ 3

(φ− φm)2
∆φ2

]
+ r(φm). (4.20)

Note that the same function can be used for intervals starting in a maximum and

ending in a minimum by simply switching φm with φM .

The next step is to find an expression for the line tangent to the perimeter of the

roller for a given point on the perimeter identified in polar coordinates by the pair

(φ, r(φ)). Consider two points on the perimeter (φ, r(φ)) and (φ+ dφ, r(φ+ dφ))

such that φ and φ + dφ belong to the same interval (φm, φM). The line crossing

the two points is given by the equation

y = y1 +
y1 − y2
x1 − x2

(x− x1)

= r(φ) sin(φ) +m(φ, φ+ dφ)(x− r(φ) cos(φ))
(4.21)

where

m(φ, φ+ dφ) =
r(φ+ dφ) sin(φ+ dφ)− r(φ) sin(φ)
r(φ+ dφ) cos(φ+ dφ)− r(φ) cos(φ) . (4.22)
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The angular coefficient m of the tangent at the point (φ, r(φ)) may be obtained

by

m = lim
dφ→0

r(φ+ dφ) sin(φ+ dφ)− r(φ) sin(φ)
r(φ+ dφ) cos(φ+ dφ)− r(φ) cos(φ) . (4.23)

The function r(φ) in (4.20) can be rearranged in the form:

r(φ) = δφ3 + γφ2 + βφ+ α. (4.24)

Therefore the expression for the angular coefficient is given by

m =
n3φ

3 + n2φ
2 + n1φ+ n0

d3φ3 + d2φ2 + d1φ+ d0
,

n0 = α sin φ− β cos φ, n1 = β sinφ− 2γ cosφ

n2 = γ sinφ− 3δ cosφ, n3 = δ sin φ

d0 = α cosφ− β sinφ, d1 = β cosφ+ 2γ sinφ

d2 = γ cosφ+ 3δ sinφ, d3 = δ cosφ.

(4.25)

This expression will be used in the next step to setup the optimization problem

that will be used to find the equation for the common line tangent to the material

roll and the idle roller.

The basic idea to find the line tangent for this case is the same as the one

used for the elliptically shaped roll. In fact, among all the tangents to the convex

shaped roller, the one which is tangent to the idle roller is the one having the

distance to the center of the idle roller equal to the radius. Therefore the same

minimization problem can be used. Given a generic point on the surface of the

material roll described in polar coordinates by (φ, r(φ)), the line tangent to the

surface at that point is given by

y = r(φ) sinφ+m(x− r(φ) cosφ),

t(φ) : y −m(φ)x+m(φ)r(φ) cosφ− r(φ) sinφ = 0

(4.26)
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with m as given in (4.25).

The distance between the tangent t and the center of the roller C is

d(t(φ), C) =

√
|αxc + βyc + γ|

α2 + β2
(4.27)

where α = −m(φ), β = 1 and γ = m(φ)r(φ) cosφ− r(φ) sinφ.

By solving the optimization problem

φex = min
φ
J(φ) = min

φ
(d(φ)− R)2, (4.28)

a point (φex, r(φex)) is found on the generally shaped roller perimeter whose tan-

gent distance from the center of the idle roller is equal to R. Notice that, similar

to the case of elliptical material roll, the optimization problem has two solutions

one corresponding to the over-wrap on the idle roller and the other to the under-

wrap (which is shown in Fig 4.2). For the elliptical roll the ambiguity was solved

by finding an expression for φ0 and limiting the search space to a domain con-

taining only one of the solutions. The same procedure is not applicable in this

case because it is not possible to find a closed form for φ0; a slightly different

approach is taken for this case. In fact, instead of limiting the search space for

φ to a region with one solution, a modified cost function Jp(φ) which has only

one solution is suggested. First, consider the cost function J(φ) as in (4.28), in

general it will have a behavior similar to the graph shown in Fig. 4.4 with the two

minima corresponding to the under-wrap and over-wrap configurations, and the

maximum corresponding to the angle φ0 for which the tangent passes through the

center of the idle roller.

First consider the under-wrap configuration. The objective is to add in the

cost function a term that penalizes all the angles (φ) that are greater than φ0.

Even though φ0 is unknown, it is possible to find a way to determine whether φ
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Figure 4.4: Cost function J(φ) for the roller in Fig. 4.3.

 

    

P1

P2

t1 t2ℓ1 ℓ2

Figure 4.5: Penalization example: P1 is not penalized since mℓ1 > mt1
, while P2

is penalized since mℓ2 > mt2
.
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is greater or smaller than φ0. Consider a point P ≡ (φ, r(φ)) on the perimeter,

its tangent t, and the line ℓ connecting P with the center of the idle roller C.

If the angular coefficient mt of t is smaller than the angular coefficient mℓ of ℓ

then φ < φ0, otherwise, φ ≥ φ0. This is graphically shown in Fig. 4.5. Define the

penalty variable

penaltyu =





1, if mt ≥ mℓ;

0, otherwise.
(4.29)

A new cost function that uses the variable penaltyu can now be defined:

Jp(φ) = (1− penaltyu)(d(φ)−R)2 + penaltyu(P +Qφ) (4.30)

with P and Q being two large positive numbers, P > Q. For this new cost

function, whenever φ < φ0, Jp will be the same as in (4.28), whereas when φ ≥ φ0

Jp = (P + Qφ) which makes the overall cost function look like the one shown in

Fig. 4.6. The cost function Jp now has only one minimum corresponding to the

under-wrap solution. Moreover, since the cost function Jp is quasi-convex, the

optimization algorithm is expected to have better numerical properties compared

to the non-convex function J .

A dual situation arises for the over-wrap case. The algorithm will search for

solutions with φ > φ0; the penalty variable will be 1 when φ ≤ φ0 which is

true when mt ≤ mℓ. Also in order to make the cost function quasi-convex, the

expression of Jp must be adjusted as follows:

Jp(φ) = (1− penaltyo)(d(φ)−R)2 + penaltyo(P −Qφ) (4.31)

where penaltyo is the new penalty variable and the penalty term (P − Qφ) now

has a negative slope.

An expression for the penalty variable and the cost function Jp that covers

both scenarios may be found in the following manner. We first define the wrap
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Figure 4.6: Modified cost function Jp(φ) for the roller in Fig. 4.3.

configuration as

wrap =





1, for over-wrap configurations;

−1, for under-wrap configurations.
(4.32)

Using the new wrap configuration variable a general expression for the penalty

variable and the cost function may be given by

penalty = ((wrap < 0)(mt ≥ mℓ))

+ ((wrap > 0)(mt ≤ mℓ)) + (mt > 0)

Jp(φ) = (1− penalty)(d(φ)− R)2 + penalty(P − (wrap)Qφ)

(4.33)

In the expression for the for the penalty variable, note that the term (mt > 0)

has been added. This will force the the penalty to be 1 when the angular coeffi-

cient is positive. In fact, assuming the center of the generally shaped idle roller

and the center of the idle roller to be aligned on the x axis and the material roll

having radius greater then the radius of the idle roller, the line tangent to both
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


xc − cos(φex)

yc − sin(φex)




R

Figure 4.7: Computation of the web span extreme points. Because of the simi-

larity of the triangles CuRP and CRQ, the angles in Cu and C are equal.

rollers has to have a negative slope, therefore points corresponding to tangents

with positive slopes can be penalized since they cannot be a solution to the min-

imization problem. Observe also that both assumptions are reasonable: material

rolls are commonly bigger than idle rollers, and, it is always possible to set up the

optimization problem in a cartesian frame in which the center of the rollers are

aligned since the length of the span and its derivative are invariant to isometric

frame transformations.

Once the optimization problem is solved, the coordinates of the exit point of

the web on the roll P = (φex, r(φex)) are determined. The polar coordinates for P

can easily be converted into Cartesian coordinates. Also, the coordinates of the

contact point of the web on the downstream roller can be obtained as shown in

Fig. 4.7. With the expressions for the extreme points P and Q of the web span

the computation of the length of the span is straight forward:

L = ||P −Q||. (4.34)
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As explained earlier in the section, the algorithm has been derived without con-

sidering the movement of the roll. When the roll moves the positions of the mini-

mum and maximum radius on the roll change. Specifically, assuming that the orig-

inal list of radius minima and maxima {(φm1, rm1), (φM1, rM1), . . . , (φmn, rmn, ),

(φMn, rMn)} is given for the initial displacement of the roll θ(0) = 0. Once the roll

moves to a new position θ(t) the position of the radius minima and maxima will

shift by an angle equal to θ(t). Therefore, the list of radius minima and maxima

changes to {(φm1 + θ(t), rm1, ), (φM1 + θ(t), rM1), . . . , (φmn + θ(t), rmn, ), (φMn +

θ(t), rMn)} and the algorithm for the span length can be applied to the new list.

Therefore, for any given angular displacement of the roll θ(t) the corresponding

span length L(θ(t)) can be computed.

Because it is not possible to obtain a closed form expression for the web span

length, the inclusion of the effects of an out-of-round roll in the computer simula-

tion is more complex compared to the case of the eccentric roller. The optimization

problem can only be solved off-line before the computer simulation starts, but the

optimization problem is completely defined only when the angular displacement

is known. The angular displacement of the roll is obtained from the integration of

the dynamic equation of the roll once the simulation starts. Moreover, the span

length derivative L̇(t) that is required to solve the governing equation of tension

cannot be obtained analytically, therefore, a numerical approximation for L̇(t) is

required.

From these observations it is clear that in order to implement in model sim-

ulations the effects of the presence of the out-of-round roll, it is necessary to

have a discretization of the angular displacement of the roll. By doing so, the

optimization problem can be solved off-line before the simulation starts, and a

look-up table can be used on-line to approximate the web span length when the
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simulation is running. Suppose the roll displacement is discretized with N equally

distributed points, then the finite set of angular displacements is given by:

Θ = {θ1, . . . , θN}, θi = (i− 1)δθ, δθ =
2π

N
. (4.35)

The web span length for each angular position in Θ can be computed using the

algorithm described in this section. The couples (θi, L(θi)) will constitute a look-

up table that can be used during the execution of the simulation to compute an

approximation of the web span length and its derivative. In particular, suppose

that at simulation time tk the angular displacement θ(tk) is obtained from the

integration of the governing equations of velocity with θi ≤ θ(tk) < θi+1, θi, θi+1 ∈

Θ, then the span length and span length derivative can be approximated with:

L(θ(tk)) = L(θi) +
θi+1 − θ(tk)
θi+1 − θi

(L(θi+1)− L(θi)),

L̇(θ(tk)) =
L(θ(tk))− L(θ(tk−1))

tk − tk−1
.

(4.36)

In summary, because of the presence of the out-of-round material roll, the gov-

erning equation for web tension need to include the effect of the time varying web

span length. Therefore, equation (3.23) must be used to simulate the effect of the

presence of the non-ideal roll. The span length and its derivative cannot be com-

puted in closed form, a numerical approximation is used instead and a procedure

to obtain this numerical approximation was described in this section.

4.2.1 Governing Equation for Angular Velocity in the Pres-

ence of an Out-of-round Roll

The governing equation for the angular velocity in (2.1) is not valid for an out-of-

round material roll. This is mainly due to three reasons: the location of the center

of rotation may not coincide with the center of mass of the roll, the expression for
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T1

CG

mg

Figure 4.8: Sketch of the out-of-round roll and torques acting on it. Note: CR

is the center of rotation of the roll and CG is its center of gravity.

the time varying inertia is different and the torque due to the tension of the web

is not equal to RuT1. The necessary corrections to equation (2.1) to account for

these aspects will be discussed in this section. A sketch of the out-of-round roll

and all the torques acting on it is shown in Fig. 4.8. The new governing equations

for the roll are

θ̇ = ω,

Juω̇ = −τf − dCGCR
mg sin θ − dexT1 − J̇uω + τu

(4.37)

where τf is the friction torque, dCGCR
is the distance between the center of gravity

and the center of rotation, m is the mass of the roll, g is the acceleration due to

gravity, dex is the distance between the exit point of the web P and the center of

rotation of the roll CR, Ju is the total roll inertia and τu is the input torque. The

remainder of the section explains how each term in (4.37) is derived.

First, because of the out-of-roundness of the roll, it is possible that the center

of mass of the roll is different from its center of rotation. In this case an extra
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torque term due to gravity needs to be added to the governing equation of the

angular velocity. The equations to compute the center of gravity CR of the roll

are

x̄ =

∫∫
xρdA

m
=

∫∫
r2(φ) cos(φ)ρ(θ)drdφ

m
,

ȳ =

∫∫
yρdA

m
=

∫∫
r2(φ) sin(φ)ρ(θ)drdφ

m

(4.38)

where dA = r(φ)dφdr, ρ is the roll density, and r(φ) describe the roll in polar

coordinates as described in the previous section. The lever arm of the torque due

to gravity is given by the distance between the center of rotation CR and the

center of gravity CG = (x̄, ȳ).

The computation of the roll inertia is also more complex compared to the case

of an ideal roll. The total moment of inertia is given by the sum of the core

inertia, shaft inertia and the inertia due to the web. To obtain the component of

the inertia due to the web Jw, it is necessary to start from the general expression

for the computation of the moment of inertia:

Jw =

∫∫∫

V

ρd2(φ)dV = ρ

∫ ww

0

dℓ

∫∫

S

d2(φ)dS

where the infinitesimal volume dV = dSdℓ and since the function d(φ) equal along

the width of the web, the integral along the width can be separated resulting in

Jw = ρww

∫∫

S

d2(φ)dS = ρww

∫ 2π

0

∫ r(φ)

Rc

d2(φ)d(φ)dφdd

where the infinitesimal area dS = d(φ)dφdd(φ) giving

Jw =ρww

∫ 2π

0

∫ r(φ)

Rc

d3(φ)dddφ = ρww

∫ 2π

0

r4(φ)− R4
c

4
dφ

=ρww

[
n−1∑

j=1

∫ φMj

φmj

r42j−1(φ)−R4
c

4
dφ+

∫ φmj+1

φMj

r42j(φ)− R4
c

4
dφ

]

+ρww

[∫ φMn

φmn

r42n−1(φ)−R4
c

4
dφ+

∫ φm1

φMn

r42n(φ)− R4
c

4
dφ

]
(4.39)
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the last expression for Jw in (4.39) is obtained from the previous integral by

using the definition of r(φ) given in (4.14). Note that equation (4.39) is obtained

considering Jw constant in time. The shape of the roll is defined using the location

of the minimum and maximum radius {(φm1, rm1), (φM1, rM1), . . . , (φmn, rmn, ),

(φMn, rMn)}, as the web is released the value of the radii decreases making Jw in

(4.39) time dependant. To obtain Jw(t) it is necessary to obtain the interpolation

functions ri(φ) as in (4.20) where now r(φm) and r(φM) are functions of time,

and then explicitly solve the integral in (4.39). However, since obtaining the time

dependance of r(φm) and r(φM) is not practical, it is assumed that the web line

is simulated for a short period of time such that the inertia can be considered

constant and the term J̇u in (4.37) can be neglected.

The last modification to the governing equation of the angular velocity of the

roll is to consider the fact that the arm length of the torque due to the tension

in the web is not constantly equal to the radius of the roll as in equation (2.7)

but it changes with time and depends on the point where the web leaves the

roll. Clearly the arm length depends on the angular displacement of the roll and,

similar to the web span length, a closed form expression cannot be determined.

The optimization problem described in the previous section to compute the span

length can also be used to determine the arm length of the torque due to the web

tension. In fact, once the solution of the optimization problem φex is obtained the

arm length is simply given by dex(θ) = r(φex(θ)). From the implementation point

of view, a look-up table can be used for the arm length in a similar fashion to

what was done for the web span length. The same discretization of the angular

displacement in (4.35) is used to obtain the look up table for dex(θ).

The equations presented in this section are used to conduct model simula-

tions in the presence of an out-of-round material roll. Next section describes the
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experiments that were performed on the EWL to validate the proposed model.

4.3 Experiments and Model Simulations

Roll imperfections are commonly seen in the web handling industry, these include,

for example, a flat spot due to the roll being laid on the floor for an extended

period of time, and elliptically shaped roll as a consequence of holding a heavy roll

on mandrels causing the bottom portion of the material to bulge due to gravity

or improper winding in a process line. The rolls available for this research are

fairly round, therefore in order to verify the proposed model one of the rolls was

made purposely out-of-round by winding material on top of a wooden insert. The

wooden insert was designed so that the resulting out-of-round roll would mimic a

roll with a flat spot. The profile of the wooden insert is shown in Fig. 4.9(a). The

equations that describe the profile of the wooden insert in Cartesian coordinates

are 



y = (r + tf)

√
1−

(
x−ℓf/2

r−ℓf/2

)2

, −r ≤ x ≤ −ℓf/2,

y = r + tf −ℓf/2 ≤ x ≤ ℓf/2,

y = (r + tf)

√
1−

(
x+ℓf/2

r−ℓf/2

)2

, ℓf/2 ≤ x ≤ r,

y = −
√
r2 − x2, −r ≤ x ≤ r

(4.40)

where r is the inner radius of the wooden insert, ℓf is the length of the flat spot

and tf the thickness of the wooden insert. The resulting out-of-round roll is shown

in Fig. 4.9(b). In order to use the procedure described in the previous section for

the computation of the span length and its derivative, it is required to obtain the

list of maximum and minimum radii in order to divide the profile in segments.

Normally one would measure the roll radius to identify the maxima and minima,

in this case since the roll is made artificially out-of-round this information can
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ℓf

tf

r

(a) Wooden insert profile. (b) Resulting out-of-round roll.

Figure 4.9: Design of the wooden insert to mimic a flat spot. The values chosen

for the design are r =5.5in , ℓf =3in and tf =0.5in

be obtained analytically by transforming the Cartesian coordinates of the roll

profile in equation (4.40) into polar coordinates. A plot of the profile in polar

coordinates is shown in Fig. 4.10(a), from the plot the list of the radius minima

and maxima can be easily established. Figure 4.10(b) shows a comparison between

the real profile of the flat spot and the interpolation obtained using the suggested

procedure, the interpolation closely approximates the real profile. Using the

model proposed in this chapter a computer model simulation is set up to simulate

the EWL running with the unwind roll shown in Fig. 4.9(b). The results from

the experiment are shown in Fig. 4.11; it is evident there is very little correlation

between the two data. This clearly shows that some effects are neglected in the

simulation and was the motivation for the need for additional analysis of the

model for the web tension in the presence of an out-of-round roll. One key issue

that may be responsible for this discrepancy in the data is discussed in the next

section.
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(a) Plot of the radius as function of the angular displace-

ment for the flat spot profile.
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(b) Comparison of the flat spot profile with the interpola-

tion obtained from the suggested procedure

Figure 4.10: Flat spot profile and its approximation.
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(a) FFT of the experimental data.
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(b) FFT of the simulated data.

Figure 4.11: Comparison between experimental and simulation data at 200 FPM

with wooden insert simulating a flat spot.
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NON-IDEAL ROLL

4.4 Material Flow Rate Equation in the Pres-

ence of a Non-ideal Roll

The derivation of the web tension governing equation described in Chapter 2 is

based on the conservation of mass in the control volume defined by the web span.

In the resulting governing equation for web tension (3.1):

Ṫi =
vi(EA− Ti)− vi−1(EA− Ti−1) + L̇i(EA− Ti)

Li
,

it is assumed that vi−1 and vi, the peripheral velocities of the web on the entry

and exit rollers of the span, are proportional to the material flow rate entering

and leaving the control volume. It can be shown that this assumption may not

hold in the presence of a non-ideal roll.

Consider the extreme situation of a square roller as shown in Fig. 4.12. When

the roller moves from the position in Fig. 4.12(a) to the position in Fig. 4.12(b)

there is clearly no material transfer into the control volume of the web span,

however, the peripheral velocity of the web on the roller is not zero. It is clear

that in this situation the peripheral velocity of the web on the roller cannot be

used to describe the material flow from the roller to the control volume of the

web. The mass balance equation for the control volume can be expressed in a

more general fashion compared to the one in (2.10):

d

dt

∫ xi(t)

xi−1(t)

ρ(x, t)A(x, t)dx =
dmin

dt
− dmout

dt
(4.41)

where now the material flow rate in the right hand side appears explicitly instead

of the peripheral velocity. For an ideal roller, the relationship between the material

flow rate and the peripheral velocity can be obtained in a straight forward manner
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(a) Span with square roller at time

t.

(b) Span with square roller at t+dt.

Figure 4.12: Example of a span with a square roller. In this situation the square

roller rotates from the position at time t to the position at time t + dt but there

is no material flow into the span from the square roller.

as:

dm

dt
=

d

dt
(ρV (t)) = ρ

dV

dt
= ρ

d

dt
(Aℓ(t)) = ρA

dℓ

dt
= ρA

d

dt
(Rθ(t)) = ρARθ̇ = ρAv(t)

(4.42)

where dℓ is the length of the infinitesimal segment of material dm that moved from

the surface of the roller into the control volume in the infinitesimal time interval

dt. The reason for using the peripheral velocity for ideal rollers to describe the

material flow rate is the relationship between dℓ and the angular displacement dθ.

For a non-ideal roller or roll the relationship between ℓ and θ is not as simple as

in the case of the ideal roller/roll.

Assuming the shape of a roller is given in polar coordinates (r(φ), φ), then

a procedure to find an expression for the material flow rate can be obtained.

Two coordinate frames must be defined first. The first coordinate frame Fa is

absolute and time invariant, this is the coordinate frame with respect to the

angular displacement of the roller is measured. The second coordinate frame Fr
is a relative coordinate frame that moves together with the roller; this is the

coordinate frame in which the polar coordinates of the roller are defined. An

example of these two coordinate frames for a non-ideal roller is given in Fig. 4.13.
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Fa

Fr

θφ

Figure 4.13: Definition of the absolute frame Fa and the relative frame Fr.

The reason for requiring two coordinates frame will be clarified later. Note that

the angular displacement of the roller is indicated by θ whereas φ is used to

denote the angular position of a point on the perimeter of the roller in its polar

coordinates in the frame Fr.

Consider a non-ideal roller and a span adjacent to it as shown in Fig. 4.14.

Let A be the point at which the web makes contact with the roller at time t and

the corresponding angle be φen(t) with respect to Fr as shown in Fig. 4.14(a). At

time t+ dt, let B be the web entry point on the roller and φen(t+ dt) be the angle

of B with respect to Fr. When the roller rotates from the position in Fig. 4.14(a)

at time t to the position in Fig. 4.14(b) at time t + dt, the infinitesimal segment

of material dm that leaves the control volume of the web span is given by

dm = ρdV = ρAdℓ (4.43)

where dℓ is the web length between the points B and A as shown. The length

dℓ can be computed by using the formula for the perimeter of a curve in polar

coordinates. Given the curve C ≡ (r(φ), φ) in polar coordinates, the arc length ℓc
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between two points (r(φ1), φ1) and (r(φ2), φ2) is given by

ℓc =

∫ φ2

φ1

√
r2(φ) +

(
dr
dφ

)2

dφ. (4.44)

Note that to use the expression in (4.44) the curve is required to be time invari-

ant. This is the reason why the relative reference frame needs to be introduced,

otherwise the curve would be varying with time in the absolute reference frame

and it is not possible to compute dℓ. Using (4.44) to compute the length dℓ gives

dℓ =

∫ φen(t+dt)

φen(t)

√
r2(φ) +

(
dr
dφ

)2

dφ (4.45)

The equation in (4.45) is the most general expression to compute length change

which can be used to compute the rate of web material entering and exiting the

web span.

One can verify whether the expression in (4.45) for dℓ works for the ideal roller

case. An ideal roller in polar coordinates is described by r(φ) = R. Moreover,

since the point where the web makes contact with the roller does not change in

the absolute reference frame, φen(t+ dt) can be easily obtained as

φen(t + dt) = φen(t) + dθ.

Substituting this expression in (4.45) gives

dℓ =

∫ φen(t+dt)

φen(t)

√
r2(φ) +

(
dr
dφ

)2

dφ =

∫ φen(t)+dθ

φen(t)

Rdφ = Rdθ

which leads to the same expression for dℓ that was obtained in (4.42), therefore

indicating (4.45) is a more general form for the computation of the infinitesimal

length of span entering and exiting the control volume.

From the discussion on the previous paragraph it is clear that in the governing

equation of web tension (3.1), the peripheral velocity of the web on the roll vi
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O Fa

Fr

θ(t)

A

φen(t)

(a) Non-ideal roller at time t.

Fa

Fr

θ(t)

A
B dℓ

φen(t+ dt)

φen(t)

(b) Non-ideal roller at time t+ dt.

Figure 4.14: Example of an out-of-round roller showing the length (dℓ) of web

leaving the span in time dt.
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must be replaced by dℓi/dt with dℓ as in (4.45) whenever the roll i is a non-ideal

roll. The generalization of equation (3.1) is:

Ṫi =
dℓi/dt(EA− Ti)− dℓi−1/dt(EA− Ti−1) + L̇i(EA− Ti)

Li
(4.46)

In order to simulate the equation (4.46) the expression for dℓ/dt is required. Both

φen(t) and φen(t+ dt) in equation (4.45) depend on the angular displacement θ(t)

and they are computed numerically solving the optimization problem introduced

in this chapter. Hence, the integral in (4.45) cannot be solved off-line. For this

reason it is necessary to develop an approximation of equation (4.45) that uses a

discretization of the angular displacement θ in a similar manner to what was done

for the computation of the span length L. In particular, the same discretization

for θ in (4.35) used for the computation of L is used for the computation of the

approximation for dℓ. For every point θi in the set Θ the corresponding value of

φi can be obtained from the solution of the optimization problem. For every pair

(θi, θj) ∈ Θ with j > i the length of the span ∆ℓ entering the control volume when

the roll moves from θi to θj can be computed by

∆ℓ(θi, θj) =

∫ φj

φi

√
r2(φ) +

(
dr
dφ

)2

dφ. (4.47)

Note that for all pairs (θi, θj) with j < i, ∆ℓ(θi, θj) = −∆ℓ(θj , θi). The value

obtained from equation (4.47) can be arranged in a table where the element

∆ℓ(i, j) = ∆ℓ(θi, θj). This table can be used during the simulation to compute an

approximate value for dℓ/dt.

Assuming that at simulation time tk−1 the value of the angular displacement

is θk−1 with θi < θk−1 < θi+1 and that at time tk the angular displacement is θk

with θj < θk < θj+1, since no value for the movement from θk−1 to θk is defined

in the table for ∆ℓ, it is necessary to define an interpolation function to define
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zone 1

zone 2

θf

θj

θj−1

θi−1 θi θn

(a) Division of the area defined by the

square {θi−1, θi} × {θj−1, θj} in the two

zones.

SW SE

NE
NWθf

θj−1

θi−1 θi

∆ℓ

θj

θn

(b) Construction of the two interpolation

planes.

Figure 4.15: Construction of the interpolation function for ∆ℓ.

the value of ∆(θk−1, θk) given the discretized values ∆ℓ(i− 1, j − 1), ∆ℓ(i− 1, j),

∆ℓ(i, j − 1) and ∆ℓ(i, j) in the ∆ℓ table.

First, the space for the interpolation in R
3 is defined by the coordinates

L ≡ (θn, θf ,∆ℓ) where θn is the initial angular displacement, θf is the final angular

displacement and ∆ℓ is the length of the span entering the control volume when the

roll moves from θn to θf . Given the pair (θk−1, θk), using the table ∆ℓ four points

in L are defined: SW ≡ (θi−1, θj−1,∆ℓ(i−1, j−1)), NW ≡ (θi−1, θj,∆ℓ(i−1, j)),

SE ≡ (θi, θj−1,∆ℓ(i, j − 1)) and NE ≡ (θi, θj ,∆ℓ(i, j)), see Fig. 4.15(b). For

simplicity and to ensure continuity of the interpolation function, a linear interpo-

lation is chosen. However, given four independent points in a three dimensional

space it is not possible to find a single plane that contains all the points. For this

reason the square defined by (θi−1, θj−1), (θi−1, θj), (θi, θj−1), (θi, θj) is split into

two zones (see Fig. 4.15(a)). If the combination (θk−1, θk) belongs to zone 1 then

the interpolation is from the plane defined by the points {SW, SE,NE}, other-

wise the interpolation is from the plane defined by the points {SW,NW,NE},
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see Fig. 4.15(b). Once the three points {P1, P2, P3} that define the plane are

determined, the vector orthogonal to the plane is given by

n ≡




nx

ny

nz




= (P2 − P1)× (P3 − P1). (4.48)

All the points on the plane defined by {P1, P2, P3} satisfy the equation

x(nx − P1x) + y(ny − P1y) + z(nz − P1z) = 0. (4.49)

therefore the value of the interpolation function for (θk−1, θk) is

∆ℓ(θk−1, θk) = −
1

nz − P1z

[
θk−1(nx − P1x) + θk(ny − P1y)

]
. (4.50)

This procedure can be used to compute an on-line approximation of dℓ/dt in (4.46)

during the execution of the simulation.

A new computer simulation was implemented for the EWL with the initial

governing equation for tension (3.1) replaced by the new governing equation in

(4.46). The objective of this new simulation is to verify if the modified govern-

ing equation leads to better correlation between the experimental and the model

simulation data. The results of the new simulation are shown in Fig. 4.17. With

the modified governing equation for web tension there is a better correlation be-

tween the two data. Moreover, it can now be explained why the results from the

simulation in Fig. 4.11(b) show larger oscillations compared to the experimental

data. In the first simulation the governing equation for tension uses the peripheral

velocity, see Fig. 4.16(a) and the span length variations, see Fig. 4.16(b), while the

second simulation uses the equivalent material flow rate, see Fig. 4.16(a), and the

span length variations. Figure 4.16(a) and Fig. 4.16(b) indicates how some of the

span length variations are compensated by an increase in the equivalent material
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flow rate. When using the the peripheral velocity this compensation does not

take place which explains the higher amplitude in the oscillations. This further

demonstrates why one must use the equivalent material flow rate instead of the

peripheral velocity in the governing equation of tension in order to appropriately

simulate the system.
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(a) Peripheral velocity vs dℓ/dt.
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(b) Span length variations.

Figure 4.16: Example of how the use of the peripheral velocity neglects a signif-

icant amount of material flow in the case of a roll with a flat spot.
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(a) FFT of the experimental data.
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(b) FFT of the simulated data.

Figure 4.17: Comparison between experimental and simulation data at 200 FPM

with wooden insert simulating a flat spot using modified governing equation for

web tension.
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Chapter 5

Control Algorithms for the

Attenuation of Tension

Oscillations

The previous chapters of this study focused on the development of models for

web tension and web velocity in the presence of non-ideal rolls and rollers. This

chapter focuses on the design of control algorithms for the attenuation of the

tension oscillations which may be due to the presence of the eccentric rollers or

out-of-round material rolls.

While designing a controller for an industrial application, in addition to the

usual stability and performance issues, there are other aspects to be taken into

consideration which limit the choice of the control algorithm. First, the operators

of the algorithm will most likely be first level control engineers who seldom have

more than a basic knowledge of control theory. Hence, it is preferable to choose a

simple control technique that is easy to implement as well as whose development is

straight forward. Despite a number of algorithms are available in the literature on

compensation of nonlinearities arising from non-ideal behavior of the underlying
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system components, many of these approaches are general and not application

specific. Moreover they are complicated and require an understanding that is

beyond the theoretical background of a first level controls engineer. Further the

algorithm has to be implemented on a real time platform and therefore it needs

to be executed within one sampling period which is typically of the order of 5 to

10 milliseconds. Also the algorithm must be adequately robust such that it need

not be continuously monitored and tuned. These represent the main constraints

in the design for a feasible control algorithm.

The choice of specific model based control techniques is not an option given

the constraints introduced previously. In fact, as shown in the previous chapters,

the models for web tension and web velocity are very complex and often require

the use of time consuming numerical algorithms that are not well suited for real

time application. For this reason the focus was on the design that include adaptive

algorithms.

The compensation of tension oscillations due to eccentric roller was considered

first. Eccentricity compensation is a common problem in rotating mechanical

systems and therefore, there has been existing work addressing this problem.

Some of the algorithms are considered and among those the adaptive feed-forward

(AFF) was elected to be the best fit for the eccentricity compensation. Several

adjustments to the original algorithm are presented to apply to the web handling

machine and to achieve better reduction of the tension oscillations. The second

part of this chapter shows how the same algorithm can also be used for attenuation

of tension oscillations due to out-of-round rolls. Lastly, the designed algorithm can

be used in web line where one is not sure of the source of tension oscillations, that

is, this algorithm is not specific to tension oscillations originating from non-ideal

rollers.
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5.1 Control Algorithms for Eccentricity Com-

pensation

The presence of eccentricity is fairly common in the presence of rotating machines,

examples include: engine noise in turboprop aircrafts [18] and automobiles [19],

ventilation noise in Heating, Ventilation and Air Conditioning Systems, [20] and

many more. Several studies on control algorithms for the compensation of ec-

centricity can be found in the literature. For example [21] proposes an adaptive

algorithm for the compensation of eccentricity. The authors first included in the

system an internal model of the eccentricity, designed an observer for the extended

system, and then proposed an adaptation law for the estimation of the frequency

of the eccentricity. In [22] the authors propose the use of repetitive control for

eccentricity compensation in rolling; computer simulations are shown to illustrate

the effectiveness of repetitive control in rejecting oscillations but no experimental

results are provided. In [23] more details on repetitive control for nonlinear sys-

tems can be found, and in [24] the use of repetitive control for state dependant

disturbances rejection is discussed. In [25] a nonlinear PI controller for control-

ling an uncertain system is introduced; one of the applications of the controller

presented in the paper is eccentricity compensation. These algorithms are com-

putationally complex and therefore difficult to implement in real time, therefore

they cannot be adapted for the use in web lines.

One important aspect in the compensation of eccentricity is that it is a state

dependant disturbance and not an exogenous time dependant disturbance. There-

fore, even if the resulting effects of eccentricity on the output are periodic oscil-

lations, the techniques available for exogenous disturbance rejection cannot be

used. However, under certain circumstances eccentricity appearing in the gov-
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erning equation may be approximated by an exogenous disturbance. Consider a

simple model for a motor with eccentricity

θ̇ = ω,

Jω̇ = −bω −mge sin(θ)
(5.1)

where J is the inertia of the motor, b is the viscous friction coefficient, m is the

mass of the motor, g is the acceleration due to gravity and e is the amount of

eccentricity. If the motor speed is regulated at a reference value ωr, it is possible

to define the angular displacement error eθ by

eθ = θ(t)− ωrt. (5.2)

Using (5.2) the eccentricity term can be written as

mge sin(θ(t)) = mge sin(ωrt + eθ)

= mge(sin(ωrt) cos(eθ(t)) + cos(ωrt) sin(eθ(t)))

≈ mge sin(ωrt)

(5.3)

Under the assumption that the regulation error eθ << 1, the eccentricity term

as above may be approximated with an exogenous time dependant disturbance.

Clearly, the angular displacement error is a function of several variables, including

the amount of eccentricity, the physical properties of the motor and the parameters

of the controller. In general one cannot assume that the regulation error is smaller

than one. To verify whether the approximation in (5.3) is valid for the EWL,

several tests were run at different velocities and the result was that eθ << 1.

Figure 5.1 shows the error eθ in the S-Wrap Lead roller for one of the experiments,

for this experiment max(|eθ|) = 0.004.

Since eccentricity can be approximated by an exogenous disturbance in certain

cases as discussed above, classical techniques may be considered for disturbance

rejection.

108



5.1. CONTROL ALGORITHMS FOR ECCENTRICITY COMPENSATION

0 5 10 15 20 25 30 35 40
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t [sec]

e θ [r
ad

]

Figure 5.1: Angular displacement error eθ for the S-wrap Lead roller for web

line speed of 200 FPM.

The most established technique for exogenous disturbance rejection is the use

of internal model of the disturbance in the controller [26]. The internal model

principle states that in order to reject an exogenous disturbance it is sufficient to

have a model of the disturbance in the controller under the constraint that the re-

sulting closed loop system is stable. Hence, the rejection of sinusoidal oscillations

requires the inclusion of a model of the sinusoidal disturbance in the controller

which means adding two complex conjugate poles on the imaginary axis of the

complex plane at the frequency of the sinusoidal disturbance. Despite this tech-

nique is well known and well understood, it carries a major disadvantage. The

addition of marginally stable poles in the controller makes the stability of the over-

all system more difficult to the point that, if disturbances at multiple frequencies

are present, a simple PI might not be enough to stabilize the overall system. For

these reasons the adaptive feed-forward was considered instead.

The adaptive feed-forward (AFF) is based on a very simple idea: use an adap-
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Figure 5.2: Adaptive feed-forward control scheme.

tive algorithm to estimate the amplitude and phase of the disturbance and feed-

forward a control action equal and opposite to the estimated disturbance. Early

work on the AFF can be found in [27, 28] in which the authors describe stability

and robustness of the algorithm. Consider a system such as the one in Fig. 5.2

and assume that the disturbance d(t) is in the form

d(t) = A sin(ωt+ φ)

= A sin(φ) sin(ωt) + cos(φ) cos(ωt) = A1 sin(ωt) + A2 cos(ωt).

(5.4)

The AFF uses the output error to estimate A1 and A2. Let the estimates for the

parameters A1 and A2 be denoted by θ1 and θ2, respectively. The adaptation law

for the parameters θ1 and θ2 is

θ̇1 = g1e(t) sin(ωt),

θ̇2 = g1e(t) cos(ωt)

(5.5)

where e(t) = yr − y(t) is the output error and g1 is the adaptation gain. The

feed-forward part of the algorithm is

uff = −θ1 sin(ωt)− θ2 cos(ωt). (5.6)

The adaptive algorithm may be explained in the following way. The adaptive

parameter θ1 is initialized to zero. If the output error has a sinusoidal compo-

nent at the frequency ω, i.e., e(t) = ē(t) + eA1
sin(ωt), the product e(t) sin(ωt)
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will produce a term eA1
sin2(ωt) which is positive and will therefore increase the

estimation parameter θ1. As θ1 increases the effect of the disturbance starts de-

creasing until θ1 reaches the amplitude of the disturbance A1. At that point the

output error will not have any more sinusoidal components at the frequency ω

since the disturbance is fully compensated by the term −θ1 sin(ωt) in uff . With

the disturbance compensated, the integral of product e(t) sin(ωt) will be zero over

a period and hence the estimation parameter θ1 will remain constant. The same

reasoning applies for θ2.

The control algorithm in (5.5) and (5.6) is the AFF in its simplest form. In

[29] the authors introduce a modified version of the AFF algorithm which includes

a phase shifter. The phase shifter helps in increasing the stability margin of the

AFF and reduces the adaptation time. The implementation of the phase shifter

requires the knowledge of the transfer function between the disturbance and the

control input or at least the value of the transfer function at the frequency of the

disturbance. The algorithm for the modified AFF is

θ̇1 = g1e(t) sin(ωt+ φ),

θ̇2 = g1e(t) cos(ωt+ φ)

(5.7)

where φ = ∠P (jω) is the phase of the process transfer function at the frequency

of the disturbance.

Several versions of the AFF for cases where the frequency of the disturbance

is unknown and time varying have also been developed; a complete discussion

about these algorithms can be found in [30]. This is not a concern for the web

handling application since the frequency of oscillation due to rotating machines is

always known. In fact the frequency of the oscillations is equal to the rotational

frequency of the machines or it is an integer multiple of this frequency. The
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rotational frequency of the machine can be obtained from the velocity feedback

for material rolls or computed from the line speed for rollers of known radius.

The AFF algorithm with phase shifter was applied to the web handling case in

[31]. In the paper the authors assume that the tension oscillations can be modeled

as an input sinusoidal disturbance to the transfer function G(s) from the torque

input to the output tension. However, as shown in previous chapters, the tension

disturbances in the presence of a non-ideal roll come from different locations.

This is important since in order to use the phase shifted version of the AFF,

it is necessary to know the exact transfer function from the disturbance to the

output, otherwise the benefits of the phase shifter are lost and it could even lead

to decreased performance of the AFF. Moreover, the authors apply the AFF to a

small testbed where all the parameters in the model are easily identified, whereas

in an industrial setup the model parameters are mostly unknown and experiments

to obtain the process transfer function might be unpractical. In [32] a version of

the AFF with an adaptive phase shifter is presented. In this case the adaptation

algorithm not only adapts to the sinusoidal disturbance amplitudes but it also

adapts the phase shifter to identify the transfer function from the disturbance

to the output. However, the AFF with adaptive phase shifter is a much more

complicated algorithm which nullify the main reason for picking the AFF, its

simplicity. Hence, the AFF with adaptive phase shifter was not considered as a

viable option.

After literature review and a number of experiments on the web handling

platform, EWL, using various approaches it is evident that the AFF in its basic

form is the best suited control algorithm for the rejection of the oscillations due

to eccentricity.

In the EWL both S-wrap lead and follow rollers have eccentricity, see Fig. 2.4.

112



5.1. CONTROL ALGORITHMS FOR ECCENTRICITY COMPENSATION

vref +
+

+ -
C

AFF

P

d(t)

v

Figure 5.3: Adaptive feed-forward control scheme torque signal implementation.

The initial step was to add the AFF to compensate for the oscillations in the roller

velocity. In chapter 3 it was discussed how the oscillations in tension are in part

due to the oscillations in velocity, therefore, by reducing the velocity oscillations

it is possible that the oscillations in tension would be reduced as well. Moreover,

attenuation of oscillations in the velocity signal could be useful for many other

applications.

As described in previous the chapters the S-wrap lead and follower rollers are

both under pure velocity control. The AFF input is the velocity error and the

output is a torque reference signal for the drive, see Fig. 5.3. The equations for

the AFF controller are

θ̇1 = g1(vr − vSf) sin(ωt),

θ̇2 = g1(vr − vSf) cos(ωt),

τff = −θ1 sin(ωt)− θ2 cos(ωt)

(5.8)

where vr is the velocity reference for the line, vSf is the velocity of the S-wrap

follower, ω is the frequency of the disturbance that is being attenuated, τff is the

feed-forward torque signal generated for the drive, and g1 is the adaptation gain.

The AFF is designed to attenuate the fundamental frequency of the oscillations
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which is given by

f =
v

πD
(5.9)

where v is the web velocity and D is the diameter of the roller.

The tuning procedure for the gain of the AFF is simple and a direct conse-

quence of the stability proof of the AFF algorithm [33, 30]. It is proven that the

AFF is stable as long as the underlying process is stable and the adaptation gain

is small. Based on that the AFF can be tuned by starting with a very small gain

and increasing it until a good performance is achieved.

Figure 5.4 shows the comparison of the FFT of the velocity of the S-wrap

follower with and without the AFF and with a reference velocity of 200 FPM. First

note that the fundamental frequency of the disturbance is practically eliminated.

However a slight increases over the whole spectrum is also shown in the plot. This

is because the AFF is generating a torque signal which is input to the motor drive.

It is well known in the web handling community that the performance of the motor

drive for tracking torque reference is not as good compared to the performance of

the same drive when tracking a velocity reference.

To avoid this problem the AFF can be used to generate a velocity reference

instead of torque reference, see Fig. 5.5. The equations for this new version of the

AFF are

θ̇1 = g1(vr − vSf) sin(ωt),

θ̇2 = g1(vr − vSf ) cos(ωt),

vff = −θ1 sin(ωt)− θ2 cos(ωt)

(5.10)

where the output of the AFF is now a reference velocity correction to the drive.

The reason why the AFF is originally used to generate a compensating torque

signal is because it is expected directly cancel the effect of the torque due to ec-
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(a) FFT of the S-wrap follower velocity with PI only.
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(b) FFT of the S-wrap follower velocity with PI and AFF.

Figure 5.4: Comparison between FFT of S-wrap follower velocity for PI only

and PI+AFF.
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Figure 5.5: Adaptive feed-forward control scheme.

centricity using the torque generated by the drive. However, this is not necessary.

Assuming that the torque due to eccentricity τe can be approximated by

τe = A sin(ωt+ φ) (5.11)

and the transfer function of the PI controller is C(s), when using the AFF to

generate a velocity reference as in Fig. 5.5, the AFF output uAFF will converge to

vff =
1

|C(jω)|A sin(jω + φ− ∠C(jω)) (5.12)

as opposed to −τe. The signal vff in the input to the controller will produce

an output equal and opposite to τe and hence compensation will be achieved in

the same manner as in the previous configuration. Using similar arguments one

can state that the AFF can be added at any point in the control loop as long as

the path between that point and the entry of the disturbance into the system is

composed of linear systems.

Figure 5.6 shows the FFT of the velocity signal with the AFF output as a veloc-

ity correction. Comparison of results shown in Fig. 5.6(b) and Fig. 5.4 indicates

that in both cases the AFF effectively attenuates the velocity oscillations, but

Fig. 5.6(b) shows no increase in the base line oscillations compared to Fig. 5.4(b).

Figure 5.7 shows the FFT of the tension signal in the pull-roll section of the
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(a) FFT of the S-wrap follower velocity with PI only.
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(b) FFT of the S-wrap follower velocity with PI and AFF.

Figure 5.6: Comparison between FFT of S-wrap follower velocity for PI only

and PI+AFF with feed-forward signal on velocity reference.
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EWL with and without the AFF for the compensation of the eccentricity in the

S-wrap follower. The figure shows how the compensation of the eccentricity in the

S-wrap has little effect on the tension signal. In fact only the second harmonic

is attenuated. Note that the pull-roll section is chosen because in this section

tension oscillations are only due to the eccentricity of the S-wrap follower and

therefore the effect of the AFF would be more evident compared to the unwind

zone where tension oscillations are due to both eccentricity of the S-wrap lead

roller and out-of-roundness of the unwind roll.

The addition of the AFF in the velocity loop, despite good attenuation of the

oscillations in the velocity signal, did not improve the tension signal as expected.

With similar arguments as the ones presented in (5.3) one can assume that the

oscillations in tension can also be approximated by an exogenous sinusoidal distur-

bance. Under this assumption the AFF can be used to attenuate such oscillations.

This new configuration of the AFF is shown in Fig. 5.8 and the equations are

θ̇1 = g1(tr − tpr) sin(ωt),

θ̇2 = g1(tr − tpr) cos(ωt),

vff = −θ1 sin(ωt)− θ2 cos(ωt)

(5.13)

where tr is the tension reference and tpr is the tension feedback from the pull roll

section. Figure 5.9 shows the comparison of the FFT of the tension with and

without the AFF with the line speed of 200 FPM. The figure shows that the AFF

achieves very good attenuation at the fundamental frequency and at the second

and third harmonics. This further corroborates the model for the eccentric roller

developed in Chapter 3. The model shows that the higher order harmonics are

generated as a consequence of the interaction between the tension disturbance at

the fundamental frequency and the disturbance in web velocity. Therefore, by
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(a) FFT of the tension in the Pull-Roll section with S-wrap

follow on PI only.
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(b) FFT of the tension in the Pull-Roll section with S-wrap

follow on PI+AFF.

Figure 5.7: Comparison between FFT of the tension in the Pull-Roll section for

S-wrap with PI only and PI+AFF with feed-forward signal on velocity reference.
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Figure 5.8: Adaptive feed-forward control scheme.

reducing the disturbance at the fundamental frequency, higher order harmonics

are attenuated as well.

The AFF satisfies all the constraints described in the introduction and is effi-

cient in compensating tension and velocity oscillations in the case of the presence

of an eccentric roller. The following section describes the application of the AFF

to the case of an out-of-round material roll.

5.2 Attenuation of Tension Oscillations Due to

an Out-of-round Material Roll

The problem of compensating tension oscillations due to the presence of out-of-

round material roll is similar to the case of the eccentric roller. However, one

major difference is that while the frequency of the disturbance induced by the

presence of an eccentric roller remains constant over time, the frequency of the

disturbance associated with an out-of-round material roll changes with decrease

in roll diameter. The equation used for the computation of the fundamental

frequency of the disturbance in (5.9) for the case of the eccentric roller is also

applicable to the out-of-round roll, but now the diameter of the roll is time varying

making the frequency of the disturbance also time varying.
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(a) FFT of the tension in the Pull-Roll section with S-wrap

follower on PI only.
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(b) FFT of the tension in the Pull-Roll section with S-wrap

follower on PI+AFF.

Figure 5.9: Comparison between FFT of the tension in the Pull-Roll section for

S-wrap with PI only and PI+AFF with AFF using tension error.
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The AFF algorithm is originally intended for the compensation of sinusoidal

disturbances with constant frequency. However, in [30] it is shown that the algo-

rithm can also be used when the frequency is time varying if the rate of change of

frequency is small. The frequency of the disturbance generated by an out-of-round

roll (5.9) and its rate of change depend on two factors: the line velocity and the

diameter of the roll. The frequency of the disturbance is varying slowly if the line

speed is slow or if the roll has a large radius, in these cases the AFF can be used

for the attenuation of disturbances. This might seem too restrictive but there is

another aspect to be considered: disturbances at low frequencies are more critical

than the one with high frequency. The system of web spans and idle rollers natu-

rally behave as a low pass filter and reject high frequency disturbances as the web

is transported. On the other hand, low frequency disturbances are not attenuated

significantly and if no action is taken they can propagate downstream and affect

processes downstream. Therefore, the AFF can be used effectively because the

disturbance with low frequencies that need to be rejected can only be generated

in the presence of rolls with large radii or for web lines with low speed.

The AFF algorithm, similarly to the case of the eccentric roller, has tension

error as input and generates a speed reference correction. It is assumed that the

tension oscillation can be considered as an exogenous disturbance, as was done

previously. The equations describing the AFF algorithm are

θ̇1 = g1(tr − tun) sin(ωt),

θ̇2 = g1(tr − tun) cos(ωt),

vff = −θ1 sin(ωt)− θ2 cos(ωt)

(5.14)

Figure 5.10 shows the overall control scheme for the unwind roll with the AFF

placed in parallel with the PI controller for tension regulation. In the figure multi-
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Figure 5.10: Adaptive feed-forward control scheme.

ple AFF blocks are added in parallel. In the presence of an out-of-round material

roll, attenuation of the signal component at fundamental frequency does not pro-

duce attenuation of higher order harmonics, such as in the case of the eccentric

roller. Therefore, it is necessary to add extra AFF blocks for the harmonics that

need to be attenuated.

To test the algorithm the unwind roll is made purposely out-of-round by wind-

ing the web over a stack of paper; three different shapes of the out-of-round roll

are used for testing:

• Shape 1: roll with flattened bulge (Fig. 5.11(a)). This shape is meant to

resemble a flat spot

• Shape 2: roll with a bulge (Fig. 5.11(b)). Rolls might bulge due to gravity

when they are suspended for extended period of time on mandrels.

• Shape 3: asymmetric profile (Fig. 5.11(c)). This shape was used to test the

algorithm when the roll has an asymmetric profile that induces oscillations
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with multiple frequencies.

Two different polymer materials are tested: Tyvek, a polymer made by Dupont,

and polyethylene. This is done to test the robustness of the algorithm to different

configurations, since it is possible to have web lines running different materials

and out-of-round rolls can have different shapes. It is important to have a robust

algorithm because it would be impractical in a production environment to adjust

the AFF gains when the operating conditions change.

All the tests were performed with the web moving at 100 FPM, with material

roll radius of 8 in and with the gain of the AFF unchanged. Figures 5.12, 5.13, 5.14,

5.15 show the results of the tests. The plots show that the AFF performed very

well on the fundamental and first harmonic of the disturbance in all the scenarios

while the performance on the second harmonic is not as good. The reason for this

decreased performance for the second harmonic is that its frequency is moving at

a faster rate compared to the fundamental frequency and the first harmonic, and

hence, the AFF is expected to be less effective.

In conclusion the AFF is a simple and robust solution for attenuation of os-

cillations due to the presence of non-ideal rolls. It satisfies all the requirements

discussed in the introduction. It is a simple algorithm that can be used by a first

level control engineer or a line technician; it is not computational intensive so that

it can be easily implemented on a real-time platform. It is also shown to be robust

to different scenarios without the need for retuning of the adaptation gains with

extensive experimentation on a web platform.
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(a) Roll with a flattened bulge.

(b) Roll with a bulge.

(c) Asymmetric profile.

Figure 5.11: Roll shapes.
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(a) PI only.
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(b) PI+AFF.

Figure 5.12: Comparison between FFT of tension for PI and PI+AFF imple-

mentation in the unwind section for roll shape 1.
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(a) PI only.
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(b) PI+AFF.

Figure 5.13: Comparison between FFT of tension for PI and PI+AFF imple-

mentation in the unwind section for roll shape 2.
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(a) PI only.
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(b) PI+AFF.

Figure 5.14: Comparison between FFT of tension for PI and PI+AFF imple-

mentation in the Unwind section for roll shape 3.
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(a) PI only.
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(b) PI+AFF.

Figure 5.15: Comparison between FFT of tension for PI and PI+AFF imple-

mentation in the unwind section for roll shape 1 for polyethylene.
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Chapter 6

Summary and future work

The research presented in this report focused on modeling and control problems

associated with web handling machines in the presence of non-ideal rotating el-

ements. Web processes, also know as roll-to-roll processes, are very common

industrial processes, and therefore, the literature contains many articles propos-

ing models for describing the behavior of web (web tension and web velocity) it

while is transported on rollers through the machine. Among the proposed models

the one which is most widely accepted is based on the concept of primitive ele-

ments: every basic element of the web line is modeled independently using a first

principles approach and the model for the web line is obtained by combining these

basic building blocks. Despite the availability of these primitive element models

of web machines, comprehensive experimental validation of the primitive elements

was lacking. Therefore, the first objective of this research was to design a set of

experiments for the validation of the models available in the literature. Chapter 2

focused on modeling and experimental validation of primitive elements for web

handling machines. The results from the model validation show how the mod-

els found in the literature are able to reproduce the behavior of the web tension

only in an average sense but fail to reproduce the periodic oscillations that are
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commonly seen measured signals from web machines. This showed that the first

order effects are included in existing primitive element models and highlighted the

need to investigate second order effects that could be the cause for oscillations in

tension and speed signals.

An extensive set of experiments which show the link between the presence

of tension oscillations and rotating elements in the web line are presented in the

second part of Chapter 2. Through extensive experimental observations on a large

platform, the source of oscillations due to non-ideal rolls is identified. Once the

source of the oscillation was identified, it was necessary to include in the models

the mechanism that actually produces these oscillations.

Chapter 3 discussed the modeling and validation of the governing equations

for web tension and web velocity in the presence of an eccentric roller. First it

was observed that the length of the spans adjacent to the eccentric roller is time-

varying. One of the assumptions in the derivation of the governing equation for

web tension is the time invariance of the web span length. This assumption was

relaxed and a new governing equation for web tension in a span was obtained.

The new governing equation for tension includes the time-varying span length

and its derivative. In order to numerically solve the new governing equation for

web tension, expressions for the span length and its derivative are needed. A

procedure to obtain a closed form expression for the span length as a function of

the roller position was given. The modified equation for web velocity was derived

to include the torque due to the eccentricity. The chapter ends with the validation

of the proposed model.

The derivation of the governing equations for web tension and roller angu-

lar velocity in the presence of an out-of-round material roll were described in

Chapter 4. The presence of an out-of-round material roll introduces additional

131



challenges compared to the case of the eccentric roller. The length of the span

adjacent to the out-of-round roll is also time-varying but the computation of the

span length as a function of the angular position of the roll is much more involved

and a closed form expression for the span length is difficult to obtain. A numerical

algorithm was proposed instead. The numerical algorithm is based on formulat-

ing the problem of founding the span length as an optimization problem which is

employed to search among the family of tangents to the out-of-round roll the one

that is also tangent to the downstream idle roller.

Apart from the inclusion of the span length variation in the governing equation

of web tension, another aspect had to be considered in the case of the out-of-round

material roll. The derivation of the governing equation for web tension is based

on the conservation of mass in the control volume encompassing the span. For

an ideal roll the material flow rate in the control volume is proportional to the

peripheral velocity of the web on the roll; this is not true for an out-of-round

material roll. Again, a closed form expression for the material flow rate could not

be found, a numerical algorithm was presented.

A new governing equation for the angular velocity is derived including the effect

of the out-of-roundness of the roll. The proposed model for the out-of-round roll

was validated by comparing the data from model simulations with experimental

data from the Euclid Web Line platform.

In summary, the first part of this document showed that the first order effects

are well represented by the primitive element models in the literature. However,

when non-ideal elements are present in the web line, second order effect must be

included in the governing equation of tension and velocity. To identify the second

order effects in the governing equation it was necessary reconsider the derivation

of the governing equations and verify all the assumptions. By doing so it was
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identified the need to include the span length variations and the computation

of the material flow rate in the governing equation of tension in the web span.

Similar approaches should be used when modeling other non-ideal elements or

other processes, such us thermal or hygral effects. For example, if thermal effects

have to be included in the the governing equation of web tension what is the right

mechanism to consider the span length variations induced by the thermal effect?

For example, because of the heating or cooling of the web, the density of the

incoming web will be different from the density of the outgoing web which has to

be considered when computing the material flow rate.

The last part of this research covered the design of a controller for attenuation

of the oscillations generated by an eccentric roller or an out-of-round material roll.

There are constraints on the choice of the control algorithm enforced by the fact

that the algorithm has to be executed in a real-time platform and in an industrial

environment. First, the control algorithm has to be executed within the system

sampling time, therefore, there is a constraint on the computational complexity

of the algorithm. There is also a constraint on the theoretical complexity of

the algorithm. Also to limit the down time of the web line in a production

environment, the algorithm should require little or no retuning of the existing

control algorithm for tension and velocity regulation and work in parallel to the

existing controller.

After a literature review of the available control algorithms for tension attenu-

ation, the adaptive feed-forward was identified as a control algorithm that would

satisfy all the constraints. The AFF is based on a simple concept, the amplitude

and phase of the disturbance are identified and a feed-forward signal is generated

to compensate for those oscillations. Several implementations of the AFF were

investigated and tested for different scenarios including different web and different

133



roll shapes. The AFF implementation in the velocity loop of the control system

proved to be effective in reducing the oscillations due to out-of-round material

rolls and eccentric rollers.

This work focused on modeling, validation, and tension control in the presence

of non-ideal rolls in web handling machines. Other primitive elements are com-

monly found in roll-to-roll processes such us pendulum dancers, accumulators, etc.

Experimental validation of these elements is still lacking and should be considered

as future work.

Implementation and testing of more sophisticated versions of the AFF may be

considered as part of the future work. Also of interest is the analysis of the effect

of the sampling period on the performance of the AFF, it is possible that a faster

sampling time might improve the performance of the AFF for disturbances with

fast changing frequencies.

The adaptive feed-forward technique was presented as a feasible control scheme

for attenuation of tension oscillations. Improvements to the implementation of

the controller should be investigated to extend its application to high speed lines.

Also, the AFF could be considered for compensation of periodic oscillations gen-

erated by other non-ideal components.
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