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Chapter 1

Introduction

This chapter is devoted to presenting the thesis format, describing the model used in sim-

ulation and experimentation, and descrihing the motivation for this research project. This

paper presents a few techniques that are commonly used on flexible structures today. It also

introduces a new technique that is based on the work by N.C Singer.

1.1 Motivation for Research

Exciting the natural resonances of a flexible system can cause excessive wear, noi e, failure,

or poor performance. Therefore, many researchers have devoted their resources to finding

methods to reduce or completely eliminate unwanted vibration. Adding stiffness to flexible

structures is one obvious solution to excess vibration, but many structures major design

criteria is weight reduction. The Space Shuttle remote manipulator is a good example of a

RANDOM INPUT INPUT SHAPER

-

Figure 1.1: Input Shaping
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structure that must be light weight and perfonn precise movement. It is actually the model

used in Singer's Ph.D. thesis [12], who was the first person to derive robustness constraints

for input shaping. Ideally researchers would like to be able to completely eliminate residual

vibration with control strategy instead of adding stiffness.

1.2 Thesis Structure Description

Chapter 2 briefly reviews some techniques used to reduce residual vibration and detailed

descriptions of a few input shaping techniques. Chapter 3 derives the mathematical model

of the mechanical system used in simulations and experiments. It also provides a brief

description of the hardware and software used in the experiments. Chapter 4 describes

detailed derivation of input shapers developed by Singer and an extension of his work.

Chapter 5 details the derivation of input shapers developed using Tuttle's technique in the

discrete Z-Domain. Chapter 6 describes the method to derive more robust input shapers and

"Time-Optimal" input shapers, techniques developed by Singhose. Chapters 4, 5, and 6 all

provide simulation and experimental re ults obtained using the model outlined in chapter 3.

Chapter 7 describes how these techniques were implemented on the hardware and pre ents

any problems with applying the techniques. Comparisons on the performance of the input

shapers are made in chapter 8. Final comments, conclusions, contributions, and topic for

future work are described in chapter 9. The MATLAB files used in simulation to test the

inpul shapers and create trajectory files for experiments are shown in appendix B, C, 0,

and E.
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Chapter 2

Literature Review

Input Shaping can be defined as convolving an arbitrary command signal with an input

shaper, and using the result as the new system input. The shaper is a sequence of positive

or positive and negative impulses with finite time. The shaped command signal should ex-

ecute commands without exciting a system's resonant frequency or frequencies. Figure 2.1

illustrates the input shaping technique for an open loop system, but input shaping is not

limited to open loop systems. It can also be implemented on closed loop systems.

The OIiginal pioneer of input shaping was Otto Smith [34] in the late 1950's. Smith

developed a technique called Posicast control that split a unit step input into two steps that

sum to one. The second step in Posicast control cancels the vibration that the first step

excites. Therefore, a system could be moved without vibration. The drawback to Posicast

control is that it is not robust to modeling errors and it only works if the system parameters

are exact. Singer [12] developed constraint equations to improve the robustness of input

RANDOM INPUT INPUT SHAPER

-

Figure 2.1: Input Shaping Structure

3



-

shaping and accommodate systems with multiple modes. The level of necessary robustness

is detennined by the user. The time lag that the input shaper introduces increases with ro

bustness. Smith's and Singer's input shaping technique are both derived and implemented

in the continuous time, but several researchers have devoted their efforts to frequency do

main input shaping approaches [1, 19,35].

Singh and Vadali [19] used time delays in the Laplace domain to cancel the system

poles and found that time delays are similar to Singer's input shaping technique. Bhat and

Miu [1] found a set of constraint equations based on point-to-point control in the continuous

time and simplified them by finding the Laplace transfonn of the constraints. Tuttle and

Seering [35] used a discrete domain zero placement technique to cancel the system poles

for multiple mode systems. The primary drawback of some of these techniques is that they

introduce a time lag into the rise time of a response equal to the overall length of input

shapero Singhose et. al. [30, 32, 33] has developed several "time-optimal" input shapers

that minimize the duration of input shapers but require negative impulses. Singhose [21, 22,

26,281 also used Singer's vector diagram representation to widen the region of in en itivity

of an input shapero Though there are many input shaping and command shaping techniques

available today, this research project focuses on techniques developed by Singer, Singhose,

and Tuttle.

2.1 Singer's Preshaping Command Technique

Neil Singer's preshaping command technique is based on generating a vibration free in

put [12, 15]. Singer accomplished this first by defini ng an expression for a system response

to an impulse input. The basis for choosing an expression was that any linear flexible sys

tem could be specified as a set of cascaded second-order poles with a decaying sinusoidal

response to an impulse input, described as

4
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Figure 2.2: System Response To Single Impulse And To Two Impulses Combined

(2.1)

A is the impulse amplitude, w is the natural frequency of a mode, ( is the damping

ratio of a mode, to is the time of the impulse, and t is time. Singer assumes that num rator

dynamics are not present in the plant. The justification for this assumption can be found

in [12].

Now assume that only one mode is present in a system. The design objective is to give a

system a series of impulses in a manner such that the system does not vibrate after the time

of the last impulse is applied. A two impulse sequence is the shortest input shaper and will

be used in the derivation of the constrai nt equations. Figure 2.2 is generated by equation 2.1

for a single mode system over an arbitrary time after the time of each individual impulse.

Figure 2.2 illustrates a system response to a single impulse and the system response to both

impulses combined. It shows that after the second impulse the system response does not

vibrate.



2.1.1 Derivation of Time Domain Input Shaper

In order to find an expression for the amplitude of vibration, Aamp , a trigonometric identity

was implemented to add the response of the two decaying sinusoidal responses:

(2.2)

where,

(2.3)

(2.4)

Using the result from equation 2.2 an expression for the Amplitude of Vibration for a

Multi-Impulse Input was derived:

Aamp = (2.5)

B j is th~ coefficient of the sine term in equation 2.1 for the yth impulse at time,l;j. where

tN is the time of the last impulse. Note that Bj is speci ned for a single mode system, where

( and ware the damping ratio and undamped natural frequency of the mode, respectively.

To eliminate residual vibration in a flexible system it is required that the amplitude of

vibration, Aamp , be zero after the time of the last impulse. This is accomplished by forcing

the individual squared sums in equation 2.5 be independently zero. That is,

(2.6)

6



A j Amplitude of the lh Impulse

t· Time of the lh ImpulseJ

(i Damping Ratio of the i th Mode

Wi Natural Frequency of the i th Mode

tN Sequence End Time

Table 2.1: Variables Definitions

(2.7)

From equations 2.6 and 2.7 a more general form of the zero vibration(ZV) constraint

was found to be:

(2.8)

(2.9)

For the given constraint equations, consider the case when N = 2. This yields the

following impulse amplitudes and impulse times: At, A2 , t 1 , and t 2 . It is common practice

in input shaping to assume that the first impulse, At, is equal to one and its impulse time

is t 1 = O. Now it is easy to see that there are two unknown, A2 & t2, and two constraint

equations, 2.8 and 2.9.

There are an infinity number of solutions to the constraint equations because of their

transcendental nature. Therefore, Singer applied additional constraints to determine a so-

lution for A2 and h He required that all the impulse amplitudes be positive and that the

time-duration of the shaper be the shortest possible that satisfies the aforementioned con-

straint. In [12] Singer found the amplitude of the second impulse to be:

7



(2.10)

at,

(2.11 )

where .K and ~T will be defined later.

In order to insure that the un-shaped command signal and the shaped command signal

provide the same steady state response, Singer required that all the impulse amplitudes sum

to one. That is equivalent to the following constraint:

(2.12)

Therefore, for the case when N = 2 the solution for the impulse amplitudes, Ai and

A2 , becomes:

where,

A _ .K
2- 1 +.K

~T = _t=7l'=:::::

wJl- (2

8

(2.13)

(2.14)

(2.15)

(2.16)



F

Figure 2.3: Mass Spring Damper

Note that 6T is the time of the first overshoot(one half of the period of damped oscil-

lation) and K is the step response overshoot of a 2-pole linear system with no numerator

dynamics. For example, the mass spring damper shown in figure 2.3 is a 2-pole linear

system. The transfer function for the system is defined as,

T(s) = 11m
8 2 + .2... s + ..trn '111

(2.17)

Define the system parameters as Tn = 1, k = 1, and b = 0.5. The transfer function 2.17

can be redefined to find the system's natural frequency(w"J and damping ratio«().

1
.'. T(s) = -2--0-5--1

s + . 8 + 8 2 + 2(w, s + w2
n n

(2.18)

Using equation 2.18, the system's modal prope/1ies were calculated to be Wit = 1

rael/sec and ( = 0.25. The overshoot level and time was calculated with equation 2.15

and 2.16. The calculated results were verified by plotting the unit step response of the

system shown in figure 2.4.

Figure 2.5 illustrates the shapeI' found on equations 2.t3 and 2.14. The shaper found is

referred to as a first-order with respect to robustness to modeling errors in frequency and in

damping. This means that the shaper can completely eliminate vibration from an arbitrary

input only if the system properties«( & w) are known exactly.

9



Step Response of Mass Spring Damper
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Figure 2.4: Mass Spring Damper Step Response
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figure 2.5: Two-Impulse Input Shaper
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Figure 2.6: First Order Shaper Sensitivity

To illustrate the sensitivity of a first order input shaper a ratio of the amplitude of vi bra-

tion, Aamp , with input shaping to the amplitude of vibration without input shaping can be

formed using equation 2.5 where N = 2.

v = e-(·IN (~Aje'." sin(tjwV1 _ (2)) 2+ (~Aje'." cos(tjwVl _ (2)) 2
(2.19)

By varying the frequency, w, from the system's nominal natural frequency, wo, fig-

ure 2.6 illustrates how sensitive a first order input shaper is to changes in natural frequency.

The hOlizontal axis is a non-dimensional frequency scale (w/wo). A line at 5% resid-

ual vibration is shown to illustrate the bound for an acceptable response. Note that when

w/wo = 1 a first order input shaper can completely eliminate all unwanted vibration, but

the slope of the curve is very sharp arounu the nominal natural frequency making small

errors in natural frequency significant. A measure of the level of robustness of a first order

shaper is to consider the width of figure 2.6, at the 5% level of acceptable vibration. There-

fore, the level of robustness for a first order shaper is less than ~ ±5% variation in natural

frequency. Singer [12, 15] shows that variations in the damping ratio does not effect the

level of residual vibration significantly.

To increase the level of robustness, Singer derived two additional constraint equations

I J



by taking the derivative of original constraint equations 2.8 and 2.9 with respect to the nat

ural frequency, w. This reduces the amount of residual vibration induced by small changes

in frequency. The result of taking the derivatives of equations 2.8 and 2.9 is,

N

L Ajtje-(iW;(tN-tJ) sin(tjwi~)= 0
j=i

N

L A/je-(;w;(tN-tj ) cOS(tjWi~) = 0
j=i

(2.20)

(2.21)

One more impulse is included with the addition of two constraint equations. Therefore,

N = 3 and the impulse amplitudes and impulse times are: AI, A 2, A 3 , t i , t 2 , and t 3 . This

sequence of three impulses is called a second order input shaper and again the first impulse,

AI, is assumed to equal to one at t i = O. The solution for the three impulse sequence is as

follows.

A _I = 01 - \UJ t 1 =
1 + 2f{ + f{2 -

A - 2f{ @ "T
2 - 1 + 2f{ + f{2 ()) t2 = L.J.

(2.22)

(2.23)

(2.24)

It can be seen from the denominator of Ai, A2 , and A3 that the impulse amplitudes

have been normalized according to equation 2.12. Also, the time of the last impulse, t3, is

two times the damped period of oscillation. Therefore, the time duration of a second order

input shaper is two times the duration of a first order input shaper. Despite the longer time

duration of a second order input shaper, figure 2.7 shows the level of robustness gained

12
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Figure 2.7: Second Order Shaper Sensitivity

by adding another impulse. The level of robustness for a second order input shaper is less

than ~ ±20% variation in natural frequency. Also, Singer [12] showed that the derivative

constraints also provide the same level of robustness for variations in damping, (.

If a controls engineer has the need for an even more robust input shaper, then he may

use the general fonn for the derivative of the initial constraint equations 2.8 and 2.9. The

expressions for the qth derivative of the initial constraints are:

N

L A j (tj)"e-(w(t N-tj )sin(tjwJl - (2) = 0

j=l

N

L Aj(tj)qe-(w(tN-tj)cos(tjwJl - (2) = 0
j=1

(2.25)

(2.26)

For every two constraint equations added, one impulse is added to the sequence of im-

pulses. This makes the impulse sequence more robust to modeling errors, but increases

the time-duration of the shaper. Consider the case when q = 2, this means that the sec-

ond derivatives of the original constraints are derived. Therefore, the impulse sequence

1
A1 = OJ t 1 = 0

1 + 3K + 3K2 + K3

13
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Figure 2.8: Third Order ShapeI' Sensitivity

A _ 3K
2 - 1 + 3K + 3K2 + K3

(2.28)

(2.29)

K 3
A4 = -------

1 + 3[( + 3[(2 + [(3
(2.30)

The time duration of a third order input shapeI' is 1.5 times the period of damped os-

cillation. By now it is easy to see that the times for each successive impulse is an equally

spaced interval based on integer multiples of half a period of damped oscillation. Again,

the drawback of a third order input shapeI' is that it is longer than a first or second order

input shapeI', but figure 2.8 shows that the third order shapeI' is more robust than the two

previuus examples.

A third order shaper is approximately -30 % to +40 % robust to modeling errors. Ta-

ble 2.2 compares the level of robustness to modeling errors and time durations for the three

input shapers derived.

14



Shaper Level of Robustne s to Model Variations Time Ouration(Order*b.T)

First Order ~±5% I

Second Order ~±20% 2

Third Order ~ -30 % to +40% 3

Table 2.2: Comparison of Sensitivity for First, Second, and Third Order Shapers

2.1.2 Command Shaping for Systems with Multiple Modes

An input shaper designed for a single mode can excite un-modeled dynamics resulting in

some level of residual vibration. With Singer's command shaping technique there are a

couple of ways to minimize residual vibration in multiple mode systems. Shapers can be

designed for each mode in the system with different or the same level of robustness(order).

Then, to find the input shaper that compensates for all the modes the individual shapers

are convolved. The time duration of the multiple mode input shaper is the sum of the

time durations for each individual shapero This method is sometimes called the convolved

solution for a multiple mode input shapeI'. Another method to finding a multiple mode

shaper is to solve for shaper directly by using the constraint equations. To d ign a first

order shaper for a system with two modes, the shaper would have three impulses. This

method is appropriately defined as the direct solution. A nonlinear optimization package i

required to find the direct solution. The direct solution always contains fewer impulses than

the convolved solution. Therefore, the direct solution is always faster than the convolved

solution.

2.2 Tuttle's Zero-Placement Technique

This technique was researched hy T.O. Tuttle[35] and it has be found to be useful because

of its ease of application to arbitrary inputs. This technique is also based on the work of

0.1. Smith [34]. Smith showed that Posicast commands, when converted to the Laplace S-



domain or discrete Z-domain, cancelled the system poles. The drawback of Posicast control

is that it is sensitive to variations in model parameters. N.C. Singer [12] presented a tech

nique to improve the robustness of input shapers. Section 2.1.1 shows the derivation and

properties of Singer's time domain input shaping technique. It has been shown that adding

additional shaper zeros at the system poles provides an equivalent level of robustness to

Singer's technique.

2.2.1 Derivation of Zero-Placement Multiple Mode Input Shaper

Since traditional input shapers are only defined at discrete time intervals, a discrete fre

quency domain representation is suitable because it too is defined at discrete intervals.

Tuttle's technique consist of deriving a shaper in the discrete domain, mapping it to the

continuous Laplace domain, and then using the inverse Laplace transfonn to find the input

shaping sequence in the time domain. Five conditions are defined to derive the general

form of a zero-placement input shapero These conditions are translated into mathematical

discrete domain constraints.

The conditions are: 1. The shaper must eliminate vibration at all unwanted mod s.

') The shaper must provide adequate robustness to uncertainty in model parameter «(i &

Wi)' 3. The shaper must be causaL 4. The shaper must minimize distOJ1ion of the input

command. 5. The shaped command must not violate actuator limits. These conditions are

based on achieving maximum performance while minimizing unwanted residual vibration.

The discrete frequency domain equivalents of the five requirements of zero-placement

technique are outlined below:

1. The Shaper Must Eliminate Vibration at All Unwanted Modes

This places an input shaper zero at each system pole. For flexible systems, the sys

tem poles are complex conjugate pairs and therefore the input shaper zeros are also

complex conjugate pairs. The zeros are defined for the i th mode as Pi and P:, where
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pi is the complex conjugate of Pi'

where Wdi is defined as the damped natural frequency of the i th mode,

Wdi = WniJl - (l

The initial input shaper that satisfies this constraint is defined as,

H(z) = (z - pd(z - p~)(z - P2)(Z - p;) ... (z - Pm)(z - P~J

(2.31)

(2.32)

(2.33)

(2.34)

where a system with m unwanted modes of vibration, the shaper must contain 2m

zeros to cancel the system poles.

2. The Shaper Must have Adequate Robustness to Parameter Uncertainty

The derivative constraint used by Singer to improve robustness to model uncertainty

can be implemented in the discrete frequency domain by adding additional shaper

zeros at the system poles.

The shaper designed to increase robustness is defined as,

(2.35)

if Ul = 2 then the input shaper has second-order robustness to errors in system

parameters for the first mode in a multiple mode system. This is equivalent to adding

two additional constraint equations for the first mode.

3. The Shaper Must be Causal

To ensure that the shaper remains causal or non-anticipative, the number of shaper

poles must be greater than the number of shaper zeros. Therefore, the denominator

of H (z) must be higher order than the numerator.
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4. The Shaper Must Minimize Distortion of the Input Command

Since input shaping introduces a time lag into the system input equal to the length of

the shaper, the number of poles and zeros should be minimized while stilJ satisfying

robustness constraints. To meet this constraint and still satisfy the causality constraint

the input shaper should have an equal number of poles and zeros. Also to eliminate

denominator dynamics from the input shaper, all of the shaper poles should be at the

z-plane origin.

The equation that satisfies the constraints is:

H(z) = C(z - pr)nJ(z - pit! .. ,(z - Pm)nm(z - p:n)n",
ZT

(2.36)

where, r = 2(nl + .. , + n m ) and C is constant that will be defined by the next

constraint.

5. The Shaped Command Must Not Violate Actuator Limits

Singer satisfied this constraint by requiring a shaper with positive impulse amplitudes

that sum to one. The resulting shaper wi 1\ not violate actuator con traints given that

the un-shaped command input does not exceed actuator constraints. Tuttle u e two

additional steps to find an impulse sequence in the continuous time. The teps are:

• Map the Discrete Transfer Function to the S-Plane by Using z = esT

• Take the Inverse Laplace Transform to Find the Impulse Sequence

Now the impulse sequence can be represented in continuous time as,

h(t) = C[o(t) + alo(t - T) + azo(t - rT) + ... + a,.o(t - rT)J (2.37)

where, C is Defined as a Scaling Constant

(2.38)
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The scaling constant, C, ensures two necessary impulse sequence properties. First, it

ensures that the output of the shaper does not violate actuator constraints. Each of the

impulses in any shaping sequence are always less than one. Second, it ensures that the

shaped steady state response will equal the steady state response of the un-shaped system,

since the sum of all the impulses is equal to one.

2.3 Singhose Input Shaping Techniques

Singer [12] presented a vector diagram representation of input shaping and a method of

finding the residual vibration of an input shaper from a vector diagram. Singhose [21,22,

26] has extended the work of Singer et al. on input shaping using the vector diagram

representation. Singhose used vector diagrams to design input shapers that increase the

level of insensitivity to modeling errors in frequency and damping, called Extra-Insensitive

input shaping.

First Singer's method for representing input shapers using vector diagrams will be

briefly discussed. The vectors are expressed using polar coordinates (T and ()). Where

T represents the magnitude of an impulse and () represents the damped or undamped natural

frequency and impulse time. For the undamped case, a vector diagram can be defined by

setting Tj equal to the impulse amplitude of the jth impulse and the phase, OJ = w6.Tj .

Where 6.Tj is the time delay from zero and w is the undamped natural frequency of a

system.

Figure 2.9 shows that the origin of each vector is at zero and that the first impulse, A 1,

at time equal zero lies along the x-axis. Delays, OJ'S, are defined as a counter clockwise

rotations from the positive x-axis. Residual vibration is defined by finding the resultant, R,

from the sum of the two vectors (AI, 0) and (Az, 0) as shown in figure 2.10.

Figure 2.10 illustrates the concept of graphically determining residual vibration. A r

represents the amplitude of the vibration and Or represents the phase of the vibration.

19



_--1...__--'--_----+ t
o ~T

Figure 2.9: Vector Diagram Equivalent to a Two Impulse Input Shaper

Figure 2. J0: Formulation of Resultant Vector
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A*exp(-swt)

Figure 2.11: Decaying Amplitude of an Impulse Due to Damping

Damping effects the vector diagram representation in two ways. The undamped natural

frequency can no longer be used to represent the phase, instead a system's damped natural

frequency, Wd = wJ1 - (2, and impulse time(delay) represent the phase.

(2.39)

Also the damping causes impulses to decay exponentially with time. Consider the

two impulse case shown in figure 2.5. The two impulse are 1800 out of pha e and th

impulse A2 has decayed with time with respect to AI. This decay can be repre ented by

equation 2.40 and by the spiral shown in figure 2.11.

(2.40)

For either the undamped case or the damped case, vector diagrams can be used to

graphically find the level of residual vibration. If no resultant exist after summing the

vectors then no vibration occurs after the last impulse.

Modeling errors, primarily in frequency, cause the summing of the vectors to result in

some level of residual vibration. Errors in damping are neglected here because Singer [12]

showed that errors in frequency are more significant. Errors in frequency can be represented
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as a phase shift using vector diagrams. If Wo is the nominal system frequency and w is the

design frequency then the phase shift, ¢, is defined as:

(2.41 )

Some error in system parameters are most likely to occur in any real system. Therefore,

shapers that are more insensitive to modeling errors must be derived.

2.3.1 An Extension of the Vector Diagram Approach

Using a vector diagram, Singhose [21, 22] showed that impulses that are not integer mul

tiples of half a period of oscillation (fJ = i7r) can widen the insensitivity curve at the 5%

allowable residual vibration level. The drawback of this change is that the residual vibra-

tion curve is not symmetric about w / W o = 1, when the design frequency perfectly matches

the system frequency.

To widen the insensitivity symmetrically about wjwo = 1, Singhose [21,22,26] defined

a set of constraints that relax.ed the zero residual vibration constraint defined by Singer [12].

Insensitivity is defined by the width of the sensitivity curve at 5% residual vibration(V =

0.05). Therefore, the constraint on residual vibration will be relaxed to allow 5% residual

vibration at w/wo = 1.

The steps for finding a One Hump EI input shapeI' are as follows: I.) Set the number of

impulses to three (Ai, A2 , A3 ). 2.) Define the phase shifts for Ai, A2 , and A3 to be OJ = 0,

7r, and 27f, respectively(fJ3 must be twice fJ2 to satisfy the symmetry con traint). 3.) Solve

for the impulse amplitudes such that there exist 5% residual vibration at w/wo = 1 and that

the residual vibration is zero above and below wo , Whi and Wl o respectively. Figure 2.12

illustrates the structure for a One Hump EI input shapeI'.

Using these steps for the undamped case Singhose found the impulse sequence:
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Figure 2.12: Diagram of Setup for One Hump EI Input Shaper

I Ai 1
-_ 1 + V@(}

4 1 = 0

I A2 1

__ 1 - V@()
Cll 2=11"

2

(2.42)

(2.43)

(2.44)

where V is the level of desired residual vibration at w/wo = 1. Notice that this definition

sets the resultant equal to the level of residual vibration.

(2.45)

Recall that ej = w~Tj, then the vectors in equations 2.42, 2.43, and 2.44 can be

converted into an impulse sequence.
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------------- 7_
1 + V

Ai = -- @ t l = 0
4

(2.46)

1- V
A2 =-

2
(2.47)

A3
__ 1 + V@211"

4 t 3 = --::; (2.48)

Closed form solutions for a single hump EI shaper cannot be determined for the case

when damping is not neglected [22]. A numerical solution can be found for a range of

damping ratios and levels of residual vibraion. Singhose calculated a solution for 0 ~ ( ~

0.3 and 0 ~ V ~ 0.15. The solution he found is a function of (, V, and w. The impulse

amplitudes and times are shown in the following equations:

Al = 0.2497 + O.2496V + 0.8001( + 1.233V( + 0.496(2 + 3.173V(2 (2.49)

A3 = 0.2515 + O.2147V - 0.8325( + 1.415V( + 0.8518(2 - 4.901V(2 (2.51)

T1 = a (2.52)

T2 = (0.5 + 0.4616V( + 4.262V(2 + 1.756V(3 - 8.578V2
( - l08.6V\2 + 337V2(3)Td

(2.53)

24



Sensitivity Plot for a First Order, Second Order, Third Ord er, and EI Input Shapers
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Figure 2.13: Sensitivity Comparison of Singer's First, Second, and Third Order Shapers to

Singhose's One Hump EI

(2.54)

Notice that the solution to a single hump EJ shaper is the same length, Td , as the ZVD

or second order shapeI'. Where, Td is the damped period of oscillation.

(2.55)

The primary advantage of a one hump EI input shaper is that it has the same duration as

a second order(ZVD) input shaper but is more robust to modeling errors. Figure 2.13 shows

a comparison of sensitivity curves for Singer's First(ZV), Second(ZVD), and Third(ZVDD)

order shapers to Singhose's One Hump EI shapero

25



<.o/UlO = I<.o102/UlO

Non-Dimensional Frequency(c.oJUlO)

Figure 2.14: Diagram of Setup for Two Hump EI Input Shaper

Singhose also developed multiple hump shapers to widen the region of insensitivity

more than the single hump. He developed two and three hump input shapers that allow

a specified level of residual vibration at number of frequencies. the residual vibration is

required to be zero at the system's natural frequency for a two hump shapero It allows a

certain level of residual vibration above, Whi" and below, Wlo\ the ystem natural frequency.

Above Whit and below Wlo] the residual vibration is required to be zero at Wlti2 and Wl o2 a

show in figure 2.14.

The three hump shaper can be described in a similar fashion. except it allows orne

vibration at the system frequency. Figure 2.15 illustrates the can traints of a Three Hump

EI input shapero

Figures 2.12, 2.14 and 2.15 show that the sensitivity curves are always symmetric

about the system frequency. Therefore, an odd number of humps the haper must allow

some residual vibration at the system natural frequency and for an even number of humps

the residual vibration must be zero at the system frequency. Singhose et. a!. [26] provides a

detailed derivation of these two techniques. Singhose [26] also derived a curve fit solution

to the two and three hump EI input shapers for 0 ~ ( ~ 0.3 and 0 ~ V ~ 0.2. The curve
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Figure 2.15: Diagram of Setup for Three Hump EI Input Shaper

fit is shown in table 2.3.

Figure 2.16 shows how a One and Two Hump EI input shaper compare to a Third order

shaper designed using Singer's Technique. The One Hump shaper results in less robustness

than a Third order shaper, but the Two Hump shaper has greater robustness than the Third

order shaper. The Two Hump shaper and the Third order shaper have approximately the

same time duration, Therefore, the Two Hump shaper allows system parameters to vary

more with an equal amount of system rise time delay.

To compare the sensitivity of the One, Two, and Three Hump EI input shapers a plot

of the three types designed for the same natural frequency and damping ratio is shown in

figure 2.17.

As the number of humps increa e the time duration and number of impulse also in-

crease. EJ input shaping is designed to maximize the level of robustness with each increase

in time.
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2 Hump t l 0 0 0 0

El t2 0.49890 0.16270 -0.54262 6.16180

t3 0.99748 0.18382 -1.58270 8.17120

t4 1.49920 -0.09297 -0.28338 1.85710

Al 0.16054 0.76699 2.26560 -1.22750

A2 0.33911 0.45081 -2.58080 1.73650

A3 0.34089 -0.61533 -0.68765 0.42261

A4 0.15997 -0.60246 1.00280 -0.93145

3 Hump t l 0 0 0 0

EI t 2 0.49974 0.23834 0.44559 12.4720

t3 0.99849 0.29808 -2.36460 23.3990

t4 1.49870 0.10306 -2.01390 17.0320

t5 1.99960 -0.28231 0.61536 5.40450

Ai 0.11275 0.76632 3.29160 -1.44380

A2 0.23698 0.61164 -2.57850 4.85220

A3 0.30008 -0.19062 -2.14560 0.13744

A4 0.23775 -0.73297 0.46885 -2.08650

A5 0.11244 -0.45439 0.96382 -1.46000

Table 2.3: Curve Solutions to Two and Three Hump Extra Insensitive Input Shapers
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Sensitivity Plot lor a Third Order. One Hump EI. and Two Hu mp EI Input Shapers
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Figure 2.16: Sensitivity Comparison of Singer's Third Order Shaper to Singhose's One and

Two Hump E1

Sensilivily Plot for a One Hump EI, Two Hump EI, and Three Hump EI Inpul Shapers
45

40

35
Q)
()
c::

'"~ 30
o
(J)
>o

:::;; 25
'0 \
':!!.
~ \

g 20
rc
.0
:>
~ 15
'0.iii
(J)

a:
10

\
\

EI One Hump Input Shaper
EI Two Hump Inpul Shaper
EI Three Hum In ul Sha er

I

r

1.5

....
....

, I
,/

1.41.30.8 0.9 1 1.1 1.2
Non-Dimensional Frequency(w/wO)

0.70.6
OL-__"'--_----"'--'-__--'--'-.:::..::.I.'----'--_---':.J<:....__-'-----""=---"-__--'-'---_--l-__-'

0.5

5 \ .... '\
\ / / \

\ / \

Figure 2.17: Sensitivity Comparison of Singhose's One, Two, and Three Hump E1

29



2.3.2 Singhose's Time-Optimal Negative Input Shaper

All the techniques up to this point require that all the impulse amplitudes have positive

values, but if negative values are allowed the duration of an input shaper can be short-

ened. The material in this section was developed by W.E. S.inghose, W.p. Seering, and N.C.

Singer [30]. It is based on Singer's Oliginal constraint equations on the amplitude of resid-

ual vibration [12]. The constraints used in this technique can be categorized as constraints

on the maximum allowable residual vibration, robustness to parameter uncertainty, time

optimal solution constraints, and impulse amplitude constraints. Only zero-vibration(ZV)

and zero-vibration-derivative(ZVD) shapers are developed for the negative input shapers

developed in this section. Therefore, only the following two constraint equations on resid-

ual vibration are used:

JC'£~l=l Aje(wtJ cos (wtjJl - (2))2 + (2:7=1 Aje(wtj sin (wt j Jl - (2))2
V(w, () = . t

e~w n

(2.56)

where V is ratio of vibration with input shaping to without input shaping. When V is

required to be zero then the input shapeI' that meets that constraint is a zero-vibration input

shapeI' or ZV shapeI'.

(2:7=1 Aje(wtj cos (wtjJl - (2))2 + (2:~~=1 Aje(wtJ sin (wt j

e(wtn

1-(2))')

(2.57)

When an input shapeI' satisfies buth equations 2.56 and 2.57 then it is said to be a zero-

vibration-derivative input shapeI' or a ZVD input shaper. The variables in equations 2.56

and 2.57 are defined in section 2.1.1.

In order to minimize the duration of the Input shapeI' a constraint on the time of the last

impulse is implemented. It is defined as follows:
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ShaperDuration = min(tn ) (2.58)

where the nth impulse is the last impulse of any sequence. Minimizing the duration of

the input shaper minimizes the time lag that the input shaper induces into an input.

Time lag is not the only effect that convolving an arbitrary input with an input shapero

If the impulse amplitudes do not sum to one then the un-shaped input and the shaped input

will not have the same set-point. Therefore, the following constraint is implemented:

11

(2.59)

where this constraint applies to both input shapers with all positive impulses and input

shapers with negative impulses. Satisfying the constraints in equations 2.56, 2.57, 2.58,

and 2.59 can force the impulse amplitudes to positive and negative infinity. This was previ-

ously eliminated by requiring that all the impulse amplitudes are positive. For input shapers

that allow negative and positive impulse sequences, two additional constraint are required

and they are defined in section 2.3.3 and 2.3.4.

Another robustness constraint used to widen the range of insensitivity to errors in fre-

quency is the Extra Insensitive (EI) constraint. Instead of requiring zero residual vibration

at the system natural frequency some low level (V = 5%) is allowed for the ZV con traint

equation 2.56. To widen the sensitivity curve frequencies (Wio and w"J on each side of

the natural frequency are required to have zero residual vibration. The frequency Wlo is an

unknown frequency below the modeling frequency, W m and Whi is an unknown frequency

above Wrn . Therefore, a set of two of the ZV constraints 2.56 are required. When the con·

straint equations are solved for W 11l the impulse times, amplitudes, and the unknown fre-

quencies (Wlo and Whi) are solved. This is the same shaper presented in section 2.3.1 except

that the impulse amplitudes are defined using the constraints in sections 2.3.3 and 2.3.4.

31



2.3.3 Unity Magnitude Constraint (UM)

The first constraint is that the impulse amplitudes must be equal to one or minus one,

also called unity magnitude. The sequence always starts with an impulse of one and the

impulses switch between minus one and one after the first impulse. This constraint can be

represented as:

AJ
· = (_1)j-1 . 1J = ... n (2.60)

This constraint guarantees that the shaped input will never exceed actuator limits, given

that the un-shaped input does not exceed actuator limits. The last impulse of a unity mag-

nitude input shaper is always one. Therefore, n must be an odd integer multiple of one.

2.3.4 Partial-Sum Constraint (PS)

To improve the rise times of the Unity Magnitude input shapers, a new constraint was

developed that limits the sum of the impulses to a magnitude P.

k

LAj = P k = 1 ... '/1.

j=l

(2.61 )

For a zero-vihration (three impulse) input shapeI', the solution with the constraint equa-

tion 2.61 is:

Al = P, A 2 = - 2P, A3 = P + 1 (2.62)

Partial Sum shapers can cause momentary periods of actuator saturation, but the ma-

jority of the partial sum shaped command signals remain below ±P * MAX. MAX is

defined as the maximum allowable un-shaped command level. For example, if P = 1 and

MAX = 1 then P * MAX = 1. The shaped signal for the step input shown in figure 2.18

does not exceed ±P * MAX. When the same PS input shaper is applied to the bang-bang

input shown in figure 2.19 there are periods of actuator saturation.
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Figure 2.18: Step Input Shaped with a Partial Sum Input Shaper
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Figure 2.19: Bang Input Shaped with a Partial Sum Input Shaper
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The duration of the actuator saturation a Partial Sum shaper causes depends on the

required move distance, velocity limit, acceleration limit, natural frequency of the system,

and the input shapero Values of P larger than one are more likely to cause actuator saturation

then when P = l.

Singhose [30] developed a curve fit for the UM, PS, EI input shapers that is valid for

a ::; ( ::; 0.3 and is accurate to within 0.5% for the calculation of the impulse times.

Table 2.4 and 2.5 list the curve fit solutions of the coefficients to several types of Partial

Sum, Unity Magnitude, and Extra-Insensitive input shapers. The curve fits are for the

impulse times only, unlike table 2.3.
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UM-ZY 1 t1 0 0 0 0

-1 t2 0.16724 0.27242 0.20345 0

1 t3 0.33323 0.00533 0.17914 0.20125

PS-ZV 1 t1 0 0 0 0

P=l -2 t2 0.20970 0.22441 0.08028 0.23124

2 t3 0.29013 0.09557 0.10346 0.24624

UM-ZVD 1 t 1 0 0 0 0

-1 t2 0.08945 0.28411 0.23013 0.16401

1 t 3 0.36613 -0.08833 0.24048 0.17001

-1 t4 0.64277 0.29103 0.23262 0.43784

I t 5 0.73228 0.00992 0.49385 0.38633

PS-ZYD I t1 0 0 0 0

P=l -2 t2 0.15234 0.23397 0.15l68 0.2 l310

2 t 3 0.27731 0.11147 0.04614 0.28786

-2 t4 0.63114 0.34930 0.11840 0.52558

2 ts 0.67878 0.19411 0.27432 0.48505

Table 2.4: Curve Solutions to ZV and ZVD Negative Input Shapers
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UM-EI 1 t1 0 0 0 0

V=5% -1 t2 0.09374 0.31903 0.13582 0.65274

1 t3 0.36798 -0.05894 0.13641 0.63266

-1 t4 0.64256 0.28595 0.26334 0.24999

1 ts 0.73664 0.00162 0.52749 0.19208

PS-EI I t1 0 0 0 0

P=l -2 t2 0.15631 0.26556 0.05324 0.69457

V=5% 2 t3 0.28080 0.13931 0.05627 0.75432

-2 t4 0.63427 0.34142 0.15371 0.32904

2 ts 0.68410 0.18498 0.31059 0.28565

2 Hump 1 t1 0 0 0 0

UM-EI -1 t2 0.05970 0.31360 0.31759 1.5872

V=5% 1 t3 0.40067 -0.08570 0.J4685 1.6059

-1 t4 0.59292 0.38625 0.34296 1.2889

1 t s 0.78516 -0.08828 0.54174 1.3883

-1 t6 1.12640 0.20919 0.44217 0.30771

I t7 1.18640 -0.02993 0.79859 0.10478

2Hump 1 t1 0 0 0 0

PS-EJ -2 t2 0.12952 0.29981 0.08010 1.7913

P=I 2 t3 0.27452 0.22452 -0.20059 1.8933

V=5% -2 t4 0.58235 0.51403 -0.00620 1.6106

2 ts 0.68355 0.26308 0.09029 1.7095

-2 t6 1.08870 0.39342 0.14197 0.48868

2 t7 1.12080 0.25926 0.35816 0.35035

Table 2.5: Curve Solutions to Extra Insensitive Negative Input Shapers
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Chapter 3

Model Description

The dynamic model used in this research project is a torsional dynamic plant manufactured

hy Educational Control Products. The plant consists of three rotating disks connected by

two flexible rods. These rods act as torsional springs and the drive disk is connected to the

motor by a rigid belt drive system. Each disk is equipped with an optical encoder, but in

simulations and expeliments only the encoder on disk 3 is used.

3.1 Assumptions

The rods connecting the three disks are assumed to be linear springs. Though there are no

dampers present in the system, light damping is assumed to be acting on each disk and the

damping is also linear. All system properties such as inertia of the disks(static payload),

spring rates, and damping coefficients are assumed to time invariant.

The effect of motor cogging is considered to make the. system model more practical.

Motor cogging is simplified to act as a pseudo linear spling. Equation 3.1 shows how motor

cogging is approximated and simplified [10]. Figure 3.2 shows motor cogging acting as a

spring and it is assumed to be time invariant.

(3.1)
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Figure 3.1: TorsIonal Apparatus
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Figure 3.2: Model Diagram

3.2 Mathematical Model Derivation

The goal of this section is to find a linear time-invariant state space model of the system. A

series of steps will be outlined to adequately describe the derivation of the model shown in

figure 3.2.

The first step is to identify what elements are present in the system. The ECP torsional

plant consists of three torsional springs, dampers, and inertias. Second, the energy storage

elements are identified as the three springs(k1 , k2 , k3 ) and three inertias(Jl, .12 , .13 ), Third,

free body diagrams are drawn for the energy storage elements Lo find the torques acting

on those elements. The springs are drawn first because the goal is to find the equations of

motion for the disks. The resulting torques acting on the springs are:

(3.2)

(3.3)

(3.4)
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where (}l, {}2, and (}3 are the angular positions of each disk. Before finding the torques

acting on the disk the energy dissipative elements(dampers) are found to be:

(3.5)

(3.6)

(3.7)

.. .
where (}l, {}2, and {}3 are the angular velocity of each disk. From the free body diagrams

for each disk, the torques can be summed to find the equations of motion. The torque sums

on each disk are determined to be:

(3.8)

where T is the input torque,

(3.9)

(3.10)

.... ..

where ()l, ()2, and ()3 are the angular velocities of each disk. Substituting the torque

equations found for the springs and dampers into the torque sums for the disks results in

the following equations:
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.. .
J383 = k382 - k383 - C3 e3

(3.11)

(3.12)

(3.13)

Fourth, a state vector is defined in order to find the equations of motion in state space

form shown in equation 3.14. The state vector is defined in equation 3.15 as,

i: = Ax + Bu (3.14)

[ Xl 1':2 ·7:3 X4 Xs x, r r Ol Ol O2 O2 03 0, r (3.15)

Take the derivative of the state vector,

[ Xl X2 X3 X4 Xs x, r [ 01 01 e2 e2 ()3 Ii, r (3.16)

The equations of motion using the state vector and its derivative become,
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(3.20)

(3.21)

(3.22)

a

Equations 3.17, 3.18, 3.19, 3.20, 3.21, and 3.22 can represented in state space form as,

0 1 0 0 0 0 ()

-(kl+k2) -cl k2 0 0 0 1
Jl 71 Jl h

0 0 0 1 0 0 0
X= X+ T (3.23)

k2 0 -(kHk3) -c2 k3 0 0.12 12 J2 J2

0 0 0 0 0 1 0

0 0 k3 0 -k3 -c3 0J3 J3 73

The system parameters were approximated experimentally by ECP and the re ults of

those experiments are shown in table 3.1. Using these approximations in simulation to find

the open loop mode shapes conJirms that they are good estimates because the experimental

frequency response closely matches the simulation frequency response.

Using the parameters found by ECP, MATLAB codes were written to build the model

and find the open loop modes. The code to build the model can be found in appendix A.I

and the code used to find the open loop mode shapes is in appendix A.2. The modes found

from the model are flexible modes since the model is not a rigid body. After running

model.m and mode.m the three modal frequencies and damping ratios are determined:

• (1 = 0.0076 & WI = 7.1754Rad/ sec
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J1 0.01063 kg - m 2

J2 0.01063 kg - m 2

h 0.01063 kg - m 2

Cl 0.027 N - m/(rad/s)

C2 0.002 N - m/(Tad/s)

C3 0.002 N - m/(Tad/s)

k 1 1.38 N - m/Tad

k2 1.38 N - m/rad

k3 1.38 N - m/Tad

Table 3.1: System Parameters

• (2 = 0.0254 & W2 = 20.1079Rad/sec

• (3 = 0.0173 & W3 = 28.9969Rad/sec

The modal frequencies were verified approximately by running a sine sweep over the

range indicated from the simulation results. Sine sweeps can be performed on the ECP

hardware using the Dynamics Executive described in section 3.4.

3.3 Hardware Description

The plant described in section 3.2 is manufactured by Educational Control Products (ECP).

Eep provides the electromechanical plant, system interface software, DSP based con

troller/data acquisition board, and the input/output electronics (dlive electronics). The soft

ware will be described in section 3.4 and the remainder of this section will be devoted to

the hardware.

The base disk or disk one is the driven disk and it is driven by a brushless servo motor

connected with a belt and pulley system with 3: 1 gear reduction. The position of the first

disk is measured by an axially mounted optical encoder. Positions of disk two and disk
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three are measured by radially mounted encoders. The encoders on disk two and three are

mounted radially with a belt and pulley system with 1: 1 gear reduction. All three encoders

have a resolution of 16,000 encoder counts per revolution. The plant has the flexibility

of allowing the user to select many different configurations [10]. Mathematical models

are provided for many of the different configurations in the ECP manual [10]. The three

degrees of freedom configuration will be used for all simulations and experiments.

The input/output electronics or drive electronics box contains the power supply, aux

iliary digital-to-analog converter readouts, and the servo amplifier. The servo amplifier

converts the voltage signal from the controller board into a current signal and sends the

motor the current signal. The motor then transforms the current signal into a torque. A

more detailed description of the power electronics is provided in the ECP manual [10].

The DSP board contains the encoder pulse decoders, DIA converters, and the realtime

control algorithm downloaded from the software. The controller is defined in the software

and then downl.oaded into the DSP board. The board automatically executes the control

algorithm at a specified sampling rate and the board also executes any command signals

that a user specifies. The minimum sampling period of the controller is 0.884 ms or a

maximum servo loop closure computation rate of 1.131 kHz. For further information on

the DSP board refer to the ECP manual [10]. Some of the hardware gains and ratios are

listed in table 3.2. They may be used if a user wishes to model the mechanical model with

the power electronics.

3.4 Software Packages

ECP provides three software packages to allow a user to interface with the DSP board:

Executive, Dynamics Executive, and User Control Executive Program. The Executive pro

gram is designed to allow users to change the coefficients of the real time control algorithm

in order to implement a desired control strategy. It also allows the use of many different
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k DACGain lOV
c 32768DAC counts

k a Servo Amp Gain ~ 2ampjv

k t Servo Motor Torque Constant ~ a.IN - mjamp

k p Drive Pulley Ratio 3 : l(Disk : Motor)

k e Encoder Gain l6000
21T radians

k s Controller Gain 32controller counts
encoder or reference input counts

k hw Hardware Gain k hw = kckaktkpkeks

Table 3.2: Hardware Gains

inputs including a user defined input trajectory. The Dynamics Executive program is de-

signed to study the dynamic characteristics of the system and to identify system parameters

or mode shapes. The ECP manual [10] describes a number of different experiments for pa-

rameter identification for the numerous system configurations. The User Control program

is designed for implementing a custom control algorithm in a "C-Like" code. ECP provides

an example of how to code a state feedback controlJer in the User Control executive pro-

gram. All software packages can plot real time data or data off-line after an input command

has been executed. There are 24 acquired and derived variables available for plotting, and

any real time data can be exported in a format that can be plotted in MATLAB.

The general fonnat for implementing a control algorithm and executing a trajectory are

simple. First, the system configuration must be selected by adding or adjusting the position

of the masses. Also, a disk may be clamped to reduce the order of the system. Second, the

system should be modeled mathematically to design a control algorithm. Third, after the

control algorithm is designed it should be tested in simulation before implementing it on

the hardware. Poor controller design can cause damage to the hardware and possible injury

to the user. Finally, after the simulation tests the controller can be tested experimentally

to compare results. The user must adjust the coefficients shown in figure 3.3 to a desired

controller and them implement the algorithm. Then the software downloads the controller
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into the DSP board and the system is ready to receive a command input.

3.5 Derivation of Discrete Time Model

The linear time invariant/continuous time model has been derived in state space form. Since

the goal is to reduce the level of residual vibration in a computer controlled system, the

continuous time model should be discretized with the controller and with a sampling period

that is representative of the computer hardware speed. For simulations and experiments a

PD controller will be used to control the position of the third disk. PO control is used

because of its effectiveness and functional simplicity. The gains for the PD controller are

found by iteration on a trial-and-error basis. With the PD gains and the sampling rate

specified, the discrete time model is found. A series of steps will be described to find the

discrete time model.

First, the continuous time model is discretized with respect to the sampling period, Ts ,

using the command c2d(sysc,Tw ) command in MATLAB, where sysc is the continuous

time system matrix found using ss(A,B,C,DD). Second, the forward path of the closed loop

system is formed in SIMULINK with the discrete PD controller and the discrete time state

space system found in the previous step. The SIMULINK diagram is shown in figure 3.4.

To find the overall system representation of figure 3.4 the dlinmod(OLSSPDModel,T.~)

command finds the discrete system matrix for a specified SIMULINK model(OLSSPOModel.mdl)

and sampling period(Ts ). Third, the closed loop system matrix is found usingfeedback(sysdt, 1),

where sysdt is the system matrix found in the previous step. Since feedback assumes neg-

ative feedback, I is the second command input. Finally, the closed loop damping and

undamped natural frequencies of the system poles are found using damp(sysdtcl), where

sysdtcl is the closed loop discrete time system matrix.

These steps are executed at the beginning of each input shaper design script by Dis-

crete.m shown in appendix A.3. The controller gains and sampling period are specified in
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Figure 3.4: Discrete Time Forward Path

System
Input

(Kp+Kd)-Kdz- 1

1

Discrete
PD Control

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

Figure 3.5: Discrete Time Closed Loop System

each input shaper design script before Discrete.m is executed.

The shaped commands generated by each input shaping technique are tested, in sim

ulation, usi ng the closed loop system before being evaluated experimentally on the ECP

hardware. The system representation for simulation is shown in figure 3.5.
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Chapter 4

Time Domain Constraint Equation

Technique

This chapter covers the derivation of several input shapers using Dr. Singer's techniquL:

outlined in section 2.1, and an extension of his work modified to improve its ease of im-

plementation in simulation and experiments. To illustrate the effect of each mode on the

system response, impulse sequences are designed for each mode separately. Also, direct

solutions for multiple mode systems are not considered because they have been found to

be less robust than convolved solutions [29, 31]. The simulation results for the modified

technique will be compared to the experimental results. Experimental results are obtained

by executing the input command signal from simulation on the ECP hardware(Torsional

Plant).

4.1 Derivation of a First Order(ZV) Input Shaper

The input used in all simulations is a unit step. This simplifies the convolution process

required to shape the input. The first shapers derived are first order(two-impulse) shapers

for each mode separately. This was done by using the equations defined in section 2.1.
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First Order(ZV) Input Shaper

Mode [;] Ail

First 1 0.5244 0.4756 Osee 0.4323 sec

Second 2 0.5284 0.4716 Osee 0.1568 sec

Third 3 0.5137 0.4863 Osee 0.1083 sec

Table 4.1: Impulse Amplitudes and Times For First Order Shaper

Ail =
1

(4. l)
1 + K i

Ai2 =
K i (4.2)

1 + K i

where,

:~

;1;
(." q.
-~

F7! "
K i = e (4.3) :1,

.~

(4.4)

Now the impulses are defined for the i th mode, so that later they may be convolved

without confusion. For this three mode case i varies from 1 to 3, where the closed loop

damping ratios and natural frequencies are: (1 = 0.0310, Wi = 7.2707Rad/sec,(2 =

0.0362, W2 = 20.0457Rad/sec, (3 = 0.0175, and W3 = 29.0160Rad/sec for PD control

with I<p = 0.06 and K d = 0.75.

The impulse amplitudes and times are found by plugging the system parameters«(i &

Wi) for each mode into equations 4.3 and 4.4. The results for the torsional plant are found

in table 4.1 for each mode separately. Figure 4.1 shows a step input convolved with the

three shapers given in table 4.1. It shows that input shapers for high frequency modes are
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Figure 4.1: First Order Shaper Inputs

shorter in duration than input shapers for low frequency modes. This is a result of the time

duration being half the period of oscillation of a particular mode. It also shows a step input

convolved with an input shaper designed for all three modes, the all mode shaper will be

derived later in this section.

Figure 4.2 shows the torsional system respon e to un-shaped and shaped inputs. [t

is easy to see that the low frequency mode dominates the respon e, but the input shaper

designed for the low frequency mode alone results in substantial residual vibration.

To find a first order shaper for all three modes a series of steps will be outlined to

show a method for convolving the shapers. First the equations for the inputs are found in

continuous time. They are defined for the i th mode as:

(4.5)

Second, the Laplace transform of equation 4.5 is found to avoid having to convolve

three continuous time equations since multiplication in the frequency domain is equivalent

to convolution in continuous time. The Laplace domain representation of equation 4.5 is
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Figure 4.2: First Order Shaper Step Response

defined as:
~

j~

..J

(4.6) ''''
:CJ
"l(

Therefore, the equation for the multiple mode shaper i found by polynomial expansion

of equation 4.6 for Vds)V2 (s)U3 (s). Third, the result from multiplying the shapeI' in

the Laplace domain is transformed back to continuous time by taking the inverse Laplace

transform of VI (s) V2 (s) V3 ( ). Finall y the shaper can be defined in conti nuou ti me a :

AllA21A316(t) + A12A21A316(t - 6.T1)

+All An A31 6(t - 6.T2) + A ll A21 A32 6(t - 6.13)

+AI2A22A310(t - 6.T1 - 6.T2)

+AI2A21A326(t - 6.T1 - 6.T3)

+AllA22A326(t - 6.T2 - 6.T3)

+A12A22A32J(t - 6.T] - 6.T2 - 6.T3)
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Equation 4.7 shows that there are eight impulses resulting from the polynomial expan-

sion of three first order polynomials or 2n impulses where n is the number of modes present

in the system. It also shows that the impulse times are not equally spaced for the convolved

solution, which is inconvenient jf it is to be implemented as a digital filter. A solution to

this problem is presented in sections 4.3 and 4.4. Figure 4.1 shows the impulse amplitudes

and times for equation 4.7 and figure 4.2 shows the response to the shaper designed for

all three modes. Since the system parameters for simulation are known exactly, the shaper

designed for all three modes completely eliminates all residual vibration. The parameters

have been verified experimentally, but it is unlikely that they do not vary from the simula-

tion model. Therefore, a second order shaper will be designed for all three modes to ensure

a more robust output.

4.2 Derivation of a Second Order(ZVD) Input Shaper

Before finding a shaper that compensates for all three modes, the individual shapers are

derived. The impulse amplitudes for a second order input shaper are deAned for the 1:11.

mode as shown for the first order case in section 4.1. For the three impul e case the impulse

amplitudes and times are defined as:

(4.8)

(4.9)

(4.10)
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Second Order(ZVD) Input Shaper

Mode 0 Ail

First 1 0.2749 0.4988 0.2262 Osee 0.4323 sec 0.8646 sec

Second 2 0.2792 0.4984 0.2224 osec 0.1568 sec 0.3136 sec

Third 3 0.2639 0.4996 0.2364 Osee 0.1083 sec 0.2166 sec

Table 4.2: Impulse Amplitudes and Times For Second Order Shaper

where K i is still defined by equation 4.3. Again, the system parameters are used to

calculate the impulse amplitudes and times. The result for the closed loop plant is shown

in table 4.2. With the individual input shapers derived the convolved solution can be deter

mined. The procedure to find the convolved solution will be briefly covered again.

The continuous time representation for a second order input shaper contains three im-

pulses and can be expressed as:

(-1..Jl)

The Laplace transform of equation 4.11 is:

(4.12)

The polynomial expansion of three second order input shapers results in a impul e e

quence with 27 impulses and a duration equal to the sum of the three individual shaper (2~T12+

2~T22 + 2.0.T32 ). The result is defined by equation 4.J3. For the three impulse ca e the

number of impulses for the convolved solution is 3T1
, where 11, is the number of modes.



AllA21A316(t)

+A12A21A316(t - ~T12) + A12A21A316(t - 2~T12)

+AllA22A316(t - ~T22) + AllA23A316(t - 2~T22)

+AllA21A326(t - ~T32) + AllA21A33<5(t - 2~T32)

+AllA22A336(t - ~T22 - 2~T32)

+AllA22A326(t - ~T22 - ~T32)

+A13A23A316(t - 2~T12 - 2~T22)

+A13A22A316(t - 2~T12 - ~T22)

+A13A21A336(t - 2~T12 - 2~T32)

+A13A21A326(t - 2~T12 - ~T32)

+A12A23A316(t - ~T12 - 2~T22)

+A12A22A31<5(t - ~T12 - ~T22)
UIU2'U3 = (4.13)

+A12A21A336(t - ~T12 - 2~T32)

+All A 23 A326(t - 2~T22 - ~T32)

+A12A21A326(t - ~T12 - ~T32)

+AllA23A338(t - 2~T22 - 2~T32)

+A 12 A23 A32 <5(t - ~T12 - 2~T22 - ~T32)

+A12A22A336(t - ~T12 - ~T22 - 2~T32)

+A12A22A326(t - ~112 - ~T22 - ~T32)

+A13A22A336(t - 2~T12 - 6.T22 - 3~T32)

+A 13 A 22 A326(t - 2~T12 - ~T22 - ~T32)

+A12A23A336(t - ~T12 - 26.T22 - 26.T32 )

+A13A23A326(t - 26.T12 - 26.T22 - 6.T32 )

+A13A23A336(t - 2~T12 - 26.T22 - 2~T32)
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4.3 Digital Two Mode First Order Shaper

LX modified discrete time method of first nrder(ZV) input shaping is derived in this section.

The first order(ZV) and second order(ZVD) input shapers could not be verified experimen

tally, and can not be implemented as a digital filter for the multiple mode case. Those

limitations motivate the need for a discrete ti me method. Two cases are considered, second

mode modified and third mode modified. The input shaper for the first mode remains un-

changed for both cases since it has been shown to be the dominant mode. The procedure

for both cases is identical and will be presented simultaneously.

The idea of this modified technique is to change the parameters«(2,3 & W2,3) of the

second or third mode such that the impulse time of the first mode is an integer multiple of

the impulse time of the second or third mode. For the torsional system, only two modes

will be included in the design of this technique either the first and second(l/2) or first and

third(l/3). Using the impulse times shown in table 4.1, the integer multiples for 1/2 case

and 1/3 case are found to be 3 and 4, respectfully. The integer multiples are chosen such

that the change in the impulse times(~T22 and ~T32) are minimized. The modified times

for each case are shown below:

:~~

~:U
.,

::~.......
:lJ

(4.14)

(4.15)

The procedure for the case when the second mode is modified is presented. Using

the modified time for the second impulse, m~T22, the natural frequency and damping

ratio of the second mode are modified with equation 4.16. The frequency is changed such
2

that ( 11" ~y. ) is less than one. Then the modified damping ratio is calculated using
mW2xm 22 .

equation 4.16.



(4.16)

The integer multiple is determined by hand but the modified frequency and damping

ratio is found using the following portion of a MATLAB script. This works for the case

when the modified time is less than the original time, requiring the frequency to be in-

creased. Also, the script minimizes the variation in the natural frequency but ignores the

variation in damping ratio, since errors in frequency have been found to be more significant

than errors in damping.

mw2=Wn(3,l) ;

counter=O.OOOl;

templ=(pi/(mw2*mT_22) )~2;

while tempI > I

templ=(pi/( (mw2+counter)*mT_22) )~2;

counter=counter+O.OOOI;

end

mw2=mw2+counter;

mzeta2=sqrt(I-(pi/(mw2*mT_22))~2);

With the modified parameters known the impulse amplitudes can be calculated for the

second mode and the equations for both input shapers can be found. Let the sampling

period of the digital filter be,

T = m6T22
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... 3T = 6.T12 (4.18)

Now the input shaper equations for modes 1 and 2 can be found using the same sam-

piing period. The input shaper for each mode is first expressed in the time domain. Then the

sampling period is substituted for the time delays. The laplace transform of the time domain

representation is found and then mapped the discrete frequency domain using z = eTs .

(4.19)

(4.20)

(4.21)

.~

.~

·.W...

.-.:(....
l1

The modified first order input shaper for the second mode:

-1 mA21 z + mAn
mU2 (z) = mA21 + mAnz = -----

z

(4.22)

(4.23)

(4.24)

Equation 4.21 and 4.24 are used in SIMULINK as cascaded digital filters with the

same sampling period. Multiplying the result of the equations is not necessary because
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Figure 4.6: Modified First Order Shaper Step Response
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Experimental Response to Flrnl Order Modified Input Shaper( Modes 1 & 21
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Figure 4.7: Modified(Mode 1 & 2) First Order Experimental Response

The derivation of the input shaper for modes 1 and 3 is simi lar to the previous case. The

passing the un-shaped command signal through each filter is equivalent. Simulation and

expeIimental results are shown in figure 4.6 and figure 4.7, respectfully.

sampling period for this case is the impulse time for the modified third mode.

T = mt::.Tn (4.25)

.'. 4T = t::.T12 (4.26)

Now the input shaper equations for modes 1 and 3 can be found using the same sam-

piing period.

(4.27)

(4.28)
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E~perimental Response to First Order Modified Input Shaper( Modes 1 & 3)
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Figure 4.8: Modified(Mode I & 3) First Order Experimental Response

(4.29)

(4.30)

(4.31)

(4.32)

./

:1
.1

It..
"
'.
"
"

""

Figure 4.6 also shows the simulation results for the first and third modified mode input

shapero Figure 4.8 shows the experimental results for this case. Figures 4.7 and 4.8 show

that designing for the first two modes results in less residual vibration. This result is ex-

peeted since the first two modes dominate the response of the system with respect to the

third moue.
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4.4 Digital Two Mode Second Order Shaper

The derivation of the modified second order input shaper is identical to the first order case

with a couple of exceptions. An additional impulse is added to each impulse sequence and

the time duration of each sequence is doubled.

The second order input shapers for the first mode and the modified second mode are

defined as:

The second order input shapers for the first mode and the modified third mode are

U ( ) A A
-1 A -2 mA21 z2 + mA22 z + mA23

m 2 z = m 21 + m 22 Z + m 23 Z = 2
Z

defined as:

U ( ) - A A -4 A -8 _ A11 z
8 + A 12 Z

4 + A 13
1 Z - 11 + 12 Z + 13 Z - 8

Z

(4.33)

(4.34)

(4.35)

(4.36)

';;j

.I..J

.....

.f)

.....

The input for both cases is shown in figure 4.9 along with the un-shaped input and the

input designed from Singer's continuous time technique. Figure 4.10 shows the system

response for the inputs shown in figure 4.9. Experimental results for the 1/2 case and 1/3

case are shown in figure 4.11 and 4.12, respectfully.
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System Input w,lh Modified Second Order(ZVD) Input Shaper
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Experimental Response to Second Order Modllied Input Shape, (Modes 1 & 2)
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Figure 4.12: Modified(Mode 1 & 3) Second Order Experimental Response

65



Chapter 5

Discrete Time Zero Placement

Technique

Using Tuttle's technique allows for the design of single or multiple mode input shapers with

relative ease. Since the torsional plant is multiple mode system all input shapers designed

in this chapter will be multiple mode input shapers. The shapers will vary in order of

robustness selected for a particular mode. Before any shapers can be derived the input

shaper zeros must be determined using the system's natural frequencies and damping ratios

(Wnl, (1) W n2, (2, W n3,(3)· To avoid confusion, the variable for un-damped natural frequency

changes because this technique uses both the un-damped and damped natural frequency.

(5.1 )

(5.2)

(5.3)
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(5.4)

(5.5)

(5.6)

The sampling peliod(impulse spacing), T, of the input shaper will be determined de

pending on the order of the input shaper, the desired impulse amplitudes, and the maxi-

mum time duration of the input shaper(if specified). The total time duration is a function

of the sampling period and the number of impulses. The user must determine how much

time delay in the system response is acceptable. Each subsequent section will present the

derivation of a particular order shaper, simulation results, and experimental result.

5.1 Derivation of First Order Input Shaper

A first order discrete time shaper is derived by placing one pair of complex conjugate shap I'

zeros at the system poles. The shaper zeros are found using equations 5.1,5.2,5.3, 5.4,5.5,

:md 5.6. The discrete representation of a first order input shaper for all three modes is

defined by equation 5.7. The shapeI' is not completely defined because the sampling period

has not been selected.

H(z) =
'(z - pd(z - pi)(z - P2)(Z - p;)(z - P3)(Z - p;)

z6
(5.7)

The sampling period cannot be determined in the form that the shaper is represented in

equation 5.7. Several steps will be outlined to find the sampling time, which determines
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the impulse amplitudes and times. First, the individual polynomials must be expanded tu

find the coefficients of the input shapero Expanding the first order polynomials in equa

tion 5.7 results in a sixth order polynomial that compensates for all three modes shown in

equation 5.8.

(5.8)

The discrete transfer function in equation 5.8 can be represented as a polynomial by

dividing the numerator with the denominator. The result is shown in equation 5.9.

(5.9)

The polynomial expression in equation 5.9 is mapped to the Laplace domain using

z = eTs and the result is shown in equation 5.10.

(5.10)

(5.11)

To find the continuous time representation of the input shapeI' the inverse Laplace trans-

form of equation 5.10 is found. The result is shown by equation 5. J I. The input shapeI'

impulses are equally spaced over integer multiples of the input shapeI' sampling period, T,

and the first impulse at time equal zero.

r
b(t) + CL1b(t - T) + a2 b(t - 2T) + CL3b(t - 3T) j

h(t) = C
+CL4b(t - 4T) + CL5b(t - 5T) + a6b(t - 6T)

The coefficient, C, is detennined when the sampling period and the impulse amplitudes

are defined. For this case C is defined by equation 5.12:

(5.12)
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Figure 5.1: First Order Zero Placement Shaper Amplitudes "-

The sampling time, impulse amplitudes, time duration, and nonnaIization coefficient

are detennined by plotting the impulse amplitudes versus the sampling peliod. The sam-

pIing period can be selected as the shortest sampling period that yields all positive impulses

or it can be any sampling period that yields all positive impulses. Figure 5.1 shows the im-

pulse amplitudes for the closed loop discrete time plant for an arbitrary range of T.

Using figure 5.1, T is selected to be 0.125 for simulations and experiments. A sampling

period smaller than 0.125 would yield all positive impulse amplitudes, but experiments

have shown that less aggressive(larger impulse spacing) input shapers have better perfor-

mance. The simulation response and experimental response for T = 0.125 are shown in

figures 5.2 and 5.3, respectfully.

A first order discrete time input shaper can completely eliminate residual vibration in

simulation but still causes vibration experimentally. Shapers will be derived to reduce the

level of residual vibration.
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Figure 5.3: First Order Zero Placement Shaper Step Experimental Response
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5.2 Derivation of Dominant Mode Robust Input Shaper

The slowest system mode contributes the largest amplitude of residual vibration in the

system response. If all three modes are approximations and the first mode is the dominant

mode, then the order of robustness of the portion of the shaper designed to eliminate the

dynamics due to the first mode can be increased. This is done by adding another set of

complex conjugate zeros on the system poles of the first mode«(1 & WI)'

H(z) = C(z - pd 2(z - pi)2(Z - P2)(Z - p;)(z - P3)(Z - pj)
z8

(5.13)

Equation 5.13 shows that adding shaper zeros only requires the power of a complex

conjugate pair to be raised to the desired order. In this case the order for mode one is two

or 71,1 = 2, and the order for modes 2 and 3 is one or 71,2 = 71,3 = 1. The same procedure,

as previously described, is used to find the input shaper sampling period and the impulse

amplitudes. Using figure 5.4, the sampling period was selected as T = 0.140 seconds.

Figure 5.5 shows the simulation response and figure 5.6 shows the experimental response

of the "robust dominant mode" input shaper.

The "dominant mode" shaper reduce the level of residual vibration compared to the first

order input shapero A second order input shaper will be derived to investigate the cause of

the residual vibration remaining in the response of the "dominant mode" input shapeI'.

5.3 Derivation of Second Order Input Shaper

A second order shaper for all three modes is designed to compensate for parameter variation

of the dominant mode and the relative high frequency modes. Two input shaper zeros are

placed at each system pole or 71,1 = 71,2 = n3 = 2. This results in the shaper shown in

equation 5.14.
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Impulse Amplitudes for 1st/2nd Order Zero Placement Input S haper
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Experimental Response to FirsVSecond Order Zero Placemenl Input Shaper
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Figure 5.6: First/Second Order Zero Placement Shaper Step Experimental Response

H(z) = C(z - pd 2(z - pi)2(z - P2!:2(Z - p;)2(z - ])3)2 (z - P3)2

'"
(5.14)

'..
'....
.)1

JI

Equation 5.14 shows that the causality constraint is still met. This is done by setting the

power of the denominator equal to the overall order of the numerator or l' = 2(u] +1/,2 +103).

The closed fOlm solution of equation 5.14 is not found, instead it is multiplied in MATLAB

using conv for a range of sampling periods and plotted for that range. Figure 5.7 hows the

impulse amplitudes for equation 5.14, The sampling period for this shaper is set to T =

0.125 seconds so a direct comparison can be made between the first order shaper and this

second order shapero The simulation results are shown in figure 5.8 and the experimental

results by figure 5.9. Figure 5.9 shows that there is no reduction of residual vibration when

compared to the "dominant mode" input shapero This verifies that the first mode dominates

the response and that if more reduction In residual vibration is required a more robust input

shaper for the first mode must be implemented.
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Experimental Response 10 Second Order Zero Placement Input Shaper
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Chapter 6

Extra-Insensitive and Negative

Time-Optimal Input Shaping

This chapter outlines the derivation of several input shapers designed and implemented in

continuous time. The shapers will again be convolved with a unit step input function to

illustrate point-to-point control. Only simulation results will be shown for the techniques

presented in this chapter.

6.1 Extra-Insensitive Input Shaping

The results of the previous input shaping techniques show that there is some parameter

variation evident when first order(ZV) input shaping was implemented. Extra-Insensitive

input shaping will be used to reduce residual vibration over a larger region of frequencies.

Since One Hump EI input shapers have been shown to have the same time duration as a

second order(ZVD) input shaper the results from the two input shapers will be compared.

A One Hump EI input shaper has three impulses and can be defined by equation 6.1.

The level of residual vibration will be set to the maximum allowable level of V = 5%.
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Figure 6.1: One Hump EI Shaper Slmulation Response

(6.1)
II

The impulse amplitudes and times arc defined by the curve fit equations 2.49, 2.50,
.~

2.51, 2.52, 2.53, and 2.54. The first impulse, AI, is still implemented at T1 = O. The "",
I::

impulse sequence is determined by plugging the desired level of re idual vibration and the

system parameters into the equations for AI, Az, A3 , T1, Tz, and T3 . The response for

the closed loop system with PD control is shown in figure 6.1. The input shapers were

:11

:l

'J!
",

found for each mode separately and then convolved for the multiple mode ca e using the

same procedure presented in chapter 4. This technique cannot be implemented as a digital

filter for either the single mode case or the multiple mode case because the impulse time

are not equally spaced. Therefore, the robustness of this technique could not be verified

experimentally.
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6.2 Input Shapers with Positive and Negative Impulses

Several negative time optimal input shapers are derived in this section using Singhose's

look up table method. The technique developed by Singhose, Seering, and Singer is lim-

ited to single mode design and has been shown to excite un-modeled high frequency dy-

namics. Therefore, an attempt is made to convolve negative time optimal input shapers in

simulation.

First the single mode case is considered to study the effect of the un-modeled high

frequency resonances on the system response to a unit step input. BOlh the Unity Magnitude

and Partial Sum input shapers will be shown in this section. There are three impulses in a

sequence for ZV negative "time-optimal" input shapers and the impulse sequence is defined

by equation 6.2.

t.

(6.2)

Table 2.4 shows the curve fit solution for the unity magnitude and partial sum tech-

niques. Both the zero-vibration(ZV) and zero-vibration-derivative(ZVD) are hown in ta-

ble 2.4. The ZVD solution adds two more impulses to the input shaping sequence and it is

represented by equation 6.3.

The unity magnitude or partial sum input shapers are determined by plugging the sys

tem parameters into table 2.4 and for the input shaper with either equation 6.2 or 6.3. Only

the ZV shapers are considered in this section. Again the shapers are derived for each mode

and convolved to find the multiple mode solution. Figure 6.2 shows the system response for

the UM-ZV shaper and figure 6.3 shows the response for the PS-ZV shapero Both figures

show that the single mode shaper for any mode results in a large level of residual vibration.
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Figure 6.2: UM-ZV Shaper Simulation Response

When the input shapers are convolved residual vibration can be eliminated but the inputs

for multiple mode UM-ZV and PS-ZV shapers will exceed actuator limits in a real sys-

tern. Violation of actuator constraint is caused by a shaped input that exceeds the desired

output for the UM-ZV shaper and impulse amplitudes that are greater than 1 and less than

-1 for the PS-ZV shapero The UM-ZV and PS-ZV input shapers could not be evaluated

experimentally for these reasons.
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Chapter 7

Implementation Method

The ECP Executive software package was used to implement the shaped inputs on the

hardware. It allows easy changes in the input shape and duration, and also control algo-

rithms that can be easily tuned. The ECP Executive offers both a continuous time control

algorithm and a discrete time control algorithm. Since computer controlled machines are

not continuous, the digital control algorithm was the most realistic choice for designing a

controller. The PD controller used in simulation and experiments is shown in equation 7.1.

b-
"(7.1 ) )1
-...
"[n simulation, setting the gains is straightforward but in the ECP Executive there are

a couple of ways to implement the control. The first way is to set the gains in the PIO

dialog box provided by the ECP Executive. The second way is to use the general form of

the control algorithm and set the gains of a discrete polynomial, where E1 = K p + K cl and

E2 = -Kd for equation 7.2.

(7.2)

For either method the desired feedback(encoder 1, 2, or 3) should be selected and the

sampling period, Ts , should be selected for the control algorithm. Every discrete poly-
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nomial in the general form of the control algorithm is executed at the selected sampling

period. This became a problem when input shapers were implemented on the Torsional

Plant as a discrete filter because the sampling rate has to be set to the impulse spacing for

the input shapero If the sampling period is not set to the input shaping filter then the de

lays for the impulse sequence will be inCOlTect making the input shaper ineffective. When

the sampling period was set to the filter delay time, the system went unstable when the

control algorithm was implemented. All the delays for each shaper were greater than the

minimum sampling rate, Ts = a.884ms. Therefore, none of the techniques presented were

implemented experimentally as a digital filter. The cause of this issue is not known at this

time.

The solution to the digital timing issue was to use the user defined trajectory option

in the ECP Executive program. Trajectory files are in text format but saved with a ".trj"

extension. The first number in a trajectory file defines the numher of points in the trajectory.

The following numbers define the trajectory in either counts, radians, or degrees. The

software allows the user to select the units for either user defined inputs or ECP Executi ve

inputs. An example trajectory file is shown below:

5

1

2

3

4

5

The number of points in the sample trajectory file is five and the trajectory moves from

zero to five. The time interval of these move times is the segment time selected in the

user defined trajectory dialog box. The segment times can be selected to within 1ms of

user's desired time interval. Inputs become less accurate as the segment time approaches
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the minimum sampling period, Ts = O. 84m3. Also, trajectory files can have no more than

275 points. This prevented any of the input shaping techniques designed in continuous

time from being tested experimentally. Input shapers designed in simulation as digital

filters could be implemented on the ECP hardware because the segment time was equal

to the filter delay time. The filter delay time was always much larger than the minimum

sampling period.

The output of the input shapers in simulations are used to create the trajectory file and

the segment time is set to the impulse time spacing for input shapers that have equal time

steps. The trajectory files were created in MATLAB using the "File input/output" functions.

Below is an example of how to create a trajectory file in MATLAB:

MAG=input('Enter the Magnitude of the Input')

fid=fopen('Sample.trj', 'Wi);

length=size (u) ;

fprintf (fid, f %f\r ' [length (L 1) ;MAG*u (1: 1: length (l f 1) ) ] ) ;

fclose (fid) ;

The input command prompts the user to enter the desired magnitude of the input at

the MATLAB command window. To create a file the fopen command writes a file called

Sample.trj, with write perrnissions('w'), in the present working directory and creates the

file identifier,jid. The number of points is determined by the length of the input created in

SIMULINK and length=size(u) finds the length of the input, u. It is the user's re ponsibility

to verify that the number of points does not exceed 275. The data is written to the file

by !print, where jid identifies the file. The data is written as floating point numbers, %J;

separated by return characters, r. The/close command closes the file identifier assigned to

the trajectory file. All experimental data shown was generated using trajectory filse created

with "File input/output" functions in MATLAB.
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Chapter 8

Comparison of Techniques

This chapter will cover the factors that determine the perfonnance of the input shapers de

signed in chapters 4, 5, and 6. It will also provide comparison tables so that equivalent

shapers can be evaluated and discuss some of possible causes for differences in perfor

mance. It should be noted that the solutions that Singhose(chapter 6) derived for Extra

Insensitive and Negative "Time-Optimal" input shapers are curve fit approximations. Ta

ble 8.1 outlines the criteria used to compare and rate the input shapers.

For comparison purposes, it is necessary to formulate a list of the input shapers designed

for the Torsional Plant.

1. First Order(ZV) Singer Input Shaper

2. Second Order(ZVD) Singer Input Shaper

3. Discrete Time Modified Input Shaper Using Singer First Order Constraints

4. Discrete Time Modified Input Shaper Using Singer Second Order Constraints

5. First Order Discrete Time Shaper Using Zero Placement for All Three Modes

6. First(AII Modes)/Second(Mode 1) Order Discrete Time Shaper Using Zero Place-

ment

11
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ICriteria

Total Time(Duration)

Number of Impulses

Order or Level of Robu tness

Calculation Difficulty

Digital or Continuous Time Derivation

Single or Multiple Mode Capability

Relative Performance on ECP Hardware

Table 8.1: Criteria for Comparison of Input Shapers

7. Second Order Discrete Time Shaper Using Zero Placement for All Three Modes

8. Unity Magnitude Input Shaper for Each Mode Individually and All Three Modes

Combined

9. Partial Sum Input Shaper for Each Mode Individually and All Three Modes Com

bined

10. Extra-Insensitive Input Shaper for Each Mode Individually and All Three Modes

Combined

With the exception of Tuttle's technique outlined in chapter 5, all the input shaper

were designed in continuous time. For a single mode, it is easy to implement an input

shaper designed in continuous time as a digital filter using Singer's method. This works

because a single mode input shaper of any order designed with that method has equally

spaced time intervals. The time intervals determine the sampling period of the digital filter.

Section 4.4 showed that if the parameters of non-dominant modes are altered slightly such

that individually designed shapers have a time interval that i an integer multiple of the

fastest input(shortest duration) time delay. then the multiple mode input shaper can be
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implemented as a digital filter. Also, there is no need to convolve the input shapers because

they can be organized as a series of cascaded filters with the same sampling period.

Singhose's curve fits for Extra-Insensitive, Unity Magnitude, and Partial Sum input

shapers are not designed to yield equally spaced time intervals. Therefore, they cannot be

implemented as a digital filter even for a single mode. Also, Singhose's methods for Nega

tive "Time-Optimal" input shapers are not designed to compensate for multiple modes in a

system. Simulations did show that multiple mode input shapers with negative impulses can

eliminate residual vibration but the plot of the input shows that there are numerous points

where the impulse amplitudes exceed 1 and -1. This will violate actuator constraints if the

un-shaped input saturates the input.. Only impulse sequences with all positive impulses can

guarantee not to violate actuator constraints given that the un-shaped input does not exceed

actuator limits. The Extra-Insensitive input shapers can be used to compensate for multiple

modes, but the continuous time input shaper must be transformed into the Laplace domain

to eliminate the difficulty of convolution.

Tuttle's input shaping technique is derived in the discrete time domain for multiple

modes, which makes it easy to implement since it is already a digital filter. Also, robustness

is added by increasing the number of zeros used to cancel the system poles. Another

significant trait is that it allows the user to select the desired sampling time for the Alter.

Therefore, the filter can be tuned to minimize the level of residual vibration. There is no

need to convolve this shaper with another shaper since it is already designed for multiple

modes and it also does not have to be convolved with the un-shaped input. The un-shaped

input can be passed through the filter and the output of the fi lter is the shaped command

signal.

Table 8.2 shows the simulation and experimental results of the listed techniques. Ex

perimental data could not he acquired for the techniques implemented in continuous time

in simulation. Both of Sing~r's methods used completely eliminate residual vibration in

simulation but a second order shaper for all three modes results in an input shaper with
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'27 impulses. A second order input shaper using Tuttle's discrete time technique only has

13 impulses, and is shown to eliminate residual vibration in simulation and reduce it ex

perimentally. In general, input shapers with fewer impulses are easier to implement. A

first order input shaper using Tuttle's method shows that parameter uncertainty exist be

cause a shaped input using this method resulted in a settling time 2 seconds slower than

the simulation results. Results from Tuttle's second order input shapeI' and 1st/2nd order

input shaper show that adding robustness to the first mode results in a faster rise time. They

also show that adding robustness to the second and third mode did not improve the settling

time. The modified method for multiple modes shows that if Singer's method is altered

then it can be implemented as a digital filter and it results in fewer impulses. The modified

shapers for the first and second mode improve the settling time, but don't perfonn as well

as Tuttle's method. Designing a shaper for the first and third mode showed that ignoring

the second mode will result in a larger level of residual vibration than when the third mode

is ignored. Sinhose's One Hump EI shaper allows for some residual vibration at the system

parameters and it results in a slower settling time. Singhose's negative time optimal input

shapers were implemented for all three modes in simulation and showed that they can ig

nificantly reduce residual vibration. They would however cause the limits of the actuators

to be exceeded.

Tuttle's method and the modified method were the only ones that could be experimen

tally tested. Both improved the system response but Tuttle's method resulted in better

perfonnance than the modified method.
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Comparison Table

Input Shaper Number Sim. Sim. Exp. Exp.

Shaping Time Of Rise Settling Rise Settling

Method Duration Impulse Time Time Time Time

Singer First Order 0.6974 8 0.575 0.528 N/A' N/A l

Singer Second Order 1.3948 27 1.210 1.126 N/A 1 N/A 1

Singhose One Hump EI ] .3948 27 1.306 3.368 N/A 1 N/A 1

Singhose UM-ZV 0.4650 27 0.718 0.358 N/A2 N/A2

Singhosc PS-ZV 0.4086 27 0.646 3.563 N/A2 N/A2

Tuttle First Order 0.75 7 0.624 0.571 0.794 2.591

Tuttle Second Order 1.50 13 1.290 1.192 1.137 1.875

Tuttle 1st/2nd Order 1.12 9 0.984 0.935 0.929 1.695

Mod.(l/2) First Order 0.5764 5 0.440 2.031 0.772 3.401

Mod.(l/3) First Order 0.5404 6 0.387 2.006 0.458 N/A3

Mod.( 1/2) Second Order 1.1528 9 L.042 0.985 0.925 2.59

Mod.( 1/3) Second Order 1.0807 11 0.920 0.878 0.880 4.166

Table 8.2: Table of Simulation and Experimental Results

I Input Trajectory Files Exceeded 275 Points because of Time Step Limitations

2Input Trajectory Files Exceeded 275 Points because of Time Step Limitations and Actuator Limit Ex-

ceeded by Shaped Input Trajectory File

3ExperimentaJ Settling Time Greater than 5 Seconds

88



Chapter 9

Conclusions

Several previously developed input shaping techniques have been outlined and imple

mented on the Torsional Plant. Simulations verify that input shaping in any form can

completely elirn.lnate all residual vibration from a system response to a step input. If an ac

curate model is developed then low order or robust shapers can be effective. Experiments

showed that the mathematical model derived in chapter 3 is not exact and that there must

be some variations in the system's parameters probably due to un-modeled nonlinear dy

namics. Shapers designed for more robust performance showed that the ignificance of the

variations can be accounted for in the design of the impulse sequences. Experiments al 0

showed that input shapers implemented as discrete filters are more easily implemented in

the ECP Executive software because the impulse times are the sampling period of the filter.

Some of the limitation of the software effected the accuracy to which the input shapers

could be implemented.

9.1 Contributions

A new technique based on Singer's method was developed to implement input shapers de

signed in continuous time as digital filters for multiple mode ystems. The motivation of

this technique was that implementing input shapers as filters is simpler than the implemen-
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tation of continuous time input shapers. As previously stated, the un-shaped command

signal is passed through(multiplied) the digital filter and the output of the filter became the

new command signal. This method eliminated the requirement of convolving input shapers

to form a multiple mode input shapero The digital filters were cascaded to perform the same

task.

9.2 Future Work

The trajectory files were not implemented with 100% accuracy because the inputs have

decimal remainders that the ECP Executive truncates to integer multiples of one count,

since the encoders are not capable of reading in hetween two counts. Also, several input

shapers required a small segment time relative to the minimum sampling period, Ta. This

causes the impulse times to be inaccurately located. These two effects are detrimental to

input shapers because the shaper times and amplitudes of a sequence are what reduces

residual vibration.

All computer controlled machines will have similar limitations since it is not possible

for them to be continuous. Therefore, the effects of quantization and digital timing on input

shaping techniques are important topics for future research on input shaping.
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Appendix A

MATLAB Codes(Model Builder and

Mode Finder)

A.I model.m

%%%%%%%%%%%%%%%%% MODEL BUILDER %%%%%%%%%%%%%%%%%

%%%%%%%% 3 DOF System %%%%%%%%

% Transfer Function

Jl=O.Ol063;J2=O.Ol063;J3=J2;

cl=O.027;c2=O.002;c3=c2;

kl=2.76;k2=2.76;k3=2.76;

Nl=sf*[J2*J3 (J2*c3+J3*c2lJ2*k3+J3*(k2+k3)+c2*c3)

(c2*k3+c3*(k2+k3)) ,k2*k3];

N2=sf*k2*[J3 c3 k3];

N3=sf*k2*k3;

N= [Nl; [0 0 N2]; [0 0 0 0 N3]];

D=[Jl*J2*J3, (Jl*J2*c3+Jl*J3*c2+J2*J3*cl), ...
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(Jl*(J2*k3+J3*(k2+k3)+c2*c3) ...

+J2*(J3*(kl+k2)+cl*c3)+J3*cl*c2),

(J1*(c2*k3+c3*(k2+k3) )+J2*(cl*k3+c3*(kl+k2))

+J3* (cl* (k2+k3) +c2* (k1+k2)) +cl*c2*c3) I •••

Jl*k2*k3+J2*(k3*(k1+k2))+J3*(k1*(k2+k3)+k2*k3)

+cl*(c2*k3+c3*(k2+k3) )+c2*c3*(k1+k2) I •••

cl*k2*k3+c2*k3* (kl+k2) +c3* (k1* (k2+k3) +k2*k3), ...

k1*k2*k3] ;

% State Space Model

A1=[O 1 0 0 0 0];

A2=[-(k1+k2)/Jl -c1/J1 k2/Jl 0 0 0];

A3=[0 0 0 10 0];

A4=[k2/J2 0 -(k2+k3)/J2 -c2/J2 k3/J2 0];

A5=[0 0 0 001];

A6=[0 0 k3/J3 0 -k3/J3 -c3/J3];

A=[A1;A2;A3;A4;A5;A6] ;

B= [0 1/Jl 0 0 0 0 ]';

C= [0 0 0 0 1 0];

DD=O;

A.2 mode.m

% The following finds the natural frequencies and mode

% shapes (eigenvalues and eigenvectors) of the system.

% You must first run "Hodel Builder" to obtain "A".

% Frequencies are in Hz.
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% Mode shapes follow the same order as the Frequencies &

% are approximate because of non-proportional damping.

[U,wn)=eig(A) ;U=real(U);

%Calculate the Open Damping Ratios, d

[Wn,Z) = damp(ss(A,B,C,DD));

%Calculates the Frequencies in Hz

wn=abs(wn)/2/pi;

% Use the following for 3 DOF systems

Fre~Hz=[wn(l,l);wn(3,3) ;wn(5,5))

Fre~RadPerS=Fre~Hz*2*pi

Modes=[[U(l,l) ;U(3,l) ;U(5,l) ]/U(l,l),

[U (1, 3) ; U (3, 3) ; U (5,3) ) /U (1,3), [U (1,5) ;

U (3, 5) ; U (5, 5) ] /U (1, 5) ]

A.3 Discrete.m

%Find Discrete Time Model and Mode Shape

%Discrete.m

%Script That Creates the Model

model

%Simulink Model that is used in dlinrnod

%Open Loop State Space PD Control Model

open OLSSPDModel
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Ts=O.000884*int;%O.884ms is the minimum Ts

%Continuous Time Open Loop System Matrix

sysc=ss(A,B,C,DD) ;

%Discrete Time Open Loop System Matrix

sysd=c2d(sysc,Ts) ;

%Discrete Time State Space Matrix

[Ad,Bd,Cd,Dd,Ts] =ssdata(sysd);

%Open Loop State Space Model with PD Control

[Adt,Bdt,Cdt,Ddt]=dlinmod('OLSSPDModel' ,Ts);

%Open Loop System Matrix with PD Control

sysdt=ss(Adt,Bdt,Cdt,Ddt,Ts) ;

%Closed Loop System Matrix with PD Control

sysdtcl=feedback(sysdt,l) ;

%Determine the damping ratio and natural

%frequencies of the modes

[Wn,Z]=damp(sysdtcl) ;
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Appendix B

MATLAB Codes(Singer's Method)

B.l DisPlantFirstOrderCLPD.m

%lst Order Input Shaper for Closed Loop System

%With PD Control

%DisPlantFirstOrderCLPD.m

%Change to the Correct Directory

cd c:\Research\SingerShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O .75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of
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%the minimum Ts

%Build Discrete Model

Discrete

%lst Order Input Shaper for CL System for First Mode

%Damping Coefficient and System Natural Frequency

zeta1c = Z(l,l};

w1c=Wn(l,l) ;

K1c = exp(-zetalc*pi/sqrt(l-zeta1c A 2});

deltaT1c = pi/(w1c*sqrt(l-zeta1c A 2});

%First Impulse at Time=O

A_11c = 1/{l+K1c};

%Second Impulse at Time=deltaT

A_12c = K1c/(1+K1c);

%lst Order Input Shaper for CL System for Second Mode

%Damping Coefficient and System Natural Frequency

zeta2c = Z(3,l};

w2c=Wn(3,1) ;

K2c = exp(-zeta2c*pi/sqrt(1-zeta2c A 2});

deltaT2c = pi/(w2c*sqrt(1-zeta2c A 2});

%First Impulse at Time=O

A_21c = 1/(1+K2c};

%Second Impulse at Time=deltaT

A_22c = K2c/(1+K2c);

%lst Order Input Shaper for CL System for Second Mode

%Damping Coefficient and System Natural Frequency

zeta3c = Z(5,l);

w3c=Wn{5,l);
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K3c = exp(-zeta3c*pi/sqrt(1-zeta3c A 2}};

deltaT3c = pi/(w3c*sqrt(1-zeta3c A 2}};

%First Impulse at Time=O

A_31c = 1/(1+K3c);

%Second Impulse at Time=deltaT

A_32c = K3c/(1+K3c);

%Run DisPlantFirstOrderCLPDModel In Simulink

%This block diagram simulates a step input with

%input shaping for each individual mode

sim(/DisPlantFirstOrderCLPDModel')

%Stead State value found for closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss};

ys=ones(size(t}} ;

ssl=1.02*ones(size(t)} ;

ss2=O.98*ones(size(t) };

figure(l}

plot(t/yc/ss(temp(l/l)),'.' ,t,ylc/ss(temp(1 / 1)), ':', ...

t , Y2c / s s ( temp (1 , 1) ) , ' - . I , t, Y3c / s s ( temp (1, 1) ) , I - - ' , • • •

t,ycAIIMode/ss(temp(l,l}} 1'-' ,t,ys, 'k-.' ,t,ssl , 'k',

t , ss2, ' k' )

axi s ( [0 1 - 0 . 5 2.5])

title(/Simulation Reponse to First Order(ZV) Input Shaper')

xlabel('Time(seconds} '}

ylabel('Normalized Angular position of Theta 3'}

%grid

legend(/No Input Shaping', 'First Mode', ...

'Second Mode' I 'Third Mode', 'All Three Modes')
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figure(2)

plot(t,uc,'.' ,t,ulc,' :',t,u:c, '-. ',t,u3c, '--', ...

t, ucAIIMode, '-' )

axis([O 101.1))

title('System Input with First Order(ZV) Input Shaper')

xlabel{'Time{seconds) ')

ylabel ( , Input' )

%grid

legend{'No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes' ,0)

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO Ts IDS !!!!!!!!!!!!

MAG=input('Desired Number Counts: \n');

cd /, cd Research/ECPInputs

fid=fopen{'DisPlantFirstOrderCLPD.trj', 'w');

length=size{ucAIIMode) ;

fprintf (fid, '%f\r', [length(l, 1); ...

MAG*ucAIIMode{1:1:length{1,1)}]) ;

fclose (fid) ;

cd c:\Research\SingerShaper

B.2 DisPlantSecondOrderCLPD.m

%2nd Order Input Shaper for Closed Loop System

%With PD Control

%DisPlantSecondOrderCLPD.m
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%Change to the Correct Directory

cd c:\Research\SingerShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O. 75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete

%lst Order Input Shaper for CL System for First Mode

%Damping Coefficient and System Natural Frequency

zetal = Z{l, I} ;

wI =Wn ( I, I) ;

Kl = exp(-zetal*pi/sqrt(1-zetal~2));

T_12 = pi/{wl*sqrt(1-zetal~2}};

T 13 = 2*T_12;

%First Impulse at Time=O

A_II = 1/(1+2*Kl+Kl~2);

%Second Impulse at Time=T_12

A_12 = 2*Kl/(1+2*Kl+Kl~2);

%Third Impulse at Time=2*T_12
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A_13 = (Kl~2)/(1+2*Kl+Kl~2);

%lst Order Input Shaper for CL System for Second Mode

%Damping Coefficient and System Natural Frequency

zeta2 = Z (3,1) ;

w2=Wn (3 11) ;

K2 = exp(-zeta2*pi/sqrt{1-zeta2~2));

T_22 = pi/(w2*sqrt(1-zeta2~2));

T 23 = 2*T_22;

%First Impulse at Time=O

A_21 = 1/(1+2*K2+K2~2);

%Second Impulse at Time=T_22

A_22 = 2*K2/(1+2*K2+K2~2);

%Third Impulse at Time=2*T_22

A_23 = (K2~2)/(1+2*K2+K2~2);

%lst Order Input Shaper for CL System for Third Mode

%Damping Coefficient and System Natural Frequency

zeta3 = Z(5,1);

w3 =Wn ( 5 , 1) ;

K3 = exp(-zeta3*pi/sqrt(1-zeta3~2));

T 32 = pi/(w3*sqrt(1-zeta3'2));

T_33 = 2*T_32;

%First Impulse at Time=O

A_31 = 1/(1+2*K3+K3~2);

%Second Impulse at Time=T_32

A_32 = 2*K3/(1+2*K3+K3~2);

%Third Impulse at Time=2*T_31

A_33 = (K3~2)/(1+2*K3+K3'2);
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%Run DisPlantSecondOrderCLPDModel in Simulink

%This block diagram simulates a step input with

%input shaping for each individual mode

sim('DisPlantSecondOrderCLPDModel')

%Stead State value found from closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(t)) ;

ssl=1.02*ones(size(t)) ;

ss2=0.98*ones(size(t));

figure(l)

p lot ( t , yc / s s ( temp (1, 1) ) , ' . ' , t , y1 c / s s ( temp (1 , 1) ) , ' : ' , ...

t,y2c/ss(temp(l,l)), '-.' ,t,y3c/ss(temp(l,l)), '--',

t,ycAIIMode/ss(temp{l,l)), '-' ,t,ys, 'k-.',

t, ssl, , k' , t, ss2, 'k' )

axis( [0 2 -0.5 2.5])

ti t1e ( ...

'Simulation Reponse to Second Order(ZVD) Input Shaper')

xlabel('Time(seconds) ')

ylabel('Normalized Angular Position of Theta 3')

%grid

legend('No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes')

figure(2)

plot (t, uc, ' . ' , t, u1c, ' : ' , t, u2c, , - . ' ,

t,u3c, '--' ,t,ucAIIMode, '-')

axis([O 2 0 1.1])

title('System Input with Second Order (ZVD) Input Shaper')
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xlabel('Time(seconds) ')

ylabel ( , Input' )

%grid

legend('No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes' ,0)

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO Ts ms !!!

MAG=input('Desired Number Counts: \n');

cd I, cd Research/ECPInputs

fid=fopen('DisPlantSecondOrderCLPD.trj', 'w');

length=size(ucAllMode) ;

fprintf (fid, '%f\r', [length(l, 1); ...

MAG*ucAllMode(1:1:1ength(1,1))]) ;

fclose (fid) ;

cd c:\Research\SingerShaper
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Appendix C

MATLAB Codes(Modified Singer's

Method)

C.l DisPlantFirstOrdModCLPD.m

%2nd Order Input Shaper for Closed Loop System

%With PD Control

%Singer's Method

%DisPlantFirstOrdModCLPD.m

%Change to the Correct Directory

cd c:\Research\SingerShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O. 75;
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L...

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete

%lst Order Input Shaper for CL System for First Mode

%Damping Coefficient and System Natural Frequency

zetal = 2 (l, 1) ;

wI=Wn (1, 1) ;

Kl = exp(-zetaI*pi/sqrt(1-zetaI~2});

T_12 = pi/(wl*sqrt(1-zetal~2) ;deltaTlc=T_12;

%First Impulse at Time=O

A_II = l/(l+KI);A_Ilc=A_ll;

%Second Impulse at Time=T_12

A_12 = Kl/(l+Kl) ;A_12c=A_12;

%Ist Order Input Shaper for CL System for Second Mode

%Damping Coefficient and System Natural Frequency

zeta2 = 2(3,1);

w2 =Wn (3 I 1) ;

K2 = exp(-zeta2*pi/sqrt(1-zeta2~2»);

T_22 = pi/(w2*sqrt(l-zeta2~2) ;deltaT2c=T_22;

%First Impulse at Time=O

A_2l = 1/(1+K2) ;A_21c=A_21;

%Second Impulse at Time=T_22

A_22 = K2/(1+K2) ;A_22c=h_~2;

%lst Order Input Shaper for CL System for Third Mode
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%Damping Coefficient and System Natural Frequency

zeta3 = 2(5,1);

w3 =lIIln ( 5 , 1) ;

K3 = exp(-zeta3*pi/sqrt(1-zeta3 A2));

T_32 = pi/(w3*sqrt(1-zeta3 A2)) ;deltaT3c=T_32;

%First Impulse at Time=O

A_31 = 1/(1+K3) ;A_31c=A_31;

%Second Impulse at Time=T_32

A_32 = K3/(1+K3) ;A_32c=A_32;

%Implmenting Singers Method In Discrete Time

%For First and Second Mode

%First Mode Freq and Damp Are Same

%Modify Second Mode Parameters

%So that T_12 is An Integer

%Multiple of mT_22(T for Shaper)

%Modified Parameters

mT_22=T_12/3;

mw2 =Wn (3 , 1) ;

counter=O.OOOl;

templ={pi/{mw2*mT_22))A2;

while tempI > 1

templ={pi/{{mw2+counter)*mT_22))A2;

counter=counter+O.OOOl;

end
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mw2=mw2+counter;

mzeta2=sqrt(1-(pi/(mw2*mT_22))~2);

mK2 = exp(-mzeta2*pi/sqrt(1-mzeta2'2));

mT_22 = pi/(mw2*sqrt(1-mzeta2~2));

%First Impulse at Time=O

mA_21 = 1/(1+mK2);

%Second Impulse at Time=T 22

mA_22 = rnK2/(1+mK2);

%Implmenting Singers Method in Discrete Time

%For First and Second Mode

%First Mode Freq and Damp Are Same

%Modify Second Mode Parameters

%So that T_12 is An Integer

%Multiple of mT_23(T for Shaper)

%Modified Parameters

mT_3 2 =T_.12 / 4 ;

mw3=Wn(5,l) ;

counter=O.OOOl;

templ=(pi/(mw3*mT_32))~2;

while tempi > 1

tempi=(pi/((mw3+counter)*mT_32))~2;

counter=counter+O.0001;

end
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mw3=mw3+counter;

mzeta3=sqrt(1-(pi/(mw3*mT_32))~2);

mK3 = exp(-mzeta3*pi/sqrt(1-mzeta3~2));

mT_32 = pi/(mw3*sqrt(1-mzeta3~2));

%First Impulse at Time=O

rnA_31 = 1/(1+mK3};

%Second Impulse at Time=T_22

rnA_32 = mK3/(1+mK3);

%Run DisPlantFirstOrdModCLPDModel In Simulink

%This block diagram simulates a step input

%with input shaping for each individual mode

sim('DisPlantFirstOrdModCLPDModel'}

%Simulate Unmodified to Compare Results

sim('DisPlantFirstOrderCLPDModel')

%Stead State value found for closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(t}} ;

ssl=1.02*ones(size(t}} ;

ss2=O.98*ones(size(t)) ;

figure(l)

p lot ( t , yc / s s ( temp (1 , 1) ) , , - ' , t, Y1c / s s ( temp (1 , 1) ) , , : ' , . . .

t , Y2c / s s ( temp (1 , 1) ) , , - . ' , t , Y3c / s s ( temp (1, 1) ) , , - - ' ,

t, ycAllMode / s s ( temp (1 , 1) } , , k' , t, ys, , k - . ' , ...

t,ssl, 'k' ,t,ss2, 'k')

title('Closed Loop System Reponse to Step Input')

xlabel('Time(seconds)' )
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ylabel('Norrnalized Angular Position of Theta 3')

grid

legend('No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes')

figure(2)

plot(t,uc, '-' ,t,u1c,':' ,t,u2c,'-.' ,t,u3c, ' __ ', ...

t , ucAllMode, ' k' )

axis([-12 0 1.1])

title('Systern Input')

xlabel('Tirne(seconds) ')

ylabel ( , Input' )

grid

legend('No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes')

figure(3)

p lot ( t , yc / s s ( temp (1, 1) ) , , . ' , t s , y 12 / s s ( temp ( I, 1) ) , , : ' J

ts, y13 / ss (temp (1,1) ) , ' - . ' , t, ycAllMode/ ss (temp (1,1) ) , ...

'- , , t, ys, , k- . ' , t, ssl, 'k' , t, ss2, 'k' )

axis([O 1 -0.5 2.5])

ti tle ( ...

'Reponse to First Order (ZV) and Modified ZV Input Shaper')

xlabel('Time(seconds) ')

ylabel('Norrnalized Angular Position of Theta 3')

%grid

legend('No Input Shaping', ...

'First/Second Modified Discrete' , .

'First/Third Modified Discrete', .
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'All Three Modes Continuous')

figure(4)

plot(t,uc,'.' ,t22,u12,':' ,t32,u13, '-.' ,t,ucAllMode, '_')

axis([O 1 0 1.1])

title( ...

'System Input with Modified First Order (ZV) Input Shaper')

xlabel('Time(seconds) ')

ylabel('Input')

%grid

legend('No Input Shaping', ...

'First/Second Modified Discrete' ,

'First/Third Modified Discrete', ...

'All Three Modes Continuous' ,0)

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO mT_22 or mT_23 mS !!

MAG=input('Desired Number Counts: \n');

cd I, cd Research/ECPInputs

fid=fopen('DisPlantFirstOrdModCLPD12.trj', 'w');

length=size(u12) ;

fprintf(fid, '%f\r', [length(l,l) ;MAG*u12(1:1:1ength(1,1) )]);

fclose(fid) ;

cd c:\Research\SingerShaper

cd /, cd Research/ECPlnputs

fid=fopen('DisPlantFirstOrdModCLPD13.trj', 'w');

length=size(u13) ;

fprintf(fid, '%f\r', [length(l,l) ;MAG*u13(1:1:1ength(l,l))]);

fclose(fid) ;
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cd c:\Research\SingerShaper

C.2 DisPlantSecOrdModCLPD.m

%2nd Order Input Shaper for Closed Loop System

%With PD Control

%DisPlantSecOrdModCLPD.m

%Change to the Correct Directory

cd c:\Research\SingerShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O.75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete

%lst Order Input Shaper for CL System for First Mode

%Damping Coefficient and System Natural Frequency

zetal=Z(l,l);

wl=Wn(l,l) ;
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Kl = exp(-zetal*pi/sqrt(1-zetal A 2»;

T_12 = pi/(wl*sqrt(1-zetal A 2»;

T_13 = 2*T_12;

%First Impulse at Time=O

A_ll = 1/(1+2*Kl+K1 A 2);

%Second Impulse at Time=T_12

A_12 = 2*Kl/(1+2*Kl+K1 A 2);

%Third Impulse at Time=2*T_12

A_13 = (K1 A 2)/(1+2*Kl+K1 A 2);

%lst Order Input Shaper for CL System for Second Mode

%Damping Coefficient and System Natural Frequency

zeta2 = Z(3,l);

w2=Wn(3,l) ;

K2 = exp(-zeta2*pi/sqrt(1-zeta2 A 2}};

T_22 = pi/(w2*sqrt(1-zeta2'2);

T_23 = 2*T_22;

%First Impulse at Time=O

A_21 = 1/(1+2*K2+K2 A 2);

%Second Impulse at Time=T_22

A_22 = 2*K2/(1+2*K2+K2 A 2};

%Third Impulse at Time=2*T_22

A_23 = (K2 A 2)/(1+2*K2+K2 A 2);

%lst Order Input Shaper for CL System for Third Mode

%Damping Coefficient and System Natural Frequency

zeta3 = Z(5,1);

w3=Wn(5,1) ;

K3 = exp(-zeta3*pi/sqrt(1-zeta3 A 2);
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T_32 = pi/(w3*sqrt(1-zeta3"2));

T_33 = 2*T_32;

%First Impulse at Time=O

A_31 = 1/(1+2*K3+K3"2);

%Second Impulse at Time=T_32

A_32 = 2 *K3 / (1 +2 *K3 +K3 " 2) ;

%Third Impulse at Time=2*T_32

A_33 = (K3~2)/(1+2*K3+K3"2);

%Implmenting Singers Method in Discrete Time

%For First and Second Mode

%First Mode Freq and Damp Are Same

%Modify Second Mode Parameters

%So that T_12 is An Integer

%Multiple of mT_22(T for Shaper)

%Modified Parameters

mT_22=T_l2/3;

mw2=Wn(3,l) ;

counter=O.OOOl;

templ= (pi / (mw2 *mT__22) ) ~ 2;

while templ > 1

templ=(pi/( (mw2+counter)*mT_22))"2;

counter=counter+O.OOOl;

end

mw2=mw2+counter;
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mzeta2=sqrt(1-(pi/(mw2*mT_22))~2) ;

mK2 = exp(-mzeta2*pi/sqrt(1-mzeta2~2));

mT_22 = pi/(mw2*sqrt(l-mzeta2~2));

mT_23 = 2*mT_22;

%First Impulse at Time=O

mA_21 = 1/(1+2*mK2+mK2~2);

%Second Impulse at Time=T_22

mA_22 = 2*mK2/(1+2*mK2+mK2~2);

%Third Impulse at Time=2*T_22

mA_23 = (mK2~2)/(1+2*mK2+mK2~2);

%Implmenting Singers Method in Discrete Time

%For First and Second Mode

%First Mode Freq and Damp Are Same

%Modify Second Mode Parameters

%So that T_12 is An Integer

%Multiple of mT_23(T for Shaper)

%Modified Parameters

mT_32=T_12/4;

mw3=Wn(5,I) ;

counter=O.OOOI;

templ=(pi/(mw3*mT_32) }~2;

while tempI > 1

ternpl= (pi / ( (mw3 +coun ter) *mT.._32) ) ~ 2 ;

counter=counter+O.OOOI;
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end

mw3=mw3+counter;

mzeta3=sqrt(1-(pi/(mw3*mT_32) )'2);

mK3 = exp(-mzeta3*pi/sqrt(1-mzeta3 A 2));

rnT_32 = pi/(mw3*sqrt(1-mzeta3 A 2));

mT_33 = 2*mT_32;

%First Impulse at Time=O

mA_31 = 1/(1+2*mK3+mK3 A 2);

%Second Impulse at Time=T_22

mA_32 = 2*mK3/(1+2*mK3+mK3 A 2);

%Third Impulse at Time=2*T_22

mA_33 = (mK3 A 2)/(1+2*mK3+mK3 A 2);

%Run DisPlantSecOrdModCLPDModel In Simulink

%This block diagram simulates a step input

%with input shaping for each individual mode

sim('DisPlantSecOrdModCLPDModel')

%Simulate Unmodified to Compare Results

sim('DisPlantSecondOrderCLPDModel')

%Stead State value found for closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(t)) ;

ssl=1.02*ones(size(t)) ;

ss2=O.98*ones(size(t)) ;

figure(l)

plot(t,yc/ss(temp(l,l)), '-' ,t,ylc/ss(temp(l,l)),':', ...
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-

t , y 2 c / s s ( temp (1, 1) ) , , - . ' , t, Y3c / s s {temp (1 , 1) ) , , - - ' , . . .

t,ycAllMode/ss(temp(l,l)), 'k' ,t,ys, 'k-.' ,t,ssl, 'k', ...

t,ss2,'k')

title{'Closed Loop System Reponse to Step Input')

xlabel{'Time(seconds) ')

ylabel('Normalized Angular Position of Theta 3')

grid

legend{'No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes')

figure(2)

plot{t,uc, '_I ,t,u1c,':' ,t,u2c, '-,' ,t,u3c, '--', ...

t, ucAllMode, , k' )

axi s ( [-1 2 0 1. 1 J )

title('System Input')

xlabel{'Time(seconds) ')

ylabel ( , Input' )

grid

legend{'No Input Shaping', 'First Mode', ...

'Second Mode', 'Third Mode', 'All Three Modes')

figure(3)

p lot {t , yc / s s ( temp (1, 1) ) , ' . ' , t s , y 12 / s s ( temp (1 , 1) ) , ' : ' , .

ts,y13/ss(temp(l,1)), '-.' ,t,ycAllMode/ss{temp(l,l)), .

, - ' , t, ys, , k- . ' , t, ssl, 'k' , t, ss2, ' k' )

axis([O 2 -0.5 2.5J)

title ( ...

'Reponse to Second Order (ZVD) and Modified ZVD Shaper')

xlabel('Time{seconds) ')
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ylabel('Normalized Angular position of Theta 3')

%grid

legend('No Input Shaping'" ..

'First/Second Modified Discrete' , ",

'First/Third Modified Discrete' , . , .

'All Three Modes Continuous')

figure(4)

plot(t,uc,'. ',t22,u12,':' ,t32,u13, '-, ',t,ucAIIMode, '-')

axi s ( (0 2 0 1, 1] )

title( ...

'System Input with Modified Second Order (ZVD) Input Shaper')

xlabel('Time(seconds) ')

ylabel ( , Input' )

%grid

legend('No Input Shaping'",.

'First/Second Modified Discrete' , . , .

'First/Third Modified Discrete' , .. ,

'All Three Modes Continuous' ,0)

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO TsmS 1'1

MAG=input('Desired Number Counts: \n');

cd /, cd Research/ECPInputs

fid=fopen('DisPlantSecOrdModCLPD12.trj', '~');

length=size(u12) ;

fprintf (fid, '%f\r', [length(l,l) ;MAG*u12 (l:l:length(l,l))]);

fclose{fid) ;

cd c:\Research\SingerShaper
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cd /, cd Research/ECPlnputs

fid=fopen('DisPlantSecOrdModCLPD13.trj', 'w');

length=size(u13) ;

fprintf(fid, '%f\r', [length(l,l) ;MAG*u13(l:1:length(l,l))]);

fclose(fid) ;

cd c:\Research\SingerShaper
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---

Appendix D

MATLAB Codes(Thttle's Method)

D.l DisPlantFirstOrderDisCLPD.m

%lnd Order Input Shaper for Closed Loop System

%With PD Control

%DisPlantFirstOrderDisCLPD.m

%Change to the Correct Directory

cd c:\Research\TuttleShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O. 75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

J23



%the minimum Ts

%Build Discrete Model

Discrete

%Amplitude of the Step Input

AMP=l;

%Closed Loop Natural Frequencies of each mode

Wl=Wn (1,1) ;

W2=Wn(3,1) ;

W3=Wn(S,I) ;

%Closed Loop Modal Damping Ratios of each mode

Dl=Z(l,I);

D2 =Z (3, 1) ;

D3=Z(S,1) ;

%Closed Loop Damped Natural Frequency

Wdl=Wl*sqrt(1-Dl~2);

Wd2=W2*sqrt(1-D2~2) ;

Wd3=W3*sqrt(1-D3~2) ;

hold on

%Discrete Sampling Period

for T=O:O.OOOS:O.2;

%Input Shaper Zeros

pl=exp (-Dl. *Wl . *T) . *exp (Wdl. *T. *j) ;

pls=exp(-Dl.*Wl.*T) .*exp(-Wdl.*T.*j);

p2=exp(-D2.*W2.*T) .*exp(Wd2.*T.*j);

p2s=exp(-D2.*W2.*T) .*exp(-Wd2.*T.*j);

p3=exp(-D3.*W3.*T) .*exp(Wd3.~T.*j);

p3s=exp(-D3.*W3.*T) .*exp(-Wd3.*T.*j);
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-pls],conv{[l -p2], ...

-p3J, [1 -p3s])))));

-pls],conv([l -p2], ...

-p3), [1 -p3s))) )));

%Impulse amplitudes

Aa=conv([l -p1),conv([1

conv([l -p2s),conv{[1

Aa=real (Aa) ;

figure{l) ,

plot {T , Aa (1) , , . ' , T , Aa (2) , , . ' , T , Aa (3) , , . ' , T , Aa (4) , , . ' , . . .

T , Aa (5) , , . ' , T , Aa (6) , , . ' , T, Aa (7) , , . ' )

end

ti tIe ( ...

'Impulse Amplitudes for First Order Zero Placement')

xlabel('Impulse Spacing, T{seconds)')

ylabel('Impulse Amplitudes')

grid

hold off,pause(l)

%Find the Impulse Amplitudes for a T that yields

%all Positive Impulse Amplitudes

T=O.125;

%Input Shaper Zeros

pl=exp(-D1*W1*T)*exp{Wd1*T*j) ;

p1s=exp(-Dl*Wl*T)*exp(-Wdl*T*j) ;

p2=exp(-D2*W2*T)*exp(Wd2*T*j) ;

p2s=exp(-D2*W2*T)*exp(-Wd2*T*j) ;

p3=exp(-D3*W3*T)*exp(Wd3*T*j) ;

p3s=exp(-D3*W3*T)*exp(-Wd3*T*j) ;

%Impulse amplitudes

Aa=conv { [1 -pI], conv ( [1

conv([l -p2s],conv([l

125



Aa=real (Aa) ;

%Scaling Constant CC

CC=(Aa(1)+Aa(2)+Aa(3)+Aa(4)+Aa(5)+Aa(6)+Aa(7))"(-1) ;

CC=real (CC) ;

%Run DisPlantFirstOrderDisCLPDModel in Simulink

%This block diagram simulates a step input with

%input shaping for each individual mode

sim('DisPlantFirstOrderDisCLPDModel')

%Stead State value found for closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(dTs)) ;

ssl=ys*1.02;

ss2=ys*O.98;

figure(2)

plot(dTs,ystep/ss(temp(l,l)) ,dTs,ys, 'k-.', ...

dTs,ssl, 'k' ,dTs,ss2, 'k')

axis([O 1 0 1.2])

title( ...

'Simulation Reponse to First Order Zero Placement Shaper')

xlabel('Time(seconds) ')

ylabel('Normalized Angular Position of Theta 3')

%grid

figure(3)

plot(dT,u, '-')

axi s ( [0 1 0 1. 1) )

ti tle ( ...

'System Input with First Order Zero Placement Shaper')
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xlabel ( 'Time (seconds) , )

ylabel ( I Input' )

%grid

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO T mS !

MAG=input('Desired Number Counts: \n');

cd I, cd Research/ECPInputs

fid=fopen('DisPlantFirstOrderDisCLPD.trj', 'w');

length=size (u) ;

fprintf(fid , '%f\r', [length(l,l) ;MAG*u(1:1:1ength(l,l)) J);

fclose (fid) ;

cd c:\Research\TuttleShaper

D.2 DisPlantSecondOrderDisCLPD.m

%lnd Order Input Shaper for Closed Loop System

%With PD Control

%DisPlantSecondOrderDisCLPD.m

%Change to the Correct Directory

cd c:\Research\TuttleShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;
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Kd=-O. 75 i

%Sampling Time of the ECP System

int=-li %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete

%Amplitude of the Step Input

AMP=-l;

%Closed Loop Natural Frequencies of each mode

Wl=-Wn(l,l) ;

W2=Wn(3,1) i

W3=Wn(S,1) ;

%Closed Loop Modal Damping Ratios of each mode

Dl=Z(l,l) i

D~=Z (3,1) i

D3=Z(5,1) ;

%Closed Loop Damped Natural Frequency

Wdl=Wl*sqrt(l-Dl~2)i

Wd2=-W2*sqrt(1-D2~2) i

Wd3=W3*sqrt(1-D3~2) ;

hold on

%Discrete Sampling Period

for T=O:O.0005:0.2i

%Input Shaper Zeros

pl=-exp(-Dl.*Wl.*T) .*exp(Wdl.*T.*j);

pls=exp(-Dl.*Wl.*T) .*exp(-Wdl.*T.*j);
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-p1],conv([1 -p1s], ...

-p2 J , conv ( (1 -p2], .

-p2 s] , conv ( [1 -p3], .

-p3s],[1 -p3s])))})))))}};

p2=exp(-D2.*W2.*T) .*exp(Wd2.*T.*j);

p2s=exp(-D2.*W2.*T) .*exp(-Wd2.*T.*j);

p3=exp(-D3.*W3.*T) .*exp(Wd3.*T.*j);

p3s=exp(-D3.*W3.*T) .*exp(-Wd3.*T.*j);

%Impulse amplitudes

Aa=conv([l -p1] ,conv([l

conv( [1 -p1s] ,conv( [1

conv ( [1 -p2s], conv ( [1

conv([l -p3J ,conv([l

Aa=real (Aa) ;

figure(l),

plot(T,Aa(l),' .',T,Aa(2),'. ',T,Aa(3),'.' ,T,Aa(4),'.', ...

T, Aa ( 5) , , . ' , T, Aa ( 6) , , . ' , T, Aa (7 ) , , . ' , T , Aa (8) , , . ' , . . .

T, Aa ( 9) , , . ' , T, Aa (10) , , . ' , T, Aa (11) , , . I , T, Aa (12) , , . ' , . . .

T, Aa (13) , , . ' )

end

title ( ...

'Impulse Amplitudes for Second Order Zero Placement')

xlabel('Impulse Spacing, T(seconds)')

ylabel('Impulse Amplitudes')

grid

hold off,pause(l)

%Find the Impulse Amplitudes for a T that yields

%all positive Impulse Amplitudes

T=O.125;

%Input Shaper Zeros

p1=exp (-D1 *Wl *T) *exp (Wdl *'1'* j ) ;
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-pIs] I •••

-p2] , .

-p3] , .

-pl],conv([1

-p2] , conv ( [1

-p2s], conv( [1

-p3sJ, ...

p1s=exp(-D1*W1*T)*exp(-Wd1*T*j) ;

p2=exp(-D2*W2*T)*exp(Wd2*T*j) ;

p2s=exp(-D2*W2*T)*exp(-Wd2*T*j) ;

p3=exp(-D3*W3*T)*exp(Wd3*T*j) ;

p3s=exp(-D3*W3*T)*exp(-Wd3*T*j) ;

%Impulse amplitudes

Aa=conv( [1 -pI] ,conv([1

conv( [1 -pIs] ,conv([1

conv([1 -p2s],conv([1

conv([1 -p3J,conv([1

[1 -p3s])))))))))));

Aa=real(Aa) ;

%Scaling Constant CC

CC=(Aa(I)+Aa(2)+Aa(3)+Aa(4)+Aa(5)+Aa(6)+Aa(7)+Aa(B) ...

+Aa(9)+Aa(10)+Aa(11)+Aa(12)+Aa(13))~(-I);

CC=real (CC) ;

%Run DisPlantSecondOrderDisCLPDModel in Simulink

%This block diagram simulates a step input with input

%shaping for each individual mode

sim('DisPlantSecondOrderDisCLPDModel')

%Stead State value found for closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(dTs)) ;

ssl=ys*1.02;

ss2=ys*O.98;

figure(2)

plot(dTs,ystep/ss(temp(I,I)) ,dTs,ys, 'k-.', ...
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dTs,ssl, 'k' ,dTs,ss2, 'k')

axis([O 2 0 1.2])

title ( ...

'Simulation Reponse to Second Order Zero Placement')

xlabel('Time(seconds) ')

ylabel('Normalized Angular position of Theta 3')

%grid

figure (3)

plot(dT,u, '-')

axis( [0 2 0 1.1))

title( ...

'System Input with Second Order Zero Placement')

xlabel('Time(seconds)' )

ylabel ( , Input' )

%Create the Trajectory file ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO T mS !!!!

MAG=input('Desired Number Counts: \n');

cd I, cd Research/ECPInputs

fid=fopen('DisPlantSecondOrderDisCLPD.trj', 'w');

length=size(u) ;

fprintf(fid, '%f\r', [length(l,l) ;MAG*u(1:1:1ength(1,1))));

fclose (fid) ;

cd c:\Research\TuttleShaper

D.3 DisPlantSecOrderModelDisCLPD.m

%lnd Order Input Shaper for Closed Loop System
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%With PD Control

%DisPlantSecOrderModelDisCLPD.m

%Change to the Correct Directory

cd c:\Research\TuttleShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O. 06;

Kd=O .75 ;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete

%Amplitude of the Step Input

AMP=l;

%Closed Loop Natural Frequencies of each mode

WI =Wn (l , 1) ;

W2=Wn{3,1);

W3 =v~n (5 , 1) ;

%Closed Loop Modal Damping Ratios of each mode

Dl=Z(l,l);

D2=Z{3, 1);
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D3=Z (5,1 l ;

%Closed Loop Damped Natural Frequency

Wd1=Wl*sqrt(1-D1 r 2) ;

Wd2=W2*sqrt(1-D2~2) ;

Wd3=W3*sqrt(1-D3~2) ;

hold on

%Discrete Sampling Period

for T=O:O.0005:0.2;

%Input Shaper Zeros

p1=exp(-D1.*W1.*T) .*exp(Wd1.*T.*j);

p1s=exp(-D1.*W1.*Tl .*exp(-Wdl.*T.*j);

p2=exp(-D2.*W2.*Tl .*exp(Wd2.*T.*j);

p2s=exp(-D2.*W2.*T) .*exp(-Wd2.*T.*j);

p3=exp (-D3. *W3. *Tl . *exp (Wd3. *T. *j) ;

p3s=exp(-D3.*W3.*T) .*exp(-Wd3.*T.*j);

%Impulse amplitudes

-p1s] , .

-p2s], .

-p1], conv( [1 -p1], conv( [1

-p1s] ,conv([1 -p2] ,conv([1

-p3] , [1 -p3 s] ) l ) ) ) ) ) ;

Aa=conv ( [1

conv( [1

conv([1

Aa=real (Aa) ;

figure(1) ,

plot(T,Aa(1),'. ',T,Aa(2),'.' ,T,Aa(3),'.' ,T,Aa(4),'.',

T, Aa ( 5) , ' . ' , T , Aa ( 6) , , . ' , T, Aa (7 ) , , . ' , T , Aa (8) , , . ' , . . .

T,Aa (9), ' .')

end

title( ...

'Impulse Amplitudes for 1st/2nd Order Zero Placement')
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-pIs], .

-p2s] , .

xlabel('Impulse Spacing, T(seconds)')

ylabel('Impulse Amplitudes')

grid

hold off,pause(l)

%Find the Impulse Amplitudes for a T that yields

%all Positive Impulse Amplitudes

T=O.140;

%Input Shaper Zeros

pI=exp(-DI*Wl*T)*exp(Wdl*T*j);

pls=exp(-Dl*Wl*T)*exp(-Wdl*T*j) ;

p2=exp(-D2*W2*T)*exp(Wd2*T*j) ;

p2s=exp(-D2*W2*T)*exp(-Wd2*T*j) ;

p3=exp(-D3*W3*T)*exp(Wd3*T*j) ;

p3s=exp(-D3*W3*T)*exp(-Wd3*T*j) ;

%Impulse amplitudes

Aa=conv( [1 -pI] ,conv([l -pI] ,conv([l

conv((l -pIsJ,conv([l -p2],conv( [1

conv([l -p3], [1 -p3s])))))));

Aa=real(Aa) ;

%Scaling Constant CC

CC=(Aa(1)+Aa(2)+Aa(3)+Aa(4)+Aa(5)+Aa(6)+Aa(7) ...

+Aa(8)+Aa(9) )~(-1);

CC=real(CC) ;

%Run DisPlantSecOrdModelDisCLPDModel in Simulink

%This block diagram simulates a step input with

%input shaping for each individual mode

sim('DisPlantSecOrdModelDisCLPDModel' )
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%Stead State value found for closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(dTs)) ;

ssl=ys*1.02;

ss2=ys*O.98;

figure(2)

plot(dTs,ystep/ss(temp(l,l)) ,dTs,Ys, 'k-.', ...

dTs,ssl, 'k' ,dTs,ss2, 'k')

axis([O 2 0 1.2])

title( ...

'Simulation Reponse to lst/2nd Order Zero Placement')

xlabel('Time(seconds) ')

ylabel('Normalized Angular Position of Theta 3')

%grid

figure (3)

plot(dT,u,'-')

axis( [0 2 0 1.1])

title( ...

'System Input with lst/2nd Order Zero Placement')

xlabel('Time(seconds) ')

ylabel ( , Input' )

%Create the Trajectory file ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO T mS !!!!

MAG=input('Desired Number Counts: \n');

cd I, cd Research/ECPInputs

fid=fopen('DisPlantSecOrderModelDisCLPD.trj', 'w');

length=size (u) ;
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fprintf(fid,'%f\r', [length(l,l) ;MAG*u(1:1:1ength(l,l»]);

fclose(fid) ;

cd c:\Research\TuttleShaper
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Appendix E

MATLAB Codes(Singhose's Method)

E.l DisPlantEIOneHumpShaper.m

%£1 Input Shaper for Closed Loop System

%With PD Control

%DisPlantEIOneHumpShaper.m

%Change to the Correct Directory

cd c:\Research\SinghoseShaper

%Clears All Old Variables

clear all,close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O.75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of
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%the minimum Ts

%Build Discrete Model

Discrete

%Set the Maximum Level of Vibration

V=O.05;

%Natural Frequency and Damping Ratio of the 1st Mode

zl=Z(l,l);

wI = Wn (1, 1) ;

%Damped Period of Vibration

Tdl=2*pi/(wl*sqrt(1-z1~2));

%First Impulse

A_ll=O.2497+0.2496*V+O.8001*zl+ ...

1.233*V*zl+0.496*(zl~2)+3.l73*V*(zl~2);

T_ll=O;

%Third Impulse

A_13=O.2515+0.2147*V-O.8325*zl+ ...

1.415*V*zl+O.8518*(zl~2)-4.901*V*(zl~2);

T_13=Tdl;

%Second Impulse

A_12=1-(A_l1+A_13) ;

T_12=(O.5+0.4616*V*zl+4.262*V*(zl~2)+1.756*V*(zl~3)+

8 . 57 8 * (V ~ 2 ) * z1- 1 0 8 . 6 * (V r 2 ) * ( z 1 r 2 ) +3 ."3 7 * (V ~ 2) * ( z 1 ~ 3 ) ) *Td1;

%Natural Frequency and Damping Ratio of the 2nd Mode

z2=Z(3,1) ;

w2 = Wn (3 , 1) ;

%Damped Period of Vibration

Td2=2*pi/(w2*sqrt(1-z2~2));
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%First Impulse

A_21=O.2497+0.2496*V+0.S001*z2+ ...

1.233*V*z2+0.496*(z2 A2)+3.173*V*(z2
A

2) ;

T_21=0;

%Third Impulse

A_23=0.2515+0.2147*V-O.S325*z2+ ...

1.415*V*z2+0.S51S*(z2~2)-4.901*V*(z2A2);

T_23=Td2;

%Second Impulse

A_22=1-(A_21+A_23) ;

T_22=(0.5+0.4616*V*z2+4.262*V*(z2
A
2)+1.756*V*(z2

A
3)+

S. 57 S* (VA 2) *z2 -lOS. 6 * (VA 2) * (z2 r 2 ) +337 * (V~ 2) * ( z2 ~ 3) ) *Td2 ;

%Natural Frequency and Damping Ratio of the 3rd Mode

z3=Z(5,l);

w3 = Wn ( 5 , 1) ;

%Damped Period of Vibration

Td3=2*pi/(w3*sqrt(1-z3
A
2)) ;

%First Impulse

A 31=O.2497+0.2496*V+0.S001*z3+ ...

1.233*V*z3+0.496*(z3~2)+3.173*V*(z3A2);

T_31=0;

%Third Impulse

A_33=0.2515+0.2147*V-0.8325*z3+ ...

1.415*V*z3+0.851S*{z3 A2)-4.901*V*(z3
A

2) ;

T_33=Td3;

%Second Impulse

A_32=1-(A_31+A_33) ;
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T_32=(O.5+0.46l6*V*z3+4.262*V*(z3~2)+1.756*V*(z3~3)+ ...

8.578*(V~2)*z3-108.6*(VA2)*(z3~2)+337*(VA2)*(z3A3))*Td3;

%Simulate the System Response to a Unit Step Input

%with and without Input Shaping

sim ( , DisPlantEIOneHumpShaperModel' )

%Stead State value found from closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(t)) ;

ssl=1.02*ones{size(t)) ;

ss2=O.98*ones(size(t) );

figure(l)

plot(t,y/ss(temp(l,l)),'.' ,t,yl/ss(temp(l,l)), 1:', ...

t , y2 / s s ( temp (1, 1) ) , , - . I , t , Y3 / s s ( temp (I, 1) ) , , - - ' , . . .

t,yAIIMode/ss{temp(l,l)), '-' ,t,ys, 'k-.',

t,ssl,'k',t,ss2, 'k')

axi s ( [0 2 - 0 . 5 2.5 J )

ti tIe ( ...

'Simulation Response with a One Hump EI Input Shaper')

xlabel('Time(seconds) J),

ylabel('Normalized Angular Position of Theta 3')

legend('No Input Shaper', '1st Mode' ...

, '2nd Mode' I '3rd Mode', 'All Modes')

figure(2)

plot (t, u J ' • ' , t ,uI, , : ' , t, u2 I ' -. ' , t, u3, '- -' , t, uAIIMode, ' -' )

axi s ( [0 2 0 1. 1] )

ti tIe ( ...

'System Input with and without a One Hump EI Input Shaper')
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xlabel('Time(seconds} '},

ylabel ( , Input' )

legend('No Input Shaper', '1st Mode' ...

, '2nd Mode', '3rd Mode', 'All Modes' ,O}

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO Ts mS !

MAG=input('Desired Number Counts: \n'};

cd I, cd Research/ECPInputs

fid=fopen('DisPlantEIOneHumpShaper.trj', 'w');

length=size(uAIlMode) ;

fprintf (fid, , %f\r' , [length (1, l) ; ...

MAG*uAIIMode(l:l:length(l,l}})} ;

fclose(fid} ;

cd c:\Research\SinghoseShaper

E.2 DisPlantUMZVShaper.m

%UM-ZV Input Shaper for Closed Loop System

%With PD Control

%DisPlantUMZVShaper.m

%Change to the Correct Directory

cd c:\Research\SinghoseShaper

%Clears All Old Variables

clear all,close all

%Clears Command Prompt

clc
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%PD Control Gains

Kp=O.06;

Kd=O. 75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete

%Natural Frequency and Damping Ratio of the 1st Mode

zl=Z(l,l);

wI = Wn ( I, 1) ;

%Period of Vibration

Tl=2*pi/wl;

%First Impulse

A_ll=l;

T_ll=O;

%Second Impulse

A_12=-1;

T_12=(O.16724+0.27242*zl+0.20345*zl A2)*Tl;

%Third Impulse

A_13=1;

T_13=(O.33323+0.00533*zl+0.17914*zlA2+0.20125*zl~3)*Tl;

%Natural Frequency and Damping Ratio of the 2nd Mode

z2=Z(3, 1);

w2 = Wn(3,1);

%Period of Vibration
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-

T2=2*pi/w2;

%First Impulse

A_21=1;

T_21=O;

%Second Impulse

A_22=-1;

T_22=(O.16724+0.27242*z2+0.20345*z2~2)*T2;

%Third Impulse

A_23=1;

T_23={O.33323+0.00533*z2+0.17914*z2~2+0.20125*z2~3)*T2;

%Natural Frequency and Damping Ratio of the 3rd Mode

z3=Z{5,1);

w3 = Wn{5,l);

%Period of Vibration

T3=2*pi/w3;

%First Impulse

A_31=1;

T_31=O;

%Second Impulse

A_32=-1;

T_32={O.16724+0.27242*z3+0.20345*z3~2)*T3;

%Third Impulse

A_33=1;

T_33={O.33323+0.00533*z3+0.17914*z3~2+0.20125*z3~3)*T3;

%Simulate the System Response to a Unit Step Input

%with and without Input Shaping

sirn{'DisPlantUMZVShaperModel')
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%Stead State value found from closed loop system

[ss,time]=step(sysdtcl) ;temp=size(ss);

ys=ones(size(t)) ;

ssl=1.02*ones(size(t)) ;

ss2=O.98*ones(size(t)) ;

figure(l)

plot (t, Y/ ss (temp (1,1) ) , , . ' , t, y1 / ss (temp (1, 1) ) , , : ' ,

t , y2 / s s ( temp (1 , 1) ) , ' - . ' , t , Y3 / s s (temp (1 , 1) ) , , - -' ,

t,yAIlMode/ss(temp(l,l)), '-' ,t,ys, 'k-.',

t, ssl, ' k' , t, ss2, , k' )

axis([O 1 -0.5 2.5J)

title('Step Response with a Unity Magnitude Input Shaper')

xlabel('Time(seconds) '),

ylabel('Normalized Angular Position of Theta 3')

legend('No Input Shaper', '1st Mode' ...

,'2nd Mode', '3rd Mode', 'All Modes')

figure(2)

plot (t, u, I • ' , t, u1, ' : I , t, u2, '-. ' , t I u3, ' - -' , t, uAllMode, , -' )

axi s ( [0 O. 6 -1 2])

title( ...

'System Input with and without Unity Magnitude Shaper')

xlabel('Time(seconds)') ,ylabel('Input'}

legend('No Input Shaper', '1st Mode', ...

'2nd Mode', '3rd Mode', 'All Modes' ,0)

%Create the Trajectory file the ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO 1mS

MAG=input('Desired Number Counts: \n');
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cd I, cd Research/ECPInputs

fid=fopen('DisPlantUMZVShaper.trj', 'w');

length=size(ul) ;

fprintf (fid, '%f\r' , [length (l, 1) ;MAG*ul (l: 1: length (1, 1) ) ] ) ;

fclose (fid) ;

E.3 DisPlantPSZVShaper.m

%PS-ZV Input Shaper for Closed Loop System

%With PD Control

%DisPlantPSZVShaper.m

%Change to the Correct Directory

cd c:\Research\SinghoseShaper

%Clears All Old Variables

clear all, close all

%Clears Command Prompt

clc

%PD Control Gains

Kp=O.06;

Kd=O.75;

%Sampling Time of the ECP System

int=l; %Used To Specify Sampling

%in Integer Multiples of

%the minimum Ts

%Build Discrete Model

Discrete
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%%Natural Frequency and Damping Ratio of the 1st Mode

zl=Z{l,l);

wI = Wn{l,l);

%Period of Vibration

Tl=2*pi/wl;

%First Impulse

A_ll=l;

T_ll=O;

%Second Impulse

A_12=-2;

T_12={O.2097+0.22441*zl+0.08028*zl~2+O.23124*zl~3)*Tl;

%Third Impulse

A_13=2;

T_13={O.29013+0.09557*zl+0.10346*zl~2+O.24624*zl~3)*Tl;

%%Natural Frequency and Damping Ratio of the 2nd Mode

z2=Z{3,l) ;

w2 = Wn (3 , 1) ;

%Period of Vibration

T2=2*pi/w2;

%First Impulse

A_21=1;

T_21=O;

%Second Impulse

A_22=-2;

T_22={O.2097+0.22441*z2+0.08028*z2~2+0.23124*z2~3)*T2;

%Third Impulse

A_23=2;
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T_23=(O.29013+0.09557*z2+0.10346*z2 A2+0.24624*z2 A3)*T2;

%%Natural Frequency and Damping Ratio of the 3rd Mode

z3=Z(5,1);

w 3 = Wn ( 5 , 1) ;

%Period of Vibration

T3=2*pi/w3;

%First Impulse

A_31=1;

T_31=O;

%Second Impulse

A_32=-2;

T_32=(O.2097+0.22441*z3+0.08028*z3 A 2+0.23124*z3 A 3}*T3;

%Third Impulse

A_33=2;

T_33=(O.29013+0.09557*z3+0.10346*z3A2+0.24624*z3~3)*T3;

%Simulate the System Response to a Unit Step Input

%with and without Input Shaping

sim('DisPlantPSZVShaperModel')

%Stead State value found from closed loop system

[ss,time]=step(sysdtcl} ;temp=size(ss);

ys=ones(size(t}) ;

ssl=1.02*ones(size(t)) ;

ss2=O.98*ones(size(t)) ;

figure(l}

plot(t,y/ss(temp(l,l}},'.' ,t,y1/ss(temp(l,l)),':', ...

t , Y2 Iss ( temp (1, 1 ) } , , - . ' , t, Y3 Iss ( temp (1, 1) ) , , - - , ,

t , YAllMode Iss ( temp (1, 1) ) , , - ' , t , ys, , k - . ' , ...

147



---

t, ssl, 'k' , t, ss2, 'k' )

axi s ( [0 1 - 0 . 5 2. 5 ] )

title('Step Response with a Partial Sum Input Shaper')

xlabel('Time(seconds) '),

ylabel('Normalized Angular position of Theta 3')

legend('No Input Shaper', '1st Mode' ...

,'2nd Mode', '3rd Mode', 'All Modes')

figure(2)

plot(t,u,'.', t,ul,': ',t,u2, '-. ',t,u3, '--' ,t,uAIIMode, '-')

axis([O 0.5 -2 2])

ti tIe ( ...

'System Input with and without a Partial Sum Shaper')

xlabel('Time(seconds) ') ,ylabel('Input')

legend('No Input Shaper', '1st Mode' ...

,'2nd Mode', '3rd Mode', 'All Modes' ,0)

%Create the Trajectory file for ECP Hardware Experiments

%NOTE: SET THE SEGMENT TIME EQUAL TO Ts mS !

MAG=input('Desired Number Counts: \n');

cd /, cd Research/ECPInputs

fid=fopen('DisPlantPSZVShaper.trj', 'w');

length=size(uAllMode) ;

fprintf(fid, '%f\r', [length (1, 1) ; ...

MAG*uAllMode(l:l:length(l,l))]) ;

fclose (fid) ;

cd c:\Research\SinghoseShaper
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