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INTRODUCTION

Under natural conditions of exposure., polyaromatic hydrocarbons (PAH)

have a high bioavailability in mammals, and there is considerable interest in the

use of small mammal populations in ecological risk assessment of contaminated

terrestrial ecosystems (Elangbam et al 1989; Flickinger and Nichols 1990;

McBee et al 1987, 1991; McBee and Bickham 1988, Fouchecourt et al 1999;

Lochmiller et al 1999; Pfau et al 20011 ). Possible routes of PAH exposure in wild

terrestrial mammals include percutaneous absorption, inhalation of fine particles,

absorption in the gastrointestinal tract and ingestion of soil while digging, foraging

or grooming (Garten 1980; Roos et al 1996). Some stressors such as climatic

change, disease, reproduction, territory defense and dietary restriction are

natural components of ecosystems. These stressors are interactive and

extremely difficult to reproduce in studies using laboratory strains of mammals

(Porter et a11984; McMurry et aI1999). Nl1Itritional stress, for example, may alter

magnitude and duration of a dose-dependent xenobiotic response (Boyd and

Campbell 1983). Biomonitoring: has been defined as the use of organisms to

monitor contamination and to imply possible effects to biota (Philips 1977).

Characteristics of a desirable bioindicator organism are a relatively large size,

ease of identification, ecological importance, well understood biology, widely

distributed, and robustness (not killed by very low levels of contaminants)

(Beardsley et al 1978; Peakall 1992a, b).



COTTON RATS

Cotton rats (Sigmodon hispidus) are common throughout the southeast

and south-central United States into north-central Mexico and Central America in

grass-dominated habitats (Cameron and Spencer 1981, Peppers and Bradley

2000). Cotton rats are plentiful and indigenous, distinct enough from other

rodents to be easily identified, have a range of movement of less than a hectare,

tend not to cross roads, have rapid generation times and are ecologicaUy

important as prey for birds, mammals, snakes and even occasionally catfish

(Cameron and Spencer 1981, Swihart and Slade 1984; Caire et a11989;

Schroder et al 1999). Cotton rats are most frequently found in grass-dominated

habitats with grass height and density being important (Cameron and Spencer

1981). Home ranges are seasonally sensitive (largest during winter and

summer), positively correlated with body mass and negatively correlated to

population density. Seasonal shifts in habitat may be due to seasonal alterations

in the nutrient landscape (Cameron and Spencer 1981), since the preferred plant

species in the diets of cotton rats change seasonally (Schetter et al 1998). Male

cotton rats have a larger home range than females. Females are more selective

and choose mixed habitats with better resources, while males select home

ranges based more on the 10~tions of females (Cameron and Spencer 1981). In

addition to climate, nutritional stress, territoriality and reproductive stress, c.otton

rats are parasitized by a variety of internal and external parasites (Cameron and

Spencer 1981). Cotton rats are generalist herbivores that supplement their diet

with eggs, insects, crayfish, crabs and small mammals when available (Howell
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1954; Cameron and Spencer 1,981; Nowak and Paradiso 1983; Whitaker 1989)..

They are active during both day and night (Cameron and Spencer 1981). Nest

building plasticity (surface or burrow) in response to varying climatic conditions

has been reported (Cameron and Spencer 1981). Cotton rats do not cache food

(Cameron and Spencer 1981) resulting in year round foraging (Eifler and Slade

1998). Cotton rats have periodic fluctuations in density both within and between

years linked to food availability (Lochmiller'et al 1998b). Extreme population

fluctuations do occur, and entire population turnover in Oklahoma has been

found to range from five to twelve months (Caire et al 1989). Within New World

rats and mice, the cotton rat's constitutive and inducible forms of cytochrome

P450-dependent detoxification enzymes are the most extensively characterized

in laboratory studies (Qualls et al 1998). Therefore, cotton rats likely are good

candidates for suitable bioindicator species.

BIOMONITORING

Toxicity occurring in wild species outside of laboratory conditions tends to

result from exposure to complex mixtures of toxicants, metabolites, and

degradation products (Rowley et aI1983). The use of wild mammals in

biomonitoring has the disadvantages of high levels of variation in response as a

result of either uneven distribution of contaminants or small area of

contamination within a varying home range that overlaps the contaminated area,

and age, sex, genetic and seasonal variation in sampled populations. Because

biomonitoring is cost effective compared to chemical analyse.s, of soil, water and

vegetation, this allows for monitoring of contaminant migration and provides a
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better idea of the biological impacts of contaminants on wild populations. These

advantages may outweigh disadvantages (Lindamood 1991; Dickerson et art

1994; Lochmiller et al 1998b).

OIL WASTE/LANDFARMING ..,

A significant problem in today's more regulated and ecologically aware,

yet petroleum powered, society disposal of oil refinery waste. A complicating

factor when studying petroleum wastes is the variable nature 0f petroleum.

Hydrocarbon and metal composition and weathering characteristics vary among

grades of petroleum (Engelhardt 1984). Landfarming is an economical means of

disposal of oil sludge. Landfarming entails tilling of waste under the soil followed

by site-specific irrigation and fertilizer application and then abandonment to allow

microbial degradation (Baker and Herson 1994; Schroder et al 1999). Addition of

exogenous microbes has not been found to increase degradation (Baker and

Herson 1994). Possible fates for waste components include leaching, hydrolysis,

photodecomposition, adsorption, desorption, oxidation, and uptake and

metabolism by plants and microorganisms (American Petroleum Institute 1984).

PAHs have been found both on the surface and in the internal tissues of plants

(Eisler 1987). Some components of oil slUdge, such as aromatics with more than

four rings, have been found to be resistant to degradation (American Petroleum

Institute 1984; Loehr et a11992; Huesemann 1994~,' Metals (e.g. Cr, Cu, Pb, Zn)

tend to accumulate in the treatment zone (American Petroleum Institute 1984)

because they cannot be degraded. Salts also accumulate in_certain landfarms

(American Petroleum Institute 1984}. High salt concentrations, heavy metals
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(e·.g. Pb, Cr, As, Cd, Ni), total hydrocarbon levels higher than 10% (wt) and low­

molecular weight aromatics (petrochemical hydrocarbons) may inhibit microbial

activity (Huesemann 1994). Factors that can affect degradation of petroleum

hydrocarbons include soil pH, temperature, aeration, nutrient status (nitrogen and

phosphorus), waste characteristics, and microbes naturally present (Huesemann

1994). Treatment depth for landfarms is 30 to 45cm from the surface, and any

waste deeper may have to be removed or mixed into the treatment zone

(Huesemann 1994, American Petroleum Institute 1984). The physical

composition of refinery wastes can vary tremendously (American Petroleum

Institute 1984). Waste application rate, soil amendments,. and storm water

management vary on landfarms (American Petrol,eum lnstitute 1984). Variation

in toxicity to wild rodents at various sites has been reported (Propst et al 1999;

Rafferty et al 2001). At petrochemical waste sites, it is very likely that no two sites

will have the same complex mixture of contaminants present (Propst et al 1999).

Polycyclic aromatic hydrocarbons (PAHs) are a major concern on such sites,

because of their potential toxicity (Propst et al 1999; Rafferty et al 2001 ).

BIOMARKERS

The National Academy of Sciences has defined biomarkers as

xenobiotically induced alterations in cellular or biochemical components or

structures, functions or processes that are measurable in a biological system or

sample (Dickerson et al 1994). Biomarkers can have the advantage over

chemical analysis of e.liminating the estimate of bioavailability {Dickerson et al

1994). A biomarker is a molecular, biochemical, physiological or histological
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indicator of exposure to, or effects of toxicants. A good biomarker will be

specific, sensitive, easy to measure, reproducible and reliable, cheap,

noninvasive, mechanistically based, and applicable to field studies. (Dickerson et

al 1994). I fi< .. I 1

LIVER "it

Analysis of li'Jer detoxification_enzymes has been1Jsed as a biomarker in

fish, birds and small mammals exposed to PAH (Payne 1976; Elangbam et al

1989b; Leighton 1995). Possible target organs for PAH toxicity are diverse, but

the liver is often the first organ to be challenged by contaminants and is the main

organ for xenobiotic metabolism both in terms of detoxification and bioactivation

(Eisler 1987; Payne et aI1987). Gener:ally, liesponses of detoxification enzymes

due to toxicant exposure are sensitive and precede cellular and tjssue level

damage (Elangbam et aI1989b). Liver detoxification of lipophiJic toxicants such

as PAHs involves two phases. . I

PHASE 1

Phase I of hepatic detoxification involves nonsynthetic reactions, most

commonly oxidation. Located on the smooth endoplasmic reticulum, cytochrome

P450 (CYP) enzymes catalyze a large part of the first phase of detoxification in

the liver (Guengerich and Liebler 1985). "CYP enzymes work in concert with

NADPH-cytochrome P450 reductase (Lindamood 1991). There are multiple CYP

isozymes with overlapping substrate specificities. CYP1A1 and CYP1A2 are the

major PAH-inducible isozymes, but CYP1A2 is induced to a much lesser extent

(Whitlock 1986). Both CYP1A and CYP2B are present in the Hver at low
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constitutive levels under physiological conditions, but are highly inducible

following exposure to certain chemicals (Ioannides and Parke 1990). The

classical inducer of CYP28 is phenobarbital, but CYP28 can be induced in

concert wi,th high induction of CYP1A activity or in the presence of certain

organochlorines (Whitlock 1986; loannides and Parke 1990). Specific enzymatic

markers for GYP1A1, CYP1A2 and CYP2B are the dealkylation of

ethoxyresorufin (EROD), methoxyresorufin (MROD), and pentoxyresorufin

(PROD), respectively. Determination of hepatic EROD, MROD and PROD are

sensitive and reliable biochemical markers of exposure to variety of

environmental toxicants (Rattner et al 1989; Beebe et al 1992; lubet et al 1992;

Nims and Lubet 1995; Roos et a11996; Fouchecourt et aI1999).

The general reaction catalyzed by CYP enzymes is the addition or

exposure of a polar functional group to the exposure compound. The main

reaction catalyzed is oxidation, donating one oxygen to the substrate and one to

oxidize NADPH or NADH (Guengerich and Liebler 1985). Addition of polar

groups increases hydrophilicity, but the metabolite is generally not hydrophilic

enough to excrete at this stage, and these electrophilic intermediates have the

potential to cause oxidative stress unless they are deactivated by phase II of

detoxification (Ioannides and Parke 1990). Reactive intermediates can interact

with macromolecules and nucleophiles such as proteins, enzymes and DNA

resulting in covalent binding, toxicity and carcinogenicity (Ioannides and Parke

1990). Besides its protective function, cytochrome P450 enzymes play an

important function in the synthesis and catabolism of cholesterol, steroid
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hormones, fatty acids, eicosanoids and bile acids (Ioannides and Parke 1.990).

Cytochrome P450 also is involved in metabolism of vitamin D3 (Ioannides and

Parke 1990).

Cotton rats and Sprague-Dawley rats (Rattus norvegicus) have similarities

and differences in the substrate specificity of their CYP systems depending on

the inducing agent used (Novak and Qualls 1989; Elangbam et al 1989b; Qualls

et al 1998). Male and female cotton rats have differences in some of their CYP

isozymes (Novak and Qualls 1989; Elangbam et aI1991). Male cotton rats

collected from a petrochemical waste site had significant induction of total

cytochrome or EROD, MROD, and PROD, but females had a nonsignificant

pattern for the same enzymes when compared to animals from a matched

reference site (Elangbam et al 1989a; Lochmiller et al 1999 respectively). This

was thought to be influenced by the much higher variability found in the female

enzyme levels (Lochmiller et al 1999).

ARYL HYDROCARBON RECEPTOR

A gene battery is a group of genes that, through intricate interrelationships

and cross-talk, can coordinate up and down regulation of proteins (Nebert et al

2000). The aryl hydrocarbon (Ah) battery contains six known genes with many

more hypothesized to regulate cell growth and differentiation and other functions

(Okey et a11993; Nebert et al 2000). The genes known to be linked to the Ah

gene battery are CYP1A1, CYP1A2, glutathione transferase, NAD(P)H: quinone

oxidoreductase, aldehyde dehydrogenase and UDP glucuronosyltransferase

(Nebert et al 2000). The mechanisms responsible for activation of CYP2B are
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!Iess understood, and are not part of tne Ah gene battery (Whitlock 1986,

Lindamood 1991). The Ah battery can be coordinately induced by both PAHs

and dioxins (Nebert et al 2000). The hydrocarbon response elements are

thought to be upstream of dioxin responsive genes (Nebert et al 2000). The Ah

receptor is found in the cytosolic fraction of prepared cells of both mammalian

and nonmammalian species (Landers and Bunce 1991; Okey et al 1993).

Multiple forms of the Ah receptor have been found and Ah receptor content

varies across tissues and developmental stages (Landers and Bunce 1991). The

Ah receptor is associated with heat shock proteins 90 and 70 (Landers and

Bunce 1991; Okey et al 1993). Heat shock protein 90 maintains the

untransformed receptor in the inactive state (Landers and Bunce 1991). When a

ligand binds to the Ah receptor the heat shock protein 90 is dissociated and the

receptor becomes active with the formation of a heterodimer between Ah

receptor ligand subunit and Ah receptor nuclear translocator protein (Landers

and Bunce 1991; Sarasasquete and Segner 2000). The active heterodimer is

translocated into the nucleus where it binds to the DNA with Ah receptor

response elements, transcription, translation and increased activity from the

newly created enzymes result (Sarasasquete and Segner 2000). Ah battery

genes have the capacity to both promote" and ,prevent (thru activation of

electrophile response ~Iement which induces oxidative stress-detoxifying

enzymes, such as glutathione transferase) oxidative stress (Nebert et al 2000).

Oxidative stress is damage to living tissue caused by oxygen, free radicals

or reactive intermediates (Ioannides and Parke 1990; Nebert et al 2000).
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Oxidative stress can cause DNA damage, perturb ion efflux, cell volume, and

intracellular pH, and is a major signal in precipitating apoptosis (Nebert et al

2000). Glutathione provides protection against all forms of oxidative stress by

scavenging free radicals and electrophiles and reducing cysteine groups of

transcription factors via a transcription factor (redox factor), which activates

genes that function to halt oxrdative damage once the oxrdative stress signal

transcription cascade is in full swing (Nebert et al 2000). Ah receptor governs

the aryl.hydrocarbon receptor repressor gene ,leading to negative feedback

control (Nebert et al 2000).

PHASE II

Phase /I of hepatic detoxification involves conjugation of the xenobiotic

with highly polar endogenous compounds in the cell, such as sugars, amino

acids and glutathione. Phase II reactions are important in the destruction of

oxygen intermediates, such as epoxides and free radicals formed during phase I

metabolism. Glutathione (GSH) conjugation is an example of an important phase

II reaction. Glutathione (y-L-glutamyl-L-cysteinyglycine) is a tripeptide containing

several sulfhydryl groups (Mannervik et al 1989). Glutathione is the most

concentrated intracellular n6nprotein thiol in liver cells and makes up

approximately 25% of the thiol of Old World rat (Rattus norvegicus) livers (Smith

and Mitchell 1989, Goethals et al 1990). Glutathione is important as an

antioxidant, a possible route of metal excretion, and as a storage site for cysteine

(Akerboom and Sies 1990; Gonzalez and Esteller 1990; Tateishi 1990).

Examples of metals bound by glutathione include cadmium, methyl mercury,
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zinc, si'lver, and copper (Gonzalez and Esteller 1990)~ During conjugation"

glutathrone can be oxidized into glutathione disulfide (GSSG). GSSG can, in

turn, be enzymatically reduced to GSH by gll!ltathione reductase (Andersoh 1989;

Romero and Galar,is 1990). Besides catabolism of reactive oxygen species,

glutathione also is important because of its involvement in the synthesis of

proteins, regulation of enzyme activity, participation in glucose metabolism,

involvement in rejoining of radiation-induced DNA breakage, and amino acid

transport (Redegeld and Galaris 1990; Akerboom and Sies 1990; Saez et al

1990). Additionally, hepatic glutathione may be involved in the regulation of

cytochrome P450 enzymes (Gonzalez and Esteller 1990). The glutathione status

of the liver also may be important to other organs and systems that uptake GSH

exported by the liver (Akerboom and Sies 1990). Significant but low amounts of

GSH have been detected ,in the plasma. Other organs, primarily the kidney,

have the ability to uptake GSH from the blood (Meister and Anderson 1983;

Smith and Mitchell 1989; Akerboom and Sies 1990). Approximately two-thirds of

glutathione in plasma is excreted through the renal system (Smith and Mitchell

1989).

Glutathione is a cofactor for the Phase II biotransformation enzyme

glutathione S-transferase (GST). There are multiple forms of GST with

overlapping substrate specificity (Meister and Anderson 1983: Mannerik and

Danielson 1988). Like the structural genes for CYPIAI and CYPIA2, GST genes

are part of the Ah locus (Lindamood 1991). GST makes up as much as 10% of

extractable protein of the liver (Kosower and Kosower 1989). Primarily through
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the action of GST, with a small contribution of non-enzymatic processes, GSH

conjugates electrophilic xenobiot'ics or their metabolites to form predominately

nontoxic conjugates that are easily excreted (Levine 1983; Ishikawa and Sies

1989). GST induction has been reported following exposure to phenobarbital, 3­

methylcholanthrene, and 2-4-benzo(a)pyrene (Gonzalez and Esteller 1990).

GST, like glutathione, is found in both cytosolic and microsomal portions of the

cell, with the majority of both found in the cytosol (Mannervik and Danielson

1988; Romero and Galaris 1990).

Glutathione can be depleted in animals that are challenged with significant

amounts of toxicants. Protection from some compounds is so efficient that

almost no damage is incurred until virtually all GSH is gone (Smith and Mitchell

1989). Following GSH depletion, the potential for liver injury by reactive

intermediates increases (Wendel et al 1990). Increased hepatic lipid

peroxidation has been found with decreasing GSH levels (Levine 1983). Severe

oxidative stress can lead to acute cell death, which is preceded by loss of

glutathione (Nicotera and Orrenius 1994).

LIVER MORPHOLOGY

Alterations of phase I and phase II hepatic detoxification processes can

result in liver histopathology. Markers of sublethal cell injury include alterations

of the nuclear envelope, chromatin, and nucleoli (Marzella and Trump 1991).

Inducers of CYP enzymes can cause proliferation of smooth endoplasmic

reticulum and cell hypertrophy (Eustis et aI1990). Proliferation of smooth

endoplasmic reticulum, if visible by light microscopy, has a ground glass
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appearance (Cullen and Ruebner 1991). Increased fibrous jssue can result from

chronic exposure to toxicants or toxins (Eustis et aI1990). Following toxicant

exposure, the most common histological change in liver js an association of

hepatocellular swelling and large droplet fatty change (Cullen and Huebner

1991). This association is a precursor to necrosis (Cullen and Ruebner 1991).

Changes in the structure of nuclei also indicate cell necrosis (Marzella and

Trump 1991).

EFFECTS OF OIL ON MAMMALS

Effects measured in cotton rats and other wild mammals inhabiting

abandoned oil refinery sites include altered liver mass, altered immune system

function with decreased immunity and resistance, decreased,proportion of

juveniles, low population densities, elevated mutation frequencies, alteration of

cytochrome P450 activity, alteration of glutathione S-transferase activity,

chromosomal aberrations, bioaccumulation of lead and fluoride in bones, tooth

fluorosis and dental lesions (Lower et al 1983; Elangbam et al 1989a; Rattner et

al 1993; Paranjpe et al 1994; McMurry et al 1999, Lochmiller et al 1999;

Schroder et al1999, 2000; Wilson et a12000; Kim et al2001a, b). Extent of

dental lesions, lead and fluoride accumulation in bones, hepatocellular

hypertrophy and cytochrome P450 induction were found to be greater in winter

compared to other seasons (Rattner et al 1993; Lochmiller et al 1999; Schroder

et al 2000; Kim et al 2001a, b). Female cotton rats inhabiting some of the

landfarm sites in this study had significantly increased rates of ovarian and

thymic cell apoptosis and a lower m~mber of uterine scars (Savabieasfahani et al
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1999). Heavy metal concentrations, especially lead, were elevated in the kidney

of rats from these study sites. Contaminated sites also showed lower species

diversity (Wilson et al 2000). In a previous study with a time delay between

captl:lre and sacrifice, hepatic EROD activity in cotton rats collected from a site

contaminated with petroleum hydrocarbons was induced less than 2 fold

compared to rats captured at a matched reference site (Lochmiller et al 1999).

ENVIRONMENTAL RELEVANCE

Measuring changes in sensitive biochemical markers of exposure, such as

CYP enzymes, glutathione and GST, over time possibly could be used to monitor

effectiveness of land farming remediation (Qualls et al 1998). Such hepatic

effects may be used to establish early cellular indicators of tbxicity in wild rodents

chronically exposed to a variety of toxicants at non-lethal levels. This work may in

the future be used to extrapolate the relative threat to other organisms, including

humans.

OBJECTIVE

The overall objective of this research project is to increase our

understanding of terrestrial toxicant bioavailability and hepatic effects of chronic

exposure to landfarmed petroleum wastes, and to determine the suitability of

cotton rats as bioindicator organisms.

HYPOTHESES

Ho: There will be no significant differences found in hepatic detoxification

enzymes surveyed between animals killed on the day of capture and

those killed 48 hours after capture within one site.
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HA: Animals from landfarm sites :killed on the day of capture will have more

pronounced differences, whether induction or depletion, when compared

to animals captured on reference sifes.

Ho: Hepatic GYP IA1, 1A2 and 28 will not differ when comparing cotton rats

collected from landfarmea sites with those inhabiting reference sites.

HA: Hepatic GYP IA1, 1A2 and 28 dependent enzyme activities will be elevated in

animals collected from landfarl11 sites when compared to those animals

inhabiting matched reference sites with CYP1AI induced to a greater

extent than either GYP 1A2 or 28.

Ho: Hepatic glutathione S-transferase levels will be similar in animals collected

both from landfarmed sites and matched reference sites.

HA: Hepatic glutathione S-transferase levels will be elevated in animals from

landfarmed sites compared to animals from matched reference sites.

Ho: Hepatic GSH and total glutathione levels will be similar in animals from

landfarm sites and from matched reference sites.

HA: Hepatic GSH and total glutathione levels will be decreased in animals from

landfarm sites compared to animals from matched reference sites.

Ho: Hepatic histology slides from reference and treatment animals will be similar.

HA : Cellular differences will be detected in hepatic histology slides when

comparing animals from landfarm sites to animals from matched reference

sites.
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TO TEST THESE HYPOTHESES:

1. Developed microplate fluorimetric procedures for determination of

ethoxyresorufin O-dealkylation (EROD), methoxyresorufin O-dealkylation

(MROD), and pentoxyresorufin O-dealkylation (PROD) as enzymatic

markers for CYP 1A-1, CYPIA2, and CYP2B, respectively.

2. Evaluated total glutathione and oxidized vs. reduced glutathione and

glutathione S-transferase levels as indicators of hepatic Phase II

biotransformation enzyme induction.

3. Compared hepatic EROD, MROD, PROD, and GST activities and glutathione

levels in cotton rats in situ (day of capture) with the enzyme activities

found in rats broug.ht back to lab and held for 48 hours before termination.

4. Compared the sensitivity and reliability of Western blotting for CYPIAI and

CYPIA2 to EROD and MROD determinations.

5. Evaluated the histopathology of the liver of rats inhabiting landfarms.
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MATERIALS AND METHODS

Male and female cotton rats from two unremediated and two remediated

landfarm sites and four matched reference sites were sampled during summer,

fall and winter. Each reference and landfarm site is named by its location. This

study, like other previous studies, delayed terminations by 36-48 hours in order

to conduct immunological tests on the rats (Elangbam et al 1989, Lochmiller et al

1999, Elangbam et all 1991). A comparison was done between liver enzyme

activities in rats sacrificed following capture and those held up to 48 hours before

termination. Ethoxyresorufin o-dealkylation (EROD), methoxyresorufin 0­

dealkylation (MROD), pentoxyresorufin o-dealkylation (PROD), Western blotting

of cytochrome P4501 A1 and cytochrome P450 1A2, glutathione s-transferase

(GST), and glutathione assays were preformed and histology was evaluated. All

data with each site analyzed using t-tests separating rats collected using season

and sex. A split-plot design (SAS) was used to analyze the data over all

seasons, treatments and sexes.
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- Sept. 1998 Aug. 1999 Feb. 2000 Feb. 2000 Sept. - Oct.

2000

Delayed Delayed Day of Capture Delayed Day of

Termination Termination Termination Termination Capture

. . Termination

Ponca City Female Female l Female ;.;- Female Female

Landfarm and Male Male Male Male Male

Reference
l t

I

Duncan Female Female Female Female

Landfarm and Male Male Male Male

Reference . .,

. I

Mounds East Female Male Female Female

Landfarm and Male Male Male

Reference

Mounds West Female Male Female Female

Landfarm and Male Male Male

Reference

.

Table 1: Dates, sites, sexes and times of termination for the rats collected. Rats from

September 1998 were only used for histopathology. The August 1999,

February 2000 and September - October 2000 termination are referred to in the

rest of the text as the summer, winter and fall terminations, respectively.
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STUDY SITES

Mounds, OK: Two study sites were located on approximately 53 hectares

of land in Creek County, Oklahoma. From 1976 to 1980, this land was owned

and used as a petroleum waste dump location by Consolidated Tank Cleaning.

Over this time period more than 300,000 barrels of petroleum-based sludg,e from

local oil companies were delivered to the site. Two unlined storage ponds 1-4 m

deep were constructed to hold the waste. This waste was then landfarmed.

Landfarming continued until 1977, but the ponds continued to function as waste

storage areas well after the operation was shut down (Kelly 1985). Kelly Inc.

Companies submitted a clean-up plan to the Creek County courthouse on 3 July

1981. Recovery fof the site to its precontaminated state was the primary goal of

the plan. The upper 2 m of soil were highly contaminated with petroleum based

sludge. Sludge along the bottoms of ponds was the primary area of

contam.ination, but adjacent grasses also were highly contaminated (Kelly 1985).

Metal drums were discovered at the bottom of one of the ponds and buried

throughout the site. Drums contained 1,000 tons of sludge, which consisted of

28% oil, 50% water and 22% solid waste. Drum sludge was treated with

biodegradatibn (Kelly 1985). Analysis of contaminant mobility was the first step

of the remediation. New pO,nds were constructed as part of a retention system to

handle surface runoff. Subsurface drainage was controlle-d by installation of

impermeable clay trenches. Conditional landfarming was used to treat the

contaminated soils and pond sludge on site. The conditions used were: oil in the

soil could not exceed 8% by weight, no sludge could be applied if the soil

19



-

moisture exceeded 10%, and incorporation of sludge had to be done on the day

of application. The bottoms of the original ponds were tilled and treated with

microbes capabte df degrading hydrocarbons. Then ponds were filled with dirt,

tilled and graded. The soil after treatment was found to contain less than 1% oil.

Contaminated soil was tilled and treated with microbial degradation (Kelly 1985).

Upon completion land was seeded with Bermuda grass (Cynodon dactylon),

Chinese lespedeza (Serica lespedeza), and leguminous speci,es, such as sweet

clover (Melilotus spp.). Unauthorized grazing of cattle has taken place in the

past, but steps were taken to el:iminate this activity (Kelly 1983).

Ponca City, OK: The site is located on a recently abandoned land farm

plot inside the still actiwe Conoco refinery. ConocoJs refinery is one of the largest

in the state. Landfarming is the refinery's main method of petroleum waste

disposal. There are active landfarming activities on the plots adjacent to the

study site. Little information is available about the methods employed in

landfarming on this site.

Duncan, OK: Two study sites are located on an inactive refinery fi,ve miles

south of Duncan. The refinery covers 162 hectares and originally known as the

Rock Island Oil and Refining Company, which produced aviation fuel during the

1920's. The refinery changed owners and expanded until 1980 when the Tosco

Corporation purchased it from the Sun Petroleum Company. Automotive

gasoline, diesel fuel, fuel oil, liquid propane gas, petroleum feedstock, and

petroleum coke were produced at the refinery. The refinery's capacity was

55,000 barrels of oil per day. Operation ceased July 1983, and treatment and
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storage of the refinery contents were handled under the Hesource Conservation

and Recovery Act from 1983-1986. In 1986 the refinery was sold to Alpha Oil.

Tosco Co. and the Oklahoma Department of Environmental Quality began work,

in 1995, to clean up contaminated sifes on the refinery. A cut-off wall and

extraction wells were installed to prevent further leaching into Claridy Creek. No

recovery plan has been established (Coleman 1997). One of these sites,

isolated on three, sides by a stream and on another by a double set of railroad

tracks, did not have enough rats on site to continue captures and terminations

after 1998. Grazing has occurred on the refinery and signs of grazing still occur.

Landowners surrounding the Duncan refinery also have used settling pond water

from the refinery to irrigate their wheat fields (Wilson personal observation).

Reference sites: Each study site has a reference site that is as close 'in

proximity and vegetation as possible. Reference sites include some unused field

bordering and owned by Cotton Creek Golf Course in Mounds, Lake Warika in

Duncan and Kaw Lake in Ponca City. At all reference sites, owners had agreed

not to mow, burn or apply chemicals to the reference sites for the duration of the

study.

RAT CAPTURE AND HANDLING

Rats (n=6 females and 6 males per site) were collected in summer (July),

fall (October) and winter (February) from two unremediated, two remediated

landfarm sites and four reference sites by use of Sherman live traps (Sherman

Traps Inc, Tallahassee FI). During winter, traps were supplied with cotton for

bedding to prevent hypothermiia. Animals weighing over 100 g were
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preferentially taken with the weight limit being' lowered in 10 g increments until

sample sizes were satisfied. Priorto termination rats were brought to the

laboratory and held for 48 hours in individual polycarbonate cages with wire tops

containing corn cob as bedding and fed Purdna 5001 laboratory Rodent Chow

(Purina Mills, St. Louis MO) and water ad libitum. Ea0h rat was assigned a

number so that all animals in a group were not processed as a unit. On the

morning of termination, rats were anesthetized with Metofane (Pittman-Moore,

Mundelein IL), had blood drawn from retro-orbital sinus plexus and then were

killed by cervical dislocation. After length, mass and sex had been determined,

rats had ice cold cell media injected into their abdominal cavity. The abdomen

was massaged then the media extracted by syringe. The. spleen was removed

aseptically thru a small slit. Then the abdomen was cut completely open ,and the

liver removed. The intact gall bladder was clamped and carefully removed. The

liver was weighed to the nearest 0.01g then divided, with half going into ice cold

Tris-KCI buffer (0.5M Tris, 1.15% KCI, pH 7.5) and the other half refrigerated for

metal analyses.

TIME OF SACRIFICE

To test whether delay in collecting livers had an effect on induction of

biotransformation enzymes, after 24 rats had been collected from a matched set

of landfarm and reference sites during the winter 2000 termination, additional rats

(up to 24 more) were taken. Livers were dissected and processed within 2-6

hours of capture and in the same manner as livers from rats terminated 48 hours

after capture. A comparison was made between enzyme activities in these
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animals. and those brought back to the lab and held for 48 hrs belore killing.

Insufficient female animals were captured from Duncan, Mounds West and

Mounds East to allow a day of capture termination in the winter of 2000.

Insufficient male rats of were captured at Duncan to allow for a day of capture

winter termination. During fall 2000 all cotton rats were terminated on the day of

capture.

MICROSOME AND CYTOSOL PREPARATION

Hepatic microsomes (for CYP enzymes) and cytosol (for GST and

glutathione) were prepared using differential centrifugation (Omura and Sato

1964). Liver was placed in individual glass beakers filled with ice-cold Tris-KCI

buffer, minced with scissors, and then homogenized using a Wheaton glass and

teflon homogenizer with a 30 sec rest on ice between each pass. Homogenates

were transferred into individual plastic centrifuge tubes and centrifuged at

10,000xg at 4°C for 20 min in a Sorvall RC5C centrifuge with a Sorvall SM24

rotor. Supernatants were collected and centrifuged at 100,000xg at 4°C using

Beckman Ti30 rotor in a Beckman LS-70M Ultracentrifuge or Beckman Optima

LE-80K Ultracentrifuge. The resulting supernatant or cytosol was decanted into

cryovials (Arrowhead Scientific, Lenexa KS) and frozen at -85°C. Pellets were

washed with 0.25M sucrose and then resuspended in a 0.25M sucrose solution.

The resulting microsomal preparations were aliquoted into cryovials and frozen.

In order to preform the glutathione assays, a forth of the livers from the fall 2000

capture was deproteinated with metaphosphoric acid. The metaphosphoric acid

was subsituted for the Tris buffer. The processing procedure was identical to the
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above, except only cytosol was kept for glutathione determinations. All samples

were frozen at -85°C until used. Microsomal and cytosolic protein concentrations

were determined using a DC protein assay kit (BioRad, Hercules, CAl that is a

variation of the Lowry procedure (Lowry et a 1951), using bovine serum albumin

as a standard. Protein readings were performed in 96-well microplates

(Arrowhead Scientific, Lenexa KS) with a SpectraMax 340 spectrophotometer

and analyzed by SoftMax Pro 2.2.1 software. During all assays including protein

determination, samples were number coded and run in groups by location with

both landfarm and reference animals. Determination of which rats were

treatment or reference was done after each assay was finished.

ERGO, MRGD, PROD I j j

Dealkylation of resorufin ethers is highly specific for the major GYP

isoezymes and has been used as a biochemical markers of CYP isoenzyme

induction (Burke and Mayer 1974, Lubet et a11985, Nerurkar et aI1993).

Activities of CYP1A1, CYP1A2 and CYP28 were measured

spectrofluorometrically using EROD, MROD and PROD activities, respectively

(Burke and Mayer 1974, Lubet et aI1985). Briefly, microsome samples were

diluted to a protein concentration of 6mg/mt with 0.25M sucrose. Standards were

sequential dilutions of resorufin (Sigma, St Louis, MO). Ethoxyresorufin,

methoxyresorufin or pentoxresorufin (Sigma, St. Louis, MO) in 0.1 M Hepes buffer

containing 5mM MgCI2 was pipetted into 96-well microplates (Arrowhead

Scientific, Lenexa KS). Beta-NADPH (Boehringer Mannheim, Indianapolis, IN)

was dissolved in ice-cold Hepes buffer. All components were protected from
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light. After incubation at 37°C, a reading of the resorufin formation was taken

with an ICN TItene'k Fluoskan II spectrofluorometer set to an emission

wavelength of 590nm and excitation wavelength of 544nm. Incubatioh times for

EROO, MROO and PROD were 10,40 and 100 min, respectively. Readings were

analyzed by OeltaSoft II 4.0 software (Biometallics Inc, Princeton, NJ). Each

reading was corrected for protein concentration and incubation time between

addition of NAOPH and reading. Enzyme activities were expressed as nmol

resorufin/min/mg microsomal protein.

WESTERN BLOTIING . ,

Expression of CYP1A1 and CYP1A2 proteins was determined using

Western blotting (Towbin et al 1979). Two' lots of polyclonal goat anti-rabbit

P450-1A1 and -1A2 (Oxford, Oxford MI) had differing ideal conditions for dilution

and protein concentration and are given separately. Hepatic microsomal

proteins, diluted 1:25 or 1:5, were separated under denaturing conditions using

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SOS-PAGE) (Hoefer

Model SE600-15-1.5) consisting of 10% stacking gels and 12.5% polyacrylamide

separating gels. They were transferred to a 0.45J..lm nitrocellulose membrane for

15 h at 30V using Hoefer transfer unit (TE 42). The membranes were dried for

approximately 10 min to fix protein. They were then blocked with 5% skim milk

(BioRad, Hercules CAl in Tris-buffered saline containing 0.1 % Tween-20 (TBS-T)

for one h. The membrane was then incubated with a 1:1000 concentration of

poly-clonal goat anti-rabbit P450 1AI and IA2 antibody in 1% skim milk T8S-T for

one h. After five, ten and fifteen minute washings with TBS-T, an hour incubation
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with anti-goat secondary (Santa Cruz, Santa Cruz CA) at a 1:2000 concentration

in 1% skim milk TBS-T was used to label the primary with horseradish

peroxidase. The proteins were visualized with chemiluminescence (SuperSignal,

Pierce Chemical Co, Rockford, IL) and semi-quanitated by densitometry using a

ScanJet 5300C scanner (Hewlett-Packard Co.) and Scion Image software (Beta

4.0.2). r

GLUTATHIONE S-TRANSFERASE

Hepatic cytosolic glutathione s-transferase activity was determined

spectrophotometrically using a microplate reader enzyme assay measuring the

formation of the conjugate of glutathione (GSH) and 1-chloro,2,4-dinitrobenzene

(CONB) at 340nm (Habig and Jakoby 1981). Briefly, cytosol samp'les were

diluted 1:10 with 0.1 M phosphate buffer pH 6.5. Samples were then pipetted into

a 96-well microplate (Arrowhead'Scientific, Lenexa, KS) that contained

phosphate buffer. Blank ,wells were left for reference. An assay mixture of

CONS, glutathione (Sigma, St Louis, MO) and phosphate buffer was then

pipetted into wells and the plate was read immediately using a SpectraMax 340

spectophotometer (Molecular Devices Corp.). The resulting data from 5 min of

scanning at 15 sec intervals at 37°C were analyzed using SoftMax Pro 2.2.1

software. The CONB absorbency changes when it is conjugated to GSH by

glutathione S-transferase. GST readings were corrected for protein content.

Finite nonenzymatic catalysis was minimized with low substrate concentration

and low pH. CONB has been recognized as a general substrate for all

glutathione transferases, making separation of different isoezymes unnecessary
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for total glutathione S-transferase determination (Mannervik and Danielson

1988).

GLUTATHIONE

Total cytosolic glutathione and glutathione disulfide (GSSG) were

determined spectrophotometrically using a commercial microplate enzymatic­

recycling assay kit made by Cayman Chemical Company (Ann Arbor MI). Total

glutathione measurement started with deproteination of the cytosol samples after

homogenization with metaphosphoric acid and triethanolamine. Wells were

assigned on a microplate. The standards were prepared by adding specific

amounts of GSSG standard to MES Buffer to create concentrations from 0 to 8.0

M GSSG, which were 0 to 16.0 M at the conclusion of the assay. These

standards and the cytosol samples were pipetted into the microplate. The assay

mixture containing MES Buffer (OAM 2-(N-morpholino)ethanesulphonic acid,

0.1 M phosphate, 2mM EDTA pH 6), cofactor mixture (NADP and glucose-6­

phosphate), glutathione reductase, glucose-6-phosphate dehydrogenase and

5,5'-dithiobis-2-nitrobenzoic acid (DTNB) was then added to each well. Any

GSSG present was reduced to GSH by glutathione reductase. The sulfhydryl

group of GSH reacted with DTNB and produced a yellow colored 5-thio-2­

nitrobenzoic acid (TNB). The GSTNB mixed disulfide, which also was produced,

was reduced by glutathioAe reductase to recycle the GSH and produce more

TNB. The plate was then incubated in the dark. A SpectraMax 340 microplate

reader was used to measure absorbance at 405 nm at 5 min intervals for 30 min.

Analysis was done by SoftMax Pro 2.2.1 software. The rate of TNB production
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was directly proportional to the recycling I'\eaction, which is directly proportional to

the concentration of total GSH. GSSG levels alone were determined by

derivatizing GSH with 2-vinylpyridine after deproteinization. The 2- vinylpyridine

was added to the standards, because it has some inhibiting effect on color

development. Other than these changes the GSSG levels were determined in

the same manner as total glutathione.

HISTOPATHOLOGY

I also compared liver histopathology in rats from reference and

petrochemical contaminated sites using basic histological techniques

(hematoxylin and eosin - H&E staining) to determine if there has been any

damage caused by the contaminants or the electrophilic intermediates formed

during Phase I detoxification. Liver samples from summer 1998 were preserved

by fixing for 24 h in Carson's modified formalin, paraffin-embedded and sectioned

at 5/lm using routine histological procedures. Slides were prepared, assigned

code numbers and stained by the Oklahoma Animal Disease Diagnostic

Laboratory, Oklahoma State University. Twenty-four individual slices of liver,

from 24 rats, were analyzed for each location (12 rats collected from landfarm

sites and 12 rats collected from the matched reference sites). Analysis of 5 fields

of vision within each liver slice was done on slides from Duncan and Ponca City

to determine general cell size, presence of cells exhibiting cloudy-swelling,

presence of pyknotic nuclei, acellularity, and immune cell invasion. Beyond

tissue necrosis, or malignancy, liver hypertrophy and proliferation of the smooth
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endoplasmic reticulum are possible accompaniments to CYP induction

(Ioannides and Parke 1990, Philips et a11987, Rattner et aI1993).

STATISTICS

The statistical program, Instat, was used to perform Mests on all data with

each site analyzed separately during each season, and males and females

analyzed separately. Asterisks indicate significant differences. A split-plot

design (SAS) was used to analyze the data over all seasons, treatments and

sexes. For the SAS program, the remediated landfarm sites of Mounds West

and East were classified as remediated and the unremediated landfarm sites of

Ponca City and Duncan were classified as treatment sites. Letters were used to

indicated significant differences within the split plot graphs a & b are significantly

different as are c & d attld e & f, etc. An a of 0.05 was assigned.

t •

..

29



RESULTS

EROD and CYP1A1

An females collected from landfarm sites showed no difference in EROD

activity among reference animals (Fig 1). EROD activity was significantly

elevated (p=O.0003) in male rats collected in summer 1999 from the Mounds

West landfarm site- compared to males from its reference site and males from the

Duncan landfarm approached significance (p=0.0618). Males from the landfarm

sites in Ponca City and Mounds· East showed no difference in EROD activity

compared to animals from the reference sites. Although animals from landfarm

sites compared to reference were not significantly different, CYP1A1 levels for

both females and males showed similar trends as EROD activities, except for the

rats from Duncan (Figure 1).

In winter 2000, female cotton rats from the landfarm sites in Ponca City

and Mounds East exhibited signifi,cantly elevated EROD activities (p=0.0231 and

p=O.0292, respectively; Figure 2) when compared to females from the reference

sites. As only one reference female was caught in Duncan no statistical test for

significance could be performed. Mounds West females from the landfarm site

showed no difference in EROD activity compared to animals from the reference

site. Winter 2000 male cotton rats from each landfarm site showed no difference

in enzyme activity from males collected from the corresponding reference sites.

The differences in the CYP1A1 levels in female rats from Ponca City, Duncan

and Mounds West in winter 2000 were in general agreement with the EROD

activities. The CYP1 A1 levels of females from the Mounds East landfarm site did
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not show elevation of ERGO activ'ties when compared to the reference females

from the corresponding reference site. No significant differences were found in

the CYP1 A1 levels of tne female rats collected from any of the landfarm sites

compared to the rats collected at matched refe(ence sites, CYP1 A1 protein

levels of male cotton rats from Ponca City, Mounds West and Mounds East were

in general agreement with the ERGO activities with no elevations detected. Male

cotton rats from the landfarm site at Duncan exhibited a significant elevation

(p=O.0281) of CYP1A1 levels whereas they showed no elevation in ERGO

activity when compared to the males from the corresponding reference site

(Figure 2).

Ponca City females, kom the landfarm site, sacrificed on the day of

capture exhibited a significant elevation (p=O.0063) in ERGO activity when

compared to females from the corresponding reference site (Figure 3). Males

from the landfarm site in Ponca City also had a significant elevation (p=O.0175) of

ERGO activity when compared to males from the matched reference site. No

differences in ERGO activity were found in males collected from landfarm sites in

Mounds East and Mounds West when compared to males from the

corresponding reference site. Unlike the ERGO activity, the CYP1A1 levels

showed no differences for the Ponca City females or males collected from the

landfarm site compared to the reference site. A significant elevation of CYP1 A1

levels (p=O.0024) was found in Mounds West males collected from the landfarm

site compared to males from the reference site (Figure 3),
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Cotton rats collected in fall 2000 were terminated on the day of capture.

Ponca City females and males had elevated ERGO activities (p=0.008 and

0.0039, respectively) (Fig 4). No differences were found in the ERGO activities

of female or male cotton rats of Duncan, Mounds West and Mounds East. No

differences were found in the CYP1A1 levels at any of the sites (Figure 4).

Using split plot analysis, all seasons, site histories, and both sexes were

analyzed for patterns in ERGO activity (Figure 5). A history-season-sex

interaction was found (p=0.0322). In the winter females from treatment sites,

ERGO activity was found to be significantly greater (p<.0001) than the activities

found in females from reference and remediated sites. In the fall, females from

the treatment sites were found to have significantly greater ERGO activity

(p=O.0283) than females from reference sites. Treatment females in the winter

were found to have significantly higher activity (p=0.0004, 0.0003, respectively)

than treatment females in the summer or fall. Within fall males, males from

remediated sites had significantly elevated ERGO activity (p=0.0316) when

compared to reference animals. In the summer, males from the treatment sites

had significantly greater ERGO activity (p=0.011) when compared to the

reference males. Reference males from the winter collection had a significantly

greater ERGO activity (p=0.0056, p=0.0304 respectively) than summer or fall

males. When comparing females and males in the winter, reference females had

a significantly greater ERGO activity (p=0.005) than reference males, but

treatment females had a significantly lower enzyme activity (p=0.003) than

treatment males.
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Figure 1. Mean (± SEM) O-dealkylation of ethoxyresorufin and optical density of
cytochrome P4501 A1 immunoreactive bands of female and male
cotton rats caught in summer 1999. Asterisks indicate a significant
elevation of the treatment enzyme activity over the reference
enzyme activity within one site (p<O.05). n=6, except where noted
in the graphs.
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Figure 2. Mean (± SEM) O-dealkylation of ethoxyresorufin and optical density of
cytochrome P4501A1 immunoreactive bands of female and male
cotton rats caught in winter 2000. Asterisks indicate a significant
elevation of the treatment enzyme activity over the reference
enzyme activity within one site (p<O.05). n=6, except where noted
in the graphs.
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Figure 3. Mean (± SEM) O-dealkylation of ethoxyresorufin and optical density of
cytochrome P4501 A1 immunoreactive bands of female and male
cotton rats caught in winter 2000 and sacrificed on the day of
capture. Asterisks indicate a significant elevation of the treatment
enzyme activity over the reference enzyme activity within one site
(p<0.05). n=6, except where noted in the graphs.
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Figure 4. Mean (± SEM) O-dealkylation of ethoxyresorufin and optical density of
cytochrome P4501 A1 immunoreactive bands of female and male
cotton rats caught in fall 2000. Asterisks indicate a significant
elevation of the treatment enzyme activity over the reference
enzyme activity within one site (p<0.05). n=6, except where noted
in the graphs.
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Figure 5. Split plot analysis. Mean (± SE) O-dealkylation of ethoxyresorufin of
female and male cotton rats. Within each graph, ascending letters
indicate significant differences (p<O.05). Letters a & b, c & d and e
& f indicate significant difference.
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Split plot analysis was used to determine if there were any patterns in

EROO activity between winter 2000 animals sacrificed on the day of capture and

those held up to 48 hours before termination (Figure 6). Male and female cotton

rats collected from the landfarm site and matched reference site at Ponca City

were analyzed together as the Ponca City sites were the only ones where

sufficient female animals were collected. A history-time of termination interaction

was found (p=0.0019). There was no difference found between animals

collected from the reference site at Ponca City sacrificed at either time point (day

of capture or 48 hours after capture). The animals collected from the treatment

site at Ponca City had a significant decline (p<0.0001) in EROD activity between

animals sacrificed on the day of capture and those sacrificed 48 hours later. An

analysis was conducted on EROO activities of male rats collected from the

landfarm site and matched reference site at Mounds East and West. A time of

termination effect was found (p<0.0001) for EROO activities of male rats

collected at both sites at Mounds East and West. Both the reference and

landfarm sites at Mounds East and West had a significant decline in activity

between the EROO activity from animals terminated on the day of capture and

those sacrifice up to 48 hours later. An analysis was conducted on EROO

activities of male rats collected from the landfarm site and matched reference site

at Mounds East, Mounds West and Ponca City. A history-time of termination

interaction was found (p=O.0191). For the reference sites, a significant decline

(p=0.0207) in activity between the EROO activity from animals terminated on the

day of capture and those sacrificed up to 48 hours later was found. A decline
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(p<0.0001) was also found in the EROD activity between animals from the

treatment site terminated on the day of capture and those sacrifice up to 48

hours later. No difference in activity due to time delay was found between the

males collected from the remediated sites (Figure 6).

MROD and CYP1A2

There were no significant differences between sites in MROD acitivity in

the females collected in the summer of 1999 (Figure 7). Within the summer

males. Ponca City and Mounds West animals from the landfarm sites had a

significant elevation of MROD activity (p=0.0431, p=0.0034, respectively) when

compared to males from corresponding reference sites. Males from the landfarm

site in Duncan had a nonsignificant elevation of MROD activity (p=0.0524) when

compared to animals from the corresponding reference site. No significant

differences were found in the CYP1A2 levels for either males or females (Figure

7).

In the winter of 2000, a significant elevation of MROD activity (p=0.0007)

was detected in females from the landfarm site in Ponca City when compared to

animals from the matched reference site (Figure 8). A significantly lower MROD

activity (p=0.0379) was found in the males from the landfarm site in Mounds

West when compared to the males from the corresponding reference site.

Significant elevation (p=0.0047, p<0.0001) was detected in CYP1A2 levels in

both males and females from the landfarm site in Ponca City when compared to

animals from the matched reference site. The CYP1 A2 levels in males from the

landfarm site was significantly greater (p=0.0447) than that of animals from the
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Figure 6. Split plot analysis. Mean (± SE) O-dealkylation of ethoxyresorufin of
winter 2000 rats sacrificed on the day of capture and those
sacrificed 48 hours later (female and male cotton rats collected
from the landfarm site and matched reference site in Ponca City,
male cotton rats collected from the landfarm site and matched
reference sites in Mounds West and Mounds East and male cotton
rats collected from the landfarm site and matched reference sites in
Mounds West, Mounds East and Ponca City). Within each graph,
asterisks indicate significant differences (p<0.05).
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corresponding reference site in Mounds East. As only one reference female was

caught in Duncan no statistical test could be performed. No other differences

were found in the other sites (Figure 8).

Insufficient animals were captured in Duncan to allow a day of capture

termination in the winter of 2000 (Figure 9). In Mounds West and East

inadequate numbers of females were caught to allow a day of capture

termination. Ponca City females and males from the landfarm site had

significantly elevated MROD activities (p=0.0071, p=0.027 respectively) and

CYP1 A2 levels (p=0.0164, p=0.0111) when compared to animals from the

reference site. No differences were detected in MROD activity and CYP1A2

levels in males from Mounds West and East sacrificed on the day of capture in

the winter of 2000 (Figure 9).

Within females caught in fall 2000, only animals caught in the landfarm

site in Ponca City showed induction of MROD activity (p=0.0003) when

compared to the females from the corresponding reference site (Figure 10).

Males from the landfarm sites in both Ponca City and Mounds East showed an

elevation of MROD activity (p=0.002, p=O.0433 respectively) when compared to

the males from the matching reference sites. Duncan and Mounds West males

showed no differences in MROD activity. Ponca City males collected from the

landfarm sites were the only animals, male or female, that showed a significant

induction of CYP1A2 levels (p=0.0169) when compared to animals from the

corresponding reference sites (Figure 10).
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Figure 7. Mean (± SEM) O-dealkylation of methoxyresorufin and optical density
of cytochrome P4501A2 immunoreactive bands of female and male
cotton rats caught in summer 1999. Asterisks indicate a significant
elevation of the treatment enzyme activity over the reference
enzyme activity within one site (p<O.05). n=6, except where noted
in the graphs.
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Figure 8. Mean (± SEM) O-dealkylation of methoxyresorufin and optical density
of cytochrome P4501A2 immunoreactive bands of female and male
cotton rats caught in winter 2000. Asterisks indicate a significant
elevation of the treatment enzyme activity over the reference
enzyme activity within one site (p<0.05). n=6, except where noted
In the graphs.
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Figure 9. Mean (± SEM) O-dealkylation of methoxyresorufin and optical density
of cytochrome P4501 A2 immunoreactive bands of female and male
cotton rats caught in winter 2000 and sacrificed on the day of
capture. Asterisks indicate a significant elevation of the treatment
enzyme activity over the reference enzyme activity within one site
(p<0.05). n=6, except where noted in the graphs.
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Figure 10. Mean (± SEM) O-dealkylation of methoxyresorufin and optical density
of cytochrome P4501A2 immunoreactive bands of female and male
cotton rats caught in fall 2000. Asterisks indicate a significant
elevation of the treatment enzyme activity over the reference
enzyme activity within one site (p<0.05). n=6, except where noted
in the graphs.
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A split plot analysis was used to analyze MROD activity across all

seasons, site histories, and both sexes (Figure 11). An interaction was found

between history and sex (p=O.0504). Male animals from remediated sites were

found to have significantly higher MROD activity (p=0.0054) than females from

the same sites. Female treatment rats were determined to have significant

induction of MROD activity (p=0.0232) when compared to reference females

(Figure 11).

Split plot analysis was used to determine if there were any patterns in

MROD activity between winter 2000 animals sacrificed on the day of capture and

those held up to 48 hours before termination (Figure 12). Male and female

cotton rats collected from the landfarm site and matched reference site at Ponca

City were analyzed together as the Ponca City sites were the only ones where

sufficient female animals were collected. A history-time of termination interaction

was found (p=0.0032). There was no difference found between animals

collected from the reference site at Ponca City sacrificed at either time point (day

of capture or 48 hours after capture). The animals collected from the treatment

site at Ponca City exhibited a significant decline (p=O.0002) in MROD activity

between animals sacrificed on the day of capture and those sacrificed 48 hours

later. An analysis was conducted on MROD activities of male rats collected from

the landfarm site and matched reference site at Mounds East and West. A time

of termination effect was found (p=0.0017). Both the reference and landfarm

sites at Mounds East and West had a significant decline in activity between the

MROD activity from animals terminated on the day of capture and those
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L

sacrificed up to 48 hours later. An analysis was conducted on MROD activities of

male rats collected from the landfarm site and matched reference site at Mounds

East, Mounds West and Ponca City. A time of termination effect was found

(p=0.0008). The MROD activity declined between the males terminated on the

day of capture and those sacrificed up to 48 hours later (Figure 12).

PROD

Of all cotton rats capture in summer 1999, only females collected from the

landfarm site in Duncan had elevated PROD activity (p=0.0299) when compared

to females from its reference site (Figure 13). In winter 2000 female rats from the

landfarm site at Ponca City showed induction of PROD activity (p=0.0039) when

compared to reference animals. Winter 2000 males collected from the landfarm

site in Mounds West had significantly lower PROD activity (p=0.0389) when

compared to reference males. No other differences were found in PROD

activities in animals collected in the winter of 2000 (Figure 13).

Induction of PROD activity (p=0.0468) was found in females from the

landfarm site in Ponca City when compared to animals from the reference site

(Figure 14). No differences were found in the males sacrificed on the day of

capture in the winter of 2000 collection. In fall 2000, males and females captured

at the landfarm site at Ponca City showed an induction of PROD activity

(p=0.0075, p=0.0031 respectively) when compared to the reference site animals.

No other differences were detected in the fall of 2000 animals (Figure 14).

Split plot analysis was used to compare PROD activities across all

seasons, site histories, and both sexes (Figure 15). An interaction was found
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Figure 11. Split plot analysis. Mean (± SE) O-dealkylation of methoxyresorufin
of female and male cotton rats. Within each graph, ascending
letters indicate significant differences (p<O.05). Letters a & band c
&d indicate significant difference.
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"

Figure 12. Split plot analysis. Mean (± SE) O-dealkylation of
methoxyresorufin of winter 2000 rats sacrificed on the day of
capture and 48 hours later (female and male cotton rats collected
from the landfarm site and matched reference site in Ponca City,
male cotton rats collected from the landfarm site and matched
reference sites in Mounds West and Mounds East and male cotton
rats collected from the landfarm site and matched reference sites in
Mounds West, Mounds East and Ponca City). Within each graph,
asterisks indicate significant differences (p<0.05).
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Figure 13. Mean (± SEM) O-dealkylation of pentoxyresorufin of female and male
cotton rats caught in summer 1999 and winter of 2000. Asterisks
indicate a significant difference in the treatment enzyme activity
when compared to over the reference enzyme activity within one
site (p<0.05). n=6, except where noted in the graphs.
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Figure 14. Mean (± SEM) O-dealkylation of pentoxyresorufin of female and male
cotton rats caught in winter 2000 and fall 2000 that were sacrificed
on the day of capture. Asterisks indicate a significant elevation of
the treatment enzyme activity over the reference enzyme activity
within one site (p<0.05). n=6, except where noted in the graphs.
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between site history and sex (p=0.0317). Landfarmed sites in Ponca City and

Duncan were classified as treatment sites. The landfarm sites in Mounds West

and East were classified as remediated. No differences were detected in the

males. Treatment females were found to have higher PROD activities (p=0.017,

p=0.0313 respectively) when compared to reference and remediated females.

Split plot analysis was used to determine if there were any patterns in

PROD activity between winter 2000 animals sacrificed on the day of capture and

those held up to 48 hours before termination. Male and female cotton rats

collected from the landfarm site and matched reference site at Ponl?a City were

analyzed together as the Ponca City sites were the only ones where sufficient

female animals were collected. An analysis was done of PROD activities of male

rats collected from the landfarm site and matched reference site at Mounds East

and West. An analysis was also done of PROD activities of male rats collected

from the landfarm site and matched reference site at Mounds East, Mounds West

and Ponca City. No differences in PROD activity were observed from the time of

termination in any of these analyses.

Histology

No differences were detected in acellularity, picnotic nuclei, cloudy

swelling, immune cell clumps or cell size in males and females captured from

either Ponca City or Duncan in the Summer of 1998 (Figure 16).

66

"..
~
j
~

;

'...
c0,..
•

1I

i

..



.....

Figure 15. Split plot analysis. Mean (± SE) O-dealkylation of pentoxyresorufin
of female and male cotton rats. Within each graph, ascending
letters indicate significant differences (p<O.05). Letters a & b
indicate significant difference.
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Figure 16. Mean (± SEM) observations of histological features of the livers of
female and male cotton rats caught in summer 1998. n=6. except
where noted in the graphs.
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Glutathione S-Transferase

No differences were detected in the glutathione s-transferase activity in

females or males in the summer of 1999 or winter of 2000 collections terminated

48 hours after capture (Figure 17).

In sites where sufficient numbers of animals were collected, no differences

in glutathione s-transferase activity were detected in winter 2000 rats sacrificed

on the day of capture (Figure 18). In the fall 2000 collection, females collected

from the landfarm site in Ponca City had greater glutathione s-transferase activity

(p=0.0043) when compared to reference animals. Males from the landfarm site

in Mounds West had a detectable decline in glutathione s-transferase activity

(p=0.013) compared to reference animals in the fall. No other differences were

detected in the fall of 2000 glutathione s-transferase activity (Figure 18).

Split plot analysis of glutathione s-transferase activity across all seasons,

site histories, and both sexes was performed (Figure 19). Season and sex

(p=0.0135) were found to be interactive factors, as were history and season

(p=O.027). In the summer of 1999, animals from remediated landfarm sites

(Mounds West and East) were found to have higher glutathione s-transferase

activity (p=0.0037, p=0.0315 respectively) when compared to animals from

reference and treatment sites. Animals collected from the remediated sites had

higher glutathione s-transferase activity (p<0.0001 and p=0.0002 respectively) in

the summer and winter than in the fall. The reference and treatment sites had

rats with higher enzyme activity (p=0.0019, p= 0.0219 respectively) in the winter

than summer. The difference for higher activity (p<0.0001, p=0.0006
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respectively) in the reference and treatment animals in the winter was also

present when comparing to the fall. The GST activity levels of the rats collected

from the remediated site were higher (p<0.0001, p=0.0002 respectively) in the

summer and winter when compared to the animals in the fall. Female rats in the

summer and winter had higher enzyme activity (p=0.0252. p<0.0001) than

females in the fall. This relationship of summer and winter animals having higher

activity (p<0.0001) than fall animals was also true for the males. In the summer,

male rats were found to have higher glutathione s-transferase activity (p=0.0066)

than the females (Figure 19).

Split plot analysis was used to determine if there were any patterns in

glutathione s-transferase activity between winter 2000 animals sacrificed on the

day of capture and those held up to 48 hours before termination. Male and

female cotton rats collected from the landfarm site and matched reference site at

Ponca City were analyzed together as the Ponca City sites were the only ones

where sufficient female animals were collected. An analysis was done of

glutathione s-transferase activities of male rats collected from the landfarm site

and matched reference site at Mounds East and West. An analysis was also

done of glutathione s-transferase activities of male rats collected from the

landfarm site and matched reference site at Mounds East, Mounds West and

Ponca City. No differences in glutathione s-transferase activity were found to

result from the time of termination in any of these analyses.
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Figure 17. Mean (± SEM) glutathione s-transferase activity of female and male
cotton rats caught in summer 1999 and winter 2000. n=6, except
where noted in the graphs.
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Figure 18. Mean (± SEM) glutathione s-transferase activity of female and male
cotton rats caught in winter 2000 and fall 2000 that were sacrificed
on the day of capture. Asterisks indicate a significant difference in
the treatment enzyme activity compared to the reference enzyme
activity within one site (p<0.05). n=6, except where noted in the
graphs.
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Figure 19. Split plot analysis. Mean (± SE) glutathione s-transferase activity of
female and male cotton rats. Within each graph, ascending letters
indicate significant differences (p<O.05). Letters a &b, c &d and e
& f indicate significant difference.
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Glutathione

No differences were observed in total glutathione levels, glutathione

(GSH) levels or GSH to total glutathione ratios of either males or females from

Ponca City in the fall of 2000 (Figure 20). Split plot analysis of Ponca City

glutathione levels in the fall of 2000 across histories, and both sexes was done

using SAS (Figure 21). No interactions were found for the ratio of GSH to total

glutathione. An interaction of history and sex as factors was determined for total

glutathione (p=0.015). Treatment males had more total glutathione (p=0.0233)

than reference males. There was a nonsignificant difference for males collected

from unremediated landfarm sites (treatment sites) to have more total glutatione

(p=0.051) than females from the same sites. An interaction of history and sex

(p=0.0251) was also found for GSH levels. Again treatment males had more

GSH (p=0.0172) than reference males. For GSH, however, the relationship of

male treatment animals having more GSH (p=0.0355) than females was

significant (Figure 21).
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Figure 20. Mean (± SEM) glutathione levels in female and male cotton rats from
the reference and treatment sites at Ponca City captured in fall
2000. n=6.
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Figure 21. Split plot analysis. Mean (± SE) of glutathione levels of female and
male cotton rats from the reference and treatment sites at Ponca
City captured in fall 2000. Within each graph, ascending letters
indicate significant differences (p<0.05). Letters a & b, c & d and
e & f indicate significant difference.
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Coefficients of Variability

Assay . Variability Coefficient of Variability N

EROD Within A Plate 4.17 d 6

EROD Between Plates 7.46 tr, t :t) 3

MROD Within A Plate 5.598 i , 8

MROD Between Plates 1.89 2

PROD Within A Plate 0.67 . ... 3

PROD Between Plates 3.19 4
,

Densitometry - CYP1A1 Between gels 67.87
-~,

11

Densitometry - CYP1 A2 Between gels 40.16 ' Jf 11

GST ; , Within A Plate 4.10 ...... 3

GST Between Plates 5.07
, 11

Table 2: Coefficients of Variability of Assays in this study.
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DISCUSSION

Cotton rats and 0ther native rodents are being considered for monitoring

of soil bound contaminants (Elangbam et a11989a; Flickinger and Nichols 1990;

Fouchecourt et al 1999; Lochmiller et al 1999). Petroleum hydrocarbons are vital

to today's economy and there is concern about disposal of the resulting wastes.

Certain contaminants such as PAHs have a high bioavailability in mammals.

Monitoring of rodent liver enzymes and other hepatic parameters evaluates the

bioavailability and possible impact of the contaminants as well as effects of those

contaminants on wild animals exposed to environmental stressors. The objective

of this study was to increase understanding of terrestrial toxicant bioavailability

and hepatic effects of chronic exposure to landfarmed petroleum wastes, and to

determine the suitability of cotton rats as bioindicator organisms.

TIME OF SACRIFICE

Previous studies have examined CYP isozyme alterations in cotton rats

exposed to petrochemical wastes using hepatic EROD, MROD, and PROD

activities as biochemical markers of exposure to CYP1A and CYP28 inducing

compounds. Incorporated a time delay between capture and sacrifice of rats of

approximately 48 hours (Elangbam et al 1989a, b, 1991a, b; Lochmiller et al

1999; Kim et al 2001 b). This could be problematic from a biomonitoring

perspective as certain CYP isozymes, particularly CYP1A, are known to rapidly

down regulate once exposure to contaminants is removed. The half lives of CYP

isozymes vary from 8 to 35 hours (Guengerich and Liebler 1985). Studies in old

world rats (Rattus norvegicus) reported limited biological half lives of PAHs (e.g.
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half life of benzo(a)pyrene was 5-10 minutes) (Eisler 1987). In gulls dosed with a

low level of crude oil, EROO activifes decreased significantly after 24 hours and

were back to control levels by 72 hours (Peakall et al 1989). Therefore, a major

objective of this thesis was to compare hepatic EROO, MROO and PROD

activities in cotton rats held for 48 hours following capture with enzyme activities

determined as soon as possible following capture.

To achieve this objective, three separate split plot analyses were done.

Split plot analysis allows for elucidation of interactions and patterns involving

EROO or MROD, the time of sacrifice and the site or rat characteristics, such as

treatment or sex. Within the animals collected from the unremediated landfarm

site at Ponca City both males and females had significantly higher EROO and

MROO activity (3.5, 2-fold respectively) on the day of capture sacrifice compared

to a later sacrifice. No difference in activity with change in time of sacrifice was

found in the males and females from the reference site at Ponca City. At two

remediated landfarm sites (Mounds West and East) and their matched reference

sites, male cotton rats had significantly higher EROO and MROO activity (2, less

than 2-fold respectively) when sacrificed on the day of capture when compared to

those sacrificed up to 48 hours later. When the males from all three landfarm

sites (Ponca City, Mounds West and Mounds East) Were analyzed along with

their matched referen(Ce sites a different pattern of changes due to time of

sacrifice appeared. Again males from the Ponca City unremediated landfarm site

had a higher EROO activity (4-fold) when sacrificed on the day of capture when

compared to those sacrificed up to 48 hours later. The reference males from all
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three sites had a higher ERGO activity (2-fold) when sacrifi<:ed on the day of

capture when compared to those rats from the same site terminated up to 48

hours later. In contrast to the analysis including only the males from Mounds

West and East remediated landfarm and matched reference sites, the analysis

including males from the landfarm sites and matched reference sites at Ponca

City, Mounds West and Mounds East revealed a pattern of no difference in

EROO activity resulting from the time of sacrifice within Ule males from Mounds

West and Mounds East remediated landfarm sites. MROO activity was also

different in the analysis including the males from the three sites (Ponca City,

Mounds West and Mounds East). Males from the unremediated landfarm site

(Ponca City), remediated landfarm sites (Mounds West and Mounds East) and

reference sites all had higher MROO activity (less than 2-fold) when sacrificed on

the day of capture when compared to the males from the same sites sacrificed

up to 48 hours later. In a previous study with a time delay between capture and

sacrifice, EROO has been found to been induced less than 2 fold in cotton rats

captured at a refinery compared to those captured at a matched reference site

(Lochmiller et al 1999).

The differences found between the separate analyses of the unremediated

(Ponca City) and remedi.ated landfarm (Mounds West and East) sites may have

resulted from degradation of Ah receptor agonists that induce CYP1A at the

remediated landfarm sites. The lack of differentiation in the EROO and MROO

activities between the reference and remediated landfarm sites at Mounds West

and East may be due to historic contamination of the reference sites. Nearby to
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Mounds West and East reference sites was one of the biggest oil finds in

American history (Glenn Pool strike) (Franks 1984). This strike commenced

North of Mounds West and East expanded rapidly south (Franks 1984). Due to

inadequate storage capacity, earthen pits were flooded with oil (Franks 1984). In

addition to the seepage from these pits, the wooden storage tanks and pipelines

when they were built were known to leak (Franks 1984). The wooden storage

tanks were sometimes toppled by the wind, which is the reason they were

eventually replaced by steel tanks (Franks 1984). During this time, it was not

uncommon to observe Polecat Creek, which ran thru Glenn Pool, thickly covered

with crude oil (Franks 1984).

In summary, hepatic EROD and MROD activities in this study were found

to significantly decline within 48 hours after capture of rats (Figs 6,12). If there is

a delay between capture and sacrifice of cotton rats, biological monitoring of sites

using rodent hepatic EROD and MROD activities may well give an erroneously

low picture of contaminant exposure. Although it limits the use of the animals for

certain immunological tests, the results of this study indicate that when using

EROD and MROD activities as biochemical markers of exposure to AhR

agonists, animals should be sacrificed as quickly as possible after capture to get

an accurate idea of exposure.

In general the CYPIIB family of enzymes have longer half-lives when

compared to CYPIA enzymes (Ioannides and Parke 1990). This is in accordance

with the findings of this study. "fhe same three split plot analyses were

performed for PROD activities as were done for EROD and MROD. No
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differences were found between PROD activities from animals sacrificed Ort the

day of capture and those sacrificed up to 48 hours after capture. Thus when

monitoring for compounds that induce CYP28 enzymes keeping the time

between capture and sacrifice minimal is less vital.

CYTOCHROME P450

Within the order 'Rodentia interspecific variability has been found among

cytochrome P450-dependent enzymes both in inducibility and substrate

specificity (Astrorn et al 1986, Hincks and Brindley 1986, Novak and Qualls 1989,

Qualls et al 1998). Classical inducers of CYP28 and CYP1A include

phenobarbital and 3-methylcholanthrene, respectively. Substrate specificity was

thought to contribute to differences found in EROD, MROD and PROD activity

between phenobarbital induced Sprague-Dawley (Old World) rats and

phenobarbital induced cotton rats (Novak and Qualls 1989). Cotton rats and

Sprague-Dawley rats displayed similar reactions to 3-methylcholanthrene with

elevation of EROD, MROD and PROD activity (Novak and Qualls 1989).

Phenobarbital administration resulted in elevated EROD activity with no change

in MROD or PROD activity in Sprague-Dawley rats, but in cotton rats it resulted

in elevated MROD and PROD actiVity with no change in EROD activity (Novak

and Qualls 1989). Use of indigenous rodents increases the ecological relevance

when dealing with contaminated sites as compared to use of lab strain rodents

with little genetic variability.

Cotton rats dosed with injections of classical inducers of CYP2B and

CYP1A reported total cytochrome P450 levels increased 1.5 to 2-fold in both
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sexes (Elangbam et aI1989b). Another study using the same inducers fQund

significant inductiQn in EROD, MROD and PROD activity ([10,5], [6,.8 ..5], and

[4.5, 2]-fold [females and males] fQr EROO, MROD and PROD respectively), in

CQttQn rats treated with 3-methylcholanthrene (Novak and Qualls 1989). In

males, treatment with phenQbarbital induced EROD (less than 2-fQld), but nQt

MROD Qr PROD, with nQ significant effect fQund in the females (NQvak and

Qualls 1989). AroclQr 1254 dQsing induced EROO and MROD (4 tQ 8-fQld) and

PROD (2 tQ 3-fQld) in CQtton rats (Henneman et al 1994). In a study cQmparing a

Superfund tQxic waste dump and its matched reference site, male CQttQn rats

cQllected from the Superfund site were fQund tQ have elevated EROD, MROD

and PROD activities (8, 4, and 3-fQld respectively) (Elangbam et aI1991a).

Thus, CQttQn rats appear tQ respQnd tQ classical CYP1A inducers similarly tQ

laboratQry strains Qf rats.

RQQS et al (1996) fQund that at PAH cQntaminated sites (4 fQrmer cQking

plants and a fQrmer gas plant), mQst Qf the 2- tQ 4-ring PAHs were degraded by

microbial actiQn, but abQut one-third Qf 5- and 6- ring PAHs remained in the soil

and were biQavailable tQ rodents. RQQS et al (1996) expQsed Sprague-Dawley

rats tQ a diet containing SQil from the 5,PAH cQntaminated sites and fQund that

the extent Qf EROD elevatiQn in the liver had linear correlatiQn with the amQunt

Qf 5 &6- ring PAHs in the SQil and nQt with the tQtal PAHs Qr PAHITQtal Qrganic

carbQn ratiQ. The RQQS et al (1996) studywQuld indicate thatQn PAH

contaminated sites mQnitoring Qf EROD activities in rQdents gives a gQod

indicatiQn Qf the 5- and 6-ring PAHs that are biQavaiiable. This correlates with
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another study in which lab mice were injected with an artificial reconstituted

mixture of PAHs manufactured to resemble gas plant residue or fractions of this

mixture containing 2-ring, 3-ring or ~4-ring; PAHs (Chaloupka et al 1995). With

these PAH mixtures it was determined that PAHs with 4 or more rings induced

hepatic EROD and CYP1A1 mRNA levels (Chaloupka et aI1995). Induction of

hepatic MROD and CYP1A2 mRNA levels was found with PAHs containing 4 or

more rings, but a large portion of the induction was attributed to 3-ring PAHs

(Chaloupka et al 1995). Low induction was found for 2-ring PAHs for either

EROO and CYP1A1 mRNA levels or MROO and CYP1A2 mRNA levels

(Chaloupka et aI1995). Considering previous studies, evaluation of EROO and

MROO induction in native rodents on sites contaminated with PAHs would

elucidate the bioavailability of PAHs with 3 or more rings.

The differences found between this study and others done on

petrochemical waste sites may be due to variation in contaminants and

contaminant location. Various polyaromatic hydrocarbons have been detected

on the sites in this study. The enzyme induction found in the animals from these

sites is likely due to these contaminants. Not detectable in the soil from the

reference sites, several 3-, 4-, and 5-ring PAHs (acenapthene, anthracene,

acenapthylene and benzo(k)fluoranthene) were detected on both the remediated

and unremediated landfarm sites with the detected levels of 3,4,5-ring PAHs

being higher on unremediated landfarm sites (Schroder unpublished). Soil levels

of phenanthrene, benzo(a.)anthracene, chrysene, f1uoranthrene, pyrene,

benzo(a)pyrene, benzo(b)f1uoranthrene, dibenzo(a,h)anthracene and
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indeno(1 ,2,3)CD-pyrene (3-, 4-, S-, 6-ring PAHs) were elevated on the

unremediated landfarm sites when compared to the detectable levels found on

the reference and remediated landfarm sites (Schroder unpublished).

Napthalene and benzo{g,h,i)perylene (2, 6-dng'PAHs) levels found in the soil had

a declining pattern, with the unremediated lan'dfarm sites having more than the

remediated landfarm sites which had more than the reference sites. The

presence of the PAHs at the reference sites is not surprising as they are

ubiquitous in the environment, although results may be skewed because of the

possible contamination at the two Mounds reference sites as'mentioned

preViously (Eisler 1987). Exposure of cotton rats to these 4,5.6-ring PAHs are

the most likely contaminants responsible for the enzyme alterations observed in

this study.

In this study, low level (2 to 4 fold) induction of hepatic ERGD activity was

determined in cotton rats collected from three of the landfarm sites (Ponca City,

Mounds West and Mounds East) when compared to rats from matched reference

sites. The animals from one of the unremediated landfarm sites (Duncan) had no

elevation of ERGD when compared to the animals of its matched reference site.

The lack of ERGD induction observed at Duncan may be due to lack of biological

availability or may be due to poor habitat on the site causing rodents to avoid

areas with high concentrations of contaminants. The Duncan landfarm site has

large areas of bare ground I which does not suit cotton rat habitat preferences

(Cameron and Spencer 1981).
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In general, induced MROD activities found in this study were slightly lower

than EROD. MROD has been found to be induced less than 2 fold in cotton rats

captured at an abandoned refinery compared to those :captured at a matched

reference site (Lochmiller et aI1999). In the present study, low levels (2 to 7

fold) of MROD induction were found in animals from one of the unremediated

landfarm sites (Ponca City) when compared to rats from the matched reference

site.

Consistent, but low induction of PROD activity (less than 2 to 2-fold) was

observed in the present study in female rats collected from one of the

unremediated landfarm sites (Ponca City) when compared to females from the

matched reference site. Males from the same unremediated landfarm site had

elevated PROD levels (less than 2 fold) compared to the males from the matched

reference site only in the fall. Females from the other unremediated landfarm

site (Duncan) when compared to the matched reference site demonstrated an

elevation of PROD activity (2-fold) only in the summer. Of the animals from the

two remediated landfarm sites only males in the winter from the one site showed

a difference in PROD activity compared to the animals from the matched

reference site. Interestingly this difference was a decline in PROD activity. This

selective inhibition may have been due to meta] .contamination on the site. Both

the unremediated and remediated landfarm site soils had elevated levels of As,

Ba, Ni and F compared to the reference sites (Schroder unpublished). It has

been found that certain metal ions can inhibit CYP enzyme activities (Testa and

Jenner 1981, Lewis 1996). There is some evidence that certain metals inhibit
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GYP isoforms preferentially (Le. cadmium salts inhibit CYP2E, but not CYP3A)

(Lewis 1996). Another study reported a 1ess than 2- to 10-fold increase of PROD

activity in Sprague Dawley rats fed various soils from sites contaminated with

PAHs (Roos et a11996). PROD activities in Sprague-Dawley rats exposed to

PAH-contaminated soil were correlated with 5- & 6- ring PAHs (Roos et aI1996).

Elevated PROD activity was assumed to be due to induction of GYP1A1

isozymes (Roos et al 1996). While GYP isozymes have specificity towards

different substrates, considerable substrate overlap can exist (Guengerich and

Liebler 1985). Constitutive CYP2B content has been found to be higher in males

(presumably Old World rats) (Ioannides and Parke 1990). However, no

differences in constitutive PROD activity were found between males and females

in this study. In addition, no seasonal patterns were found in the PROD activities

of the rats collected from any of the sites. Immunoblotting in conjunction EROD

and PROD activity in male Wistar rats found GYP1A to be responsible for EROD

and tn part PROD activity and CYPIIB was responsible for PROD (Nakajima et al

1990). In this study, PROD may have been enhanced by CYP1A activity as was

suspected in the Roos et al (1996) study.

CYP1A WESTERN BLOTIING

CYP1A1 and CYP1A2 were differentiated using a polyclonal antibody that

recognized both isozymes. After SDS and heat treatment, the two isozymes

separated on polyacrylamide gels into a distinct doublet of immunoreactive

bands because of differences in their size and conformation, with CYP1 A2

traveling slightly slower than CYP1A1. Determination of isozyme identity was
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performed using information from the company that produced the antibody and

confirmed by similar findings In another study (Letcheret al 1996).

Determination of CYP1A1 and CYP1A2 protein served two purposes in this

thesis. First, it provided confirmation that CYP1A1 and CYP1A2 proteins were

actually present in hepatic microsomes, supporting the use of EROO and MROD

as catalytic markers of CYP1A1 and CYP1A2, respectively, in cotton rats.

Second, an objective of this thesis was to compare CYP1A Western blotting as

an alternative method to measliJring EROD and MROD.

Immunoblotting of hepatic CYP1 A1 in the present study determined a 3-10

fold increase, but only in males captured in the winter from one unremediated

landfarm site (Duncan) and one remediated landfarm site (Mounds West)

compared to males collected from matched reference sites. Immunoblotting of

CYP1A2 determined an increase of less than 2 to 30-fold following the pattern of

MROO induction, but only in animals captured during the winter and fall from one

of the unremediated landfarm sites (Ponca City and Duncan) compared to the

animals from the matched reference site.

No significant correlation was found between EROD and CYP1A1

immunoreactive bands or MROD and CYP1A2 immunoreactive bands (data not

shown). High variability in the Western blotting.determinations may have

contributed to the lack of correlation. There was a distinct visual correlation

between hepatic MROD induction and increased CYP1A2 protein levels in cotton

rats collected from the unremediated landfarm site and matched reference site at

Ponca City in the winter and fall. Such a correlation was not evident when
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examining the relationship between EROD induction and CYP1 A1 protein levels

in cotton rats collected from the same sites. This may be due to increased

CYP1 A2 protein resulting in increased MROO and EROO activity due to overlap

in substrate specificities. Another possibility is that the variability found in

Western blotting of CYP1A1 bands, which was greater-in CYP1A1 than CYP1A2

bands, was high enough to mask any changes..

GLUTATHIONE S-TRANSFERASE. I"

No consistent patterns of increased GST activity were observed in cotton

rats collected from any of the contaminated sites in this study. No induction of

GST activity was found in a laboratory study pretreating cotton rats with

microsomal enzyme inducers (phenobarbital, 3-methylcholanthrene or

pregnenolone 16a.-carbonitrile) (Watkins 1991). A study of male cotton rats

inhabiting various hazardous waste sites found a slight decrease in GST activity

(less than 2-fold) in cotton rats on only one site compared to its matched

reference site (Rattner et al 1993). Animals from two other sites in the Rattner et

al (1993) study had no change in GST actiVity when compared to their matched

reference sites. Sex related differences in GST have been found in mice,

apparently under the control of testosterone (Mannervik and Danielson 1988). In

cotton rats, constitutive GST activ1ties were found te be higher in males than

females (Watkins 1991). Males collected from both reference and treatment

sites in summer of 1999 did have a higher level of GST activity than females

collected from the same sites in the same season, but this was the only season

that differences due to sex were found. Both males and females showed a
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seasonal pattern of higher GST activity in the summer and winter than in the fall.

Animals collected from the unremediated landfarm and reference sites had

higher GST activity in the winter when compared to the fall or summer. This

contrasts with another study of cotton rats inhabiting various hazardous waste

sites and matched reference sites that found higher GST activity in the winter

than in the summer (Rattner et al 1993). Animals from the remediated landfarm

sites (Mounds West and East) exhibited this pattern of higher activity in the

winter and summer when compared to the fall. The only pattern found between

sites was for animals from the remediated landfarm sites to have higher GST

activity than animals from the reference and unremediated landfarm sites, but

only in the summer. With the low levels of EROD, MROD and PROD induction,

large changes in GST activity were not expected.

Certain metal compounds (cadmium iodide, cadmium chloride, copper

chloride and lead acetate) have been found to inhibit GST (Mannervik and

Danielson 1988). This may have confounded the findings in this study as these

sites are contaminated with metals as mentioned previously.

GLUTATHIONE

Males collected from the unremediated landfarm sites (Ponca City and

Duncan) were found to have higher GSH levels than females from the same

sites. Males collected from the unremediated landfarm sites (Ponca City and

Duncan) were found to have higher total glutathione and GSH levels than males

collected from the reference sites. This may have been due to metal exposure,

PAHs or a combination of both.
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Alterations of glutathione status generally follow the pattern of decreasing

GSH and increasing GSSG, deviating from the nonchallenged status of

approximately 99.5% GSH and 0.05% GSSG (Redegeld and Galaris 1990, Smith

and Mitchell et aI1989). Some cases of pathological or chemical insult have

resulted in higher than normal GSH concentrations (Kosower and Kosower

1989). GSH levels are influenced by nutritional status and stress, such as

fasting, refeeding after fasting and dietary protein levels (Taniguchi et al 1989).

Glutathione turnover is faster in males than females in mice (Taniguchi et al

1989). However, no difference was found in total glutathione between males and

females in this study.

Recently phytochelatins, enzymes that detoxify heavy metals (particularly

cadmium), have been discovered in the nematode (Caenorhabditis elegans)

(Vatamaniuk et al 2001). Phytochelatins are synthesized from glutathione, thus

furthering the importance of glutathione in the detoxification of heavy metals

(Vatamaniuk et al 2001). Perhaps after validation of phytochelatin assays in

mammals, they too will be monitored in animals on metal contaminated sites in

the future.

As the subcellular pools of GSH (microsomal and cytosolic) appear to

respond independently, further study of glutathione status should look at the

mitochondrial pool as it has shown to be sensitive to administration of oxidants

(Romero and Galaris 1990). Important for experimental design is the fact that

hepatic GSH levels have been found to undergo circadian rhythms with a peak in

the morning and lower levels in the afternoon (Taniguchi et aI1989).
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HISTOLOGY

No patterns were found in any of the histological markers eXamined at any

of the sites in the present study. These histology findings are consistent with the

pattern of low EROD and MROD induction and lack of GST and glutathione

changes. Difficulties were encountered because of loss of cell contents in some

of the slides. A laboratory study exposing cotton rats to Aroclor 1254 found

hypertrophy, fat accumulation and areas of cellular necrosis in liver (Henneman

et al 1994). Proliferation of smooth endoplasmic reticulum is not always visible

with a light microscope, and sometimes it is necessary to use an electron

microscope (Cullen and Ruebner 1991,). Total cytochrome P450 increase has

been correlated with proliferation of the smooth endoplasmic reticulum in cotton

rats collected from a site contaminated with polychlorinated biphenyls, so much

so that mitochondria were displaced (Elangbam et al1991 b). Proliferation of the

smooth endoplasmic reticulum is expected with large induction of CYP enzymes

as this is where the enzymes are located in the cell.

SEASON AND SEX EFFECTS

Season and the sex of the animals were found to have a significant effect

on EROD activities and CYP1 A1 content. Females collected from the

unremediated landfarm sites (Ponca City and Duncan) had higher EROD

activities in the winter compared to males. The only elevations in CYP1A1

content above females were detected in males collected from one unremediated
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and one remediated landfarm site (Duncan and Mounds West, respectively) in

the winter. This agrees with patterns found under laboratory conditions with sex,

reproductive status, and biological rhythms reported as factors that influence the

cytochrome P450 system (Rattner et al 1989). Sex was found to have a

significant effect on MROO activity, with males collected from remediated

landfarm sites (Mounds West and East) having higher MROO activity than

females collected from the same sites. Unlike the lack of seasonal pattern within

MROD actiVity, season was found to have an effect on CYP1A2levels, with

induction found in the winter and fall, but not the summer. I I

A seasonal pattern in EROO and MROD activity has been previously

reported in cotton rats collected on petrochemical contaminated sites, with higher

activity found in the summer, but not in the winter (Lochmiller et al 1999). This is

in contrast to the pattern of higher EROD levels detected in the winter when

compared to the summer and the lack of seasonal pattern in MROO in this study.

Higher total cytochrome P450 content in the winter compared to the summer was

found in another study involving cotton rats inhabiting three hazardous waste

sites (Rattner et al 1993). Seasonal effects in CYP activity or content have been

found in previous studies, but the season of greatest change was not consistent

between studies (Rattner et al1989, 1993, Lochmiller et al1999, Kim et al

2001a). Possible reasons for this seasonal effect include shifting dietary habits

by season, seasonal stress (Le. reproduction), seasonal activitY and rapid

population turnover. Cotton rats are known to shift their dietary habits and even
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activity (larger rats were less active in the winter) by season (Cameron and

Spencer 1981, Kincaid and Cameron 1982, Eifler and Slade 1998).

The constitutive CYPIA content has generally been found to be higher in

females (presumably in Old World rats) (Ioannides and: Parke 1990). Higher

inducibility of total cytochrome P450 levels in females has been found in several

different rodents (Astrom et aI1986). A laboratory study examining EROD,

MROD and PROD induction following exposure to Aroclor 1254 found female

cotton rats to be less sensitive than males (Henneman et al 1994). In cotton rats

exposed to 3-methylcholanthrene (a classic inducer of CYPIA), females were

found to have a higher EROD, MROD and PROD activity than males (Novak and

Qualls 1989, loannides and Parke 1990). Phenobarbital-induced male cotton

rats were found to have slightly higher EROD, MROD and PROD activities than

females (Novak and Qualls 1989). In the present study, a pattern of higher

EROD activity in females collected in winter was found in the unremediated

landfarm sites (Ponca City and Duncan) and reference sites, but not in female

rats collected in winter from the remediated landfarm sites (Mounds West and

East). This pattern was not observed in MROD activity; in fact males from the

remediated landfarm sites were found to have higher MROD activity than

females from the same sites. Previous studies using cotton rats reported

induction of EROD, MROD and PROD activities and total cytochrome P-450

content in males, but nonsignificant elevation in females (Elangbam et al 1989a,

1991a). This was attributed to high individual variability, particularly in females

(Elangbam et aI1991a).
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It has been suggested that high individual differences among female

cotton rats diminishes their usefulness in monitoring toxicants in the environment

(Elangbam et al 1991a).. This idea was not supported in this study, since In

induction of hepatic EROD, MROD and PROD activities were evident in both

males and females. Additionally, a problem often encountered in studies using:

animals captured in the field is obtaining sufficient numbers of animals. Low

cotton rat population levels have been encountered in the field, thus limiting

statistical evaluation (Elangbam et al 1991 a, Hattner et al 1993). Limiting a study

to one sex of animal would make collections more labor intensive, more

expensive (more traps needed) or not possible in areas with low population

densities caused by either natural factors (Le. habitat or food source) or

contaminants. Additionally, predatory factors such as fire ants can lower the

number of live animals collected (Rattner et al 1993). Rattner et al (1993)

encountered a site that had a combination of low population density and high

mortality caused by fire ants resulting in the capture of only four male rats.

REMEDIATED AND UNREMEDIATED LANDFARMS

Refiners in the United States, Canada and Europe have employed

landfarms in the disposal of petroleum waste (American Petroleum Institute

1984). In the United States, the US Comprehensive Environmental Response,

Compensation and Liability Act (CERCLA) or Superfund act of 1980 is the

legislative action dealing with sites such as the ones in this study.

Adding to the genetic variability found when performing field studies with

wild organisms is the variability in site contamination and treatment. Different
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refinery processes produce different grades of petroleum and result in the

generation of different wastes (American Petroleum Institute 1984). Certain

hydrocarbons and heavy metals (Le. Cr, Pb, Cd, As and Ni), if present in the

waste, can have an inhibitory effect on microbial activity (Huesemann 1994). Soil

characteristics such as pH, temperature, moisture and natural microbes present

influence biodegradation of hydrocarbons (American Petroleum Institute 1984,

Huesemann 1994). High organic carbon content has been found to be a critical

parameter for successful microbial degradation of PAHs with minimal microbial

toxicity (Roos et al 11 996). Anaerobic bacteria have been found that can

dechlorinate polychlorinated biphenyls, producing mixtures that have a lower

EROD induction potential in rat cell cultures (Mousa et al 1998). Studies

assessing the bioavailability of contaminants to mammals are important when

considering future uses for landfarmed land. Considering whether petroleum

waste is bioavailable to mammals is also important because of the concern about

children playing on or near contaminated sites and inhaling flne particles or

ingesting small quantities of soil while at play (Roos et al 1996).

Higher enzyme activity in animals collected from unremediated landfarm

sites compared those collected from remediated landfarm sites were only evident

in females (EROO in the winter and PROD). Additionally, higher enzyme activity

(EROO in fall males and GST in the summer) in the animals collected from

remediated landfarm sites compared to those collected from reference sites were

not consistent across sex or season. This indicates that the animals from

remediated landfarm sites probably range in between animals from unremediated
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landfarm or reference sites in exposure to contaminants. This is consistent with

the PAH concentrations on the sites as mentioned previously. Based on these

data, this would indicate that remediation is effective to a certain degree.

Alternatively, the history of the remediated landfarm sites leaves the possibility

that exposure is inconsistent resulting from patchiness of contaminants in the

environment.

RATS & BIOMONITORING

Wider variation is expected when looking at wild species because of

genetic and environmental factors (Walker 1980). It has been suggested that

terrestrial carnivores may have less metabolizing capacity in general when

compared to herbivores or omnivores (Walker 1980). This leaves the possibility

of greater threat to carnivores than to herbivores or omnivores, but the population

densities of carnivores are often very low prohibiting statistical analysis especially

when considering the genetic variation that is encountered in wild populations.

Although bioavailability of PAHs to microorganisms decreases with increasing

total organic carbon values, this relationship does not necessarily apply to

mammals (Roos et al 1996). No correlation was found in a study of PAH

contaminated soil between bacterial toxicity and mammalian bioavailability (Roos

et al 1996). This lack of correlation between microorganism and mammal

bioavailability limits the use of microorganisms as surrogate organisms for

mammals.

RECOMMENDATIONS ON ENDPOINTS FOR BIOMONITORING
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GYP enzymes and GST have been detected in the intestine of laboratory

rodents (Marcus et al1978, Sarasquete and Segner 2000). Monitoring CYP

enzymes and GST levels in the intestine may lead to a more complete picture of

exposure, particularly very low exposure to toxicants. Although the intestine is

not a major organ for detoxification, it would be one of the first organs exposed in

cases of ingestion of toxicants. Pulmonary tissue of wild and laboratory Old

World rats has also been found to contain inducible total GYP, EROO activities

and GYP1A levels (less than 2 to 12-fold) that can be induced by 2,3,7,8­

tetrachlorodibenzo-p-dioxin or polychlorinated biphenyl contaminated fine soil

particles (Beebe et al 1990, Nessel et al 1992, Fouchecourt and Riviere 1995

and 1996, Fouchecourt et al 1998). CYP enzymes found in the pulmonary tissue

were found to be more sensitive at nonmaximal induction doses of 2,3,7,8­

tetrachlorodibenzo-p-dioxin (Nessel et al 1992). Exposure to polychlorinated

biphenyl, petrochemical waste or polychlorinated biphenyl and petrochemical

waste contaminated soils found Old World rat EROD more inducible in the lung

with induction of 3 to 7-fold for the liver and 9 to 28-fold for the lung (Fouchecourt

and Riviere 1995 and 1996, Fouchecourt et al 1998).

Therefore, future studies should consider monitoring CYP activities with

EROO and MROO. Both preferentially monitor G.YP1A isoform activities. High

variability and large time investment leads to the recommendation of preferential

use of EROO and MROO. However, Western blotting should be conducted in

each study using animals with an uncharacterized CYP system to confirm the

presence of specific isozymes. Monitoring of PROD or other assays with a
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preference for CYP isoforms other than CYP1A allows for economical monitoring

for other contaminants on sites with unclear contamination histories. Monitoring

of total glutathione and GSH gives an idea of the state of phase II hepatic

detoxification. Monitoring of glutathione s-tranferase activity did not add

information to this study and although the assay is of great ease, the components

of the assay are conspicuously toxic.

Light microscopy of histological slides was also not informative.

Evaluation of hepatic sections with an electron microscope may provide a better

indication of cellular toxicity. After validation of phytochelatin assays in

mammals, monitoring phytochelatin levels in animals on metal contaminated

sites may yield future insight into metal detoxification. The seasonal effects

found in this and other studies, as mentioned previously, illustrate the importance

of monitoring among different seasons. As mentioned previously, the time

between capture and sacrifice should be minimized. Further study of glutathione

status should look at the mitochondrial pool as well as the cytosolic pool, keeping

the approximate time of day at sacrifice consistent.

Important to keep in mind is that monitoring of biomarkers produces

correlation information rather than cause and effect relationships (Peakall

1992b). The correlation between CYP1A activity and PAHs and the findings of

this study would indicate that using the EROD and MROD activities of native

rodents is a accurate and cost effective method to monitor ~3-ring PAH

bioavailability on contaminated sites (Chaloupka et al 1995, Roos et al 1996).
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APPENDIX A: Microsome and Cytosol Preparation

Procedure
1. All glassware should be at 4°C in ice buckets. Start refrigeration of

centrifuge at 4°C.
2. Check pH of 0.05M Tris 1.15% KCI buffer. Readjust to 7.5 if necessary.

Keep on ice.
3. Prepare one 50ml beaker, filled with 20 ml of Tris/KCI buffer and keep

them on ice.
4. Weigh each rat, then sacrifice it by cervical dislocation. Rapidly take out

the liver. Rinse the liver with Tris/KCI buffer at 4°C.
5. Weigh each liver and place it in 50 ml beaker with Tris/KCI at 4°C.
6. Cut livers into pieces with scissors and transfer to large homogenizer.

Homogenize 5 times at speed 5 (reverse), keeping the tube on ice. Rest
one minute on ice. Homogenize 5 times at speed 5 (reverse) and transfer
into plastic centrifuge tube, again on ice.

7. Fill each tube to the shoulder with Tris/KCI buffer. Balance tubes that will
oppose each other in the rotor. Centrifuge 20 minutes at 10,000xg at
4°C.

8. Decant supernatant into ultracentrifuge tubes. Discard pellet.
9. Fill each tube to the shoulder with Tris/KCI buffer. Balance tubes that will

oppose each other in the rotor (CAREFULLY!). Centrifuge 60 minutes at
100,OOOxg at 4°C.

10. Prepare cyrovials for cytosol and microsome storage.
11. Aliquot supernatant into cytosol tubes. Freeze at -BO°C.
12. Wash the pellet 3 times with 1ml 0.25M sucrose. Resuspend each pellet

with 1ml of 0.25M sucrose and loosen pellet with glass rod. Transfer to a
small homogenizer.

13. Homogenize 3 times at speed 3 at 4°C, keeping the tube on ice.
14. Aliquot into cyrovials labeled microsomes. 0.25ml/ vial into 5 vials.

Freeze immediately at -80aC.

Stock solution recipes
0.05M Tris 1.15% KCI pH 7.5 4°C (Tris/KCI buffer)

1 liter 2 liters
KCI 11.5g 23.0g
Tris 6.05g 12.11g
In a beaker add KCI, Tris and most of the volume of distilled water. Adjust
pH to 7.5 with HCI and then make up the volume with remaining distilled
water. Store at 4°C. Readjust pH to 7.5 before using. Stable one month
at 4°C.
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o.25M Sucrose
100ml 500ml 1 liter

Sucrose .56g 42.79g 85.57g
Add sucrose and full volume of distilled water to beaker. Stir until
dissolved and then filter through paper. Stable for ahout a week at 4°C.
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APPENDIX B: DC Protein Assay (BIORAD, Hercules CAl

Procedure
1. Prepare 1 in 50 dilution (5 J.lg of microsome in 250 J.l1 distilled H20) of

microsome samples and 1 in 25 dilution (10 J.lg of cytosol in 250 J.l1 distilled
H20) of cytosol samples in distilled H20 of samples to be assayed.

2. Prepare 1 in 50 dilution of standards each day. A bovine serum albumin
(SSA) protein standard, of concentration 1.47 J.lg/J.ll, is diluted in distilled
H20.

Prepare standard curve
1. 0.1 J.lg/J.l1 protein: 6.8 J.l1 protein standard + 93.2 J.l1 di H20
2. 0.2 J.1g/J.l1 protein: 13.6 III protein standard + 86.4 J.l1 di H20
3. 0.4 J.1g/J.l1 protein: 27.2 III protein standard + 72.8 J.l1 di H20
4. 0.6 J.lg/J.l1 protein: 40.8 J.l11 protein standard + 59.2 J.l1 di H20
5. 0.8 J.1g/J.l1 protein: 54.4 III protein standard + 45.6 III di H20
6. 1.0 J.1g/J.L1 protein: 68.0 III protein standard + 32.0 J.l1 di H20
7. 1.47 J.l911l1 protein: 100 III protein standard

If using a BSA protein standard of a different concentration use dilution
calculations to adjust the above protein amounts.

Initial concentration/Desired concentration = Dilution Factor
Desired Final volume/Dilution Factor = Volume of Sample
Desired Final volume-Volume of Sample = Volume of Solvent

3. Pipette 5J.l1 of standards and sampres into clean, dry microplate.
4. Add 25 J.l1 of kit reagent A to each well using a multichannel pipettor.
5. Add 200 III of kit reagent B to each well using a multichannel pipettor.
6. Mix for 15 minutes protected from light.
7. Read using microplate reader at 750 nm absorbance.
8. Correct readings for 1 in 50 dilution.
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APPENDIX C: EROD & MROD & PROD Assay

Temp. 37°C for rats/20°C for fish. Light subdued
Amounts are determined for one 96 well microplate

Procedure
1. Make Resorufin dilution standards (Protect from light)

Prepare standard curve dilutions of Resorufin as follows:
1. 0.0005 mM Resorufin: 6ul 0.01mM stock + 114ul DMSO
2. 0.001 mM Resorufin: 12ul 0.01mM stock + 108ul DMSO
3. 0.0025 mM Resorufin: 30ul 0.01 mM stock + 90ul DMSO
4. 0.005 mM Resorufin: 6ul 0.1 mM stock + 114ul DMSO
5. 0.01 mM Resorufin: 120ul
6. 0.02 mM Resorufin: 24ul 0.1 mM stock + 96ul DMSO
7. 0.06 mM Resorufin: 72ul 0.1mM stock + 48ul DMSO
8. 0.1 mM Resorufin: 120ul

2. Calculate dilutions to obtain 6mg. protein/ml for each sample.
3. Defrost microsomes on ice.

4. Turn on spectrofluorometer(Biochemistry 349)(Needs 45 minutes to warm
up)

5. Assign sample #s to wells of the plate(96 wells per plate) (Microsome
samples done in duplicate and Standards done in triplicate).

6. Take an aliquot of Hepes buffer containing 5mM MgCh (30mL per plate)
from fridge and allow equilibrate to room temp.

7. Remove bottle of Beta-NADPH from fridge, and set at room temp. for 1/2
hr before opening bottle to weigh out Beta-NADPH.

8. Obtain bucket of ice

9. Label eppendorf tubes with sample numbers

10. Mix 136uL of 1mM Eth-, Meth-, Pent- oxyresorufin stock in 25mL of
Hepes Buffer containing 5mM MgCb. Shield from light

11. To each well add 230ul of Eth-, Meth-, Pent- oxyresorufin/Buffer solution
with multichannel pipettor and cover plate with plate sealer and wrap in
aluminum foil.

12. Dilute microsomes to 6mg of protein per ml with O.25M Sucrose (final
volume 100ul). 950ul of Control microsome.

13. Place diluted microsomes on ice

14. Mark lids and return stock microsomes to -70°C. Freeze

15. Make up 1mL (for each plate) 6.25 mM Beta-NADPH in cold Hepes Buffer.
Cover with aluminum foil and keep on ice. Place Beta-NADPH in amber
2ml vial.

16. Take plate(s), timer, pipette tips, 10uL pipettor, gloves, microsomes and
solutions (6.25 mM Beta-NADPH & Resorufin dilution) to Biochemistry
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17. Set spectrofluorometer temp to 37°C-Preset #2

18. Access "Qualls" folder from main menu of Macintosh

19. Access Carlson folder from Qualls and then template-Ruth 1

20. Under Filter Select Menu -Set emission wavelength to 590nm and
excitation wavelength to 544nm=Preset #3&3 on Spectrofluorometer

21. For each sample-well add the following sequentially:

For the Standard Blank:
10ul6mg/ml control microsome in 0.25M sucrose(stir to mix with pipette
tip)
For the Standards:
10ul 6mg/ml control microsome in 0.25M sucrose
10ul of specified concentration of Resorufin (stir to mix with pipette tip)
For the Unknown Blanks:

10uL of Microsomes (stir to mix with pipette tip)
For the Unknowns:

10uL of Microsomes{warm 2 minutes)

Add 10ul of 6.25mM NADPH (stir to mix with pipette tip)

22. PROD-Set timer for 100 minutes-place plate in incubator (rat microsomes)

MROD-Set timer for 40 minutes-place plate in incubator (rat microsomes)

EROD-Set timer for 10 minutes -place plate in incubator (rat microsomes)

23. After timer g08s off take final reading

Standard Curve Procedure
Add sequentially:
230ul of Eth-, Meth-, Pent- oxyresorufin/Buffer Solution
10ul 6mg/ml control microsome in 0.25M sucrose
1Oul of specified concentration of Resorufin is added

Resorufin Stock Solutions:
[Initial] [Final]
Resorufin mM Resorufin mM
0.0005 0.0025
0.001 0.005
0.0025 0.0125
0.005 0.025
0.01 0.05
0.02 0.10
0.06 0.3
0.1 0.5
0.16 0.8

Dilution Calculations
Initial concentration/Desired concentration = Dilution Factor
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Desired Final volume/Dilution Factor = Volume of Sample
Desired Final volume-Volume of Sample = Volume of Solvent

E I PIxam ole ate
1 2 3 4 5 6 7 8 9 10 11 12

A Blank STD2 STD5 STD8 U1 U5 U9 U13 U17 U21 +c
B Blank STD3 STD5 STD8 U1 U5 U9 U13 U17 U21 +c
C Blank STD3 STD6 STD8 U2 U6 U10 U14 U18 U22
0 STD1 STD3 STD6 STD9 U2 U6 U10 U14 U18 U22 IH. __

E STD1 STD4 STD6 STD9 U3 U7 U11 U15 U19 U23
F STD1 STD4 STD7 STD9 U3 U7 U11 U15 U19 U23
G STD2 STD4 STD7 U4 U8 U12 U16 U20 U24
H STD2 STD5 STD7 U4 U8 U12 U16 U20 U24

Stock solution recipes
6.25mM Beta-NADPH Tetrasodium salt

Beta-NADPH
HEPES - MgCI2 Buffer (cold)

0.0055 g
1 ml

Prepare fresh before each plate is run. MAKE LAST. Keep on ice at all
times. Reduce exposure to light. Let NADPH equilibrate to room temp
before weighing.

0.25M Sucrose
Sucrose
Dist. water
Filter through paper
(Stable a couple of weeks max.)

8.56g
100 ml

0.1 M Hepes Buffer containing 5mM MgCb
1)MgCb * 6H20 (MW 203.3)

MgCb * 6H20
Dist. H20
Store in fridge

pH 7.8
Quantity
10.165g
500ml

Final Cone.
100mM

11.915g
25ml
425ml

2)HEPES
HEPES
MgC12 0.1M
Dist. H20
Adjust to pH 7.8
Adjust volume to 500ml with Dist. H20
Store in fridge

100mM
5mM
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Note: Ethoxyresorufin comes in 1mg vials & is very stioky. Warm to room
temp and add 5ml of DMSO into ethoxyresorufin vial. Vortex well.
Protect from light. May take up 24 or greater hours for all of the
sample to go into solution.

1 mM Ethoxyresorufin (MW 239.0)
Ethoxyresorufin
DMSO

1.207 mg
5ml

1 mM Methoxyresorufin (MW 239.0)
Methoxyresorufin
DMSO

1.207 mg
5ml

Note: Methoxyresorufin comes in 1mg vials & is very sticky. Warm to
room temp and add 5ml of DMSO into methoxyresorufin vial. Vortex
well. Protect from light. May take up 24 or greater hours for all of
the sample to go into solution.

1 mM Pentoxyresorufin (MW 239.0)
Pentoxyresorufin
DMSO

1.207 mg
5ml

Note: Pentoxyresorufin comes in 1mg vials & is very sticky. Warm to
room temp and add 5ml of DMSO into pentoxyresorufin vial. Vortex
well. Protect from light. May take up 24 or greater hours for all of
the sample to go into solution.

0.5 ml
4.5ml

0.5 ml
4.5 ml

0.5ml
4.5 ml

11.759mg
5ml

Resorufin (MW=235.18g)
Store at room temp. Protect from light

Stock solutions.
A) 10.0 mM in DMSO

Resorufin
DMSO

B) 1.0 mM in DMSO
1O.OmM stock
DMSO

C) 0.1 mM in DMSO
1.0 mM stock
DMSO

D) 0.01 mM in DMSO
0.1 mM stock
OMSO
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APPENDIX D: Western Blotting

t t''df G 1M' 1250/<Separa !nO e IX - o acrylaml e concen ra mn
Stock Solution One Gel Two Gels
Lower Stock (pH 8.8, 1.5M Tris Hel, 0.4% SOS) 8ml 16ml
Acrylamide/Bis Stock (30/0.8%) 13.36ml 23.72ml
distilled water 10.1ml 20.18ml
10% Ammonium Persulfate 160ul 320ul
TEMED 14ul 28ul

S k' G 1M'tac !ng e IX

Stock Solution One Gel Two Gels
Upper Stock (pH 6.8, 0.5M Tris Hel, 0.4% SDS) 2.5ml 5.0ml

Acrylamide/Bis Stock (30/0.8%) 1.5ml 3.0ml
distilled water 6ml 12ml

10% Ammonium Persulfate 30ul 60ul
TEMED 10ul 20ul

Procedure
1. Clean the gel set-up with ethanol and make sure seals are lubricated.
2. Make up 10% Ammonium Persulfate solution.

0.1 g Ammonium Persulfate in 1ml distilled water
3. Combine separating gel mix components. Pour 28ml of mix for each gel.
4. Overlay gel' with sec butanol
5. Allow 1/2 to 1 hour for polymerization.
6. Pour off sec butanol.
7. Rinse with dH20
8. Blot excess H20 with filter paper.
9. Combine stacking gel components.
10. Pour stacking gel with combs in place.
11. Make sure there are no bubbles under the combs.
12. Polymerize for 1 hour.
13. Dilute samples with 2xSOS sample buffer with BME. Vortex diluted

samples.
14. Remove comb.
15. Fill wells with dHzO and then suction wells dry with vacuum apparatus

fitted with a needle tip.
16. Make up 2L of 1xrunning buffer by dilution of 10xrunning buffer.
17. Heat diluted samples and kaleidoscope standard in a dry heat bath set at

90°C for 3-5 minutes.
18. Dry load gel.
19. Carefully top off wells by trickling running buffer along the spacers

between wells.
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20. Run gel at room temperature at constant Ma (check for bubbles at start)
until dye line reaches the bottom of the glass plates.

one gel: 32 Ma
two gels: 70Ma

21. Remove gel from electrophoresis apparatus and from between glass
plates. Remove stacking gel and discard. Cut upper left corner of the gel
for orientation. Place in cold (4°C) transfer buffer.

22. Slide the 0.45uM nitrocellulose membrane under the gel.
23. Assemble transfer sandwich making sure to wet each component with

transfer buffer. Assemble on the gray (+) side of the plastic sandwich.
1)sponge
2)filter paper
3)0.45uM nitrocellulose membrane, which has the gel on top.
4)gel
5)fiIter paper - Roll glass tube over filter paper to remove air
bubbles from between the gel and membrane.
6)sponge

24. Orientate sandwich so that the gray (+) sides match up.
25. Fill transfer apparatus with transfer buffer.
26. Drop in stir bar.
27. Run transfer at 4°C (in fridge) at a constant voltage. Check for bubbles

and moving stir bar at start.
30V for 15 hours

28. After transfer, remove gel and filters.
29. Air dry nitrocellulose membrane for approximately 10 minutes. Dispose of

gel.
30. Block membrane with room temperature TBS-T with 5% skim milk for 1

hour in a plastic container on a shaker.
31. Remove membrane. Drip off as much 5% solution as possible.
32. Incubate membrane in primary at appropriate dilution (1 :1000) in room

temperature TBS-T with 1% skim milk for at least 1 hour in a ziplock bag
on a rolling platform.

33. Rinse membrane with TBS-T on a shaker in a plastic container.
A) 5 minutes then dump and get new TBS-T
B) 10 minutes then dump and get new TBS-T
C) 15 minutes

34. Incubate membrane with secondary antibody linked to horseradish
peroxide at appropriate dilution (1 :2000) in 1% skim milk TBS-T for 1 hour
at room temperature in a ziplock bag on a rolling platform.

35. Rinse membrane with TBS-T on shaker in a plastic container.
A) 5 minutes then dump and get new TBS-T
B) 10 minutes then dump and get new TBS-T
C) 15 minutes

36. Develop membrane for 5 minutes in equal volumes of Reagent A and B
from chemilumnescent substrate (5ml of each).

37. Wrap membranes in cling film and tape down to photograph cassette.
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38. Take timer, film, gloves, developing reagents, drying rack and cassette to
dark room.

39. Expose blue sensitive film to membranes in cassette for set times.
40. Run film through developer, water, and then fixer. Hang to dry.

Stock Solutions
Acrylamide Stock

30% Acrylamide
0.8% NI N-Melhlyene-bis-acrylamide

500ml
150g
4g

1L
300g
8g

Make up to volume of solution with dH20 and dissolve with stirring for 1
hour. Filter solution through filter paper and store at 4°C. The solution is
stable for 3-4 months.

Lower/Separating SOS-Page stock

1.5M Tris base (pH 8.8)
0.4% SOS

500ml
90.825g
2g

Dissolve components in 450ml of dH20 and adjust to pH 8.8. Make up
remaining volume with dH20. Store at 4°C. Stable for months, possibly
up to a year.

Upper/Stacking SOS-Page stock

0.5M Tris base (pH 6.8)
0.4% SOS

100ml
6.06g
O.4g

Dissolve components in most of the dH20 and adjust to pH 6.8. Make up
remaining volume with dH20. Store at 4°C. Stable for months, possibly
up to a year.

2x SOS Sample Buffer

0.05M Tris base (pH 6.8)
1%SOS
30% Glycerine
0.01 % Bromophenol Blue

100ml
0.605g
19
30ml
0.01g

Dissolve Tris base, SOS, glycerine in most of the dH20, then adjust to pH
6.8. Add bromophenol blue and make up rest of volume with dH20.
Stable at room temperature for 1 year. NOTE: Before using buffer for
SOS-PAGE p-mercaptoethanol (20ul per 1ml of 2x sample buffer). Add
the p-mercaptoethanol fresh on the day of sample dilution.
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10x SDS-PAGE Running Buffer

247.8mM Tris Base
1.918M Glycine
1%SDS

4L
120g
576g
40g

Dissolve all components in enough dH20 to make up 4L. DO NOT
ADJUST pH. Stable at room temperature indefinitely. To prepare 1X
Running buffer, dilute 1:10 with dH20.

Transfer Buffer

25mM Tris base
192mM Glycine
20% Methanol
0.1% SDS

3L
9.084g
43.239g
600ml
3g

Mix two batches of all components together and make up remaining
volume with dH20. DO NOT ADJUST pH. Buffer can be used 3 times,
but must be stored at 4°C. Buffer is stable for several months.

Tris-Buffered Saline-Tween 20 (TBS-T)

20mM Tris base (pH 7.5)
500mM NaCI
0.05% Tween 20

4L
9.69129
116.99
2ml

Combine all components and most of the dH20 volume. Use syringe for
Tween 20 as it is very sticky. Adjust pH to 7.5 with HCI and then make up
volume with remaining dH20.
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APPENDIX E: Glutathione s-Transferase Specific Activity Assay

Procedure
1. Make up Assay Mixture (enough for 1 plate)

phosphate buffer 14.66ml
glutathione (1S0mM) O.20ml
CDNS (60mM) O.SOml

2. Set up plate reader to stabilize light source and to warm up.
Select:

Kinetics mode
Wavelength 340nm
Temperature 37°C
Scan time 5 minutes
Scan interval 15 seconds

3. Thaw and dilute cytosol samples in phosphate buffer (1:10 dilution). Keep
samples on ice.

4. Using multichannel pipettor and disposable troughs, pipette 100ul of
phosphate buffer into all wells of amicroplate.

5. Add four repetitions in 10ul aliquots of each diluted cytosol sample to wells
assigned to unknowns. Leave 8 wells with no unknowns added as blanks.

6. Using multichannel pipettor add 100ul of assay mixture to all wells.
7. Read plate immediately.
8. Correct readings for protein concentrations.

Stock Solutions
CDNB (1-chloro, 2,4-dinitrobenzene)

TOXIC- USE RESPIRATOR AND GLOVES.
60mM CDNB 0.121g
Ethanol 10ml

Solution stable for 2-4 days. Label solution as poison.

1 M Phosphate Buffer (pH 6.5)
Stock Solution #1: 0.2M sodium phosphate monobasic solution
NaH2P04 24g
dH20 1L
Stock Solution #2: 0.2M sodium phosphate dibasic solution
Na2HP04 28.4g
dH20 1L

Phosphate Buffer (0.1 M, pH 6.5)
200ml

Stock Solution#1 68.Sml
Stock Solution#2 31.Sml
dH20 100ml
Phosphate Buffer is stable for several Weeks.
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Glutathione

Glutathione
Phosphate Buffer

150mM
0.461g
10ml

Solution is highly unstable. Mix fresh each day.

E I PI txam ole ae
1 2 3 4 5 6 7 8 9 10 11 12

A ~Iank U1 U3 US U7 U9 U11 U13 U15 U17 U19 U21

B Blank U1 U3 U5 U7 U9 U11 U13 U15 U17 U19 U21

C Blank U1 U3 US U7 U9 U11 U13 U15 U17 U19 U21

D Blank U1 U3 US U7 U9 U11 U13 U15 U17 U19 U21

E Blank U2 U4 U6 U8 U10 U12 U14 U16 U18 U20 1.)22

F Blank U2 U4 U6 U8 U10 U12 U14 U16 U18 U20 U22

G Blank U2 U4 U6 U8 U10 U12 U14 U16 U18 U20 U22

H Blank U2 U4 U6 U8 U10 U12 U14 U16 U18 U20 U22
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APPENDIX F: Cayman Glutathione Assay Kit (Ann Arbor, MI)

Procedure

Liver Processing
1. All glassware should be at 4°C in ice buckets. Start refrigeration of

centrifuge at 4°C.
2. Check pH of 20mM Bis Tris buffer. Readjust to 6.6 if necessary. Keep on

ice.
3. Prepare one glass test tube, filled with 10 ml of Bis Tris buffer and keep

them on ice.
4. Weigh each rat, then sacrifice it by cervical dislocation. Rapidly take out

the liver. Rinse the liver with Bis Tris buffer at 4°C.
5. Weigh each liver and place it in tube with Bis Tris at 4°C.
6. Cut livers into pieces with scissors and transfer to large homogenizer with

5ml Bis Tris. Homogenize 5 times at speed 5 (reverse), keeping the tube
on ice. Rest one minute on ice. Homogenize 5 times at speed 5 (reverse)
and transfer into plastic centrifuge tube, again on ice.

7. Add 5ml MPA reagent, vortex, and let stand for 5 minutes at room
temperature.

8. Centrifuge at 5,000 rpm in a microfuge for 5minutes.
9. Collect supernatant and transfer into 3 labeled cyrovials. Freeze

immediately at -80°C.

Total Glutathione Assay
1. Equilibrate all reagents to room temperature.
2. Reconstitute kit reagents:

Dilute MES Buffer 2X with equal volume of distilled H20
Reconstitute cofactor mixture with 0.5 ml of distilled H20 and mix

well.
Dilute enzyme mixture with 2 ml of MES buffer 1X and mix well.

3. To thawed samples add 50 ~I of TEAM reagent per ml of sample (5 lJl
TEAM reagent in 100 J.l.1 sample) to be used in this assay and vortex.

4. Dilute samples (from step 1) 75:1 with MES Buffer 1X (10 J.l.1 sample in 740
).ll MES Buffer).

5. In separate tubes, prepare standards.
A. O).lM GSSG: 0 J.l.1 GSSG standard + 500 J.l.1 MES buffer 1X.
B. 0.25).lM GSSG: 5 III GSSG standard + 495 III MES buffer 1X.
C. 0.5 lJM GSSG: 10 lJl GSSG standard + 490 lJl MES buffer 1X.
D. 1.0 J.lM GSSG: 20 III GSSG standard + 480 III MES buffer 1X.
E. 2.0 JlM GSSG: 40).l1 GSSG standard + 460 ).ll MES buffer 1X.
F. 4.0 J.lM GSSG: 80 lJl GSSG standard + 420 lJl MES buffer 1X.
G. 6.0 J.lM GSSG: 120 III GSSG standard + 380 lJl MES buffer 1X.
H. 8.0 J.lM GSSG: 160 lJl GSSG standard + 340 lJl MES buffer 1X.

6. Add 50 III of standard (A-H) to each designated well.
7. Add 50 III of sample to each unknown well.
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8. Cover plate with provided plate cover.
9. Reconstitute DTNB vial with 0.5 ml of distilled H20 and mix well

(Reconstituted DTNB must be used within 10 minutes).
10. Prepare Assay Cocktail

Assay Cocktail
MES Buffer 1X 11.25 ml
reconstituted cofactor mixture 0.45 ml
reconstituted enzyme mixture 2.1 ml
distilled H20 2.3 ml
reconstituted DTNB 0.45 ml

11. Remove plate cover and add 150 ,.d of Assay Cocktail to each well using a
multichannel pipettor.

12. Replace cover and incubate the plate in the dark on an orbital shaker.
13. Measure the absorbance at 405 nm using a microplate reader at 5

minute intervals for 30 minutes (6 readings total).

Glutathione Disulfide (GSSG) Assay
1. Equilibrate all reagents to room temperature.
2. Reconstitute kit reagents:

Dilute MES Buffer 2X with equal volume of distilled H20.
Reconstitute cofactor mixture with 0.5 ml of distilled H20 and mix

well.
Dilute enzyme mixture with 2 ml of MES buffer 1X and mix well.

3. In separate tubes, prepare standards.
A. 0 j.LM GSSG: 0 j.L1 GSSG standard + 500 J.!l MES buffer 1X.
B. 0.25 j.LM GSSG: 5 j.L1 GSSG standard + 495 j.L1 MES buffer 1X.
C. 0.5 IlM GSSG: 10 j.L1 GSSG standard + 490 III MES buffer 1X.
D. 1.0 j.LM GSSG: 20 j.L1 GSSG standard + 480 j.L1 MES buffer 1X.
E. 2.0 j.LM GSSG: 40 j.L1 GSSG standard + 460 j.L1 MES buffer 1X.
F. 4.0 j.LM GSSG: 80 j.L1 GSSG standard + 420 J.L1 MES butter 1X.
G. 6.0 j.LM GSSG: 120 j.L1 GSSG standard + 380 j.L1 MES buffer 1X.
H. 8.0 j.LM GSSG: 160 j.L1 GSSG standard + 340 j.L1 MES buffer 1X.

4. To thawed samples add 50 III of TEAM reagent per ml of sample (5 j.L1
TEAM reagent in 100 III sample) to be used in this assay and vortex.

5. Dilute samples (from step 1) 4:1 with MES Butter 1X (10 III sample in 390
j.L1 MES Buffer).

6. Add 40 J.L1 of 1M 2-vinylpyridine to each sample.
7. Add 5 III of 1M 2-vinylpyridine to each standard.
8. Vortex the samples and standards and then incubate at room temperature

for 60 minutes.
9. Add 50 III of standard (A-H) to each designated well.
10. Add 50 III of sample to each unknown well.
11. Cover plate with provided plate cover.
12. Reconstitute DTNB vial with 0.5 ml of distilled H20 and mix well

(Reconstituted DTNB must be used within 10 minutes).
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, 3. Prepare Assay Cocktail
Assay Cocktail

MES Bulfer fX 11.25 ml
reconstitoted cofactor mixture 0.45 ml
recor)stituted enzyme mixture 2.1 rnl
distilled H20 2.3 ml
reconstitu'ted DTNB 0.45 ml

14. Remove plate cover and add 150 III of Assay Cocktail to each well using a
multichannel pipettor.

15. Replace cover and incubate the plate in the dark on an orbital shaker.
16. Measure the absorbance at 405 nm using a microplate feader at 5

minute intervals for 30 minutes (6 readings total).

Glutathione (GSH) Concentration
Subtract the GSSG concentration from the total glutathione concentration
for each sample.

Stock Solutions
Bis Tris Buffer pH 6.6 at 4°C

Bis Tris
distilled H20

20mM
4.184g
1L

2-vinylpyridine

2-vinylpyridine
ethanol

1M
108 J.l1
892 J.l1

MPA reagent
Metaphosphoric Acid
distilled H20

10g
100ml

TEAM reagent
Triethanolamine
distilled H20
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xam )Ie ae
1 2 3 4 5 6 7 8 9 10 11 12

~ StdA ~tdA ~tdA U1 U1 U1 U9 ,U9 U9 U17 U17 U17

B IStd B StdB IStdB U2 U2 ,U2 U10 U10 U10 U18 U18 U18

C StdC StdC IStd C U3 U3 U3 U11 U11 U11 U19 U19 U19

D StdD Std 0 Std 0 U4 U4 U4 U12 U12 U12 U20 U20 U20

E IStd E Std E ~E U5 U5 U5( U13 U13 U13 U21 U21 U21

F Std F StdF StdF U6 1l,J6 U6 U14 U14 U14 U22 U22 U22

G StdG StdG StdG U7 U7 U7 U15 U15 U15 U23 U23 U23

H Std H Std H Std H U8 U8 U8 U16 U16 U16 U24 U24 U24

E I PI t

' ..

...
r
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