INVESTIGATION OF LAYERED
DEPTH IMAGES

By
CHARLES RANDALL BERRY

Bachelor of Science
University of Southern Colorado
Pueblo, Colorado
1983

Bachelor of Science
University of Central Oklahoma
Edmond, Oklahoma
1990

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTERS OF SCIENCE
August, 2001

INVESTIGATION OF LAYERED
DEPTH IMAGES

Thesis Approved:

M e f.m 2 hm{é' Qﬂ_;

Thesis Advisor)

Deaﬂ of the Graduatt College

ii

PREFACE

This study was conducted to further the work being done in image based rendering (IBR)
and in particular layered depth images (LDI). Through my research I have discovered some
of the features of LDIs. LDIs are capable of generating synthetic images at several frames
per second. It is also possible to produce images that are a close approximation to an actual
image through the use of LDIs. There are some limitations to the use of LDIs. For instance,
if the desired viewing angle is far from the initial camera there is a larger error. There is
also a small problem with the Gaussian kemel. It allows some of the items in the back to
bleed through to the front.

I would like to thank my masters committee—Drs. Douglas Heisterkamp, Nophill Park,
George Hedrick, and Blayne Mayfield.— for their guidance and support in the completion
of this research. I would like to extend a sincere thanks to Dr. Heisterkamp. Without his
support I would have not been able to complete this research. I would also like to thank my

wife and sons for their support and understanding during these past years.

iii

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
1.1 Three Dimensional Modeling l
12 InmapcBasca RendBIing . - v s s s i o v e s s s a5 Ua ais @& o6 2
13 Layered DepthImages .« « « c o wos oo amoomo o om s sms wm s e 2

1.4 Combining Three Dimensional Modeling, Image Based Rendering, and
Layered Depth IMages = o cco o w0 o 5 om0 o 0 e v % 5 & @se & 4 @ 8 40s & %0 6 @ 3
1.5 Varying Lighting Conditions i it 4
2 THESIS STATEMENT 6
3 BACKGROUND/LITERATURE REVIEW 7
3] Tavereddepthimages. < c = o5 ¢ i S A s @I E Es E a8 ¥4/ 8 B 7
3.2 Highdynamicrangeradiancemaps. 8
4 EXPERIMENTAL FRAMEWORK AND RESULTS 9
A4 Oenerate DepiiIniiges . « wov s nca e m e s m s a e s W s e b e 9
42 Filetypebmp e e e 10
A0 PleIVPECAMIERl . « ¢ o v ¢ wow v wi e 3 % g w9 G S R WS R @ A E 12
44 Filetypedepth e 12
48 'IELYPEIRK < ¢ o ¢ = v w sww & w0 5% g B E e 6 % R e e 14
46 Filetypenormal e e 14
4.7 Constructing The Layered DepthImage 15
4.8 Rendering the Layered DepthImage 18
5 EVALUATION 22
3] PrameRale < cocooonowows s oa x5 om0 R BB 6n e E B E A RS W e 22
52 DyntheticImaAgC ACCUIARY i 4+ 5 vs W iag @ o s MG R s d Mk 5 5k o6 24
6 RESULTS 26
hl EameRAWE . vs ke dm T hp e B dm s B E s g dET & 26
6.2 Synthetic Image ABCULARY' < .« o wis = o ¢ w o v 6 b o 6 % G 0 & % 6 & 5 8 % 29

v

Chapter
7 FUTURE WORK
8 SUMMARY

BIBLIOGRAPHY

Page
37
39

42

Table

6.1

6.2

6.3

6.4

6.5
6.6
6.7

6.8

LIST OF TABLES

Page

Rendering rate in frames per second using a fixed splat size of one. The rate
is shown for several different image sizes in pixels versus several different
MBPECODIEKIHES: s « cs v i m s s s i B ed FEd BB SEa N A & 7

Rendering rate in frames per second using a variable splat size based on the
normal. The rate is shown for several different image sizes in pixels versus
several different image complexities.o ...

OpenGL rendering rate in frames per second. The rate is shown for several dif-
ferent image sizes measured in pixels versus several different image com-
PleXItieS. vt e e e e e e e e e e e e e e e e

Average mean error for each color component of each pixel. The average mean
error is shown for the different possible splat configurations versus several
different image complexities. The angle of view for this measurement is at
eightdegrees fromthe LDIcamera.

Images used to calculate the error for a splat sizeofone.
Images used to calculate the error for a splat size of seven.

Average mean error for each color component of each pixel. The average mean
error is shown for the different viewing angles. The images were rendered
using the normals to dictate the splatsize.

Average mean error for each color component of each pixel. The average mean
error is shown for the different number of source images. The measure-
ments were taken at a viewing angle of eight degrees and using the splat
basedonthenormal.

vl

LIST OF FIGURES

Figure Page
1.1 Layered DepthTHape . < v o s w0 o mime w %0 0 % 5 6 & 5 & % 0 5 @ %0 6 5 %0 8 e 3
12 Reflectionmodel e 5
3.1 Layered DepthImapeStructure[19] v .o v vww i nisa 8
4.1 View vectors of images used to constructaLDL 10
42 A sample of a bmp file viewedusing xv. L. 11
4.3 Gray scaleimage showingdepth. 13
4.4 When the depth difference for creating the LDI is to large, view 1. 16
4.5 When the depth difference for creating the LDI is to large, view2. 17
6 PorhonofencodingTolline. . s s vavimos @ s hwasa s saseswns 18
4.7 Portionofdecodingroutine: .« < .o s v vani i s s as @ s e s e 19
4.8 Pseudo Code For Warping Algorithm[19] 21
6.1 Rendering rate versus a fixed splatsizeofone. 27
6.2 Rendering rate versus splatbasedonnormals. 28
6.3 OpenGL rendering rate in frames persecond. 29
64 JImapgeaccuracy VSsplatsize. . .. ccvvanonom s wvsassw s w e 31
6.5 Imageaccuracy VS angleof View. . . i s cs v i s asaw it o i e e o 33
6.6 Accuracy versus number of inputimages., 34
6.7 Hole due to insufficient inputimages. 35
6.8 Bleed through of images inbackground. 36

vii

Chapter 1

INTRODUCTION

A current concern in the field of computer graphics is the generation of synthetic images
within a short period of time. Ideally synthetic images would be generated fast enough
to be able to create a smooth continuous image stream. There are a number of ways to
generate synthetic images. Synthetic images can be generated by changing the viewing
position, light intensity, or light location. Synthetic images can also be generated by a
combination of any of the three view position, light intensity, or light position. There
are numerous applications for a method that can generate novel scenes at several frames
per second. Some examples are interactive walk through of a scene, virtual reality, and

computer games.

1.1 Three Dimensional Modeling

There have been several methods presented that generate synthetic images by varying the
view positions [2, 20, 10, 14, 5, 22, 6, 16, 17, 19, 17, 8, 9]. One method that is common is
three-dimensional modeling. This method of generation includes ray tracing. This method
requires the longest time to render a scene. All of the elements of the scene are stored as

drawing or rendering instructions in the computer. When a new view is desired the entire

scene has to be regenerated. While this does not present much of a problem for simple
scenes, it does pose a real problem for complex scenes. A scene that is composed of a few
hundred polygons can be rendered in a short time. A scene that has several thousand or

even millions of polygons can take a considerable length of time to render.

1.2 Image Based Rendering

On the other end of the spectrum is a method called Image Based Rendering (IBR). As
the name suggests, this method uses images as the drawing primitives instead of geometric
objects. One IBR technique is view morphing (18]. This paper describes a method of
generating a synthetic image given two images. It is interesting to note that the two source
images do not have to be of the same object. In one of the example image sequences
the view morphing is done between two different people. A degenerate case of IBR is a
texture map. This is probably the simplest case of IBR. An image is warped directly onto
an object. For example, if you wanted to display a wooden crate, you could render a simple
cube and then warp an image of a crate side onto the cube side. Another example would
be displaying a building. Most buildings can be represented with a few simple cubes and
then have an image warped onto the cubes. This reduces the computational complexity

considerably and saves considerable computation time.

1.3 Layered Depth Images

One image based rendering method that has been recently introduced is the layered depth
image [19, 6]. A layered depth image is composed of pixels with depth. This is to say that
the pixel contains the usual color and alpha values as well as depth information. An alpha
value can be thought of as a transparency value. A degenerate case of layered depth image

is the sprite with depth. In this case there is a limit of one pixel per location. In an LDI

2

Figure 1.1: Layered Depth Image

there can be multiple pixels per pixel location. Figure 1.1 shows the details of an LDI. To
construct an LDI you can think of rays emanating from the camera. As each ray strikes
a surface, another pixel is added to the list for that image location. Layered depth images
can be generated from rendered images or real images. To redisplay a layered depth image,

McMillan’s warp ordering algorithm [11] is used.

1.4 Combining Three Dimensional Modeling, Image Based

Rendering, and Layered Depth Images

A complete image may contain the elements of several of the methods. There may be an

environment map that shows the elements of the scene that are not apt to change. The

environemt map is also the furthest from the camera. The next element of the scene is the
sprite. After this comes the sprite with depth. The layered depth image comes next. Finally

there are the geometrically rendered objects that are closest to the camera.

1.5 Varying Lighting Conditions

There have been several methods introduced to generate synthetic views by varying the
lighting conditions [3, 4, 7, 13, 23, 24]. Again we go back to three-dimensional modeling.
A change in lighting requires a complete regeneration of the scene. For simple scenes this
does not present much of a problem. For complex scenes a considerable length of time can
be required to generate a new image. The other end of the spectrum is the use of image
based rendering. One method of modifying the lighting conditions is through the use of
radiance map. A new image can be generated in a short period of time with the use of a
radiance map. Images can be generated at several frames per second using this method,
even for complex scenes. A radiance map contains lighting modification information for
each element in the scene or pixel.

There are a few different ways to generate radiance maps [4, 23, 24]. Radiance maps are
generated from real images or previously generated images. The essence of a radiance map
is the capturing of the reflective properties of the items in the scene. With the reflectance
properties known, a change in the light conditions can be accurately represented in a syn-
thetic image. Most algorithms concentrate on the Lambertian model which accounts for the
diffuse reflection and ignores the specular reflection. It is much easier to assume that the
light energy reflected back is uniform. If you try to account for differences in reflection the
rendering becomes much more time consuming. In Figure 1.2 the two types of reflection
are shown. The diffuse part is represented by an arc at the point where the light ray strikes
the surface. The specular reflection is represented by the ray leaving the surface. It is much

easier to ignore the specular reflection. That way you do not have to calculate the angles

4

Difuse reflecton

Reflectuve surface

Figure 1.2: Reflection model

associated with the reflection.

Chapter 2

THESIS STATEMENT

Layered depth images are an cffective way of generating synthetic images. Images arc
generated that are visually close to the actual image and are generated at several frames per

second.

Hypothesis 0 — Layered depth images can be used to efficiently generate a synthetic im-
age for a change in view that is within the prescribed camera motion range. This

synthetic image will be within an error, €, of the actual image.

Hypothesis 1 — Layered depth images can be used to generate images at a rate greater

than, o, frames per second on a desktop PC.

Chapter 3

BACKGROUND / LITERATURE
REVIEW

I will be implementing layered depth images. To do this I will create a set of programs that
will generate a set of depth images, create the LDI from the depth images, render the LDI,

and compute the error for a given set of images.

3.1 Layered depth images

As shown in Figure 1.1 an LDI is a stack of pixels for each image location. The actual data
structure for a laycred depth image is shown in Figure 3.1. You can see that along with the
color and alpha information, there is also depth information for each pixel. Each pixel in
the image is actually an array of depth pixels. A depth pixel is a pixel with associated depth
information. The list of depth pixels is built up in front to back order. The furthest pixel is
the last in the list and the closest pixel is the first in the list. When rendering a pixel on the
screen the list is processed in back to front order. This allows for easy alpha manipulation

when rendering the unique view.

DepthPixel =
ColorRGBA: 32 bit integer
Z: 20 bit integer
SplatIndex: 11 bit integer

LayeredDepthPixel =
NumLayers: integer
Layers [0..NumLayers-1]: array of DepthPixel

LayeredDepthImage =
Camera: camera
Pixels[0..Xres-1.0, 0..Yres-1]: array of LayeredDepthPixels

Figure 3.1: Layered Depth Image Structure[19]

3.2 High dynamic range radiance maps

A radiance map is a two dimensional array of radiance information. The radiance informa-
tion is used to vary the pixel intensity in a more realistic manner than is accomplished by
just increasing the RGB value of the pixel. Some materials reflect more light than others.
The high dynamic range radiance map (HDRRM) accounts for these differences. When ad-
justing the light level, materials that reflect more light are increased more than the materials
that do not reflect as much light. To generate an HDRRM a series of images with varying
light intensities are obtained. The series of images is run through an algorithm described in
P. Debevec’s paper [4].

There are a couple of ways to vary the image intensity for real images. One way is to
actually vary the light level. Another way is to adjust the exposure time on the camera. To
change the light intensity in a computer generated or rendered image is accomplished by

changing the intensity of the lights in the scene.

Chapter 4

EXPERIMENTAL FRAMEWORK
AND RESULTS

The following sections outline the steps that I took to verify the operation of LDI. I will
cover the depth image generation, LDI creation, LDI rendering, measuring the frame rate,
and measuring the image accuracy.

All of the image generation was accomplished with the OpenGL graphics library [21].
Using OpenGL eased the task of generating synthetic images, letting me concentrate more

on the details of the LDI.

4.1 Generate Depth Images

Before anything else can be done a set of depth images had to be created. I wrote a program
that loosely followed Popescu’s [15] method for gathering the images that are used Lo create
the LDI. This method takes a series of images that form a semi circle around the object of
interest. Figure 4.1 illustrates the method of gathering images used in Popescu'’s [15] paper.
I vary slightly from this method. Instead of alternating sides for each image I process one

side and then the other side. The first image, vector O in figure 4.1 is used as the LDI

9

N0 N AT Arrnases a swsmacce Lo

Figure 4.1: View vectors of images used to construct a LDI.

image, or LDI camera. After the first image is generated and stored, the rest of the files are
generated and stored. Each image has five associated files. These files are bmp, camera,

depth, mask, and normal.

4.2 File type bmp

The bmp [12] files store the color information for the image. At each pixel location, (x, y),
there are twenty four bits of information stored. These bits are divided evenly into three
eight bit values. Each eight bits stores a particular color. There are eight bits for each of
the red, green, and blue colors. These files can be viewed using an image viewing program
such as xv [1]. You can see a sample of the image in figure 4.2. The file structure for this
type of file is as follows: identifier - 2 bytes, file size - 4 bytes, Reserved - 4 bytes, Bitmap
data offset - 4 bytes, Bitmap header size - 4 bytes, width - 4 bytes, height - 4 bytes, planes
- 2 bytes, Bits per pixel - 2 bytes, Compression - 4 bytes, Bitmap data size - 4 bytes, H
resolution - 4 bytes, V resolution - 4 bytes, Colors - 4 bytes, Important colors - 4 bytes, rgb

color - bitmap data size bytes.

10

Figure 4.2: A sample of a bmp file viewed using xv.

e s

4.3 File type camera

The camera file contains a 4x4 matrix that is the camera for the image. The camera matrix is
used to project the image from the global world coordinate system to the camera’s projected
image coordinate system. This matrix is made up of a viewport matrix, perspective matrix,
and an affine transformation matrix. If C; is a camera for a given image then the camera
can be expressed as C; = V| -P; -A,. The image coordinates (x,y,z,w)’ are obtained after
multiplying the global world coordinate point (X,¥,Z,1)7 by the camera C; and dividing
out w. Mathematically this shown as (x-w,y-w,z-w,w)? =C,-(X,Y,Z,1)7.

The file format for this type of file is theta - 4 bytes (float data), 4 x 4 matrix - 16 * 4

bytes (float data).

4.4 File type depth

The depth file contains the depth information for the image. The depth information in these
files is the depth in the camera’s projected image coordinate system. Doing this lets me
combine these projected depths with the projected information from the other files. I have
created a program that reads this file and displays the information in a gray scale. This
program is called DisplayGray. A sample image is shown in figure 4.3. From figure 4.3
you can clearly tell that the teapot, dodecahedron, and icosahedron are the furthest objects.
The torus is in the center and the cube is the closest. The file format for this type of file is
number of rows - 4 bytes, number of columns - 4 bytes, depth - rows * columns * 4 bytes

(float data).

12

Figure 4.3: Gray scale image showing depth.

13

e a

e = L g p g o at

RE TPt

Y T S

4.5 File type mask

The mask file contains a mask of the image. Each byte in the file is eithera O ora 1. If
the byte is a 0, there is no image information (i.e. background). If the byte is a 1, there is
image information at that byte. Once again this is derived from the projected image. The
contents of this file are used to speed up the creation of the LDI. The LDI creation program
does not process any of the information from the file if the mask bit is 0. The file format
for this type of file is number of rows - 4 bytes, number of columns - 4 bytes, mask - rows

* columns * 1 bytes (char data).

4.6 File type normal

The normal file contains the normal information for each pixel in the image. The normals
for each pixel are computed and stored in this file. This file is the one exception to the data
being in the camera’s projected coordinate system. The normals are from the image as it
sits in the worlds global coordinate system. This is done by finding the four points next to
the pixel of interest. These points are then projected back to the worlds coordinate system.
This is done by taking the inverse of the camera and multiplying the points by the inverse
camera matrix. If C; is the camera matrix, the inverse of the matrix is computed. This
matrix is C; !, Now the points are multiplied by the inverted camera matrix to move them
to the global coordinate system. From the four points, now in the global coordinate system,
[create two vectors. This is done by finding the difference between two sets of points. Now
I do a check to make sure that I am not trying to compute the normal between two different
surfaces. This is done by comparing the depths of the two vectors. If the difference in the
two depths exceeds a preset limit, the vectors are assumed to be on two different surfaces.
The limit on the preset depth is critical. If the limit is set to small, normals are not computed

that need to be computed. IF the limit is to large, different surfaces will be treated as the

14

T =

same surface and a normal will be computed for the space between the two surfaces. The
next step is to find the cross product of the two vectors. The cross product of the two
vectors is another vector that is perpendicular to the plane defined by the vectors. I now
have a normal for the pixel. This normal is stored in a file. The file format for this type of
file is number of rows - 4 bytes, number of columns - 4 bytes, normal - rows * columns *
12 bytes (structure data). The normal structure contains three values nx, ny, and nz. These

values are the normal for each of the three coordinate axis.

4.7 Constructing The Layered Depth Image

Now that all of the necessary information is at hand I can get down to creating the LDI.
This is done using yet another module. The LDI creation module reads in each of the files
created by the image generation module. This module takes one command line parameter.
The parameter is a filc name. This file in turn contains a list of files. These files are rcad in
order. The first file read in is treated as the LDI image. Each of the remaining files is read
in and the information from them is added to the information already stored in the LDL
The procedure for creating the LDI is as follows. The first thing to do is to read in the
information that will be used as the LDI camera. This information is added to the LDI just
as it is read in from the files. This gives us a starting point for the LDI. The next thing
to do is process the rest of the files. The first part of this is to read in the files for the
second image. Now compute the inverse of the new camera. This inverse is used to create
a transformation matrix. The transformation matrix, T>;, will project a pixel from the new
image to the LDI image. The transformation matrix is computed by multiplying camera
one, or the LDI camera, by the inverse of camera two. If C;' be the inverse of camera
2, the equation is Ty = C; —C:Tl. With the transformation matrix computed the second
image is ready to be projected to the first image. When the pixel from the second image is

projected to the LDI, the depths are compared. If the depths are within a preset distance,

15

:
n

ik el ok A

A RES o . o

Figure 4.4: When the depth difference for creating the LDI is to large, view 1.

the pixels are assumed to be the same. The preset distance is a parameter of the algorithm
and can be adjusted to optimize the generated LDL If the pixels are at the same depth, the
colors are merged. If the pixels are at different depths, the projected pixel is added to the
LLDI. Care has to be exercised when setting the distance that determines whether two pixels
are actually the same pixel. If the distance 1s set to small, a lot of unnecessary pixels are
added to the LDI. This probably does not harm the image appearance to much but it will
reduce the rendering rate. The more pixels rendered the slower the rate. 1f the distance 1s
to large, pixels that should be separate will be merged into the same pixel. In figure 4.4 the
image appears to have a large number of pixels [rom the background bleeding through 1o
the foreground objects. In figure 4.5 you can see that what has actually happened is that the
pixels from the background objects have actually been mapped to the loreground objects.

When the process is complete the data is stored in the structure shown in figure 3.1.

16

et A e — LR Ee

P

Figure 4.5: When the depth difference for creating the LDI is to large, view 2.

- e o

s o suic e B Cpaemees

s i

i = (normal.nx * 1.4361407) * 4.0 + 4.0;

J = (normal.ny * 1.4361407) * 4.0 + 4.0;

k = (depth*31.0)+0.5;

splatIndex = (((int)1)&0x07)<<8 | (((int)])&0x07)<<S | ((int)k)&0x1f;

Figure 4.6: Portion of encoding routine.

For the most part the population of the structure is straight forward. For example, the color
entries are the colors from the source images, the depth is the depth from the source images.
The splat index is slightly different. It is actually an encoding of the normals for the pixel.
The equation for the encoding is shown in figure 4.6. While this is not a perfect solution
for encoding it is sufficient to generate the three bits for encoding the normals for the x
and y axis and the five bits for the depth; Note that the depth is in the images projected
coordinate system and is linearly scaled so that it can be used as a component of the index

into the array. This value is not used for the splat size.

This set of operations is one area where errors are injected into the system. The con-
struction of the LDI is prone to all of the errors inherent in the warping operation. These
construction errors are then amplified when the novel view is created during the rendering
operation. One of the most obvious errors is forcing all of the pixels to integer boundaries.

Now that the information from all of the source files has been merged into one data
structure, the LDI. The LDI is stored in a file. This new file is ready to be read in by a

separate module that does the rendering.

4.8 Rendering the Layered Depth Image

Now that an LDI has been created we are ready to render our synthetic images. There are
some initial house keeping items that necd to be taken care of first. One of these house
keeping chores is the generation of the Gaussian kernel. The next task is to read the LDI

into memory from a file.

18

ey —
A Nt

—

. i
e B aS

. .'_-n.:‘.._.-' o

'Ii.-lf_:-.-a...’: &

normal.x = ((i - 3.5)/4.0)/1.4361407;

normal.y = ({(j - 3.5)/4.0)/1.4361407;

normal.z = sgrt(l1.0-normal.x*normal.x-normal.y*normal.y);
normal.w = 1.0;

dotProduct = DotProduct (opticalAxis2, normal);
projectPoint.x = 0.0;

projectPoint.y = 0.0;

projectPoint.z = (float)k;

prejectPoint.w = 1.0;

projectPoint = LDI.camera * projectPoint;

if (projectPoint.w == 0.0) {

dl = 4.0;

}

else {

projectPoint /= projectPoint.w;

dl = projectPoint.z;

}

Figure 4.7: Portion of decoding routine.

Now it is time to get down to rendering the images. A new viewing angle is entered
by pressing an arrow key on the keyboard. This new angle is used to construct a rotation
matrix. The first place the rotation matrix is used is to populate the splat table that is talked
about in Shade’s [19] paper on layered depth images. This table has to be generated once
per new image. The code that performs the decoding is shown in figure 4.7. Note that the
depth has been projected to the images projected coordinate system through the use of the
camera matrix. This value is used to set the splat size. The decoding from i and j to the
normals is also shown in the routine. This is the reverse of the encoding routine.

The next step is to find the epipole'. The epipole is used to determine the scan line

order. A simple way to think of this is to always scan towards the epipole. McMillan

has proved in his paper [11] that by following his list-priority rendering algorithm, you

I'The epipole is the point of intersection of a line that passes through the camera centers and the image
plane.

19

My g i T e hha

o e et e -

Fld e g

are guaranteed to generate a back-to-front occlusion-compatible ordering of the rendered
image. This means that things are in back that are supposed to be in back and things in
front are supposed to be in front. I followed McMillan’s list-priority rendering algorithm
to render my novel images. When finding the epipole, the epipole for the initial LDI image
is used. This is done because the warping operation is a forward mapping operation and

requires the epipole from the source image.

Just as in creating the LDI we need to create a transformation matrix. This time the
transformation matrix will warp pixels from the initial LDI image to the new view location.
The transformation matrix T, is camera two times the inverse of camera one. Basically
what this does is move the point from camera ones projected image plane to the global
world coordinate system through the use of the inverse of camera one. Now the point is
taken from the global world coordinate system to camera twos projected image plane. This
can be shown mathematically as T2 = C; - Cfl. Now a pixel can be warped from image
one to image two using the transformation matrix. T2 - (x1,y1,21, 1)7 = (x2-w2,y2:-w2,22°
wa,wa)? = result. Following the same procedure in Shade’s paper [19] the equation is

broken up into several components to speed the warping.

The next part is to actually warp the new image. This is done following the algorithm
presented in Shade’s paper [19]. The pseudo code from Shade’s paper is shown in figure
4.8.

20

procedure Warp(ldpix, start, depth, xincr)
for k=0 to ldpix.NumLayers-1
zl = ldipix[k] .2
result = start + zl * depth
//cull if the depth pixel goes behind the output camera
//or if the depth pixel goes out of the cutput camera’s frustum
if (result.w > 0 and IsInView(result) then
result = result / result.w

//see next section
sqrtSize = z2 * lookupTable[ldpix.Layers[k].SplatIndex

splat (ldpix.Layers[k] .ColorRGBA, x2, y2, sqgrtSize
endif
end for
start = start + xincr
end procedure

Figure 4.8: Pseudo Code For Warping Algorithm[19]

21

et et

iy g

Fhdirengs g o i s

Chapter 5

EVALUATION

In the next couple of sections I outline the procedure I followed to evaluate the LDI. All of
the evaluations were done on a Toshiba laptop. The processor is an Intel Celeron running
at 600 MHz. There is sixty four mega bytes of memory in the machine. The video chip is

the ATI Mobility with four mega bytes of video memory.

5.1 Frame Rate

To compute the number of frames per second I created a function that:
1. read the system timer
2. generated a number of synthetic images
3. read the system timer

Now that I have the two times and the number of images generated I can compute the frame
rate. I ran the timing routine on a number of images. I varied the size and complexity of

the images. I chose the following four image sizes:

1. 200 x 100

22

D d ey keI LA

4 i e

thaicangr

2. 400 x 200
3. 500 x 300

4. 600 x 400

There is nothing of particular importance about these four sizes, any four sizes could have

been selected. The images I chose for varying complexity are:

1. three points, one behind the other that are referred to as Three Points
2. a triangle that is referred to as Triangle
3. a complex image made of a teapot, torus, and cube that is referred to as Complex1

4, a little more complex image made of a tcapot, torus, cube, dodecahedron, and a

icosahedron that is referred to as Complex2

As an additional experiment I used two types of splat. The first was to use a fixed splat size
of one. The second was to use a variable splat size that is selected by the normal for the
pixel.

The routine that I followed to get the rendering time also includes a little overhead
time for the looping operations. I tried to measure the overhead but it is so small that the
effect can be considered negligible. To try to measure the overhead I set the loop counter
to 36,500,000 and the time taken to run was less than a second. The timer I am using is a
one second timer. For this reason I rendered a fairly large number of images so that I could

calculate the average over the number of runs

As an additional experiment I also measured the time it takes OpenGL to render the

same images. This is used as a comparison to the frame rate of the LDL

23

DR A T e A A L A

2 s Nt

P L

3.2 Synthetic Image Accuracy

To test the image accuracy I chose a medium size image. The image size for this set of
experiments was 400 x 300. Once again I used four different images. The images used
here are the same four images used to measure the frame rate. I created a separate module
that takes as input two images. These images are then compared pixel by pixel to determine
the error. [am measuring the average color error for each pixel. I am using equation 5.1 to
determine the average per color error for each pixel. The value returned from the equation

is the percent error per pixel.

i=nj=m

1 =3 4
MSE = W):{ E X‘ (rije = rije)” + (8jc — 81je)” + (bije = bijc)”) (5.1

To more accurately reflect the true error, I have created a bounding box around the
objects in the image. The error is the sum of the difference of all of the pixels in the
bounding box squared divided by the width times the height of the bounding box. To
identify the bounding box I look for the beginning and end of the images in both the row
and column. This is done for both of the input images. The largest box is selected. Which

may bc a combination of the extents of the two images.

I performed three sets of experiments. The first experiment measured the image ac-
curacy versus the splat size. I used all five splats 1x1, 3x3, 5x5, 7x7, and variable splat
based on the normal. This experiment rotates the image cight degrees. The next experi-
ment measures the image accuracy versus the viewing angle. I varied the viewing angle
from 8 degrees to 80 degrees in 8 degree increments. This experiment uses the splat size
based on the normal to the pixel. The last experiment measures the image accuracy versus
the number of input images. I start with three images and go in increments of two until I
have fifteen input images. This experiment rotates the image eight degrees and also uses

the normals to determine the size of the pixel.

24

I CW T VA LA

R R

P Y

In the first two experiments I used the same set of images that I used in the timing tests.
For the last experiment I used the image that had the teapot, torus, cube, dodecahedron,
and a icosahedron. This image actually demonstrated some of the errors of under sampling

where the other three images did not.

As a sanity check I compared an image against itsel{. The error returned was zero.
This is what was expected. Had I received something other than zero there would have
been something wrong with my error computation. Since I know the smallest error is
zero I decided that it would be nice to know the maximum error. To do this I created a
black image and a white image. The error retumed for this experiment was one or one
hundred percent. This is also what was expected. There are three color components for
each pixel. Each color component has a minimum value of zero and a maximum value of
one. Therefore the difference for each color would be one. The difference for each pixel
would be three times the maximum difference for each color, or three. Three squared is
nine which is why there is a nine term in the denominator of the equation. This equation

returns the percent average error per pixel.

25

P I g A W ""-""VG‘U’ﬂ'H

i

T Ll L

Chapter 6

RESULTS

In the next two sections I present the results of my experiments. I first present the data in

tabular form, then in graphic form. I also interpret the data and explain the results.

6.1 Frame Rate

The first set of data are from the timing experiments varying the image size and image
complexity. The data in table 6.1 shows the results of the timing test for a fixed splat
size of one. The data does not present any real surprises. In general as the image size
and complexity increase the frame rate drops and vice versa. There is a greater degree of
change when the image size varies versus when the image complexity varies. This is as
expected since we are working with IBR instead of geometric 3D rendering.

The data in table 6.2 shows the results of the timing test [or a splat size based on the
normal to the point. The data shows similar results to the test using a fixed splat size.
The one thing to note is that the use of normals slows the rendering slightly. The images
rendered with normals is generally rendered at a rate slower than the same image rendered
using a fixed splat size. This would be expected since there are additional computations

involved when using the normals.

26

ST E TH Ty ~ At o

S -

el T

Table 6.1: Rendering rate in frames per second using a fixed splat size of one. The rate is
shown for several different image sizes in pixels versus several different image complexi-

ties.
Image
Size Three Points ~ Tnangle Complex] Complex2
200x100 | 24.333334 22.812500 19.210526 18.250000
400x200 | 9.605263 8.902439 7.604167 6.886793
S00x300 | 5793651 5214286 4.562500 4.147727
600x400 | 3.802083 3411215 2991803 2.723881
Frames per second using fixed splat size
25 000000
22 500000 =
20000000 4
2
g 17.500000 1
S 15000000 B 1ivee Points
2 12500000 W 7 ranale
210000000 1 gg$:e$
&
8§ 7 s00000 4
U 5000000 -H ll
2 500000 4+ II .
0.000000 ' = . . .
2004100 4004200 5004300 BO0KADD
Image Size
Figure 6.1: Rendering rate versus a fixed splat size of one.
Table 6.2: Rendering rate in [rames per second using a vanable splat size based on the

normal. The rate is shown for several different image sizes in pixels versus several different
image complexities.

Image
Size
200x100
400x200
500x300
600x400

Three Points ~ Triangle Complex] Complex2

724333334 21.470589 18250000 16.590110

9.605263 8.488372 7.019231 6.293103
3.793651 5.000000 4.147727 3.686869
3.762887 3.288288 2.703704 2.433334

— -y ot | ST

Frames per second using normals

25, 000000

22. 500000 — |:—J

20.000000 |

17. 500000 -1

15.000000 1+ [l 1Heee Poinds

W 1 iarale
Clcomple st
Clcompiesz

12, 500000 —1— :r

10000000 -1

7. 500000 1+

Frames per second

5000000 —

2500000 -8

0. 000000
2001100 4001200 S00H 300 E00H400

Image size

Figure 6.2: Rendering rate versus splat based on normals.

Table 6.3: OpenGL rendering rate in frames per second. The rate is shown for several
different image sizes measured in pixels versus several different image complexities.

Image |

Size Three Points Triangle Complex] Complex2

200x100 | 803.000000 425.833334 21470589 20.277779

400x200 | 200.750000 121.666664 12732558 11.774194

S00x300 | 182500000 64411766 9.358974 8.423077

600x400 | 109.500000 42.115383 7.348993 6.293103

The last experiment was to time the rendering rate for OpenGl. Table 6.3 and figure 6.3

shows the results ol running the timing test on the rendering time for OpenGL.

The data does not present any real surprises. The frame rale was the lastest with the
smallest and least complex of the images. The slowest frame rate was, as expected, when
rendering the largest and most complex of the images. Another trend that can be seen is the
frames per second varies more rapidly with image size than it does with image complexity.
One point to address it the speed of the LDI versus the speed of the OpenGL rendered

images. All of the images are relatively simple. Even the most complex image is composed

28

g] Py

OpenGL Frames Per Second VS Image Size

900, 000000

300000000

700. 000000 —

600 000000 —

[l 1 hree Points
M Tnarale
Ocemple s
Clcomples2

-

500.000000 -

I

400000000

1

300 000000

Frames FPer Second

1

200000000 —

100. 000000 1 _I

" , I'm e

I
2001100 4004200 500K 300 600:400

Image Size

Figure 6.3: OpenGL rendering rate in frames per second.

of at most several hundred polygons. With this few polygons and hardware acceleration it
is no surprise that the rendering speeds are so high. But why is the performance of the
LDI so slow compared to that of OpenGL. There are a couple of reasons. The first is that
1 did not do anything to tailor the program to my machine. I use floating point numbers
instead of integers. I also do a full screen erase between each of the images. It would be
much faster to only erase what has been drawn. I have no doubts that if the LDI rendering

program were tuned to particular system its performance would improve considerably.

6.2 Synthetic Image Accuracy

The results of the first experiment, image accuracy versus splat size are shown in table
6.4 and in figure 6.4. The data shows in general that the rendered images are a good
approximation to the real image. One interesting thing to note from the data is that the error

for a a splat based on the normal is the smallest. This is what 1s expected since the normals

N e bd | W |

Image Accuarcy VS Splat Size

0.055000

0.050000
0. 045000

0. 040000
0.035000
0.030000

0. 025000
020000 -
0015000
0.010000 H
0. 005000 —

0.000000 —- n_t i—ﬂ_

1H1 343 5HS TH? Normal

Mean Squared Error

Splat Size

Figure 6.4: Image accuracy VS splat size.

a— a. ¢ -

Table 6.5: Images used to calculate the error for a splat size of one.

O,)

Table 6.6: Images used 10 calculate the error for a splat size of seven.

Table 6.7: Average mean error for each color component of ¢
error is shown for the different viewing angles. The images
mals to dictate the splat size.

Three Points Triangle Complex] Complex2

8 0.021640 0.000742 0.006657 0.005764

16 | 0.011148 0.000632 0.007980 0.006349

24 | 0.007508 0.000651 0.007281 0.005437

32 | 0.000000 0.000665 0.006570 0.005559

40 | 0.009197 0.000583 0.006162 0.006327

48 | 0.003872 0.000694 0.006794 0.007010

56 | 0.003375 0.000815 0.006247 0.012094

64 | 0.000000 0001125 0.007404 0.012644

72 | 0.002705 0.001374 0.009937 0.013245

80 | 0.000000 0.002586 0.012649 0.013259

creases. The results from this experiment are shown in table
this data I did the rendering using the normals to set the spl
would be expected. The error increases as the angle of view 1
the three points. The error for the three points continues to d¢
This is easily explained. As the angle increases the distance b
means that more of the background is being used as part of
sured. You will notice a few of interesting data points in the
two, sixty four, and eighty degrees the error for the three poin
angles the three points are mapped to exactly the right positi
that needs comment. When going from seventy two to eigh
from forty eight to fifty six degrees in Complex2 there is a
This is caused by the border that I force around the image in

At the points mentioned, a portion of the image is in this bor

The last experiment is to measure the image accuracy ve
ages. For this experiment I chose the image that I have bee
this image because there are more occlusions than in any o

generated. The results of this experiment are shown in table

32

Image Accuracy VS Angle of View

0.022500

0.020000 --1

0.017500 —

0.015000 —

T

0.012500 —H

0.010000 —H

0.007500 -|

Mean Squared Error
J

0.005000 — h M

0,002500 —H

0.000000 —H -
8 16 24 32

Angle of View

Figure 6.5: Image accuracy VS angle of view.

of this experiment was to determine if there were a minimum number of images that could
be used and still guarantee an accurately generated synthetic image. The answer 1o this
question is no. There 1s no way of knowing the number of images required to fully expose
the objects. There have to be enough images to completely cover the scene. If there are
any occluded arcas that have not been taken into account, there will be holes in the ren-
dered image. There is an example of this in figure 6.7. You can clearly see a hole in the

dodecahedron in the lower left corner of the image.

There is one other type of error that I have encountered while rendering images. This
error is caused by colors from background images bleeding through to foreground images.
In figure 6.8 you can see the teapot through the torus. You can also see the back side of
the cube through the front of the cube. This error is caused by the blending of colors when
using a Gaussian kernel to splat the pixel. This type of error can be eliminated but there
is a cost in terms of additional errors at the edges of objects. Instead of using a Gaussian

kernel for the splat the entire kernel is at full strength. Meaning that instead of blending

33

Table 6.8: Average mean error for each color component of each pixel. The average mean
error is shown for the different number of source images. The measurements were taken at
a viewing angle of eight degrees and using the splat based on the normal.

Source Images | Image Accuracy
3 0.005848
5 0.005102
7 0.004649
9 0.004744
11 0.004800
13 0.004758
15 0.004815

Image Accuracy VE Number of Source | mages

Mean Squared Error

Num ber of Source Images

Figure 6.6: Accuracy versus number of input images.

Figure 6.7: Hole due 1o insufficient input images.

35

Figure 6.8: Bleed through of images in background.

the background colors with the current pixel the background 1s overwritien by the current
pixel. This stops the bleeding through ol background images but it expands the halo around

the objects in the scene.

Chapter 7

FUTURE WORK

Onc approach that can be used to try to eliminate the errors caused by forcing pixels to
integer boundaries is to do a reverse mapping. Instead of picking each pixel in the source
image and mapping it to the output image the pixel in the output image is selected and the
source image is searched to see which pixels would possibly be mapped to the selected
pixel in the output image.

Another approach to reduce errors, particularly when the view position is fairly far
from the LDI, is to dynamically create the LDI based on the angle of view [15]. This
would require a little extra overhead in the form of additional disk storage space and some
extra processing time. The rendering program would have to be set up to recognize when
the angle of view had exceeded a certain limit. Once the limit was exceeded, the program
would have to create a new LDI using the current viewing location as the LDI camera.
If this location does not coincide exactly with a source image the program would have to
select the closest image.

LDIs could be enhanced by adding the ability to change the lighting conditions as well
as change the viewing location. This could be done using Debeveks work with high dy-
namic range radiance maps. A radiance map could be generated for each of the input

images to the LDI creation process. Since a radiance map is just a two dimensional array

37

of radiance information the radiance map could be warped in a similar fashion to the depth
images that were used to create the LDI. The LDI structure could be extended to include a
radiance value for each pixel. When a change in lighting is desired for a synthetic view, the

radiance information could be used to render the image with the new lighting conditions.

Another area that could use some improvement is the selection of an encoding and
decoding routine for the normals in the image. I used a rather simple means of encoding
and decoding the normals. An approach that would possibly generate better results is to
use the unit sphere as a model to work with the normals. This would give a full coverage
of the entire area from zero to one. The method I used cuts off the top third of the normal
range.

The edges also could use a little touch up. I used a method the set the splat size to one
for all edge pixels. A method that could possibly produce better results is to create a second
pass to the normal algorithm that would search for the edge pixels and use the normal for

the adjacent pixel on the object.

38

L {

Chapter 8

SUMMARY

In this study I have shown that a synthetic images can be generated using layered depth
images and that these images are within a certain error, €, of the true image. I have also

shown that the images are rendered at a rate of o frames per second.

Using LDIs, synthetic images can be generated at multiple frames per second. There
are several factors that can affect the actual rate of image generation. I have conducted
several tests and have identified three factors that affect the rate. The factor that has the
largest affect on image generation rate is the size of the image. The larger the image the
slower the image was to generate. The factor that had the next to largest affect on image
generation rate was the complexity of the image. The more complex an image the slower it
was to generate. The factor with the smallest affect on image generation rate was whether
a fixed splat size was used versus the use of normals to determine the splat size. Using a
fixed splat size the images were generated at a slightly faster rate than it the normals were

used. If you look back at figures 6.1 and 6.2 you will see the data from the experiments.

I have not donc any system specific tuning to increase the rate that images are generated.
There are a couple of things that could be done to increase the rendering speed. One thing
would be to eliminate as much of the floating point math from the actual splatting of the

pixels. Another thing that could be done is to erase only the area that has been drawn instead

39

of the entire image. The program could also be enhanced by tailoring it to a particular

hardware platform.

Images generated using LDIs are a visually close approximation to the original images.
I ran a few tests to determine what factors played an important roll in the generated images
error. The factors tested were the image complexity, splat size, angle of view, and the
number of input images. All of the factors tested had an affect on the images error. The
one factor that has the potential to cause the greatest error in the generated images is the
number of input images. If the scene being modeled has a lot of occluded regions and there
are only a few source images, the generated image will have holes in it everywhere there
was an occlusion. It is very important to have enough source images to expose all of the
occluded regions. The factor that would have the next largest affect was the splat size. If the
splat sizes are wrong the image will have three types of visual defects. The most noticeable
defect is the holes left in an image when a splat size is chosen that is to small. The next
defect on the list is the growth of the object in the image. If the points at the edge of an
object are generated with splats that are to large, there is a halo effect around the objects.
The least detectable artifact is the slight change in color of objects because of the merging
operation that is done during the LDI construction on points that are very close in distance

and are deemed to be the same point.

There is one factor that has a negative impact on measuring the image error. The back-
ground is also used in the error calculation. Since the background color is the same for
each of the images the error computed is reduced. The more background in the image the
smaller the error. I have tried to reduce the error by creating a bounding box around the

objects compared.

There is at least one defect that I found with my implementation of LDIs. Using a
Gaussian kernel to do the splatting allows item in the background to bleed through to the

foreground. This is most pronounced when the synthetic image is generated from the same

40

W

location that the LDI camera occupies. In this case there really is not an epipole and I have

fixed the epipole at the center of the image.

4]

BIBLIOGRAPHY

(1]
(2]

(3]

(4]

(5]

(61

(7]

(8]

9]

J. Bradley. "http://www.trilon.com/xv/”, June 5, 2001. accessed on June 5 2001 at 13:00.

S. E. Chen and L. Williams. View interpolation for image synthesis. Proceedings of SIG-
GRAPH 93, pages 279-288, August 1993. ISBN 0-201-58889-7. Held in Anaheim, Califor-
nia.

P. Debevec. Rendering synthetic objects into real scenes: Bridging traditional and image-
based graphics with global illumination and high dynamic range photography. Proceedings of
SIGGRAPH 98, pages 189-198, July 1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs.
Proceedings of SIGGRAPIH 97, pages 369-378, August 1997. ISBN 0-89791-896-7. Held in
Los Angeles, California.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F, Cohen. The lumigraph. Proceedings
of SIGGRAPH 96, pages 43-54, August 1996. ISBN 0-201-94800-1. Held in New Orleans,
Louisiana.

S. J. Gortler, L.-W. He, and M. F. Cohen. Rendering layered depth images. Technical Report
MSTR-TR-97-09, Microsoft Research Advanced Technology Division, Redmond, WA, March
19 1997.

B. Guo. Progressive radiance evaluation using directional coherence maps. Proceedings of
SIGGRAPH 98, pages 255-266, July 1998. ISBN 0-89791-999-8, Held in Orlando, Florida.

M. Halle. Multiple viewpoint rendering. Proceedings of SIGGRAPIH 98, pages 243-254, July
1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

Y. Horry, K. ichi Anjyo, and K. Arai. Tour into the picture: Using a spidery mesh interface 1o
make animation from a single image. Proceedings of SIGGRAPH 97, pages 225-232, August
1997. ISBN 0-89791-896-7. Held in Los Angeles, California.

[10] J. Lengyel and J. Snyder. Rendering with coherent layers. Proceedings of SIGGRAPIH 97,

[11]

(12]

pages 233-242, August 1997. ISBN 0-89791-896-7. Held in Los Angeles, California.

L. McMillan. A list-pricrity rendering algorithm for redisplaying projected surfaces. Technical
Report UNC Technical Report 95-005, University of North Carolina, North Caroline, 1995.

Microsoft. http://msdn.microsoft.com/library/psdk/gdi/bitmaps4_vlh.htm, June 5, 2001. ac-
cessed on June 5 2001 at 13:00.

42

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

(21]

[22]

[23]

(24]

Y. Mukaigawa, S. Mihashi, and T. Shakunaga. Photometric image-based rendering for virtual
lighting image synthesis. Proceedings of Workshop on Augmented Reality, pages 115-124,
October 1999.

M. M. Oliveira and G. Bishop. Image-based objects. 1999 ACM Symposium on Interactive
3D Graphics, pages 191-198, April 1999. ISBN 1-58113-082-1.

V. S. Popescu, A. A. Lastra, D. G. Aliaga, and M. de Oliveira Neto. Efficient warping for
architectural walkthroughs using layered depth images. Proceedings of IEEE Visualization
1998, pages 211-215, October 1998.

P. Rademacher and G. Bishop. Multiple-center-of-projection images. Proceedings of SIG-
GRAPH 98, pages 199-206, July 1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

S. M. Seitz and C. R. Dyer. Toward image-based scene representation using view morphing.
In Proceedings of the Thirteenth International Conference on Pattern Recognition Vol. I, Track
A: Computer Vision, pages 8489, 1996. Available from ftp.cs.wisc.edu.

S. M. Seitz and C. R. Dyer. View morphing: Synthesizing 3d metamorphoses using image
transforms. Proceedings of SIGGRAPH 96, pages 21-30, August 1996. ISBN 0-201-94800-1.
Held in New Orleans. Louisiana.

J. W. Shade, S. J. Gortler, L. wei He, and R. Szeliski. Layered depth images. Proceedings of
SIGGRAPH 98. pages 231-242, July 1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

J. Snyder and J. Lengyel. Visibility sorting and compositing without splitting for image layer
decomposition. Proceedings of SIGGRAPH 98, pages 219-230, July 1998. ISBN 0-89791-
999-8. Held in Orlando, Florida.

M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide. Addison Wesley
Longman, Inc., Reading, Massachusetts, third edition, 1999.

D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin. Multiperspective
panoramas for ccl animation. Proceedings of SIGGRAPH 97, pages 243-250, August 1997.
ISBN 0-89791-896-7. Held in Los Angeles, California,

Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination: Recovering re-
flectance models of real scenes from photographs. Proceedings of SIGGRAPH 99, pages
215-224, August 1999. ISBN 0-20148-560-5. Held in Los Angeles, California.

Y. Yu and J. Malik. Recovering photometric properties of architectural scenes from pho-
tographs. Proceedings of SIGGRAPH 98, pages 207-218, July 1998. ISBN 0-89791-999-8,
Held in Orlando, Florida.

43

1
-

VITA
Charles Randall Berry
Candidate for the Degree of

Master of Science

Thesis: INVESTIGATION OF LAYERED DEPTH IMAGES
Major Field: Computer Science

Biographical:

Personal Data: Bomn in Flagler, Colorado, On March 9, 1961, the son of Leroy and
Ruthann Berry.

Education: Graduated from East High School, Pueblo, Colorado in June 1979; re-
ceived Bachelor of Science degree in Electronics Engineering Technology from
the University of Southern Colorado, Pueblo, Colorado in June 1983; received
Bachelor of Science degree in Computer Science from the University of Cen-
tral Oklahoma, Edmond, Oklahoma in 1990. Completed the requirements for
the Masters of Science degree with a major in Computer Science at Oklahoma
State University in August, 2001.

Experience: Employed by Seagate Technology Inc. as a firmware engineer, 1983
to present.

