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CHAPTER 1

1.1 GENERAL INTRODUCTION

Plant cell walls are very complicated structures that play very important roles,

although not many of them are understood in the life of a plant. This important dynamic

extra-cellular matrix, composed of complex polysaccharides, structural proteins and

aromatic substances, is said to maintain the rigidity of the cell, therefore, providing it

with its stable shape by the means of its mechanical strength (Perez et aI., 2000). The

functions of the wall are also biological. Other major roles attributed to plant cell walls

are: limiting the cell expansion, porosity control, barrier to digestion, and cell adhesion,

which makes it an important component in plant morphogenesis (Fry, 1989). Moreover,

it is believed that plant cell walls also participate in cell-to-cell signaling by the release of

signal molecules named oligosaccharins or oligosaccharides (Perez et aI., 2000; McCann

et a1. 2001).

Plant cell walls are divided into primary and secondary subtypes. Primary cell

walls are synthesized during the early stage of differentiation, when the young cells still

retain the capacity to divide and elongate. Secondary cell walls are laid down on the

inner surface of the primary walls after growth stops, and they are characterized by their

enrichment in cellulose micro-fibrils and lignification (Stumpf, 1980).

Plant cell wall carbohydrates form the most abundant natural compounds on earth,

which implies that they are our most important renewable natural resource. Their

omnipresence in agricultural products gives the plant ceJl wall carbohydrates a major role

in nutrition. The plant cell wall polymers, which vary amongst the source and other



conditions, are arranged in various carbohydrates structures that include cellulose,

hemicellulose (xyloglucan and arabinan) and pectin (Perez et aI., 2000).

Cellulose is an unbranched polymer of glucose residues joined by ~-1 ,4-linkages.

The ~ configuration allows cellulose to form very long straight chains, which is optimal

for the construction of fibers with a high tensile strength. These characteristics give

cellulose an important structural role in plants, making it responsible for the ability of

plants to withstand mechanical stress and osmotic pressure (Stryer, 1995).

Hemicellulose is comprised ofthose polysaccharides non-covalently associated

with cellulose, such as xyloglucan, various xylans, heteroxylans and arabinan (Stumpf,

1980). Xyloglucans, which are present in the cell walls of virtually all higher plants, are

structurally related to cellulose, but the presence of side chains at the 0-6 of their (1 ~4)

linked p-D-Glc p residues makes them very different from cellulose in terms of their

physical properties. Approximately 75% of the residues in the backbone bear a glycosyl

side chain at 0-6, which invariably is a-D-Xyl p. In addition, 50% of the times, this side

chain contains moieties at its 0-2, such as p-D-Gal p or a-L-Fuc p- (1 ~2)-p-D-Gal p

(York et a1., 1996). Arabinans are mainly composed of a-L-arabinofuranosyl residues,

generally arranged in (1~ 5) Iinked chains, with varying numbers of residues substituted

with other a-L-arabinofuranosides at the 0-2 and/or 0-3 position (SeIdman et al. 1997).

Pectins are the most abundant complexes in the primary walls, yet we still do not

have a clear understanding of their functions. They are loosely defined as "polymers rich

in galacturonic acid and their associated side-chains" (McCann et a1., 2001), which

comprise 20-50 % of the wall (McCann et aI., 2001). Pectins comprise a family of acidic

polymers, like homogalacturonans and rhamnogalacturonans, with several neutral
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polymers such as arabinans, galactans and arabinogalactans attached to them (Strasser et

al. 200 I). So far, 3 pectic polysaccharides complexes have been isolated and structurally

characterized from primary cell walls: homogalacturonan (HG), rhamnogalacturonan I

(RGI), and rhamnogalacturonan II (RGII) (Ridley et aI., 2001). In addition, a fourth

pectic polysaccharide, xylogalacturonan (XGA), found near RGI, has emerged in the last

decade as a minor type (Schols et aI., 1995). The 3 main polysaccharides (HG, RGI and

RGII) are solubilized by endo-polygalacturonase (EPG) treatment of primary cell walls,

which has led to the belief that they are all covalently linked together (Ishii et aI., 200 I).

HG is a homopolymer of(1 ~4) a-D-GaIA with a varying degree of carboxyl

groups methyl-esterified (Perez et aI., 2000, Daas et aI., 1998). The GaiA residues may

also be acetyl-esterified at C2 and C3 (Ridley et aI., 2001). RGI is composed of

alternating L-rha and D-GalA residues, forming a repeating (1 ~2)-a-L-rhamnosyl-

(1 ~4 )-0.-D-Ga IA unit. Some of the GalA units, as many as one third, are acetylated at

the 0-3 position (Komalavilas et a1., 1989). L-arabinosyl and D-galactosyl rich side

chains are attached to approximately 2/3 of the rhamnose residues of this backbone,

which are responsible for terminating or limiting inter-chain association (Perez et a1. ,

2000). Occasionally, the side chains are terminated by L-fucosyl, D-glucuronosyl or 4

O-methyl-D-glucuronosyl residues (Strasser et aI., 2001). The most abundant arabinans

appear to be homopolysaccharides of mainly (1~ 5)-linked-a-L-arabinofuranosyl units.

They form helical chains with further branching at the 2- and 3- positions. There are 2

types of arabinogalactans: type I, the most abundant and composed of (l ~4)-linkedP-D

galactan side chains with a-L-arabinofuranosyl units attached to the 0-3 of the galactosyl

units; and type II, the most complex and composed of (1 ~ 3)- linked p-D-galactan chain
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substituted with short (I ~6)- linked ~-D-galactan chains which in tum carty additional

branches of (I ~3)- and/or (1 ~5)- linked a-L-arabinofuranosyl residues (Perez et a1.,

2000). RGII is a complex low molecular weight polysaccharide. It exists primarily as a

dimer (dRG-II-B) that is covalently linked by a 1:2 borate diol ester. This cross-linking

forms a matrix that may be involved in regulating the pore size and some of the physical

properties of the primary walls. The backbone of RGII contains at least 7 (1 ~4)-linked

a-D-galactopyranosyluronic acid residues, with 4 structurally distinct oligoglycosyl side

chains (Vidal et aI., 2000). According to Whitcombe et a1. (1995), RGII contains 11

different glycosyl residues including unusual monosaccharides, seldom observed methyl

etherified sugars and unusual glycosidic linkages. XGA contains a homogalacturonan

backbone with a non-reducing terminal Xyl attached at the 0-3 position of many of the

GalA residues. The structures of the 4 pectic regions are illustrated in Fig. I-I and Fig.

1-2.

The distribution of the mentioned pectic regions is varied and variable, from

species to species and at different developmental stages and conditions. As reviewed by

Ridley et aI., unesterified HG is localized to the middle lamella, to cell corners, and

around air spaces whereas esterified HG is typically present throughout the wall. In

addition, Ridley et a1. infer that the presence and location of the arabinan and galactan

side chains of RGJ are often correlated with stages of cell and/or tissue development.

The absence of pectic polysaccharides in secondary walls has led to the belief that

pectin synthesis has to be regulated in a temporal, spatial, and developmental specific

manner. It is likely that both the synthesis of HG and RGI begin in cis Golgi and

continues into the medial Golgi, while the esterification ofHG appears to occur in the
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medial and trans Golgi. In addition, more extensive branching ofpectins appears to

occur in the trans Golgi cisternae. The final pectin assembly might occur as the Golgi

vesicles are transported to the plasma membrane and the pectin is inserted into the wall

(Ridley et aI., 200 I).

All cell wall polymers are assembled together through many covalent (glycosidic,

ester, etc) and non-covalent (hydrogen and ionic) cross-links to form a strong dynamic

wall. Many models have been proposed to explain how the cross links of these polymers

make up the plant cell wall. Peter A~bersheim's group was the first one, in 1973, to

propose a cell wall model. Albersheim's model describes the whole cell wall as a

macromolecule, in which all non-cellulosic polymers are covalently linked except for the

hydrogen bonding of xyloglucans to the cellulose micro fibrils. This model also suggests

covalent cross-linking between pectin to wall proteins (Keegstra et aI., 1973). In 1993,

Carpita and Gibeaut proposed a new cell wall model for primary walls of most flowering

plants. This new model, which accounts for details such as the directions that the micro

fibrils move in relation to each other during growth, is comprised of 3 structurally

independent but interacting domains. These are a cellulose-xyloglucan network, which

interacts with and within the pectin network, and a third and more independent network

of structural proteins. The components of these networks can change independently

depending on developmental state or in response to special kinds of stress. The pectic

polysaccharides are involved in diverse structures. The helical chains of the

homogalacturonan pectic region can condense with Ca2+ to form what is known as

'eggbox' junction zones by linking 2 anti-parallel chains. This new model takes into

account both cell division and cell expansion by emphasizing that the cell shape is
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established by the orientation of synthesis of the cellulose micro fibrils, while the rate of

cell expansion and the extent that the micro-fibrils are pulled apart in the longitudinal

axis is dictated by the dynamic interaction between the cellulose and the non-cellulosic

polysaccharides networks (Carpita et al., 1993).

Determining the structures of the complex pectic polysaccharides is very

important for further understanding of the pectin function and its biosynthesis. This very

challenging task, blurred by under-developed applicable methods, needs degradation

methods, either chemical or biochemical, to break the polysaccharides into manageable

pieces. Enzymatic digestion seems to be the answer to the quest for a less harsh

biochemical degradation method. Due to the heterogeneity in the composition and

structure of pectin, a wide range of enzymes is required for the biodegradation of these

polysaccharides. Unfortunately, there are few purified enzymes commercially available,

and even these retain extraneous activities to a varying extent. Commercially available

enzymes include both endohydrolases, which attack polysaccharides in mid-chain and

yield oligosaccharide products, and exohydrolases, which attack from the non-reducing

end to give monosaccharides (Fry, 1989). Commercially available enzymes can be used

when their side activities are not expected to compromise the results, since their major

activity is known. For example, endo-( 1~ 5)-a-L-arabinanases [( 1~ 5)-a-L-arabinan

(I~ 5)-a-L-arabinohydrolase] cleaves the (1~ 5)-0.-L-arabinofuranosyl backbone of

arabinans in a random manner releasing arabino-oligosaccharides. The extent and rate of

branched arabinan hydrolysis is affected by the degree of substitution on the arabinan

backbone by (l ~3) or (1-72)-a.-L-arabinofuranosyl residues. Pitson et al. suggested that

this enzyme needs at least one unsubstituted a-L-arabinofuranosyl residue on each side
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of a substituted residue for hydrolysis to occur (Pitson et aI., 1997). When extraneous

activities are expected to compromise the results, then purer cloned enzymes can be used.

For example, Fu et ai. reported a recombinant RGase of B. fuckeliana that cleaves at the

glycosidic bond between GalA and Rha, the backbone of the RGI region of pectin. This

recombinant RGase preferentially cleaves 4 to 6 residues from the reducing end of the

(GR)n>5 substrate, but a multiple attacks mechanism is absent. This cloned enzyme is

devoid of extraneous activities. In addition, Mutter et al. reported another RGase

(correctly termed an RG a-D-galactopyranosyluronide-( 1,2)-a-L-rharnnopyranosyl

hydrolase) from A. aculeatus , which is able to cleave oligomers of 5 Rha-GaiA units or

more, and it cleaves at 4 or 6 residues from the non-reducing end Rha. In addition, this

RGase shows a multiple attack mechanism of action.

The un-masking of pectin structure is an unquestionable need, and the future only

holds progress in isolating and characterizing pectic polysaccharides. The achievement

of this open-ended task will require the combined use of carbohydrate chemistry,

biochemistry, molecular biology and genetics.

1.2 INTRODUCTION TO CARBOHYDRATE METHODS

Enzymes have specificity that allows them to be useful tools to degrade polymers.

The specific activity of each enzyme is measured in units, where one unit of enzyme

activity is defined as the amount of enzyme required to release one micromole of the

reducing monosaccharide equivalent per minute under the manufacturer's defined assay

conditions. Despite its usefulness, most commercial enzymes have extraneous activities

that need to be taken into account if they might interfere with the expected results. EPG
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(endo-polygalacturonase) cataLyzes the hydroLy is of interior a-(l ~4)-LinkedD

galacturonic acid residues. The EPG used (from A. niger, Lot 00901, specific activity

R90 U/mg protein) requires 4 contiguous non-methylesterifed gaLacturonate residues

upon which to act. The best substrate for the action of EPG is low esterified or de

esterified polygalacturonic acid, which makes it a great choice of enzyme to degrade the

saponified HG region of pectin. The cloned RGase (rhamnogaLacturonase, correctly

temled an RG a-D-galactopyranosyluronide-(l,2)-a-L-rhamnopyranosyl hydrolase) used

preferentially cleaves 2 or 3 repeating units ofRG (4 or 6 residues) from the reducing end

of the (GR)n>5 substrate. RGase is of very useful in degrading the RGI backbone. The

following enzymes are also very useful in degrading the side chains found in the RG I

region of pectin. Ara-sidase (a-L-arabinofuranosidase) (from A. niger, Batch

MAF80601, specific activity 40.3 U/mg protein) catalyzes the hydrolysis of the a-L

arabinofuranosyl residues from the arabinan side chains of both types I and [[

arabillogalactans. Arabinanase (endo-(I ~5)-a-L-arabinanase)(from A. niger. Batch

MAR0030 I, specific activity 8.0 U/mg protein) cleaves the (I ~ 5)-a-L-arabinofuranosyl

backbone of debranched arabinans in a random manner releasing arabino

oligosaccharidcs. Galactanase (endo- J,4-~-galactanase) (from A. niger, Batch

MGA0090 I, specific activity 408 U/mg protein) catalyzes the hydrolysis of the de

branched galactan side chains. Galactosidase (~-galactosidase)(from A. niger, Lot

60102, specific activity 112.3 U/mg protein) catalyzed the hydrolysis orthe galactan

side-chains.

Carbohydrate labeling is very useful in their sensitive detection. A number of

fluorescent tags have been reported, which contain aromatic ring systems and share some
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common features. Anumula (2000) suggests that the fluorescent tag's aromatic ring

system must be substituted at the ortho position to an amine or nitrogen heterocycle to be

fluorescent and useful. The fluorescent labeling of both monosaccharides and

oligosaccharides is generally carried out by reductive amination at the sugar's reducing

end (Anumula, 2000). Figure 1-3 shows a representative reductive amination in a

labeling reaction using ANTS. Labeled oligosaccharides coupled with other analytical

techniques such as CE and HPLC form invaluable tools for the carbohydrate researcher.

CE (capillary electrophoresis) is a micro-column (fused-silica columns)

separation technique very suitable for the detection of analytes in very small volumes.

The commercial availability of its automated system adds to its research suitability. The

separation is based in the charge/mass ratio, which is very helpful in the characterization

or elucidation of complex samples. Different experimental conditions, i.e. pH of the

running buffer, influence the migration behavior of the analytes, therefore should be

optimized and maintained constant. Figure I -4 shows a schematic representation of the

principles of capillary electrophoresis.

MALDI (matrix-assisted laser desorption/ionization) is a laser-based soft

ionization method that has proven to be one of the most successful ionization methods for

mass spectrometric analysis and investigation of large molecules. Its distinguishing

feature is that the sample is embedded in a chemical matrix that greatly facilitates the

production of intact gas-phase ions from large, nonvolatile, and thennally labile

compounds such as peptides and proteins, synthetic polymers, oligonucleotides,

oligosaccharides, lipids, and large inorganic compounds. A laser beam (generally from a

11
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nitrogen UV Laser, 337 nm) serves as a desorption and ionization source. The matrix

plays a key role in this technique, and although the mechanism remains uncertain, it is

thought to absorb the laser light energy and transfer it to the substrate, which may cause a

small part of the target substrate to vaporize. Once the sample mo.lecules are vaporized

and ionized, they are transferred electrostatically into a mass spectrometer where they are

accelerated in an electric field. The substrate ions separate from the matrix ions and are

individually detected, usually by TOF (time-of-flight) mass spectrometry. In linear

mode, the ions travel down a linear flight path and their mass/charge ratio is determined

by the times it takes for them to reach the detector. In a reflectron mode, the instrument

has an ion mirror, which is essentially a potential field, at the end of the flight tube, which

reflects the ions back to a detector. Those ions that have more kinetic energy penetrate

farther into the field and hence are slowed down relative to fragment ions that do no

penetrate as far into the mirror. Hence all the ions are separated. The reflectron mode

permits higher mass accuracy and resolution, since it compensates for similarly charged

ions having slightly different overall energies. Analysis by MALDI mass sp ctrometry

may be divided into two steps. The first step involves preparing a sample by mixing the

analyte with a molar excess of matrix. The typical matrix for use with UV lasers is an

aromatic acid with a chromophore that strongly absorbs the laser wavelength. The

second step of the MALDI process involves desorption of bulk portions of the solid

sample by a short pulse of laser light.

The MALDI matrix must meet a number of requirements simultaneously:

a) be able to embed and isolate analytes (e.g., by co-crystallization)

b) be soluble in solvents compatible with analyte

14



c) be vacuum stable

d) absorb the laser wavelength

e) cause co-desorption of the analyte upon laser irradiation

f) promote analyte ionization

The MALDI method has been developed empirically and despite its widespread use, the

factors that determine success or failure of MALDI experiments are not yet fully

understood (information compiled from websites from Sigma-AldrichIFluka, Analytix

and Kratos companies).

NMR (nuclear magnetic resonance) is a very useful technique to detelmine

chemical structures, including the composition and sequence of units in polysaccharides.

In a simplified way we can explain this technique by saying that a sample in a magnetic

field can absorb electromagnetic radiation in the radio frequency (rt) region at

frequencies that depend in the characteristics of the sample. A plot of the frequencies of

the absorption peaks versus peak intensities constitutes a NMR spectrum (Silverstein et

al., 1998). More in depth, we can say that the basis of this behavior relie on the

resonance of the spins of subatomic particles. Atomic nuclei are composed of nucleons,

i.e., protons and neutrons. Each of these particles shows a propelty named "spin"

(behaving like an angular momentum) that adds up to the total spin of the nucleus (which

might be zero, due to pair-wise cancellation). When in an NMR magnet, this spin

interacts with an external magnetic field, comparable to a compass-needle in the Earth's

magnetic field (for spin-l/2 nuclei). The most important nuclei in organic chemistry are

the spin-I 12 isotopes 1 H, IJC, IlN, 19F, and 31 P (with different isotopic abundance). As

spin-I 12 nuclei they can assume two states in a magnetic field, 0: (ml = - 1/2) and B(ml = + I
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/2). How much energy can be absorbed by a large ensemble of spins (like our NMR

sample) depends on the population difference between the a and 13 state. Furthermore,

resonance frequencies of the same isotopes in different molecular surroundings differ by

several ppm (parts per million). Two-dimensional (2D) NMR experiments have greatly

increased the usefulness of NMR for structural identifications. Developed homonuclear

and heteronuclear correlations, in both long and short ranges, comprise what is called 20

NMR. This introduction will focus only on the 2D NMR used in this project. COSY,

COrrelation SpectroscopY correlates directly coupled IH to IH, while TOCSY (TOtally

Correlated SpectroscopY) correlates relayed coherence transfer from IH to In HMQC

(Heteronuclear Multiple Quantum Coherence) correlates directly attached IH_I3C, whi Ie

lIMBC (Heteronuclear Multiple Bond Coherence) correlates long range (2 and 3 bond)

LH_ J3C couplings, which allows us to correlate quaternary carbons with nearby protons

(Silverstein et al., 1998; Sanders et a1., 1997).

1.3 AIM AND OUTLINE OF THESIS PROJECT

Pectin is without a doubt very important for humankind for its function in the

plant cell wall and its uses, mainly in the food industry. Despite its importance, its

structure has not yet been totally deciphered. For that reason, one of the many aims of

Dr. Mort's lab has been to attempt to clarify the chemical nature of pectin linkages and

the sequence of the interconnections among its pieces. It has been postulated that pectin

is a network of interconnected regions: HG, RG I, RG II and XGA, where RGI

constitutes a large percentage of the total pectin. RGI has different side chains of

unspecified functions, but it is believed to play an important role in cell wall. In addition,
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pectin fragments from the HG region have been shown to regulate a number of responses

in plants (Daas et al, 1998). Although the importance of these HG fragments is

indubitable, their chemical structure still is unknown and needs to be further pursued.

Past researchers from Dr. Mort's lab have encountered some arabinose rich RGJ

fractions, whose actual existence and function was not detennined. The functions and

interrogatives left open from previous studies, have detennined the aims of this thesis

project. The main aim of this thesis study was to attempt to isolate and characterize the

chemical nature of an arabinose rich side chain linkage to the main chain of RGI.

Another aim of this thesis study comprised the improvement of techniques used. It did

not take long to get involved in the characterization of a methylated tetramer of

galacturonic acid, which quickly comprised another aim in this project. The isolation

attempts of the arabinose rich RGI fragment involved many sequential enzymatic

digestions and chemical separations using various chromatographic methods. In addition,

anion-exchange HPLC was used to isolate the methylated tetramer of GaiA.

Characterizations made great use of a variety of techniques such as CZE, HPLC, GLC,

NMR and MALDI-TOF MS.
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CHAPTER 2

MATERIALS AND METHODS

2.1 BREAKDOWN OF POLYSACCHARIDES

2.l.l. ENZYMATIC DIGESTION

Enzymes used:

endo-polygalacturonase (EPG) (Megazyme, Ireland)

endo-1 ,4-13-D-galactanase (Megazyme, Ireland)

~-galactosidase (Megazyme, Ireland)

endo-arabinanase (Megazyme, Ireland)

a-L-arabinofuranosidase (Megazyme, Ireland)

Cloned RGase (Fu et all, 2001)

2.l.2. Obtaining BMW and LMW from commercial citrus pectin

Commercial citrus pectin (10 g), from Sigma Co., St. Louis, MO, was dissolved in 15 ml

of methanol (or ethanol) and 300 ml of NP H20. The dissolved pectin was saponified by

adjusting its pH to 11, with NaOH at room temperature, and then to pH 4 with glacial

acetic acid. The saponi fied pectin was then EPG digested as per Zhan et aJ l, 1998.

In order to fractionate the supernatant according to digestion size, the combined

supernatants were ultra-filtered using a YMlO or YM30 (10 and 30 k MW cutoff

respectively) membranes (Amicon, Inc., Beverly, MA) into two major fractions, a low

molecular weight fraction (LMW) and a high molecular weight fraction (BMW). In

order to rid the BMW of the dimer and trimer of GaiA, approximately 0.5 g of dry BMW

20



was treated with 20 mJ of 0.5 M imidazole solution (pH 7), stirred for 2 hrs at room

temperature and ultra-filtered again through the YM30. The imidazole treated HMW was

washed at least 5 times with NP H20. The imidazole-LMW was discarded. The usable

HMW (imidazole treated) and LMW (previous to imidazole treatment) were lyophilized

and saved for further use. From 10 g of initial dry pectin, approximately 30% remained

insoluble (EPG residue), 50% went to the LMW and 13 % went to the HMW.

2.1.3. RGase digestion

Approximately 10 mg of the obtained HMW was incubated with the purified RGase in 50

mM sodium acetate pH 4.0 buffer, stirring, at 37 DC for 24 hrs. The amount of RGase

added was adequate to digest 6 ~mol of linear (RG)8 in 1 hr. One hundred of the

complex contains the equivalent of 12 ~mol of (RG)g. The digestion mixture was heated

at 90 DC for 15 min to inactivate the enzyme before chromatographic separation.

2.1.4 Digestion by other various enzymes - general conditions used.

A known amount of substrate, weighed and placed in a 1.5 ml microfuge tube, was

dissolved in a minimum amount, 0.5 ml, of 50 mM ammonium acetate, pH 4, buffer. The

amount of enzyme used was roughly calculated based on the sugar composition of the

fraction and the specific activity of each enzyme. For example, for the use of

endogalactanase the calculation was based on the amount of gal in the sample (HMW on

this case). With the I-lmole of gal in the sample and the specific activity of this enzyme,

which is provided by the manufacturer, the amount of enzyme needed was calculated.

The mixture was incubated in a water bath at 40°C for 24 hr. The enzymes were

21



inactivated by placing them in an 80°C water bath for 30 min. The digest was

centrifuged at 10,000 rpm for 15 min to separate the residue. The supernatant was

separated through a cutoff membrane of a specified size (see figure 3-4 for details).

2.2 FRACTIONATION OF DIGESTED POLYSACCHARIDES

High Performance Liquid Chromatography

Neutral and acidic polysaccharides were separated on anion exchange columns:

PAl (Carbo Pac) or DEAE (Poros 50 DEAE, Perseptive Biosystems). The column was

eluted with an ammonium acetate gradient, which differed for each separation, with a

flow rate of 2 mJJmin using a Dionex Bio-LC carbohydrate system (Dionex Corporation,

Sunnyvale, CA). A continuous post-column detection of underivatized polysaccharides

hy reaction with perrnanganate was used, as devised by Thomas and Mort, 1994. The

obtained fractions were collected using a fraction collector. Chromatograms were

recorded on a chart recorder and also in a Macintosh microcomputer via a Data Logger

connected to the detector (Merz and Mort, 1992). Collected fractions were frozen and

lyophilized a minimum of two times to rid them of the salt in the elution buffer.

2.3 DERIYATIZATION

2.3.1. ANTS Derivatization

Approximately 100 ~g of substrate, weighted on a Cahn 29 electrobalance and

placed in a 500 III Eppendorftube, was heated, in a heating block, at 90°C for at least I

hr in a mixture of20 III of 23 mM ANTS (Molecular Probes, Oregon, USA) (in 3: 17 v/v
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of acetic acid:water) and 2 III of 1 M SCB in THF (method adapted from EvangeHsta et

a1., 1995).

2.3.2. APTS Derivatization

Approximately 100 nmol of substrate, weighted on a Cahn 29 electrobalance and

placed in a 500 III Eppendorf tube, was heated, in a heating block, at 80 DC for at least 1

hr in a mixture of 2 III of 0.1 M APTS (Molecular Probes, Oregon, USA) (in 25% acetic

acid) and 10 III of I M SCB in THF (method adapted from Evangelista et al., 1995).

2.3.3. 2AP Reversible Derivatization

Oligosaccharides were derivatized by condensation reaction with 2-aminopyridine

by dissolving approximately 1 mg of the sample, weighted on a Cahn 29 electrobalance

and placed in a 1.5 ml Eppendorf tube, in a minimum of 50 III of labeling reagent and

incubating it at 70°C for a minimum of 3 hours. The labeling reagent was prepared by

dissolving 19 of 2-aminopyridine in 1 rnJ of NP H20 and adjusting the pH to

approximately 7 with 1 ml of glacial acetic acid. After removing samples from the

heating block and cooling them to room temperature, excess labeling reagent was

removed by solid phase extraction. The labeled sample was diluted 20 fold with 0.44 M

acetic acid (final pH 4-5) and then applied to a pre-conditioned solid phase extraction

column of 500 mg cation-exchange Extract-Clean column from Alltech (Deerfield, IL,

USA). The sample was eluted with H20. The columns were pre-conditioned by

converting them to the ammonium form using approximately 5 ml of concentrated

ammonia solution and rinsed with H20 to a pH 5-6 before sample application. After
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usage, the columns were converted back to the ammonium form for later re-use (Maness

et a1., 1991).

2.4 SUGAR COMPOSITION ANALYSES

2.4.1. Gas Liquid Chromatography

Sugar compositions were determined by GLC analysis of the trimethylsilyl

methyl glycosides. Methanolysis and derivatization were performed using the protocol of

Chaplin (1982) as modified by Komalavilas and Mort (1989). About 100 I-lg of sample

was weighed on a Cahn 29 eLectro balance and the exact amount was recorded. Sample

was placed in a 4 ml glass vial with a Teflon-lined screw lid. One hundred nmoles of

inositol were added as an internal standard and dried in a speed-vacuum centrifuge. Two

hundred I-ll of 1.5 M methanolic HCl and 50 ~l of methyl acetate were added to each vi al.

The vial was sealed tightly and placed in a heating block at 80 DC for at least 3 hours.

After cooling to room temperature, a few drops of t-butanol were added to each vial and

the sample was dried under a stream of Nz. Fifty J.LI of a 3: LTrimethylsily: Pyridine

mixture were added to the sample and allowed to react for 15 minutes at room

temperature. The derivatized sample was then evaporated gently under a stream of Nz

and re-dissolved in 100 I-li of isooctane. The trimethylsilyl sugar derivatives were

separated on a DB-225 fused silica capillary column (30 m x 0.25 mm i.d., Durabond-l

liquid phase; J & W Scientific Inc., Rancho Cordova, CA) installed in a Varian

(Sunnyvale, CA) 3300 gas chromatography equipped with an on column injector and Fill

detector.
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One ~l of isooctane and 1 ).11 of sample was injected at 105°C. The program was

held at 105°C for 1 minute. Then the temperature was raised to 160°C at a rate of 10

°C/min and held for 4 min, then raised to 220°C at a rate of 2 °C/min, finally raised to

240°C at a rate of 10 °C/min and held for 10 min. Peaks were integrated on a Varian

4290 integrator. Individual monosaccharides calculation was achieved by using a 'in

house' program based on the areas obtained relative to the internal standard area.

2.4.2. Monosaccharide composition analysis for small amounts of sample

Ten to 100 ng of polysaccharide sample was injected into one of the 5 wells of the

specially designed vial, along with 1 nmol of 3-0-methyl glucose as an internal standard.

This step was done for each sample. The sample and the internal standard were

evaporated away in a speed vacuum centrifuge in about 2 min. TFA was used to

hydrolize the polysaccharides to monosaccharides, so 1.5 III of 2 M TFA was added to

each well. The vial was then heated at 121°C for I hr by placing it in a specially

designed aluminum holder. This holder had a Teflon lined cap, which was held to the

base by 6 screws. After cooling, the acid was evaporated, in about 5 min, in a peed

vacuum centrifuge. The monosaccharides were then derivatized with a fluorescent label

to be later separated by CZE and quantitated. One III of the derivatization agent, 3.0

mglml anthranilic acid in 4% sodium acetate 2% borate solution in methanol, was then

added to each well and the vial was heated at 80°C for 2hr by placing it into the holder as

previously described. After cooling, the methanol was evaporated, and the samples,

taken up in 20 III ofNP H20, were transferred into a microfuge tube. The analytical

separation was done by using a BioRad Biofocus 2000 CZE instrument. The detection
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was achieved by LIF. The instrument used permitted the subsequent quantitation of the

individual monosaccharides by using an 'in-house' program based on the areas obtained

relative to the internal standard area. Between each sample run, there was a 0.1 M NaOH

wash followed by a H20 wash. A 385 nm cutoff filter was used to block scattered UV

laser light. Each run lasted 30 min at 15 kV, with a constant 21°C temperature. The

samples were run using a pH 7.0 200 mM borate and 50 mM phosphate buffer, which

complexes the monosaccharides at any 2 vicinal OH at a time, adding possible negative

charges, and therefore, helping with the separation by allowing the drifting time to be

based mainly on the type of the sugar molecule. In addition, the borate buffer used

helped the electrosmotic flow of the capillary. Some important steps were taken into

account for a successful anal ysis of the samples, which were:

1) The flat head syringe used was rinsed many times before and in between samples

to prevent cross-contamination.

2) Each little well was rinsed first with 0.1 M NaOH, then H20 and later with

distilled H20 using a flat head syringe. The H20 rinsing was repeated at least 7

times to completely rid the well of any NaOH.

3) A tight seal of all the sample wells was assured by replacing the liner of the cap

holder with a new Teflon liner every time the holder was used. The new liner

created a tight seal of all the sample wells when screwed onto the base.

This method kept the volume low, by adding the minimum amount necessary to the

samples and by using a volatile acid for the hydrolysis. In addition, the result was

maximized by the use of LIP detection, which is known for its high sensitivity, and CZE,

which allowed very small samples to be injected. (Yuan and Mort, unpublished)
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2.5 DETERMINATION OF SIZE

2.5.1. Initial estimation by Capillary Zone Electrophoresis

Samples were run on a custom-built capillary electrophoresis instrument with

laser-induced fluorescence detector, which used a helium-cadmium laser for excitation

and an intensified charge-coupled device camera for detection (Merz and Mort, 1998). A

fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA) of 50 J.lm ID (355

J.lm OD) was used as the separation column for oligosaccharides. The capillary was 50

cm in length, with 26 cm to the detection window. 0.1 M NaH2P04, pH 2.5, was used as

a running buffer. The capillary was rinsed with running buffer after each run and

samples were introduced by gravity-driven flow for several seconds. Electrophoresis was

conducted at 18 kV with the negative electrode on the injection side.

2.5.2. Final determination of mass by MALDI-TOF MS

The matrices used originated from different sources. The MSA (CAS 2612-02-4),

THAP (CAS 480-66-0) and Nafion (CAS 31175-20-9) used were purcha ed from Aldrich

Chern. Co., WI. DHB (CAS 303-38-8) was purchased from Acros Organic, NJ. The

ammonium citrate (CAS 3012-65-5) used was from Fisher, NJ. MALDI-TOF MS

instrument configurations have been focused on the study of proteins, which made its use

on polysaccharides a learning journey of trial and error. To circumvent the lack of

detailed configurations for polysaccharides, best instrument configuration (BICs) were

developed based on scarce published and unpublished details, and were saved in the

OSU's instrument database for further usage. In addition, many matrices and co

matrices, in various combinations, were tried for the different types of polysaccharides
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(acidic, neutral and labeled) used in this research project. Comparative example of a

THAP and nafionrrRAP used for the analysis of acidic polysaccharide (GR)4 are shown

in figure 2-1. TRAP, when used with nafion showed an improved signal/noise ratio and

limited salt adducts. Furthermore, TRAP also improved the signal/noise ratio for neutral

oligosaccharides, as compared to DHB, which is shown in figure 2-2.

The practical use of the MALDI-TOF VOYAGER DE-PRO WITH DELAYED

EXTRACTION TECHNOLOGY carried many considerations. Some very important

ones are:

1) The instrument's sensitivity to contaminants, including plasticizers from the

plastic-ware used, was very high. Undesired signals from plasticizers were avoided by

the use of methanol/ethanol washed, an utoclaved, plastic-ware used during sample

preparation. In addition, taking into account the instrument's sensitivity, extreme care

was taken while spotting the plate to avoid extraneous contamination.

2) Salt adduct formation happened readi Iy. Salt adduct formation was decrea ed by

desalting samples and matrices as well. Desalting was achieved by adding 10 III of

Dowex -SOW 50X8-200 beads in the ammonium form to the samples and matrices

solutions used. The mixture of beads and solution (sample or matrix) was allowed to

react for at least 15 min at room temperature. It was found that matrices that were

allowed to sit with the beads for more than 12 hr showed less salt adducts. The beads

were stored at 4 °C in H20, so care was taken to only add beads from the bottom of the

flask to prevent further dilution of the sample (by just adding the supernatant H20).

Some matrices found to work best with polysaccharides, and their compositions, are

presented in the table 2-1. Other co-matrices used and their compositions follow:
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Matrix abbreviation used composition
DHB Dl 10 mg/ml in H2O

D2 10 mg/ml in 0.1 % TFA/acetoniuile (70:30)

D3 20 mglml in ethanolfH20 (50:50)

THAP TO 100 mg/ml in methanol

T1 20 mglml in methanol

T2 to mg/ml in H20/acetonitrile (50:50)

T3 10 mg/ml in methanolfH20 (50:50)

TO Nc (pre-mixed) 4:1

MSA M1 1 mg/ml in ethanolfH20 (50:50)

M2 20 roM in ethanol1H20 (50:50)

D M (pre-mixed) 9:1

Table 2-1 Matrices used and their composition.

Polysaccharide type Matrix Mode

Acidic (i.e. OR oligomers) ToNcAc reflectron - negative

Neutral (galactans, arabinans, etc) D2 reflectron - posi ti ve

APTS and ANTS labeled oligosaccharides NTo reflectron - negative

2AP labeled oligosaccharides ToNcAc reflectron - positi ve

Table 2-2 Matrices and modes for different polysaccharides types.
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- Ammonium Citrate [ CNH.th HC6Hs0 7 ]

Ac =20rnM sol in H20

- Nitrocellulose (30 mg/ml in acetone)

Nc =15 mg/ml in acetonel2 propanol (50:50)

- Nafion perfluorinated ion exchange resin, 5 wt. % solution in mixture of lower aliphatic

alcohols and water.

N =nafion diluted in ethanol (50:50)

3) Different matrices and modes were used with different carbohydrate types. The

best matrices and modes found are presented in the table 2-2.

4) Various sample-spotting techniques were tried, and it was found that one of the

simplest ones gave the best and most consistent results. This simple technique consisted

in spotting 0.5 III of matrix first and secondly 0.5 III of the sample. Mixing was on the

plate with the pipette tip. When spotting various layers, the same technique was applied.

For example 0.5 III of co-matrix was applied and let dry, secondly 0.5 III of the matrix

was applied and mixed on plate with 0.5 III of the sample as previously described.

5) Dryness of the sample was very important, and two methods were tried, air and

vacuum drying. Air-drying worked for almost all matrices used. An exception was the

DIM mixes, which required vacuum drying both to speed the drying and to form better

crystals.

7) The cleanliness of the plate proved to be very important, so care was applied

when washing the plate. The plate was washed with distilled water, acetone, and ethanol

as many times as necessary for the complete removal of any residue left on it. To avoid

scratching the plate when scrubbing was needed, a chemwipe was used very lightly.
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Detailed instructions, prepared by this author, on how to use the MALDI-TOF

VOYAGER DE-PRO WITH DELAYED EXTRACTION TECHNOLOGY (OSU,

Department of Biochemistry and Mo ecuLar Biology, 3rd floor) for carbohydrate analysis

are given in the Appendix A.

(Komer et aL., 1998; Jacobs et a1., 2001; Talbo et aL, 1996; Harvey 1993' Harvey 1999;

Gusev et al., 1995; Papac et al., 1996)

2.6 STRUCTURE DETERMINATION

[H, 13C, both ID and 2D (COSY, TOCSY, HMQC, HMBC) NMR spectra of the samples

were recorded on a Varian Unity Plus 600 MHz NMR spectrometer by Dr. Feng Qiu at

the OSU's NMR shared facility using the standard pulse sequence with water pre

saturation. Samples were dissolved in DzO. The pH of the solution was 6. The spectra

were acquired at 25°C, except for the TOCSY spectrum, which was acquired at 12°C.
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CHAPTER 3

PARTIAL ISOLATION AND CHARACTERlZATION ATfEMPTS OF AN

ARABINOSE RICH FRAGMENT FROM COMMERCIAL CITRUS PECTIN

3.1 DIGESTIONS

From the commercial citrus pectin, HMW and LMW fractions were obtained. In

the beginning of this study, the HMW and LMW fractions were obtained as per Zhan et

a1. 1998, using an YMlO cutoff membrane and without an imidazole treatment. The

HMW fraction was the one used for further analysis, but its high content of GalA dimer

and trimer masked the expected results during the separations stage. In order to

circumvent that problem, and based upon previous experiences described in Mort et al.

1991, the use of imidazole was decided. The usage of the imidazole treatment, whose

mode of action is not well understood, helped the dimer and trimer of GaIA to ultrafiltrate

to the LMW fraction and rid the HMW analysi of their interference. Since the desired

fraction was theorized to be biggerthan 10k MW, and since the interference of the lower

oligomers of GalA was solved, the use of a bigger cutoff membrane was decided upon,

and a 30k MW cutoff membrane was then used (YM30). The obtained LMW was not

used and therefore discarded. The HMW fraction obtained was lyophilized prior to

further characterization. A schematic representation of a generalized digestion scheme is

gi ven in figure 3-1. The different HMW fractions obtained by the different schemes

described differed greatly in their GaJA content, in their dimer and trimer forms, which

was proven by the lack of interference in their later chromatographic separations, which

is represented in table 3-1. The obtained results show a marked improvement in ridding
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Commercial Citrus Pectin

Saponification

EPG digestion

Centrifuge (12000 rpm for 20 min, wash x2)

Supernatant
Ultrafiltration with cutoff membrane (*)

LMW r
imidazole

ultrafiltration with 30k cutoff membrane

•iHMW

enzymatic digestion
various enzymes combinations using:

Cloned RGase
endo-l,4-B-D-galactanase

endo-arabinanase
u-L-arabi nofuranosi dase

endo-polygalacturonase (EPG)
~-galactosidase

imidazole
treatment

(:Ie)

Fig 3-1 Schematic representation of a generalized digestion scheme
Note: (*) represents optional treatment and the changes that it incurs in cutoff membrane

selection.
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BMW • ori~inal HMW - 10·1·30 HMW • 30-1-30
Relative mol of

OalA 3.31 2.45 1.33

'Ara 0.28 0.73 0.54

Gal 1.74 1.64 1.39

Ole 0.16 0.12 0.05

Xyl 0.20 0.10 Tr.

Table 3-1

Notes:

Comparison of the monosaccharide composition of the different HMW
fractions.
The moles are relative tbe rha mole content in the sample.
Tr.-denotes trace amount.

scheme 1 scheme 2 scheme3
saponification methanol methanol ethanol

cutoff membrane
,

YMIO YM30 YM30

imidazole treatment N Y Y

enzymc(s) 1 ROase galactanase gaJactanase
arabinanase ara-sidase
ara-sidase

enzyme(s) 2 galactanase ROase RGase
arabinanase
ara-sidase

enzyme(s) 3 - - arabinanase

,

separation PAl PAl PAl

Table 3-2 Details of digestion schemes used
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the HMW fraction from the dimer and trimer of GalA. A representation of the HMW

fraction obtained is shown in figure 3-2. Three different digestion schemes were

approached in trying to obtain the desired RGI arabinose-rich fraction. The digestion

schemes details are shown in table 3-2. The described digestions schemes varied in

enzyme types and combinations. A representation of an expected result from HMW

digestion with RGase is shown in figure 3-3. Figure 3-4 shows the scheme followed to

obtain HA, HB, HC and lID and their respective LA, LB, LC and ill. Figure 3-5 depicts

the comparative sugar composition of HA, HB, HC and HD fractions.

3.2 SEPARATIONS

After each digestion, the digest was separated into fractions according to their

mass/charge ratio by HPLC through a PAl anion-exchange column. Many separated

fractions were obtained, but we focused on some with specific retention times, based on

the the0l1zed size of the expected arabinose-rich fraction, taking into account the

decrease in its charge due to the neutral side chains. Furthelmore, we a sumed that the

existence of a minimal number of neutral side chains on the expected fraction would

decrease the charge/mass ratio, therefore the interesting fraction would elute earlier than

its debranched (RG)" counterpart. Each obtained fraction was labeled with ANTS as

described in chapter 5 and subjected to CZE. The obtained electropherograms were

compared with standards' electropherograms and tentative size determinations and

identifications were deduced.
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Fig 3-2 Representation of the HMW fraction obtained
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HMW HMW
(300 mg) (300 mg)

• +
RGase galactanase

1\
arabinosidase

10k cutoff /~
HMW LMW HMW LMW
(0.13 g) (0.19 g) (0.16 g) (0.10 g)

(A) (B) (C) (D)

IOmg 1 IOmg 1 ..
lOmg 7mg

,
-,

galactosidase RGase

1\ j\ 1/\ j\3k cutoff

HMW LMW HMW LMW HMW LMW HMW LMW
....

(HA) (LA) (HB) (LB) (HC) (LC) (lID) (LD) ::

1

Fig. 3-4. Schemes to obtain HA, HB, HC and lID
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SUgarcomposition of diJested fractions
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3.3 TENTATIVE CHARACTERIZATIONS

All the fractions obtained were labeled with ANTS and electrophoresed. In

addition, the monosaccharide composition of each fraction was detennined by either GC,

if there was enough sample, or the method for small amounts, if the amount of sample

was not enough to spare between 50-100 llg, as described in chapter 2. Based on the

comparison of the electropherograms with standards, and the monosaccharide

composition of each fraction, further characterization attempts were focused on a handful

of fractions. From the latest digestion scheme shown in figure 3-4, we theorized that the

arabinose-rich fraction was most likely to be in fractions HC or lID. The difference

between those 2 fractions was their size. Based on the cutoff membranes used to obtain

those fractions, lID's molecular weight should have been between 3k and 10k, while HC

should have been above 3k with no upper limjt restriction. All the ANTS labeled PAl

fractions were compared and 2 fractions from the lID separation, fractions 24-25 and 29

31, which showed promising results, were sent for I H NMR analysis. Although the

NMR results showed no sugar signals and no conclusion was drawn from them, we are

confident that the lack of sugar signals was due the small amount of sample obtained

after the HPLC separation. Due to the high amount of buffer needed to elute the ugars

held in the PAl column, the many lyophilizations to rid them of the salt, and reasonable

loss, sometimes the small amounts of sample become just too small for further

characterizations. The separations that led to the promising fractions should be repeated

with the aim of obtaining more sample. With more sample in hand, we are confident that

future characterizations of those fractions will shed more information on the linkage

between the arabinose rich side chains to the rhamnogaJacturonan backbone of RGI.
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CHAPTER 4

CHARACTERIZATION OF METHYL ESTERIFIED TETRAGALACTURONIDE

FROM COMMERCIAL VP PECTIN

INTRODUCTION

VP is an old nomenclature kept here when referring to the commercial apple

pectin classic AY 802 (Lot 201137,38-40 % degree of methylesterification). This

particular apple pectin used was a gift from Dr. Benjamin Jones of Campbell Soup

Company (Camden, NJ), who purchased it from Atomergic Chemicals Corporation,

Plainview, New York.

3.1 SEPARATION

Commercial VP pectin was dissolved in NP H20, and its pH adjusted to 4 with

glacial acetic acid. EPG digestion was done overnight at room temperature, and

afterwards the digest was centrifuged to remove the insoluble material. The supernatant

of the EPG digested VP pectin was lyophilized before further u e. The EPG dige ted VP

pectin, 40 mg in 2011 of NP H20, was then separated on a HPLC using a PAl anion

exchange column. The ammonium acetate elution gradient used was mostly linear up to

the 2 M wash. It started at 0.3% 1 Mat 5 min and it was linearly increased to 1% 1 Mat

80 min. The column was washed with 2 M ammonium acetate for 10 min and the run

ended by returning the column to the original conditions. The fractions were collected

and desalted by repetitive lyophilization for further characterization. The obtained HPLC

chromatogram is shown in figure 4-1. The separation was based on mass/charge ratio.

The retention time of the peak of interest, between the dimer and trimer of GaIA,
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indicated the possibility of it being partially methyl-esterified, since we can assume that it

was separated on the basis of its overall charge in respect to its mass. According to Daas

et al (1998), the dimer of GalA has an overall charge of -2, while both the trimer and the

methylated tetrarner have an overall charge of -3. The difference between the later two

lies on their mass, and thus the difference in their observed retention times.

3.2 CHARACTERIZATION

The first few desalted and dried fractions were labeled with ANTS and

electrophoresed, while the rest, after being desalted and dried, were reserved for possible

future work. The obtained electropherograrns were compared to standards'

electropherograms. The first peak was determined to be composed of neutral sugars and

presented no further interest. The second, third and fifth peaks were determined, by

comparison, to be the monomer, dimer and trimer of GalA respectively, and thus labeled

(GalA)I, (GaJAh, and (GaIA)3 on figure 4-1. The fourth peak had an intere ting retention

time between the dimer and trimer of GalA, indicating that its mass/charge ratio was

comparable to both of the above but it was none of them. [n addition, in agreement with

the previous statement, when subjected to CZE analysis, P4 eluted after (GaIAh, This

interesting peak, assumed to be a methylated counterpart of either the trimer or tetramer

of GalA, was referred to as P4. The mass of the sodiated adduct of P4 was determined by

MALDI-TOF MS to be 759.075, as shown in figure 4-2. This mass (minus the sodium

adduct) fits the mass of a methylated GalA tetramer, which is in agreement with the

above HPLC elution pattern, the CZE data and the data from literature reviewed (see
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Daas et a1.. 1998). Although this assignment was very tangible. more proof was needed.

Data to demonstrate first. that P4 was, in fact, a methylated GalA tetramer, and second, to

show on which of the GalA residues was the methyl on, was acquired by NMR. The ID

lH NMR spectrum of P4, was very complex with many overlapping signals, and it only

showed with certainty that the oligomer was methyl esterified by the singlet of the methyl

signal at approximately 3.83 ppm. An arbitrary nomenclature of the GalAs of the

tetramer was defined to ease the chemical shift assignments. The nomenclature was as

follows: GalA I was the non-reducing end (NR), GalA II was the one next to it, GalA III

the following and GalA IV represented the reducing end (R). Figure 4-3 aids in the

visualization of this nomenclature. Further elucidation of the spectrum was accomplished

with the help of various 2D spectra, namely, COSY, TOCSY. HMQC and HMBC. The

2D data obtained were analyzed with the help of NMR-View (Bruce A. Johnson, Merck

and Co. Whitehouse Station, NJ, USA), a computer program of great value for 2D NMR

signals correlation. In addition, data obtained was compared to publi hed data from Lo et

al. (1994), Mort et al. (1993) and Komer et al.(1999). Published data showed that the

chemical shifts of the ends of a GaiA oligomer are clearly different, from each other and

from the internal residues, and somewhat easy to identify, unless some other chemical

structure present distorts them. This analysis gave us the ability to assign most of the

signals obtained, shown in table 4-1, and to conclude that the GalA were a linked «(1-4)

a-D-GaIA) and that the methyl was esterified on the carboxyl group of GalA III, as

represented in figure 4-3. We started with the TOCSY spectrum, taking into account that

it correlates both long and short-range spin-spin proton interactions. The H2 of GaiA IV

~ was identified at 3.49 ppm, and following its horizontal correlation we were able to
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HI H2 H3 H4 H5 Cl C2 C3 C4 C5 C6
GalA I 5.06 3.72 3.92 4.26 4.76 99.41 69.85 69.89 71.20 72.59 176.39

GaiA II 4.91 3.77 4.05 4.41 4.74 100.27 68.40 68.36 79.57 71.75 176.15

GalA III 5.15 3.74 4.41 4.55 5.19 99.93 68.45 69.00 78.68 70.75 171.33

GaIA IV a 5.32 3.83 4.01 4.42 4.43 92.29 68.27 68.95 78.45 70.71 175.31

GalA IV P 4.61 3.49 3.78 4.34 4.07 96.41 71.45 72.45 78.43 74.53 174.35

Table 4-1. Identified chemical shifts (in ppm) of the methylated tetramer of GalA.
NR end= GalA I, GalA II, GaiA III, GalA IV =R end.



determine the chemical shifts of the H3 IVp, H5 IVp, H4 rvp and HI IVp. In the same

manner, HI of GalA I was identified at 5.06 ppm, and from its correlations, H5 I, H4 I,

H3 I and H2 I, were assigned. Many other signals were assigned following the same

pattern of logic and correlation. From the TOCSY and the IH data, it was relatively easy

to identify the NR and the R ends signals, corroborating that those were not shifted from

the values reported for simple GalA oligomers. We concluded that the methyl group had

to be on one of the two internal GalA residues. The signal of the HI of GalA IT, at 4.91

ppm was up-field in comparison with other HI, usually found between 5.00 and 5.10

ppm (La et aI., 1994). This shift was likely caused by other than the direct bonding

proximity of the methyl group, since the methyl was detennined to be on GalA Ill. The

methyl group on GalA lIT is spatially close to the HI of GalA II and so, probably affects

its chemical shift through space. The TOCSY spectrum showed some key correlations

for our structural determination. We observed that the signal for the H5 III, which was

very close to the signal for HI III, was slightly downfield at approximately at 5.19 ppm.

In addition, we observed that all the horizontal correlations of the H5 111 and the H 1 111

were almost parallel, which we took as an indication that they were on the same spin

system. Furthermore, we observed that the H4 III and H4 II were well eparated from

each other at 4.55 and 4.41 ppm respectively. With the help of heteronuclear 2D NMR

spectroscopy, we were able to deduce many more signals. The HMBC, which correlate

long range H-C and the HMQC, which correlates coupled H-C signals, were of

invaluable help. The l3C signals from the Cl were clearly observed in the HMBC

between 95 and 103 ppm. The signals for the C6 were found downfield between 160 and

180 ppm. The HMBC spectrum also showed some key correlations. It was observed that
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the C6 III was correlated to the CH3 of III, and also to the H5 ill, showing that the methyl

esterified GalA H5 was downshifted at 5.19 ppm in comparison to the expected at 4.75

ppm for a non-esterfied residue. Furthermore, on the HMBC it was observable that the

Cl II correlated to the H4 III, an inter-residue correlation, which aided us in determining

the order of the galacturonic acid residues. On the HMQC spectrum, the signal at 5.19

ppm correlated to a BC chemical shift of 70.75 ppm showing that it was not from a Cl

but instead must be from the H5 III. It was observed that C5 III was correlated to the H5

III, discarding the possibility that this signal was from an HI. Based on the presented

data and comparison with published one, we concluded that the methyl group was on the

GaiA III, the one next to the reducing end GalA, on its carboxyl group, forming a methyl

ester. Figure 4-4 shows partial view of the TOCSY spectrum, while figure 4-5 shows

partial view of the HMQC spectrum where the shifted C5 of GalA III can be observed.

Figure 4-6 highlights the shifted signals of the C6's and the Cl 's on the HMBC spectrum.
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CHAPTERS

SUMMARY AND CONCLUSIONS

For its function in the plant cell wall and its uses, mainly in the food industry,

pectin is without a doubt very important for humankind. Despite its importance, its

structure remains unclear.

Pectin is a major complex component of primary plant cell walls with four

distinguishable regions: HG, RGI, RGll, and XGA. RGJ has a backbone of a repeating

disaccharide (l-2)-a-L-rhamnosyl- (1-4)-a-D-gaJactosyluronic acid. Many of the

rhamnose residues are glycosylated at the 0-4 position with arabinose and/or galactose

side chains. Pectin fragments from the HG region, a homopolymer of (1 ~4) a-D-GaIA

with a varying degree of carboxyl groups methyl-esterified, have been shown to regulate

a number of important responses in plants. Although the importance of these HG

fragments is indubitable, their chemical structure is uncharacterized and still being

pursued. Commercial pectins are an abundant, cheap source of RGI and HG.

This thesis project comprised 3 main aims. The first was the attempt to isolate

and characterize the chemical nature of an arabinose rich side chain linkage to the main

chain. The second aim was to characterize a methylated tetramer of galacturonic acid.

The last and third aim was to improve some of the techniques used to help this re earch

project and future carbohydrate research.

RGJ and HG fragments were prepared from the pectin by sequential

saponification, digestion with endopolygalacturonase (EPG), and ultrafiltration through a

cutoff membrane. The high molecular weight (HMW) fractions obtained in this fashion

were digested by various combinations of a cloned rhamnogalacturonase (RGase) and
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commercial 13-galactosidase, endo-l ,4-13-galactanase and a-L-arabinofuranosidase. The

neutral sugars obtained by digestion were removed through an anion-exchange PAL

column. The acidic fractions separated from the digests by PAl anion-exchange

chromatography underwent subsequent analysis to determine their sugar composition by

GC, and their purity hy CZE. Further characterizations of interesting fractions made

great usc of various techniques such as CZE, HPLC, GLC, NMR and MALDI-TOF MS.

Trial and error research led to some improvements in the methods used and the

development of workable instrument configurations for the MALDI-TOF.

The isolation attempts of the arabinose rich RGI fragment involved many

sequential enzymatic digestions and chemical separations using various chromatographic

methods. Three different enzymatic schemes were tried and no conclusive results were

drawn from the data obtained. Furthermore, we concluded that the enzymatic

combination used was not enough to strip the RG of the side chains, since its degradation

was not sufficient to decrease its molecular weight below 3000 Da in order to be found in

the ultra-filtrated LMW fractions. The characterization of the methylated tetramer of

GaIA was based mainly on NMR spectroscopy results and from the data obtained we

concluded that the methyl was on the GalA next to the reducing end (GaiA III) on a

methyl-ester bond on the carboxyl group. Great improvements in obtaining a more

usable HMW fraction were obtained by the use of imidazole, which rid the HMW

fraction of the dimer and trimer of GalA interference. MALDI-TOF MS BICs were

developed for the different carbohydrate types used. In addition, matrices were found

that improved the signal/noise ratio for the different carbohydrate types used.
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APPENDIX A

INSTRUCTIONS FOR THE USE OF THE MALDI-TOF VOYAGER DE-PRO WITH

DELAYED EXTRACTION TECHNOLOGYFOR CARBOHYDRATE RESEARCH

OSU - DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

NOTE 1 - since the instrument is very sensitive to contaminants (including

plasticizers), use methanol/ethanol washed and autocJaved tips and microfuge

tubes for sample preparation

NOTE 2 - since salt adducts form rather easily desalting is very important. The

usage of Dowex -sow 50X8-200 beads in the ammonium fonn is highly

recommended for desalting purposes. The beads are stored at 4°C in H20, so

always add beads from the bottom of the flask to prevent further di lution by just

adding the supernatant H20.

NOTE 3 - Different oligosaccharide samples require different matrices and

different modes. GR oligomers - TONcAc, reflectron, negative mode

Neutral oligomers (galactans, arabinans, etc) - D2, reflectron, positi ve mode

APTS and ANTS labeled oJigosaccharides - NTo, reflectron, negative mode.

Check table 2-2 in chapter 2.

SAMPLE PREPARATION-

Dissolve your sample in water (need above fmol conc. to be detected, pmol and above is

good). For every III of sample, add I III of beads and let it sit for at least IS min.

59



MATRIX PREPARATION

NOTE 4 - different matrices work better for different samples, so if you have a

new sample you should try it on different matrices.

NOTE 5 - matrices seem to have salts too, so it is recommended that they will be

prepared 1 day ahead of use time and stored on10 JlI of beads.

DHB = 2,5-dihydroxybenzoic acid

Dl= 10 mglmJ in H20

D2= 10 mg/ml in 0.1 % TFAJacetonitrile (70:30)

TRAP= 2,4,6-trihydroxy acetophenone

TO= 100 mg/ml in methanol

Tl= 20 mg/ml in methanol

T2= 10 mg/ml in H20/acetonitrile (50:50)

T3= 10 mglml in methanolIH20 (50:50)

MSA = 5-methoxysalicylic acid

Ml= 1 mg/ml in ethanol/ H20 (50:50)

M2= 20 roM in ethanol/H20 (50:50)

D / M mixtures= 9: 1
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OTHER SOLUTIONS USED

Ammonium Citrate [CNH4) 2 HC6Hs0 7] (CAS 3012-65-5)

Ac = 20mM sol in H20

Nitrocellulose (30 mg/ml in acetone)

Nc =15 mg/mJ in acetonel2 propanol (50:50)

Nafion perfluorinated ion exchange resin (CAS 31175-20-9) 5 wt.% solution in mixture

of lower aliphatic alcohols and water.

N = nafion diluted in ethanol (50:50)

TONe =TOlNc (4:1)

SAMPLE SPOTTING

NOTE 6 - there are many ways to spot the samples in order to obtain better

crystals, but it is always important to let the samples dry completely before using

the instrument

NOTE 7 - since the matrices and samples are sitting on beads, be careful to only

spot the supernatant and not the beads onto the plate. If some beads are spotted,

make sure to remove them before using the plate in the instrument. Beads can be

removed (not an easy task) by vacuum drying and/or blowing onto the plate (be

careful of contaminant deposition onto the plate when blowing)
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NOTE 8 - it is important to know which sample is where on the 100 welI plate,

therefore it is advisable to use a chart to record the spots, matrices used etc, as the

one attached at the end of this appendix

NOTE 9 - Use the wells in the middle of the plate (in our plate be careful to avoid

the scratched wells 44, 45)

SPOT A CALffiRANT EVERY TIME (the calibrant will depend on your sample

size)

A NEW CALmRATION Fll.E SHOULD BE CREATED EVERY TIME.

T_NcAc = 0.5 up T_Nc mix, let it dry

add 0.5 up Ac + 0.5 up sample

N-matrix = 0.5 JlI dil nation, let it dry

add 0.5 JlI matrix + 0.5 JlI sample

matrix-Ac = 0.5 up matrix, let it dry

add 0.5 Jll Ac + 0.5 JlI sample

matrix = 0.5 JlI matrix + 0.5 Jl! sample - let them dry together

NOTE 10 - sample and matrix can be mixed on plate with the pipette tip if

desired. In addition, sample can be vacuum or air-dried, which sometime it does

make a difference.
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RUNNING THE VOYAGER DE PRO

NOTE 11 - All our data is on the D drive in the Mort folder (D:/Mort/2001/ ... )

NOTE 12 - The joystick has 2 buttons, the one to the top (top meaning the wire

side) SAYES data, the one to the lower left SHOOTS the laser.

Make sure that the computer, the computer monitor and the TV monitor are on.

1) open the VOYAGER INSTRUMENT CONTROL PANEL program (shortcut on the

desktop)

2) insert spotted plate (CAREFUL WITH PIN POSITION)

2a- icon with a plate on a hand will eject plate holder (after downing the voltages

and vacuum, it takes a few seconds) (or go to sample plate/eject)

2b- place plate on plate holder with care of the pin position (pin should go

towards the instrument and the solid edge should face the door, in other word, the

PerSeptive Biosystems symbol faces the instrument). Slide plate in until it click

in place.

2c- click on icon again and choose 100 well plate from the drop-down plate id

menu. Click on load plate (loading takes a few seconds too)

3) make sure the voltage is on (check instrument status at the bottom of the screen). If

voltage is not on, turn on by using the voltage icon (looks like a lightning) (or go to

instrument/tum on voltage)

4) open instrument setting (file / instrument settings - D:/Mort/200 l/bics) by choosing the

appropriate BIC (Best Instrument Configuration) according to the sample and matrix in

63



use. Note the mass range, which can be modified by just retyping the desired range (do

not save this as a new bic)

5) change data storage directory to save your files in the right place. To do so click on the

.. symbol, in the data storage area of the screen. Go to D:/Mort/2001l etc and give your

file to be saved a name following this fonnat: date/matrix/sample, ex 0605TONcAcGR4.

Make sure the autosequence filename option is clicked on so you can save more than one

file with the same name by creating a numerical sequence of it.

6) create an active position by entering the number of the well where that sample is

spotted and pressing enter (you can also go to the number by using the drop-down menu,

or by clicking in the correct well hole of the plate represented on the computer screen).

Position your spot using the joystick and the drawn target on the monitor screen.

The first sample to be shot should be the calibrant, so a calibration file can be created.

Since all your calibration will depend on this data, take some time to make it the best

possible.

7) shoot the laser (using lower-left button on joystick) and acquire data.

Check for the intensity of the data acquired (max intensity is 6.3 x 10"4). If inten ity i

too low discard the data and "shop" for another "hot" spot on the sample to obtain better

intensity. As a last resource up the laser power in increments of 10.

Check for peak resolution, go to tools/resolution calculator - select the peak with the

mouse's right button and click ok. In the reflectron mode a resolution of >5000 should

be achieved, although a resolution of >2500 is enough to create a calibration file.

8) To reduce signal/noise ratio the spectra can be accumulated by using the sum icon

(looks like an epsilon), the one to the right of it (epsilon with an eraser) will clear the
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accumulated spectra. Accumulate the current spectrum, shoot again, and if the new

spectrum is satisfactory, accumulate it, if not, shoot again (this will erase the recently

acquired spectrum). Go on until you have obtained desirable signal/noise ratio, intensity

and resolution to create your calibration file.

9) save your accumulated file (and any individual file that you might need) by using the

top button on the joystick.

CREATE A CALIBRATION Fll..E

10) open the data in DATA EXPLORER VERSION 4.0 by using the icon that has two

spectra, one on top of the other (the 7th icon from the left). The use of this icon will open

the last saved data file on explorer. Or you can open explorer and then manually open

(file/open filelD:/Mort/200l/ .... ) the desired file. Click on the file, click on add (add as

much as 8 files at a time) and click on finish to plot the data.

11) data massaging - process/advance baseline correction- ok

process/noise-filter smooth - ok

12) create calibration file - process/mass calibration/manual calibration - choose

reference file from the Mort folder (that is the only reference file that has the

oligosaccharides reference in it, other reference files have only proteins). Choo e a peak

(make sure that you are choosing only one peak by expanding the spectrum with the

mouse's left button) with the mouse's right button, and it should show you a mass in the

reference file that is pretty close to your mass (make sure it corresponds to one of the

oligosaccharides masses in the reference file). If you agree that the mass that you have

should correspond to the mass in the reference file, press ok. Do the same for all the
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peaks in your acquired spectrum to have many calibration points. When you are done

doing this, click on export. This will save the file as a calibration file. Be sure that the

proper name is assigned to it (date/matrix/sample) so it cannot be confused with older

calibration files.

To go back to full unzoom use the double arrow icon.

BACK TO VOYAGER INSTRUMENT CONTROL PANEL

USING THE CALlBRATION FILE

13) In order for the new data to be calibrated with the calibration file just created, you

need to open the file. Look at the right lower side of the screen and locate the cali bration

area, click on external file, and from there locate the file just created (D:/MortI200l/...... )

BACK TO YOUR SAMPLES

14) now you are ready to shoot all your samples following steps 6,7,8. Data proces ing

can be done through the other computer tenninal to free the instrument for other u ers,

15) when all samples are finished eject the plate by using the hand with plate icon, press

eject (this takes a few seconds).

16) after the plate is retrieved, use the same icon to LOAD NO PLATE.

17) turn the TV monitor off but leave the computer on and the program open.

DATA PROCESSING

1) Open DATA EXPLORER VERSION 4. Open the desired file(s). If more than one

file was acquired for a certain sample, open them all, and decide for the best one.
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3) to print

2) if desired, recommended data massaging

-process/advance baseline correction- ok

-process/noise-filter smooth - ok

-file/printer setup - landscape

-filet print! print file with instrument settings - ok (or Ctr! + P)

pick up print outs in the 3rd floor printer.

TO PLOT OATA IN KALEIDOGRAPH

1) Open DATA EXPLORER VERSION 4. Open the desired file(s). Do all the data

processing needed, including truncating the spectrum so there are less points left

to transfer.

2) Go to FILE and EXPORT DATA - as ASCI (to that computer's desktop).

3) Log in to the lab computers using the NETWORK icon on the desktop, and from

there choose Apple Miramar Talk (all). That will show all the computers on the

network, choose the desired one to move the ASCI data to.

4) Back at your computer, drag and drop ASCI data in Kaleidograph, and graph as

usual (ignore comments on too many rows).

AND FINALLY ..WASHING THE PLATE

Be careful not to scratch the plate, repeat as needed.

Rinse with 1) distilled water, 2) acetone and 3) ethanol

Scrub if needed, very lightly, with a chemwipe or your gloved finger.
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100 well plate chart

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50
I

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 I 67 68 69 70

71 72 73 74 75 76 77 78 79 80
I

81 82 83 84 85 86 87 88 89 90
I

91 92 93 94 95 96 97 98 99 100

DATE:

NOTES:

OPERATOR:
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