
DEVElJOPMENT OF A SIMULATION TOOL FOR

ESTIMATING THE RECONFIGURATION AND

RESTORATION TIMES OF A DISTRIBUTED

INTELLIGENCE OPTICAL MESH

NETWORK

By

WAI YEU CHAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTERS OF SCIENCE
December, 2001

DEVELOPMENT OF A SIMULATION TOOL FOR

ESTIMATING THE RECONFIGURATION AND

RESTORAnON TIMES OF A DISTRIBUTED

INTELLIGENCE OPTICAL MESH

NETWORK

~~~A.0Jh::-,----
De~a~e

11



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my advisor, Dr.

George Scheets for his moral support and guidance beyond academic supervision. I am

very thankful for his willingness and flexibility in setting meetings times for consultation

and also his patience in explaining subject matter, answering all questions and dearing all

doubts that I have. Furthermore, I would like to extend my appreciation to the committee

members, Dr. long-Moon Chung, Dr. Yarlagadda and Dr. lames West.

Not forgetting, I would like to thank Mark Wendel, at that time Senior Network

Engineer in the Network Architecture Group ofWilliams Network for providing me with

necessary information and answering any questions pertaining to the network.

Last but not least, I would like to dedicate this thesis to my parents, brother,

sisters and friends, who always stood by me and providing me with their unconditional

support and encouragements to succeed and most importantly for believing in me.

1ll



Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. LITERATURE REVIEW '" . 8

III. PROBLEM STATEMENT 10

IV. SOLUTION TO PROBLEM 12

V. RESTORATION ALGORITHM 14

VI. RESULTS 19

VII. CONCLUSION 24

REFERENCES 26

APPENDIXES 28

Appendix A - Optical Network 29
Appendix B - Distance between SONET Switches 30
Appendix C - Flowchart of Program 31
Appendix D - C++ Program 32
Appendix E - Network.dat file 48
Appendix F - Connections.dat file 49
Appendix G - Sample Portion ofraths.dat file ., 51
Appendix H - Sample Portion of Results 1 53
Appendix I - Sample Portion of Results 2 .. . . . . . . . . .. . . . . . . . 56
Appendix J - Results 3 62

IV



Figure

LIST OF FIGURES

.. , Page

1. Line restoration vs. Path restoration 4

2. 100, 300 and 500 Circuits Reconfiguration Times of a Distributed
Control Network 20

3. 100, 300 and 500 Circuits Reconfiguration Times of a Centralized
Control Network 20

v



CHAPTER I

INTRODUCTION

Rapid growth in the fiber facilities in the telecommunications network has

brought the need for higher bandwidth requirements. By the mid 1990's, concerns with

service efficiency and equipment interoperability on an end-to-end basis as well as the

need for bandwidth requirements higher than the DS3 level brought service providers to

deploy the solutions enabled by Synchronous Optical Network or better known as

SONET. SONET defines interface standards at the physical and data-link layer of the

OSI seven-layer model. The standard defines a hierarchy of interface rates that allow data

streams at different rates to be multiplexed. SONET establishes Optical Carrier (OC)

levels from 51.84 Mbps (about the same as a DS3 line) to 10 Gbps, with 40 Gbps rates in

trials. SONET comprises both an optical interface and specifications for the rate and

format of optical signal transmission [1] and can be used to support both narrowband and

broadband services.

With the significantly higher configuration flexibility and bandwidth availability,

SONET offers several advantages over the older telecommunications system. These

advantages include:

• Reduction in equipment requirements and an increase in network reliability



• Provision ofoverhead and payload bytes - the overhead byte pennit management of th payload

bytes on an individual basis and facilitate centralized fault ectionalization.

• Definition of a synchronous multiplexing format for carrying lower level digital signals ( uch as

OS-I, 05-3) and a synchronous structure that greatly simplifies the interface to digital switches,

digital cross-connect switches, and add-drop multiplex.ers

• Availability of a set of generic standards that enable products from different vendors to be

connected

• Definition of a flexible architecture capable of accommodating future applications, with a variety

of transmission rates [3]

In brief, SONET defines OC levels and electrically equivalent Synchronous

Transport Signals (STSs) for the fiber-optic-based transmission hierarchy.

There are three different types of SONET Transport Network Architectures,

point-to-point, rings, and mesh networks.

Point-to-point: Point-to-point networks consist of pairs ofnodes that are connected by

two (ideally) physically diverse transmission paths. In case of a failure of the working

path, the working traffic of the single point to point is switched to the protection path.

Many autonomous point-to-point topologies must be placed to protect a network using

point-to-point protection methods [10].

Ring: A ring network is defined as a collection of nodes forming a closed loop, where

each node is connected via a full duplex commu lications facility [1]. In case of a fai lure,

the demands of any affected traffic pairs within the ring can be rerouted in the opposite

direction. Thus, the spare protection capacity of the ring is shared by all of the working

traffic on the ring. Note that, theoretically, the point-to-point topology is a two-node ring

[10].

2



Mesh: A Mesh network is a topology in which device are connected with many

redundant interconnections between netwo.rk nodes. To be consideJ1ed a mesh at least

two nodes on the network should have a degree ofconnectivity (ie. the number of links

coincident on that node) that exceeds two. In case ofa failure, the affected path can

reroute over a variety of diverse paths, in contrast to a single alternate path for the point­

to-point and ring architectures. Generally, in the mesh architectures, as network

connectivity increases, required protection capacity decreases because of the sharing of

spare capacity among many potential pairs of nodes [10].

Each type of the SONET Transport Network Architecture has its own restoration

mechanism.

Point-to-point: Automatic Protection Switching (APS) systems are common on point-to­

point links. There are two types of APS architectures defined in the SONET standards,

I:N APS and 1+1 APS [1]. I:N APS allows one of the N (permissible values for N are

from I to 14) working channels to be bridged to a single protection channel [1]. 1+1

protection switching is a fonn of 1: 1 APS with the head end permanently bridged and the

signal simultaneously transmitted over two circuits. The decision as to which circuit to

use is made by the tail end [I].

Rings: SONET Self-Healing Rings (SHR) provide redundant bandwidth so that disrupted

services can be restored automatically following network failures [1]. Two different types

of rings exist. Unidirectional rings move working traffic around the ring in one direction,

while bi-directional rings move working traffic in either direction. SONET rings provide

fast restoration, less than 50 ms on fiber failures.



Mesh: Mesh restoration uses switches or Digital Cross Connect Systems (DeSs) to

reroute traffic around a failure point. Mesh networks typically require less excess

bandwidth for restoration purposes than do rings, as the extra bandwidth on each link can

be shared and typically provides full or partial restoration capacity for many possible

failed links [1].

There are two types of restoration techniques possible, line restoration and path

restoration. Line restoration uses the line layer fuformation to trigger the restoration

process and restores connections between the nodes immediately adjacent to a cable

failure by rerouting all affected working circuits over the same restoration route

regardless of the sources and destinations ofthe affected working circuits [1]. Path

restoration on the other hand, restores the affected STS paths on an end-to-end basis [1].

To better explain the difference of the above line and path restoration, let's look at an

example [l J. In this example, the link between Nodes 2 and 3 carries two STS-l circuits

STS-I Original Restored
paths Paths Paths

(1,6) 1-2-3-6 1-2-5-3-6

(4,6) 4-2-3-6 4-2-5-3-6

(a) Line Restoration

STS-l Original Restored
paths Paths Paths

(1,6) 1-2-3-6 1-4-5-6

(4,6) 4-2-3-6 4-5-6

(b) Path Restoration

Figure 1: Line restoration vs. Path restoration [1]

4



STS-l (1,6) and STS-l (4,6). Ifthat link fails and the line restoration method i used [see

Figure 1(a)], route 2-3 is replaced by route 2-5-3, and all .channels use the new route

when they pass from Node 2 to Node 3. On the other hand, if the path restoration method

is used [see Figure 1(b)], each circuit [i.e. STS-l (1,6) and STS-l (4,6)] affected by the

link failure selects a new route for restoration. For example, STS-I circuit (4,6) may

select new route 4-5-6 and STS-l (1,6) may select route 1-4-5-6 or 1-2-5-6.

In a comparison between APS, Rings and Meshes, APS systems are more

appropriate in areas where point to point demand is extremely high, and rings are

appropriate in geographically limited areas requiring fast standards-based multiple site

restoration capabilities [I]. Mesh on the other hand is appropriate for relatively large

areas. Compared to the SHR, the Des self-healing mesh network needs less protection

capacity at the expense of longer restoration time. The spare capacity savings for the

DCS self-healing network are due primarily to sharing of spare capacities across the

entire network. Therefore less r~undant bandwidth is needed in a mesh network. Ring

disadvantages, including bottlenecks where traffic is passed from one ring to another, and

excessive bandwidth requirements for restoration compared to other topologies, have also

contributed to the rise of meshes over rings.

Significant recent traffic growth has outstripped SONET's ability to provide

connectivity in a cost effictive manner. Today, SONET alone does not provide sufficient

capacity on a fiber strand. Advances in WDM and other optical technologies have

resulted in a much more complex environment whereas before, a carrier's SONET digital

5



system would swap STS-N time slots, and today proprietary switches might exchange

STS-N time slots, wavelengths, or all traffic on an entire fiber (multiple wavelengths).

When a failure occurs, network providers have at least two different techniques

that can be used to restore the affected services. One option would be to reconfigure the

entire network making full use ofmultiple layer restoration efforts occurring in a

simultaneous or near simultaneous manner. However, considering there are no

standardized means of communication between each of the different layers of the

network, conflicts may occur because each layer is independently executing its

restoration efforts, with no coordination occurring between the layers. Such restoration

efforts could be very complicated and today they are not well understood.

A second option would be to avoid all potential conflicts between the layers, and

execute restoration efforts systematically, starting with the layer most immediate to the

failure, for example a router in the event of a router card failure, an ATM switch in the

event of an ATM trunk failure, or- the main focus of this study- the optical layer in the

event of a fiber cut. This technique will slow down restoration efforts, and will require

the implementation of back-off timers. For instance, when a failure due to a fiber break

occurs, the optical layer will immediately begin to restore failed circuits. Other higher­

level devices such as ATM Switches and IP Routers will remain idle, giving the optical

layer an opportunity to repair the failure, until their back-off timers expire.

Due to the small knowledge base currently associated with multi-layer restoration

and the resulting lack of understanding towards preventing layers from working at cross­

purposes with each other, and due to the lack of standardized protocols that would allow

improved communications between the layers in order to better coordinate multi-layer

6



restoration, the sponsor of this project, Williams Network, has elected to implement

restoration effects systematically. This study focuses on the distributed restoration

process of a mesh network in the event of a fiber failure. Of key concern is an accurate

estimate of the back-off time required for the higher layer devices. Too long a timer will

result in time being wasted in restoring the affected circuits in the event the optical layer

is unable to affect restoration. Too short a timer will result·in restoration efforts kicking-

in before the optical layer is finished, and possibly interfering with the restoration efforts

-
occurring at the optical layer. Hence a key focus of this study is to develop software

useful for estimating the proper back-off time.

7



· .

CHAPTER II

LITERATURE REVIEW

The initial stage of the project was spent on a literature review of related work by

other researchers. The purpose of this review was to search for articles that addressed

multi-layer network restoration, and also to find articles that discuss the restoration times

for the multi-layer restoration efforts or restoration at the optical layer.

Few papers were found addressing multi-layer restoration. Joseph Kroculick &

Cynthia Hood [4] addressed issues such as multi-layer resilience, multi-layer escalation

schemes, how these affect network survivability, and suggested some production rules to

indicate which layer should handle a specific failure. They also recommend single layer

survivability strategies and allocate these policies to each layer within a multi-layer

network. Escalation strategies that apply to a single domain and ATM-VP/SDH l:N

subnetworks are also discussed in great detail. However, this paper provides no hard

analysis and does not provide restoration and reccnfiguration efforts to a SONET

network. Kroculick and Hood [5] published another article similar to [4] in another

conference.

Dirceu Cavendish ofC&C Research Laboratories [6J provides a tutorial on

SONET & WDM. He does include a small discussion on the interaction between

SONET & WDM protection, as well as a table on time responses ofvarious APS

8



mechanisms, which lists 'typical' detection and restoration times ofdifferent types of

equipment. However, this article does not address SONET mesh network restoration and

the table does not include the restoration times of an optical mesh network.

The topics ofdiscussion in Yinghua Ye and Sudhir Dixit's article [7] include an

overview of existing optical protection/restoration schemes and of the envisioned IP­

centric Dense Wavelength Division Multiplexed (DWDM) based optical data network

architecture, and a mesh based hybrid optical protection scheme that utilizes multi-fiber

physical links along with hierarchical OXC structure and provides a joint

protection/restoration scheme that is coordinated at both the IP and WDM layers. Again

there are no specific discussions on the amount oftime an optical network requires to

restore its links due to failure.

In the final paper, Hawker, I., Johnson, D. and Chng, R [8] provides a discussion

of ATM versus SONET restoration. The article does include some vague claims

regarding which layers will react first to a fault and also some simulated restoration

times, though there is little explanation as to the details regarding how their restoration

times were determined. The simulated restoration times are for SONET networks in

general, and do not clarify if a ring or mesh network is being restored. The article also

does not discuss possible interaction between optical layers other higher level layers.

These were the only papers found in the IEEE database that had any reference to

multi-layer restoration or restoration time-to-restore. None of the above papers addressed

the main issue of interest to this study, which is the time to restore a distributed control

optical mesh network.

9



CHAPTER III

PROBLEM STATEMENT

The test network that was used in this study is the Spring 2001 Williams

Communications Group Optical Network, controlled by Ciena CoreDirector switches

located in17 Point-of-Presence (POP) cities. This optical network is shown in Appendix

A. Fiber optic cable provides the bandwidth for the 27 links between the switches.

A problem arises when a fiber optic link between the city pairs breaks. When this

happens, some of the traffic from certain end-to-end to destinations will be affected. For

example, (refer to Appendix A and Appendix F, which contains Traffic Matrix entries,

and Appendix G, which contains a list of minimum hop routes) all traffic between

Anaheim and Albany will be affected if either the Anaheim - Dallas, Dallas - Chicago,

or Chicago - Albany link fail~.

When such a failure happens, the entire optical network will be affected. Traffic

originally routed over the failed link will not be sent to its designated destination.

Therefore, restoration efforts will begin starting with the directly affected switches.

Because head ends are responsible for reconfiguring the circuits that are affected by the

failed link, the Ciena CoreDirector proprietary algorithm designates head ends to search

for a new shortest route to reroute the traffic. This new route will then be used to restore

the affected traffic. The above restoration efforts take some time to process and complete

10



before the network is fully restored. As mentioned previously, higher level devices will

implement a back-off time prior to initiating restoration efforts, so that the optica11ayer

has an opportunity to repair the failure.

Therefore, the problem to be solved in this study is to develop a program that will

provide an estimate ofhow much time an optical mesh network takes to restore itself in

the event ofa broken linle This time will then be set as the back-off time to the higher­

level devices. The following chapter discusses the solution to this problem.

• 1

11



CHAPTER IV

SOLUTIONS TO PROBLEM

This chapter provides a step-by-step explanation ofwhat was done in terms of

determining the restoration times of the optical mesh network when a failure due to a

broken link occurs.

Specifications of the test network were provided by Williams Network personnel

[11]. As mentioned previously and shown in Appendix A, a map of the Williams Core

Director network was developed. This map allows better visualization of the optical

network and also gives a better understanding of how the traffic will be rerouted wh n

there is a break in one of the fiber links.

After completion of the network map, the distance of the fiber links was estimated

using Yahoo! Map, which provides road distances between cities. These distances are

accurate enough for program testing and can be replaced with. actual fiber distances as

required. The table on Appendix B provides a listing of these distances, which are

required for calculating the propagation time between the switches using the formula

Prop Time = d / 0.6c

Where,c = speed oflight in free space = 3x108 m1s = 186411.36 miles/sec

d = distance of link in miles

12



The .6 accounts for the slower light speed in fiber and for time lost in circuit

switched, time division multiplexed, time-slot interchange devices. For instance, the

distance between Dallas and Anaheim is about 1424.6 miles. Therefore the propagation

time between Dallas and Anaheim would be approximately 12.7 milliseconds.

Also, we have to take into consideration the Switch Processing Time (SPT) of

each SONET switch, which is the time it takes a switch to process a 'link-is-down'

message. In this study, the switches are considered to be ofsimilar specifications, and

therefore the Switch Processing Time for each switch will be identical and will be a

parameter set by the user.

Another delay would be the Switch Reconfiguring Time (SRT), which is the time

it takes a SONET switch to process a reconfiguration request. This is another user

chosen parameter that will be identical for all switches.

13



CHAPTER V

RESTORATION ALGORITHM

Today there exists no standards based protocol for the restoration of optical mesh

networks. The restoration algorithm used in this study is based on a Fall 2000 series of

EMail exchanges between Dr. George Scheets at OSU and Mark Wendel, at the time a

Senior Network Engineer in the Network Architecture Group ofWilliams Network. The

algorithm approximates, without violating non-disclosure agreements, to matching the

proprietary signaling algorithm used by Ciena CoreDirector SONET switches [11].

In the event of a line cut, the two SONET switches adjacent to the cut will note

the loss of the Optical Connection. The propagation times from the cut locations to the

Point ofPresence (POP) where the adjacent SONET switches are located are most

probably not the same, but are being ignored for Version 1.0 of this algorithm as it is

assumed that this specific time has negligible impact on the overall restoration time. The

switch processing time may also differ slightly at the two endpoints depending upon

whether or not the optical signals pass through the same POP configuration of DWDM

Section Terminating Equipment or Mutltiplexer Line Terminating Equipment just prior to

hitting a SONET Switch. This value, too, is treated as being identical.

Hence for Version 1.0 we assume that both the terminating SONET switches start

the restoration process at this point, at the same time, and therefore begin the restoration

14



clock and set its time as t = °seconds. At this instance traffic routed over the broken

Link is unavailable and the SONET switches immediately adjacent to the break are aware

that the connection has been lost, have processed this infonnation, and are poised to alert

other hardware in the network.

Subsequent SONET frames passed on to local POP hardware would now indicate

a loss of signal. As there are 8,000 SONET frames a second, the time delay between the

adjacent-to-the-break SONET switch noting loss of signal and signaling this infonnation

to other local hardware would be a random value unifonnly distributed between [1,

1/8000] second. Back-off timers on local higher level ATM switches or IP routers would

start at this time.

The two adjacent-to-the-break SONET switches then initiate restoration efforts.

Link-is-down messages are flooded to all the core switch nodes of the network. These

messages are received at different times depending on the distance from these nodes to

the adjacent-to-the-break SONET switches. When a core switch receives a link-is-down

message, it will check its list of STS-N circuits it, as a head end, is responsible for

reconfiguring to detennine whether or not any of the circuits are affected by the break,

and detennine an alternate end-to-end route using the minimum hop rule and path

restoration for all the affected circuits. These processes are assumed to take SPT seconds.

Head ends with circuits affected by the break will then send reconfigure requests to all

nodes involved with rerouting of the affected path. This simulation assumes that each

affected head end circuit will require a set of reconfiguration messages be transmitted to

appropriate intennediate nodes. For example, if four circuits between Albany and Boston

are affected by a break and must be rerouted via Albany - New York - Boston, and

15



Boston is the head end~ Boston must send four reconfiguration requests to New YOt and

four to Albany. Boston will not piggyback these requests together and send one request

to New York for reconfiguration of four circuits, and one to Albany.

In the real world, each SONET Switch will be processing reconfiguration requests

received from other switches while simultaneously juggling, ifhead end for some

affected circuits, the generation of reconfiguration requests for other switches to execute.

These set of processes, occuring on the network in parallel (i.e. each switch is working on

its own set of reconfiguration requests), must be simulated in series due to the single

processor nature ofmost PC's. c++ code was written to accomplish this by...

Looping on each head end in order of earliest 'awareness' of the failed link

Looping on each affected circuit

Calculating delay times to all SONET Switches affected by the rerouting
of this circuit and logging that time in an Event Array associated with each
switch. These Event Arrays contain the times that reconfiguration
requests are received by each switch. An entry is also made into the head
end Event Array.

Incrementing the head end 'time' by SRT seconds prior to examining the
next circuit.

End circuit loop.

End head end loop.

At this point, the program then examines each switches' Event Array times to

insure sufficient time has elapsed (SRT seconds) to allow a reconfiguration to be

completed. Requests may have been received by a switch faster than they can be

executed, requiring that the requests be queued. Essentially the array values are adjusted

such that the times between Event Array elements are a minimum ofSRT seconds apart.

16



Appendix C shows the flowchart of the program and Appendix D contains the

actual program code. The program was written to be as generic as pos ible and will

provide the estimated restoration times when there is a fiber failure for an arbitrary user

defined network and an arbitrary user defined line failure. Input files required to run this

program are network.dat, paths.dat and connections.dat

The Network.dat file (Appendix E) shows the distance between the directly

connected switch locations. The first two columns ofthe file are the directly connected

switch locations and the third column is the distance between the locations.

When running the program, users will be asked to enter endpoints of a broken

link. Users will have to refer to optical network map (Appendix A) and type in the exact

switch name. For example, to break the Dallas and Anaheim link on the test network, the

user will have to enter DLLSTX ANHMCA. The order of the switches does not matter

but it will have to match, exactly- including case, the names listed in the Network.dat file.

Following that, the user will be asked for their choice of Switch Processing Time (SPT)

and Switch Reconfiguration Time (SRT).

The program obtains the minimum hop routes from the paths.dat file (Appendix

G), which can be generated by a program called NEAFE [12]. The reconfiguration

estimation time program then simulates a line break by removing the chosen connection

from the network. The program will then consult the connections.dat file (Appendix F)

in order to determine the circuits that were routed over the affected link before the break.

The program will identify every city on the second column of the connection pairs as the

head end of the circuit and every city on the third column the destination. The first

column of the file is the number of circuits for each optical path. Head ends will be

17



responsible for the restoration of all the circuits that are affected by the break. The

program will detennine a list of all the affected circuits. Head ends will then search for an

alternate route using the minimum hop rule in order to reroute the circuits that it's

responsible for.

Following this, head ends will then send reconfigure requests messages to nodes

involved with establishing an alternate route. As mentioned previously, these requests

are logged into an Event Array associated with each switch.

18



CHAPTER VI

RESULTS

The final test of the program was to simulate a failure of the most heavily used

fiber of the test network, and compare the resulting estimate of the time to restore the

system given a distributed control restoration algorithm, with estimates obtained earlier

simulating the system restoration time given a centralized control restoration algorithm

[9]. The simulation was based on the optical network of Appendix A. Three simulations

were run with 100, 300, and 500 full duplex circuits distributed over the system with

circuit endpoints chosen in proportion to the human population surrounding the POPs.

The Anaheim to Dallas connection was found to be the most heavily used link: given

these constraints. Refer to Appendix H, I and J for a sample portion of the results of the

simulation of 500 full duplex circuits. A Switch Processing Time of 100 milliseconds

and Switch Reconfiguration Time of 50 milliseconds chosen for this test case. Figure 2

shows a plot of the three different reconfiguration times. For a network of 100 circuits, it

takes 1.57 seconds to reconfigure the 33 affected circuits. When this same link: is failed in

the 300 and 500 circuits network cases, 92 circuits fail requiring 4.17 seconds to restore,

and 154 circuits fail requiring 6.83 seconds to restore, respectively. Results from this

simulation differ slightly from the results in [9] which estimated the reconfiguration time

of the same fiber failure on the same network, assuming centralized control ofthe

19



18

16 """-100

300

14
500

'tl 12
~
:l

'E 10
0...
IX:

8.!
.8

6
.c
~
j

4en

2

o 45 50 .5 60 65 70 7.5

1m ( econd )

20

:J 15

c
o...•

IX: 10
.!
.8
III•.c 5
oS
'ien

o

oand 500 if

uled

1m 0

nfi urati

100 120

Figure : 00,3 and 500 Creui R nfig afon Time of
Centralize Contr I y em [ ]

20



restoration process [9]. These results are repeated in Figure 3 for the reader's

convenience. Note that the 'Time Slots' listed in Figure 3 8.J! the time it take a switch to

reconfigure a circuit and that the Switch Processing Time is not included. Hence to

properly compare Figure 2 with Figure 3, multiply the Time Slots in Figure 3 by 50 m ,

and add in the Switch Processing Time (of 100 ms for this example) to the result. While

the estimated restoration time of a distributed control system was noted as 1.57,4.17, and

6.83 seconds for a network of 100, 300, and 500 circuits respectively, the centralized

control system will require 1.6, 4.15, and 6.8 seconds. These latter results from [9] are

considered to be "best case" in that the centralized control system is assumed to be

perfect and allow no "idle time" at any of the SONET switches due to gaps in the times

between executed reconfiguration requests, gaps that may occur in reality with a real­

world centralized control system and are even more likely to occur in reality with a

distributed control system.

Two key results are noted from the above experiment. The first is that the

distributed control system outperformed the "best case" result in the 100 circuit network.

Investigation revealed that the Minimum Hop routing algorithms used in this study and in

[9] were, in some cases, yielding different identical-hop-count restoration routes. For

example, on Anaheim to Albany circuits, two different reroute paths were noted.

Anaheim-Phoenix-Houston-Dallas-Chicago-Albanyon the code written here, and

Anaheim-Salt Lake City-Denver-Kansas City-Chicago-Albany used in the centralized

control experiment. This resulted in switches having different numbers of reconfiguration

requests, and completing their required reroutes in slightly different times.

21



The second key result to note is that, in thi experiment, ther is negligible

difference in the restoration times betweenthe centralized system and the distributed

control system, a result contrary to original expectations. Investigation revealed this was

a result of the Switch Reconfiguration Times being considerably greater than the average

switch-to-switch propagation delays. With the choice in this study of an SRT of 50

milliseconds, queues build up at the switches, with reconfiguration requests arriving

faster than they are processed. As a result, negligible slack time occurs between

reconfigurations at each switch.

To verify that this claim is correct, a simulation of the same 500 circuit network

using a SPT of 10 milliseconds and a SRT of 1 milliseconds was run. The distributed

control system required 168.7 milliseconds to reconfigure all 154 circuits. The

centralized control system on the other hand took 144 milliseconds to reconfigure. In this

case, the SRT is smaller than the average switch-to-switch propagation delay.

Reconfiguration requests would, in many cases, be processed prior to the arrival of the

next request, leaving switches with significant idle time.

The results above are based on what is believed to be the worst-case scenario. In

our test network, Dallas - Anaheim is the most heavily loaded link. A fiber failure here

will necessitate more reroute requests than a break anywhere else in the system.

Therefore, a logical assumption would be that it would take longer to restore this

connection than any other fiber failure in the network. However, this assumption may

not be completely true for all cases. Take for example, a break occurring between Boston

and New York City up in the northeast corner of the network, fiber that also carries a

large number of customer circuits. Due to the less centralized location, it will take longer

22



for the 'link.-is-down' message to be flooded across the entire network. As are ult

switches on the far side of the network on the west coast will not initiate restoration

efforts in as timely a manner as if the break were more centralized, and as a result this

fiber, carrying fewer customer circuits than the Anaheim-Dallas connection, may actually

take longer to restore. This is one scenario that follow-on studies, using the code

developed here, will investigate in more detail.

.' ..

23



CHAPTER vn

CONCLUSION

Based on the rapid growth in the telecommunications industry, optical mesh

network architectures are being deployed on a lot of large-scale networks today. In this

study, we briefly discussed the interactions among the different network layers that may

occur while restoring failed communications. However, today these layers act

independently of one another and the possible interactions that can occur among them are

little understood. Given a fiber cut, the most viable solution available now for service

providers is to provide back-off timers at Layer 2 and Layer 3 to avoid multi-layer

thrashing and race conditions, giving time for restoration efforts at Layer I to restore the

affected communications.

This study developed code that can estimate the restoration times of an Optical

Mesh network when a failure such as a broken link occurs, providing a solid foundation

upon which to build improved versions. There are several modifications that can be made

to improve the code. One shortcoming is that the code does not track the affect of small

signaling bandwidth, which may result in reconfiguration requests getting slowed and/or

delayed in queues at intermediate switches.

The minimum hop rule used in this code only takes into account the number of

hops but not the distance of the hops as well. Some of the circuits have more than one

24



route with the same number ofhops. When this happens, the code will choose a route at

random. Future studies should develop code that could calculate the minimum distanc

routes.

This study also does not track possible failures of reconfiguration requests which

might necessitate retransmissions, further delaying network restoration. This is another

area that future work should take that into consideration.

25



REFERENCES

[I] Tsong-Ho Wu and Noriaki Yoshikai, "SONET/SDH Transport and Network

Integrity," ATM Transport and Ne.twork Integrity, Academic Press, 1997.

[2] Walter J. Goralski, "Customer and Carrier Advantages," SONET, A guide to

Synchronous Optical Network, McGraw Hill, 1997.

[3] "An introduction to SONET, "Synchronous Optical Network (SONET),

http://www.iec.orgionline/tutorials/sonet/topic01.htm.1

[4] Kroculick, J., Hood, c., "Applying the Policy Concept to Avoid Logical Race

Condition in Multilayer Network Restoration", 1999 Military Communications

Conference, November 1999. MILCOM '99 IEEE.

[5] Kroculick, J., Hood, C., "Defining Provably Correct Escalation Policies for Multilayer

Network Restoration", Global Telecommunications Conference, December 1999.

GLOBECOM '99

[6] Cavendish, D., "Evolution of Optical Transport Technologies: From SONET/SDH to

WDM, IEEE Communications, June 2000.

[7] Ye, Y, Dixit, S., "On Joint Protection/Restoration in IP-Centric DWDM-Based

Optical Transport Networks", IEEE Communications, June 2000.

[8] Hawker, 1., Johnson, D., Chng, R "Distributed restoration in telecommunications

networks", Fifth IEEE Conference on Telecommunications, 1995.

26



[9] NFOEC paper, Mark C. Wendel, Dr. George Scheets, Dr. Jong-Moon Chung "MESH

Optical QOS and Multi-Layer restoration, National Fiber Optic Engineering

Conference, Baltimore, MD, July 2001

[10] Curtis A. Siller, Jr., Mansoor Shafi, "Survivability and Robust Architechture",

SONETISDH A sourcebook ofSynchronous Networking, IEEE Press, 1996.

[11] Mark Wendel, Senior Network Engineer, Williams Network, Personal

Communications, Fall 2000.

[12] NEAFE (Network Equipment Analysis Front End), code written by Kim Ferris, Eva

Degreef, Eva Jahan, & Ryan McQuillen for Senior Design II, Fall 2000 - Spring

2001, Oklahoma State University.

[13] Regis J. Bates, "SONET and SDH", Broadband Telecommunications Handbook,

McGraw Hill Telecommunications, 2000.

27



APPENDIXES

28



Anahei~~~:::::::::-':L
(ANHMCA) ....Y phoenix

~
-"'-

--.---,----

,u..........
f \

.A J)

A1ban)/'"~-( '\')
(ALB'JSNY) )

" IJ ,.........;~~I.Bolston
A)



w
o

SNFCCA ANHMCA PHNXAZ SlKCUT ONVRCO OLlSTX HSTNTX TULSOK KSCYMO CHCGIL CNCNOK ATlNTA MIAMFL WASHDC NYCMNY BSTNMA ALBYNY

SNFCCA 406.6 736
ANHMCA 406.6 360.2 682.9 1425
PHNXAZ 360.2 1179
SLKCUT 736 682.9 532.9
ONVRCO 532.9 879 601
OLLSTX 1425 879 239.2 310.4 552.6 966.9
HSTNTX 1179 239.2 792.8 1219
TULSOK 310.4 246.7
KSCYMO 601 552.6 246.7 529.9 594.4
CHCGIL

,
966.9 529.9 296.1 817.9

CNCNOK 594.4 296.1 466.9
ATLNTA 792.8 466.9 694.4 637.4
MIAMFL 1219 694.4
WASHOC 637.4 225.1
NYCMNY 225.1 214.7 155.1
BSTNMA 214.7 166.2
ALBYNY 817.9 155.1 166.2



APPENDIXC

Flowchart of Program

Add "Link is Down" messages
for the first two two cities

to the message queue

Delay P

Add "Reconfigure Requests"
message to the first city ....--....,

of the new route

Read the next message
,---...... on the message queue

Add a "Link is Down"
message to each connected~_-.I

city on the message queue

Read the "Reconfigure
14----lRequest" message on the

message queue

No

Add ''Reconfigure Request"
message to the next city
of the new route (if any)

to the message queue

31



APPENDIXD

C++ Program

11/111111/1111111111111111111111111111111111111111111111111111111111111///11
II
II Network simulation
II
II This program simulates the time to reconfigure all the circuits
II ofa SONET based network after a single link bas been broken.
II
II The input comes from three files - network.CIat connections.dat,
II and patbs.dat. (see file descriptions in the loadData function).
II Also, the user is prompted for the endpoints oftbe broken link
II and the processing and reconfiguration delays.
II
II The output consists of three files - results1.txt, results2.txt,
II and results3.txt.
II • results 1.txt contains a list of messages received by all cities
II sorted by the time tbe messages are received.
II· results2.txt contains a list of the times that each circuit takes
II to be reconfigured followed by 3 lists for each city: 1)'a list
II of circuits originating from that city that were reconfigured as
II a result of the broken link (with the new circuit route), 2) a
II list of reconfigure request messages received by that city, sorted
II by the time received, and 3) a list of reconfigure request messages
II received by that city, sorted by the time the switch is finished
II processing the message.
II • results3 .txt contains a list of all the linkdown messages sorted
II by the time the messages are received.
II
IIIIIIIIIIIIIIIIIIII1///11111111111/11111IIIIIIIIIIIIIIIII11/1/111IIIIIIIIII

11111111111111/1/111111111111111/1/11111111111111111111111IIIIIIIIIIIIIIIIII
II Header files
II
#include <istream>
#include <ostream>
#include <fstream>
#incIude <iostream>
#include <windows.h>
#include <stdlib.h>
#incIude <list>
#include <queue>
#include <vector>
#include <map>
#include <string>
using namespace std;

I11/1/1111111/1/11111111/1/11IllillIIIIIIIIII11111/IlIIIIIIIIIIIIIIIIIIIIII/
II Simulation Parameters

32



//
// Initial Delay 0.000125
// Processing Delay 0.1
// Linkdown delay
// Reconfiguration delay 0.05
//
double initial_delay = 0.000125;
double processing_delay, linkdown_delay, reconfig_delay;

/////////////////////////////////////////////////11///////////////////////11
// Type definitions based on STL containers
//
typedef vector<string> stringVector;
typedef multimap<string, stringVector, less<string> > routingTable;
typedef map<string, string, less<string> > stringMap';
typedef map<string, bool, less<string> > booleanMap;
typedef map<string, double, less<string> > doubleMap;
typedef map<string, dou.bleMap, less<string> > graph;
typedef map<string, routingTable: :iterator> iteratorMap;

/////11I//////////////////////////////////1/////////////////////////////////
// Message types enumeration
//
// • Linkdown message are forwarded between all connected switches.
// • Reconfigure Request messages are forwarded along the connection routes
// • Reconfigure Complete messages indicate when a simulated connection has
// been re-routed. They are only used in the simulation and not part of
// the actual reconfiguration protocol
//
enum MessageType { LinkDown, ReconfigureRequest, StartReconfigure,

ReconfigureComplete, ReconfigureNext };

1//////////11/////////////////////////////////////////////////11////////////
// Message structure definition
//
struct Message {

MessageType type;
string city]; // First end of the broken link
string city2; // Second end of the broken link
string source; // Sender of this message
string destination; 1/ Receiver of this message

string hcadend; // Headend of the connection
// (for reconfiguration requests)
string tail; // Tail of the connection
// (for reconfiguration requ.ests)

double time; // Time the message will be recieved
// at the destination
double time2; II Time the destination city wilI be
// finished processing this message

// Constructor for LinkDown messages
Message(MessageType tp,

string cl,
string c2,
string s,

string d,

33



double t):
type(tp), cityl (el), city2(c2), source(s), destination(d),

headend(d), tail(""), time(t) { };

II Constructor for Reconfiguration mes ag rn.
Message(MessageType tp, I, I

string cl,
string c2,
string s,
string d,
string h,
string tl,
double t) :

type(tp), city I (cl), city2(c2), source(s), destination(d),
headend(h), tail(tl), time(t) { };

};

II Type defmition for message queue sorted by message time
typedefpriority_queue<Message, vector<Message>, greater<Message> > messageQueue;
typedef map<string, messageQueue> resultsQueue;

II Compare message times (for sorting)
bool operator < (const Message& lhs, const Message& rhs)

{ return lhs.time < rhs.time; }

bool operator> (const Message& lhs, const Message& rhs)
{ return lhs.time > rhs.time; }

11111111/11111111111111///1111111111111111111111111111111111111111/11//11//1
II Compute the time required to send a message over the given distance
II time = distance I 0.6 c
II
double computeTime(double distance)
{

return distance / 111846;
I

11111111111111/111111111111111111/11111111111111111111111111111111/11////1/1
II Handle a "LinkDown" message
II
void linkDown(messageQueue& messages, grapb& network, Message& msg)
{

string city I = msg.cityl;
string city2 = msg.city2;
string source = msg.source;
string destination = msg.destination;
double time = msg.time;

II Forward linkdown message to each connected city
II except for the source of the message
doubleMap& cities = network[destination];
for (doubleMap::iterator start = cities.beginO;

start != cities.endO;
++start)

{
string neighbor = (*start).frrst;

34



double distance = (*start).second;

if( neighbor != msg.source )
{

double newTime = time + computeTime(distance) + linkdoWD_delay;
Message newMsg(LinkDoWD, cityl, city2, destination, neighbor, newTime);
messages.push(newMsg);

}

II Send a Reconfigure Next message
Message nextMsg(ReconfigureNext, cityl, city2, '''', "",

destination, "", time + linkdoWD_delay);
messages.push(nextMsg);

}

111111111/111111111111111111111111111111111111111111111111111I11I11II11I1111
II Find the minimum hop routes from the start city
II Using a breadth-first graph traversal
II
void minHops(graph& network, string& start, stringMap& tree)
{

list<string> cities;
cities.push_back(start);
tree[start] = start;
while( !cities.emptyO )
{

II Get the next city in the list
string nextcity = cities.frontO;
cities.pop_frontO;

II Visit each connected city
doubleMap& distances = network[nextcity];
for (doubleMap::iterator it = distances.beginO;

it != distances.endO;
++it)

{
string c = (·it).fll'St;

II Check if the city was already visited
if( tree.count(c) = 0 )
{

II Add the next city to the tree
tree[c] = nextcity;
cities.push_back(c);

}
}

}
}

111111111I11111111I111111111I1I11111I111111I111111I111111111II11II1I11111111
II Simulate reconfiguring a connection
II This is called after receiving "Reconfigure Next" messages
II
void reconfigure(messageQueue& messages, graph& network, doubleMap& schedule,

routingTable& connections, routingTable& newConnections,

35



iteratorMap& nextRoute, Message& msg )
{

string target;
string city1= msg.cityl;
string city2 = msg.city2;
string currentcity = msg.headend;
double time = msg.time;
bool found = false;
stringMap tree;

II Find the next route to be reconfigured
while( !found && nextRoute.count(currentcity) > 0

&& nextRoute[currentcity) != connections.endO
&& (·(nextRoute[currentcity])).first = currentcity )

{
stringVector myRoute = (·(nextRoute[currentcity])).second;

II Check if the route is affected by the broken link
for( int i = 0; i < myRoute.sizeO -I; i++)
{

string city = myRoute[i);
if\city = city1 II city = city2)
{

string nextCity = myRoute[ i+ 1 ];
if{nextCity = city211 nextCity = cityl)
{

found = true;
target = myRoute[myRoute.sizeO-I);

break;
}

}
}

II Skip to the next connection
if( !found)

nextRoute[currentcity)++;

II Reconfigure the affected connection
if( found)
{

II Find the next shortest path
minHops(network, currentcity, tree);

II get the new route from the tree (from tail to head)
stringVector newRoute;

fore string prevCity = target:
prevCity != currentcity;
prevCity = tree[prevCity] )

I
newRoute.push_back(prevCity);

}
newRoute.push_back(currentcity);

II Reverse the roule (head to tail)
reverse(newRoute.beginO, newRoute.endO);

36



newConnections.insert(
routingTable: :value_type(currentcitY,newRoute»;

double newTime = max(time, schedule[currentcity]);

IISend a Start Reconfigure message
Message startMsg(StartReconfigure, cityI , city2, currentcity, currentcity,

currentcity, target, newTime);
startMsg.time2 = newTime + reconfig_delay;

messages.pusb(startMsg);

II Update schedule
schedule[currentcity] = newTime + reconfig_delay;

II Send a reconfigure request message to the first city on the route
string src = newRouterO];
string dest = newRoute[l];

II Send a Reconfigure Next message
Message nextMsg(ReconfigureNext, cityI , city2, src, dest,

currentcity, target, newTime + reconfig_delay);
messages.push(nextMsg);

double distance = network[src] [dest];
newTime += computeTime(distance);

Message newMsg(ReconfigureRequest, cityl, city2, src, dest,
currentcity, target, newTime);

messages.push(newMsg) ;

II Update the route iterator for the next connection
nextRoute[currentcity]++;

}
}

1111I1111111111111111I11111111111111111111111111111I111111111111111111111111
II Handle a reconfigure request message
II
void reconfigureRequest(messageQueue& messages, graph& network,

routingTable& newConnections, doubleMap& schedule,
Message& msg)

{
string cityl = msg.cityl;
string city2 = msg.city2;
string destination = msg.destination;
string headend = msg.headend;
string target = msg.tail;

II The time for the next message is the greater of the time this
II message was receieved and the time the destination switch is
II fmished processing its last reconfigure request message
double time = max(msg.time,schedule[destination]);

II Update schedule

37



scheduJe[destination) = time + reconfig_delay;
msg.time2 = time + reconfig_delay;

II Send a reconfigure complete message if complete
lit destination = target)
{

Message rmsg(ReconfigureComplete, cityl, city2,
"", III', headend, target, msg.time2);

messages.push(rmsg);
return;

II Find the new route for the connection
routingTable::iterator route_it = newConnections.find(headend);
while( routejt != newConnections.endO

&& «*route_it).first = headend)
&& «*routejt).second.backO != target»

route_it++;
if{ routejt = newConnections.endO II

(*route_it).second.backO != target)
{

cout« "Error - unable to find new route" «endl;
while(l);

II Find the next city on the route
stringVector& route = (*route_it).second;
stringVector::iterator it = find( route.beginO,

route.endO, destination);
if( it = route.endO )
{

cout « "Error - unable to find next city in route" « endl;
while(l);

}
string nextCity = ·(++it);

II Send a reconfigure request message to the next city on the route
double distance = network[destination)[nextCity);
double newTime = time + computeTime(distance);
Message newrnsg(ReconfigureRequest, city I, city2, destination,

nextCity, headend, target,newTime);
messages.push(newmsg);

1/11111///////1////////1/////////////////////////////////1/////////1////11//
// Load connection paths from file
// paths.dat - minumum hop routes for connections before broken link
1/ Only the connections listed in connections.dat are actually used
//
boolloadPaths(routingTable& connections)
{

// Open input files
ifslream pathData("paths.dat");
if( !pathData )
{

38



cout « "Error opening path data file" « emil;
return false;

}

// Begin parsing input file
bool start = false;
char buffer[256];
stringVector path;
whiJe( pathData.getline(buffer,256,'\n') )
{

if{ start)
{

string city(buffer);

// The path is terminated by "Number of hops"
if( city.find( "Number") != -1 )
{

start = false;

// Add the path to the table
connections.insert(routingTable: :value_type(path[O] ,path»;

// Add the reverse path to the table
reverse(path.beginO, path.end(»;

connections. insert(routingTable: :value_type(path[0] ,path»;
path.clearO;

}
else
{

// Add the next city to the path
path.push_back(city};

}

// Start a new path after a line of'-'
if( buffer[O] = '-' )

{
start = true;

}

}

return true;
}

////////////////////////////////////////////////////////////////////////////
// Read the network properties from the data files
// network.dat - distance of links
// connections.dat - connection routes
//
bool loadData(graph& network, routingTable& connections,

string& brokenLinkl, string& brokenLink2, ofstream& output)

39



II Open input files
ifstream networkData("network.dat");
if( !networkData )
{

cout« "Error opening network data file'" «end!; (I n
return false;

}

ifstream connectionData("connections.dat");
if( !connectionData )
{

cout« "Error opening connection data file" «end!;
return false;

}
cout « "Loading data files" « endl;

routingTable paths;
if( !loadPaths(paths) )

return false;

output« "Network data" «endl;

string cityl, city2;
double distance;

output « "Broken link between II « brokenLinkl
« " and ., « brokenLink2 « endl;

II Read network data one line at a time
II Example: Anaheim Dallas 100.55
while( networkData» cityl »city2 » distance)
{

output« cityl « " to " « city2 « " = II «distance « end!;
network[city1][city2] = distance;
network[city2J[cityl] = distance;

}
output « endl:

output « "Connection data" « endl;

II Read connection data one line at a time
II Example 2 Dallas Anaheim
int count;
string head, tail;
while( connectionData » count » head » tail )
{

stringVector path;

II Search for the path in the paths table
routingTable::iterator route_it = paths.find(head);

while( route_it 1= paths.endO
&& «"'route_it).first = head)

&& «"'route_it).second.backO != tail) )

40



L

// Ifno path was found, calculate a minimum hop path
if( route_it = paths.endiO II

(*route_it).secood.backO != tail )
{

cout « "Error - unable to frod path: " « head
« " to " «tail « " in paths file. Using min hop path." «endl;

// Get minimum hop tree from head
stringMap tree;
minHops(network,head,tree);

// Get the minimum hop route from the tree
// This route will be reversed (tail to head)
stringVector route;
for( string prevCity = tail;

prevCity != head;
prevCity = tree[prevCity] )

route.push_back(prevCity);

route.push_back(head);

// Reverse the route (head to tail)
reverse(route.beginO, route.end());

path = route;

else
{

// Use the path from the me
path = (*route_it).second;

}

// Display the path
string display;
fore int i = 0; i < path.sizeO; i++)

display += path[i] + " ";
output « display « endl;

// Add the route to the cities connections
fore int j = 0; j < count; j++)

connections.insert(routingTable:: value_type(head,path»;
}
output « end1;
cout « connections.sizeO « II connections" « endl; ..

// Remove the broken links from the network
network[brokenLinkl ].erase(brokenLink2);
oetwork[brokenLink2].erase(brokenLinkl);

return true;

/////////1///////////////////////1//1////1///1/////////////////11/1/////////
// Save the results to files
//
void saveResults(resultsQueue& results, messageQueue& results2,

41



{
routingTable& newConnections)

II Open output files
ofstream output("results2.txt");
if( !output)
!

cout« "Error opening output file results2.txt" «endl;
return;

ofstream output2("results3.txt");
if( !output2)
{

cout« "Error opening output file results3.txt" «end!;
return;

}

cout« "Saving results" «endl;

II Iterate through each city in the results queue
for( resultsQueue::iterator it = results.begin();

it != results.end();
it++ )

{
string city = (*it).frrst;
messageQueue& mqueue = (*it).second;

output « city« endl « endl;

II Show reconfigured connections for this city
bool showHeader = true;
for (routingTable: :iterator route_it = newConnections. find(city);

routejt != newConnections.end() &&
({*route_it).first = city);

if{ showHeader )
{

output« "Reconfigured Connections:" «endl;
showHeader = false;

}
stringVector route = (*route_it).second;

for(stringVector::iterator it = route.begin0;
it != route.end();

it++)
{

output« *it« " ";
}

output« endl;
}

II Iterate through the message queue for this city
messageQueue reconfigQueue; II Separate :econfig request messages
messageQueue reconfig2Queue; II Separate reconfig request messages
II by finishing times

42



while( !mqueue.empty() )
{

Message msg = mqueue.topO;
mqueue.popO;
switch( msg.type)
{

case ReconfigureRequest:
case StartReconfigure:

II Save in the reconfig queue
{
reconfigQueue.push(msg);

II Change the message time to the message finishing time
Message msg2 = msg;
msg2.time = msg.time2;
reconfig2Queue.push(msg2);
}

break;

case ReconfigureComplete:
II Display message
output« msg.time« It: It« msg.headend

« It to It «msg.tail « It Reconfigure Complete" «endl;
break;

}
}

II Display the reconfig request messages
output« endl « ItReconfig Request Messages:" « endl;
while( !reconfigQueue.emptyO )
{

Message msg = reconfigQueue.topO;
reconfigQueue.popO;

II Display message
output « msg.time « It : It « msg.source

« " to II « msg.destination « " Reconfigure Request for II

« msg.headend « II to " « msg.tail «endl;

II Display the reconfig request finished messages
output« endl« "Reconfig Request Messages (After Processing): II

« endl;
while( !reconfig2Queue.empty() )
{

Message msg = reconfig2Queue.top();
reconfig2Queue.pop();

II Display message
output« msg.time« " : " «msg.source

« " to II « msg.destination « It Reconfigure Request for II

«msg.headend « It to" « msg.tail « endl;

output << "--------------------------------------- -----------------"

43



«endl;
}

// Display the LinkDown messages
output2 « "Link Down Messages" « endl « endl;
while( !results2.emptyO )
{

Message msg = results2.topO;
results2.popO;

output2« msg.time«" : " «msg.source
« 11 to " « msg.destination « " Link Down" « endl;

}
}

///1////////////////////////////////////////////////////////////////1///////
// Initialize the connection iterator map
//
void initialize(routingTable& connections, iteratorMap& nextRoute)
{

// Set each iterator to the first route for
// the city in the connections table
string city;
for( routingTable::iterator route_it = connections.beginO;

route_it != connections.endO;
route_it++ )

{
string nextCity = (*route_it).first;
if( city != nextCity )
{

city = nextCity;
nextRoute[city] = route_it;

}
}

////////////////////////////////////////////////////////////////////////////
// Main processing loop for network simulation
//
void mainO
{

// Keep track of cities which have received a linkdown message
booleanMap alreadyProcessed;

// Create the message queue
messageQueue messages;

// Create the results queues
resultsQueue results;
messageQueue results2;

// Create the network
graph network;

// Create the connections
routingTable cormections;

44



routingTable newConnections;

II Keep track ofmessage processing times for each city
doubleMap schedule;

II Prompt user for broken link . I

string brokenLinkl, brokenLink2;
cout« "Enter endpoints ofbroken link (i.e. Enter DLLSTX ANHMCA to break Dallas Anaheim link) :

II.,
cin » brokenLinkl » brokenLink2;

II Prompt user for Processing delay

double delay;
cout« "Enter Switch Processing Time (i.e. Enter 100 for 100 milliseconds) : ";
dn » delay;

if( delay)

processing_delay = delay I 1000;

II Prompt user for Reconfigure delay

delay = 0;
cout « "Enter Switch Reconfiguration Time (i.e. Enter 50 for 50 milliseconds) : ";
cin » delay;

if( delay)

reconfig_delay = delay I 1000;

linkdown_delay = processing_delay + initial_delay;

II Open output file
ofstream output("results 1.txt");
ii( !output)
{

cout « "Error opening output file resultsl.txt" « endl;
while(I);

output « "Processing delay = " « processing_delay « end~

output « "Reconfig delay = " « reconfig_delay « endl;

II Initialize network
if( !loadData(network, connections, brokenLinkl, brokenLink2, output) )
{

cout« "Error loading data" «endl;
while(l);

}

II Keep track of next route to be reconfigured
iteratorMap nextRoute;

45



initialize(connections, nextRoute);

cout « "Starting simulation" « endl;

II Signal broken link
Message msgl(LinkDown, brokenLinkl, brokenLink2,

brokenLinkl, brokenLinkl, 0);
Message msg2(LinkDown, brokenLink2, brokenLinkl,

brokenLink2, brokenLink2, 0);
messages.push(msg1);
messages.push(msg2);

II Message Loop
while( !messages.emptyO)
{

Message msg = messages.topO;
messages.popO;
switch( msg.type)
1

case ReconfigureRequest:
II Display message
output« msg.time«" : "« msg.source

« II to " « msg.destination « " Reconfigure Request for"
« msg.headend « " to " « msg.tail;

reconfigureRequest(messages, network, newConnections,
schedule, msg);

output«" : "« msg.time2« endl;

/1 Copy the message to the results queue
results[msg.destination].push(msg);

break;

case ReconfigureComplete:
II Display message
output « msg.time« " : " « msg.headend

« " to" «msg.tail « " Reconfigure Complete" « endl;

II Copy the message to the results queue
results[msg.destination].push(msg);

break;

case StartReconfigure:
II Display message
output « msg.time « " : II « " Start Reconfiguration for"

«msg.headend«" to"« msg.tail« endl;

II Copy the message to the results queue
results[msg.destination].push(msg);

break;

case LinkDown:
if( !alreadyProcessed[msg.destination] )
{

II Display message
output « msg.time « " : " «msg. ource

« " notifies" « msg.destination « " Link Is Down" « endl;

46



linkDown(messages, network, msg);
alreadyProcessed[msg.destination] = true;

II Copy the message to the results queue
results2.push(msg);

}
break;

case ReconfigureNext:
II Reconfigure the next connection

reconfigure(messages, network, schedule, connections, newConnections,
nextRoute, msg);

}
}

saveResults(results, results2, newConnections);
cout « "Done" « emil;

II Hold results window open
while(l);

}

47



Network.dat file

ALBYNY BSTNMA 166.2
ALBYNY NYCMNY 155.1
ALBYNY CHCGIL 817.9
ANHMCA DLLSTX 1424.9
ANHMCA SLKCUT 682.9
ANHMCA PHNXAZ 360. 2
ANHMCA SNFCCA 406.6
ATLNGA WASHDC 637.4
ATLNGA CNCNOH 466.9
ATLNGA MIAMFL 694.4
BSTNMA NYCMNY 214.7
CHCGIL CNCNOH 296.1
CHCGIL KSCYMO 529.9
CHCGIL DLLSTX 966.9
CNCNOH KSCYMO 594.4
DNVRCO KSCYMO 601
DLLSTX TULSOK 310.4
DLLSTX DNVRCO 879
DLLSTX HSTNTX 239.2
DLLSTX KSCYMO 552.6
DNVRCO SLKCUT 532.9
HSTNTX ATLNGA 792.8
HSTNTX MIAMFL 1218.8
HSTNTX PHNXAZ 1179.4
SLKCUT SNFCCA 736
TULSOK KSCYMO 246.7
WASHDC NYCMNY 225. 1

APPENDIXE

48



APPENDIXF

Connections.dat file for 500 circuits

2 ANHMCA ALBYNY 1 CNCNOH KSCYMO
11 ANHMCA ATLNGA 1 CNCNOH SLKCUT
9 ANHMCA BSTNMA 1 DLLSTX ALBYNY
22 ANHMCA CHCGIL 4 DLLSTX ATLNGA
4 ANHMCA CNCNOH 2 DLLSTX CNCNOH
9 ANHMCA DLLSTX 2 DLLSTX DNVRCO
5 ANHMCA DNVRCO 4 DLLSTX HSTNTX
11 ANHMCA HSTNTX 2 DLLSTX KSCYMO
5 ANHMCA KSCYMO 2 DLLSTX M.IAMFL
6 ANHMCA MIAMFL 3 DLLSTX PHNXAZ
8 ANHMCA PHNXAZ 1 DLLSTX SLKCUT
3 ANHMCA SLKCUT 1 DLLSTX TULSOK
6 ANHMCA SNFCCA 1 DNVRCO ALBYNY
2 ANHMCA TULSOK 1 DNVRCO CNCNOH
13 ANHMCA WASHDC 1 DNVRCO KSCYMO
1 ATLNGA ALBYNY 1 DNVRCO SLKCUT
2 ATLNGA CNCNOH 1 HSTNTX ALBYNY
2 ATLNGA DNVRCO 5 HSTNTX ATLNGA
2 ATLNGA KSCYMO 2 HSTNTX CNCNOH
2 ATLNGA MIAMFL 2 HSTNTX DNVRCO
3 ATLNGA PHNXAZ 2 HSTNTX KSCYMO
1 ATLNGA SLKCUT 3 HSTNTX MIAMFL
1 ATLNGA TULSOK 4 HSTNTX PHNXAZ
1 BSTNMA ALBYNY 2 HSTNTX SLKCUT
4 BSTNMA ATLNGA 1 HSTNTX TULSOK
2 BSTNMA CNCNOH 1 KSCYMO SLKCUT
3 BSTNMA DLLSTX 1 MIAMFL ALBYNY
2 BSTNMA DNVRCO 1 MIAMFL CNCNOH
4 BSTNMA HSTNTX 1 MIAMFL DNVRCO
2 BSTNMA KSCYMO 1 MIAMFL KSCYMO
2 BSTNMA MIAMFL 2 MIAMFL PHNXAZ
3 BSTNMA PHNXAZ 1 MIAMFL SLKCUT
1 BSTNMA SLKCUT 1 MIAMFL TULSOK
1 BSTNMA TULSOK 2 NYCMNY ALBYNY
8 CHCGIL BSTNMA 24 NYCMNY AJ.'ffiMCA
2 CHCGIL ALBYNY 10 NYCMNY ATLNGA
9 CHCGIL ATLNGA 8 NYCMNY BSTNMA
4 CHCGIL CNCNOH 21 NYCMNY CHCGIL
8 CHCGIL DLLSTX 4 NYCMNY CNCNOH
5 CHCGIL DNVRCO 8 NYCMNY DLLSTX
9 CHCGIL HSTNTX 5 NYCMNY DNVRCO
4 CHCGIL KSCYMO 10 NYCMNY HSTNTX
5 CHCGIL MIAMFL 4 NYCMNY KSCYMO
7 CHCGIL PHNXAZ 6 NYCMNY MIAMFL
3 CHCGIL SLKCUT 8 NYCMNY PHNXAZ
6 CHCGIL SNFCCA 3 NYCMNY SLKCUT
2 CHCGIL TULSOK 6 NYCMNY SNFCCA
11 CHCGIL WASHDC 2 NYCMNY TULSOK

49



12 NYCMNY WASHDC 2 SNFCCA PHNXAZ
1 PHNXAZ ALBYNY 1 SNFCCA SLKCUT
1 PHNXAZ CNCNOH 1 SNFCCA TULSOK
2 PHNXAZ DNVRCO 3 SNFCCA WASHDC
2 PHNXAZ KSCYMO 1 WASHDC ALBYNY
1 PHNXAZ SLKCUT 5 WASHDC ATLNGA
1 PHNXAZ TULSOK 5 WASHDC BSTNMA
1 SNFCCA ALBYNY 2 WASHDC CNCNOH
3 SNFCCA ATLNGA 5 WASHOC DLLSTX
2 SNFCCA BSTNMA 3 WASHOC DNVRCO
1 SNFCCA CNCNOH 6 WASHOC HSTNTX
2 SNFCCA DLLSTX 2 WASHOC KSCYMO
1 SNFCCA DNVRCO 3 WASHOC MIAMFL
3 SNFCCA HSTNTX 4 WASHOC PHNXAZ
1 SNFCCA KSCYMO 2 WASHOC SLKCUT
2 SNFCCA MIAMFL 1 WASHOC TULSOK

50



APPENDIXG

Sample portion of Paths.dat file

************************************************************
Link: ALBYNY (node 0) <--> BSTNMA (node 1)

Minimum Hop Path:

ALBYNY
BSTNMA
Number of Hops = 1

************************************************************

************************************************************
Link: ALBYNY (node 0) < - - > NYCMNY (node 2)

Minimum Hop Path:

ALBYNY
NYCMNY
Number of Hops = 1

************************************************************

************************************************************
Link: ALBYNY (node 0) <--> CHCGIL (node 3)

Minimum Hop Path:

ALBYNY
CHCGIL
Number of Hops = 1

************************************************************

************************************************************
Link: ALBYNY (node 0) <--> WASHDC (node 4)

Minimum Hop Path:

ALBYNY
NYCMNY
WASHDC
Number of Hops = 2
************************************************************

************************************************************
Link: ALBYNY (node 0) <--> ATLNGA (node 5)

Minimum Hop Path:

ALBYNY
NYCMNY

51



WASHOC
ATLNGA

Number of Hops = 3
************************************************************

************************************************************
Link: ALBYNY (node 0) <--> CNCNOH (node 6)

Minimum Hop Path:

ALBYNY
CHCGIL
CNCNOH
Number of Hops = 2
************************************************************

************************************************************
Link: ALBYNY (node 0) <--> KSCYMO (node 7)

Minimum Hop Path:

ALBYNY
CHCGIL
KSCYMO
Number of Hops = 2
************************************************************

************************************************************
Link: ALBYNY (node 0) <--> DLLSTX (node 8)

Minimum Hop Path:

ALBYNY
CHCGIL
DLLSTX
Number of Hops = 2
************************************************************

************************************************************
Link: ALBYNY (node 0) <--> HSTNTX (node 9)

Minimum Hop Path:

ALBYNY
CHCGIL
DLLSTX
HSTNTX
Number of Hops = 3
************************************************************

************************************************************
Link: ALBYNY (node 0) <--> MIAMFL (node 10)

Minimum Hop Path:

ALBYNY
NYCMNY

52



APPENDIXH

Sample Portion of Results 1

Processing delay = 0.1
Reconfig delay = 0.05
Network data
Broken link between DLLSTX and ANHMCA
ALBYNY to BSTNMA = ]66.2
ALBYNY to NYCMNY= 155.1
ALBYNY to CHCGIL= 817.9
ANHMCA to DLLSTX = 1424.9
ANHMCA to SLKCUT = 682.9
ANHMCA to PHNXAZ = 360.2
ANHMCA to SNFCCA = 406.6
ATLNGA to WASHDC = 637.4
ATLNGA to CNCNOH = 466.9
ATLNGA to MlAMFL = 694.4
BSTNMA to NYCMNY = 2]4.7
CHCGIL to CNCNOH = 296.]
CHCGIL to KSCYMO = 529.9
CHCGIL to DLLSTX = 966.9
CNCNOH to KSCYMO = 594.4
DNVRCO to KSCYMO = 601
DLLSTX to TULSOK = 310.4
DLLSTX to DNVRCO = 879
DLLSTX to HSTNTX = 239.2
DLLSTX to KSCYMO = 552.6
DNVRCO to SLKCUT = 532.9
HSTNTX to ATLNGA = 792.8
HSTNTX to MIAMFL = 12] 8.8
HSTNTX to PHNXAZ = 1179.4
SLKCUT to SNFCCA = 736
TULSOK to KSCYMO = 246.7
WASHDC to NYCMNY = 225.1

Connection data
ANHMCA DLLSTX CHCGIL ALBYNY
ANHMCA DLLSTX HSTNTX ATLNGA
ANHMCA DLLSTX CHCGIL ALBYNY BSTNMA
ANHMCA DLLSTX CHCGIL
ANHMCA DLLSTX CHCGIL CNCNOH
ANHMCA SNFCCA
ANHMCA DLLSTX TULSOK
ANHMCA DLLSTX HSTNTX ATLNGA WASHDC
ATLNGA WASHDCNYCMNY ALBYNY
ATLNGA CNCNOH
ATLNGA CNCNOH KSCYMO DNVRCO
ATLNGA CNCNOH KSCYMO
ATLNGA CNCNOH KSCYMO DNVRCO SLKCUT
ATLNGA CNCNOH KSCYMO TULSOK
BSTNMA ALBYNY

53



BSTNMA NYCMNY WASHDC ATLNGA
BSTNMA ALBYNY CHCGIL CNCNOH
BSTNMA ALBYNY CHCGIL DLLSTX
BSTNMA ALBYNY CHCGIL KSCYMO DNVRCO
BSTNMA ALBYNY CHCGIL DLLSTX HSTNTX
BSTNMA ALBYNY CHCGIL KSCYMO
CHCGIL ALBYNY
CHCGIL CNCNOH ATLNGA
CHCGIL CNCNOH
CHCGIL DLLSTX
CHCGIL KSCYMO DNVRCO
CHCGIL DLLSTX HSTNTX
CHCGIL KSCYMO
HSTNTX PHNXAZ
HSTNTX DLLSTX DNVRCO SLKCUT
HSTNTX DLLSTX TULSOK
KSCYMO DNVRCO SLKCUT
MIAMFL ATLNGA WASHDC NYCMNY ALBYNY
MIAMFL ATLNGA CNCNOH
MIAMFL HSTNTX DLLSTX DNVRCO
WASHOC ATLNGA CNCNOH KSCYMO DNVRCO SLKCUT
WASHDC ATLNGA CNCNOH KSCYMO TULSOK

o:DLLSTX to DLLSTX Link Down
o:ANHMCA to ANHMCA Link Down
0.100125: Start Reconfiguration for ANHMCA to ALBYNY
0.102264 : DLLSTX to HSTNTX Link Down
0.1029 : DLLSTX to TULSOK Link Down
OJ 03345 : ANHMCA to PHNXAZ Link Down
0.103345 : ANHMCA to PHNXAZ Reconfigure Request for ANHMCA to ALBYNY : 0.153345
0.10376: ANHMCA to SNFCCA Link Down
0.105066 : DLLSTX to KSCYMO Link Down
0.106231 : ANHMCA to SLKCUT Link Down
0.107984: DLLSTX to DNVRCO Link Down
0.10877 : DLLSTX to CHCGIL Link Down
0.11389: PHNXAZ to HSTNTX Reconfigure Request for ANHMCA to ALBYNY: 0.16389
0.116029: HSTNTX to DLLSTX Reconfigure Request for ANHMCA to ALBYNY : 0.166029
0.124674 : DLLSTX to CHCGIL Reconfigure Request for ANHMCA to ALBYNY : 0.174674
0.131987: CHCGIL to ALBYNY Reconfigure Request for ANHMCA to ALBYNY : 0.181987
0.150125: Start Reconfiguration for ANHMCA to ALBYNY
0.153345 : ANHMCA to PHNXAZ Reconfigure Request for ANHMCA to ALBYNY : 0.203345
0.16389: PHNXAZ to HSTNTX Reconfigure Request for ANHMCA to ALBYNY : 0.21389
0.166029: HSTNTX to DLLSTX Reconfigure Request for ANHMCA to ALBYNY: 0.216029
0.174674 : DLLSTX to CHCGIL Reconfigure Request for ANHMCA to ALBYNY : 0.224674
0.181987: ANHMCA to ALBYNY Reconfigure Complete
0.181987: CHCGIL to ALBYNY Reconfigure Request for ANHMCA to ALBYNY: 0.231987
0.200125: Start Reconfiguration for ANHMCA to ATLNGA
0.203345: ANHMCA to PHNXAZ Reconfigure Request for ANHMCA to ATLNGA: 0.253345
0.203885: Start Reconfiguration for SNFCCA to ALBYNY
0.209477 : HSTNTX to ATLNGA Link Down
0.210466: SNFCCA to SLKCUT Reconfigure Request for SNFCCA to ALBYNY: 0.260466
0.210505 : KSCYMO to CNCNOH Link Down
0.213286 : HSTNTX to MIAMFL Link Down
0.21389 : PHNXAZ to HSTNTX Reconfigure Request for ANHMCA to ATLNGA : 0.26389
0.21523: SLKCUT to DNVRCQ Reconfigure Request for SNFCCA to ALBYNY : 0.26523
0.216208: CHCGIL to ALBYNY Link Down

54



0.220979 : HSTNTX to ATLNGA Reconfigure Request for ANHMCA to ATLNGA : 0.270979
0.223089 : DNVRCO to DLLSTX Reconfigure Request for SNFCCA to ALBYNY : 0.273089
0.224674: Start Reconfiguration for CHCGIL to SNFCCA
0.231734 : DLLSTX to CHCGIL Reconfigure Request for SNFCCA to ALBYNY : 0.324674
0.231987 : ANHMCA to ALBYNY Reconfigure Complete
0.233319: CHCGIL to DLLSTX Reconfigure Request for CHCGIL to SNFCCA: 0.323089
0.250125: Start Reconfiguration for ANHMCA to ATLNGA
0.253345 : ANHMCA to PHNXAZ Reconfigure Request for ANHMCA to ATLNGA : 0.303345
0.253885: Start Reconfiguration for SNFCCA to ATLNGA
0.257521 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA : 0.350125
0.26389 : PHNXAZ to HSTNTX Reconfigure Request for ANHMCA to ATLNGA : 0.31389
0.270979 : ANHMCA to ATLNGA Reconfigure Complete
0.270979: HSTNTX to ATLNGA Reconfigure Request for ANHMCA to ATLNGA: 0.320979
0.280948 : DLLSTX to DNVRCO Reconfigure Request for CHCGIL to SNFCCA : 0.330948
0.281987 : CHCGIL to ALBYNY Reconfigure Request for SNFCCA to ALBYNY : 0.331987
0.285713 : DNVRCO to SLKCUT Reconfigure Request for CHCGlL to SNFCCA : 0.335713
0.292294 : SLKCUT to SNFCCA Reconfigure Request for CHCGIL to SNFCCA : 0.353885
0.303345 : ANHMCA to PHNXAZ Reconfigure Request for SNFCCA to ATLNGA : 0.353345
0.31389 : PHNXAZ to HSTNTX Reconfigure Request for SNFCCA to ATLNGA : 0.36389
0.315301: ATLNGA to WASHOC Link Down
0.317719: ALBYNY to NYCMNY Link Down
0.317819: ALBYNY to BSTNMA Link Down
0.320979: HSTNTX to ATLNGA Reconfigure Request for SNFCCA to ATLNGA: 0.370979
0.320979 : ANHMCA to ATLNGA Reconfigure Complete
0.324674: Start Reconfiguration for CHCGIL to SNFCCA
0.331987 : SNFCCA to ALBYNY Reconfigure Complete
0.333319: CHCGIL to OLLSTX Reconfigure Request for CHCGIL to SNFCCA: 0.383319
0.341178 : DLLSTX to DNVRCO Reconfigure Request for CHCGIL to SNFCCA : 0.391178
0.345942 : DNVRCO to SLKCUT Reconfigure Request for CHCGIL to SNFCCA : 0.395942
0.350125: Start Reconfiguration for ANHMCA to ATLNGA
0.352523 : SLKCUT to SNFCCA Reconfigure Request for CHCGlL to SNFCCA : 0.453885
0.353345: ANHMCA to PHNXAZ Reconfigure Request for ANHMCA to ATLNGA: 0.403345
0.353885: Start Reconfiguration for SNFCCA to ATLNGA
0.353885 : CHCGIL to SNFCCA Reconfigure Complete
0.357521 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA : 0.450125
0.36389 : PHNXAZ to HSTNTX Reconfigure Request for ANHMCA to ATLNGA : 0.41389
0.370979 : SNFCCA to ATLNGA Reconfigure Complete
0.370979: HSTNTX to ATLNGA Reconfigure Request for ANHMCA to ATLNGA: 0.420979
0.374674: Start Reconfiguration for CHCGIL to SNFCCA
0.383319: CHCGIL to DLLSTX Reconfigure Request for CHCGIL to SNFCCA: 0.433319
0.391178 : DLLSTX to DNVRCO Reconfigure Request for CHCGIL to SNFCCA : 0.441178
0.395942 : DNVRCO to SLKCUT Reconfigure Request for CHCGIL to SNFCCA : 0.445942
0.402523 : SLKCUT to SNFCCA Reconfigure Request for CHCGIL to SNFCCA : 0.503885
0.403345: ANHMCA to PHNXAZ Reconfigure Request for SNFCCA to ATLNGA: 0.453345
0.41389: PHNXAZ to HSTNTX Reconfigure Request for SNFCCA to ATLNGA: 0.46389
0.417844: Start Reconfiguration for NYCMNY to ANHMCA
0.419857 : NYCMNY to WASHOC Reconfigure Request for NYCMNY to ANHMCA : 0.469857
0.420979 : ANHMCA to ATLNGA Reconfigure Complete
0.420979: HSTNTX to ATLNGA Reconfigure Request for SNFCCA to ATLNGA : 0.470979
0.424674: Start Reconfiguration for CHCGIL to SNFCCA
0.425556: WASHDC to ATLNGA Reconfigure Request for NYCMNY to ANHMCA: 0.520979
0.433319 : CHCGIL to DLLSTX Reconfigure Request for CHCGIL to SNFCCA : 0.483319
0.441178: DLLSTX to ONVRCO Reconfigure Request for CHCGIL to SNFCCA: 0.491178
0.445942 : ONVRCO to SLKCUT Reconfigure Request for CHCGIL to SNFCCA : 0.495942
0.450125: Start Reconfiguration for ANHMCA to ATLNGA
0.452523 : SLKCUT to SNFCCA Reconfigure Request for CHCGIL to SNFCCA : 0.603885

55



APPENDIX I

Sample Portion of Results 2

ALBYNY

Reconfig Request Messages:
0.131987: CHCGIL to ALBYNY Reconfigure Request for ANHMCA to ALBYNY
0.181987: CHCGlL to ALBYNY Reconfigure Request for ANHMCA to ALBYNY
0.281987: CHCGIL to ALBYNY Reconfigure Request for SNFCCA to ALBYNY
0.739047: CHCGIL to ALBYNY Reconfigure Request for SNFCCA to BSTNMA
0.789047: CHCGIL to ALBYNY Reconfigure Request for SNFCCA to BSTNMA
1.61923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.66923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.71923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.76923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.81923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.86923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA

Reconfig Request Messages (After Processing):
0.181987: CHCGIL to ALBYNY Reconfigure Request for ANHMCA to ALBYNY
0.231987 : CHCGlL to ALBYNY Reconfigure Request for ANHMCA to ALBYNY
0.331987: CHCGIL to ALBYNY Reconfigure Request for SNFCCA to ALBYNY
0.789047: CHCGIL to ALBYNY Reconfigure Request for SNFCCA to BSTNMA
0.839047: CHCGIL to ALBYNY Reconfigure Request for SNFCCA to BSTNMA
1.66923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.71923: NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.76923: NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.81923: NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.86923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA
1.91923 : NYCMNY to ALBYNY Reconfigure Request for NYCMNY to SNFCCA

ANHMCA

Reconfigured Connections:
ANHMCA PHNXAZ HSTNTX OLLSTX CHCGIL ALBYNY
ANHMCA PHNXAZ HSTNTX OLLSTX CHCGIL ALBYNY
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHOC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA

56



ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX ATLNGA WASHDC NYCMNY BSTNMA
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGlL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGlL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGlL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGlL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGlL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX DLLSTX CHCGIL
ANHMCA PHNXAZ HSTNTX ATLNGA CNCNOH
ANHMCA PHNXAZ HSTNTX ATLNGA CNCNOH
ANHMCA PHNXAZ HSTNTX ATLNGA CNCNOH
ANHMCA PHNXAZ HSTNTX ATLNGA CNCNOH
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA PHNXAZ HSTNTX DLLSTX
ANHMCA SLKCUT DNVRCO
ANHMCA SLKCUT DNVRCO
ANHMCA SLKCUT DNVRCO
ANHMCASLKCUTDNVRCO
ANHMCA SLKCUT DNVRCO
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX
ANHMCA PHNXAZ HSTNTX

57



ANHMCA SLKCUT DNVRCO KSCYMO
ANHMCA SLKCUT DNVRCO KSCYMO
ANHMCA SLKCUT DNVRCO KSCYMO
ANHMCA SLKCUT DNVRCO KSCYMO
ANHMCA SLKCUT DNVRCO KSCYMO
ANHMCA PHNXAZ HSlNTX MlAMFL
ANHMCA PHNXAZ HSTNTX MlAMFL
ANHMCA PHNXAZ HSTNTX MlAMFL
ANHMCA PHNXAZ HSTNTX MIAMFL
ANHMCA PHNXAZ HSTNTX MIAMFL
ANHMCA PHNXAZ HSTNTX MlAMFL
ANHMCA PHNXAZ HSTNTX DLLSTX TULSOK

Reconfig Request Messages:
0.100125 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ALBYNY
0.150125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ALBYNY
0.200125 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.250125 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.257521: SNFCCA to ANHMCAReconfigure Request for SNFCCA to ATLNGA
0.350125: ANHMCA to ANHMCAReconfigure Request for ANHMCA to ATLNGA
0.357521 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA
0.450125 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.500125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.507521 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA
0.556566 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.600125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.700125 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.706566 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.800125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.806566 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.900125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.906566 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.957521: SNFCCA to ANHMCA Reconfigure Request for SNFCCA to HSTNTX
1.00013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
1.00657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.00752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to HSTNTX
1.05752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to HSTNTX
1.10657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.15752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to MIAMFL
1.20013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
1.20657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.20752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to MIAMFL
1.30657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.30752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to WASHDC
1.35752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to WASHDC
1.40752 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to WASHDC
1.45657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.50013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
1.55657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.60657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.75657: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.80013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
1.85657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.00013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.00657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA

5S



2.10657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.15013: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.15657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.20657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.30013 : ANHMCA to ANHMCA Reconfigure Reque t for ANHMCA to BSTNMA
2.30657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.35657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.45012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.45657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.50657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.60012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.60657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.70657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.75012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.75657 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.90012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.95012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.00012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.05012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.10012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.15012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.20012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.25012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.30012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.35012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.40012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.45012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.50012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.55012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.60012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.65012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.70012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CH GIL
3.75012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.80012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.85012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.90012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
3.95012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
4.00012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL
4.05012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CNCNOH
4.10012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CNCNOH
4.15012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CNCNOH
4.20012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CNCNOH
4.25012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.30012: ANHMCA to ANHMCA Reconfigure Request for ANlIMCA to DLLSTX
4.35012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.40012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.45012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.50012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.55012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.60012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.65012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DLLSTX
4.70012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DNVRCO
4.75012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DNVRCO
4.80012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DNVRCO
4.85012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DNVRCO
4.90012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to DNVRCO

59



4.95012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.00012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.05012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.10012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.15012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.20012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.25012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.30012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.35012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.40012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.45012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to HSTNTX
5.50012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to KSCYMO
5.55012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to KSCYMO
5.60012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to KSCYMO
5.65012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to KSCYMO
5.70012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to KSCYMO
5.75012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to MIAMFL
5.80012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to MIAMFL
5.85012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to MIAMFL
5.90012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to MIAMFL
5.95012: ANHMCA to ANHMCAReconfigure Request for ANHMCA to MIAMFL
6.00012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to MlAMFL
6.05012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to TULSOK
6.10012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to TULSOK
6.15012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.20012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.25012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.30012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.35012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.40012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.45012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHDC
6.50012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHOC
6.55012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHD
6.60012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHOC
6.65012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHOC
6.70012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHOC
6.75012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to WASHOC

Reconfig Request Messages (After Processing):
0.150125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ALBYNY
0.200125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ALBYNY
0.250125: ANHMCA to ANHMCAReconfigure Request for ANHMCA to ATLNGA
0.300125 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.350125: SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA
0.400125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.450125 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA
0.500125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.550125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.600125 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to ATLNGA
0.650125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.700125: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.750125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.800125: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.850125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
0.900125: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
0.950125: ANHMCA to ANHMCA Reconfigure Request for ANHMCA tu ATLNGA

60



1.00013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.05013: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
1.10013 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to HSTNTX
1.15013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.20013: SNFCCA to ANHMCA Reconfigure Request for SNFCCA to HSTNTX
1.25013: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to ATLNGA
1.30013: SNFCCA to ANHMCA Reconfigure Request for SNFCCA to HSTNTX
1.35013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.40013: SNFCCA to ANHMCA Reconfigure Request for SNFCCA to MIAMFL
1.45013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.50013 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to MIAMFL
1.55013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
1.60013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.65013 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to WASHDC
1.70013 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to WASHDC
1.75013 : SNFCCA to ANHMCA Reconfigure Request for SNFCCA to WASHDC
1.80013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.85013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
1.90013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
1.95013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.00013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.05013: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.10013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.15013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.20013 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.25013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.30013 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.35012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.40012 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.45012 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.50012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.55012: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.60012 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.65012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to B TNMA
2.70012: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.75012: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.80012 : ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
2.85012: PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.90012 : PHNXAZ to ANHMCA Reconfigure Request for NYCMNY to ANHMCA
2.95012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to BSTNMA
3.00012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCG1L
3.05012: ANHMCA to ANHMCA Reconfigure Request for ANHMCA to CHCGIL

61



APPENDIX]

Results 3

o:DLLSTX notifies DLLSTX Link Is Down
o:ANHMCA notifies ANHMCA Link Is Down
0.102264 : DLLSTX notifies HSTNTX Link Is Down
0.1029: DLLSTX notifies TULSOK Link Is Down
0.103345 : ANHMCA notifies PHNXAZ Link Is Down
0.10376 : ANHMCA notifies SNFCCA Link Is Down
0.105066 : DLLSTX notifies KSCYMO Link Is Down
0.106231 : ANHMCA notifies SLKCUT Link Is Down
0.107984 : DLLSTX notifies DNVRCO Link Is Down
0.10877 : DLLSTX notifies CHCGIL Link Is Down
0.209477 : HSTNTX notifies ATLNGA Link Is Down
0.210505 : KSCYMO notifies CNCNOH Link Is Down
0.213286: HSTNTX notifies MIAMFL Link Is Down
0.216208: CHCGIL notifies ALBYNY Link Is Down
0.315301: ATLNGA notifies WASHDC Link Is Down
0.317719: ALBYNY notifies NYCMNY Link Is Down
0.317819: ALBYNY notifies BSTNMA Link Is Down

62



VITA

Wai Yeu Chan

Candidate for the Degree of

Master of Science

Thesis: DEVELOPMENT OF A SIMULATION TOOL FOR ESTIMATING THE
RECONFIGURATION AND RESTORATION TIMES OF A DISTRIBUTED
INTELLIGENCE OPTICAL MESH NETWORK

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Penang, Malaysia, on December 10, 1977, the son ofMr.
and Mrs. Chan Ah Swee. The youngest child of 5 brothers and sisters.
Personal hobbies include,cooking, traveling, snow skiing, watching
television, playing and watching tennis games, and pretty much any kind
ofoutdoor activities. Very outgoing, friendly and enjoy meeting new
people.

Education: Graduated from St. Xavier's Institution, Penang, Malaysia in 1995.
Received Associate Degree in Engineering from Rima College, Penang,
Malaysia, Summer 1996. Graduated from Oklahoma State University with
a Bachelor of Science in Electrical Engineering, May 1999. Completed the
requirements for the Master of Science degree at Oklahoma State
University in December 2001.

Professional: Interned at Williams Communications Group as a Sales Engineer,
May 2000 to August 2001. Research Assistant at the Department of
Electrical and Computer Engineering, Oklahoma State University, August
2000 to August 2001.






