
INVFSI1GATION OF LAYERED

DEPTH IMAGES

By

CHARLES RANDALL BERRY

Bachelor of Science
University of Southern Colorado

Pueblo, Colorado
1983

Bachelor of Science
University of Central Oklahoma

Edmond, Oklahoma
1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial flllfillment of

the requirements for
the Degree of

MASTERS OF SCIENCE
August, 200]



INVESTIGATION OF LAYERED

DEPTH IMAGES

Thesis Approved:

----~~·-lle-g-e-----

11



PREFACE

This study was conducted to further the work being done in image based rendering (ffiR)

and in particular layered depth images (LDl). Through my research I have discovered some

of the features of LOIs. LDIs are capable of generating synthetic images at several frames

per second. It is also possible to produce images that are a close approximation to an actual

image through the use of LOIs. There are some limitations to the use of LOIs. For instance,

if the desired viewing angle is far from the initial camera there is a larger error. There is

also a small problem with the Gaussian kernel. It allows some of the items in the back to

bleed through to the front.

I would like to thank my masters committee-Drs. Douglas Heisterkamp, Nophill Park,

George Hedrick, and Blayne Mayfield.- for their guidance and support in the completion

of this research. I would like to extend a sincere thanks to Or. Heisterkamp. Without hi

support I would have not been able to complete this research. I would also like to thank my

wife and sons for their support and understanding during these past years.
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Chapter 1

INTRODUCTION

A currcnt concern in the field of computer graphics is the generation of synthetic images

within a short period of time. Ideally synthetic images would be generated fast enough

to be ahle to create a smooth continuous image stream. There are a number of ways to

generate synthetic images. Synthetic images can be generated by changing the viewing

position, light intensity, or light location. Synthetic images can also be generated by a

combination of any of the three view position, light intensity, or light position. There

are numerous applications for a method that can generate novel scenes at several frames

per second. Some examples are interactive walk through of a scene, virtual reality, and

computer games.

1.1 Three Dimensional Modeling

There have been several methods presented that generate synthetic images by varying the

view positions [2, 20, 10, 14, 5, 22, 6, 16, 17, 19, 17, 8, 9]. One method that is common is

three-dimensional modeling. This method of generation includes ray tracing. This method

requires the longest time to render a scene. All of the elements of the scene are stored as

drawing or rendering instructions in the computer. When a new view is desired the entire
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scene has to be regenerated. While this does not present much of a problem for simple

scenes, it does pose a real problem for complex scenes. A scene that is composed of a few

hundred polygons can be rendered in a short time. A scene that has several thousand or

even millions of polygons can take a considerable length of time to render.

1.2 Image Based Rendering

On the other end of the spectrum is a method called Image Based Rendering (ffiR). As

the name suggests, this method uses images as the drawing primitives instead of geometric

objects. One IBR technique is view morphing [18]. This paper describes a method of

generating a synthetic image given two images. It is interesting to note that the two source

images do not have to be of the same object. In one of the example image sequences

the view morphing is done between two different people. A degenerate case of IBR is a

texture map. This is probably the simplest case of ffiR. An image is warped directly onto

an object. For example, if you wanted to display a wooden crate, you could render a simple

cube and then warp an image of a crate side onto the cube side. Another example would

be displaying a building. Most buildings can be represented with a few simple cubes and

then have an image warped onto the cubes. This reduces the computational complexity

considerably and saves considerable computation time.

1.3 Layered Depth Images

One image based rendering method that has been recently introduced is the layered depth

image [19, 6]. A layered depth image is composed of pixels with depth. This is to say that

the pixel contains the usual color and alpha values as well as depth information. An alpha

value can be thought of as a transparency value. A degenerate case of layered depth image

is the sprite with depth. In this case there is a limit of one pixel per location. In an LDI

2



Figure 1.1: Layered Depth Image

there can be multiple pixels per pixel location. Figure 1.1 shows the details of an LDI. To

construct an LDI you can think of rays emanating from the camera. A each ray strikes

a surface, another pixel is added to the list for that image location. Layered depth images

can be generated from rendered images or real images. To redisplay a layered depth image,

McMillan's warp ordering algorithm [11] is used.

1.4 Combining Three Dimensional Modeling, Image Based

Rendering, and Layered Depth Images

A complete image may contain the elements of several of the methods. There may be an

environment map that shows the elements of the scene that are not apt to change. The
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environemt map is also the furthest from the camera. The next element of the scene is the

sprite. After this comes the sprite with depth. The layered depth image comes next. Finally

there are the geometrically rendered objects that are closest to the camera.

1.5 Varying Lighting Conditions

There have been several methods introduced to generate synthetic views by varying the

lighting conditions [3,4, 7, 13,23,24]. Again we go back to three-dimensional modeling.

A change in lighting requires a complete regeneration of the scene. For simple scenes this

does not present much of a problem. For complex scenes a considerable length of time can

be required to generate a new image. The other end of the spectrum is the use of image

based rendering. One method of modifying the lighting conditions is through the use of

radiance map. A new image can be generated in a short period of time with the use of a

radiance map. Images can be generated at several frames per second using this method,

even for complex scenes. A radiance map contains lighting modification information for

each element in the scene or pixel.

There are a few different ways to generate radiance maps [4,23,24]. Radiance maps are

generated from real images or previously generated images. The essence of a radiance map

is the capturing of the reflective properties of the items in the scene. With the reflectance

properties known, a change in the light conditions can be accurately represented in a syn­

thetic image. Most algorithms concentrate on the Lambertian model which accounts for the

diffuse reflection and ignores the specular reflection. It is much easier to assume that the

light energy reflected back is uniform. If you try to account for differences in reflection the

rendering becomes much more time consuming. In Figure 1.2 the two types of reflection

are shown. The diffuse part is represented by an arc at the point where the light ray strikes

the surface. The specular reflection is represented by the ray leaving the surface. It is much

easier to ignore the specular reflection. That way you do not have to calculate the angles
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Spectral reflection

Difun ret1~ction

Reflective ,urfe.ce

associated with the reflection.

Figure 1.2: Reflection model
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Chapter 2

THESIS STATEMENT

Layered depth images are an effective way of generating synthetic images. Images arc

generated that are visually close to the actual image and are generated at several frames per

second.

Hypothesis 0 - Layered depth images can be used to efficiently generate a synthetic im­

age for a change in view that is within the prescribed camera motion range. This

synthetic image will be within an error, E, of the actual image.

Hypothesis 1 - Layered depth images can be used to generate images at a rate greater

than, a, frames per second on a desktop PC.
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Chapter 3

BACKGROUND/LITERATURE

REVIEW

I will be implementing layered depth images. To do this I will create a set of programs that

will generate a set of depth images, create the LDI from the depth images, render the LDI,

and compute the error for a given set of images.

3.1 Layered depth images

As shown in Figure 1.1 an LDI is a stack of pixels for each image location. The actual data

structure for a layered depth image is shown in Figure 3.1. You can see that along with the

color and alpha information, there is also depth information for each pixel. Each pixel in

the image is actually an array ofdepth pixels. A depth pixel is a pixel with associated depth

information. The list of depth pixels is built up in front to hack order. The furthest pixel is

the last in the list and the closest pixel is the first in the list. When rendering a pixel on the

screen the list is processed in back to front order. This allows for easy alpha manipulation

when rendering the unique view.

7



DepthPixel =
ColorRGBA: 32 bit integer
z: 20 bit integer
Splatlndex: 11 bit integer

LayeredDepthPixel
NumLayers: integer
Layers [O .. NumLayers-l] : array of DepthPixel

LayeredDepthlmage =
Camera: camera
Pixels[O .. Xres-l.0, O.. Yres-l]: array of LayeredDepthPixels

Figure 3.1: Layered Depth Image Structuref191

3.2 High dynamic range radiance maps

A radiance map is a two dimensional array of radiance information. The radiance informa­

tion is used to vary the pixel intensity in a more realistic manner than is accomplished by

just increasing the RGB value of the pixeL Some materials reflect more light than others.

The high dynamic range radiance map (HDRRM) accounts for these differences. When ad­

justing the light level, materials that reflect more light are increased more than the materials

that do not reflect as much light. To generate an HDRRM a seri.es of images with varying

light intensities are obtai ned. The series of images is run through an algorithm described in

P. Debevec's paper [4].

There are a couple of ways to vary the image intensity for real images. One way is to

actually vary the light level. Another way is to adjust the exposure time on the camera. To

change the light intensity in a computer generated or rendered image is accomplished by

changing the intensity of the lights in the scene.
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Chapter 4

EXPERIMENTAL FRAMEWORK

AND RESULTS

The following sections outline the steps that I took to verify the operation of LDI. I will

cover the depth image generation, LDI creation, LOI rendering, measuring the frame rate,

and measuring the image accuracy.

All of the image generation was accomplished with the OpenGL graphics library [211.

Using OpenGL eased the task of generating synthetic images, letting me concentrate more

on the details of the LDI.

4.1 Generate Depth Images

Before anything else can be done a set of depth images had to be created. I wrote a program

that loosely followed Popescu's [15] method for gathering the images that are used to create

the LDT. This method takes a series of images that form a semi circle around the object of

interest. Figure 4.1 illustrates the method of gathering images used in Popescu's [] 5] paper.

I vary slightly from this method. Instead of alternating sides for each image J process one

side and then the other side. The first image, vector 0 in figure 4.1 is used as the LDI

9
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Figure 4.1: View vectors of images used to construct a LOI.

image, or LDI camera. After the first image is generated and stored, the rest of the files are

generated and stored. Each image has five associated files. These files are bmp, camera,

depth, mask, and normal.

4.2 File type bmp

The bmp [12] files store the color information for the image. At each pixel location, (x, y),

there are twenty four bits of infonnation stored. These bits are divided evenly into three

eight bit values. Each eight bits stores a particular color. There are eight bits for each of

the red, green, and blue colors. These files can be viewed using an image viewing program

such as xv [1]. You can see a sample of the image in figure 4.2. The file structure for this

type of file is as follows: identifier - 2 bytes, file size - 4 bytes, Reserved - 4 bytes, Bitmap

data offset - 4 bytes, Bitmap header size - 4 bytes, width - 4 bytes, height - 4 bytes, planes

- 2 bytes, Bits per pixel - 2 bytes, Compression - 4 bytes, Bitmap data size - 4 bytes, H

resolution - 4 bytes, V resolution - 4 bytes, Colors - 4 bytes, Important colors - 4 bytes, rgb

color - bitmap data size bytes.
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4.3 File type camera

The camera file contains a 4x4 matrix that is the camera for the image. The camera matrix is

used to project the image from the global world coordinate system to the camera's projected

image coordinate system. This matrix is made up of a viewport matrix, perspective matrix,

and an affine transformation matrix. If C I is a camera for a given image then the camera

can be expressed as Cl = VI' PI ·AI. The image coordinates (x,y,Z, W)1' are obtained after

multiplying the global world coordinate point (X,Y,Z,1)T by the camera C 1 and dividing

out w. Mathematically this shown as (x·w,y ·w,Z· w, wf =C I . (X,Y,Z,lf.

The file format for this type of file is theta - 4 bytes (float data), 4 x 4 matrix - 16 * 4

bytes (float data).

4.4 File type depth

The depth file contains the depth information for the image. The depth information in these

files is the depth in the camera's projected image coordinate system. Doing this lets me

combine these projected depths with the projected information from the other files. I have

created a program that reads this file and displays the information in a gray scale. This

program is called DisplayGray. A sample image is shown in figure 4.3. From figure 4.3

you can clearly tell that the teapot, dodecahedron, and icosahedron are the furthest objects.

The torus is in the center and the cube is the closest. The file format for this type of file is

number of rows - 4 bytes, number of columns - 4 bytes, depth - rows * columns * 4 bytes

(float data).

12
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Figure 4.3: Gray scale image showing depth.
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4.5 File type mask

The mask file contains a mask of the image. Each byte in the file is either a 0 or a 1. If

the byte is a 0, there is no image information (i.e. background). If the byte is a 1, there is

image information at that byte. Once again this is derived from the projected image. The

contents of this file are used to speed up the creation of the LDI. The LOI creation program

does not process any of the information from the file if the mask bit is O. The file format

for this type of file is number of rows - 4 bytes, number of columns - 4 bytes, mask - rows

* columns * 1 bytes (char data).

4.6 File type normal

The normal file contains the normal information for each pixel in the image. The normals

for each pixel are computed and stored in this file. This file is the one exception to the data

being in the camera's projected coordinate system. The normals are from the image as it

sits in the worlds global coordinate system. This is done by finding the four points next to

the pixel of interest. These points are then projected back to the worlds coordinate system.

This is done by taking the inverse of the camera and multiplying the points by the inverse

camera matrix. If Cl is the camera matrix, the inverse of the matrix is computed. This

matrix is ell. Now the points are multiplied by the inverted camera matrix to move them

to the global coordinate system. From the four points, now in the global coordinate system,

I create two vectors. This is done by finding the difference between two sets of points. Now

I do a check to make sure that I am not trying to compute the normal between two different

surfaces. This is done by comparing the depths of the two vectors. If the difference in the

two depths exceeds a preset limit, the vectors are assumed to be on two different surfaces.

The limit on the preset depth is critical. If the limit is set to small, nonnals are not computed

that need to be computed. IF the limit is to large, different surfaces will be treated as the

14
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same surface and a normal will be computed for the space between the two surfaces. The

next step is to find the cross product of the two vectors. The cross product of the two

vectors is another vector that is perpendicular to the plane defined by the vectors. I now

have a normal for the pixel. This normal is stored in a file. The file format for this type of

file is number of rows - 4 bytes, number of columns - 4 bytes, normal - rows * columns *

12 bytes (structure data). The normal structure contains three values nx, ny, and nz. These

values are the normal for each of the three coordinate axis.

4.7 Constructing The Layered Depth Image

Now that all of the necessary information is at hand I can get down to creating the LOl.

This is done using yet another module. The LOI creation module reads in each of the files

created by the image generation module. This module takes one command line parameter.

The parameter is a file name. This file in tum contains a list of files. These files arc read in

order. The first file read in is treated as the LOI image. Each of the remaining files is read

in and the information from them is added to the information already stored in the LOT.

The procedure for creating the LDI is as follows. The frrst thing to do is to read in the

information that will be used as the LDI camera. This information is added to the LOI just

as it is read in from the files. This gives us a starting point for the LOY. The next thing

to do is process the rest of the files. The first part of this is to read in the files for the

second image. Now compute the inverse of the new camera. This inverse is used to creale

a transformation matrix. The transformation matrix, T 2L, will project a pixel from the new

image to the LDI image. The transformation matrix is computed by multiplying camera

one, or th,e LDr camera, by the inverse of camera two. If C21 be the inverse of camera

2, the equation is T 21 = C1 . Ci 1
. With the transformation matrix computed the second

image is ready to be projected to the first image. When the pixel from the second image is

projected to the LOr, the depths are compared. If the depths are within a preset distance,

]5
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Figure 4.4: When the depth difference for creating the LDI is to large, vi w J.

the pI cis are assumed to b th sam . Th pr S t distanc is a pram t r of the al 'orithm

and c.:an he adjusted to optimi/e th g n rated LDI. If Lh pi sam d pth, th­

colors arc merged. If the pixcls arc at different depths, the proj t -d pi I IS added to the

LDI. Care has to he exen.:ised when selling th dlstanc that d termln s whcth r two pi -Is

are actually the same pixel. If the dIstance ]s set to small, a lot of unnec ssary pix Is ar'

added to the LDI. Thi prohahly do s not harm the image app arance to much hut it will

reduce the rendering rate. The more pixels rendered the slower th mte. If th distam:c IS

to large, p]xels that should be separate will he merged into the same pix I. In (Igur 4.4 th

image appears to have a large number of pixels from the background hI edmg through to

the foreground objects. In figure 4.5 you can sec that what has actually happened is that the

pixels from the background objects have actually been mapped to the foreground ohJe<.:ts.

When the process is complete the data is tored in the tructure hown in figure 3.1.
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igure 4.5: When the depth difference for (,;feating th LOI i.., to larg , view 2.
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i (normal.nx * 1.4361407) * 4.0 + 4.0;
j (normal.ny * 1.4361407) * 4.0 + 4.0;
k (depth*31.0)+O.5;
splatIndex = {({int)i)&Ox07)«8 I (((int)j)&Ox07)«5 I ({int)k)&Oxlf;

Figure 4.6: Portion of encoding routine.

For the most part the population of the structure is straight forward. For example, the color

entries are the colors from the source images, the depth is the depth from the source images.

The splat index is slightly different. It is actually an encoding of the normals for the pixel.

The equation for the encoding is shown in figure 4.6. While this is not a perfect solution

for encoding it is sufficient to generate the three bits for encoding the normals for the x

and y axis and the five bits for the depth; Note that the depth is in the images projected

coordinate system and is linearly scaled so that it can be used as a component of the index

into the array. This value is not used for the splat size.

This set of operations is one area where errors are injected into the system. The con-

struction of the LDI is prone to all of the errors inherent in the warping operation. These

construction errors are then amplified when the novel view is created during the rendering

operation. One of the most obvious errors is forcing all of the pixels to integer boundaries.

Now that the information from all of the source files has been merged into one data

structure, the LOI. The LOI is stored in a file. This new file is ready to be read in by a

separate module that does the rendering.

4.8 Rendering the Layered Depth Image

Now that an LDI has heen created we are ready to render our synthetic images. There are

some initial house keeping items that need to be taken care of first. One of these house

keeping chores is the generation of the Gaussian kernel. The next task is to read the LOI

into memory from a file.

18
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normal. x
normal.y
normal.z
normal.w

((i - 3.5)/4.0)/1.4361407;
((j - 3.5)/4.0)/1.4361407;
sqrt(1.0-normal.x*normal.x-normal.y*normal.y);
1. 0;

--

dotProduct = OotProduct(opticalAxis2, normal);

projectPoint.x = 0.0;
projectPolnt.y 0.0;
projectPoint.z (float)k;
projectPoint.w 1.0;
projectPoint = LOI.camera * projectPoint;
if(projectPoint.w == 0.0)
d1 = 4.0;
}

else {
projectPoint /= projectPoint.w;
d1 = projectPoint.z;
I

Figure 4.7: Portion of decoding routine.

Now it is time to get down to rendering the images. A new viewing angle is entered

by pressing an arrow key on the keyboard. This new angle is used to construct a rotation

matrix. The first place the rotation matrix is used is to populate the splat table that is talked

about in Shade's [19] paper on layered depth images. This table has to be generated once

per new image. The code that performs the decoding is shown in figure 4.7. Note that the

depth has been projected to the images projected coordinate system through the use of the

camera matrix. This value is used to set the splat size. The decoding from i and j to the

normals is also shown in the routine. This is the reverse of the encoding routine.

The next step is to find the epipole1• The epipole is used to determine the scan line

order. A simple way to think of this is to always scan towards the epipole. McMillan

has proved in his paper [11] that by following his list-priority rendering algorithm, you

tThe epipole is the point of intersection of a line that passes through the camera centers and the image
plane.
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are guaranteed to generate a back-to-front occlusion~ompatibleordering of the rendered

image. This means that things are in back that are supposed to be in back and things in

front are supposed to be in front. I followed McMillan's list-priority rendering algorithm

to render my novel images. When finding the epipole, the epipole for the initial LDI image

is used. This is done because the warping operation is a forward mapping operation and

requires the epipole from the source image.

Just as in creating the LDI we need to create a transfonnation matrix. This time the

transformation matrix will warp pixels from the initial LDI image to the new view location.

The transformation matrix T12 is camera two times the inverse of camera one. Basically

what this does is move the point from camera ones projected image plane to the global

world coordinate system through the use of the inverse of camera one. Now the point is

taken from the global world coordinate system to camera twos projected image plane. This

can be shown mathematically as T12 = C2' CII. Now a pixel can be warped from image

one to image two using the transfonnatioD matrix. T12' (Xl, YI, Zl , 1) T = (X2 . W2, Y2 . W2, Z2 •

w::, w2f = result. Following the same procedure in Shade's paper [191 the equation is

broken up into several components to speed thc warping.

The next part is to actually warp the new image. This is done following the algorithm

presented in Shade's paper [19]. The pseudo code from Shade's paper is shown in figure

4.8.

20
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procedure Warp(ldpix, start, depth, xincr)
for k=O to ldpix.NumLayers-1

zl = ldipix[k] .Z
result = start + zl * depth
Ilcull if the depth pixel goes behind the output camera
liar if the depth pixel goes out of the output camera's frustum
if(result.w > 0 and IsInView(result) then

result = result I result.w
Iisee next section
sqrtSize = z2 * lookupTable[ldpix.Layerslk].Splatlndex
splat (ldpix.Layerslk] .ColorRGBA, x2, y2, sqrtSize

endif
end for
start = start + xincr

end procedure

Figure 4.8: Pseudo Code For Warping Algorithm[19]
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Chapter 5

EVALUATION

In the next couple of sections I outline the procedure I followed to evaluate the LDI. All of

the evaluations were done on a Toshiba laptop. The processor is an Intel Celeron running

at 600 MHz. There is sixty four mega bytes of memory in the machine. The video chip is

the AT! Mobility with four mega bytes of video memory.

5.1 Frame Rate

To compute the number of frames per second I created a function that:

1. read the system timer

2. generated a number of synthetic images

3. read the system timer

Now that I have the two times and the number of images generated I can compute the frame

rate. I ran the timing routine on a number of images. I varied the size and complexity of

the images. I chose the following four image sizes:

1. 200 x 100
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2. 400 x 200

3. 500 x 300

4. 600 x 400

There is nothing of particular importance about these four sizes, any four sizes could have

been selected. The images I chose for varying complexity are:

1. three points, one behind the other that are referred to as Three Points

2. a triangle that is referred to as Triangle

3. a complex image made of a teapot. torus, and cube that is referred to as Complex1

4. a Little more complex image made of a teapot, torus, cube, dodecahedron, and a

icosahedron that is referred to as Complex2

As an additional experiment I used two types of splat. The first was to use a fixed splat size

of one. The second was to use a variahle splat size that is selected by the normal for the

pixel.

The routine that I followed to get the rendering time also includes a little overhead

time for the looping operations. I tried to measure the overhead but it is so sman that the

effect can be considered negligible. To try to measure the overhead I set the loop counter

to 36,500,000 and the time taken to run was less than a second. The timer J am using is a

one second timer. For this reason I rendered a fairly large number of images so that I could

calculate the average over the number of runs

As an additional experiment I also measured the time it takes OpenGL to render the

same images. This is used as a comparison to the frame rate of the LDl.
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5.2 Synthetic Image Accuracy

To test the image accuracy I chose a medium size image. The image size for this set of

experiments was 400 x 300. Once again I used four different images. The images used

here are the same four images used to measure the frame rate. I created a separate module

that takes as input two images. These images are then compared pixel by pixel to determine

the error. I am measuring the average color error for each pixel. I am using equation 5.1 to

determine the average per color error for each pixel. The value returned from the equation

is the percent error per pixel.

To more accurately reflect the true error, I have created a bounding box around the

objects in the image. The error is the sum of the difference of all of the pixels in the

bounding box squared divided by the width times the height of the bounding box. To

identify the bounding box I look for the beginning and end of the images in both the row

and column. This is done for both of the input images. The largest box is selected. Which

may he a combination of the extents of the two images.

I performed three sets of experiments. The first experiment measured the image ac­

curacy versus the splat size. I used all five splats lxI, 3x3, 5x5, 7x7, and variable splat

based on the normal. This experiment rotates the image eight degrees. The next experi-

ment measures the image accuracy versus the viewing angle. I varied the viewing angle

from 8 degrees to 80 degrees in 8 degree increments. This experiment uses the splat size

based on the normal to the pixel. The last experiment measures the image accuracy versus

the number of input images. I start with three images and go in increments of two until I

have fifteen input images. This experiment rotates the image eight degrees and also uses

the normals to determine the size of the pixel.
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In the first two experiments I used the same set of images that I used in the timing tests.

For the last experiment I used the image that had the teapot, torus, cube, dodecahedron,

and a icosahedron. This image actually demonstrated some of the errors of under sampling

where the other three images did not.

As a sanity check I compared an image against itself. The error returned was zero.

This is what was expected. Had I received something other than zero there would have

been something wrong with my error computation. Since I know the smallest error is

zero I decided that it would be nice to know the maximum error. To do this I created a

black image and a white image. The error returned for this experiment was one or one

hundred percent. This is also what was expected. There are three color components for

each pixel. Each color component has a minimum value of zero and a maximum value of

one. Therefore the difference for each color would be one. The difference for each pixel

would be three times the maximum difference for each color, or three. Three squared is

nine which is why there is a nine term in the denominator of the equation. This equation

returns the percent average error per pixel.
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Chapter 6

RESULTS

In the next two sections I present the results of my experiments. I first present the data in

tabular form, then in graphic form. I also interpret the data and explain the results.

6.1 Frame Rate

The first set of data are from the timing experiments varying the image si7~ and image

complexity. The data in table 6.1 shows the results of the timing test for a fixed splat

size of one. The data does not present any real surprises. In general as the image size

and complexity increase the frame rate drops and vice versa. There is a greater degree of

change when the image size varies versus when the image complexity varies. This is as

expected since we are working with ffiR instead of geometric 3D rendering.

The data in table 6.2 shows the results of the timing test [or a splat size based on the

normal to the point. The data shows similar results to the test using a fixed splat size.

The one thing to note is that the use of normals slows the rendering slightly. The images

rendered with normals is generally rendered at a rate slower than the same image rendered

using a fixed splat size. This would be expected since there are additional computations

involved when using the normals.
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Table 6.4: Average mean error for each color component of each pixel. The average mean
error is shown for the different possible splat configurations versus several different image
complexities. The angle of view for this measurement is at eight degrees from the LDI
camera.

Three Points Triangle Complext Complex2
txl 0.021640 0.006948 0.006447 0.006814
3x3 0.033186 0.002661 0.008530 0.007654
5x5 0.035953 0.005094 0.013978 0.012824
7x7 0.054786 0.008549 0.019724 0.018522
Normal 0.021640 0.000742 0.006657 0.005764

would tailor the size of the splat to the conditions in the image. In all cases except the

three points the error returned when using normals is the smallest. This would be expected

since the normals were designed to aide in the creation of images that are closer to the

original. In the case of the three points having the smallest error when the splat is fixed at

Ix I and based on the normal makes sense. The synthetic image is trying to represent three

single points and a splat that is a single point would most closely approximate the image.

Therefore a fixed splat of one would have the same error as the splat for the normals.

Tables 6.5 and 6.6 both show a series of images. The first image in the series is the

result of the rendering operation. The second image in the tables is the reference image or

the image that is being compared against. The third image in the tables is the actual error

image. The areas that are white are the areas without error. In table 6.5 the errors are caused

because we are forcing the output to integer boundaries. The holes on the interior of the

image are what the splat was designed to eliminate. The splat does succeed in eliminating

the errors due to forcing pixels to integer boundaries. But it introduces another type of

error. This error creates a halo around each of the objects in the scene. You can see this

type of error in table 6.6. If you look close at the error image for table 6.6 you will see what

looks like smudges inside the objects. This type of error is caused by the merge operation

when two pixels are warped to the same location during the LDI generation.

The second experiment I conducted was to measure the error as the angle of view in-
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0.005764
0.006349
0.005437
0.005559
0.006327
0.007010
0.012094
0.012644
0.013245
0.013259

Complex2
0.006657
0.007980
0.007281
0.006570
0.006162
0.006794
0.006247
0.007404
0.009937
0.012649

Complex1
8 0.021640 0.000742
16 0.011148 0.000632
24· 0.007508 0.000651
32 0.o00ooo 0.000665
40 0.009197 0.000583
48 0.003872 0.000694
56 0.003375 0.000815
64 0.o00ooo 0.001125
72 0.002705 0.001374
80 0.o00ooo 0.002586

Table 6.7: Average mean error for each color component of c

error is shown for the different viewing angles. The images
mals to dictate the splat size.

Three Points Triangle

creases. The results from this experiment are shown in table

this data I did the rendering using the normals to set the spl

would be expected. The error increases as the angle of view il

the three points. The error for the three points continues to d<

This is easily explained. As the angle increases the distance b

means that more of the background is being used as part of

sured. You will notice a few of interesting data points in the

two, sixty four, and eighty degrees the error for the three pain

angles the three points are mapped to exactly the right positi,

that needs comment. When going from seventy two to eigh

from forty eight to fifty six degrees in Complex2 there is a

This is caused by the border that I force around the image in

At the points mentioned, a portion of the image is in this borl

The last experiment is to measure the image accuracy v(

ages. For this experiment I chose the image that I have bee

this image because there are more occlusions than in any 01

generated. The results of this experiment are shown in table
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Chapter 7

FUTURE WORK

One approach that can be used to try to eliminate the errors caused by forcing pixels to

integer boundaries is to do a reverse mapping. Instead of picking each pixel in the source

image and mapping it to the output image the pixel in the output image is selected and the

source image is searched to see which pixels would possibly be mapped to the selected

pixel in the output image.

Another approach to reduce errors, particularly when the view position is fairly far

from the LOI, is to dynamically create the LOI based on the angle of view 115]. This

would require a little extra overhead in the fonn of additional disk storage space and some

extra processing time. The rendering program would have to be set up to recognize when

the angle of view had exceeded a certain limit. Once the limit was exceeded, the program

would have to create a new LDI using the current viewing location as the LDI camera.

If this location does not coincide exactly with a source image the program would have to

select the closest image.

LDls could be enhanced by adding the ability to change the lighting conditions as well

as change the viewing location. This could be done using Oebeveks work with high dy­

namic range radiance maps. A radiance map could be generated for each of the input

images to the LOI creation process. Since a radiance map is just a two dimensional array
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of radiance information the radiance map could be warped in a similar fashion to the depth

images that were used to create the LDI. The LDI structure could be extended to include a

radiance value for each pixel. When a change in lighting is desired for a synthetic view, the

radiance information could be used to render the image with the new lighting conditions.

Another area that could use some improvement is the selection of an encoding and

decoding routine for the normals in the image. I used a rather simple means of encoding

and decoding the normals. An approach that would possibly generate better results is to

use the unit sphere as a model to work with the normals. This would give a full coverage

of the entire area from zero to one. The method I used cuts off the top third of the normal

range.

The edges also could use a little touch up. I used a method the set the splat size to one

for all edge pixels. A method that could possibly produce better results is to create a second

pass to the normal algorithm that would search for the edge pixels and use the normal for

the adjacent pixel on the object.
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Chapter 8

SUMMARY

In this study I have shown that a synthetic images can be generated using layered depth

images and that these images are within a certain error, £, of the true image. I have also

shown that the images are rendered at a rate of a frames per second.

Using LDIs, synthetic images can be generated at multiple frames per second. There

are several factors that can affect the actual rate of image generation. I have conducted

several tests and have identified three factors that affect the rate. The factor that has the

largest affect on image generation rate is the size of the image. The larger the image the

slower the image was to generate. The factor that had the next to largest affect on image

generation rate was the complexity of the image. The more complex an image the slower it

was to generate. The factor with the smallest affect on image generation rate was whether

a fixed splat size was used versus the use of normals to determine the splat size. Using a

fixed splat size the images were generated at a slightly faster rate than it the normals were

used. If you look back at figures 6.1 and 6.2 you will see the data from the experiments.

1have not done any system specific tuning to increase the rate that images are generated.

There are a couple of things that could be done to increase th.e rendering speed. One thing

would be to eliminate as much of the floating point math from the actual splatting of the

pixels. Another thing that could be done is to erase only the area that has been drawn instead
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of the entire image. The program could also be enhanced by tailoring it to a particular

hardware platform.

Images generated using LDIs are a visually close approximation to the original images.

I ran a few tests to determine what factors played an important roll in the generated images

error. The factors tested were the image complexity, splat size, angle of view, and the

number of input images. All of the factors tested had an affect on the images error. The

one factor that has the potential to cause the greatest error in the generated images is the

number of input images. If the scene being modeled has a lot of occluded regions and there

are only a few source images, the generated image will have holes in it everywhere there

was an occlusion. It is very important to have enough source images to expose all of the

occluded regions. The factor that would have the next largest affect was the splat size. If the

splat sizes are wrong the image will have three types of visual defects. The most noticeable

defect is the holes left in an image when a splat size is chosen that is to small. The next

defect on the list is the growth of the object in the image. If the points at the edge of an

object are generated with splats that are to large, there is a halo effect around the objects.

The least detectable artifact is the slight change in color of objects because of the merging

operation that is done during the LDI construction on points that are very close in distance

and are deemed to be the same point.

There is one factor that has a negative impact on measuring the image error. The back­

ground is also used in the error calculation. Since the background color is the same for

each of the images the error computed is reduced. The more background in the image the

smaller the error. I have tried to reduce the error by creating a bounding box around the

objects compared.

There is at least one defect that I found with my implementation of LDIs. Using a

Gaussian kernel to do the splatting allows item in the background to bleed through to the

foreground. This is most pronounced when the synthetic image is generated from the same
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location that the LDI camera occupies. In this case there really is not an epipole and I have

fixed the epipole at the center of the image.
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