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CHAPTER I 
 

 

INTRODUCTION 

The Energy Independence and Security Act of 2007 is the driving force for biomass 

utilization as feedstocks for biofuels. It says that by 2022, 36 billion gallons of bioethanol 

must be used per year in the US, of which are 16 billion gallons of ethanol produced from 

cellulose while ethanol from starch is limited to 15 billion gallons (EPA 2011). Since the 

conversion of lignocellulosic materials to fermentable sugars is still facing challenges for 

commercialization, universities and research institutes are focusing on this technology. 

Several funding sources are available for performing research in biofuels. The US 

Department of Energy (DOE), the US Department of Agriculture (USDA) and the Sun Grant 

Initiative, a national network of land-grant universities and federally funded laboratories, and 

others provide funding for selected proposals.  

Liquid high-density fuels are still the major source of energy for transportation. 

Especially in aviation, liquid fuels cannot be replaced by electric batteries or heavy fuel cells 

since the energy density of liquid fuels cannot be achieved (Hemighaus et al. 2006). 

However, it is common knowledge that petroleum as the source for liquid fuels will be 

depleted eventually. Therefore, an early investment in fuels derived from biomass is 

necessary. In case oil is depleted, not only transportation must gain its energy from biofuel, 
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but also the chemical, pharmaceutical and bioproduct industries will be dependent on 

biomass as their sole feedstock. Currently, the biofuels industry utilizes easily fermentable 

sugars for ethanol, or plant oils for biodiesel production. However, as it becomes clear that 

many industries are dependent on biomass, which is also limited on an area basis, a complete 

utilization of the organic matter is required to achieve optimum efficiency.  

In order to achieve a complete utilization of the organic matter of a plant, one must 

understand the composition of a plant. As crude oil is composed of different chemicals, 

which are separated in the refinery into asphalt, liquefied petroleum, jet fuel, diesel fuel, 

heating oil, gasoline and other valuable products, products from a plant can also be separated 

into several chemicals in the biorefinery. Using corn as an example, its kernel can be 

separated into starch and oil. The starch can serve as food or be further processed to 

bioethanol. The oil can be used for cooking or biodiesel production. The rest of the plant, 

also known as stover, can be separated into lignin, cellulose and hemicellulose. Lignin can be 

burned for power production or used as substrate for the biopolymer industry. The cellulose 

and hemicellulose can be used as feedstock for bioethanol production. Figure 1.1 shows a 

schematic of how biomass could be processed in a biorefinery to produce different chemicals 

with corn as an example. The same principle can be used for other common biomass 

feedstocks, such as woody biomass, herbaceous biomass and agricultural residues. 

Where theory seems straight forward, the praxis faces major difficulties in providing 

technology that can perform these steps economically. Where the left-hand side of Figure 1.1 

is already done and the base for major bioethanol production in the United States, the right-

hand side deals with high energy and water usage, low enzymatic activities and overall low  
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Figure 1.1: Schematic of biorefinery with corn as example (Cheng 2010). 
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efficiencies. The major difficulty is the breakdown of the complete lignocellulosic structure 

to fermentable sugars, while minimizing formation of inhibitors and loss of sugars. Evolution 

made lignocellulose, and especially lignin, highly recalcitrant. Lignocellulose gives 

mechanical strength to plants and is resistant to microbial breakdown. Therefore, finding 

enzymes that break down cellulose, hemicellulose and lignin is rather difficult. Fortunately, a 

breakdown is not impossible, which can be observed when plants rot in the field. However, 

some of these processes are time intensive and of little interest for industrial purposes. The 

best role models for biomass breakdown in nature are white-rot and brown-rot fungi. White-

rot fungi excrete laccases and other enzymes to break down and utilize lignin, hemicellulose 

and cellulose, leaving a white material (Fritsche 2002). Brown-rot fungi are specialized in the 

breakdown of cellulose by excreting cellulases and leave the brown lignin (Fritsche 2002). 

Current technologies apply, compared to nature, harsh physical or chemical processes to 

achieve rapid lignin breakdown or dissolution. Subsequently, cellulolytic and 

hemicellulolytic enzymes are applied to hydrolyze the cellulose and hemicellulose to sugars. 

Due to the harshness of the pretreatment, losses of sugars and byproducts and/or inhibitors 

are created. It has long been recognized that a mix of enzymes containing multiple activities 

towards cellulose, hemicellulose and lignin can improve the overall conversion efficiency. 

Moreover, where in the past the focus for lignocellulosic bioethanol was based on cellulose, 

current research tries to utilize hemicellulose as feedstock too. As mentioned above, we can 

face biomass shortages, so it is of highest importance to use as much of the organic matter for 

product formation as possible.  

A reason for the high cost of lignocellulosic biofuels production is the production of 

hydrolytic enzymes with high and tailored activities. An ideal enzyme has high activity over 
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a large spectrum of pH changes, has optimum activity at ambient temperatures, is not 

affected by substrate or product inhibition, and has a long stability over time, while being 

cheap to produce. Current enzyme production uses ether submerged fermentation (SmF) or 

solid state fermentation (SSF). SSF has already been proven to achieve higher enzyme 

productivities by reduced protease production (Viniegra-González et al. 2003). However, 

SSF requires a leaching step to remove the enzyme from the solid matrix, which will dilute 

the enzyme concentration. Furthermore, it is very difficult to apply continuous operation on a 

SSF system. A trickle bed reactor can be the solution to the problem. It allows the culture to 

grow on a solid surface by optimum oxygen and nutrient supply. When a recycle is 

implemented, the substrate utilization and product formation can be improved.  However, a 

major drawback can be the uncontrolled growth of mycelia, which can lead to clogging of 

pipes and apparatuses. Limiting the growth of the organism by continuous product formation 

can be a potential solution. A trickle bed reactor can only achieve its full potential when the 

growth of the organism can be limited while the enzyme production is unaffected. Then the 

system could be viewed as a stationary catalyst.  When the recycle flow rate is chosen 

appropriately high, the assumption could be made that the dissolved solids concentration is 

uniform throughout the reactor, which allows the usage of continuously stirred tank reactor 

(CSTR) models.  

Currently, literature tries to achieve zero-growth rate systems in order to maintain a 

constant cell mass. Zero-growth rate systems can be achieved by reducing the energy and 

carbon supply to a level equal to the maintenance energy required by the organism to survive, 

but without growth. It is not known if such a system can be kept active over a prolonged 

period of time. A solution could be the usage of mutant strains that are unable to utilize a 
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certain essential coenzyme. These strains need this particular coenzyme in the medium to 

grow. By removing the coenzyme from the medium after the organism is grown, the growth 

could be limited while the enzyme production can continue. Such a system has not been 

proposed in the literature. Different mutants of Aspergillus nidulans can be found with a 

multitude of different markers. Among others, these markers can be co-enzymes and need to 

be fed to the organism to allow growth. 

The first part of the present study investigates the synergistic effects of enzymatic 

hydrolysis of grain sorghum stover by using multiple enzymes. Conversion of cellulose to 

glucose is compared between untreated and pretreated grain sorghum stover. 

The second part of this study investigates the feasibility of limiting the growth by 

coenzyme limitation for continuous enzyme production. This system is then applied to a 

laboratory scale trickle bed reactor to investigate the feasibility of the reactor system over a 

period of time.   
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CHAPTER II 
 

 

OBJECTIVES 

1. Determine the synergistic effects of enzyme mixtures for maximum enzymatic 

hydrolysis of grain sorghum stover untreated and pretreated with liquid hot water 

pretreatment. 

 

2. Determine the feasibility of continuous client enzyme production with an 

Aspergillus nidulans mutant containing a pyridoxine marker by limiting the 

supply of pyridoxine. 

 

3. Determine the feasibility of using the limited growth system with pyridoxine 

limitation in a trickle bed reactor for prolonged client enzyme production. 

 

. 
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CHAPTER III 
 

 

REVIEW OF LITERATURE 

3.1 Lignocellulosic substrates 

Plant material that is composed mainly of cellulose, hemicellulose and lignin is 

considered lignocellulosic material. Lignocellulosic material was traditionally a by-

product of the agricultural and forest industries. Three types of lignocellulosic material 

can be identified: agricultural residues, herbaceous biomass and woody biomass (Lin and 

Tanaka 2006). Typical agricultural lignocellulosic residues are corn stover, wheat straw, 

and rice straw. According to the Billion-Ton-Study update by Perlack (2011), the USA 

produces 111 million metric tons of agricultural residues in the baseline scenario in 2012. 

Table 3.1 shows typical values for cellulose, hemicellulose and lignin contents of 

agricultural residues. Using average values, a mass of 44.4 million tons of cellulose could 

be produced. Assuming complete cellulose conversion to bioethanol, 25 million tons (32 

billion liters) of ethanol could be produced annually. With 24 MJ/L for ethanol and 34.2 

MJ/L for gasoline, the bioethanol could replace 22 billion liters (5 billion gallons) of 

gasoline. 

Herbaceous biomass is grown as feedstock for the biofuels industry. Several 

herbaceous feedstocks show promising fiber compositions to qualify for the biofuels 
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industry. Among others, switchgrass, miscanthus, and Coastal Bermuda grass are the 

main species. Common compositions can be seen in Table 3.1. Optimum feedstock 

characteristics for biofuel production are high cellulose and hemicellulose concentration 

and low lignin, moisture and ash content. The composition varies greatly with the state of 

plant maturity. Therefore, harvest should take place before lignification is initiated, since 

lignification reduces biodegradability (Jung and Vogel 1992). Woody biomass can be 

divided into two categories: softwood and hardwood. Softwoods are gymnosperms and 

include all evergreens (Cheng 2010). Examples of softwoods are pine and spruce. 

Hardwoods have broad leaves and are angiosperms. Examples of hardwoods are poplar, 

willow and oak (Fengel and Grosser 1975). The difference in cellulose, hemicellulose 

and lignin content between softwoods and hardwoods is shown in Table 3.1. It is not the 

author’s intention to rank the different feedstocks as good and bad. It is the author’s 

opinion that all resources need to be considered and evaluated in their usage as feedstock, 

since different areas with different climates promote the growth of different feedstocks in 

a sustainable manner. Furthermore, a mix of all substrates will be needed to overcome the 

future demand for the biofuels, bioproduct and chemical industry. However, each 

substrate with its unique characteristics requires an individually optimized conversion 

process. 

3.1.1 Cellulose 

Cellulose is the main constituent of plants and serves to give the plant structure 

and mechanical strength (as opposed to starch, which serves as an energy source) 

(O'Sullivan 1997). Cellulose is a linear polymer composed of glucose molecules with β-

1,4-glycosidic bonds. Six polymorphs of cellulose have been identified (I, II, III, IV, V,  
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Table 3.1: Typical composition (% dry basis) of lignocellulosic biomass (Cheng 
2010). 

Biomass Cellulose  Hemicellulose  Lignin  
Agricultural 
waste 

Corn stover 35 – 40  17 – 35  7 – 18  
Wheat straw 33 – 50  24 – 36  9 – 17  
Rice straw 36 – 47  19 – 25  10 – 24  

Herbaceous 
biomass 

Switchgrass 28 – 37  24 – 27  15 – 18  
Miscanthus 38 – 43  24 – 27  22 – 25  
Coastal 
Bermuda grass 

26 31 20 

Woody 
biomass 

Hardwoods 40 – 50  15 – 20  20 – 25  
Softwoods 40 – 50  11 – 20  27 – 30  
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and VI) (O'Sullivan 1997). Cellulose I is the form found in nature. By application of heat, 

mercerization, or liquid ammonia the cellulose forms II to IV are interconverted 

(O'Sullivan 1997). Since cellulose I is the natural occurring form of cellulose, it is of 

main interest and described in more detail. Multiple chains of β-1,4- glycosidic bound 

glucose molecules together form a cellulose microfibril (Cheng 2010). Multiple 

microfibrils form a cellulose fibril. Due to the β-1,4-glycosidic bond, the OH group from 

C6 on one chain forms a hydrogen bond with the OH group from C3 on a neighboring 

chain. These intermolecular bonds together with intramolecular bonds are responsible for 

the rigid structure of cellulose and its crystallinity (Cheng 2010). Figure 3.1 shows the H-

bonds between two strands of cellulose chains. 

 

3.1.2 Hemicellulose 

Hemicellulose is a heterogeneous branched polymer with a backbone composed 

of xylose, mannose or glucose. Other main branched constituents are glucose, arabinose, 

mannose, galactose, phenolic groups, acetyl groups and sugar acids (Cheng 2010; Saha 

2003). Its composition varies greatly with plant type. Where softwoods are mainly 

composed of glucomannans, hardwoods are mainly composed of xylans (Girio et al. 

2010). Six groups of major hemicelluloses can be identified: glucuronoxylans (GX), 

galactoglucomannans (GGM), arabinoglucuronoxylans (AGX), xyloglucans (XG), 

arabinoxylans (AX) and complex heteroxylans (CHX). Table 3.2 shows an overview of 

the hemicelluloses, their predominant source, backbone structure and side chains.  

Hardwood hemicelluloses are mainly composed of GX. The content can range 

between 15% and 30% of the dry mass (Alén 2000). GX consists of a linear backbone of  
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Figure 3.1: H-bonding of two cellulose I strands. Adapted from O’Sullivan (1997). 
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Table 3.2: Main types of polysaccharides present in hemicelluloses (information based mainly on (Alén 2000; Carpita and 
Gibeaut 1993; De Vries and Visser 2001; Ebringerova et al. 2005; Pereira et al. 2003). 

Polysaccharide type Abb1 Biological  
origin 

%db2 Backbone Side chains Linkage
s 

Dp3  

Arabinogalactan ΑG Softwoods 1-3 β-D-Gαlp β-D-Galp,  
α-L-Αraf,  
β-L-Αrap 

β-(1�6) 
α-(1�3) 
β-(1�3) 

100 – 
600  

Xyloglucan XG Hardwoods,  
grasses 

2-25 β-D-Glcp, 
β -D-Xylp 

β-D-Xylp, 
β-D-Galp, 
α-L-Αraf, 
α-L-Fucp, 
Αcetyl 

β-(1�4) 
α-(1�3) 
β-(1�2) 
α-(1�2) 
α-(1�2) 

 

Galactoglucomannan GG
M 

Softwoods 10-25 β-D-
Mαnp, β-
D-Glcp 

β-D-Galp 
Αcetyl 

α-(1�6) 40 – 100  

Glucomannan GM Softwoods,  
hardwood 

2-5 β-D-
Mαnp, β-
D- Glcp, 
β-D-Xylp 

  40 – 70 

Glucuronoxylan GX Hardwoods 15-30 β-D-Xylp  4-O-Me-α-D-GlcpΑ, 
Αcetyl 

α-(1�2) 100 – 
200 

Arabinoglucuronoxylan ΑGX Grasses,  
cereals,  
softwoods 

5-10 β-D-Xylp 4-O-Me- α -D-GlcpΑβ -
L-Αraf 

α-(1�2)  
α-(1�3) 

50 – 185  

Arabinoxylans ΑX Cereals 0.15-
30 

β-D-Xylp α-L-ΑrafFeruloy α-(1�2) 
α-(1�3) 

 

Glucuronoarabinoxylans GΑX Grasses,  
cereals 

15-30 β-D-Xylp α-L-Αraf, 
4-O-Me- α -D-GlcpΑ,  
Αcetyl 

α-(1�2) 
α-(1�3) 

 

Homoxylans HX Algae  β-D-Xylp    
1 Abbreviation, 2 % of dry mass, 3 Degree of polymerization
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β-(1,4) glycosidic linked β-D-xylopyranosyl units. One in ten xylose molecules has an α-

1,2-linked uronic acid group and some are acetylated at C2 and C3. GX may contain 

small amounts of L-rhamnose and galacturonic acid (Girio et al. 2010). 

GGM is the main hemicellulose in softwoods with 10% to 25% of the dry mass 

(Pereira et al. 2003). The linear backbone is composed of β-(1,4)-glycosidic linked b-D-

glucopyranosyl and b-D-mannopyranosyl units (Girio et al. 2010). The units are partially 

acetylated at C2 or C3. It was observed that GGM appear to be water soluble when the 

galactose content is increased (Timell 1965). 

The major component of non-wood hemicellulose is AGX. AGX are also a minor 

component in softwoods (Girio et al. 2010). The backbone is composed of xylopyranose 

units with 4-O-methyl-α-D-glucopiranosyl uronic acid and α-L-arabinofuranosyl units 

(Timell 1965). Compared to hardwoods, AGX may be less acetylated.  

Hardwoods are predominantly composed of XG. XG also can be found in small 

amounts in grasses. The backbone of XGs are composed of β-1,4-linked glucose  residues 

and 75% of these residues are substituted with xylose at O-6. XGs form hydrogen bonds 

with cellulose microfibrils and support the structural integrity of the cellulose network 

(Carpita and Gibeaut 1993; De Vries and Visser 2001; Mishra and Malhotra 2009). The 

cellulose microfibrils are coated with XG, which limits their aggregation. Tethers bind 

the microfibrils and regulate the mechanical properties of the cell wall (Johansson et al. 

2004). 

 The major hemicellulose structures in cereal grain cell walls are arabinoxylans. 

While similar to hardwoods, AXs contain a higher amount of arabinose (Girio et al. 

2010). The linear backbone of AX is composed of β-1,4-xylose units and is substituted 
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with α-L-arabinofuranosyl units at 2-O and/or 3-O positions. The extractability of xylan 

is restricted by physical and/or covalent interactions with other cell wall components 

(Girio et al. 2010). 

 Cereals, seed, gum exudates and mucilages contain complex heteroxylans where 

the xylose backbone has single uronic acid and arabinosyl residues as well as various 

mono- and oligoglycosyl side chains (Girio et al. 2010). 

 

3.1.3 Lignin 

Lignin is, after cellulose, the second most abundant organic polymer in 

lignocellulosic biomass. As a compound of the cell wall of higher plants, lignin confers 

mechanical strength and plays a vital role in vascular transport (Martone et al. 2009). 

Lignin also protects cellulose and hemicellulose from microbial breakdown, making 

wood persistent and a useful building material (Vanholme et al. 2010). It is a three-

dimensional amorphous heteropolymer (Uzal et al. 2009), and is composed of 

hydroxycinnamyl alcohols (or monolignols), coniferyl alcohol and sinapyl alcohol. A 

minor compound is p-coumaryl alcohol (Boerjan et al. 2003). From the monolignols 

result guaiacyl, syringyl and p-hydroxyphenyl units, which are incorporated into the 

lignin polymer. In general, softwoods (gymnosperms) and hardwoods (angiosperms) 

have different major lignin monolignol compounds. Softwoods are mainly composed of 

guaiacyl units (with minor p-hydroxyphenyl units) and hardwoods are mainly composed 

of guaiacyl and syringyl units (Vanholme et al. 2010).  Figure 3.2 shows the lignin 

structure of poplar as predicted from NMR analysis. 
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Figure 3.2: NMR predicted lignin structure of poplar (Stewart et al. 2009). 
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3.1.4 Grain sorghum stover 

Grain sorghum is a common cereal crop in Nigeria, the United States, India, Mexico and 

other countries. It is the third most used grain for food in the United States, and used 

second, after corn, as a feedstock for commercial bioethanol production (Anonymous 

2010). Kim and Dale (2004) reported that North America has a potential of producing 

1.89 gigaliter (GL) bioethanol from sorghum straw. However, to improve the conversion 

efficiency of grain sorghum to ethanol, it is necessary to not only utilize the grain, but 

also the plant residues, also known as stover. The stover is mainly composed of structural 

carbohydrates (cellulose, hemicellulose, and lignin). In a previous study, the cellulose 

and hemicellulose content was found to be 35% (dry basis (db)) and 28% (db), 

respectively and the lignin content was 5.6% (db) (Salem et al. 1994). Powell et al. 

(1991) compared the chemical composition of conventional grain sorghum, intermediate 

and forage sorghum stover. The cellulose content in stover varied between 31.3% (db) for 

grain sorghum and 25.3% (db) for intermediate sorghum stover. Hemicellulose was 

highest in grain sorghum stover with 28.2% (db) and lowest in intermediate sorghum 

stover with 21.7% (db). 

 

3.2 Pretreatment of lignocellulose 

The ultimate compound derived from biomass for many applications in biofuel, 

bio-product and chemical industries is sugar. In its monomeric form, it can be used for 

many applications and converted to other compounds. Whereas the formation of sugar 

from starch or sugar crops is cheap and can be achieved in high yields, the sugar 

formation from lignocellulose is still costly. However, in order to relieve the pressure of 
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starch and sugar crops’ demand for non-food applications, lignocellulose-to-sugar 

technology is being researched to find pretreatment and enzymatic hydrolysis techniques 

than can reduce costs and increase yields.  

The difficulty in converting lignocellulose to sugar comes from the structure in 

which the polymers are arranged within the fiber matrix. A typical plant fiber is 

composed of three major compounds: cellulose, hemicellulose, and lignin. Cellulose, 

present as a linear polymer, is surrounded by the hemicellulose, which is present as a 

branched polymer. Both, cellulose and hemicellulose are surrounded by lignin. Lignin is 

nature’s answer to rapid microbial breakdown. Lignin is highly recalcitrant and protects 

cellulose and hemicellulose from enzymatic breakdown. These characteristics allow us to 

use wood as a building material. However, it is this recalcitrance that needs to be 

overcome in order to convert the cellulose and hemicellulose to useful sugars. A dead 

tree in the forest is broken down by microorganisms. White-rot fungi degrade lignin and 

brown-rot fungi hydrolyze cellulose. Unfortunately, these processes have slow reaction 

rates and are not of high interest for industry. 

Several techniques are available to pretreat lignocellulose. The purpose of a pretreatment 

technique is to (Alvira et al. 2010):  

- break and remove lignin  

- de-crystallize cellulose  

- increase porosity  

- improve accessibility of enzymes  

- enhance biodigestability 
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Figure 3.3 shows a schematic of the arrangement of lignin, hemicellulose and cellulose to 

each other, as well as the effect of pretreatment on a fiber matrix. An optimized 

pretreatment technique must improve the formation of sugars, avoid the degradation of 

sugars or loss of carbohydrates, avoid the formation of inhibitors, not require a size 

reduction of biomass, be effective at low moisture content, be cost-effective, allow lignin 

recovery and have a minimum power and heat requirement (Alvira et al. 2010). No 

pretreatment technique has been developed yet that fulfills all requirements. Detailed 

descriptions of available pretreatment techniques are available elsewhere (Alvira et al. 

2010; Bjerre et al. 1996; Chang et al. 2001; Duff and Murray 1996; Girio et al. 2010; 

Kumar et al. 2009; Millet et al. 1976; Monties 1991; Mosier et al. 2005a; Playne 1984; 

Sun and Cheng 2002; Zheng et al. 1998).  

Liquid hot water pretreatment was found to be a cost effective method to pretreat  

agricultural residues and grasses and is described below (Faga et al. 2010; Mosier et al. 

2005b; Mosier et al. 2005a; Suryawati et al. 2008b). 

 

3.2.1 Liquid hot water pretreatment 

The main objective of liquid hot water pretreatment (LHWP) is to dissolve hemicellulose 

with a reduced inhibitor formation (Alvira et al. 2010). During LHWP, the material is 

treated with water at high temperatures and pressures. The temperatures can vary 

between 160ºC and 240ºC (Alvira et al. 2010). The water is maintained in liquid form in 

a completely enclosed reactor. LHWP does not require any chemicals, besides water, for 

the reaction. The pH of the material after the process is closer to neutral compared to 

other common pretreatment techniques, such as dilute acid or alkaline 
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Figure 3.3: Effect of pretreatment on biomass scheme. Lignin gets disrupted and 
hemicellulose dissolved. Adapted from Hsu et al. (1980) and Mosier et al. (2005a). 
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pretreatment, which simplifies the neutralization process required for downstream 

enzymatic hydrolysis and fermentation. The lack of chemicals also reduces the cost of the 

process. Since no corrosive chemicals are used, cheaper reactor equipment can be chosen 

(Mosier et al. 2005b). For batch treatment, a steel reactor is filled with an appropriate 

amount of biomass and water (Suryawati et al. 2008). Solids concentrations can range 

between 2 and 100 (w/w) liquid-to-solid ratio (Girio et al. 2010).  

The reactor is equipped with a stirring device to achieve uniform heat and mass 

distribution. Temperature and pressure control are used to monitor the process. The 

reactor is heated, which consequently leads to an increase in pressure. When the desired 

temperature is reached, it is held constant for a certain time. The holding time can vary 

between 5 and 15 minutes (Suryawati et al. 2008). After the pretreatment, temperature 

and pressure are reduced to normal. The pH of pure water drops to 5 when heated to 

200°C (Weil et al. 1998).  

With a high dielectric constant, ionic substances are dissociated. Forty to sixty 

percent of the biomass is dissolved (Mosier et al. 2005a). For corn stover, the optimal 

conditions found by Mosier et al. (2005b) were 190°C for 15 min. Ninety percent of the 

cellulose was converted to glucose after cellulase treatment in that study. Suryawati et al. 

(2008b) conducted a simultaneous saccharification and fermentation (SimSF) of Kanlow 

switchgrass pretreated with LHWP. The researchers set the conditions to 200°C for 10 

min with a 10% dry biomass loading. Under these conditions 43.9% of the dry solids 

were solubilized. The glucan content in the solids was increased from 36.6% to 56.6%. 

The conversion efficiency from cellulose to ethanol was 80%. Hemicellulose can be 

dissolved completely during LHWP; however, the dissolved pentoses can be further 
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degraded to furfural (Mosier et al. 2005a). The holding time and temperature need to be 

chosen carefully, since the degree of lignin removal, cellulose de-crystallization and 

hemicellulose dissolution are positively correlated to inhibitor formation. With constant 

holding time, a relatively high temperature can lead to good lignin removal and de-

crystallization, but also high inhibitor formation. With constant temperature, an increase 

of the holding time leads to higher lignin removal and de-crystallization, but also higher 

inhibitor formation (Suryawati et al. 2008). 

 

3.3 Enzymatic hydrolysis of biomass 

After physico-chemical pretreatments, enzymatic hydrolysis is necessary for 

sugar formation. In general, yeast does not express extracellular enzymes for the 

degradation of polysaccharides. For biological ethanol production, cellulose and 

hemicellulose need to be hydrolyzed to simple sugars. Several manufacturers provide 

enzyme cocktails for the degradation of cellulose or hemicellulose. However, enzyme 

production and enzymatic hydrolysis are still expensive and need to be optimized. The 

complete degradation of cellulose to glucose involves three enzyme activities: 

endoglucanase, exoglucanase, and beta-glucosidase. Endoglucanases hydrolyse cellulose 

to oligosaccharides. Exoglucanase converts the oligosaccharides to cellobiose, which is 

hydrolyzed to glucose by beta-glucosidase (Cheng 2010) (Figure 3.4). 

Hemicellulose degradation needs a variety of enzymes, since hemicellulose is 

composed of a variety of sugars. The main constituent of many hemicelluloses are xylans 

with a homopolymeric xylose backbone with random side chains composed of arabinose,  
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Figure 3.4: Enzymatic processes to convert cellulose into glucose (adapted from 
Cheng 2010). 
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glucoronic acid, ferulic acid and acetic acid. Xylanase is an endo-enzyme for xylans. 

Beta-xylosidase degrades xylo-ologosaccharides to xylose. Pectin, a family of 

heteropolymeric and homopolymeric polysaccharides dominated by galacturonic acid 

units and homogalacturonan, is another major component of hemicellulose and involves 

pectinase for degradation (Cheng 2010). The bonds between hemicellulose and lignin can 

be cleaved by ferulic acid esterase.  

While the degradation of cellulose is widely understood and enzymes with high 

activities can be obtained, the degradation of hemicellulose is more complex. Each 

substrate has a unique hemicellulose composition. Furthermore, the presence of 

hemicellulose and lignin can inhibit cellulose degradation simply by the fact that the 

cellulose is shielded by lignin and hemicellulose from the enzymes. An ideal enzyme 

cocktail hydrolyzes all cell wall components for optimum sugar release. 

 

3.3.1 Limiting factors involved in decreasing enzymatic hydrolysis of biomass 

One major factor that decreases the enzymatic hydrolysis of biomass as time 

progresses is the formation of inhibitors. For cellulose hydrolysis a main inhibitor is 

cellobiose, the product of endo- and exo-glucanases, which competes for the active site of 

exo-glucanases (Cheng, 2010). This competitive product inhibition can be reduced by 

using beta-glucosidase, which will hydrolyze cellobiose to glucose (Cheng, 2010). The 

increasing concentration of glucose over time also leads to product inhibition of beta-

glucosidase, which can be avoided by using simultaneous saccharification and 

fermentation (SimSF) (Sun and Cheng, 2002). 
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A second important factor leading to a decreased enzymatic hydrolysis rate is the 

biomass composition and structure. As discussed in more detail in the next paragraph, 

synergistic effects were observed when using enzyme mixtures (Banerjee et al. 2010; 

Beukes et al. 2008; Beukes and Pletschke 2010; Gottschalk et al. 2010). This occurs since 

cell wall components hinder the access of single enzymes to the specific substrate. The 

first hindrance is given by lignin, which can be removed with physico-chemical methods. 

The second hindrance is hemicellulose, which is a network surrounding the cellulose 

fibers. Therefore, as time progresses, less specific substrate can be reached by the 

corresponding enzymes, which reduces the hydrolysis rate. 

 

3.3.2 Optimization of enzymatic hydrolysis with enzyme mixtures 

Optimization of enzymatic hydrolysis can be achieved by expressing enzymes 

with higher activities, increasing the protein excretion of host organisms, or using 

multiple enzymes to achieve synergistic effects. Beukes et al. (2008) conducted a test on 

sugarcane bagasse to see the synergistic affects between xylanase A, endo-glucanase E. 

and mannanase A and compared the results to specific substrate mixtures composed of 

birchwood xylan, carboxymethylcellulose and locust bean gum. The researchers 

performed a factorial design with varying enzyme concentrations but with a total enzyme 

volume of 40 µl in each test. The degree of synergism was calculated by dividing the 

resulting activity of the combination of two enzymes by the sum of the individual activity 

of each enzyme. The substrate, sugarcane bagasse, was treated with the enzyme mixtures 

for 30 min at 50°C and pH 5.5. Using two enzyme combinations on a birchwood 

xylan/carboxymethylcellulose mix, the highest activity with 1078.11 U/mg was observed 
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with a xylanase/endoglucanase molar ratio of 25/75. This test also showed the highest 

degree of synergism of 3.59. The same enzyme mix, xylanase/endoglucanase, in a 

different molar ratio (75/25) achieved an activity on sugarcane bagasse of 9.50 x 10-2 

U/mg and the highest degree of synergism (4.65). With all three enzymes together, the 

best result on a synthetic substrate mix (birchwood xylan, carboxymethylcellulose, locust 

bean gum) was found with a molar ratio of 25% xylanase, 25% endoglucanase and 50% 

mannanase. The degree of synergism was 4.46 (activity values were not given). On 

sugarcane bagasse, the same molar ratio achieved an activity of 2.97 x 10-1 U/mg with a 

degree of synergism of 2.73. Using all three enzymes increased the activity about 3 times 

compared to the xylanase/endoglucanase mix. However, the degree of synergism was less 

with all three enzymes together than with only two enzymes. It could be concluded that a 

mixture of enzymes is more effective for biomass breakdown than the usage of single 

enzymes. The sugarcane bagasse used in the experiment was not further pretreated, and it 

can be expected that an appropriate pretreatment would lead to even higher activities and 

degrees of synergism. This can also be seen in the great differences in activities achieved 

on specific substrates compared to sugarcane bagasse. It is believed that lignin directly 

affects enzymes’ ability to reach cellulose and reduces hydrolysis.  

A follow up work was published (Beukes and Pletschke 2010) and incorporated a 

pretreatment on sugarcane bagasse before the enzymatic hydrolysis. The treatment used 

was lime pretreatment with the following conditions: 0.4 g lime/g dry bagasse, 70°C, for 

36 h at 100 rpm. The researchers used arabinofuranosidase, xylananse and mannanse in 

various combinations. As expected, the enzymatic hydrolysis showed with all enzyme 

combinations higher activities with pretreated bagasse than with non-pretreated bagasse. 
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The highest activity of about 600 U sugar produced was achieved with a combination of 

all three enzymes with a molar ratio of 37.5% arabinofuranosidase, 25% mannanase and 

37.5% xylananse on pretreated sugarcane bagasse, while the same enzyme mix achieved 

only 60 U on un-treated sugarcane bagasse. However, the degree of synergism was about 

2.2 lower as with a test on non-pretreated bagasse with a molar ratio of 12.5% 

arabinofuranosidase and 87.5% xylanase. It could be concluded that a mix of enzymes 

leads to synergism and that incorporated pretreatment leads to better enzymatic 

hydrolysis. 

Another test with a synthetic enzyme mixture was performed on ammonia fiber 

explosion (AFEX) pretreated corn stover (Banerjee et al. 2010). The researchers 

investigated combinations of commercially available enzymes with combinations of 

different enzymes with known single activities. The first part included the following 

commercially available enzymes: Spezyme CP, Novozyme 188, Accellerase 1000 and 

Multifect-xylanase. The enzyme loading was based on total protein concentration. The 

total protein loadings were 7.5, 15 and 30 mg/g glucan. Spezyme CP was tested with 

Novozyme 188 and Accellerase 1000 was tested with Multifect-xylanase. The highest 

glucan conversion of 64.3% was achieved with 50 mass% Accellerase 1000 and 50 

mass% Multifect-xylanase, and a total protein concentration of 30 mg/g glucan. Spezyme 

CP and Novozyme 188 achieved only 57.4% with the same protein concentrations. These 

enzyme combinations also showed the highest xylan conversion of 44.7% and 38.6% 

with Accellerase/Multifect and Spezyme/Novozyme, respectively. 

 The enzymes with single activities were cellobiohydrolase1 (CBH1), 

cellobiohydrolase2 (CBH2), endoglucanase1 (EG1), exoglucanase3 (EX3), beta-



29 
 

glucosidase (BG), and beta-xylanase (BX) (Banerjee et al. 2010). In terms of glucose 

release, the best combination in their study was with all six enzymes with the following 

proportions: 46% CBH1, and all other enzymes with 11% each. The glucan conversion 

was 39.3%. Xylan conversion under these conditions was 22.8%; however, the best xylan 

conversion of 28.0% was achieved with following proportions: 5% CBH1, 28% EG1, 5% 

BG, 52% EX3, 5% BX and 5% CBH2. This set was not as efficient as the commercial 

enzyme solutions, indicating that some enzyme activities were missing. 

Gottschalk et al. (2010) used mixtures of different hydrolytic enzymes expressed 

by Trichoderma reesei and Aspergillus awamori to hydrolyze steam-treated sugarcane 

bagasse. The enzymes produced by T. reesei were carboxymethyl cellulase, beta-

glucosidase and xylanase. A. awamori expressed the same enzymes with the addition of 

ferulic acid esterase. The highest glucose yield of 81.1% was achieved after 72 h with 

50% enzyme solution from T. reesei and 50% enzyme solution from A. awamori. The 

50/50 combination had the following activities in IU/g: 111, carboxymethyl cellulase; 

205, beta-glucosidase; 489, xylanase; and 0.7, ferulic acid esterase. With this 

combination a xylose yield of 91.0% was achieved. 

It can be concluded that a combination of enzyme activities can lead to an 

improved breakdown of lignocellulosic biomass, where EG, EX, BG, BX, ferulic acid 

esterase, arabinofuranosidase and mannanase are the key enzymes. 

 

3.4 Filamentous fungi 

Filamentous fungi are eukaryotes belonging to the deuteromycetes (Madigan and 

Martinko 2006). Penicillium, Aspergillus and Candida are typical examples of this group 
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(Madigan and Martinko 2006). Filamentous fungi grow by extension of cells at the end of 

an existing cell. The cells divide and create branches. A single branch is called a hyphae. 

These hyphae grow as a network that is called the mycelia. Filamentous fungi can also 

create spores, which are resistant against dryness, heat, freezing and certain chemicals 

(Madigan and Martinko 2006). The life cycle of filamentous fungi starts at an existing 

mycelium. Hyphae grow upwards (into the air) and at the ends conidiospores grow. At 

the end of the conidiospores, the conidias (spores) are formed (conidiation), which get 

transported by air or by being carried. When the conditions are beneficial for growth, the 

spores will sprout and become hyphae (Madigan and Matinko 2006). The growth of 

filamentous fungi on solid surfaces is different than in liquid medium. Unlike bacteria or 

yeast, filamentous fungi are adapted to growth on solid surfaces (Prosser and Tough 

1991). The extension of hyphae facilitates the exploration of the environment for new 

nutrients (Prosser and Tough 1991). Young mycelia grow in the form of a circle, with an 

initial exponential phase followed by a deceleration phase leading to a linear increase of 

the colony radius (Prosser and Tough 1991). Given enough medium surface, the linear 

growth phase can continue indefinitely. The growth of mycelia can be expressed by the 

following equation: 

 

K = µ · w  (Prosser and Tough 1991) 

 

K is the radial growth rate, µ is the specific growth rate and w is the width of the 

peripheral growth zone and may be determined experimentally.  
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The branching density depends on nutrient concentration around and underneath 

the colony. Reduced nutrient concentration leads to a reduced branching density, which 

allows the mycelia to grow faster in length, finding other areas with higher nutrient 

concentration. With high nutrient concentration, the branching density increases in order 

to utilize more of the nutrients (Prosser and Tough 1991). Colony differentiation appears 

when nutrients in the center of the colony are depleted. Then the colony has an outer ring 

of vegetative hyphae and an inner center of sporulating cells.  

The growth of filamentous fungi in liquid medium is in some aspects similar to 

the growth characteristics of unicellular organisms. While turbidity can be used to 

measure cell mass of unicellular organisms, often it cannot be used for filamentous fungi, 

since growth leads to the formation of pellets (Prosser and Tough 1991). Furthermore, 

since mycelia adhere to surfaces, growth in continuous stirred tank reactors can lead to 

fouling of pipelines or accumulation of the organisms on the agitator or tank walls, 

leading to a non-uniform distribution within the tank (Prosser and Tough 1991). The 

pellet formation can lead to mass transfer issues in fermentation processes, where 

nutrients and oxygen need to diffuse to the middle of the pellet and products need to 

diffuse back into the medium (Huang and Bungay 1973). Two growth forms need to be 

distinguished characterizing filamentous fungi growth in liquid medium. The first form of 

growth that will be discussed is the dispersed mycelia, which is equivalent to a 

homogeneous mixed culture of unicellular organisms (Prosser and Tough 1991). In a 

batch culture, the growth is characterized by a lag phase, followed by exponential growth. 

Linear growth can be a result of limitations in a continuously supplied nutrient, e.g. 

oxygen. After the exponential growth phase, a deceleration phase is initiated. The 
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deceleration phase is due to substrate limitation, accumulation of inhibitory compounds, 

changes in pH and/or formation of secondary metabolites (Prosser and Tough 1991). 

Oxygen limitation can be a result of a change in rheological properties. Mycelial cultures 

lead to non-Newtonian fluid properties, reflected as shear thinning or pseudoplastic 

behavior where the apparent viscosity decreases with increasing agitation (Allen and 

Robinson 1990; Blakebrough et al. 1978; Pedersen et al. 1993). Nutrient and heat 

transport are also affected by the rheological properties (Prosser and Tough 1991). An 

increase in viscosity also leads to reduced mixing efficiency and an increase in process 

cost (Prosser and Tough 1991).  

The second growth form is the formation of pellets. It is important to know that 

the form of filamentous fungi in liquid medium shows a continuous range from dispersed 

mycelia to pellets (Prosser and Tough 1991). In contrast to dispersed mycelia, a pellet 

solution behaves like a Newtonian fluid (Kim et al. 1983), which is beneficial for mixing 

purposes. Furthermore, no fouling inside the reactor or piping takes place (Prosser and 

Tough 1991). A pellet stained with cresyl-violet shows four distinguished layers 

(Whittler et al. 1986). The outermost layer is heavily stained and is composed of growing 

hyphae. The next layer is less heavily stained and shows signs of autolysis. When a 

hollow pellet is present, a third layer can be seen showing an irregular wall structure. The 

fourth layer is a hollow center. The hollow center is believed to be a result of limited 

nutrient and oxygen transfer causing autolysis (Prosser and Tough 1991). The formation 

of pellets in liquid medium depends on a variety of factors. The most important factor is 

agitation (Metz and Kossen 1977). Agitation causes the removal of hyphae from the 

pellet surface and direct rupture of pellets (Taguchi et al. 1968). In general increasing 
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agitation rate decreases the pellet size (Prosser and Tough 1991). The growth medium 

composition also affects pellet formation as well as extracellular polysaccharides, 

inoculum concentration, specific growth rate, aeration, surfactants, pH and suspended 

solids. 

 

3.5 Enzyme production 

The production of enzymes in large scale is currently performed in solid state 

fermentations (SSF) or submerged cultures (SmF). One of the largest cellulolytic enzyme 

producers, Novozymes located in Denmark, uses submerged culture techniques that are a 

well-kept secret (Novozyme 2010a). Bacteria and fungi are used in fed-batch or 

continuous systems.   

The University of Sao Paulo conducts intense research in xylanase production 

(Betini et al. 2009; de Carvalho Peixoto-Nogueira et al. 2009). Their main focus is in 

optimizing the enzyme expression of xylanases for the paper bleaching industry. The 

researchers found Aspergillus niveus and Aspergillus fumigates as xylanase producers 

with high enzyme activities. A. fumigates was found to produce the highest activity 

among the organisms tested with a culture medium  by Vogel (1964) showing an specific 

activity of 109 U/mg protein (total activity = 348 U) (de Carvalho Peixoto-Nogueira et al. 

2009). They also compared static to agitated enzyme production and found the activity 

with the static culture to be 2.3-fold higher than in the agitated culture (de Carvalho 

Peixoto-Nogueira et al. 2009). Further improvement was achieved by using SSF on 

inexpensive carbon sources (wheat bran, corncob, rice straw, triturated rice straw, 

oatmeal, sugarcane bagasse, cassava flour, Eucalyptus grandis sawdust), and carbon 

source mixtures (corncob + wheat bran, rice straw + wheat bran, triturated rice straw + 
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wheat bran) (Betini et al. 2009). The best activity was achieved with A. niveus on wheat 

bran (2 g solid substrate with 4 ml distilled water at 70 – 80% relative humidity at 30°C 

for 96 h) with a value of 928 total U. The researchers reported that the specific activity is 

higher in all carbon source mixtures than in wheat bran alone. Unfortunately, the values 

for specific activity (U/mg protein) are not given.  

Xylanase and cellulase production using mixed SmF was performed by Garcia-

Kirchner et al. (2002). The researchers used 4 g of sugarcane bagasse with 180 ml of 

medium with spores from Penicillium sp. CH-TE-001 and/or Apergillus terrus CH-TE-

013. The flasks were incubated at 29°C on a rotary shaker at 180 rpm. They found a 

higher cellulase and xylanase production with the mixed culture compared to the single 

cultures. The enzyme mix, which was not further characterized, showed the highest 

activity on carboxymethyl cellulose (CMC) and birchwood xylan after 5 days with a 

value of 1.4 U/ml and 5 U/ml, respectively. No values of protein concentration were 

given. 

A detailed description of SSF is given by Mitchell et al. (2000). This paragraph 

will concentrate on the general principles. SSF has been used over centuries for food 

production, namely the Koji technology, where rice is fermented to produce rice wine, 

also called “sake”. In SSF, microorganisms grow on solid substrate particles with the 

absence of visible liquid water (Mitchell et al. 2000). The typical water content ranges 

between 12 and 80 wt% (Cannel and Moo-Young 1980). Wheat bran, sugarcane bagasse 

and soy bran are, among others, typical substrates for enzyme production (Mitchell et al. 

2000). The substrate is characterized as a low cost waste material from agriculture. The 

general process involves the pretreatment of the substrate including grinding and optional 
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physico-chemical treatments, followed by inoculation usually with a filamentous fungi 

and active or passive aeration. The reactor may or may not be agitated and humidity may 

be controlled. After completion the products need to be leached out (Mitchell et al. 2000).  

Typical reactor types for SSF are tray, drum and packed bed bioreactors. Tray 

reactors are simple to use without active agitation or aeration. The trays’ filling height is 

limited, since overfilling can lead to anaerobic processes and/or overheating (Tunga et al. 

1999) with temperature and humidity as the only control parameters (Durand et al. 1997). 

Due to the large area required, large scale usage of tray reactors is limited. Drum reactors 

incorporate mixing and can lead to increased heat and mass transfer. The growth can be 

improved, but sheer forces can limit the final product formation (Nigam et al. 2004). 

Therefore, the handling on large scale can be difficult. Packed bed reactors are columns, 

where the substrate is kept in place by a perforated platform. Forced aeration is applied at 

the bottom of the column (Mitchell and Lonsane 1992). Product retrieval, non-uniform 

growth and limited heat and mass transfer are common problems of packed bed reactors 

(Lonsane et al. 1985; Mitchell and Lonsane 1992). 

 Enzyme productivity is often higher in SSF than compared to submerged 

fermentation (SmF) (Viniegra-González and Favela-Torres 2004). Viniegra-González et 

al. (2003) reviewed enzyme production using SSF and SmF in terms of physiological 

differences that explain the higher enzyme titers in SSF. In an experiment conducted by 

Romero-Gómez et al. (2000), five times higher invertase concentrations were produced 

with SSF compared to SmF using Aspergillus niger due to higher biomass production. 

Another experiment conducted by Díaz-Gódínez et al. (2001) for the production of 

pectinase showed again higher titers using SSF than SmF due to higher biomass 
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production. They also found that the production with SSF leads to an apparent resistance 

to catabolite repression, which was indicated by high pectinase titers with SSF using high 

initial substrate (in this case sucrose) concentrations. In SmF high sucrose concentrations 

led to an inhibition of product formation. It was also observed that pectinase production 

with SmF had higher breakdown of pectinase by contaminant protease. An experiment 

with restricted growth by introduction of a steric hindrance was performed by Aguilar et 

al. (2001). For the production of tannase, A. niger grew on finely ground polyurethane 

foam (PUF), which had a higher density (113 g/L) than normal sized PUF (15 g/L) with 

the purpose of restricting mycelia growth. Again, higher titers of tannase were produced 

with SSF than with SmF, with values of 14,000 U/L and 2,800 U/L, respectively. The 

biomass levels were found to be 4.5 g/L and 11.5 g/L for SSF and SmF, respectively. 

Even with limited growth by physical hindrance, SSF performed better than SmF, which 

was also due to a reduced protease activity in SSF. Protease activity was found to be 

eight times higher in SmF.  Table 3.3 summarizes the advantages and disadvantages of 

SSF and SmF. 

Biofilm reactors have been investigated for many applications with many 

different reactor types (Cheng et al. 2010). Types of biofilm reactors are: stirred-tank, 

trickling filter, rotating-disk, membrane biofilm, fluidized-bed and airlift. The choice of 

reactor depends on the final product, process complexity and costs. Table 3.4 shows the 

advantages and disadvantages of each reactor type. 

Current production processes are too expensive to utilize enzymes on a large scale 

for low cost products like bioethanol. Novozymes claims on their homepage that they  
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Table 3.3: Advantages and disadvantages of SmF and SSF. 

Culture 
mode 

Advantages Cause Disadvantage Cause 
S

m
F

 

Continuous production  High apparent 
viscosity 

Due to 
dispersed 
mycelia 

Very well understood 
with well established 
models 

 Reduced nutrient 
transfer 

Due to high 
apparent 
viscosity 

 Reduced oxygen Due to high 
apparent 
viscosity 

Cell degradation Due to 
reduced mass 
transfer 

Reduced 
productivity 

Due to clump 
or pellet 
formation and 
elevated 
protease 
formation 

Shear stress of 
cells 

Mixing 

S
S

F
 

Higher biomass 
formation 

Intact 
macroscopic 
mycelia 

No continuous 
fermentation 

 

Higher productivity Intact 
macroscopic 
mycelia and 
higher 
biomass 

Leaching step 
required 

 

Reduced protease 
formation 

 Mixing is not 
possible or 
reduced 

 

 Heat transfer Due to limited 
mixing 
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Table 3.4: Comparison of different types of biofilm reactors. Adapted from Cheng 
et al. (2010). 

Reactor type Advantages Disadvantages 
Stirred-tank High cell concentration and 

productivity; long-term 
production 

Shear stress of cells; more 
mixing needed 

Trickling filter  High cell concentration and 
productivity; low power 
requirement 

Cell fouling; mixing 
problem; difficult to recover 
products 

Rotating-disk High cell concentration; 
good for aerobic strains 

Semi-continuous 
production; high risk of 
contaminations 

Membrane biofilm High cell concentration and 
productivity; easy for 
product separation 

Cell fouling, constraints in 
scale-up applications 

Fluidized-bed reactors Uniform particle mixing 
and temperature gradient; 
long-term production 

High energy requirement; 
long biofilm establishment 
time; shear stress 

Airlift High cell concentration and 
productivity; relatively low 
shear stress 

High energy requirement; 
long biofilm establishment 
time 
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have reduced their enzyme usage costs to $0.50 per gallon ethanol produced (Novozyme 

2010b). To enhance productivity, a trickling-filter is proposed in this dissertation. The 

macrostructure of the fungus is maintained by keeping the mass transfer at an optimum. 

The support is inert, since the substrates for enzyme expression and growth are in a 

dissolved form. 

 

3.5.1 Trickle bed reactor 

Trickle bed reactors (TBR) support the growth of microorganisms on a solid 

surface with continuous or a periodic supply of medium. The medium that trickles down 

can also be recycled to the top of the column. TBRs have historically been used in the 

waste water treatment industry. The medium trickles down the solid support without 

completely submerging the organisms. The distribution of the medium on top of the 

column must be uniform to avoid channeling throughout the column. Channeling can 

lead to reduced retention time of the medium, which subsequently leads to a non-uniform 

growth of the microorganism and an inefficient use of the surface.  

 In comparison to SmF and SSF, TBR has the advantage to be a continuous 

process with a mycelium growth that supports high productivity. TBR does not require a 

leaching step as is needed for SSF. TBR also allows the fungus to grow as a mycelium, 

which was found to have a higher productivity compared to pellet growth in SmF 

(Viniegra-González et al. 2003).  

 Not much research has been done to investigate enzyme production with TBR. 

Lenz and Hölker (2004) used a lab scale TBR to produce laccase with Pleurotus 

ostreatus (a white-rot fungi). Sugar cane bagasse was used as the solid support. The 
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researchers achieved 30 times higher enzyme production with the TBR compared to 

SmF.  

 The use of a TBR also allows a semi-continuous process, where enzyme is 

periodically removed and replaced with fresh medium (Couto and Toca-Herrera 2007). 

This technology should be investigated further and also tested on a larger scale. This 

technology helps to overcome some of the difficulties that occur with SmF (e.g. high 

water usage) and SSF (e.g. upscaling), while showing the advantages of both in terms of 

easy and standardized process control while the organism grows on a solid support with 

optimized oxygen and mass transport. 

 

3.5.2 Modeling of enzyme production from microorganism growing on surfaces of 
packing bed reactors 
 

In order to predict enzyme production in a reactor, an appropriate model has to be 

established. At steady state the substrate consumption in a packing bed or plug flow 

reactor can be modeled with the following equation (Shuler and Kargi 2002): 

 

H
F

AaL

Y

Xq
SS

SP

P ⋅⋅⋅
=−

/
0 η      (Eq. 3.1)  

 

Where S0 = initial (entering) substrate concentration [g/L], S = exiting substrate 

concentration [g/L], η = effectiveness factor (ratio of the rate of substrate consumption in 

the presence of diffusion limitation to the rate of substrate consumption in the absence of 

diffusion limitation), qp = specific rate of product formation [g product/g cell · h], �� = 

average dry cell concentration in g per L bed, A = cross sectional area of column [cm2], F 
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= feed flow rate [L/min], YP/S = product from substrate yield, H = column height [cm], L 

= biofilm thickness or the characteristic length of the support particle (L=VP/AP), where 

VP and AP are the volume and surface area of the support particle and a = biofilm or 

support particle surface area per unit reactor volume (cm2/cm3). 

The exiting substrate concentration and product concentration are constant. For 

this model growth is assumed to be negligible. The effectiveness factor is a constant, 

which incorporates diffusion limitation. In case of no diffusion limitation, η = 1. With 

diffusion limitation, η depends on the shape of the support or particles and needs to be 

calculated with the Thiele modulus. Several equations are available to estimate η. 

From the substrate utilization the exiting product concentration can be obtained: 

 

)( 0/ SSYP SP −=      (Eq. 3.2) 

 

In the start up phase, medium is continuously pumped in a recycle without the addition of 

fresh medium. The system is considered a batch system.  

 

For growth associated products the productivity is: 

 

gXPP Yq µ⋅= /       (Eq. 3.3) 

 

Where YP/X = product yield from biomass and µg = specific growth rate [h-1]. 
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Assuming a different scenario in which fresh medium continuously flows in 

during the growth phase, then the specific biomass growth rate in a plug flow reactor can 

be modeled using the following equation (assuming the decay rate is zero) 

(Tchobanoglous et al. 2003):  

 








+−

−=

S

S
kSS

SSrY

S

mSX
g

0
0

0/

ln)(

)(µ     (Eq. 3.4)  

The decay rate is the rate in which the cells die and is also called death rate (µd). In case a 

recycle is added, the equation is altered to: 

 








++−

−=

S

S
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SSrY

i
S

mSX
g

ln)1()(

)(

0

0/

α
µ     (Eq. 3.5) 

α
α

+
+=

1
0 SS

Si  

 

Where YX/S = biomass from substrate yield, rm = maximum specific substrate utilization 

[g substrate/g cell ·  h], S0 = influent concentration [g/L], S = effluent concentration [g/L], 

Si = influent concentration [g/L] to reactor after dilution with recycle flow, α = recycle 

ratio and ks = half saturation constant [g/L]. 

 

If SSF is assumed, Luedeking and Piret (1959) modeled the product formation of 

fungi with the following relationship: 
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kX
dt

dX
Y

dt

dP
XP += /      (Eq. 3.6) 

 

Where P = product concentration [g/L], YP/X = product yield (g product/g biomass), k = 

secondary coefficient of product formation or destruction [h-1] and X = biomass [g/L]. 

Viniegra-González et al. (2003) related the cell mass formation as a function of biomass. 

 

t
M

M

MeXXX

X
tX µ−−−

=
)/)((1

)(
00

   (Eq. 3.7) 

 

Where µM maximum specific growth rate [h-1], X0 = initial biomass concentration [g/L] 

and XM = equilibrium level of X [g/L] for which dX/dt = 0. 

 

For substrate formation: 
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  (Eq. 3.8) 

 

Where m = maintenance coefficient (g S/ g X · h) 

 

For product formation:  
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3.6 Product formation under zero growth 

Most biotechnological processes are used for the production of metabolites (e.g. 

organic acids, alcohols, extracellular proteins, etc.). The growth of the organism and, 

therefore, the accumulation of biomass is often not the priority. For these processes the 

biomass that is produced can be considered a byproduct. The formation of biomass uses 

carbon and energy compounds that could potentially be used for product formation. In 

many studies it was proposed to limit carbon and energy supply in chemostats to a level 

where the supplied energy is equal to the maintenance energy of the cell (Boender et al. 

2009; Schrickx et al. 1993; Schrickx et al. 1995). Then, the organism will approach a 

zero growth rate when the energy consumed is near the maintenance ratio (Pirt 1965). It 

was shown that submerged filamentous fungi cultures conidiate when nitrogen and 

carbon are limited (Broderick and Greenshields 1981; Galbraith and Smith 1969; Ng et 

al. 1972). Previous studies used retentostat cultures to analyze product formation under 

carbon and energy limited conditions. To achieve a retentostat, a chemostat is equipped 

with a filter with a pore size smaller than the size of the organism (0.2 µm), which traps 

the cells in the reactor. After the desired cell mass is reached, the continuously supplied 

medium has limited carbon and energy content to reduce the metabolic rate. Jørgensen et 

al. (2010) reported a growth rate of A. niger approaching zero after 6 days when grown in 

a retentostat under carbon and energy limited conditions. However, the growth yield was 

constant, leading to an increase in biomass over time. An interesting observation from the 

study was how the percent of respired carbon changed over time (Jørgensen et al. 2010). 

With decreasing specific growth rate, the percent carbon respired increased. After two 

days conidiation was observed. This led to an increase of melanin that rapidly increased 
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after four days. Stress on the cells, initiated by carbon and energy limitation, induces the 

transcription of brlA (Skromne et al. 1995). The transcription factor brlA is a positive 

regulator for conidiation (Adams and Timberlake 1990). From the results presented in 

previous studies, (Jørgensen et al. 2010; Schrickx et al. 1993; Schrickx et al. 1995; 

Verseveld et al. 1991), it is not conclusive if a continuous product formation with zero 

growth rate over a prolonged period of time using carbon and energy limitation is 

feasible. The results show that over the test period the biomass concentration increases 

until the end of the experiment. Additionally, no literature of zero growth rate 

experiments was found with filamentous fungi grown on surfaces. Furthermore, no 

literature was found initiating a zero growth rate by limiting other essential nutrients in 

the medium that do not supply the organism with carbon or energy. Examples could be 

the limitation of vitamins or coenzymes necessary for certain cell functions. 

 

3.6.1 Coenzyme limitation for zero growth rate on A. nidulans mutants 

As mentioned above, no literature was found testing coenzyme limitation on 

product formation using filamentous fungi. Coenzymes serve, as the name indicates, as 

additional functional groups for enzymes in metabolism. Coenzymes link to an enzyme 

covalently and activate its active catalytic site. Examples of coenzymes are pyridoxine, 

biotin, thiamine and riboflavin. 

 A. nidulans mutants can be purchased from the Fungal Genetics Stock Center 

(FGSC) with various markers. Markers are compounds that are essential for cell growth, 

which these mutants cannot synthesize for themselves, since they lack a particular gene 

for synthesis. Several mutants require coenzymes in the medium for growth. A complete 
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list of available A. nidulans mutants with different markers is available online (FGSC 

2011).  

 In theory, when the fungus grows on normal medium and is then exposed to 

medium missing the marker, it will stop growing but continue to produce the client 

enzymes of interest. Therefore, a real zero growth rate would be achieved for continuous 

enzyme production. The following sections will describe potential coenzyme limitations. 

 

3.6.1.1 Pyridoxine limitation 

 Pyridoxine is a vitamin and precursor for pyridoxal-5’-phosphate (PLP). PLP is 

involved in many reactions in the amino acid metabolism. One reaction is transamination, 

where an a-amino acid is converted to an a-keto acid (Voet and Voet 2004). PLP acts as a 

coenzyme together with the enzyme in the form of a Schiff base. It is also involved 

throughout amino acid biosynthesis in the conversion of aspartate to lysine, threonine to 

methionine and a-ketoisocaproate to leucine (Voet and Voet 2004). PLP is a trace 

element and only needed in very low concentrations. One A. nidulans strain, FGSC# 773, 

is a mutant unable to synthesize its own pyridoxine. Hence, when pyridoxine is removed 

from the medium, growth is limited. A. nidulans expresses XynB as a client protein 

induced by a maltose promoter (Segato et al. 2011). It became of interest to investigate 

the performance of a culture previously grown on medium with pyridoxine, placed on 

medium without pyridoxine. In theory, the limitation of pyridoxine would reduce cell 

growth to a minimum, allowing the use of the remaining pyridoxine to maintain essential 

cell functions including protein secretion. However, to prolong cell function and protein 

production, pyridoxine would need to be replenished frequently. 
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3.6.1.2 Biotin limitation 

 Biotin is a cofactor involved in carboxylation reactions. It binds covalently to 

enzymes by amide linkages (Voet and Voet 2004). Some of the enzymes that use biotin 

as a prosthetic group are pyruvate carboxylase, acetyl-CoA carboxylase and propionyl-

CoA carboxylase. Pyruvate carboxylase is a CO2 carrier that forms a carboxyl substituent 

and catalyzes the reaction from pyruvate and HCO3
- to oxaloacetate, which is then used 

for gluconeogenesis. Acetyl-CoA carboxylase catalyzes the first step in fatty acid 

biosynthesis; whereas, propionyl-CoA carboxylase is involved in the oxidation of odd-

chain fatty acids (Voet and Voet 2004).   

 Assuming biotin would be removed from the medium after an A. nidulans mutant 

with a biotin marker is grown, the organism would not be able to perform fatty acid 

synthesis and carboxylation of pyruvate. Fatty acids are used for cell wall formation. The 

lack of building a cell wall is assumed to inhibit growth. However, it would be interesting 

to analyze how the organism would react when biotin is missing in the medium and if it 

continues the production of client proteins. 

 

3.6.1.3 Limitation of thiamine  

Besides biotin or pyridoxine, A. nidulans mutants with a thiamine marker are 

available. In order to achieve zero growth by limiting thiamine, it is important to 

understand the function of thiamine in the metabolism. Thiamine, a precursor for 

thiamine-pyrophosphate (TPP), is essential for alcoholic fermentation. More specifically, 

it is used as a coenzyme for pyruvate decarboxylase catalyzing the reaction from 

pyruvate to acetaldehyde (Voet and Voet 2004). Since alcoholic fermentation occurs 

predominantly in anaerobic environments, it can be assumed that the limitation of 
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thiamine would not have the desired effect of limiting growth of an A. nidulans culture 

growing under aerobic conditions. 
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CHAPTER IV 
 

 

OPTIMIZATION OF ENZYMATIC HYDROLYSIS OF GRAIN SORGH UM 

STOVER 

4.1 Abstract 

Agricultural residues have been identified as an abundant and renewable resource for the 
biofuels, bioproducts and chemical industries. Grain sorghum stover (GSS) is a potential 
waste material in the US. The complex cell wall structure of agricultural residues is 
composed of lignocellulosic fibers. The conversion of lignocellulosic material to 
fermentable sugars has proven to be an economic challenge. Physico-chemical 
pretreatment followed by enzymatic hydrolysis is required to produce the desired 
monomers. In order to achieve optimum utilization of organic matter, multiple enzyme 
activities are necessary to hydrolyze cellulose and hemicellulose. Cellulose requires 
endo- and exoglucanase as well as beta-glucosidase for complete breakdown. For 
hemicellulose xylanase, ferulic acid esterase and mannanse, among others, have been 
shown to improve enzymatic hydrolysis. The present study investigated the enzymatic 
hydrolysis of untreated and liquid hot water pretreated GSS by using Cellic CTec2 as the 
cellulolytic enzyme combined with xylanase B (XynB), ferulic acid esterase (FAE) and 
mannanase (Man) for hemicellulose breakdown. The pretreatment improved the glucose 
conversion from 25.4% with a CTec2/XynB combination to 76.6% with CTec2 as the 
only enzyme. The addition of XynB, FAE and Man did not improve the glucose 
conversion of pretreated GSS. Xylose conversion showed the same pattern for the 
different enzyme mixtures. On non-pretreated GSS, xylose conversion was highest with 
CTec2/XynB with 17.7%; while, on pretreated GSS, xylose conversion was 68.1% with 
CTec2 alone. Synergistic effects on glucose conversion were observed with a XynB/FAE 
combination, with a degree of synergy (DS) of 1.83 and 16.2 on pretreated and non-
pretreated GSS, respectively. Milder pretreatment conditions should be investigated, 
since milder conditions lead to higher hemicellulose content. With higher hemicellulose 
content, XynB and FAE could affect the glucose conversion by reducing heat and/or time 
requirement for the pretreatment. 
 
 
 

. 
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4.2 Introduction 

The utilization of biomass, such as wood residues, grasses, and agricultural 

residues, for the production of value added products from sugar fermentation (e.g. 

bioethanol) is only possible when the carbohydrate structure can be hydrolyzed to sugars 

in high yields in an efficient and cost effective way. After physico-chemical 

pretreatments, enzymatic hydrolysis is necessary for sugar formation. Enzyme production 

and enzymatic hydrolysis are expensive and need to be optimized.  

Whereas cellulose degradation is widely understood, hemicellulose degradation is 

still under intense investigation. Hemicellulose degradation needs a variety of enzymes 

since hemicellulose is composed of a variety of sugars. The main constituent of many 

hemicelluloses are xylans with a homopolymeric xylose backbone with random side 

chains composed of arabinose, glucuronic acid, ferulic acid and acetic acid (Cheng 2010). 

Xylanase is an endo-enzyme for xylans. Beta-xylosidase degrades xylo-oligosaccharides 

to xylose. Pectin, a family of heteropolymeric and homopolymeric polysaccharides 

dominated by galacturonic acid units and homogalacturonan, is another major component 

of hemicellulose and involves pectinase for degradation (Cheng 2010). The bonds 

between hemicellulose and lignin can be cleaved by ferulic acid esterase (Cheng 2010).  

Optimization of enzymatic hydrolysis can be achieved by expressing enzymes 

with higher activities, increasing the protein excretion of host organisms, or using 

multiple enzymes to achieve synergistic affects. Beukes et al. (2008) showed that a 

mixture of enzymes is more effective for biomass breakdown than the use of single 

enzymes. Xylanase A, endo-glucanase E and mannanase A with a molar ratio of 25%, 

25%, and 50%, respectively, achieved a degree of synergism of 4.46. The sugarcane 



60 
 

bagasse used in the experiment was not further pretreated, and it can be expected that an 

appropriate pretreatment would lead to even higher activities and degrees of synergism. 

Since lignin affects the enzymes’ ability to reach cellulose, a pretreatment that removes 

lignin would lead to improved hydrolysis.  

A follow up work to Beukes et al. (2008) was published (Beukes and Pletschke 

2010) and incorporated a lime pretreatment (0.4 g lime/g dry bagasse, 70°C, for 36 h at 

100 rpm) on sugarcane bagasse before enzymatic hydrolysis. The highest activity of 

about 600 µmol/min sugar produced was achieved with a combination of three enzymes 

with the molar ratio of 37.5% arabinofuranosidase, 25% mannanase and 37.5% 

xylananse; whereas, the same enzyme combination achieved only 60 U on non-pretreated 

bagasse, showing that pretreatment improves enzymatic hydrolysis. The degree of 

synergy was also 2.2 times higher on pretreated bagasse compared to non-pretreated 

bagasse with the same enzyme mixture.  

Another test with a synthetic enzyme mixture was performed on ammonia fiber 

explosion (AFEX) pretreated corn stover (Banerjee et al. 2010). The researchers 

investigated Spezyme CP, Novozyme 188, Accellerase 1000, and Multifect-xylanase in 

various combinations, as well as various enzymes with single activities. The total protein 

concentrations used were 7.5, 15, and 30 mg/g total stover glucan. The highest glucan 

conversion of 64.3% was achieved with 50 mass% Accellerase 1000 and 50 mass% 

Multifect-xylanase, and a total protein concentration of 30 mg/g glucan. These conditions 

also showed the highest xylan conversion of 44.7%. The enzymes that were tested with 

single activity were: cellobiohydrolase1 (CBH1), cellobiohydrolase2 (CBH2), 

endoglucanase1 (EG1), exoglucanase3 (EX3), beta-glucosidase (BG) and beta-xylanase 
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(BX). The highest glucan conversion of 39.3 % was achieved with 46% CBH1 and all 

other enzymes with 11% each. Xylan conversion under these conditions was 22.8%; 

however, the best xylan conversion was achieved with the following proportions: 5% 

CBH1, 28% EG1, 5% BG, 52% EX3, 5% BX and 5% CBH2. This set of single activity 

enzymes was not as efficient as the commercial enzyme solutions, indicating that some 

enzyme activities are missing in the set. 

Gottschalk et al. (2010) used mixes of different enzymes from Trichoderma reesei 

and Aspergillus awomori on steam-treated sugarcane bagasse. The enzymes produced by 

T. reesei and were carboxymethyl cellulase, beta-glucosidase and xylanase. A. awamori 

expressed the same enzymes with the addition of ferulic acid esterase. The highest 

glucose yield of 81.1 % was achieved after 72 h with 50% enzyme solution from T. reesei 

and 50% enzyme solution from A. awamori. The 50/50 combination had the following 

activities in IU/g: 111, carboxymethyl cellulase; 205, beta-glucosidase; 489, xylanase; 

and 0.7, ferulic acid esterase. With this combination a xylose yield of 91.0 % was 

achieved. 

 The present study focuses on the enzymatic hydrolysis of raw and liquid hot water 

pretreated grain sorghum stover (GSS) with Xylanase B (XynB), beta-mannanase (Man), 

ferulic acid esterase (FAE) and Novozymes’ Cellic CTec2 (Ctec2). The effect of 

pretreatment on raw GSS for enzymatic hydrolysis was evaluated, as well as the effect of 

different enzyme combinations for glucose and xylose conversion. The degree of synergy 

(DS) was calculated for enzyme mixtures. 
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4.3 Materials and Methods 

4.3.1 Compositional analysis 

Compositional analysis of GSS was performed before and after liquid hot water 

pretreatment according to the procedures provided by the National Renewable Energy 

Laboratory (NREL). The first step involved a successive water and ethanol extraction to 

remove extractable compounds. A Dionex Accelerated Solvent Extractor model 200 was 

used as described by NREL/TP-510-42619 (Sluiter et al. 2008e). For both solvents, a 

pressure of 10.34 MPa at 100°C and 3 cycles for 7 min each were used. The samples 

were air dried until all visible liquid was evaporated. To achieve a higher degree of 

drying, the samples were dried in a vacuum oven at 40°C for 24 h. The mass of extract 

was determined. Additionally, an HPLC analysis of the water-extract was performed to 

determine sugar composition.  

The structural carbohydrates and lignin of the extracted GSS were analyzed 

according to NREL/TP-510-42618 (Sluiter et al. 2008d). The biomass with previously 

removed extractable compounds was subject to a two-step acid hydrolysis in 72% 

sulfuric acid at 30°C for 60 min and subsequently with 4% sulfuric acid at 121°C for 20 

min in pressurized tubes in an autoclave. The liquid fraction was subject to HPLC 

analysis to determine structural carbohydrates. Acid soluble lignin was measured with 

UV/VIS spectroscopy at 320 nm. The remaining solids were burned in a muffle furnace 

to determine the acid insoluble lignin.  

Furthermore, the moisture and ash content were determined with NREL/TP-510-

42621 (Sluiter et al. 2008a) and NREL/TP-510-42622 (Sluiter et al. 2008b), respectively. 
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After the pretreatment, structural carbohydrates and lignin composition of the 

pretreated GSS solids were determined as described above. Additionally, the liquid 

fraction, called the prehydrolyzate, was analyzed for sugars and degradation products via 

HPLC. All samples for HPLC sugar analysis were neutralized with sodium carbonate and 

filtered through 0.2 µm filters immediately after acid hydrolysis. 

 

4.3.2 Pretreatment 

The GSS was pretreated using a 1-L Parr pressure reactor (Parr Series 4520, Parr 

Instrument Company, Moline, IL). With a solid loading of 10% (based on dry weight) 

and a total mass of 600 g, the reactor was heated while the biomass was constantly stirred 

at 500 rpm. After achieving the reaction temperature of 190°C or 200°C, the temperature 

was held for 10 min. To terminate the reaction, the reactor was placed into an ice bath for 

swift cooling. The valves were kept closed at all times.  

At a temperature of about 40°C, the reactor was opened and the slurry was 

removed and vacuum filtered through Whatman #5 filter paper. Samples for 

compositional analysis were removed from the liquid and solid fraction.  The solids were 

washed using 2 L of 60°C warm DI-water to remove all soluble solids, including soluble 

carbohydrates and inhibitor compounds. 

 

4.3.3 HPLC analysis 

Concentrations of cellobiose, glucose, xylose, galactose, arabinose and mannose 

were analyzed on an HPX-87P column (Bio-Rad, Sunnyvale, Ca.). The eluent was HPLC 

grade DI-water with a flow of 0.6 ml/min at 85°C and compounds were detected by a 
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refractive index detector (1100 Series Agilent, Santa Clara, CA, USA) (Sluiter et al. 

2008c). For the degradation products furfural and 5-hydroxymethylfurfural, an HPX-87H 

column (Bio-Rad, Sunnyvale, Ca.) was used with 0.01 N H2SO4 as solvent with a flow 

rate of 0.6 ml/min at 60°C (Sluiter et al. 2008c).  Refractive index detection was also 

used to detect the degradation compounds. 

 

4.3.4 Enzyme production for factorial design 

A stainless steel tray was used for culturing. The tray was filled with 500 ml 

medium that contained a minimal medium with 50.0 ml/L 20x Clutterbuck salts (120 g/L 

NaNO3, 10.4 g/L KCl, 10.4 g/L MgSO4, 30.4 g/L KH2PO4), 1.0 ml/L 1000x trace 

elements (22 g/L ZnSO4·7H20, 11 g/L H3BO3, 5.0 g/L MnCl2·7H2O, 5.0 g/L 

FeSO4·7H2O, 1.6 g/L CoCl2·5H2O, 1.6 g/L CuSO4·5H2O, 1.1 g/L Na2MoO4·4H2O, 50 

g/L Na2-EDTA), 10.0 g/L glucose monohydrate, 50.0 g/L maltose monohydrate and 1 

ml/L of a 1 g/L pyridoxine solution. The pH of the medium was adjusted to 6.5 using 10 

N NaOH.  Genetically modified strains of Aspergillus nidulans were used for XynB, Man 

and FAE production. The modification procedure is explained elsewhere (Segato et al. 

2011). Spores of A. nidulans cultured on three agar plates containing minimal medium 

were manually scratched off the surface and added to the medium in a tray under sterile 

conditions. The final spore concentration in each tray was 107 spores/ml. Spore count was 

performed with a Reichert Bright-Line Hemacytometer (Hausser Scientific, Horsham, 

PA). The trays were incubated at 50°C for 48 h. Since the fungus grew on top of the 

liquid, a separation of liquid from fungus was achieved by filtration through a filter paper 

vacuum filtration unit. After filtration the enzyme solution was concentrated using an 
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Amicon ultrafiltration unit (Millipore, Billerica, MA, USA) with a nominal molecular 

weight limit of 10,000 daltons using a pressure of 276 kPa and polyethersulfone 

membrane (Millipore, Billerica, MA, USA) with a diameter of 76 mm. The final volume 

of enzyme solution was 30 to 40 ml. The concentrated enzyme solution was washed to 

remove residual sugar by diluting with 250 ml ammonium acetate buffer (25 mM, pH 6) 

and re-concentrated using the ultrafiltration unit. 

 

4.3.5 Determination of protein concentration 

The protein concentration was determined using a Bradford assay. Forty µl of 

Bradford commassie solution was pipetted into a well of a 96-well plate. The amount of 

enzyme solution depended on the protein concentration received after filtration. A typical 

amount was 5 µl. DI water was added to achieve a total volume of 200 µl. The blank well 

contained only 40 µl Bradford solution and 160 µl DI water. The absorbance was 

measured using a UV-Vis 96-well plate reader (Tecan Infinite M200, Männedorf, 

Switzerland) at 595 nm. 

 

4.3.6 Determination of enzyme activity 

All enzyme solutions were analyzed for their specific activity on specified 

substrates. Table 4.1 summarizes the activities and lists the enzymes with the substrate. 

Sigmacell cellulose and xylan from beechwood were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). Insoluble wheat arabinoxylan and locust bean gum were obtained  
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Table 4.1: Overview of enzyme activity with specific substrates. 

Enzyme Substrate Total protein 
concentration 

[g/l] 

Activity 
[U/mg] 

Volumetric 
Activity [U/ml]  

CTec2 (10% 
dilution) 

Sigmacell 
Cellulose, Typ 

20 

8.31 0.45 3.74 

XynB Xylan from 
beechwood 

>90% xylose 
residues 

1.09 83.82 91.36 

Man Locust (Carob) 
bean gum 

1.123 0.81 0.91 

FAE Wheat 
arabinoxylan 

insoluble (gel) 
form 

1.11 0.00079 0.00088 
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from Megazyme (Wicklow, Ireland) and Spectrum (Gardena, CA, USA), respectively. 

All substrates were dissolved/suspended in 25 mM ammonium acetate buffer pH 6.0 to a 

final concentration of 1.0 %. The locust bean gum solution was homogenized and boiled. 

The mixture was allowed to cool over night with constant stirring. To remove insoluble 

material, the locust bean gum solution was centrifuged at 6,000 rpm for 10 min 

(Stalbrand et al. 1993). For XynB, Man, and CTec2, 49 µl of substrate solution and 1 µl 

of enzyme solution were added to 1.5 ml centrifuge tubes. The tubes were inoculated in a 

water bath at 50°C for various times (depended on enzyme, varied between 7 and 180 

min). After inoculation, the tubes were removed from the water bath and 50 µl of 

dinitrosalicylic acid (DNS) reagent were added immediately to terminate the enzymatic 

hydrolysis. The tubes were placed in a second water bath at a temperature of 100°C for 5 

min to achieve color formation (Miller 1959). After the reaction time, 100 µl of the liquid 

was transferred in a 96-well plate and analyzed at 575 nm for reducing sugar 

concentration. The enzyme blank contained 49 µl of 25 mM ammonium acetate buffer 

pH 6.0 and 1 µl of enzyme solution. The substrate blank contained 49 µl of substrate 

solution and 1 µl of 25 mM ammonium acetate buffer pH 6.0. FAE activity was 

determined with 190 µl of wheat arbinoxylans (insoluble) suspension and 10 µl of FAE 

solution added into 1.5 ml centrifuge tubes. The enzyme and substrate blanks contained 

buffer instead of substrate or enzyme, respectively. The solutions were incubated at 50 ºC 

for 2 h. After hydrolysis, the tubes were centrifuged for 5 min at 15,000 rpm. An aliquot 

of 100 µl was transferred into a 96-well UV-plate. The absorbance of ferulic acid was 

measured at 310 nm (Faulds and Williamson 1994). With the following equation, the 

specific activity was calculated based on the spectrophotometer values.  
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(Eq. 1) 

 

With U = specific activity [µmol/mg*min], A = absorbance, F = calibration factor, Vassay 

= assay volume (200 µl), t = incubation time [min], and penzyme = mass protein in enzyme 

used [mg]. 

  

4.3.7 Enzymatic hydrolysis of grain sorghum stover 

For the enzymatic saccharification of GSS, the NREL procedure NREL/TP-510-

42629 (Selig et al. 2008a) serves as a basis for the procedure, but was modified for a 

mixture of the provided enzymes.  

A sample amount of GSS with an equivalent of 0.1 g glucan (based on dry basis) 

was placed into a 20 ml glass scintillation vial. The pH was kept constant at 6.0 by 

adding 5 ml of a 25 mM ammonium acetate buffer. To avoid bacterial growth, 100 µl of a 

2% sodium azide solution were added. DI water was added prior to the enzyme solution. 

The amount of DI water depended on the volume of the enzyme solution that was added. 

The total volume was 10 ml. The volume of the enzyme solution depended on the protein 

content. When more than one enzyme was added, the volume was divided by the number 

of enzymes to achieve equal protein mass proportions. Table 4.2 shows the dosage for 

each test in terms of mg protein of enzyme per g glucan in each test tube. A 0 h sample 

was taken and served as a blank for the substrate and enzymes. The reaction conditions 

were 50°C with a reaction time of 168 h. Samples were taken at 0, 48, 120, and 168 h. 

The samples were analyzed via HPLC as described above.   

( )( ) enzyme
assay p
t

V
FAU //047.0 





















×−=



69 
 

Table 4.2 shows the enzyme combinations and corresponding protein 

concentrations. In order to obtain the degree of synergy (DS), each enzyme was tested 

alone on unpretreated and pretreated GSS in different concentrations. The dosage was 

3.75, 2.5, and 1.88 mg total protein/g glucan. Equations 2 to 4 were used to calculate DS 

from the glucan conversion (GC). A value >1 means a synergistic effect is present.  
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With DS2 = degree of synergy for two-enzyme mix and GCenzyme1+2 = glucose conversion 

with two-enzyme mix. The denominator is the summation of glucose conversions 

achieved with the respective two enzymes with a dosage of 3.75 mg total protein/g 

glucan. 

 

∑

++=
5.2_3

5.2_1

321
3

GC

GC
DS enzyme   (Eq. 3) 

With DS3 = degree of synergy for three-enzyme mix and GCenzyme1+2+3 = glucose 

conversion with three-enzyme mix. The denominator is the summation of glucose 

conversions achieved with the respective three enzymes with a dosage of 2.5 mg total 

protein/g glucan. 
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Table 4.2: Protein concentration levels in factorial design in mg protein per g glucan 
and in parenthesis U/g glucan. 

Test # XynB FAE CTec2 Man 
1 - - - - 
2 7.5 

(629) 
- - - 

3 - 7.5 
(0.006) 

- - 

4 - - 7.5 
(3.38) 

- 

5 - - - 7.5 
(6.08) 

6 - 3.75 
(0.003) 

3.75 
(1.69) 

 - 

7 - - 3.75 
(1.69) 

3.75 
(3.04) 

8 3.75 
(315) 

3.75 
(0.003) 

- - 

9 3.75 
(315) 

- 3.75 
(1.69) 

- 

10 3.75 
(315) 

- - 3.75 
(3.04) 

11 - 3.75 
(0.003) 

- 3.75 
(3.04) 

12 - 2.5 
(0.002) 

2.5 
(1.13) 

2.5 
(2.03) 

13 2.5 
(210) 

2.5 
(0.002) 

- 2.5 
(2.03) 

14 2.5 
(210) 

2.5 
(0.002) 

2.5 
(1.13) 

- 

15 2.5 
(210) 

- 2.5 
(1.13) 

2.5 
(2.03) 

16 1.88 
(157) 

1.88 
(0.0015) 

1.88 
(0.85) 

1.88 
(1.52) 
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With DS4 = degree of synergy for four-enzyme mix and GCenzyme1+2+3+4 = glucose 

conversion with four-enzyme mix. The denominator is the summation of glucose 

conversions achieved with the respective four enzymes with a dosage of 1.88 mg total 

protein/g glucan. 

 

4.4 Results and Discussion 

4.4.1 Chemical composition of grain sorghum stover 

GSS was pretreated at 190°C and 200°C using liquid hot water pretreatment. The 

chemical composition of raw and liquid hot water pretreated GSS is listed Table 4.3. The 

pretreatment caused the solubilization of hemicellulose, and a reduction of xylan from 

16.5% in raw GSS to 3.6% in 200°C pretreated GSS and to 8.7% in 190°C pretreated 

GSS. With an increase of pretreatment temperature, and therefore an increase in severity 

of the pretreatment, more hemicellulose (represented by xylan) was solubilized. The 

extractives were removed as well, leading to an increase of glucan and acid insoluble 

lignin in pretreated GSS. The magnitude of glucan and acid insoluble lignin increase is 

dependent on the pretreatment temperature. The glucan content increased from 27.6% to 

47.7% at 190°C and to 57.1% at 200°C. The acid insoluble lignin content increased from 

17.5% to 31.0% at 190°C and to 35.7% at 200°C. Similar increases in glucan and xylan 

solubilization was achieved by Faga et al. (2010) and Suryawati et al (2008a). Both 

studies used the same pretreatment conditions (10 min, 200ºC) on switchgrass. The 

reduction in xylan was caused by degradation of xylose to furfural,  
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Table 4.3: Chemical composition of raw (dried) and liquid hot water pretreated 
grain sorghum stover. Pretreatment conditions: 10% solids and 190ºC and 200 ºC, 
10 min. 

Compound Before 
pretreatment 

After pretreatment 
 

190°C 200°C 
Glucan 27.6% 47.7% 57.1% 
Xylan 16.5% 8.72% 3.6% 
Extractables 25.4% - - 
Lignin (AIL) 17.5% 31.0% 35.7% 
Lignin (ASL) 9.5% 0.49% 3.8% 
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5-hyrdoxymethylfurfural and acetic acid at high temperatures, which has been shown in 

the literature (Palmquist and Hahn-Hägerdal 2000). The substrate pretreated at 190ºC was 

chosen for the enzymatic hydrolysis since the hemicellulose content is higher compared 

to the substrate pretreated at 200ºC.  

4.4.2 Enzymatic hydrolysis of grain sorghum stover 

The objective was to maximize glucose conversion of GSS using liquid hot water 

pretreatment and a mixture of cellulolytic and hemicellulolytic enzymes. The first 

observation was that the pretreatment has a positive effect on digestibility, which was 

also demonstrated in other studies (Alvira et al. 2010; Beukes and Pletschke 2010; Bjerre 

et al. 1996; Chang et al. 2001; Kumar et al. 2009; Millet et al. 1976). The maximum 

glucose conversion without pretreatment was 25%; whereas, the maximum glucose 

conversion with pretreatment was 77% (Figure 4.1 A and B). The lignin and 

hemicellulose structure interfered with the enzymatic hydrolysis of glucose. Pretreatment 

leads to a partial dissolution of hemicellulose and an opening of the lignin structure 

(Alvira et al. 2010). Consequently, the cellulose is more exposed for enzymatic 

hydrolysis compared to non-pretreated GSS, even though the AIL content is higher in 

pretreated GSS compared to non-pretreated GSS.  

The additional hemicellulolytic enzymes, XynB, FAE, and Man, had little effect 

on the enzymatic hydrolysis of pretreated GSS. The pretreated GSS was best hydrolyzed 

with CTec2 alone with a dosage of 7.5 mg/g glucan. The glucose conversion was 77% 

and the xylose conversion was 68%. It is clear that the commercially available enzyme 

CTec2 has good hemicellulolytic activity besides cellulolytic activity. The addition of  
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 A 

 B 
Figure 4.1: Comparison of glucose and xylose conversion of raw (A) and pretreated 
(B) grain sorghum stover using different enzyme combinations. Each test has a total 
protein dosage of 7.5 mg/g glucan. Each test was performed in duplicates. Error 
bars represent standard deviation. 
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XynB did not improve xylose conversion; however, a synergistic effect was observed 

when half of the CTec2 dosage was replaced with XynB. The resulting glucose 

conversion was 68%. A combination of all four enzymes led only to a glucose conversion 

of 50% and a xylose conversion of 52%.  

On non-pretreated GSS, XynB had a positive effect together with CTec2 on 

glucose and xylose conversion. The mixture of XynB and CTec2 performed better than 

CTec2 alone with a glucose and xylose conversion of 25% and 18%, respectively, while 

CTec2 alone only achieved 21% and 17% for glucose and xylose conversion, 

respectively. The DS was 1.5 for both glucose and xylose conversion (Figure 4.2 A and 

B). The highest synergistic effect was achieved with XynB and FAE. For glucose 

conversion on pretreated GSS, the DS was 16. For non-pretreated GSS, the DS was also 

highest with XynB and FAE with a value of 1.8. However, a combination of CTec2, 

XynB, and FAE did not improve the glucose or xylose conversion on both substrates 

compared to CTec2 alone.  

Tabka et al. (2006) investigated the enzymatic hydrolysis of wheat straw, 

pretreated with diluted sulfuric acid pretreatment followed by steam explosion, with a 

mixture of cellulase, xylanase, and ferulic acid esterase. Their best glucose conversion of 

51% was achieved with a combination of cellulose, xylanase and ferulic acid esterase. It 

is important to note that the researchers used a higher cellulase and ferulic acid esterase 

dosage than this study (CEL: 10 IU/g of cellulase; XYL: 3 IU/g of xylanase, FAE A: 10 

IU/g of Ferulic acid esterase). Furthermore, Tween20 was added, which is known to 

improve enzyme activity over time by preventing unproductive binding of enzymes to  
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 A 

 B 

Figure 4.2: Comparison of degree of synergy (DS) during enzymatic hydrolysis of 
raw (A) and pretreated (B) grain sorghum stover for glucose and xylose conversion 
with different enzyme combinations. Each test has a total enzyme dosage of 7.5 mg/g 
glucan. 
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lignin. A synergistic effect between xylanase, ferulic acid esterase and acetyl xylan 

esterase with cellobiohydrolase was reported by Selig et al. (2008b). However, their 

maximum cellobiose release from liquid hot water pretreated corn stover was only 25% 

of the theoretical maximum (with 72.7% glucan in the substrate and a cellobiose release 

of 180 mg/g substrate). Glucose was only present in small amounts (10 mg/g substate).   

CTec2 is a very potent enzyme for the hydrolysis of cellulose and hemicellulose 

specifically designed for lignocellulosic material. A better understanding of the 

synergistic effects of XynB, FAE, and Man used in this project could be obtained by 

using pure cellulolytic enzyme activities with only exo- and endo glucanase, as well as ß-

glucosidase. Furthermore, more tests with higher enzyme dosages could lead to higher 

glucose conversion.  Also, the temperature stability of the enzymes could be improved 

using surfactants, such as Tween20 or Tween80. Additionally, a reduction in 

pretreatment severity with increasing enzyme dosage could lead to a more cost effective 

process.  

 

4.5 Conclusion 

 Pretreating GSS leads to improved conversion of cellulose to glucose, which has 

been demonstrated repeatedly in other studies on lignocellulosic substrates. The 

hemicellulolytic enzymes did not improve the enzymatic hydrolysis of pretreated GSS 

when combined with the commercially available enzyme Cellic CTec2. XynB did 

improve glucose conversion with CTec2 on non-pretreated GSS.  

Additional research with different pretreatment conditions could show improved 

effects of XynB and FAE in combination with CTec2. At milder pretreatment conditions, 
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the hemicellulose fraction would be higher in the biomass where XynB and FAE could 

have a positive effect and DS, leading to high glucose conversion yields. Milder 

pretreatment conditions require less energy and/or time and contribute to a more 

economical process. 

4.6 Future work 

 Additional research should be performed with higher enzyme dosages and with 

the addition of surfactants, which have been shown to stabilize enzymes over time. 

Tween 20 and Tween 80 have been shown to improve enzymatic hydrolysis of corn 

stover (Kaar and Holtzapple 1998). Tween prevents thermal deactivation of the enzyme, 

allowing a prolonged hydrolysis and higher reaction temperatures. Increased enzyme 

activity and stability was also observed with addition of polyethylene glycol (Ouyang et 

al. 2010). After 48 h more than 90% of the initial enzyme activity remained in the 

solution. Sophorolipid was found to increase sugar conversion from cellulose by 

disrupting the cellulose structure, making it more accessible for enzymes, and by 

reducing the adsorption of enzyme onto the cellulose (Helle et al. 1993). Furthermore, 

lower temperatures could be tested on the enzymatic hydrolysis. The optimum 

temperature of most of the enzymes is 50°C, but the stability over time is reduced at 

50°C. 
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CHAPTER V 
 

 

CONTINUOUS ENZYME PRODUCTION UNDER COENZYME LIMITAT ION 

5.1 Abstract 

The growth of the organisms in fermentation processes is usually not of primary interest. 
Growth utilizes nutrients and energy that could possibly be used for product formation. 
The current solution for limiting or inhibiting growth of microorganisms is the reduction 
of carbon and energy supply to a level equal to the maintenance energy of the organism. 
However, control of the exact supply of carbon and energy is difficult, and often the 
carbon source is used for both growth and product formation. A different approach to 
limiting growth can be the limitation of co-enzymes. The present study investigated the 
limitation of pyridoxine on an Aspergillus nidulans culture unable to synthesize its own 
pyridoxine that produces xylanase B (XynB) as client enzyme. It was observed that the 
growth was limited when pyridoxine was absent, while the enzyme production was 
unaffected. The enzyme production was similar to a culture that grew on medium with 
pyridoxine and achieved 1026 U after 480 h of continuous fermentation. Furthermore, the 
present study investigated the growth rate of A. nidulans and determined the productivity 
of XynB production under pyridoxine limitation. A maximum growth rate of 0.311 h-1 
and a XynB productivity of 21.14 U/g·h was observed. 
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5.2 Introduction 

Industrial scale enzyme production with filamentous fungi uses mainly two 

fermentation processes: solid state (SSF) or submerged fermentation (SmF). No other 

process has proven to be applicable due to the difficulty of culturing filamentous fungi. 

Filamentous fungi grow as a mycelium, which can lead to clogging of pipelines due to 

their affinity to surfaces.  

Most biotechnological processes are used for the production of metabolites (e.g. 

organic acids, alcohols, extracellular proteins, etc.). The growth of the organism and, 

therefore, the accumulation of biomass, is often not the priority. For these processes, the 

cell mass that is produced can be considered a byproduct. The formation of cell mass uses 

carbon and energy compounds that could potentially be used for product formation. In 

many studies it was proposed to limit carbon and energy supply in chemostats to a level 

where the supplied energy is equal to the maintenance energy of the organism (Boender 

et al. 2009; Schrickx et al. 1993; Schrickx et al. 1995). Then, the organism will approach 

a zero growth rate when the energy consumed is near the maintenance ratio (Pirt 1965). It 

was shown that submerged filamentous fungi cultures conidiate when nitrogen and 

carbon are limited (Broderick and Greenshields 1981; Galbraith and Smith 1969; Ng et 

al. 1972). Previous studies used retentostat cultures to analyze product formation under 

carbon and energy limited conditions. To achieve a retentostat, a chemostat is equipped 

with a filter with a pore size smaller than the size of the organism (0.2 µm), which traps 

the cells in the reactor. After the desired cell mass is reached, the continuously supplied 

medium has limited carbon and energy content to reduce the metabolic rate. Jørgensen et 

al. (2010) reported a growth rate of A. niger approaching zero after 6 days when grown in 
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a retentostat under carbon and energy limited conditions. However, the growth yield was 

constant, leading to an increase in cell mass over time. An interesting observation from 

the study was how the percent of respired carbon changed over time (Jørgensen et al. 

2010). With decreasing specific growth rate, the percent carbon respired increased. After 

two days conidiation was observed, leading to an increase of melanin, which rapidly 

increased after four days. Stress on the cells, initiated by carbon and energy limitation, 

induces the transcription of brlA (Skromne et al. 1995). The transcription factor brlA is a 

positive regulator for conidiation (Adams and Timberlake 1990). From the results 

presented in previous studies, (Jørgensen et al. 2010; Schrickx et al. 1993; Schrickx et al. 

1995; Verseveld et al. 1991), it is not conclusive if continuous product formation with 

zero growth rate over a prolonged period of time using carbon and energy limitation is 

feasible. The results show that over the test period the cell mass concentration increases 

until the end of the experiment. Additionally, no literature on zero growth rate 

experiments was found with filamentous fungi grown on surfaces. Furthermore, no 

literature was found initiating a zero growth rate by limiting other essential nutrients in 

the medium that do not supply the organism with carbon or energy. Examples could be 

the limitation of vitamins or coenzymes necessary for certain cell functions. 

Reducing the growth rate can maximize product formation, since the substrate is 

used for product formation and not for microbial growth. A potential compound present 

in the medium necessary for fungal growth is pyridoxine. Pyridoxine is a vitamin and 

precursor for pyridoxal-5’-phosphate (PLP), which is involved in many reactions in 

amino acid metabolism. One reaction is transamination, where an α-amino acid is 

converted to an α-keto acid (Voet and Voet 2004). PLP acts as a coenzyme together with 
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the enzyme in the form of a Schiff base. It is also involved throughout amino acid 

biosynthesis in the conversion of aspartate to lysine, threonine to methionine and α-

ketoisocaproate to leucine. PLP is a trace element and only needed in very low 

concentrations. It is proposed that a limitation of pyridoxine on an A. nidulans culture 

with a pyridoxine marker in the fermentation medium would lead to a shift of substrates 

to protein formation. The cell matrix has enough PLP stored to perform basic reactions 

and protein formation without growth. No literature has been found where the limitation 

of pyridoxine was tested on filamentous fungi. 

 

5.3 Materials and Methods 

5.3.1 Strain and spore formation 

Aspergillus nidulans with the number 733 in the Fungal Genetic Stock Culture 

(FGSC) was used to conduct the experiment. The strain has a pyridoxine marker. The 

modification of A. nidulans to express Xylanase B as a client protein is described 

elsewhere (Segato et al. 2011). Spores were kept in a 20% glycerol, 10% lactose solution 

as a stock culture at -80ºC. Spores were made by using a solid medium containing 9.0 g/L 

glucose, 50 ml/L 20X Clutterbuck salt solution (120 g/L NaNO3, 10.4 g/L KCl, 10.4 g/L 

MgSO4, 30.4 g/L KH2PO4), 1 ml/L 1000X trace element solution (22 g/L ZnSO4·7H20, 

11 g/L H3BO3, 5.0 g/L MnCl2·7H2O, 5.0 g/L FeSO4·7H2O, 1.6 g/L CoCl2·5H2O, 1.6 g/L 

CuSO4·5H2O, 1.1 g/L Na2MoO4·4H2O, 50 g/L Na2-EDTA), 1 ml of a 1 g/L pyridoxine 

solution, and 15% agar. The pH was adjusted to 6.5 using 10 N NaOH. Twenty µl of 

stock spore solution were distributed on the agar surface. The plates were kept for 48 h at 

37ºC. After incubation the plates were stored at 4ºC until usage. 
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5.3.2 Fermentation medium 

The fermentation medium contained 47.6 g/L maltose and 9.0 g/L glucose as 

carbon sources. Maltose is necessary to activate the promoter for Xylanase B expression. 

The medium also contained 50 ml/L 20x Clutterbuck salt solution, 1 ml/L 1000X trace 

element solution, and 1 ml of a 1 g/L pyridoxine solution. For the maximum growth rate 

experiment, maltose and glucose concentrations were varied, but were kept at the same 

ratio (4.7:1) according to best protein formation with 47 g/L maltose and 10 g/L glucose. 

The pH was adjusted to 6.5 using 10 M NaOH. The medium was sterilized by 

autoclaving at 121ºC for 20 min. 

 

5.3.3 Determination of maximum growth rate of A. nidulans 

Before the maximum growth rate (µmax) can be obtained, multiple experiments are 

necessary to investigate the specific growth rate (µnet) at different initial substrate (S) 

concentrations. The Monod model was used as the underlying base for µmax and µnet 

determination. For µnet it is required to measure cell mass concentration over time. Since 

the organism is a filamentous fungus, representative sampling is not possible. To 

overcome this problem, multiple parallel tests were started with different inoculation 

times. The tests were carried out in Petri dishes. Each dish was filled with 20 ml of 

medium with identical substrate concentration. All parallel tests were inoculated with the 

same amount of spore solution (20 µl) with the same spore concentration. Two dishes 

were inoculated for each time interval of 12, 24, 36 and 48 h. After these time intervals, 

the complete cell mycelium was harvested, washed with deionized water and dried at 

50°C for one day. The protein concentration in the broth was analyzed by the Bradford 
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assay (Bradford 1976). An aliquot of broth was used for sugar analysis with HPLC. The 

logarithm of dry cell mass was plotted vs. time. The slope of the linear regression in the 

linear region of the plot represented µnet. This process was repeated for different initial 

maltose and glucose concentrations. The obtained µnet was plotted in a reciprocal form vs. 

1/S. For this plot S represents the glucose concentration plus the glucose equivalent of 

maltose. A linear regression led to µmax and KS, which were 0.311 h-1 and 1.34 g/L, 

respectively. 

 

5.3.4 Evaluation of XynB production with A. nidulans under pyridoxine limitation  

Two tests with different transplanting frequencies, 24 h and 48 h, were chosen. To 

grow a mycelium, a Petri dish was filled with 20 ml of medium and inoculated with 20 µl 

of spore solution. The culture was allowed to grow at 37°C until a mycelium covered the 

surface of the medium. After inoculation part of the mycelium was manually transferred 

into a Petri dish previously filled with medium lacking pyridoxine. This culture was 

allowed to grow either 24 h or 48 h and then again transferred into medium without 

pyridoxine. This was repeated until protein production decreased. Then, the mycelium 

previously grown on pyridoxine-free medium was transferred into medium with 

pyridoxine and after either 24 h or 48 h it was again transferred into medium without 

pyridoxine. The cultures were transferred nine and five times for the 48 h and 24 h 

culture, respectively. After each transfer interval, the protein concentration was measured 

by the Bradford assay, the activity was determined with DNS reagent, the wet mass of 

transferred mycelium was obtained, the pH was measured and the sugar and organic acid 

concentration were measured with HPLC. Additionally to both tests, a control mycelium, 
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which was always placed into medium with pyridoxine, was evaluated. Both test and 

control were evaluated in duplicate. 

 

5.3.5 Determination of A. nidulans XynB productivity under pyridoxine limitation 

In order to obtain the enzyme productivity under pyridoxine limitation, a 

mycelium had to be grown on medium with pyridoxine and then transferred into medium 

without pyridoxine. A Petri dish was filled with 20 ml medium with pyridoxine and was 

inoculated with 20 µl of spore solution. The culture was grown for 48 h at 37°C. After 48 

h the culture was transferred into medium without pyridoxine and after 48 more h it was 

again transferred into medium without pyridoxine. After this second transfer, the 

mycelium growth was examined based on visual comparison before and after incubation. 

After 24 h the medium was analyzed for sugar concentration with HPLC, protein 

concentration with Bradford assay and xylanase activity with DNS reagent. The 

mycelium was washed with DI water and dried for one day at 50°C to obtain the dry cell 

mass. The productivity was determined by calculating the total activity (U) from the 

volumetric activity (U/ml) and dividing it by the total dry cell mass (g) and 24 h. The 

enzyme activity was measured to determine the existence of XynB. The test was 

performed in triplicate and compared to a control culture that grew on medium with 

pyridoxine. 

 

5.3.6 Determination of protein concentration  

The protein concentration was determined using a Bradford assay. Forty µl of 

Bradford coommassie solution was pipetted into a well of a 96-well plate. In order to stay 

within the absorbance calibration curve limit of 2.5 at 575 nm, the amount of enzyme 
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solution varied depending on the protein concentration received from the test. DI water 

was added to achieve a total volume of 200 µl. The blank well contained only 40 µl 

Bradford solution and 160 µl DI water. The absorption was measured using a UV-Vis 96-

well plate reader (Tecan Infinite M200, Männedorf, Switzerland) at 595 nm.  

 

5.3.7 Determination of XynB activity 

XynB was analyzed for its specific activity on xylan from beechwood (Sigma 

Aldrich). Forty-nine µl of 0.5% substrate solution prepared with 25 mM ammonium 

acetate buffer at pH 6 and 1 µl of enzyme solution were added into a well of a 96-well 

plate. The plate was incubated in a water bath at 50°C for 15 min. After incubation, the 

96-well plate was removed from the water bath and 50 µl of dinitrosalicylic acid (DNS) 

reagent was added immediately to terminate the enzymatic hydrolysis. The 96-well plate 

was placed in a second water bath at a temperature of 100°C for 5 min to achieve the 

color formation. After the reaction time, 100 µl of the liquid was transferred in a 96-well 

reading plate and analyzed at 575 nm for reducing sugar concentration.  With the 

following equation the specific activity was calculated based on the spectrophotometer 

values. 

 

(Eq. 5.1) 

 

With U = specific activity [µmol of reducing sugar/mg protein · min], A = absorbance at 

575 nm, F = calibration factor, Vassay = assay volume (200 µl), t = incubation time [min] 

and penzyme = mass protein in enzyme used [mg]. 
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The final results are given in XynB activity units per volume, UV.  

PV CUU ⋅=       (Eq. 5.2) 

With CP = protein concentration in mg/ml. 

 

5.3.8 Sugar and organic acid analysis 

Concentrations of glucose and maltose were analyzed on an HPX-87P column 

(Bio-Rad, Sunnyvale, CA, USA). The eluent was HPLC grade DI-water with a flow rate 

of 0.6 ml/min at 85°C and a refractive index detector (1100 Series Agilent, Santa Clara, 

CA, USA) (Sluiter et al. 2008c). Organic acids were analyzed on a HPX-87H column 

(Bio-Rad, Sunnyvale, CA, USA). The eluent was 0.01 N sulfuric acid with a flow rate of 

0.6 ml/min at 60ºC. A refractive index detector (1100 Series Agilent, Santa Clara, CA, 

USA) was used for detection (Sluiter et al. 2008c). 

 

5.4 Results and Discussion 

5.4.1 Growth rate of A. nidulans 

Most of the literature that deals with analyzing growth kinetics of filamentous 

fungi either use submerged cultures or cultures grown on solid medium or surfaces. 

When grown as a surface culture, the parameters for growth rate are based on 

circumferential growth, rather than on a mass per volume unit. The present study uses a 

surface grown culture, but applies the same methodology as for submerged cultures. 

Table 5.1 shows the total cell mass, protein and substrate concentrations after 48 h, as 

well as the specific growth rates for the corresponding initial substrate concentrations and 

yields. Using parallel tests to imitate sampling at different time points worked well for  
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Table 5.1: Total cell mass, protein concentration, substrate concentration (glucose + glucose equivalent from maltose), specific 
growth rate and yields for Aspergillus nidulans at different initial substrate concentrations, with standard deviation of two 
replicates. 

Initial substrate 
concentration 
[g/l] 

Total cell 
mass after 
48 h [mg] 

Protein 
concentration 
after 48 h [g/L] 

Substrate 
concentration  
after 48 h [g/L] 

µnet  
[h-1] 

YX/S  
[g cells/g 
substrate] 

YP/X  
[g protein/g 
cells]  

YP/S  
[g protein/g 
substrate] 

59.3 119 ± 11.3 0.019 ± 3.54E-5 52.2 ± 0.77 0.061 0.834 ± 
0.02 

0.0048 ± 
9.1E-5 

0.0027 ± 
0.0003 

29.7 93 ± 9.90 0.009 ± 0.002 20.0 ± 3.43 0.063 0.484 ± 
0.10 

0.0025 ± 
7.1E-5 

0.0010 ± 
0.0008 

11.9 79 ± 2.83 0.018 ± 0.002 1.73 ± 0.31 0.095 0.390 ± 
0.002 

0.0054 ± 
0.0003 

0.0017 ± 
9.4E-5 

5.93 57 ± 2.12 0.011 ± 0.0005 0.20 ± 0.02 0.194 0.493 ± 
0.017 

0.0058 ± 
0.0007 

0.0020 ± 
0.0001 

3.00 28 ± 2.12 0.010 ± 0.001 0  0.214 0.464 ± 
0.012 

0.0187 ± 
0.0053 

0.0034 ± 
0.0003 

1.19 14 ± 0.71 0.004 ± 0.0007 0 0.146 0.611 ± 
0.030 

0.0025 ± 
0.0007 

0.0017 ± 
0.0007 
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this system and the growth curves showed the familiar pattern observed for many 

microorganisms. The total cell mass after 48 h increased with increasing initial substrate 

concentration. However, it was found that µnet does not increase with substrate 

concentration. In fact, a typical substrate inhibition pattern in the double reciprocal plot 

of µnet versus S was found (Figure A1). Hence, the fungus grows at a slower rate at 

higher substrate concentrations.  

The highest µnet with a value of 0.214 h-1 was found with initial substrate 

concentrations of 2.4 g/L maltose and 0.45 g/L glucose. At higher substrate 

concentrations, the fungus indeed grows more slowly, but continuously for at least 48 h. 

At lower substrate concentrations, the fungus grows fast to exploit all nutrients, but stops 

growing when the nutrients are depleted. The maximum specific growth rate is 0.311 h-1, 

and KS was 1.33 g/L.  

It was found that the mycelia of filamentous fungi develop differently for 

different substrate concentrations in the environment. At high substrate concentration, the 

hyphae form a dense network with more branches per area. The purpose is to utilize more 

efficiently the nutrients in that area. When the substrate concentration is low, the hyphae 

branch less per area and grow longer in order to reach a location with higher substrate 

concentration (Prosser and Tough 1991). This behavior was also observed in the present 

study. The cultures with low initial substrate concentration were more like a gel 

throughout the liquid; whereas, the cultures with high initial substrate concentration 

developed a mycelium layer on top of the surface of the liquid at the end of the test. 

For industrial applications a growth rate based on mass mycelium per time is 

more useful than a growth rate based on circumferential growth. In technical applications 
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it is often not practical to measure circumferential growth. Cultures that grow in nutrient 

rich medium also become thicker (more mass per area), which would not be included in 

measuring circumferential growth. 

 

5.4.2 XynB production with inhibited growth 

It was observed that the fungus produces the desired enzyme, XynB, even when 

growth is suppressed. Figure 5.1 shows the total accumulative XynB activity over time 

for the experiment with a transplanting frequency of 48 h. The average XynB activity 

was 10.0 ± 5.13 U/ml for the culture grown without pyridoxine. The control showed an 

average XynB activity of 9.78 ± 3.0 U/ml. It was observed that the protein concentration 

drops to 0.08 g/L after 192 h when grown on medium without pyridoxine. The 240 h and 

288 h samples showed a yellow colored broth that smelled similar to urine. In these 

samples the pH dropped from 8.5 to 4.5. After 288 h the culture was transferred into 

medium with pyridoxine to recover. At 336 h, no sign of smell was observed and the 

broth color was again the normal amber color. However, even though the protein 

concentration was low during 240 h and 288 h, the activity was still comparable to the 

previous levels. This indicates a higher proportion of xylanase B in the total protein mix. 

No difference in XynB production was observed between the test without pyridoxine and 

the control. 

With a transplanting frequency of 24 h, the average XynB activity was 9.63 ± 

5.64 U/ml and 9.88 ± 2.06 U/ml for the culture grown without and with pyridoxine, 

respectively. Figure 5.1 shows the cumulative XynB activity over time. The  



94 
 

 

Figure 5.1: XynB production over time with limited pyridoxine and 48 h 
transplanting frequency. The culture was initially (0-48 h) grown on medium with 
pyridoxine and again at 288 h. Error bars represent standard deviation of two 
replicates. 
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phenomenon of decreased protein formation with simultaneous increase in activity, as 

was found for both transplanting frequencies, shows that XynB formation is independent 

of mycelium growth. Furthermore, it can be seen in Figure 5.2, that when the culture was 

transplanted with a 24 h frequency, the accumulative XynB production reaches the same 

levels as the culture with 48 h transplanting frequency, but at 192 h as opposed to 480 h. 

Hence, it is not necessary to use a 48 h frequency, since the same XynB activity is 

already reached after 24 h. XynB production was higher for the test without pyridoxine 

compared to the control when a transplanting frequency of 24 h was used. 

Substrate utilization is shown in Figure 5.3. At all times maltose was completely 

utilized for 48 h transplanting frequency. Glucose was always utilized except at 240 h 

and 288 h when grown on medium without pyridoxine. At 288 h the glucose 

concentration increased to 12.99 g/L, indicating that the metabolism still utilizes all 

maltose and converts some of it to glucose, which is then not used further. With a 24 h 

transplanting frequency, the average residual maltose and glucose concentration was 

11.39 g/L and 4.98 g/L, respectively, when grown on medium without pyridoxine (Figure 

5.4). The maltose and glucose utilization was higher for the culture grown on pyridoxine 

than for the culture grown on medium without pyridoxine. The control showed average 

maltose and glucose concentrations of 5.30 g/L and 2.03 g/L, respectively. Compared to 

the culture grown without pyridoxine, the control showed new mycelium growth, which 

requires substrate and explains the faster nutrient utilization. After 192 h pyridoxine 

needs to be replenished for further enzyme production. The moment of pyridoxine 

replenishment can be monitored by measuring pH. It is recommended to replenish  
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Figure 5.2: XynB production over time with limited pyridoxine and 24 h 
transplanting frequency. The culture was initially (0-72 h) grown on medium with 
pyridoxine and again at 144 h. Error bars represent standard deviation of two 
replicates. 
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A 

B 
Figure 5.3: Maltose (A) and glucose (B) utilization during enzyme production with 
limited pyridoxine with 48 h transplanting frequency. 

 

 

 

 

 

 

0

10

20

30

40

50

60

0 100 200 300 400 500

C
on

ce
nt

ra
tio

n 
[g

/L
]

Time [h]

Maltose w/o pyridoxine Maltose w/ pyridoxine

0

2

4

6

8

10

12

14

0 100 200 300 400 500

C
on

ce
nt

ra
tio

n 
[g

/L
]

Time [h]

Glucose w/o pyridoxine Glucose w/ pyridoxine



98 
 

 A

B 

Figure 5.4: Maltose (A) and glucose (B) utilization during enzyme production with 
limited pyridoxine with 24 h transplanting frequency. 
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pyridoxine before the pH drops below 6 in order to avoid a decrease in protein production 

(Figure 5.5). The positive correlation of pH to protein production is a useful tool for 

reactor control and monitoring. Whereas online monitoring of pH is ready available, 

online measurement of protein concentration is more difficult.  

No measurement of cell mass was performed due to the impossibility of taking 

homogenous samples. Pictures were taken to document the constant surface area of the 

fungus throughout the experiment (Figures A2A and A2B). It can be seen that no visual 

growth of surface area (enlargement of mycelia) took place when the fungus was kept on 

medium without pyridoxine. The fungus’s color became darker while using medium 

without pyridoxine.  

The cause for the pH decrease over time under pyridoxine limitation appears to be 

linked to succinic acid production. An increase of succinic acid from 0.06 g/L to 0.26 g/L 

could be observed when the pH dropped between 240 h and 288 h and decreased back to 

0.08 g/L at 336 h (data not shown). It is expected that pyridoxine limitation causes an 

increase in organic acids and/or amino acids due to the involvement of pyridoxine in 

amino acid metabolism.  Other organic acids and amino acids either were not observed to 

increase or not detected with HPLC.  

Besides of the changes that occur in the metabolism based on pyridoxine 

limitation, fungal autolysis can also be the responsible for pH decrease. Pyridoxine 

indirectly leads to starvation by disturbing the amino acid metabolism, which has been 

shown to initiate autolysis (White et al. 2002). Autolysis is a process in which the fungus 

enzymatically breaks down old fungal mass, in order to utilize the nutrients for fungal 
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A 

B 
Figure 5.5: pH development over time for 48 h (A) and 24 h (B) transplanting 
frequency. Error bars represent standard deviation of two replicates. 
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hyphae tip growth. This breakdown of fungal mass could release compounds responsible 

for pH decrease. 

 

5.4.3 Productivity of A. nidulans with inhibited growth 

Table 5.2 shows all factors obtained from this experiment. The goal was to 

determine the protein productivity of an A. nidulans culture when initially grown on 

medium with pyridoxine and then transferred onto medium without pyridoxine. The 

results presented are obtained after transplanting the culture a second time. After the 

second transplantation, no visual growth was observed with the culture without 

pyridoxine. The productivity was obtained and had a value of 21.14 U/g dry cell mass*h 

for the culture without pyridoxine and 8.09 U/g dry cell mass*h for the culture with 

pyridoxine. The productivity without pyridoxine was 2.6 times higher compared to the 

productivity with pyridoxine over the same time period, which is also represented in the 

yields. The protein to dry cell mass yields (YP/X) of the culture without pyridoxine and 

the culture with pyridoxine were 507.42 U/g and 194.21 U/g, respectively. The protein to 

substrate yield (YP/S) was higher for the culture with pyridoxine, 21.84 U/g, than the 

culture without pyridoxine, 13.95 U/g. 

 

5.5 Conclusion 

It was successfully demonstrated that a fungus mutant requiring pyridoxine for 

growth can maintain enzyme production even when growth is limited by limiting 

pyridoxine. However, the continuous enzyme production cannot go on forever. 

Pyridoxine needs to be replenished frequently. Since pH correlates with pyridoxine  
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Table 5.2: Factors obtained of productivity experiment. Total substrate = Cglucose + 
Cmaltose/0.947. YP/X = protein to dry cell mass yield, YP/S = protein to substrate yield. 

Factors w/o pyridoxine w/ pyridoxine 
Initial maltose [g/L] 47.62 47.62 
Initial glucose [g/L] 10.00 10.00 
Initial total substrate [g/L] 60.28 60.28 
Final maltose after 24 h [g/L] 7.68 ± 1.30 6.02 ± 0.993 
Final glucose after 24 h [g/L] 8.56 ± 1.90 4.92 ± 0.397 
Final total substrate after 24 h[g/L] 16.67 11.28 ± 1.40 
XynB concentration after 24 h [U/ml] 17.32 ± 3.15 11.27 ± 4.38 
Dry cell mass [g] 0.68 ± 0.13 0.78 ± 0.08 
YP/X [U/g] 507.42 ± 37.54 194.21 ± 52.81 
YP/S [U/g] 21.84 ± 8.57 13.95 ± 5.64 
Productivity [U/g · h] 21.14 ± 1.56 8.09 ± 2.20 
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depletion, monitoring the pH allows identifying the correct moment when pyridoxine 

needs to be added. 

Pyridoxine limitation causes stress on the cell, which induces conidiation and 

melanin formation. The increased stress on the cells due to pyridoxine limitation was 

observed to have no effect on XynB formation. With a decrease in protein formation, the 

activity increases, which keeps the volumetric activity relatively constant. 

 

5.6 Future work 

The pyridoxine limitation system has shown to be a successful method of limiting 

growth while the enzyme production can continue. As mentioned earlier, pyridoxine is 

essential for the amino acid metabolism. Potential future work could be the investigation 

of a biotin limitation system. As pyridoxine is a marker for this A. nidulans mutant, other 

coenzymes can act as a marker. Biotin is a promising coenzyme, whose limitation could 

improve the client protein formation. Biotin is involved in carboxylation reactions. 

Pyruvate carboxylase, acetyl-CoA carboxylase, and propionyl-CoA use biotin as a CO2 

carrier (Voet and Voet 2004). Pyruvate carboxylase initiates the first step in 

gluconeogenesis by converting pyruvate to oxalacetate. Acetyl-CoA carboxylase is 

involved in fatty acid synthesis and propionyl-CoA is involved in odd-chain fatty acid 

oxidation (Voet and Voet 2004). Fatty acids are required for cell membrane synthesis. It 

is expected that the limitation of biotin for an A. nidulans mutant with a biotin marker 

would limit growth; whereas, the enzyme production would be unaffected. A petri dish 

experiment as was used for this experiment could be used to show within a short period 

of time the feasibility of the biotin limitation process. Important factors to investigate are 

the continuous client enzyme production and the limitation of growth over time. It is 
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assumed that using this system would lead to higher client protein productivity compared 

to the system with a pyridoxine marker because the amino acid metabolism is not 

affected by the limitation of biotin.  

During transplanting the medium becomes darker in color over time. It is assumed 

that the darker coloration is due to an elevated melanin formation. An increase in melanin 

formation was reported when filamentous fungi initiate conidiation (Jørgensen et al. 

2010). Conidiation is usually a response to energy or carbon starvation to conserve the 

cell until it is transported to a nutritional environment. Stress induces the transcription of 

brlA (Skromne et al. 1995) and the transcription factor brlA is a positive regulator for 

conidiation (Adams and Timberlake 1990). At the moment when all pyridoxine was 

depleted, the protein production and the PH were at a minimum and the medium became 

a light yellow. This shows that no melanin, and therefore, no conidiation took place. 

However, when the same culture was placed again on medium with pyridoxine, the 

medium became darker again and melanin was formed. 
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CHAPTER VI 
 

 

CONTINUOUS XYLANASE PRODUCTION WITH ASPERGILLUS NIDULANS 

UNDER PYRIDOXINE LIMITATION USING A TRICKLE BED REA CTOR 

6.1 Abstract 

In the present study, a new reactor system was designed and tested using Aspergillus 
nidulans with a pyridoxine marker and xylanase B (XynB) as a client enzyme. The new 
reactor system is a trickle bed reactor (TBR) with recycle, which utilizes the advantages 
of solid state fermentation (SSF) and submerged fermentation (SmF). The fungus is 
allowed to grow on a solid inert support, while the medium containing carbon and energy 
source trickles down. The uncontrolled growth of mycelia in the tubing, eventually 
leading to clogging, is reduced by utilizing a growth limitation by pyridoxine limitation. 
The fungus is unable to synthesize its own pyridoxine and is unable to grow when no 
pyridoxine is present in the medium, while the enzyme production is unaffected. The 
current study demonstrated a successful continuous operation over 18 days with high 
XynB titers. The reactor achieved a XynB output of 41 U/ml with an influent and effluent 
flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields were 1.4 
times higher compared to a static tray culture and between 1.1 and 67 times higher 
compared to SSF enzyme production stated in the literature.  
 

 

. 
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6.2 Introduction 

The production of enzymes in large scale is currently performed using solid state 

(SSF) or submerged fermentations (SmF). One of the largest cellulolytic enzyme 

producers, Novozymes located in Denmark, uses submerged culture techniques that are a 

well-kept secret (Novozyme 2010a). Bacteria and fungi are used in fed-batch or 

continuous systems.   

The University of Sao Paulo has conducted intense research in xylanase 

production (Betini et al. 2009; de Carvalho Peixoto-Nogueira et al. 2009). Their main 

focus is in optimizing the enzyme expression of xylanases for the paper bleaching 

industry. The researchers found Aspergillus niveus and Aspergillus fumigates as xylanase 

producers with high enzyme activities. A. fumigates was found to produce the highest 

xylanase activity with a culture medium by Vogel (1964) showing an activity of 109 

U/mg protein (348 total U). De Carvalho Peixoto-Nogueira et al. (2009) also compared 

static to agitated enzyme production and found the activity with the static culture to be 

2.3-fold higher than in the agitated culture. Further improvement was achieved by using 

SSF on inexpensive carbon sources (wheat bran, corncob, rice straw, triturated rice straw, 

oatmeal, sugarcane bagasse, cassava flour, Eucalyptus grandis sawdust) (Betini et al. 

2009). The best activity was achieved with A. niveus on wheat bran (2 g solid substrate 

with 4 ml distilled water at 70 to 80% relative humidity at 30°C for 96 h) with a value of 

928 total U.  

Xylanase and cellulase production using mixed submerged fermentation was 

performed by Garcia-Kirchner et al. (2002). The researchers used 4 g of sugarcane 

bagasse with 180 ml of medium with spores from Penicillium sp. CH-TE-001 and/or 
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Apergillus terrus CH-TE-013. The flasks were incubated at 29°C on a rotary shaker at 

180 rpm. They found a higher cellulase and xylanase production with the mixed culture 

compared to the single cultures. The enzyme mix, which was not further characterized, 

showed the highest activity on carboxymethyl cellulose (CMC) and birchwood xylan 

after 5 days with a value of 1.4 U/ml and 5 U/ml, respectively. No values of protein 

concentration were given. 

A detailed description of SSF is given by Mitchell et al. (2000). This paragraph 

will concentrate on the general principles. SSF has been used over centuries for food 

production, namely the Koji technology, where rice is fermented to produce rice wine 

also called “sake”. In SSF, microorganisms grow on solid substrate particles with the 

absence of visible liquid water (Mitchell et al. 2000). The typical water content ranges 

between 12 and 80 wt% (Cannel and Moo-Young 1980). Wheat bran, sugarcane bagasse 

and soy bran are, among others, typical substrates for enzyme production (Mitchell et al. 

2000). The substrate is characterized as a low cost waste material from agriculture. The 

general process involves the pretreatment of the substrate, including grinding and 

optional physico-chemical treatments, followed by inoculation usually with a filamentous 

fungi and active or passive aeration. The reactor may or may not be agitated, and 

humidity may be controlled. After completion the products need to be leached out 

(Mitchell et al. 2000).  

Typical reactor types for SSF are tray, drum and packed bed bioreactors. Tray 

reactors are simple to use without active agitation or aeration. The trays filling height is 

limited, since overfilling can lead to anaerobic processes and/or overheating (Tunga et al. 

1999) with temperature and humidity as the only control parameters (Durand et al. 1997). 
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Due to the large area required, large scale usage of tray reactors is limited. Drum reactors 

incorporate mixing and can lead to increased heat and mass transfer. The growth can be 

improved, but sheer forces can limit the final product formation (Nigam et al. 2004). 

Therefore, the handling on large scale can be difficult. Packed bed reactors are columns 

where the substrate is kept in place by a perforated platform. Forced aeration is applied at 

the bottom of the column (Mitchell and Lonsane 1992). Product retrieval, non-uniform 

growth and limited heat and mass transfer are common problems of packed bed reactors 

(Lonsane et al. 1985; Mitchell and Lonsane 1992). 

 The enzyme productivity is often higher in SSF than in SmF (Viniegra-González 

and Favela-Torres 2004). Viniegra-González et al. (2003) reviewed enzyme production 

using SSF and SmF in terms of physiological differences that explain the higher enzyme 

titers in SSF. In an experiment conducted by Romero-Gómez et al. (2000), five times 

higher invertase concentrations were produced with SSF using Aspergillus niger due to 

higher biomass production than with SmF. Another experiment conducted by Díaz-

Gódínez et al. (2001) for the production of pectinase showed again higher titers using 

SSF due to higher biomass production than with SmF. They also found that production 

with SSF leads to an apparent resistance to catabolite repression, which was indicated by 

high pectinase titers with SSF using high initial substrate (in this case sucrose) 

concentrations. In SmF high sucrose concentrations led to an inhibition of product 

formation. It was also observed that pectinase production with SmF had higher 

breakdown of pectinase by contaminant protease. An experiment with restricted growth 

by introduction of a steric hindrance was performed by Aguilar et al. (2001). For the 

production of tannase, A. niger grew on finely ground polyurethane foam (PUF), which 
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had a higher density (113 g/L) than normal sized PUF (15 g/L) with the purpose of 

restricting mycelia growth. Again, SSF produced higher titers of tannase than SmF, with 

values of 14,000 U/L and 2,800 U/L, respectively. The cell mass levels were found to be 

4.5 g/L and 11.5 g/L for SSF and SmF, respectively. Even with limited growth by 

physical hindrance, SSF performed better than SmF, which was also due to a reduced 

protease activity in SSF. Protease activity was found to be eight times higher in SmF.   

Biofilm reactors have been investigated for many applications, with many 

different reactor types (Cheng et al. 2010). Types of biofilm reactors are: stirred-tank 

reactor, trickling filter reactor, rotating-disk reactor, membrane biofilm reactor, fluidized-

bed reactor and airlift reactor. The choice of reactor depends on the final product, process 

complexity and costs.  

The enzymes used for the project described in this article are usually produced in 

lab scale static tray fermentation cultures. The current production processes are too 

expensive to utilize the enzymes on a large scale for low cost products like bioethanol. To 

enhance enzyme productivity, a trickle bed reactor (TBR) was designed. The 

macrostructure of the fungus is maintained by keeping the mass transfer at an optimum. 

The support is inert and the substrates for enzyme expression and growth are in a 

dissolved form. Furthermore, the system allows for maintaining a large cell mass with a 

large surface area. The reactor system is modeled for continuous enzyme production. No 

previous literature was found on the use of a TBR for the production of enzymes by 

filamentous fungi. The XynB production with the reactor was compared to a shaking 

flask and static tray fermentation which were used to simulate SmF and SSF. 
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Furthermore, the XynB production in the reactor was tested with and without growth 

limitation induced by pyridoxine limitation. 

 

6.3 Materials and Methods 

6.3.1 Culture medium 

 The medium was composed of 50.0 ml/L 20x Clutterbuck salts (120 g/L NaNO3, 

10.4 g/L KCl, 10.4 g/L MgSO4, 30.4 g/L KH2PO4), 1.0 ml/L 1000x trace elements (22 

g/L ZnSO4·7H20, 11 g/L H3BO3, 5.0 g/L MnCl2·7H2O, 5.0 g/L FeSO4·7H2O, 1.6 g/L 

CoCl2·5H2O, 1.6 g/L CuSO4·5H2O, 1.1 g/L Na2MoO4·4H2O, 50 g/L Na2-EDTA), 10.0 

g/L glucose monohydrate, 50.0 g/L maltose monohydrate and 1 ml/L of a 1 g/L 

pyridoxine solution. For the pyridoxine limitation test, the medium did not contain 

pyridoxine. The pH was adjusted to 6.5 using 10 N NaOH. The medium was sterilized by 

autoclaving at 121°C for 20 min. 

 

6.3.2 Reactor Design 

Figure 6.1 shows the schematic of the TBR design. The reactor is composed of a 

glass column with an inside diameter of 10.5 cm. The height is 60 cm. The packing were 

lava rocks purchased from a local hardware store, originally used for outside grills. The 

diameter of the rocks varied between 3 and 4 cm. The inlets for fresh and recycled 

medium were placed on top of the reactor. On the bottom a stainless funnel led the 

medium into a 250 ml baffled flask. The baffled flask was placed on a magnetic stirrer. 

The whole reactor was able to fit into an autoclave for sterilization. A heating tape was 

wrapped around the column to keep a constant temperature of 37ºC. Three peristaltic 

pumps (MasterFlex 7523-20, Barnant Co., Barrington, IL, USA) were  
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Figure 6.1: TBR set up. 
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used for medium flow. The influent and effluent flow rates varied from 0.5 to 1.0 ml/min. 

One pump was used to pump in fresh medium into the TBR. The second pump took 

medium out from the baffled flask at the same rate as the first pump. The third pump was 

used to pump medium from the baffled flask back into the reactor. The recycling of 

medium at various rates (224, 112, and 56 m/min) allowed higher substrate utilization, 

mixing and enhanced enzyme productivity. The tubing that connected the baffled flask 

with the product reservoir had an attachment that allowed sampling. Air was pumped into 

the reactor at 1.15 L/min (standard temperature and pressure) at the bottom through a 0.2 

µm sterile filter and exited the column at the top. 

 

6.3.3 Reactor model 

Several models are available to design reactors based on unicellular organisms. 

However, for filamentous fungi applied in a TBR, no model has been established. Several 

parameters are needed to be determined experimentally. The specific and maximum 

growth rates as well as productivity of A.nidulans were 0.061 h-1 (for 59.3 g/l total 

substrate concentration), 0.311 h-1, and 21.14 U/g · h, respectively (see Chapter V).  

The following assumptions were made in the development of the model: 

- The fungus will have the same yields (YX/S, YP/S, and YP/X) in the reactor as 

observed with Petri dish experiments for the same initial substrate concentration. 

- The specific growth rate found in the Petri dishes is equal to the specific growth 

rate in the reactor. 

- The total available medium inside the reactor includes medium to saturate the lava 

rocks. 

- Maltose and glucose are utilized at equal rates. 
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- High recycle flow rate allowed for the assumption that the reactor behaved like a 

continuously stirred tank reactor (CSTR). 

Since it was not possible to measure the exact cell mass inside the reactor, a theoretical 

cell mass based on YX/S was calculated. Assuming complete substrate utilization during 

the growth phase, the cell total mass (X) could be calculated: 

X = YX/S · ST 

with YX/S = cell mass to substrate yield and ST = Total substrate mass [g] in the reactor. 

The substrate uptake rate R [g/h] could now be calculated using the specific substrate 

uptake rate and the total cell mass: 

R = qs · X 

with qs = specific substrate uptake rate in g substrate/g cells*h. 

Using the active volume, a volumetric substrate uptake rate RV [g/L*h] can be calculated: 

RV = R / Va 

with Va = active volume [L]. 

The flow rate Q was calculated using the volumetric substrate uptake rate and the 

substrate concentration in the inlet: 

Q = RV / S 

with S = substrate concentration [g/L] 

This flow rate was determined based on the assumption that all substrates are consumed 

according to the rates and yields determined in experiments done in Petri dishes. 

 

6.3.4 Reactor process 

The primary target of this investigation was to achieve a continuous system for 

enzyme production with µnet equal to zero. The reactor process was divided into two 



116 
 

steps. The first step was the startup and growth of cell mass. The second step initiated the 

growth limitation with continuous product formation. This step required a change to 

medium without pyridoxine. 

 In the first step, 600 ml of medium were pumped into the reactor and recycled 

until all packing material was saturated with liquid. Twenty-five ml of a concentrated 

spore solution (8 x 107 spores/ml) containing 20.0 mg spores of A. nidulans (dry weight) 

was added with a syringe on top of the reactor. The remaining free medium, about 60 ml, 

were then continuously recycled at 224 ml/min without the addition or extraction of 

medium, until all substrates were depleted and the fungus culture was grown.  

In the second step, the free medium was extracted from the reactor, and replaced 

with medium that had no pyridoxine. A constant flow of pyridoxine-free fresh medium 

was pumped into the reactor. At the same rate, medium was extracted from the reactor 

and collected. The medium in the mixing vessel, which had the same composition as the 

effluent, was frequently monitored for maltose, glucose and protein concentration 

analysis. The pH was also monitored frequently. When the pH started to decrease to 6.5, 

indicating that pyridoxine was exhausted, a 0.5 ml aliquot of a 1 g/L pyridoxine solution 

was added into the reactor. During step 2, the medium was recycled at various high flow 

rates (224, 112, 56 ml/min). This allowed the assumption that at any moment and 

location, the substrate concentration throughout the reactor was equal. 

 

6.3.5 Analysis of flow rate through reactor 

The glass column was filled with a known mass of air dried lava rocks. The height 

of the packing material was 50 cm with a column diameter of 10.5 cm. Before the flow 

rate could be measured, the tubing of the system was filled with DI water. A graduated 
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cylinder was filled with 1.0 L of DI water.  At various flow rates the remaining liquid in 

the graduated cylinder was recorded after the system reached steady state. At zero flow 

rate the mass of water attached to the lava rocks (holding capacity) could be obtained at 

steady state. The holding capacity was also measured in a different test, where rocks were 

first submerged in water and then weighed after all the surface water was drained. 

 

6.3.6 Enzyme production in static tray 

A stainless steel tray was used for culturing. The tray was filled with 500 ml 

medium, containing a minimal medium with 50.0 ml/L 20X Clutterbuck salts (120 g/L 

NaNO3, 10.4 g/L KCl, 10.4 g/L MgSO4, 30.4 g/L KH2PO4), 1.0 ml/L 1000X trace 

elements (22 g/L ZnSO4·7H20, 11 g/L H3BO3, 5.0 g/L MnCl2·7H2O, 5.0 g/L 

FeSO4·7H2O, 1.6 g/L CoCl2·5H2O, 1.6 g/L CuSO4·5H2O, 1.1 g/L Na2MoO4·4H2O, 50 

g/L Na2-EDTA), 10.0 g/L glucose, 50.0 g/L maltose and 1 ml/L of 1 g/L pyridoxine 

solution with an adjusted pH of 6.5.  Spores of A. nidulans with a pyridoxine marker 

cultured on three agar plates containing minimal medium were manually scratched off the 

surface and added to the medium in the tray under sterile conditions. The trays were 

incubated at 37°C for 48 h. Since the fungus grows on top of the liquid, a separation of 

liquid from fungus was achieved by filtration through a filter paper vacuum filtration 

unit. After filtration the enzyme concentration was determined. 

 

6.3.7 Comparison of tray and shaking flask enzyme production 

The purpose of this experiment was to determine if the protein production was 

higher using a tray in comparison to using a flask. Shaking was shown in the literature to 

alter the growth form of filamentous fungi to pellets, while a surface grown fungi 
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develops a mycelium with hyphae directed to the source of nutrients. The same medium 

volume of 180 ml was added to a tray and a 500 ml Erlenmeyer flask. Both cultures were 

inoculated with spores to a final concentration of 4 x 105 spores/ml and grown at 50°C. 

The flask culture was agitated at 225 rpm. Samples were taken at 0, 24, 48, 72 and 96 h 

and analyzed for protein, glucose and maltose concentration. 

 In order to compare the enzyme production between the tray, flask and reactor 

operation, the total mass protein over a fixed period of time was calculated and 

standardized with dry cell mass. For the reactor the total dry cell mass was determined 

after the run was completed. The protein formation over a steady state period of time with 

a known flow rate was used to determine total protein produced within that time period. 

The following equation was used for the reactor: 

X

ttQp
P

TT

actor

)( 12

Re
12

−⋅⋅
= −

  (Eq. 6.1) 

With PReactor = total protein mass per dry cell mass [g/g], pt2-t1 = average protein 

concentration [g/L] during the time period between t1 and t2 [h], Q = flow rate of 

continuous operation [L/h] and X = dry cell mass [g]. 

 Equation 6.2 is used to calculate the total protein per cell mass from both, tray and 

flask cultures. These systems are batch fermentations, which simplifies the equation. 

X

Vp
P

⋅
=     (Eq. 6.2) 

With P = total protein per dry cell mass (PF and PT for flask and tray, respectively) [g/g], 

p = protein concentration [g/L], V = liquid volume [L] and X = dry cell mass. 

 The dry cell mass is obtained by filtering the medium and cells through a filter 

paper at the end of the experiment and drying overnight at 105ºC. 
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6.3.8 Determination of protein concentration 

The protein concentration was determined using a Bradford assay. Forty µl of 

Bradford commassie solution were pipetted into a well of a 96-well plate. The amount of 

enzyme solution depended on the protein concentration received. A typical amount is 40 

µl. DI water was added to achieve a total volume of 200 µl. The blank well contained 

only 40 µl Bradford solution and 160 µl DI water. The absorbance was measured using a 

UV-Vis 96-well plate reader (Tecan Infinite M200, Männedorf, Switzerland) at 595 nm. 

 

6.3.9 Determination of XynB activity 

Xylanase B activity was measured on xylan from beechwood (Fisher Scientific, 

Pittsburgh, PA).  Forty-eight µl of 1.0% substrate solution and 2 µl of enzyme solution 

were added into a 96-well plate. The plate was inoculated in a water bath at 50°C for 7 

min. After inoculation, the 96-well plate was removed from the water bath and 50 µl of 

dinitrosalicylic acid (DNS) reagent were added immediately to terminate enzymatic 

hydrolysis. The 96-well plate was placed in a second water bath at a temperature of 

100°C for 5 min to achieve the color formation. After the reaction time, 100 µl of the 

liquid was transferred in a 96-well reading plate and analyzed at 575 nm for reducing 

sugar concentration.  With the following equation, the specific activity was calculated 

based on the spectrophotometer values. 

 

(Eq. 6.3) 
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With U = specific activity [µmol of reducing sugar/mg protein · min], A = absorbance at 

575 nm, F = calibration factor, Vassay = assay volume (200 µL), t = incubation time [min] 

and penzyme = mass protein in enzyme used [mg]. 

The final results are given in XynB activity units per volume, UV.  

PV CUU ⋅=      (Eq. 6.4) 

With CP = protein concentration in mg/ml. 

 

6.3.10 Protein analysis with SDS-PAGE 

Additional characterization of the proteins was done by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). A 12% separation gel was made by 

mixing 1.7 ml H2O, 1.25 ml 1.5 M Tris, 50 µl 10% SDS, 2.0 ml 30% acryl, 25 µl 10% 

ammonium per sulfite (APS) and 25 µl tetramethylethylendiamin (TEMED). The 

stacking gel was composed of 2.5 ml H2O, 0.38 ml 0.5 M Tris, 0.03 ml 10% SDS, 0.5 ml 

30% acryl, 0.03 ml APS and 3.0 µL TEMED. Samples were concentrated using 

ultrafiltration (Stirred Ultrafiltration Cell Model 8400, Millipore, Billerica, MA, USA). 

An aliquot equivalent to 10 µg protein was mixed with 15 µl of 2x Laemmli buffer (4% 

SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol blue, 0.125 M Tris 

HCl) and boiled for 5 min for optimal band resolution. The solution was then injected 

into the gel. After completion of the SDS-PAGE run, the gels were stained with Bio-

Safe™ Coomassie Stain (Bio-Rad, Hercules, CA, USA) and de-stained with water.  
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6.3.11 Sugar and organic acid analysis 

Concentrations of glucose, maltose and urea were analyzed on an HPX-87P 

column (Bio-Rad, Sunnyvale, Ca.). The eluent was HPLC grade DI-water with a flow of 

0.6 ml/min at 85°C and a refractive index detector (1100 Series Agilent, Santa Clara, CA, 

USA) (Sluiter et al. 2008c). Organic acids were analyzed on a HPX-87H column (Bio-

Rad, Sunnyvale, Ca.). The eluent was 0.1 N sulfuric acid with a flow rate of 0.6 ml/min 

at 60ºC. A refractive detector (1100 Series Agilent, Santa Clara, CA, USA) was used for 

detection (Sluiter et al. 2008c). 

 

6.3.12 Calculation of yields  

 In order to compare the different XynB productions methods used in this study, a 

common base needs to be established. Cell mass and liquid volume may differ, which can 

lead to false conclusions if just XynB concentration is compared. Since typical enzyme 

activity is given in U (µmol/min), all yields are based on the volumetric XynB activity, 

UV, in U/L. Substrate and cell mass concentrations are given in g/L. The product from 

substrate yields, YP/S, is calculated for the tray and flask experiment as: 

 
)(

/

960
/ SS

VU
Y SP −

=   [U/g] 

With U = XynB activity in U, V = volume of fermentation broth after 96 h in L, S0 = 

initial substrate concentration in g/L and S96 = substrate concentration at 96 h in g/L. 

Similarly can the product from substrate yield, YP/X, be calculated: 
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With X96 = cell mass concentration after 96 h in g/L. The initial cell mass can be 

neglected. 

The cell mass from substrate yield (YX/S) was calculated with following equation: 

)( 960

96
/ SS

X
Y SX −

=  [g/g] 

 

6.4 Results and Discussion 

6.4.1 Comparison of enzyme production in static tray and shaking flask 

The purpose of this study was to show that a culture grown as a static tray culture 

(simulating a SSF) would produce higher titers of the client enzyme compared to a 

shaking flask by using the same liquid volume and spore inoculation. As it can be seen in 

Figure 6.2, the XynB concentration over time was about two times higher with the 

shaking flask culture than with the static tray after 96 h. The SDS-PAGE analysis 

revealed that the tray shows larger bands of XynB compared to the flask, indicating a 

higher purity of XynB in the total protein mix (Figure 6.3). This observation confirms the 

results found in previous studies comparing SSF with SmF (Viniegra-González et al. 

2003), where SSF fermentations led to higher enzyme purity. However, a comparison of 

the yields shows that the shaking flask produces XynB more efficiently than the static 

tray. The product to substrate yield (YP/S) was 780.72 U/g for flask fermentation and 

543.16 U/g for tray fermentation after 96 h. The flask culture also resulted in a greater 

product from cell mass yield, YP/X = 1849.77 U/g, compared to the tray experiment with 

YP/X = 480.05 U/g. Due to the high cell mass of 50.0 g/L produced in the static tray, the 

cell mass from substrate yield (YX/S) is higher, 1.13 g/g, compared to the flask, 0.42 g/g. 
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Figure 6.2: Effect of fermentation mode on the XynB production over time at 37ºC. 
Tray and shaked flask had the same volume of medium and inoculum 
concentration. Error bars represent standard deviation of two replicates. 
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    1     2      3     4     L  5     6  L  

 

Figure 6.3: SDS-PAGE analysis of proteins produced by flask and tray cultures by 
A. nidulans. 1 = Flask 48 h, 2 = Flask 72 h, 3 = Flask 96 h, L = Ladder, 4 = Tray 48 
h, 5 = Tray 72 h, 6 = Tray 96 h. 
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The fungal morphology was very different in both cultures. While the static tray 

showed a dense mycelium on top of the surface, the shaking culture produced pellets 

(Figure 6.4A) with a diameter of about 2-3 mm. It has been shown that the pellet size 

depends on the inoculum concentration. With increasing inoculum spore concentration, 

the pellet size decreases (Žnidaršič et al. 2000). Other factors affecting the pellet 

formation are shear stress (Fujita et al. 1994) and pH (Žnidaršič et al. 2000). The pellet 

size was found to affect the protein formation, where a decrease in pellet size causes an 

increased product formation (El-Enshasy et al. 1999). However, in order to extract the 

desired protein from the fermentation broth after fermentation, the fungal mass has to be 

separated, which is more difficult with the pellet culture than with the static tray culture. 

The density of the pellets is similar to the density of the fermentation broth (Figure 6.4B). 

Settling or centrifugation are less effective in separating the pellets while filtering 

requires a high energy demand due to the viscosity of the broth. This was also observed 

when the samples were filtered through 0.2 µm syringe filters for sample analysis. A 

relatively large amount of force was required to press the liquid through the filter. In this 

process the pellets needed to be disrupted to extract the liquid with the syringe. It is 

believed that downstream processing of a fungal pellet solution is more energy and 

process intensive compared to the fermentation broth from a static culture.   

 

6.4.2 Flow rate through reactor 

The mass of rocks used for this experiment was 2,501.6 g. The packing was 50 

cm high with a diameter of 10.5 cm. The rocks were air dried prior to the experiment and 
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A 

B 

Figure 6.4: (A) A. nidulans pellets grown in a shaking flask culture at 37ºC for 96 h 
rotated at 225 rpm. (B) Shaking flask fermentation broth after 96 h. 
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the tubing was filled with water. Figure 6.5 shows the residence time over flow rate. A 

logarithmic relationship can be seen. Between each change of flow rate, the system was 

allowed to reach steady state for 30 min. It can also be seen that when no flow was 

applied, 560 ml of water stayed in the column. This amount of water is adsorbed to the 

rock surface and in capillaries within the rocks. In a separate experiment the water 

holding capacity was determined on a mass of water per mass of lava rocks basis. By 

submerging a known mass of rocks in water and weighing the rocks after draining the 

surface water a factor of 0.214 g water/g rocks  was calculated. When this factor is 

applied to the mass of rocks used in this experiment the amount of water adsorbed to the 

rocks would be 535 g. The volume per mass ratio of the rocks was determined by a 

volume replacement experiment. The factor is 0.579 ml/g. Using this factor the static 

liquid holdup in the rocks was 0.370 ml water/ml rocks.  

 

6.4.3 Enzyme production in reactor 

6.4.3.1 Enzyme production without pyridoxine limitation 

The reactor design was tested with and without pyridoxine limitation. After 42 h 

of inoculation, a uniform fungus formation was observed, which was when semi 

continuous operation was initiated. The medium was recycled with flow rates equal or 

higher than 51 ml/min to achieve a uniform substrate concentration throughout the 

column. Every 6 h a volume of 240 ml was taken out from the mixing vessel into the 

storage tank and replaced with fresh medium. Figure 6.6A shows the protein 

concentration in the reactor, as well as in the storage tank.  



128 
 

 

Figure 6.5: Comparison of residence time with different recycle flow rates through 
lava rock packing of trickle bed reactor. Test was performed with DI water at room 
temperature. 
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 A 

 B 
Figure 6.6: Protein formation (A) and substrate utilization (B) in trickle bed reactor 
and storage container without pyridoxine limitation using semi-continuous 
operation. Every 6 h 240 ml of fermentation broth were pumped out and replaced 
with fresh medium.  
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Also shown in Figure 6.6 (B) is the glucose and maltose concentration. Between 

day 2 and 3.3, a constant enzyme production was achieved. However, at day 3.5, the 

tubing in- and outlets were clogged and eventually the process was terminated. The 

zigzag pattern in protein concentration was due to the semi continuous operation. Right 

before the feeding, the concentration of protein was highest in the reactor. After feeding 

the reactor with fresh medium, the protein concentration was low due to a dilution with 

fresh medium. The protein concentration in the storage tank slightly increased from 0.047 

g/L at day 2 to 0.067 g/L after 3.3 days. During the 6-h-periods, 80% of glucose and 77% 

of maltose were utilized. However, as can be seen in Figure 6.6B, the maltose and 

glucose concentration in the storage tank was higher. Including the storage container, a 

maltose utilization of 53% and a glucose utilization of 35% was achieved. The activity 

was not measured during the reactor run. Using an average activity per protein 

concentration of 575 U/g protein, obtained from later experiments, an estimated average 

XynB production of 31 U/ml was produced and present in the storage tank. While this 

test demonstrated a possible continuous enzyme production with a trickle bed reactor, the 

high risk of clogging needed to be addressed in order for the reactor to be operational 

over a prolonged time. 

 

6.4.3.2 Enzyme production with pyridoxine limitation 

A continuous enzyme production with limited risk of clogging was achieved by 

reducing growth with pyridoxine limitation. In a petri dish experiment, the feasibility to 

produce protein continuously without fungal growth was demonstrated (Chapter V). This 

concept was applied to the reactor design.  
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In the first experiment, the reactor was filled with 2,502 g of lava rocks. The 

water holding capacity of the lava rocks was previously determined. A volume of 550 ml 

of medium was required to saturate 2,502 g of rocks. After autoclaving the reactor was 

filled with 700 ml of medium with pyridoxine, which was recycled at a flow rate of 224 

mL/min until all rock surfaces were wetted and a steady level of 160 ml of medium in the 

mixing vessel was achieved. A fungal spores suspension (8 x 107 spores/ml) containing 

20.0 mg spores (dry weight) was injected and allowed to grow for 1.7 days. After 1.7 

days the medium inside the reactor was allowed to trickle down into the mixing vessel 

and then was pumped out. The same amount of fresh medium without pyridoxine (150 

ml) was added and recycled at a flow rate of 224 ml/min until the desired level of 

medium (160 ml) in the mixing vessel was reached. Then the system was switched to 

continuous operation with an in- and effluent outflow rate of 1.0 ml/min (D = 0.0014 h-1). 

After 2.1 days of inoculation, a XynB activity of 14.4 U/ml was reached, which was held 

for 4 days (Figure 6.7A). As expected the pH dropped from 8.08 at 2.7 d to 6.18 at 6.0 d. 

The same behavior was observed during the petri dish experiment in Chapter V and is an 

indicator when pyridoxine needs to be replenished. At 6.0 d, 0.5 ml of 1000x pyridoxine 

solution was added. As can be seen in Figure 6.7A, the XynB activation increased again 

to 13.1 U/ml and the pH increased to 7.49.  

The substrate concentration can be seen in Figure 6.7B. After continuous 

production was initiated, the concentration of maltose was 7.3 g/L, which is equivalent to 

a substrate utilization rate of 85%. The concentration of glucose was 3.0 g/L, which is 

equivalent to a substrate utilization rate of 75%. 
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A 

B 
Figure 6.7: XynB Production and pH development (A) and substrate utilization (B) 
with 1.0 ml/min influent and effluent flow rate. Recycle flow rate was 224 ml/min. 
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Due to contamination, the continuous product formation stopped after 7.8 days. 

However, the process was allowed to continue while an attempt to remove the 

contamination was tried by the addition of ampicillin. During this period it was observed 

that the protein concentration dropped to a minimum of 0.017 g/L after 9 days. The 

activity measured was 1194.79 U/mg. This would result in a volumetric activity of 20.3 

U/ml. Even with reduced protein production, the XynB metabolism was unaffected.  

In a second experiment, the fermentation conditions were modified to achieve an 

improved XynB production. The lava rocks from the previous experiment were replaced 

with a fresh set with a total mass of 2,353 g. The reactor was filled with 740 ml 

pyridoxine containing medium and recycled to achieve a uniform wetting of the lava 

rocks and a steady liquid level in the mixing vessel (160 ml). The same amount of spores 

was added as in the previous experiment (8 x 107 spores/ml). After 1.9 days continuous 

operation was started with an influent and effluent flow rate of 0.5 ml/min (D = 0.0007 h-

1). Table 6.1 shows an overview of the most important results. A continuous XynB 

production was achieved for 7 days with a concentration of 17.81 U/ml (Figure 6.8). 

After day 6.9 0.5 ml of 1000x pyridoxine solution were added since a decrease in XynB 

and pH was observed. At day 9.3 the recycle flow rate was reduced by 50% to 112 

ml/min. The change of flow rate resulted in an increase of XynB production to an average 

of 28.09 U/ml and increased the productivity from 3.6 U/g cells*h to 5.7 U/g cells*h. A 

decrease of recycle flow rate of 50% doubles the residence time. The medium is longer in 

contact with the mycelium, which explains the increase in XynB concentration. Further 

improvement of XynB production was achieved when the temperature was increased 

from 32ºC to 37ºC at day 13.3. The XynB concentration increased to 33.36 U/ml and  
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Table 6.1: Comparison of product yields at different time intervals with 0.5 ml/min 
flow rate. 

Time [d] Average 
product 
formation 
[U/ml] 

Average 
sugar 
concentration 
[g/L] 

Dry cell 
mass [g] 

YP/S [U/g] YP/X [U/g] 

2 – 9 17.81 21.62 n.a. 494.78 - 
9 – 13 28.09 16.23 n.a. 678.56 - 
13 – 17 33.36 7.48 n.a. 665.25 - 
18 - 19 40.26 4.34 148.8 755.58 626.08 
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Figure 6.8: XynB production and pH development in trickle bed reactor. Continuous flow in and out was set at 0.5 ml/min. 
Initial recycle flow rate was 224 ml/min. 
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productivity increased to 6.7 U/g cells*h. The improvement by adjusting the temperature 

to 37ºC was expected since 37ºC is the optimum growth temperature for A. nidulans. At 

day 17.4 the flow rate was again reduced by 50% to 56 ml/min, which increased of XynB 

production to 40.26 U/ml and a productivity of 8.1 U/g cells*h. Further confirmation of 

XynB production was given by SDS-PAGE analysis. Figure 6.9 shows the XynB bands 

for selected time points. The XynB bands are the most predominant bands in the pictures 

and indicate a high purity of XynB. 

The reactor produced high titers of XynB. A comparison of XynB with SSF 

xylanase production in the literature is not directly possible since the present study is a 

continuous process; whereas; SSF is performed in batch mode. Typical xylanase 

production results from SSF are given in U/g of solid substrate, while this study uses 

U/ml. Azin et al. (2007) reported a xylanase production of 600 U/g substrate using 

Trichoderma longibrachiatum on a mixture of wheat bran and wheat straw. Converting 

the xylanase concentration to U/ml by incorporating the substrate mass and volume liquid 

used for enzyme extraction results in a volumetric activity of 35.3 U/ml. Similarly, the 

xylanase production achieved by Gessesse and Mamo (1999) was reported to be 600 U/g 

using an alkaliphilic Bacillus sp. on wheat bran. Conversion to volumetric activity gives 

0.6 U/ml. Park et al. (2002) reported an about 10-fold higher xylanase production of 

5,000 U/g substrate compared to other literature findings. The researchers used A. niger 

on rice straw. When substrate mass and extraction liquid volume are incorporated to the 

result, the volumetric activity was 125 U/ml. The difference with other findings may be 

explained by the usage of a different organism. 

The current reactor design also produced higher XynB concentrations compared 
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Figure 6.9: SDS-PAGE analysis of reactor XynB production at different 
selected time points. 
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to the static tray culture and reached the level of the shaking flask culture. Product from 

cell mass and substrate yield were both higher for the reactor compared to the static tray. 

The reactor achieved an YP/X of 626.1 U/g and an YP/S of 755.7 U/g (Table 6.1). By 

recycling the medium and increasing the surface for mycelium growth, the reactor likely 

allows improved mass transfer over the static tray.  

The substrate consumption throughout the reactor run increased with changes in 

operation conditions. The highest maltose and glucose utilization was achieved at day 18 

with the lowest recycle flow rate (56 ml/min) and 37°C (Figure 6.10). During the highest 

product formation, 92% and 78% of maltose and glucose were consumed, respectively. 

With a lower recycle flow rate, the residence time of flowing liquid through the packing 

increased, which allowed for improved diffusion of substrate into the fungus matrix. 

However, the mass transfer in the reactor can be further improved. Channeling occurred 

due to insufficient medium distribution on top of the column. The channeling led to areas 

in the bed where no medium or only limit amounts of medium came into contact with the 

mycelium. These issues could be addressed by changing the diameter to height ratio of 

column and with an improved medium inlet on top of the column, such as a spray nozzle. 

 

6.4.4 Prediction of XynB production and substrate utilization 

 The XynB production and substrate utilization were modeled using CSTR model 

equations. CSTR modeling compared to packed-bed reactor modeling leads to a more 

simplified prediction of product formation. In this experiment the recycle flow rate was 

high enough, with a residence time of 22 s, to assume a constant concentration of 

substrates, product and cell mass throughout the reactor column and the mixing vessel. It
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Figure 6.10: Maltose and glucose consumption in trickle bed reactor. Continuous flow in and out was set at 0.5 ml/min. The 
initial recycle flow rate was 224 ml/min. 
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was not possible to measure cell mass concentration during the experiment. With a 

known initial cell mass concentration, the cell mass could be predicted over time. Using 

this predicted cell mass, the XynB formation and the substrate utilization could be 

predicted. The required parameters were, S0, which was maltose (47.6 g/L), glucose (10 

g/L), or the summation of both (57.6 g/L), X0 = 0.033 g/L, µnet = 0.061 h-1, YP/X = 480 

U/g, YX/S, which was different for maltose (1.2), glucose (19.2), and both together (1.13). 

Model 1 is based on summation of both sugars as substrate concentration. Figure 6.11A 

shows the actual XynB production in the reactor and the predicted XynB production 

(Model 1). It also shows a different prediction, Model 2, which was calculated with an 

adjusted net grow rate. The adjusted growth rate was back calculated using the actual 

XynB production at day 18 in the reactor. With the known product concentration at day 

18 and YP/X, the theoretical cell mass concentration can be determined. With the 

theoretical cell mass concentration and the known initial cell mass, the µnet necessary to 

achieve the theoretical cell mass at 48 h can be calculated (Figure A4). As can be seen in 

Figure 6.11B, which shows the total substrate utilization, Model 2 is more suitable. 

Graphs predicting cell growth, maltose and glucose utilization can be found in the 

Appendix. The adjusted net growth rate was 0.164 h-1. The previous µnet was measured in 

a Petri dish experiment at equal conditions. The reactor improves the growth rate of the 

fungus by 270%. The reactor leads to a higher mass transfer by continuously pumping the 

medium in the recycle and by actively supplying the culture with air.  

An alternative model (Model 3) could be established using the XynB productivity 

determined in Chapter V. The productivity for a culture grown on medium without 

pyridoxine was 21.14 U/g dry cell mass*h. The predicted dry cell mass was 
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A 

B 

Figure 6.11: Comparison of actual XynB production in reactor (A) and substrate 
utilization (B) to predictions using CSTR modeling. With S0 = 57.6 g/L, YP/X = 480 
U/g, YX/S = 1.13, µnet = 0.061 h-1 (Model 1), and µnet = 0.164 h-1 (Model 2). µnet for 
Model 2 was back calculated from actual product formation in reactor. The cell 
concentration is assumed constant after initiating continuous fermentation. 
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  calculated in the same manner as in Model 2. The corresponding XynB prediction was 

calculated using the productivity and multiplying it with the predicted cell mass and time. 

The resulting predicted XynB content is given as the accumulative XynB content in U. 

The comparison of the predicted and actual accumulative XynB content can be seen in 

Figure 6.12. The predicted XynB formation over time follows a lower slope than the 

actual XynB production in the reactor. After completion of 18 days continuous 

fermentation, the total cell mass inside the reactor was measured. While Model 2 

predicted a cell mass 61 g, the total cell mass after 18 days was 149 g. It is unknown what 

percentage of the total cell mass was viable cell mass. Furthermore, it was observed that 

the cell mass in the reactor increased over time. Figure 6.13 shows the reactor column at 

different time points. At day 7 a small amount of pyridoxine solution was added in order 

to keep XynB production running. It is possible that some of the pyridoxine recycled 

through the reactor over a prolonged time, allowing the fungus to grow slowly but 

steadily. No more pyridoxine injection was necessary after day 7 for the rest of the test 

period. The pH was relatively constant over 11 days, signaling that the fungus was able to 

utilize pyridoxine. A more likely explanation can be found in a process called autolysis. It 

was shown that filamentous fungi under starvation initiate a process where in order to 

allow mycelium tip growth, old mycelia are broken down enzymatically to recycle cell 

components (White et al. 2002). This recycle of old mycelia mass could be a potential 

source for recycled pyridoxine and would explain why the fungal mass, viable plus dead, 

increases over time. A slow increase of cell mass over time would also explain the higher 

accumulative XynB content compared to the model prediction. 
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Figure 6.12: Comparison of actual cumulative XynB content in reactor to model 
prediction using an experimentally determined productivity of 21.14 U/g dry cell 
mass*h and a cell mass prediction using CSTR modeling. 

 

  

y = 33358x - 79396
R² = 0.9791

y = 19732x - 12942
R² = 0.9866

0

100000

200000

300000

400000

500000

600000

0 5 10 15 20

C
um

ul
at

iv
e 

X
yn

B
 [U

]

Time [d]

Cumulative XynB content in reactor Model 3 XynB formation

Start of continuous fermentation Linear (Model 3 XynB formation)



144 
 

A B C 

Figure 6.13: Fungal growth in trickle bed reactor on lava rock surface. Growth 
after 1 day (A), 2 days (B), and 9 days (C). 
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It is proposed that an A. nidulans mutant with a different marker, which is not 

essential for amino acid metabolism, would produce higher amounts of protein compared 

to the pyridoxine system. A potential marker could be biotin. Biotin is used for 

carboxylation reactions and its absence would not interfere with amino acid metabolism, 

but limit growth. Biotin is a coenzyme for pyruvate, acetyl-CoA, and propionyl-CoA 

carboxylase (Voet and Voet 2004). When acetyl-CoA carboxylase is inactive due to 

biotin depletion, no fatty acid synthesis would take place. It is assumed that growth 

would be limited, since membrane wall components (fatty acids) are missing. 

 

6.5 Conclusion 

It was demonstrated that a trickle bed reactor system is applicable in producing 

enzymes by A. nidulans. Fungal mycelia favor surfaces for growth and can clog pipes, 

tubing tube connectors, reactor inlets and outlets. A solution to these problems is limiting 

the growth of the organism by changing the conditions. This was successfully 

demonstrated by limiting the pyridoxine supply to an A. nidulans mutant unable to 

synthesize its own pyridoxine over a period of 19 days. Small amounts of pyridoxine 

have to be added to the system to elongate enzyme productivity.  

 

6.6 Future work 

 Since the prototype of the TBR was designed and constructed from scrap parts, 

multiple modifications should be incorporated to achieve higher production efficiency. 

The main drawback of the current design was the creation of channeling. The diameter of 

the column was 10 cm with a column height of 50 cm. This narrow design, with a 
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diameter to height ratio (DH) of 0.2, leads to channeling where the trickling fluid flows 

along the glass wall without touching the rock. Only a small amount flows down the 

rocks and has contact with the fungus. Typical dimensions for trickle bed reactors have a 

DH between 0.5 and 1.0 (Winterbottom and King 1999).  

 A second improvement would be the medium distribution on top of the column. 

Currently, four static inlets distribute the medium. Since the location of the inlets does 

not change over time, the impact point of medium on the rocks is constant, also leading to 

channeling. An improvement could be a moving arm with multiple outlets that rotates at 

a constant speed as it is used in trickle bed fermenters in the waste water industry. 

Another option could be an agitator placed underneath one central inlet tube. The agitator 

would rotate and spray the medium over the column. However, in all cases large open 

tubes should be used to reduce the risk of clogging.  

 Further improvement could be achieved by using a steal basket for the solid 

support. This would simplify the loading and unloading of the solid support. After 

completion of a fermentation, the used support could be removed like a cartridge and 

replaced by a new one.  

 The mixing vessel could be replaced by a larger container with means for 

separating mycelia cell mass that gets washed out from the column. The product stream 

would contain no visual cell mass and could be processed directly for protein purification 

and concentration.  

 Furthermore, a pH probe for online pH monitoring and a CO2 sensor for indirect 

cell mass measurement would simplify process control. Monitoring the pH online would 

also reduce the sampling volume. The current system does not allow cell mass 
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measurement. Only after the process is terminated can the total cell mass can be 

determined by measuring the mass gravimetrically.  

 Besides improving the reactor hardware, different solid support matrices could be 

tested. The lava rocks have been proven to be a successful inert support for the 

filamentous fungus to grow. However, lava rocks have a higher density compared to 

other materials that could be used and contribute greatly to the total weight of the reactor 

system. Especially in up-scaling, the weight of the rocks could lead to increased costs of 

reactor equipment to accommodate the mechanical strength of the equipment and the 

handling of the rocks. Furthermore, the reuse of the lava rocks requires an extensive 

cleaning process. It was observed that the fungus grows very persistently on the rock 

surface. The chemical industry uses plastic composites or metals as materials for solid 

support matrices, which have a high specific surface area by keeping the weight at a 

minimum.  

 The improvements mentioned above deal with the hardware and dimensions of 

the reactor. Further improvements involve the Aspergillus strain itself and its ability to 

produce enzyme while its growth is limited by coenzyme limitation. Future work should 

concentrate on the usage of an A. nidulans strain with biotin as a marker, leaving the 

amino acid metabolism undisturbed. It is hypothesized that with a biotin marker system 

more client enzyme could be improved than with the pyridoxine system. 
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APPPENDICES 
 

 

 

Figure A1: Double reciprocal plot of µnet and initial substrate concentration S with 
A. nidulans grown in Petri dishes. 
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   Growth with pyridoxine Growth without pyridoxine 
 
 
 
  

1 2 1 2 

Transplanted 
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Transplanted 

After 48 h 
of incubation 
192 h total 

After 48 h 
of incubation 
144 h total 

After 48 h 
of incubation 
96 h total 

After 48 h 
of incubation 

Figure A2A: Comparison of an A. nidulans culture grown on medium with 
and without pyridoxine. The visual observation shows that the culture 
without pyridoxine shows no mycelia formation. 
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   Growth with pyridoxine Growth without pyridoxine 
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Figure A2B: Continuation of figure A2A. Comparison of an A. nidulans culture 
grown on medium with and without pyridoxine. The visual observation shows 
that the culture without pyridoxine shows no mycelia formation. 
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A 

B 
Figure A3: Comparison of actual maltose (A) and glucose (B) utilization to 
predictions using CSTR modeling. With S0_Maltose = 47.6 g/L, S0_Glucose = 10 g/L, YP/X 
= 480 U/g, YX/S_Maltose = 1.2, YX/S_Glucose = 19.2, µnet = 0.061 h-1 (Model 1), and µnet = 
0.164 h-1 (Model 2). µnet for Model 2 was back-calculated from actual product 
formation in reactor. The cell concentration is assumed constant after initiating 
continuous fermentation.  
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Figure A4: Model prediction of cell mass in reactor. Model 1 with µnet = 0.061h-1 and 
Model 2 with µnet = 0.164 h-1.

0.01

0.1

1

10

100

0 5 10 15 20

co
nc

en
tr

at
io

n 
[g

/L
]

Time [d]

Cell mass model 1 Cell mass model 2

Start continuous fermentation



VITA 
 

Michael Mueller 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
Thesis:    UTILIZATION AND PRODUCTION OF SINGLE ACTIVITY ENZYMES 

FROM ASPERGILLUS NIDULANS 
 
 
Major Field:  Biosystems Engineering 
 
Biographical: 
 

Personal Data: Born in Dernbach, Germany, on January 30, 1983 
   The son of Friedhelm and Margot Müller 
 
Education: 
Completed the requirements for the Doctor of Philosophy/Education in your 
major at Oklahoma State University, Stillwater, Oklahoma in July, 2012. 

 
Completed the requirements for the Master of Science in Biosystems 
Engineering at Oklahoma State University, Stillwater, OK in May, 2009. 
  
Completed the requirements for Diplom Ingenieur (FH) in Biotechnology at 
Fachhochschule Bingen, Bingen, Germany in July, 2007. 
 
Experience:   
January 2012 to May 2012:  
Teaching Assistant, Oklahoma State University, Stillwater, OK, 74074 
 
May 2009 to May 2012: 
Research Associate, Oklahoma State University, Stillwater, OK, 74074 
 
August 2007 to May 2009: 
Research Assistant, Oklahoma State University, Stillwater, OK, 74074 
 
Professional Memberships:   
o American Society of Agricultural and Biological Engineers (ASABE) 
o The Association of German Engineers (VDI) 



 
ADVISER’S APPROVAL:   Dr. Mark R. Wilkins 
 
 
 

 

Name: Michael Mueller                                          Date of Degree: July, 2012 
 
Institution: Oklahoma State University        Location: Stillwater, Oklahoma 
 
Title of Study: UTILIZATION AND PRODUCTION OF SINGLE ACTIVITY 

ENZYMES FROM ASPERGILLUS NIDULANS 
 
Pages in Study: 155               Candidate for the Degree of Doctor of Philosophy 

Major Field: Biosystems Engineering 
 
Scope and Method of Study: The first objective was to determine the synergistic effects 

of enzyme mixtures for maximum enzymatic hydrolysis of grain sorghum stover 
untreated and pretreated with liquid hot water pretreatment. The second objective 
was to determine the feasibility of continuous client enzyme production with an 
Aspergillus nidulans mutant containing a pyridoxine marker by limiting the 
supply of pyridoxine. The third objective was to determine the feasibility of using 
the limited growth system with pyridoxine limitation in a trickle bed reactor for 
prolonged client enzyme production. 

 
Findings and Conclusions: The usage of accessory enzymes together with the commercial 

available cellulolytic enzyme Cellic CTec2 from Novozymes did not improve the 
enzymatic hydrolysis of grain sorghum stover. The best glucose and xylose 
conversion observed was 77% and 68% respectively, achieved on pretreated grain 
sorghum stover with CTec2.  

 Pyridoxine limitation was successfully shown to have no effect on XynB 
production compared to a culture grown with pyridoxine. Additionally, it was 
observed that the culture did not grow when pyridoxine was absent. 

 A successful demonstration of continuous XynB production with the trickle bed 
reactor was shown over a period of 18 days. The reactor achieved a XynB output 
of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle 
flow rate of 56 ml/min. Production yields are higher compared to a static tray 
culture and SSF enzyme production stated in the literature. 

 
 
 
 
 
 
 


